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Final Report on Grant NSG5154

A Study of Autonomous Satellite Navigation Methods
Using the Global Positioning Satellite System

Introduction

The development of the NAVSTAR Global Positioning System (GPS)
will allow satellites to perform orbit determination calculations in
real time with on-board computers. Special orbit determination algor-
ithms are being developed to accomodate the size and speed limitations
of on~board computer systems. One class of these algorithms consists
of square root sequential filrering methods. The purpose of the square
root filters is to reduce the likelihood of filter divergence which can
occur as a consequence of a small computer word length.

In this initial study, a new method for the time update of the
square root covariance matrix was developed. 1In addition, this time
update method is compared with another square root covariance propaga-
tion method to determine relative performance characteristics. Compar-
isons are based on the results of computer simulations of the LANDSAT-D
satellite processing pseudo range and pseudo range-rate measurements
from the Phase I GPS. A summary of the comparison results is contained

in the following paragraphs.

Summary of Results

In square root algorithms that emplov triangular square root co-
variance matrices, time propagation by transfrion matrix methods destroys
the triangularity of the square root covarian matrix. Retriangulari-
zation is required after each time update. Such a procedure is required
of the square root filter (the UDUT algorithm) currently proposed for

the LANDSAT-D computer. 1In addition to the computational burden of the
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retriangularization, the effects of process noise can only be approxi-
mated, if the algorithm is to be computationally efficient. As a part

of this study, an algorithm has been developed which integrates the
square root covariance directly in its triangular form. Retriangulariza~
tions are not necessary in this algorithm, and the effect of process
noise is included exactly.

Appendix A contains a der!vation of the proposed propagation algor-
ithm for the UDUT filter, as well as the results of a performance compar-
ison between the proposed method and a UDUT algorithm using a transition
matrix time update. Two versions of a standard formulation of the Ex-
tended Kalman Filter (EKF) are included in the comparison, also. The
results show that, for this test problem, the proposed propagation method
has superior performance to the transition matrix update formulation in
terms of efficiency and accuracy. Its efficiency is only marginally less
than that of the EKF formulations. Detailed results are available in
Appendix A.

The results of additional algorithm comparisons are contained in
Appendix B, 1Two more square root methods, the Potter and Carlson algor-
ithms have been included in the comparisons. A directly integrated square
root covariance propagation algorithm, similar to that derived in
Appendix B show, again, that the direct square root covariance updates
can be competitive with the transition matrix formulations in terms of

computation efficiency and cstimation accuracy.
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A SEQUENTIAL ESTIMATION ALCORTTHM
USING A CONTINUOUS UDUY COVARIANCE FACTORIZATION

B. 2, Tapley* and J. G. Peters”

The University of Texas at Austin
Austin, Texas 78712

Nomenclature
a semi-major axis of satecllite r satellite inertial position
orbit vector
gd atmospheric drag acceleration t true time
b filter mode? 2lock bias T satellite clock indicated time
b2 satellite clock bias v satellite inertial velocity
vector
b GPS clock bias _
s d of light Vel velocity vector relative to the
¢ speed 0 8 ’ atmosphere
1listic coefficient . -
d ballist Vre] magnitude of vrel
] eccentricity '
£ true anomaly Y raunge measurement
- . , . Y ranye-rate mensurenoent
g gravitational acceleration ;
. ~orr-iation paraneter for clock
satellite altitude ‘
h satvllite i vl
h scale height for density medel . .
o N atuospheric density
i inclination . . .
‘ . atmospheric density at reference
k density model scaling factor altitude
y
n filter model clock drift a ceomelric rango
ng satellite clock drift o geomelyic range-rate
n GPS clock drift N argunent of pericenter
s
! longitude of ascending node
Abstract

A method for propagatin% the square root of the state error covariance matrix
in lower triangular UDU* form is described. The propagation method can be
combined with the UDU  measurement incorporation algorithm to obtain a compiete
square root free triangular estimation algorithm. The method is compared with
(1) the ubuT state transition matrix propagation algorithm and (2) the con-
ventional sequential escimation algorithms on the basis of estimation accuracy,
computational efficiency and storage requirements, by a simulation of LANDSAT-D
processing data from the Phase 1 Global Positioning System.  The numerical
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results indicate that, while slower rhan the conventional mathods, the

method proposed here is more efficient than the previous UD factorizations

with vegard to computer storape and computatf{on tlme, and leads to the
most accurate estimate of any of the methods considered.

