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l. Introduction

Processes developed to date for calculating the transonic poten-
tial flow around airfoils and simple three~dimensional configurations
depend for their evaluation on difference schemes which all require
a rectangular coordinate system.

For airfoils it is also important to set up a conformal pre-
mapping to a circle where radii and concentric circles form a natural
rectangular coordinate system. However, for the three-dimensional case
such a process is hardly possible and berides, because of the after-
differentiations would lead to quite complicated mathematical ex~
pressions.

The purpose of the present effort was to develop a method which
operates exclusively directly in a physical plane so that nothing
would prevent an extension %o three dimensions.

With certain limitations finite-element methods need not depend
on orthogonal networks. IlHowever, they have a number of grave disad-
vantages:

~ The solution depends on the element type. When the
network is refined, methods with different elements
converge te different results, and only in special
cases do they lead to an exact solution.

- The stream velocity is always underestimated. This is
especially important for the transonic region where the
magnitudes and the positions of compression shocks 4
depend to a great degree on the velocity field. ?

- The proof's for convergence found in the literature are
wrong.




- Althourh structural mechanics offer hundreds of element
types, only one even approximately satisfies the accuracy
requirements of progressive numerical aerodynamics.

The last two items, in particular, create great difficulties in
the development of the methods since one is forced to use computer-
intensive cut-and-try methods. An extensive study has shown that, in
a strictly mathematical sense the simple elements corwverge to an exact
soluticn only when they are distributed across the flow field in an
orthogonal combination. For then su.h 4 method degenerates to a
difference scheme.

As always, the best aerodynamic element is the plane panel which,
a priori, includes a non-trivial solution of the potential equation.
However, it has not been possible to date to carry this over to the
treatment of transonic flow problems.

Thanks to a careful choice of the element and 4o the introduetion
of artificial viscosity, without which it would not at all be possible
to achieve iterative convergence, the subject effort can at least be
considered an engineering breakthrough of the finite-element method
for transonic flow problems; however, the results shown in the litera-
ture ‘to date must be considered harmless, such as subsonic flow around
¢ircles, Joukowski airfoils and simple NACA airfoils whose field, in
addition was of'ten calculated in an approximately circular image plane,
where the actual problems of the finite-element technique do not even
come into play.

2. Basic Egquations /3

We shall base the mathematical formulation of our problem on the
stationary, rotation-free, and isoenergetic flow of a completely ideal gas.

There will be no sources if the continuity equation

(QU)X + (gw)z w 0 (1)




R

and there will be rotational freedom if

Uz » Wiy (2)
Is satisfied.

The energy carried along by the fluid element is to be congtant in

the entire flow field: 2 ) 2
q° = u® + w

~J

o
e D 2, .20
Frqt e

(3)
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Since we assumed irrotational flow, the changes of state are considered
to be isentropic:

P g (ig)l' (4)

For completeness sake we shall introduce the Mach number so that we
can differentiate as to supersonic or subsonic flow:

2
D .o,
Ty "W
In (I':
Po_t4?
q2 -L ? T (s5)
go ‘l 0"‘"‘" "
3. Normalization ' A4

Equations (3), (4), and (5) contain an unknown constant which
can be easily removed if we define a dimensionless velocity q
desording to

2 Wy Po n?
q ngoq

Then from equation (3) we get:

Pog * 7 AT~ (6)
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from (5) we get:

, M2

1 ¢ L5k e
substituting (&) into (6) pives:

# -~ 1
Q" 0y (1 = "‘.2-.3. u?)’;’.:_"i‘ t)

From (7) we can obtain the sonic velocity (M = 1) to be:

L
— ——?'.
q2 * Wl

If we now understand that the uncancelled values represent the
corresponding normalized values, then equations (1) and (2) remain
unchanged.

k, The Far-Field Solution

.1 Prandtl Transformation

Independent of any further procedure the flow far downstream of
the given airfoil can be estimated if equation (1) is made linear.
Here we differentiate (1) to:

UQx 4 Quy + Wz ¢ gwp = Co

The parallel onflow is disturbed only weakly so that in the following
the vertical velocity component w can be neglected:

ng + ?ux +.Qup = 0 (9)
can be determined by after-differentiation from (8)

2
US,':,: rs qg 2 q?x L Y —Sl—:'.?.__cl_'f_‘:
q 1 - bl g
2

This can be written more simply if we replace qz by equation (7)

