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I - Introduction

rrocesses developed to date for calculating the transonic pcten.-

tial flow around airfoils and simple three-dimensional configurations
depend for their evaluation on difference schemes which all require

a rectangular coordinate system.

For airfoils it is also important to set up a conformal pre-

mapping to a circle where radii and concentric circles form a natural

rectangular coordinate system. However, for the three-dimensional case
such a process is hardly possible and be-ides t because of the after-

differentiations would lead to quite complicated mathematical ex-

pressions.

The purpose of the present effort was to develop a method which

operates exclusively directly in a physical plane so that nothing

would prevent an extension to three dimensions.

With certain limitations finite-element methods need not depend

on orthogonal networks. However, they have a number of grave disad-

vantages:

The solution depends on the element type. When the

network is refined, methods with different elements

converge to different results, and only in special

cases do they lead to an exact solution,

- The stream velocity is always underestimated. This is

especially important for the transonic region where the

magnitudes and the positions of compression shocks

depend to a great degree on the velocity field.

- The proofs for convergence found in the literature are

wrong.

.-M
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- Although structural mechanics offer hundreds of element

types, only one even approximately satisfies the accuracy

requirements of progressive numerical aerodynamics.

The last two items, in particular, create great difficulties in

the development of the methods since one is forced to use computer-

intensive cut-and-try methods. An extensive study has shown that, in

a strictly mathematical sense the simple elements converge to an exact

solution only when they are distributed across the flow field in an

orthogonal. combination. For then suOh A method degenerates to a

difference scheme.

As always, the best aerodynamic element is the plane panel which,

a priori, includes a non-trivial solution of the potential equation.

However, it has not been possible to date to carry this over to the

treatment of transonic flow problems.

Thanks to a careful choice of the element and to the introduction

of artificial viscosity, without which it would not at all be possible

to achieve iterative convergence, the subject effort can at Least be

considered an engineering; breakthrough of the finite -element method
for transonic flow problems; however, the results shown in the litera-

ture to date must be considered harmless, such as subsonic flow around

041-,cles, Joukowski airfoils and simple NACA airfoils whose field, in

addition was often calculated in an approximately circular image plane,

where the actual problems of the finite-element technique do not even

come into play.

2. Basic Equations	
Z2

We shall base the mathematical formulation of our problem on the

stationary, rotation-free, and isoenergetic flow of a completely ideal gas.

There will be no sources if the continuity equation

(gu) X * (SW) L it p
	

(1)



and there will be rotational freedom if
U Z WX

is satisfied,

The energy carried along by the fluid element is 'to be constant in

the entire flow fields
q2	 U + W

q 2	 PO (3)

Since we assumed irrotational flow, the changes of state are considered
to be isentropict

(4)

For completeness sake we shall introduce the Mach number so that we
can differentiate as to supersonic or subsonic flows

n2OX, 'r n -.--I

Io U,

q 
2 P 0 2	 (5)

?0
( -I	 t:-7- -.

3.	

4

Normalization	 Z4

Equations '(3), (4), and (5) contain an unknown constant which
can be easily removed if we define a dimensionless velocity
dddordlng - o

q2 X p_q C12

0

Then from equation	 we get:

qO P

PO 
^— +1	 (6)

A ke
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From (5) we net t

substituting (4) into (6) fr3vess

eat &0 (z , .r-1 t1 2) ^
(Q)

From (7) we can obtain the sonic velocity (fit, = 1) to be:

^2	 =

A	 .'. ^'1

If we now understand that the uncanceLled values represent the

corresponding normalized valuesp then equations (1) and (2) remain

unchanged-

4. The Far-Field Solution

4.1 Prandtl Transformation

Independent of any Further procedure the flow far downstream of

the given airfoil can be estimated if equation (1) is made linear.

Mere we differentiate (1) to:

Ugx + g ux + w $x + gwx . .