Introduction

Square root filter formulations have been proposed as a means of

elimirating the problem of filter divergence in the real-time application

of gequential estimation algorithms, In thesce methods, the state error
covariance matrix is replaced by its square root during the propagation

5

and update of the estimate!”® The state crror covariance matrix does

not appear explicitly and, 1f it is required, it can be obtained by
multiplying the square root covarilance by 1its transpose. Consequently,
it will always be semi-positive definite.

In the initial formulations) ® the enhanced numerical stability
was obtained at the expense of increased computation complexity, and an
agsociated increase in computation time. In Rel. 5, a square root
measurement update method 1s proposed which offers potential improvement
in the computational efficiency of the square root filtering methods.
This efficiency is created by maintaining the square root covariance
matrix in triangular form. Following a procedure based on Givens's

¢ 7 : .
transformation® an algorithm has been proposcd’ which lactors the state

- T . .
error covariance P into the form PZUDU , where U is unit upper triangular

and D is diagonal. Using the UDUT factorization eliminates the square
root functions present in the algorithms discussed in Refs. 1-5., The
measurement incorporation formulation derived for this factorization
technique is summarized in the Appendix. The proposed a]gorithm7 for

propagating the estimate is summarized in the following paragraphs.
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The discrete time propagation equation tor the state cerror co=-

variance matrix ia

B o= o 7 oT
k+1 (Eppy oty P (e gaty) + Pt (L
wvhere Pk+1 is the a priori state error covariance matrix at tk+l’ Pk is
the a posteriori state error covariance matrix at tk’ ¢(tk+1,tk) is the
state transition matrix used to map the state from e £O Eppe and Fk+l
is the matrix which accounts for the effects of process noise in the
interval from tk to tk+l’ The matrices ¢<tk+l’tk} and rk+l satisgfy the
’following equations:
®Cr,ey) = AMP(e,6)) 3 0(ey,t)) = 1 (2)
“k+1 T
Fk+1 = J ¢(tk+1,T) Q(T)¢ (tk+l,T)dT 3)
“x
where A(t) is a known nxn time-dependent matrix and Q(t) is the process
noise covariance matrix,
The discrete square root time propagation algorithm, based on the
UDUT transformation, can be summarized as follows’: Form the two
matrices
gy 2 1000 0800, + Byl (4)
b, : 0 ]
b, = S (5)
0o - Qk/At
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where

“l+1
By = J w(tk+l,1)d1 (6)
x

The process noise covariance matrix, ¢ , is assumed to be constant in the
|4 s Y

integration interval At = t -t

Wil " fe and Tpppe 08 defined in Eq.(3), is

approximated as

Tyl 7 By (Q7A0)B, _ 7

T dace fact U D are aine i angul: ¢
en, the updated factors (Uk+1’nk+1> ire obtained in upper triangular and

diagonal forms, respectively, by performing a Modified Weighted Gram-

Schmidt orthogonalization on the matrix wk+1, where its columns are

weighted by the diagonal matrix Ek?

The calculation of ¢(tk+],tk) requires the integration of nxn

cquations in addition to the n-state equations, The determination of

Bk+1 necessitates an nxn quadrature. Theretfere, the total number of

. . L : - R :
equations tu be integrated is 2(nxn) + n. The UDU formulation proposcd

in Ref. 7 approximates Bk+l by an analytical trapezoid-rule integration

which eliminates the nxn quadraturc, The crror introduced by this ap-

proximation can be neglected if the propagation interval (tr+1'-tk) is
AN

small, The effcct of crror accumulated over long prediction intervals,
during loss of tracking or data drop-outs, must be considered to ascertain
the accuracy of this approximation.