U”-‘.oq_n-mz
$x = 9gx $ 9x (10)
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; At infinity the Nach number will deviate only little from the incidznt
: ¥ach number so that with (10) equation (9) simplifies ‘to

(1 = M2) ug ¢ wp w0 . (11)
Equation (2) permits the introduction of a potential according to

(12)
(13)

so that (11) becomes
(1 - M”?) ¢xx + (}‘:‘:: n ()

From that we can form the Laplace equation is transformed with

f ] 2" ’ :
: ¥~ ]fi - 1,2 2 (14) :
§ This then produces: i

Pxx + Pg 0 (15) :

.2 Interral potential representation

If we substitute the expression
Qo Up X + W, 2+ ) ’ (16}

e

into (15), then obviously the following equation must be solved:

Yex * Yy O (17)

To do this we use Green's theorem
(gen ]

.

P TL /fn (D) }
~ \,//" o oy e
\/" ".'."-"‘ tands “)\'- ; 1

c

We multiply (17) by an influence function e yet to be determined
and integrate over (B)

II c(tD,x+tvy§)dxt1r m\o?ndﬂ- Ij(o xfx+eg Yoldrdgs 0 (18)
- (B) CHaLE (B)-KLE
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Exchan~ing e with'y, we obtain analopously

1\ S\;(cxymgg) ARGy = g-';nnc%s-“'( 'ty :ag';‘i) deel
(B)=-KLe Chwml.e  (B)=~KLC

The surface intepral on the right is replaced by (18):
§’\;’cnds - I:)lendﬂ . “\?(cxx ¢ apgldudg
CKmLE CKeoli& (B)=KL&

The contour pleces L and X make no contribution since the derivatives
cancel each other over the forward and return path.

Similarly the contribution of the outer border disappears at
infinity since there is pure parallel flow so that accordings to

equation (16) the disturbance potential must disappear identically.
Thus the following remains

ﬂl?ends = g)cs"’nds +§(mg,,-'ien)ds +SS&?(cm+e§<)dxdg
€ € ¢ (B)-¢

X

b7 left integral can be evaluated immediately if € is small and if e
iy exclusively of function ot the radius because then the integrand
over the cirecle ¢ is constant.

5 2, .
¢Yends = ?‘\?P ep r dp n Yp ep » 20
9 :

1f we now demand that

ep r 2T = 1

hen it follows that

c:-;-:‘»flnr

If we substitute this result into the integral equation and if we
allow €& to shrink toward 0, then we finaily obtain

2’ Tp = ';;1-,'{&;“ fn In r - ¥(ln r).,] dn (19)

where the integral must be taken over the edges of ‘the airfoil.
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k.3 Displacement Term

We are secekins an approximation solution foir the first intepral
of (19) fur a slender airtoil. Then the following approximation
becomes valid:

or with (1)

Yo = 1 S, 1n r dx
?D 27(.'{1 = ?’:")w g {z
For disappearing supersonic velocities the linearized houndary

condition
"?‘z - U, z!

is valid from which, by partial integration, we get

Ind U o
Yy = Ly — [z inr - é z (In rly dg]

2 {1 = 1

o

For smooth closed profiles the first term drops out., From

r -'J (ap=x)€ o ([p=D)2

and equation (14) we get

Ups (xp=~x) dx
U = N § z
2% Y117 (xp=x)? + (1=1,2) (zpe=z)2

At infinity the profile irregularities at x, z hecome point-shaped
so that in approximation we obtain
Uy (xp =~ %)

?D - -{-—m-_t'(r‘.'*f-n":.“" < . 192 d).' (20)
2T V1M Ctpmxy) “ 4 (1-11% ) Cizpmz) @ 9

f The singularity points Xt Zp
- The boundary integral becomes the airfoil surface.

N

must be placed on the inside of the airfoil.

e



bl Eddy Term
The second integral in (19) can be evaluated as follows:
\?“" - :13 sj:t?(ln £)p ds =
np
» éﬁﬁ'?(sp“s)z N "pz ds

" - -21;3 65%?[:1tan f:%g-g]s do =

L) "z"’.ﬁ[;"‘?d atan -!-3'-:-):-“-

. ) DR
BTN eTei—— e i

P
1 "
- -22 §\?d\f
where d} is the angle increment viewed from control point P.
p
v}

Partial integration:

1 ,..0° 1 £
‘?r‘n - 2% (l’\'}lo —(;;\?d'j', T3 é‘)'\fd\?

