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ABSTRACT

1.0 mm continuum mapping observations have been made of seven

southern hemisphere HII/molecular cloud complexes with 65 aresec

resolution. The radial density distribution of the clouds with

central luminosity sources was determined observationally to be
.^	 r

p (r) = X
1.5	

0.5. Strong similarities in morphology and general

physical conditions were :found to exist among all of the southern

clouds in the sample.

Subject Pleadings: Infrared: Sources -• Stars: Formation

Nebulae: General
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T. INTRODUCTION

High surface brightness 1.0 mm continuum emission has been detected

from dust clouds associated with the seven southern HII regions RCW 38,

RCW 57, G333.6-0.2, RCW 117, RCW 122, G35i.6-1.3 and W33/W33A. All of

the sources are located in the inner part of the Galaxy near the galactic

plane. They were selected from among the brightest southern hemisphere 10 g

sources observed by Frogel and Persson (1974) and Frogel et al. (1977), with

the aim of determining the distribution of dust in the vicinity of compact

HII regions associated with dense molecular clouds.

An additional source, NGC 6334, has previously been discussed in

detail by Cheung et al. (1978). As part of our 1.0 mm continuum survey,

we also observed several extragalactic objects, including mapping of the

30-Doradus region in the Large Magellanic Cloud, the results of which

will be presented separately,

Five of the seven sources disucssed here were mapped extensively

with one arc minute resolution. In each case, there is a close associa-

tion between the 1.0 mm source, several compact near infrared objects,

extended high surface brightness far infrared emission, and CO and OH /H20

line emission (where observations are available). The 1.0 mm continuum

maps have been used to determine the radial dust density distribution

in the cores of these dense southern clouds for comparison with density

distribution results for northern objects (Westbrook et al. 1976).

i
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I1. OBSERVATIONS

The observations were niade during 1977 and 1978 with the 4-meter

telescope at the Cerro Tololo Inter-American Observatory in Chile.

Figure 1 shows a schematic of the remote controlled, prime focus infrared

photometer (Gezari 1979) and the liquid helium cooled detector system.

The oscillating tertiary mirror, onto which the primary is imaged, and

reactionless drive assembly are dynamically balanced to minimize

synchronously-induced detector microphonic noise. The motion of the

wobbling mirror is generated by a servo-cont-rolled magnet driver system

capable of producing an 80% efficient square wave cycle at 15 Hz with

a stable beam separation of up to 8 are min on the slay. The amplitude

and position angle of the beam separation are variable and were typically

set at 5 arc min in right ascension at a switching frequency of 10 Hz.

The detector in 1977 was a composite bolometer (Hauser and Notarys

1975) consisting of a Cermanium thermometer mounted on a 2 mm square

bismuth-coated sapphire substrate, with an electrical NEP of 1 s 10-14

W Hz-1z at 1.40K. For the 1.978 observations, a bismuth-coated diamond

substrate composite bolometer with an electrical NEP of 8 x 10 -15 W Hz-"-

was used. The output of the bolometer was DC-coupled to a cooled buffer

amplifier inside the liquid helium dewar. A parabolic light cone (Harper

et al. 1976) acting as a field lens in the focal plane concentrated the

beam on to the detector in an integrating cavity. Background radiation

of wavelength less than 600 11111 was rejected by an 8-layer capacitive mesh

Y .
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low pass filter and a fluorogold filter at liquid helium temperature,

and by a black polyethylene window on the 77 0K radiation shield. The

overall observational spectral band was further limited by the atmospheric

transmission to wavelengths longer than 800 dun and by diffraction effects

to wavelengths shorter than 1.5 mm. The size of the beam was adjustable

with a cold aperture at the focal plane and was set at the diffraction

limited beamwidth of 65 arc sec (FWIIP) during most of the observations.

The positional accuracy of the observations was limited by the

setting accuracy of the 4-m telescope. Absolute positional calibration

was achieved by systematic measurement of visible stars and submillimeter

flux calibrators to develop an error map for alignment of the telescope

mount and telescope flexure, and to compensate for differential atmospheric

refraction. Therefore the positions observed are accurate to within 10 arc

sec.

Measurements were generally made in a grid with spacings of 1 arc min.