Y

The matrix multiplication, TUP, combined with the creation of the
< :

augmented matrix wk+l’ destroys the triangularity of the square root

covariance matrix, The application of the modified Gram-Schmidt ortho-

gonalization procedure is required to retriangularize the UD factors
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at the time each measurement 1s processed. The added computational
burden of this orthogonalization at each ubservation point could be
eliminated if the square root covariance matrix were propagated without
the loss of its triangularity.

In this investigation, a method is propesed which allows the inte-
gration of the continuous state-—error covariance differential equations
in square root form. The derivation followsg the approach used in Ref, 8,
but the results are based on the E’EUDUT decomposition. The new algorithm
can be combined with a triangular measurement update algorithm to ovbtain
a complete square root estimation algorithm for which square roots are
avoided. In addition, the effects of state process noise are included

without approximation,

The Square-Root Propagation Equations in Triangular Form

The differential equation for propagating the state error covariance

matrix can be expressed as
B(t) = A(DB(L) + B(o)al(e) + o) (8)

where P(t) is the a priori state error covariance matrix, A(t) is the
nxn linearized dynamics matrix, and Q(t) is the proecss noise covariance
matrix, PEach of the matrices in Eq.(8) is time-dependent in the general
case. However, for simplicity, the time dependence will not be noted
specifically in the following diwncussion.

If the following definitions are used,
P=UDU°  ; Q= /2 9)

and if the first part of Eq.(9) is differentiated with respect to time

and substituted into Eq.(8), the results can be rearranged te form

s 2N g a6 G i e s g o
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—o 0D =e- e =T = =oT DO mel=T =T, Ty
(@5 + 92 - GOT - ADDYT' + U(BU + - - 07 Q - DUTAT) = 0.
2 2

(10)

Noting that the first term of (10) is the transpose of the second term,

and making the following definition:

se  UD  =me —= =T
c(e) = (0D + %g - Ut - ADDYD, (11)
one ohtains
c(e) +cl(e) = 0 (12)

Relation (12) requires that C(t) be eitner the null matrix or, morec

generally, skew symmetric.
Equation (11) can be simplifiecd by sclectively carrying out the

multiplication of the -Qﬁ-T term by ﬁT to yield, after terms are

rearranged,

L]

(@ + 22 - AT = @ + clo) = clo) (13)

Equation (13) defines the differential equations for U and D to the

degree of uncertainty in C(t). Since the unknown matrix C(t) is
skew symmetric, there exigt n(n=1)/2 unknown scalar quantities in

Eq.(13). The problem considered here is one of specifying the

elements of C(t) so thet U is maintained In triangular form during

T e

the integration of Eg,(13). (The derivation pursued here assumes Chat

Panzel)

REL

U is lower triangular and D is diagonal, although an algorithm for an

g upper triangular U can be obtained as ecasily.) The following definitlions

are made to facilitate the solution to the problem posed above,

T = AUD ;3 Mz UD 4+ %9 - T (14)

With these definitions, (13) is expressed as

~

? MIT = C = Q + C(t)

(15)

e
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Since é and U in Eq.(13) are lower triangular, and since from (12),
C(t) is skew symmetric, several observations cian be made regarding
Eq.(15). There arc n(n-1)/2 unkown clewents in ¢. The products ﬁf
and 63 are lower triangular creating n(n+1)/2 unknowns., Therefore,
the nxn system of equatious (13) has [n(n-1)/2 + n(n+1)/2] = nxn un-

knowns which can be determined uniquely.

An expansion of Eq.(15) into matrix clements indicates the method

of solution.