The parallel onflow is disturbed only weakly so that in the following

the vertical velocity component w can be neglecteds

Uh + 
pox +, 2wr, ` 

0	 (9)

can be determined by after--differentiation From (8)

2. q.2 w w ^.J.r.	 Gl y

1 .. Z22

This can be written more simply if we replace q 2 by equation (7)

u $x u
g Tx - -M2

g qx



At infinity the Each number will deviate only little From the i.nciO-.=nt

,aoh number so that with (10) equation (9) simplifies to

(2 - 14"2 ) Ux * W Z • 0	 0	 (11)

Equation ( ) permits the introduction of a potential according to

U	 ^ x	 (12)

W ^ z 	
3)

so that (11) becomes

	

0 - Mme') ^ xx 4 `tz...	 0

From that we can form the Laplace equation is transformed with

' 1

	

11,)2'  Z	 t 1 ^ )

This thin produces:
^'xx +`	 0	 1 a )

4.2 Intepral potential representation

If we substitute the expression

4y 4UM x+wtr,z+t?	 (1G)

into (15), then obviously the following; equation must be solved:

IY.X + I7;r - 0	 (17)
To do this we use Green's theorem

•	 A	 ^n	 (D)

L
(^('`^'^yi""t," f/I'"" ,

	 .,`_r	 way 
•^

,	 ` C

We multiply (17) by an influence function e yet to be determined
and integrate over (B)

JJ e(^oxx+0 S)dxklc,eYCYnds- j f (Ox1?x+,!t ^ )dxdj- 0 (10)
P7 	 ,' ^^ gip, f^t"t'	 !'	

(El)	 Ci(oLE	 N)-K1,G
^I

s

1
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14-'xchan ,rinp e, with y, we obtain analogously

C 1 .1.141 1 e	 (13)-itLe

The surface integral on the right is replaced by (18):	 zz

^YOnds - ^^ P jndr, - fSI(exx + a-^)dxdn

C K (wL rz,	 C Kt*L 11	 (B)-KLr,

The contour pieces L and X make no contribution since the derivatives
cancel each other over the forward and return path.

Similarly the contribution of the outer border disappears at
infinity since there is pure parallel flow so that accordiri. • to
equation (16) the disturbance potential must disappear identically,
Thus the following remains

end:; a 600 ds + (01?n-10n)ds +110(exx+c&d:jd^I	 In	 #
L.	 ( E0 -G*	

I
Tl'-1--; left integral can be evaluated immediately if & is small and if e

is exclusively of function of the radius because then the interrand
over the circle c, is constant.

2t
ands	 kip Or r d— - tfP Or r Mn	 0

if we now demand that
Or r 27r w I

,hen it follows that
,Z in r

If we substitute this result into the integral equation and if we
allow F, to shrink toward 0, then we finally obtain

TPti lit j ^̂ n	 (19)In r - T(in r),, 
I 

d.s

where the integral must be taken over the edges of the airfoil.



4. 3 Displag eLnel2l Ta rgj
	

GP1

We are seek.inp an apnr ximation solution for the first integral
of ( 19)	 a Mender air roil. When the followinp, approximation
becomes valiti

'cin • A.^z:

dsadx
ID . ,.. r} O 1 n r d:cz- J

or with (14)

For disappearing supersonic velocities `she linearized boundary

condition
TZ = V!A zO

is valid from which, by partial integration, we got

Zit "j 1	 }1p	 o

For smooth closed profiles the first term drops out. From

r yP-X) z

and equation (14) we get

urn	 (xn-x) dX
ID

(xp -X)2 + (1-;I?) (zp-r,)2

At infinity the profile irregularities at x, z become point-shaped

so that in approximation we obtain

TD 0	
U#-11	 (X P 	 Yin)

7T, y1-hl0*' (xn-xM ) ? t(1-110") (:;p-: fn)''

The singularity points xm , z  must be placed on the inside of the airfoil.

The boundary integral becomes the airfoil surface.

i

I	
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4.4 Body Tjr

The second integral in (19) can be evaluated as followe l

On do

nn
'	 ds21f.
	 p^ ^ 2 + tt

...11_2

1p-s^1
ry1	 i

i+.	 ntan 
np J do

C 

1	 s;n-5

P

z ,z tM d u

where d& is the angle increment viewed From control point p,

Partial integrations

t r"	 "l - 

((f ^, l 4	
e) 0 d, j)

0

At a great distance from the airfoil the change of angle uisappears
so that one can make the approximation

d'? ^ A^ r iy

With (14)

^,^- ' n ?	 1-t1

p	 m

5
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At the circulation slot the velocity is equal on both sides so that,

surely, the following is true;

n^
- neq c^^_ oca

With the value for .t^^r, one obviously obtains

The potential jump thus is constant over the entire circulation slot.