Data points separated by one beam separation were deconvolved to correct

for the effects of beam switching on an extended source. A combined

atmospheric transmission-extinction curve was made by frequent measure-

ments of a bright reference point within the sources being observed. The

signal at each map grid point was subsequently corrected and normalized

relative to the reference point. The normalized signals taken on different

days were averaged together. The 1 a statistical error associated with

each normalized data point r#as typically less than 5% of the peak flux

density.

Flux calibration of the maps was made using Saturn, Venus, and Sgr B2

4	 as the photometric standards. The flux-weighted mean wavelength and flux
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density were calculated using the atmospheric modelling procedure discussed

by Elias et al, (1978). We adopted 1.0 mm brightness temperatures of 145 :L

7 0K for Saturn, 276 ^- 14 0K for Venus (Werner et al. 1978), and a flux

density of 390 Jy -^ 80 Jy into a 65 arc sec beam for Sgr B2 (Cheung et al.

1978), The calibrated fluxes obtained on different days and from using

different photomeLvic standards were compared and averaged together, with

a statistical devistion from the mean of less than 15% in most cases.

The total uncertainty in the absolute flux level was about 20%, mainly

due to calibration uncertainties. The observational sensitivity of the

system was limited to about 70 Jy Hz -1/2 by small scale atmospheric opacity

variations between the two chopped beams. However, during the usable

portions of the four observing sessions, atmospheric transmission variations

were judged to be too small to produce a significant deviation from the

effective wavelength of 1,0 ± 0.1 mm,
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III, RESULTS AND ANALYSIS

a) Nature of the 1.0 mm emission:

Figures 2-3 present 1.0 mm continuum maps for five of the 1.0 mm

sources observed. The sources RCW 117 and G351.6-1.3 were not mapped

extensively, so only their peak flux densities are presented (Table I).

The most obvious characteristic of the mapped regions is that, in each

case, the 1.0 mm emission has a central peak which is generally coincident

with one or more of the compact sources in the 1 g to 25 g region observed

by Frogel and Persson (1974) and Frogel et al, (1977). Furthermore, the

broad 1.0 mm peaks are found at roughly the same positions as the intense

40-350 ,tun emission (Emerson et a1. 1973, Furniss et al. 1975).

Table I summarizes the observations at 1.0 mm and compares the

positions and sizes of the 1.0 mm, radio, ani near infrared sources. The

observed ratio of the 40-350 ,tan flux to the 1.0 mm flux is generally

consistent with the value expected for optically thin thermal emission

from dust grains. A smooth extrapolation of the radio spectra (Figure 4)

shows that, generally, not more than one third of the observed 1.0 mm flux

in the cloud core may be attributed to the free-free process, assuming that

the extent of the ionized region is comparable to, or smaller than, our beam

size. Furthermore, in each case this process does not appear to contribute

more than 10% of the total 1.0 nun flux observed from the entire extended

region mapped.

The size of the optical and radio continuum HII regions listed in

Table I is generally less than one arc minute. It is assumed that most

of the ionized gas emission is confined to within the central 65 arc

second beam area in each source (with the exception of the more extended

source RCW 38). This assumption is supported by recent high resolution

6
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observations of [Ne II] line emission in G333.6-0.2 (Aitken et al. 1977),

and radio interferometric maps of W33 (Goss et al. 1978) and G351.6-1.3

(Broderick and Brown, 1974). The extrapolated. 1.0 mm free-free flux

density was subtracted from the peak 1.0 mm flux density in deriving

dust emission properties for the sources discussed in the following sections.

b) Dust Optical Depth and Column Density:

The 1.0 mm continuum observations provide a direct probe of the distribu-

tion of matter in dense molecular clouds. In all known 1.0 mm sources, the

1.0 mm continuum dust emission is optically thin. The intensity of the

1.0 mm emission is proportional to the temperature and number density of

the dust grains for dust temperature T d,^ 25 0K. The interpretation of the

1.0 mm continuum observational results is therefore relatively straight-

forward. In contrast, the gas density distribution inferred from 
13 

CO

observations is accurate only under the assumptions of LTE (Dickman 1976),

and constant abundance ratio of 13 CO to H2 , both of which may not hold

uniformly throughout the molecular cloud.