M M

1
‘T nl n2 ' Mnn L0 /

(16)

<.
. o &, %
In Eq.(16), Q is assumed to be a diagonal matrix with clements

9., = /2 5 11,0, 0. This assumption can be peneralized
qli qll/ H s ’ ( ] H
to allow other non-zero terms in the Q matrix with only a slight in-

crease in algebraic complexity.) Each row of the upper triangular

)
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portion of the ¢ matrix in Eq.(16) is determined as the product of the

0

corresponding row of the M matrix with the appronricte enlumn of the C‘r 1“
matrix. After an upper triangular row of € is detoinared, the condition i
1
from Bq.(12) that Cii = - cji (i=1,...,n ; §=1,...,i=1) 1= invoked to i
. : |
evaluste the corresponding lower triangular column of €, Then a column 4
of the lower triangular elements of M can be cevaluated., Once the %
elements of the M matrix are determined, the next row of the upper tri- 7
A
L 2 3
angular C elements can be computed along with a column of the U and D ;
elements, This process is repeated until all U and D values are i
determined, Tle implementation of this approach procceds as follows.
From Eqs. (13) and (1l4) one can write
. ?
M4 T=1UD+5 . (17) d
f:i
The expansion of (17) in summa:zicn notation gives 3
n * n ﬁ (—i
My ¥ Ty ) ﬁikak + ) »~1§—51
e I k=1
i=1, ,n ; 3=1, i (18)
But, since D is diagonal, (18) becomes
. U,.d,,
M + = _. ~.. 1143
1] ij 13733 2
i=1, ,n 3 i=1,...,1 (19)
For i=j, ﬁlj £ 1 and U,, £ 0. Therefore, (19) becomes
d.., = 2(M,, + i=
dii (!ii T i) i=1, ,n (20)




—

For i > j, (19) is rearranged to obtain the differential equation

{'__] = (M + T - "’j""li/;j'j')/d

ij 1] 1] 1

i=2,...,n 3 i=1,...,1-1 (21)

Lquations (20) and (21) are the forms of the difterential equations
to be employed in the derivative routine of o numerical integrator, The
elements T,, and M,

ij i

equations can be combined to obtain the following alyorithm,

j are computed as defined in Eq.(14), The pertinent

Triangular Square-Root Propagation Algorithm

Given the elements of the square rool state error covariance in

lower triangular UD form, O = Q/2, and A(t), the differential

*
equations U,, and dii can be computed as follows:
13

n
T, = I AU d ., i=1 n i1 n (22
i . ik 'k ' o ’ ’ 22)
] k= § AR
~ i _ j
.. o= L M J - ) T ]
] o lik[jk k:iil qikh]l i“1,0000n 1 §=i+1,...,n (23)
Mii = qii - 1 MikUik i=l,...,n (24)
k=1
~ j-1
= - - ¥ 0 . - :
MlJ Cji k:1 Mikujk i=2,.00,0n 3 j=1,...,i-1 (25)
dii = Z(Mii + T, .) i=1, N (26)
: 6.3,
Uij = (Mi. + T , - -4—-3—12 )/d” i=,..0n 5 g=1,...,i-1 (27)

]
]
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i
o
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The propagation algorithm summarized In Fas. (22) through (27) can be
combined with the algorithm for incorporating an observation ta obtain

a complete sequential estimation algorithm in which the covarfance

~ -—

matrices P and P are veplaced ty the factors (U,D) and (U,D), respectively.
The algorithm given In the Appendix assunes tnhar only a single sealar

vbservation is processed at ecach observation opochy however, the algoriths

is applicable to the case of multiple obscervations at o given vpoch, if

the obsoervatioc» errors arce assumed to be uncorrveiated,

Numerical Comparison

In the following numerical cxarple, the twe methods Tor propavat fon

- , ; : .
of the UDU” factored covariance matvix are cogpared o dotermine the

raelative computation speed and estirmation accuracy. As a basis for

determining their absolute performance, numerical results are obtained

D VI DU

with the conventional Extended Kalman-Buey filter using both Igs. (1) and
(8) as the bases for propagating the state corror cosariance matrix,  The
numerical coumparisons are made by using cach of the algorithms to process
a set of simulated Global Positioning System (GPS) range and range-rate
observations obtained by the LANDSAT-D spoceerait. A deraited discussion
of the GPS and the associatced navigation measvrenonts is given in Her, 12,

Since the range measurement will require a precise measurcment of the

f

\ time interval between wsignal transmission Yrom cne of the OGS sntellites
' ’ to  reception at the LANDSAT-D spaceeratt, the olock crror muss b

medeled and included as part of the overell state vecter.  The primary

clock errors ave the bias and drift.