V	 IS

5- Modification of the Qontinuity ZQuation - for Tfransonic Itlow

5-1 Dependence on Direction

If at point P we calculate the velocity on which all gas-dynamic
values depend according to our theory, then we approach the control

point P from both sides as we form the boundary value of the

potential-differential quotient along the stream line s.

The velocity thus always depends on a potential value ahead of and

behind the control point, viewed in flow directio--tv regardless of

how close one comes to the control point.	
I

For supersonic flow downstream of the control point signals

are carried downstream at a faster rate than the expansion velocity

of disturbances, flowing in the opposice direction, can carry them

back to 'he control point.

Thus the control point can only be influenced by events occurring
upstream. Obviously for this case the described Cauchy potential

derivation is not correct. On the contrary it is necessary that the

velocity be generated at an auxiliary point H located upstream of the

control point P. Here the distance H-P can be very small.

Therefore we develop the following mathematical model: 	 /12
For subsonic flow we use the physical data needed for determining the

potential as they are obtained for the control point itself. For

supersonic flow we assign the physical data of a neighbor auxiliary

point H lying upstream to the control point R litself. In this way the

io
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accuracy becomes corresponding,ly higher, as 11 comes closer to P. The

continuity equation at P thus assumes the following forms depending

on the type of flows

M < I	 (SLI)XP + (IjW) '.P go 0

fs 30 1	 + [ow)11-P	 0

5.2 Artificial Viscoal±X

For supersonic flow the described formulation can, using the

values at the control point, be represented mathematically as a Taylor

development which will first be demonstrated for (,Iii:

(%tl),, + (SO P!, (S14 - sp)

The derivation (20, is formed as follows.,

(SU)s . q) s a 
(q )s
q) 

5 t2 q + q	 q)

Since we move along a stream line in the small interval sp-S H O its
curvature plays no role so that ( 11 )

s
 disappears.q 

(OU) Q)	 As

A-2The lowest arithmetical cost for a computer program is attained if,

instead of s we introduce the density g as independent variables

(2 q) , .6 s	 (gq)S do-  (q + 2 qg)

n (q + —q )	 + J)Sq 	q

With the aid of (10) we then obtains

(3 q	 Ad n W q
M2

ll
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i
The expression in parentheses is negative for subsonic Flow and dis-

appears exactly for sonic velocity so that for differentiating, the type

of flow we can introduce the switch function "max"

(g to	 U, + U Max jn,(1 .. a12)t41

Ls 
+ max {0,(t .. W,- f 
	

^•)	 u

Anal. og.ously s

(3011	 CP+ max t0,(1 - ` j^T)1 (^ 1.' - )lw

Accordingly for transonic computer programs we need only replace the

density by
+ mar {o,(1 - tHil?a

The additional methodology is not affected thereby.

5. 3 Viscosity Parameter	 14

Since the length of the vector As between auxiliary point H and

control point P is fixed by the discretionary dimension of the mesh

network on which the computer program is based, the viscosity is

generalized by the parameter F .

S -'	 + a max to, ( .1 - ►̂ ^) ^g

Normally the value of a will be close to 1. On the one hand, for

a large number of meshes, the accuracy can be increased by the

selection of a decreased viscosity parameter, but on the other hand

there is danger that no iterative convergence is attained if the value

of G is too small. As shown by numerical experiments variations of C.
can displace the compression shock within an interval of about 5%
of the airfoil height.

i



E. The Variation principle 	 zl^

6.111elpkited Residuum

Since we do not know, ahead of time, the solution of the continuity
equation (1) in conjunction with rotational freedom (12) 9 (13), we have
no choice except to introduce into it an approximating function with
free parameters which must be chosen such that (1) is satisfied as well
as possible. In this way the right side of equation (1) will generally
not disappear exactly