The dust column density D projected along a line of sight through a

dust cloud can be inferred from the observed 1.0 mm flux density S
v 

rising

the relationship D = (4/3)pdT/(Q/a) (Westbrook et al. 1976) Ire p d is

the bulk density of the dust grains with radius a and 1.0 mm extinction

efficiency factor Q. The optical depth T is derived from the relation

for optically thin emission S  « T B v, where By is the Planck function

at a grain temperature T d . For grain temperature higher than 25
0
 K, By

and hence D depend linearly on the dust temperature Td . The largest

uncertainty in the expression for D is the value of Q/a, which may vary
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by more than an order of magnitude for different grain materials

(Aannested 1975, Leung 1976). The derived parameters in Table II were

calculated assuming the nominal values Td = 400K (see Ind), pd = 1 gm

cm-3 , Q/a = 1 cm
-1
 (Aannested.1975). Extensive molecular line observa-

tions are not available for the sources in Table II. For comparison with

other molecular clouds, the predicted gas properties have been calculated

by assuming a gas to dust mass ratio of 100 and a spherically symmetric

source geometry.

c) Dust Temperature:

Useful estimates of the dust temperature and emissivity index may

be obtained from a two parameter model fit to the ratio of the observed

40-350 gn: and 1.0 mm fluxes for each source (Cheung et a1. 1978), assuming

that the 40-350 gm radiation and the excess 1.0 mm emission are both attrib-

utable to optically thin dust emission from the same extended dust cloud.

Using an empirical emissivity law e V = V  for individual dust grains, an average

dust temperature was derived for the two cases n = 1 and 2. The results

(Table'II) are rather insensitive to errors in the observed flux ratio

provided that the grain temperature is less than about 700K. The use of

this derived average temperature for the region outside the central sub-

arc-minute peak is reasonable since the dust temperature in a centrally

heated molecular cloud is expected to fall off slowly with radial distance,

T(r) a r-0'4 (Scoville and Kwan 1976).
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The above procedure applied to observations of OMC-1 by Westbrook

et al. (1976) yielded an average tem p erature of T = 600K for n - 1,

which is close to the 700K in t,ie centxr,il I arcmin and about 550K in

the outlying region obtained for n - l from multicolor far infrared

photometry (Werner et al. 1976). The dust temperature range quoted in

Table II is generally higher than the observed 
12 
COantenna temperature

measured with a similar beam size (Gillespie et al. 1977), in qualitative

agreement with observations of other molecular clouds and with the picture

that the molecular gas is heated collisionally by dust grains.

d) Radial Density Distribution:

The projected 1.0 mm source surface brightness profile can be used

as a basis for inferring the radial dust density distribution 
Pd (r) of

the cloud. As c3.ixzussed in III(a), it has been assumed that the bulk

of the free-fine emission is not resolvable by the 65" beam and that

the bulk of the gas emission is confined to within the central 1 arc

min region,, The dust emission profile may then be inferred by subtracting

the extrapolated free-free flux densit7r (Figure 4) from the peak of the

observed 1.0 mm emission profile.

Figure 5 shows the model and observed 1.0 mm emission profiles

projected along the line of sight for the five mapped sources. The

averaged North-South and East-West dust emission intensity profiles of

RCW 38, RCW 57, RCW 122, and W33 correspond to a radial dust density

model distribution outside the central 1 arc min source core of

k' -1.5-^.5
p d (r) « r	 In this analysis it was assumed that the radial

I

-  -0'4temperature distribution Td (r) decreases as r	 as predicted by the
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radiative transfer model calculation of Scoville ai+_.; Kwan (1976). if

the ionized gas emission is more extended than 1 are minute, the dust

density profiles would have a steeper gradient than is illustrated in

Figure 5. The observed density distribution in six northern 1.0 mm

sources (Westbrook et al. 1976) also decreases rather steeply with

radial distance, typically as r- 
1.5 

to r-2.

v.