)




are: position (r;

equations defining

X‘E

v =

where the subscript

a

—_— i ——
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contains nine state variables. The nine components of the

E[&(t)]i =

11

The dynamic model used for the motfon of LANDSAT and the associated

model of the satellite's clock are corbined to obtain a filter model which

state vector

3x1), velocity (vi 3x1). clock bias (b), clock drift

(n), and clock-drift model correlation parameter (£f). The differential

these parameters in the filter are:

v (28)
g +ay+ & (29)
n (30)
fn + En (31)
ﬁH (32)

The stochastic processes, Ev. &n and § ., arc white noise forcing

A

functions which are assumed to have the following statistics:

0 5 EIECEE (D] = 0 () (-0 (33)

i indicates the appropriate member of the sct {v,n,?}

and 8§(t-T) is the Dirac delta function.

For computati nal efficiency, the filter assumes zimple models for
the gravitational acceleration, E, and for the atmospherice drag acceeleration,
4 The geopotential model adopted for the [ilter is obtained by trun-

cating the Goddard Earth Model (GEM7)'Y to the fourth degree and order.

The drag acceleration is calculated as

- vy

o
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“d " dwvrolvrol (34)

where the atmospheric density, y , {8 approximated hy the exponential
model:

-k(h=h )
¢ (4]

Y = 119)
%)

The values of the drag model parameters assamed Tor this fnvestigation

. -1 } -1
arer h o= 840,000 m, Y = 5.74 x 10 B’ k- Tes x 10 W, amd
{

d = 1.18 x 107" m /kg.

The estimates of the clock bias, b, and drift, n, are used to

predict the true time of the user's clock, t, by the equation

t =T -Db - n {t=t )
O (8] O

(16)

where the subseript (o) indicates the epoch of the Tast estimate of

the parameters.,  The quantity T is the time as indicated by the LANDSAT-D

clock,

The observations usoed {or this stady are pseude vange and puscudo
ramge-rate measurements as observed by the LANDSAT-D satellite using
the six satellites of the Phase 1 GPS constellation!™  The computer

software used to simulate the observat fons as well as further details

ot the stmulation procedure are discussed in Ret, 10,

The models used te generate the sinunig od meacurenent s have the
L e

form:

Yoo i (b, o= b e g
8] s ’

Yo oop b (b= )e f G (38)
Al \ ] %l

vheve p oand p arve the true values of ranee and ronge-rvate between

FPANDSAT-D and o priven CPS satel T {te, Voanmdb ve are the measured

s

12

ot et i oA s s i
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13 {
values of the range and range-rate; b n,, b, and n are the biases L
2 Q‘) ¢ 4 4 F
and drifts in the satellite clock and in the €GPS clocks, respectively;
md ¢ 1s the speed of U;;ht}? :
The measurcment Yp and Yﬁ is processed by the LANDSAT-D navigation !
o
(ilter using the model
3
Y =p 4+ ¢b + § (39) E
&) p £
Yé = 0 + cn + qé (40) o
E
That 1is, in the filter model the GPS clocks are assumed to be perfect ]
, . . . A
and the total time error is assumed to be contained in the LANDSAT-D 4
5
satellite clock. The interval between obscrvations 's assumed to be
six seconds and observations from only one €GPS satellite can be obtained :
- 1 I3 K3 f
during any six-second interval. The observations from the visible
satellites are processed sequentially. ;
,
The GPS satellites are assumed to be in civeular orbits (e=0) about 3
1
1
a point mass earth with inclinations of 63° and periods of 12 hours 3
‘ )
H 1
; (43,200 sec). Three satellites are equally spaced on each of two 1
{ b
¢ !
1
orbital planes. The orbital elements are referonced to a coordinate 3
system whose xy-plane is the earth's cquator and whose xe-plauc lics 3

along the Greenwich meridian,

' The epoch condition for LANDSAT-D was cvhosen so that the resulting ’
1

! simulated observations would accurately refleet the possible extremes 5
' E
of GPS satellite visibility. The epoch elements chosen are i