(Su)X'+ (20 Z - R f

The remainder R is called the residuum.

th a function in
while small
integral thus
weighting function
distribution

There is a temptation to weight the residuum wL
such a way that large residua are emphasized greatly
residua are emphasized little and to demand that the
formed disappear for the entire flow region. Such a
is surely a deviation of the approximating potential
from the exact (P t	

if I? (?^ - TO dx dz - 0

Here, however, c'^ is unknown. However one can, under the assumption
that ' deviates only little from the exact distribution, approximateY
the exact ??• values by the linear Taylor expansions

+

Introduce

	

R Y^	 dx dz . 0

Little seems to be gained in this way since the unknown exact solution
is still contained therein. However, the disappearance of the inte-
gral can still be guaranteed if we demand that

	

R	 dx dz	 0

13
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/16With Wo (12)o (13) the following should then be true

Cc) (
1 ) X) X
	 Z _9	

d x dZ • 0

Here, analogously to (18) partial integration can be used if we make

the formal substitutions

YX 	Q X 0 ?Z

1	 2 (^ n d iax r x 4 YT z ^,) z d X d;-.• 0
C 

The first integral disappears since the mass-flux integral over the
exterior boundary far downstream of the airfoil must be zero accordinp,
to definition and since the fluid cannot penetrate the profile contour.
If we interchange the differentiation in the second integral and write
as in (12), (13), then we reach the remarkably simple result

SS (uuA + ww^ ) dX d= - 0

Thus the contoir boundary condition is implicitly contained therein,

016.2 Minimum pressure integral

Equation (23) can be further simplified. With (8) we get to
q *-7^#, q 'ê  d X d z	 2)-	

cl l'^ dxdz to

2) 'A-^T d x cl::	 0

The integrand is identified with (4) as a normalized pressure:

dX dz 0

This result can be con-firmed in a simple manner from the principle
of energy minima in closed systems. Imagine that a very lar P_ e plate is
dragged through a flow field where one side is subjected to the static
pressure p of the flow while a constant equalization pressure is in
effect on the back side. For the sake of simplicity let us assume that

14
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the plate is mounted vertically and that the drag direction is hori-

zontal. Then the work associated with the drag is

A « J' 1: c!x	 bfI^h • kencl) d-- dx

The minimum pr,nciple demands that A = Amin' thus

or	 JS"^dx dr •0

The result of this is t)i.-.t an exact minimum is never attain(^d when an

approximation is introduced. The pressure thus is overestimated while

the velocity is underestimated.

7. Numerical Evaluation
	

1$

7.1 Choice of Element

For the evaluation of (23) we require a stepwise approximation

of the potential using free parameters which must be determined such

that the value of the integral (23) disappears. `,Chit' is customarily

done by the method of finite Aements. In deriving the minimum principle

we started with the idea that the potential approximation does not

deviate much from the exact solution. In contrast to the non-sensical

convergence criteria often cited in the basic Literature we state here

precisely that:

- The elements must be laid out in such a way that they

always furnish the potential. distribution.

For constant density the element must be source free;

tin d.,0

for all closed contours lying within the element including;

the boundary. This is the Fame as
-	 ^Xx + ^z z 	0

15



Therefore the density does not have to be considered

because, as the size of the element becomes infinitely small,
it can be placed as a constant in front of the through-flaw
integral,

- The element must have at least enough free parameters so
that the validity of the continuity equation in integral
Form can be assured, without contradiction, for any closed
control contour.

Except for the area panel [13,1 21 known in theoretical aero- 	 /19
dynamics there is no element which satisfies the above requirements,
Since it has not been possible to date to incorporate the area panel
into transonic computer programs, there is no other choice except to
try to find, by trial methods, one of the known classical elements

a.	 which comes closest to satisfy the engineering demands.

a. The linear triangle

although with the equation
if M C1 ♦ bx + c_-

it satisfies the continuity equation trivially, it does
not satisfy the third convergence condition, One can
easily see this, if somewhere in the flow field a velocity
vector q-`^ and a single potential value c}o is fixed. This
is always possible by a proper choice of the constant of

integration.