1

I
^I

1
a

10



IV. COMMENTS ON INDIVIDUAL SOURCES

a) RGW 38

Within the positional uncertainties, the 1.0 mm peak emission in

RCW 38 is found at the same location as the 40-350 4m and 12CO line emission

peaks. Your compact infrared sources (Frogel and Persson 1974) and an H2O

maser source (Kaufmann et al. 1976) are located inside the 0.6 contour at

1.0 mm. The 1.0 mm source is similar in shade to the radio sour yic ^ but is

clearly more extended. The extrapolated radio spectrum of RCW 38 (Figure 4)

is much steeper than the u 0.1 dependence expected for an optically thick

free-free thermal spectrum. Howevers the turnover at X > 10 cm indicates

it is not a non-thermal source.

The entire 1.0 mm source coincides with a strong CO emission peak inside

a molecular complex extending about 30' x 30' in area (Gillespie et al. 1979).

All of the radio, molecular, and infrared emission sources lie in a heavily

obscured region close to an area of bright optical nebulosity.

b RC4 57

The peak flux density at 1.0 mm is found about 30" to the west of a

cluster of five 1-25 pm sources, including one BN-type object (Frogel

and Persson 1974). The steep gradient to the west and extended source

contours to the east at 1.0 mm follow a similar but narrower profile in

the 10 pm map. An H2O maser source is located within the 10 pm cluster,

but no OH emission was observed (Caswell et al. 1977). This source was

measured at 1 mm with a 2 arc min beam by Arnold et al. (1978), but their

reported flux density is substantially less than the value obtaint,l Ja

I
	

this work. The half power source size of RCW 57 (corrected for beam size)

is somewhat larger at 1.0 min than at radio wavelengths. The 1.0 mm source

generally coincides with an optical extension to the south of the optical

RCW 57 nebula.
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c) G333.6-0.2

G333.6-0.2 is the only southern HIT region which has been observed

with high spatial resolution (1 1 or .less) across the infrared

and submillimeter spectrum. The surface brightness peaks at 1.0 mm,

200 jim, 100 pm, 50 um (Hyland et al. 1979), 12.8 pm (Aitken et al. 1977),

and 2-20 pm (Becklin et a1. 1973) all coincide to within positional un-

certainties. Figure 6 is a plot of the observed source size (corrected

for beam size) as a function of wavelength. The dramatic increase in

source size between about 30 p and 300 µ suggests the presence of a very

cool, diffuse dust envelope surrounding the luminous far infrared source

observed by Hyland et al. (1979). The 1.0 mm source also coincides with,

a;N,d is considerably more extended than, the ionized gas emission region.

Free-free emission probably contributes significantly to the observed

1.0 mm flux in the central 1 arc min core.

G333.6-0.2 shows a particularly flat brightness distribution near

the source center. Observationally this circularly symmetric plateau

structure may be interpreted either as a uniform dust column density

distribution, or as a dust-depleted region at the center of a spherical

source„ The latter possibility was considered in a model calculation,

in which the central 1 arc minute of the model cloud was depleted of

dust. The observed profile of G333.6-0.2 is not inconsistent with the

model for dust depletion. Dust depletion in the compact (20 11 ) ionized

core of G333.6-0.2 has been suggested by Aitken et al. (1977) from a

comparison of the projected line and continuum intensities at 12.8'Um.

However, the uniform column density case is also viable.

12



Q) RCW 117_112"3)

This source has not boon mapped completely tit 1.0 nun. Most of the

1-' 5 11m flux was observed to originate from a single extended component

about 110 aresec in diawnter (Beaklin at al. 1974). RCW 117 is the weakest

of the eight 1.0 jail sources observed, yet; it Is one of the more intense

40-350 p sources, with L TR ' U 2 x 106 Ife.) (Emerson and Jennings 1973) .

n RQQ 122

Both the 1.0 mm and TO Im omission (Progel et al. 1977) in ROW 122

are extoaded roughly in the north--south direction. No compact infrared

sources and an U20 maser source are located within the 0.6 contour ofN

the 1.0 mm map. An 0111 mason source was also found toward the edge of

the 1.0 aim map (Caswell et Al.  l07). Tho oatw:lre 1.0 mm source is em-

heddod Inside a 25 x 30 arnm:in 00 molecular cloud (Gillespie at aalo 1979);