k

: >

» a = 7,086901 x lObm, e = .0001, 1 T o98TiSl, o0 3547878, w < 1807, é
; and  f(true anomaly) = -185°. The elements are specified at a GPS svstem %

time t=C., The epoch elements for GPS are specilicd at o svatew time of

Rk aid
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-7200 sec. The difference in initial epochs is fncluded in the filter §
]
program's update of user and GPS states. 3
¢
!
: The values of the LANDSAT-D and GPS c¢lock phase and [requency o
- {0
4 ey L
¢ errors are simulated as the sum of three different error sources: b
;
4 a noise-free phase error with a polynemial form, an error due to ex- ©o
s ;
5% ponentially correlated frequency noise, and a random walk bias error. g*
The exact form of the error models and the cocfficients used In the i‘
models are given in Ref. 10. ﬁ*
The numerical simulations of the filter performance were made {!
with the following initial conditions: ‘2
-
! 1
o
State »gt.:}-ts‘..(".(l\.l_i‘l’.i.."l.”.“.‘: Nofse Covarfance " 3
=
y 75 6 8 .‘ ‘ ‘i
X(1) = 7.046 x 10 m P(1,1) = 6 x 10 m 0(1,1) =0 T
. . 6 o n _ 6 2 o "
X(Z) = ~5,433 x 10 m P(2,2) = 6 x 10 m 02,2 =0 , ;
, . 5 . b7 v : 3
X(3) = -6.120 x 107 m P(3,3) = 6 x 10 n O, 8) 0 C
HE
L JS 2 Do [ X . S . J . -0 2 3 ‘
X(4) = 5.5062 x 107 m/soec P(4,4) = 1 x 10 (m/see) QCy,4) = 1 x 10 w/sec J
. 3 - 2 . -6 2 .
X(5) = -1.116 x 10° wm/sce  P(5,5) = 1 x 10 (m/sec) Q5,5%) = 1 x 10~ m"/sec 3
C(F 3 J D _ 9 . i
X(6) = 7.388 x 107 m/sce  P(6,6) = 1 x 107 (u/sec)”  Q@o,0) = 1 x 1070 w/see’
b
. 1 ) ) D i
X(7) = 2,998 x 10 w P(7.7) = 3.600 x w5 m 0(7,7) =0 .
, - , o o 0 2 -4 2 3
X(8) = 5.996 x 10 = m/sec P(8,8) = 6. x 10 (m/sec) Q(8,8) = 1 x 10 " m /see
| -4 -5 - .
) X(9) = 5.550 x 10 (9,9) =1 x 10 Q(9,9) = 1 x 10 7 o
’ i
. |
5
’ The off-diagonal terms of the state-crror cevariance and noise covariance
) matrices are seot to zero initially. t

D
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The data in Table 1 and Table 2 show the relative performance of
the four algorithms when cach processed o simulated obscervation data
set with a duration of approximately 10000 sec, The five columns in cach of
the tables are, rvespectively: (1) the total CPU time required to perform
measurcment updates of the state and covarfance, (2) the total CPU time
required for propagating the state and covariance, (3) the total CPU propa-
gation time normalized by the fastest CPU propagation time, (4) the total
CPU time required for propagation and measurcment updates (the sum of
columns (1) and (2)), and (5) the RMS of the position magnitude errors
and velocity magnitude errors over the duration of the simulation, All
CPU times are listed in milliseconds. Position errors are givea in meters
and velocity errors are given in meters per sccond.  The algorithms are
ranked in the tables in order of increasing total computation time.

Time propagation is performed with a fixed-step modified Fuier
integrator, which requires two function cvaluations per step.  The inte-
gration step size for the data of Table 1 is six sceconds, cqual to the
time interval between GPS observations,  The data of Table 2 result from
integration with a three-second step size.