At a great distance from the airfoil the change of angle tisappears
so that one can make the approximation

W ‘
Gpr 3% §og - L agery
With (14) ’

(21)
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At the circulation slot the velocity is equal on both sides so that,
surely, the following is true:

n(? - neﬁ(‘,,, D(;, - On‘b

With the value for A, one obviously obtains
Ty b =M% | (22) .

The potential jump thus is constant over the entire circulation slot.
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5. DModification of the @ontinuity Bquation for Trunsonic Flow

5.1 Dependence on Direction

If at point P we calculate the velocity on which all gas-dynamic
values depend according to our theory, then we approach the control
point P from both sides as we form the boundary value of the
potential~differential quotient along the stream line s.

(? pr———

The velocity thus always depends on a potential value ahead of and
behind the control point, viewed in flow directior, regardless of
how close one comes to the contrel point. ’ 1

[ .<,‘
RN,

S

For supersonic flow downstream of the control point signals
are carried downstream at a faster rate than the expansion velocity
of disturbances, flowing in the opposite direction, can carry them
back to "he control point.

Thus the control point can only be influenced by events occurring
upstream. Obviously for this case the described Cauchy potential
derivation is not correct. On the contrary it is necessary that the
velocity be generated at an auxiliary point H located upstream of the
control point P. Here the distance H-P can be very small.

Therefore we develop the following mathematical model: /12
For subsonic flow we use the physical data needed for determining the
potential as they are obtained for the control point itself. For :

supersonic flow we assign the physical data of a neighbor auxiliary
point H lying upstream to the control point R’itself. In this way the

fomd
Q
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accuracy becomes correspondingly higher, as H comes closer to P. The
continuity equation at P thus assumes the following forms depending
on the type of flow:

Mm< (ulxp + (Rwlzp » O

R [tquin],p + [(c_z_m,,]zp “ 0

5.2 Artificial Viscosity

For supersonic flow the described formulation can, using the
values at the control point, be represented mathematically as a Taylor
development which will Tirst be demonstrated for gu:

(Qudy » (Qulp + (Qulps (s ~ sp)
The derivation (Qu)g; is formed as follows:
L .
(gu)g = (3;“ qly = (-g-)s dq +-'q5 (Qa)g

Since we move along a stream line in the small interval Sp=By its
curvature plays no role so that (g)sdisappears.

\)
(Quly ~ gu + 3 (gad, As

The lowest arithmetical cost for a computer program is attained if, /13
instead of s we introduce the density @ as independent variable:

(gq)s As = (Qq)g Ag- (q + gqg) L')gu

- 2 o Q
(q + gq) Ag a (1 + E‘E‘S)Ag

With the aid of (10) we then obtain:

1
QRa); As = q(1 - -;I-é-)Ag

|3
H

Tt
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The expression in parentheses is negative for subsonic flow and dis-
appears exactly for sonic velocity so that for differentiating the type
of flow we can introduce the switeh function "max"

(qu)” ~ QU.+ U max {0,( 1 -'-}5)}43
r s
= Lg + max {0,(3 - 'r""‘."l} (Qn '-g)] u

Analogously:
1
(gw)“ P [90 max {O,(i - EH)}(Q” - g)]»:

Accordingly for transonic computer programs we need only replace the

density by , ]
g-.’- Q + max {O,('l - 74-2-)}119

-~

The additional methodology is not affected thereby.

e e T

5.3 Viscosity Parameter /14

Since the length of the vector A4s between auxiliary point H and
control point P is fixed by the discretionary dimension of ‘the mesh
network on which the computer program is based, the viscosity is ;
generalized by the parameter £ .

- A
g T g + & max {0,('1 - MH)}AQ

Normally the value of & will be close to 1. On the one hand, for s
a lérge number of meshes, the accuracy can be increased by the
selection of a decreased viscosity parameter, but on the other hand
there is danger that no iterative convergence is attained if the value

| of ¢ is too small. As shown by numerical experiments variations of &
- can displace the compression shock within an interval of about 5% '
of the airfoil height.