4



In this way the potential values in I and 2 are known,
We now add another tri§Lngle 1-2-31

4

fto

If we set the mass flux at the separating line 1-2 equal 	 Z20
on both s ides l then we obtain the valile 6— if we com-
plete the triangle confuration with the indicated side 3-0v
then the mass flux condition via 2-3 no lon.mer furnishes
the value ?^► O,- The forced juncture-coupling of the tri-
angles amone, each other leads to a redundancy.

Figure 1 shows as an example a shook-free NLR airfoil which
INIas subsequently calculated with this element. As expected,
the result is, as predicted, unusable, figure 2.

The mutual coupling is cancelled only in the special case
of right angle, isosceles triangles and the influence matrix
for the potential values degenerates to that of the difference
scheme. If the triangles are not isosceles, then 2 triangle
sides must always coincide with a potential line and a stream
line in order to achieve an exact convergence solution.

Although Shen [31 and Habashi [43 report useful results with
this element, they knowingly or unknowingly deceive the
reader because the airfoil is first transformed into a
near circular, conformal image plane where a nearly ortho-
gonal network is constructed which additionally follows
approximately the 4- resp. the I- lines. For non- ortho-
gonal networks their methods are useless.

ORIGINAL PAGE 13
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Brashears and Chan Cs3work directly in the plane of flow
and can Pive only a rather challengeable interpretation
of their weak results. Although Periaux and Perrier (6)
write a lot of theory, they produce no significant
sensible results.

b. T14e _qugdra:tic irianff)Le
	

/21

is based on the expression
fl a + bX + cz + dxz + ex ? + fZ2,

Here the second convergence requirement is generally
violated. The Laplace equation is satisfied only if

Thio again is only true if the elements are arranged in
a rectangular network. By an expansion to 6 parameters
the juncture-coupling is only apparently cancelled com-
pletely. In reality the juncture axes are now curved
so that the redundancy is reduced. but still noticeable.
For a method using this element the computer time is
unjustifiably large. The unusable result shown in figure
requires, e.g,-, 25 minutes on the central computer of
an IBY1 3601168.

c. The foar,=paint_quadranale qlgrkent

is decidedly the best element. In a quadratic orthogonal
combination the matrix degenerates to the difference scheme
in the network rotated by 450 for that purpose.

>e, X,

1X ~/^ /`' f >< E >< i	 <
x x

X ">< ><

x %x



( + ' zz " 0

In a right angle-quadrilateral combination the Laplace

equation is satisfied exactly everywhere. For an arbitrary

element shape the Laplace equation is at least satisfied

at the Thales circle via both radiating points.	 A-2

There is no redundancy. This element does not conform to

the converir,ence criteria found In the text books, which
incidentally are wron ; therefore it is seldom used, but

satisfies the requirements listed here if the elements are

distributed in such a way that the basic circles intersect

the elements aspociated with them.

d. The eight-pointed guadranle,element

is not as good as the four-pointed one since -the matrix-

diagonal elements for the corner points disappear exactly

in the quadratic combination or otherwise are smaller than

the neighboring elements so that the resulting, system of

equations for the potential values is conditioned extremely

poorly.

Hirsch (7) also reports relaxation factors smaller than 0.25

so that we cannot consider this element. For a quadratic

network division that author's method would fail for

successive network refinement.

19



ZU7 .2 jhj hiji_nqjr_sju&rSL

As a basic area ,for the approximation of a function f lot us
use a square of the following desient

Let us say that the function f to bo approximated Is known at the
corners 1 to 4. Then an approximation is possible for the values
of the function on the inside and at the edges of the square by
using the expression

f • 
a + b^ 

►
 C1 4 (1^11.

The coefficients are to be determined so that the polynomial
takes on the exact values of the function at the corners:

f,	 b c + d

f2	 a b + c - d

f 3	 a + b + c + d

f4 Aa + b - c- d

Since the system of equations is nearly decoupled, the solution
is simplified and after trivial rearrangements leads to the
f ollowinsr result;

f	 f , (I

+ f 2 (1

+ 
f 3 (1 +	 01^' Ah-^44

'ZOV?
+ f 4 (1

20



li,y abbre^"!iatinf, we obtain the "ollowinj-
4

f i C1

where Or
i Is called the form function.