The relations for the propagation of the time bias and drift as
approximated by Egqs. (30), (31) and (32) have siaple analvtic solutions,
This allows certain elements of the state transition matrix to be updated
analytically. The implementation of the UhUCD) and EXD ) algorithms
has taken advantage of this simplification to reduce the number of numerically

9
integrated differential equations below the theoretical value of n™.  The

high degree of coupling in the covariance difterential equations for the

cen

P

o mad

T Ty VT

I ST S T T I T TS



- L3
[

r T T R T Oy X T
F ? ;

TUUTIETTIT T TR e AR e

(P) and (ﬁ,ﬁ) algorithms does not permit a convenient reduction in the
integration vector size. A total of n(n+l)/2 covarisnce equations has
been integrated in the simulations described here,

While the programming effort required to implement the (6,@) formu-

lution will be greater because of the recursive nature of Eqa. (22) through

(27), fewer computer storage locations will be required to execute this
algorithm since the total number of equations involved in (22) through (27)
is n(n+1)/2. This value compares with the (nxn) computer memory locations
required to integrate and store the b equations. Siunce there are some
zeros in the & equation, one can reduce the storage requirements of this
method at the expense of added programming complexity. Further comparisons
of the computer storage location requirem ats for these two algorithms are
given in Ref, 10.

The numerical results shown in Table 1 indicate that the (ﬁ,ﬁ) algo-
rithm is competitive with both the UDUT($) and conventional {ormulations
in terms of CPU times and estimation accuracy for this filtering problem,
The (Q,ﬁ) method is faster than the UDUT(é) alegorithm for the six-second
integration interval. Its position estimatlion error is lewer than that
for any of the other algorithms. For the three-sccond step size results
in Table 2, the (ﬁ,ﬁ) algorithm remains competitive in terms of estimation
accuracy, but is no longer as fast as the UDUT($) algorithm. With the
decrease in integration step size, the number of expensive (ﬁ,ﬁ) function
evaluations has increased, but the number ol time consuming orthogonali-
zations in the UDUT($) algorithm remains the same. This factor causes
the UDUT(@) algorithm to have a faster computation time, {= this casa,
Again, for the three-second results, the (ﬁ,ﬁ) formulation vields the most

accurate position estimate.
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Both UDUT methods require higher total computation times than the

EKF algorithms, This is not an unexpected result as square root filter

formulations often incur computation time penalties as the price for

increased numerical stability.

These numerical results were generated on a CDC6600 computer system.
The relative performance of the algorithms will vary as a functlion of the
computer system being used, the dynamic model assumed by the filter, the
method and order of numerical integration, and the inteyration step size.

The influence on performance of the latter two factors can be seen in the

numerical results given in Ref. 10. The (O,ﬁ) method becomes more efficient

as the total number of function evaluations within a given integration
interval is decreased. Therefore, the choice of the time propagation
method should depend on the formulation of the specific problem under

conglderation and on the supporting algorithms and computer system used

to perform the calculations.

Conclusions

Based on the results presented in the previous discussion, 1t is
concluded that, for the example problem considered here, the (&,ﬁ) algorithm
is more efficient than the (U,D) algorithm based on the $ propagation.
Furthermore, the estimate obtained with the (I1,N) formulation was more

accurate than the estimate obtained by cither the conventional EKF esti-

mation algorithms or the (U,D)—é algorithm. The performance of the algorithms

will be dependent on the computer architecture and software, the dynamic
model assumed for the filter and the method used to perform the numerical

integrations, and will vary as these factors change.
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Table 1. Numerical Algorithm Comparison for the Modified Euler
" Integrator (Step Size = 6 scconds),

Meas., Time Norm, T ot 1 ) Accuracy )
Algorithm | Update,ms { Update,ms | Time (Update,ms | RSS Pos.,m RSS Vel.,m/s
EKF (P) 7.246 38.608 1.000 | 45.855 113.1 | .43
EKF () 8.057 42,792 1.108 | 50,849 120.73 432
UDU (UD) 8.045 N 5Eiiéi>‘ '.i:32A 59,176 | .2;5*“—.““
UDU () 8.216 61.296 1.588 | 69.512 11706 - 432

Table 2. Numerical Algorithm Comparison for the Modificd Euler
Integrator (Step Size = 3 seconds).