-y
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6, The Variation Principle /15
6.1 Weishted Residuum i

Since we do not know, ahead of time, the solution of the continuity
equation (1) in conjunction with rotational freedom (12), (13), we have
no choice except to introduce into it an approximating function with
free parameters which must be chosen such that (1) is satisfied as well
as possible. In this way the right side of equation (1) will generally
not disappear exactly

- i et B D

APk

(Qu) + (qw)p = R 4 0

The remainder R is called the residuum.

it

There is a temptation to weight the residuum with a function in
such a way that large residua are emphasized greatly while small
residua are emphasized little and ‘o demand that the integral thus
formed disappear for the entire flow region. Such a weighting function
is surely a deviation of the approximating potential distribution
from the exact ¢ :

fiw («';-Z?) dx dz = 0

Here, however, ¢ is unknown. However one can, under the assumption
that ¢ deviates only little from the exact distribution, approximate

the exact ¢- values by the linear Taylor expansion:
¢p=F+u (G-
Introduce

IfR §(’?(¢".q;) dx dz = 0

.f Little seems to be gained in this way since the unknown exact solution
' is still contained therein. However, the disappearance of the inte-
gral can stlll be guaranteed if we demand that

“‘R ?;3‘;, d; dz = O

L £ A g Vi PSS
e e XM en o Eo a0



with (1), (12), (13) the following should then be true /16 ;
H[‘S",’x’x"g‘?’z’z]@p da Cx = 0 :

Here, analogously to (18) partial integration can be used if we make ¢
the formal substitution: B

e-—w»iﬁé

Px =~ QD xs Yz ~&=§7,

62":234:8 ¢n d3 = {I}gﬁf’x (E}x ‘(?Tz (T’f.yz] dx dz = 0
| B

The first integral disappears since the mass-flux integral over the
exterior boundary far downstream of the airfoil must be zero according
to definition and since the fluid cannot penetrate the profile contour.
If we interchange the differentiation in the second integral and write
as in (12), (13), then we reach the remarkably simple result

jjg(uu,} + w¢) dx d= = 0
Thus the contorr boundary condition is implicitly contained therein.

6.2 Minimum pressure integral

Equation (23) can be further simplified. With (8) we get to

1 2 . % 2,1 -
2ffs;q () dxdz = -Z-Ij(l -‘-f-g-- qa)r-.-l q?‘;, dxdz o

£ 0 Yo i

'2 ® - -285'{(1 -'1—2-3-(;3) ’AL—-‘Z‘P dzdi: = 0

E The integrand is identified with (4) as a normalized pressure:
r ‘Hp(s dx dz =

1 This result can be confirmed in a simple manner from the principle
of energy minima in closed systems. Imagine that a very large plate is
dragged through a flow field where one side is subjected to the static
pressure p of the flow while a constant equalization pressure is in
effect on the back side. For the sake of simplicity let us assume that




the plate is mounted vertically and that the drag direction is hori-
zontal. Then the work associated with the drag is

A -J'c dx = b[f(p = Konst) dz ex

The minimum principle demands that A = Amin' thus
ff(p -'xonst) dx dz = Min

or

Ij""f dx dz = 0

The result of this is th.t an exact minimum is never attained when an
approximation is introduced. The pressure thus is overegtimated while
the velocity is underestimated.

7. Numerical Evaluation /18

7+1 Choice of Element

For the evaluation of (23) we require a stepwise approximation
of the potential using free parameters which must be determined such
that the value of the integral (23) disappears. This is customarily
done by the method of finite #“lements. In deriving the minimum principle
we started with the idea that the potential approximation does not
deviate much from the exact solution. In contrast to the non-sensical
convergence criteria often cited in the basic literature we state here
precisely that:

-~ The elements must be laid out in such a way that they
always furnish the potential distribution.

, -~ For constant density the element must be source free:
>'.‘}(;¢nd5"o

for all closed contours lying within the element including
the boundary. This is the same as
e bux + Qzz = O

14 15
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Therefore the density does not have to be considered
because, as the size of the element becomes infinitely small,

it can be placed as a constant in front of the through-flow
integral.

ot

- The element must have at least enough free parameters so
that the validity of ‘the continuity equation in intepral

form can be assured, without contradiction, for any closed
control contour.

Except for the area panel (U,(2) known in theoretical aero- /19
dynamics there is no element which satisfies the above requirements.
Since it has not been possible to date to incorporate the area panel
into transonic computer programs, there is no other choice except to ;
try to find, by trial methods, one of the known classical elements
which comes closest to satisfy the engineering demands,

it i R

Ak cociaen

v
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although with the equation

Ow a + bx + cz
it satisfies the continuity equation trivially, it does
not satisfy the third convergence condition, One can
easily see this, if somewhere in the flow field a velocity
vector g and a single potential value o is fixed. This

is always possible by a proper choice of the constant of
integration.