11, 3 "Zhu squadrawle-Planient

The specialized results from the precedinr, section can eaaily be
carried over to a Ceneral quadrangle if this Is transformed to
the lmaf,,o square by means of the so-called ieoparametera. TI..La
is done by identifyinr- f successively as follows 

4

G	 (24)

4
X	 X1 G1	 (25)

4
Z %_ Zi CL	 (26)

However, in the present minimization method the potential dj.s-

tribution itself is not neoded, but rather their derivations in
the x- and z- dirootionst

4x	 tx + h )Ix

^ 7.	 ^ " 4'
 f it I

Now r4 and IL cannot be inverted simply to functions of x and z
so that we must first find the distortion determinant as a function
of I, and iL - More we write the total differential ass

d I - t x d x 	 t 7,, d7.

d1L n 
11x dx	 d2

dx - x r d + X,% d it

dz • ZC. dg + Z it diL

& 4

Z11

21



If we insert the upper two equations into the expressions for dx

and dzr then we obtain

dx - (xC 4;c + x11 71tc )dx + (xjl ny + xy TZ)dz

r!

dx must be independent of dz so that by exohanming coefficients

we obtain tour equations:

xE rx + X-1 Ix 1

xj 'Ix + xg T-Z - 0

+ Zt, Yz ' 1
zI^x4zTL 1jYW0

Solving  for the unknowns f x r rz , n;c r Yj,	 we rot

rx •	 - (27)

rz . _ .x1t (20)

Tr.
11x a	 Uw

(^^)

iz R
	 "u (30)

ur4 h	 D. 
x	

z
x tL Pt (31)

Thus all operations for the formation of the func tional relat ions
have bean prepared.

`	 7.4 Lnera—of the element 	 Zg6

The term element energy is defamed as the value of ;he integral (23)
over the element. As a pa.votal point we choose 'the corner 1. In

order to keep the computer cast as low as possible we assume that

the density is constant as distributed over the element. Using

LIP
22



the chain rule of differentiation we obtain, with equations (27)

to (31) the following; expression for the element energy s

I " J	 !?i 
^^ G1 [Z% (C;", ;;^ G 	 -	 (32)

-i -1
x^ (C1,^ x	Cr1,^ x1j) +

Oa 
ijX 

{G1^ xC -• G1 x^ •-

d r. d1
z,, (G 1,, Z1,  - G1, ZV1yu

7.5 Numerical integration

It is extremely difficult to determine the value of the integral

(23) in an elementary manner. Therefore one tries to find at

least a good approximation value using Gaussian integration. For

the one-dimensional integral we first form the expression

fd^-af ( ;1) + b f (t2)

This formula should be exact for the four test functions

fn • gn (n , 0 0 1 9 2 9 3)

ORIGINAL



Then the Following is true

1
i

1

t9r
1

n	 0	 f d	 2-	 + b

1
1	

f ,d
	 p" qj + b 2

n" 2	 (' 12 d E	 a^	 + b z
-1

1
n •• 3	 J	 %3d	 a 3 +1 )^	 3

All, 	 , 1	-.1 2

a
The thus resulting system of equations for the four unknowns
a, b	 t1l K 2 	can be solved in a simple way and leads to the

following; result	 e 1 '
.1 • ;I

E2

Thus for the general integral the Following is true:

1

- Z	 1r3

The double integral can be evaluated as an approximation by means

of 2-Fold Gaussian quadratics:

I	 S1 f dg d-^ - f	 f(- ,1 .1i)	 ♦ f( ^^.1)	 d l 	a
•-1	 --1	 -1	 ^3 ^3

f(-	 7 )	 + f(-1-•-, 1 )	 + f(1-, 11̂ r- )+ f( 10-1.)
CT NT	 ^3' f:

Jrr	 •.	 :.:	 }1F•i N	 •f # 	 iii16ffiiY	 li^i^llIAIO^ "..	 :î'i1^,.Ye_.w.