but the .1,.0 mat emission peals is .found to bo located approximately 3 arcmin

south of the main , r"CO punk. The 1.0 rmM ► :sourcce is associated wo	 in-

tense 40-330 pm emission, and the total infrared luminosity of ROW 122

K 3 x 106 T,,0) at a distance of about S Rpr„ The 1.0 mm flux density

reported by Arnold 1A al. (1478) its cons:ido ably less than the value

reported here,

:f) 0351.6-1.3

0351.6-1.3.3 has not boon mapped eompl etel y at 1.0 mm. A flux density

of 42 Jy at 1.0 mm was measured with a. 65 me sec beam at the position of

the compact; 10 Vm source. This Muo is consistent with the flux density

of 67 .Tyr into a 2 aremin beam reported by Arnold at al. (1973).

13



^W33 and W33A

The Alain 1.0 mm peak emission in W33 coincides with a cluster of

compact near infrared sources (Dyck et al. 1977) associated with the

compact 1111 regLon G12.8-1.0. A second u nresolved 1.0 mm peal'. is f ound

at the same poaition as the OR emission line object W33A, and a compact

2-20 ,aii object similar to the BN source in Orion (Capps et al, 1973).

The high resolution radio interferotnetric tiuip of Goss et al. (1978) shows

that the size of the HI C continuum source W33 is less than 40" at 2,8 cm,

consi(la.ra',)ly less than the size of the 1.0 Hari .source. No significant

radio continuum emission has been obse,r ,,ed at W33A or in the region

between the tw!j 1.0 nun s0iirces. The ratio of L.0 mu Clux lansity between

W33A and W33 is about 0.3, while the 2.8 cm ^Iu-: deusLty ratio is lass

than 4 x 10-3 , suggesting that W33A is a much younger dust condensation

in the evolutionary sequence leading to the Co y mation o i^ a luminous HrI:

region.
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V. CONCLUSION

The southern hemisphere 1.0 nun sources presented here were found

to have a narrow range of dust column density (6 to 30 x 10 - gin cm 2),

linear extent (1.5 to 3 pc), total mass (2 to 1.0 x 10 4 M0) and infrared

luminosity (2 to 4 x 10 6 x,0), In all cases the dense, extended dust

envelopes are singly peaked and centered about one or more compact near

infrared sources.

A fairly steep gradient in the dust distribution around the central.

peaks is found in most of the sources, consistent with a radial density

distribution function p(r) -^ r - 1 ' S	 ' S . This is in close agreement with

the density profiles of other extended 1.0 ►nm continuum sources differing

from our sample in mass, linear extent, and infrared luminosity: OMC-1,

Sgr B2, «3, W49, DR 21, and 1x75 Oq e rUrook et al. 1976). The

similarity in radial density dis`ributl.ons in view of the large range

of masses and sizes provides further evidence that the extended dense

clouds surrounding compact energetic sources :Corm by a rather general

physical process.

All of the sources selected for observation on the basis of their

10 g emission were found to be strong, extended 1.0 mm sources, estab-

lishing a strong correlation between the two source types. The present

V.
	 lack of ample high spatial resolution observations at far infrared, CO,

and radio continuum wavelengths precluded a detailed comparison with the

1.0 mm maps presented here. However, in each case where observations at

other wavelengths are available, there was :found to be a close association

between the 1.0 mm source and the extended far infrared emission, carbon

15
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monoxide and OH/1120 maser emission, Two notable exceptions are the 1.0 mm

source W33A, which is not associated with any significant ionized gas

emission, and the 1.0 mm source RCW 122, which is displaced by 3 are minutes

from the main 
12 
COpeak. These two sources are thus similar in some respects

to the 1.0 mm sources NGC 6334 1 and II previously discussed by Cheung et al.

(1978). It is likely that the same dust material gives rise to both the

1.0 mm and far infrared emission from the sources listed in Table T,

and that their luminosity is provided principally by heavily obscured

young stars or stellar associations embedded within the dust clouds.

16
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FIGURE CAPTIONS

Figure 1: Cross-sectional view of the remote controlled prime focus

infrared photometer (Gezari 1979) used on the Cerro Tololo Inter-

American Observatory 4-m telescope. A camera mirror re-images

the 4-m primary at the wobbling tertiary mirror. A reactionless

drive mechanism, operated by a servo-amplifier, produces an essen-

tially vibrationless, 80% efficient square wave beam switching motion

of the tertiary mirror at 15 Hz, with a beam separation variable up

to 8 arcmin.