In this way the potential values in 1 and 2 are known.
We now add another trighgle 1-2-3:

If we set ‘the mass flux at the separating line 1-2 equal /20
on both sides, then we obtain the value 3. . If we com-

plete the triangle confisuration with the indicated side 3-0,
then the mass flux condition via 2-3 no lonser furnishes

the value {o . The forced juncture-coupling of the tri-

angles among each other leads to a redundancy.

Figure 1 shows as an example a shock-free NIR airfoil which
was subsequently calculated with this element. As expected,
the result is, as predicted, unusable, figure 2.

The mutual coupling is cancelled only in the special case

of right angle, isosceles triangles and the influence matrix
for the potential values degenerates to that of the difference
scheme. If the triangles are not isosceles, then 2 triangle
sides must always coincide with a potential line and a stream
line in order to achieve an exact convergence solution.

Although Shen [3] and Habashi [4] report useful results with
this element, they knowingly or unknowingly deceive the
reader because the alrfoil is first transformed into a
near circular, conformal image plane where a nearly ortho-
gonal network is constructed which additionally follows
approximately the $- resp. the ¥~ lines. For non- ortho-
gonal networks their methods are useless.

ORIGINAL PAGE 18
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Brashears and Chan(s] work directly in the plane of flow
and can mive only a rather challengeable interpretation
of thelr weak results. Although Periaux and Perrier (s)
write a lot of theory, they produce no significant
sensible results.

e -

b. The guadratic triangle /21

is based on the expression

¢na+bx+cz+dxz+cx20fzz.

Here the second convergence requirement is generally
violated. The Laplace equation is satisfied only if e = ~f ,
This again is only true if the elements are arranged in

a rectanpular network. By an expansion to 6 parameters

the juncture~coupling is only apparently cancelled com-
pletely. In reality the juncture axes are now curved

so that the redundancy is reduced, but still noticeable.
For a method using this element the computer time is
unjustifiably large. The unusable result shown in figure 3
requires, e.g., 25 minutes on the central computer of

an IBM 360/168.

¢« The fou

—

ur-~point_quadrangle element

is decidedly the best element. In a quadratic orthogonal
combination the matrix degenerates ta the difference scheme
in the network rotated by 45° for that purpose.
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In a right angle-quadrilateral combination the Laplace
equation is satisfied exasctly everywhere, For an arbitrary
element shape the Laplace equation is at least satisfied

at the Thales circle via both radiating points,

¥

/f’/\\\
//;,/;x<§;r“MMM"“k; Oxx + 42z = O
N W

// ) /}\}\ ‘W,ﬁﬁ:& 4
/

There is no redundancy. This element does not conform to
the convergence criteria found in the text books, which
incidentally are wrons; therefore it is seldom used, but
satisfies the requirements listed here if the elements are
distributed in such a way that the basic circles intersect
the elements associated with them.

The eight-pointed guadrangle element

™ e T St oo G

is not as good &s the four-pointed one since the matrix-
diagonal elements for the corner points disappear exactly
in the quadratic combination or otherwise are smaller than
the neighboring elements so that the resulting system of
equations for the potential values is conditioned extremely
poorly.

Hirsch [7) also reports relaxation factors smaller than 0.25
so that we cannot consider this element. For a quadratic
network division that author's method would fail for
successive network refinement.

[22
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7.2 The bilinear sguare

Ag a baslic area for the approximation of a function T let us
use a square of the following desipn:

2 4\

" 4 4

Let us say that the function f to be approximated is known at the

gorners 1 to 4.

Then an approximation is possible for the values

of the function on the inside and at ‘the edres of the square by

using the expression

f = a ..bg }Crl§ ﬂg"\'.