7.6 Stiffness matrix
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7.6.1 Field-point collocation

Until now the special corner 1 of an element was chosen as the
starting; point for the element energy. It is understood that in a
global element combination the four elements coming together at a

rt

	

	 point furnish a contribution to the integral (23)- Here (32) is con-
sidd.red to be unchanged if the element corner numbering system is
retained locally by a corresponding rotation of the coordinates:

r;

MAW

VIE-.

Since we use column relaxation in the 66mput6r program, instead of the

entire stiffness matrix we need only build up the tri-diagonal matrix
for a selected line. The contributions of discretionary points which
are not located on this line, are placed on the right-hand side of the

system of equations:

	

lip

4

	

0 matrix contribution

	

J	 X tight-hand side



5?". "s'''.

7.6.2 Bounds.EY_point_0o1 joca°tion

At the extreme boundary of the computer network the potential
values are assumed for the far-field solution (16), (2o) , (21)

a matrix contribution

X right-hand side

V

At the boundary of the airfoil obviously only two instead of four.

elements contribute to the formation of the column matrix:

7.6.3 Circulation-slot collocation

To determine the circulation r for equation (21) the potential
values the potential values are calculated directly accoruing to (22),0

after each Field relaxation_, at the upper and lower surface of the
trailing edge of the airfoil.
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'A

YUfi.r NJ

For the slot itself we make use of (22) and, e- C., replace ^o with
qh u + 7tr	 Only then can the derivation be carried out according to
(23) fro*m the potential values of the lower bank. As in field
collocation, the contributions of four elements each constitute a
pivotal value. The contributions of the element energy which were
multiplied by r are transposed to the right-hand side of the tri-
diagonal matrix;

IL

'/^^fi ,%^j^	 matrix
contribution

X 
	

X right-hand
side

4

8. Results	 V,
	

Z311

- NIR lifting Airfoil

As already mentioned, not all elements give the same
results. The disadvantages of the linear triangle have
already been discussed. Thus it is only necessary to
look at figures I and 2 to discover that this element



For similar reasons the quadratic triangle also fares

poorly in the numerical comparison, figure 3.

As an experiment the quadrangle element was tested to see

if it could satisfy the continuity equation in a conser-

vative manner. As shown in figure 4 the pressure is greatly

underestimated. A similar procedure is suggested by

Jameson and CauRhey (11],who, however, seem to obtain
usable results. Through refinement of the network the

mentioned effect is enhanced, figure S. Only the
quadrangle element in conjunction with the principle of

variations produces a satisfactory result, figure 6.

- NACA 0012

To accelerate convergence the following steps were taken:

direction of relaxation = main stream direction

excess relaxation of 180% for

- intensive subdivision of the network

Z22
A series of networks and results is shown in figures 7 to 16.

28

For a transition to whatever network follows the potential
distribution is interpolated linearly. The mesh buidup

is controlled by the parameters and, of course, is done

automatically.

The end result, figure 1.6, is not satisfactory since the

viscosity parameter was chosen too small by 800. For 100%

the strength of the shock becomes realistic, figure 17-
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- NACA 64A41 

This result is in good agreement with those in

standard publications, figure 18.

- Whitcomb airfoil, figure 19

The profile generated automatically according to (9]

was to show to what degree strong "rear loading" is

reproduced. Here we must point out the necessity for

Gaussian integration to obtain the element energy.
The version of the program using trapezoidal inte-

gration fails for this example.

- Korn airfoil

FD,ure 20 points out the importance of the viscosity
parameter. Although the solution does converge, the

viscosity parameter for this highly sensitive profile

must be set at 200% in order to dampen out the waviness

in the supersonic regiono figure 21; this is an indi-

cation that the method performs too "stably" so that,

by increased viscosity, the correct root can be found

From the many possibilities of the differential

equations.

As the result of the steps taken to accelerate convergence

the computer times are comparatively small. After 20 iterations

on the last network the pressure distribution was entirely frozen.

This produced computer times for the central unit of an IBM 360/168

1 minute for the 62 16 network

4 minutes for the 124 32 network

Z.0



c). Summary
	

Z21-P

'Nith the introduction of a special method of finite elements in

conjunction with the mathematical model of artificial viscosity it
has been possible to produce a usable computer method for transonic
flow around airfoils which does not require an orthogonal computer

network so that the method can, in a simple manner, "je adapted to

three-dimensional disturbance problems. Such a program is in a
test stage at the present time.