Figure 2: a) 1.0 mm continuum map of G333.6-0.2. The peak flux density

of 139 Jy into a 65 aresec (FWHP) beam was observed at the same

position of the unresolved near infrared sources (Becklin et al.

1973), the H2O maser (Knowles et al. 1978), and the compact HII

region (Shaver and Goss 1.970). The statistical error in each con-

tour is typically less than 5% of the peak. The uncertainty in

absolute flux calibration is about 20%.

b) 1.0 mm continuum map of RCO 38. The contours are normalized

relative to the peak flux density of 128 Jy into a 65" beam. The

crosses represent the compact spar infrared sources from the observa-

tions of Frogel and Persson (1974). The square box marks the quoted

position of the H2O maser (Kaufmann et al. 1976). The dotted contours

indicate an incomplete data set,

c) 1.0 mm continuum map of RCW 57. The peak flux density is

146 Jy into a 65" beam. The near infrared peaks are marked by the

crosses and the solid square indicates the quoted position of an

H2O maser (Knowles and Batchelor 1978).
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d) 1.0 mm continuum map of RCW 122. The contours are normalized

to the peak flux density of 53 Jy into a 65" beam. The square box

marks the H2O maser (Caswell et al. 1977) and the crosses mark the

two unresolved 10 gm sources.

Fi ure 3: 1.0 mm continuum map of the W33 and W33A region. The peak

flux density is 132 Jy for W33 and 41 Jy for W33A into a 65 aresec

beam. Between the two 1.0 mm peaks, the observed 1.0 mm flux density

is less than 10% of the maximum at W33. The square marks the posi-

tion of the OH emission line source (Goss et al. 1978). No radio

frequency HII emission has been detected near the 1.0 mm source at

W33A, suggesting that it is a relatively young object.

Figure 4. Radio continuum spectra of five HII regions. The free-free

flux density at 1.0 mm is estimated by extrapolation from the radio

frequency data. The square data points represent the measured peak

1.0 mm continuum flux density into a 65 aresec (FWH'.2) beam. Free-

free emission may contribute as much as 30% to the observed 1.0 mm

flux density in the central 1 arcmin of each object, but since the

ionized regions are not much larger than 1' (Table I), the overall

free-free contribution is typically less than 10% of the 1.0 mm

flux density integrated over each map. The observational references

are 408 MHz: Goss and Shaver (1970), 1.67 GHz: Caswell and Robinson

(1974 b), 2.7 GHz: Caswell and Robinson (1974 a), 3.3 GHz: Gardner

et al. (1976), 5 GHz: Shaver and Goss (1970), 8.9 GHz: McGee et al.

(1975), 22 GHz: Johnston et al. (1972), 85 GHz: Brown and Broderick

(1973), 1.0 mm: this work.
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Figure 5; Spatial, intensity profiles in right ascension (EW for east-

west) and declination (NS for north-south) for five HII regions,

from the 1.0 mitt continuum maps (Figures I and 2). The model

(dashed lines) shows the expected intensities at 1 arcmin intervals,

in a 65 aresec (MMP) beam, from an optically thin, spherically

symmetric dust cloud for the two cases of radial density distri-

bution p(r) « r-1 and r -2 . The extrapolated 1.0 mm free-free

contribution in the central 65 aresec (see Table I) has been sub-

tracted from the profile of each source, and the scans normalized

for comparison with the model.

The averaged NS and EW pruf3.les of the HIE region;; R'CW 38,

RU4 57, RGW 122, and `a33 are consistent with a radial density

distributLo:^ p(r) a 
r -1.5	

.5. The peculiar nature of the

G333.6-0.2 profile niy be attributable to zen!`ral dust deple,_ion,

as discussed in the texq:.

FiQ4re 6 : The observed d iarnater of G333.6-0.2 (EWM4, corrected for bealn

size) plotted vs. wavelength. The data references are: 2.2gm and

10tan; Becklin et al. (1973); 30gm, 50gm, and 2009—M, Hyland et al.

(1979); 1.OLE, this work.
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