The coefficients are to be determined so ‘that the polynomial
takes on the exact values of the function at the corners:

fiwa-b=-=cas+d
fzna-b+c-d
f3 = a+bece+d
fs»as+be-ca=~d

Since the system of equations is nearly decoupled, the solution
is simplified and after trivial rearrangements leads to the

following result:

fex [f -7 (1

+ fo (1 -E) (1
+ fq (1 +%) (1
+ f4 (1 +%) (1

vl
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Ey abbrev-iating we obtain the followins 2k
4
f ".ajli. fi G4

where Gi is ecnlled the form function,

The guadpansle_element

The specinlized results from the preceding section can easily bhe
carried over to a genoral guadrangle if this i transformed to
the lmage square by means of the so-called isoparameters. Th.is
is done by identifying f successively as follows:

';’.4

X =

~
2

D1 62 (24)

» Xt Gy (25)

[EL, T OO

>

S »

e

»

- 4 Gf (26)

However, in the present minimization method the potential dis-
tribution itself is not needed, but rather their derivations in
the %~ and 2z~ directions:

ox = §f Ty *¢’"L Mx

P ‘:'l; Gu ¢ S."q, 1=

NHow ¥ and 1, cannot be inverted simply to functions of x and =z
so that we must first find the distortion determinant as a function
of r and i . Here we write the total differential as:

/25

dg » Lx dx + L, dz
dy = Nx dx + Y, da
dx a xy dg + xn, dq
dz e .2p df + zq, d"L

¥
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If we insert the upper iwo equations into the expressions for dx |
and dz, then we obtain

dx = (xg Ty + Xy Mydex + (xn Mz + xg Typldz
.4z w2y Gy 4 2y Mx)dx & (o N o+ onp

dx must be independent of dz so that by exchansing coefficients
we obtain four equations:

"EEN”‘TI"»:" 1
"Q’h*!‘g?a-o
p Ny 4 2g Y2 = 1
2Zg Ex + 2 Nk = O

Solving for the unknowns Ex» Ty, Mgy M, We get

Ey = f.‘.’}'.. (2‘7)‘

X, = - o (28)

Ny = = (29)

Tz = "'{'E" ' (30) i
With D = (31)

XE Zn - Xm 73

Thus all operations for the formation of the functional relations
have been prepared.

Energy_of the element /26

The term element energy is defined as the value of the integral (23)
over the element. As 2 pivotal point we choose ‘the corner 1. In
order to keep the computer cost as low as possible we assume that
the density is constant as distributed over the element. Using

1.




the chain rule of differentiation we obtain, with equations (27)
to (31) the following expression for the element energy:

It is extremely difficult to determine the value of the integral
(23) in an elementary manner. Therefore one tries to find at
least a good approximation value using Gaussian integration. For
the one-dimensional integral we first form the expression

Y
>

fdg = af (§1) +bf (L)

-

}‘ This formula should be exact for the four test functions

fnaE" (n=o0, 1, 2, 3)
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Then the following is true

1
n=290 Id,iuzaa;..b
-1 .
1
na=1 jgclgu0n351¢b§2
-1
2 P g2
n = d --~~a + byp
J g5y ©
3 i g3 3 3
n = dg = 0 = ay” ¢+ b
“‘}" o-'l g gi gz
’ 14 .":‘

The thus resulting system of equations for the four unknowns
2y by 4y §p can be solved in a simple way and leads to the

following result a wboan 1A

§1 L —-:--

s}

1
Lo = ==

Thus for the general integral +the following is true:

. 1
(£ dr e £l —2o) & flmair)

3 8 i

e
The double integral can be cvaluated as an approximation by means

of 2-fold Gaussian quadratics:

-

1T 1 1
1 1 .
I = { \I f dg d]Ln {[f(-ﬁ:‘-np + f(];-s_::,.l)]dn’g
- fle Sl 4 £ O P Ty )

MR {; e
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7.6 Stiffness matrix /28

7.6.1 Field-point collocation

Until now the special corner 1 of an element was chosen asg the 4
startineg point for the element energy. It is understood that in a
global element combination the four elements coming together at a
point furnish a contribution to the integral (23). Here (32) is con-

siddred to be unchanged if the element corner numbering system is
retained locally by a corresponding rotation of the coordinates:

A% ‘ E
QT PRy N — \Q\ _ “ : i
XB‘M'%»{:J\ ;

n\ Vg
Since we use column relaxation in the cémputer program, instead of the
entire stiffness matrix we need only build up the tri-diagonal matrix
for a selected iine. The contributions of discretionary points which
are not located on this line, are placed on the right-hand side of the
system of equations: i

1

3

!

ot

4

1

i
. ‘l'.

7

T e , ) .
' 1 atrix contribution
k‘éz A o TEEEIX 4
' VR A x  right-hand side
’ 7% 8
l . "‘;":f{ '-'../'-"'.‘-— ‘
Lo s
| .