30
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i„l.~^ ,,. X4`!1 `f/

f

ORIGINAL PAGE IS
OF POOR QUAUTY

ADO. 15



U

y	 l.*rrfrw+rww ksr xr ax x+R' ►x `w.:r wfw f'+^ rf.r " xvn r.wtiew •a wnw.v	
f•T••f•• ♦+'Y•'rty"•	 t	 ^••'••"•'^'1 •r'wgr*pw• nxM •̂••^•^^•'wsrx+c +wsrms+^^ )rM.w r+tMA+^ •nw xw ws•^='f'xw••x+a•-trw.gn^ ••xw

^^.,xtw4 Cras^.Ff tir YS^k.*! xr^Cwh rMrsx^wrs:rwxrxNwrx•rx.^,:wyryy,•«d ww•w.xw.. ♦Mw.w..rw...w., ww M.rai°srw:xw,a, x igie-x. •.s i•nxr.ixu n.N alM^: ^.

f	 ^	

{

F	 50	
Ur'E29

f	 a

i J
1	 ^i

x-1	 ...
•

.^ Cr- u

f

X00
Q	 000

°o 3

^^ti	 r•r^r^x^x^^rrw^ix..t+l^rY^^'►r+w3 +wwwrr^^^

+
0+	 l.;

i

a

1

NRCA 001..	
AnB. 16



x

..:A.*.+/•!Kx`+sv r•asa^e sgiliMfi [en►-#. tb «w*dr'^t Y't^'• r+^. :+w;irrx•.yfw^tsMa^w.w^ais+t[[.a+^s TA CAi+w^sr b,^+e^anrr'h°f+r+w^wj+gb lFN<+h '!'x +^"Ty.a yi.^tia '^"w as+3x[rs yNrw^a aa,bsy.=+r xq

lv i6 yyy ^a.i. i1F' ^^v1s4 ",.,rxr tail ^i	 r a .Y Fi... ..yb •efirt . ,i .» - • MS - y... R 	 ' ^4` Y e , i ! s i 4 F.; w	 .ra K d`. ^`. r i.A na faw t .: i r. i i	 b:; X	 bb 10.,4 Y aI7/

UFE1352 
I

r r 'x .OL,^1,2
O

u
0
0

cv w 1 -00
	

FIL=S -D
CZ=O 44:

...^.........^........,.... CP13

DOO©
O*

v

9a
ai+F++,=,+,{,ia++ t + 's.  + +.t.  t* . 00000+ ♦ 

t0+	 uf'

V
t

t+

t

ORIGINAL PAGE N.5

Al3F3, 17	
OF POUR QUALITY

^a

a

a

N;

Y

r.Lim -



-ZA% 'W t^'R'•7 i; r•mxm -ra• • s.'w.ew}y - y Nftt#. !.s►rr ++f'#^"•*++•^••r.rt:rr.t.. imp ,,ayw +e.sM+t+q*rF'.wan .aeq.swr+ry
, ^]++m •,s+r •:. >A Anssae,.^mrF w :n.erJShMww .m. a.v.►M a.•r„m,.lAr'rwww . st 1^m Bs41. ♦ Aw -am.mK •M^.r. rfi ?rhLL .arr.+wmrM+M./,crmu_.Y-s. ss:+Wr.MW

UF` C

a

Ct' -1
.

m

u

0
MA=0.7
A1.=0.0

	

Abp,	 C'_-,0.6

	

....._^...r„......	 CWa
w

^	 a

Cif
t^C1	 O600©

41	 OO

G	 O
A	 n

O

9

•

O

NnCA W410
ABB. 18

-
:,,..+t^.w..^.-^^



RNMl^V '► rP{N. e ^: w •^.rn.. r1^ ^s.Nr .+«.,.Tr ^.. .sw^r^l -wa	 r...^r.. r.a..w•4+w^,.^"+*^ỳ tww.+new«v.-F70-*w•v.+.•mw.m++w..+y..r.	 .we.w.+....k"^^w+r«.t w--.•r+w.rnr^r.
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