] ol Canles 'mvame

7

N\ .
AN
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\,
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7.6.2 Boundary_point collogcation

At the extreme boundary of the computer network ‘the potential
values are assumed for the far-field solution (16), (20), (21)

LX)
Y] SV ‘m
]

,,IE“”¢;’M" {:/// ; o Mmatrix contribution
Aﬁ?{//jf% " right-hand side

Vs

/%:// 7

Wz

AT

At the boundary of the airfoil obviousl
elements contribute to the formation of

¥

¥y only two instead of four,
the column matrix: 4

{
/I

v,

77

Wr.-m:v"’.wm. ety
(V2 2-'///

1

!,

e e e R i aat A A S 2

To determine the circulation " for equation (21) the potential
values the potential values are calculated directl
after each field relaxation,

trailing edge of the airfoil.

¥y according to (22),
at the upper and lower surface of the

ORIGINAL PAGE i3
OF POOR QUALITY
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For the slot itself we make use of (22) and, e.g., replace do with
$dy ¢+ 2XC . Only then can the derivation be carried out according to
(23) from the potential values of the lower bank. As in field
collocation, the contributions of four elements each constitute a
pivotal value. The contributions of the element energy which were

multiplied by [ are transposed to the right-hand side of the tri-
diagonal matrix:

il o e St -'n' a-vr» D Tt --v, rnnw,n- ".
«Z;;j/ i;;) o Matrix ‘
PILEE TC L .&t ERIIR SN u»m‘» v o lva Camsl an '
( DR ST ST ED (I TTAS L S AR s :r seapt .wv-

x

///////////;// ,// Is‘:%g};t-hand

/..l b e "-mr ‘."..\.nn- M-nma.\u.u n

8. Results . /31
- NLR Lifting Airfoil

As already mentioned, not all elements give the same
results. The disadvantages of the linear triangle have
already been discussed. Thus it is only necessary to
look at figures 1 and 2 to discover that this element
cannot be used.

27
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For similar reasons the quadratic triangle also fares
poorly in the numerical comparison, figure 3.

As an experiment the quadrangle element was tested to see

if it could satisfy the continuity equation in a conser-
vative manner. As shown in figure 4 the pressure is greatly
underestimated. A similar procedure is suggested by
Jameson and Caughey [11]},who, however, seem to obtain

usable results. Through refinement of the network the
mentioned effect is enhanced, figure 5. Only the

quadrangle element in conjunction with the principle of
variations produces a satisfactory result, figure 6. J

NACA 0012
To accelerate convergence the following steps were taken:

- direction of relaxation = main stream direction

- excess relaxation of 180% for

- intensive subdivision of the network
/32

A series of networks and results is shown in figures 7 to 16.

For a transition to whatever network follows the potential
distribution is interpolated linearly. The mesh buidup
is controlled by the parameters and, of course, is done

automatically.

The end result, figure 16, is not satisfactory since the
viscosity parameter was chosen too small by 80%. TFor 100%
the strength of the shock becomes realistic, figure 17.
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This result is in good agreement with those in
gtandard publications, figure 18.

- Whitcomb airfoil, figure 19 Z

The profile generated automatically according to (9]
was to show to what degree strong "rear loading" is
reproduced. Here we must point out the necessity for
Gaussian integration to obtain the element energy. .
The version of the program using trapezoidal inte-
gration fails for this example.

~ Korn airfoil

Fisure 20 points out the importance of the viscosgity
parameter. Although the solution does converge, the

viscosity parameter for this highly sensitive profile

must be set at 200% in order to dampen out the waviness

in the supersonic region, figure 21; this is an indi- /33
cation that the method performs too "stably" so that,

by increased viscosity, the correct root can be found ;
from the many possibilities of the differential '
equations. ‘

o

As the result of the steps taken to accelerate convergence
the computer times are comparatively small. After 20 iterations
on the last network the pressure distribution was entirely frozen.

. This produced computer times for the central unit of an IBM 360/168
1 minute <for the 62 . 16 network
4 minutes for the 124 . 32 network

R L
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9, Summary

With the introduction of a special method of finite elements in
conjunction with the mathematical model of artificial viscosity it
has been possible to produce a usable computer method for transonic
flow around airfoils which does not require an orthogonal computer

network so that the method can, in a simple manner, bYe adapted to
three~dimensional disturbance problems.

Such a program is in a
test stage at the present time.
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