Meas. T ime ] Norn Total L Acenracy ]
Algorithm l’pdat‘a".?j\;_:w ‘Upﬂ.l te,ms _gi].?'l"'" » Update  nes RSS Tos.,m | RSS .Y.“}_‘._’f.‘.‘fﬁ.w
é EKF ($) 7.981 64.688 | 1.000 | 72,60 RN 442
wEKF(ﬁ) 8.341 75.224 | 1.163 | 83.565 LI I N T
UDu () 7.867 82.872 1.281 | 90,739 146 .8 A4
' UDU (UD) 6.972 } 102.831 A1.500 109,803 146.0 4540

e e

i i AR i < ik A e et




Appendix

T

T .
The measurement update algorithm for the UDU factorization’ has

the following form. Using the observation \k+l = G(Xk+1’tk+l)’

calculate:

= 'J“V ) l::
Megp = G Lty /0% ]

For i=1-n,

Set Bn+l = Rk+1 (where Rk+l is the measurcnent noise) and calculate:

~

B, =0 ViFi i =l

i i+l +

Calculate diagonal covariance e¢lements:

179 TR /Ry s b=

For i=2-+n, and j=1-1-1, calculate:

P, = Fj/8j+1

J

iil _
B,. =V, + u, V.
ij i k=341 ik 'k

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)
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A - = ) >
w 1 - B P I = 4 n "
Uiy = Uiy Byl b= 1 qm1 (A.9)
Compute residual:
Yeer ™ Yirr 7 Cpq1o far) (4.10)
Calculate gain and update state:
Ki = Bi] + Uilvl i i = 1»n (A.11)
ki = )\i + l\i\'k_,_l/u T I (A.12)
3o 0
Ai%aéy
% ~
vy, G
K4
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RELATIVE PERFORMANCE OF ALGORITHMS
FOR AUTONOMOUS SATELLITE ORBIT DETE{{}IINATION1

B. D. Tapleyz, J. G, Peters' and B. E. Schutz"

Limited word size in contemporary microprocessors
cauges numerical problems in autonomous satellite navi-
gation applications. Numerical error introduced in
navigation computations performed on small wordlength
machines can cause divergence of sequential estimation
algorithms, To insure filter reliability, square root
algorithms have been adopted in many applications.

The optimal navigation algorithm requires a careful
match of the estimation algorithm, dynamic model, and
numerical integrator. In this investigation, different
representations of these elements are evaluated to de-
termine their relative performance for satellite navi-
gation applications., Numerical simulations are conductec
using the Phase I GPS constellation to determine the
orbit of the LANDSAT-D satellite., Numerical comparisons
are made of various square root filter formulations, and
their dependence on the order of the integrator is
examined.

Nomenclatiure

atmospheric drag acceleration n satellive clock Jdrirfe
satellite clock bias r faertial posicion vector
speed of light t true time

ballistic coefficient T satellite clock indicated
gravitational acceleration v inertial velocity vector
computed range measurement Vool mazsnitude of Grel

computed range-rate meas. —rel velocity vector relative to

the atmosphere

m

correlation parameter for
clock drift model

density model scaling factor
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variable atmospheric density b computed geometric range-rate
0

c
o atmogpheric density at refer- m range measurement
ence altitude .
O range-rate measurement
? geometric range Apm range bias due to error in
p geometric range-rate user gatellite and GPS clocks
pc computed geometric range Aom range-rate bias due tc error

in satellite and GPS clock

1. Introduction

The use of artificial earth satellites for accurate dissemination of

~ time and frequer 'y holds high potential for the development of an accur-

ate and reliable autonomous navigation system [1]. Current satellite
systems have demonstrated the ability to obtain global positioning of
peints, fixed on the surface of the earth, to an accuracy of two meters
in three dimensions [2]. While the position error achieved by a dynamic
navigator, i.e,, one moving with respect to the earth's surface, would be
considerably greater than two meters, this investigation indicates the
potential inherent in satellite navigation methods,

The Global Pcsicioning System (GPS){3], which is being deployed currently,
is designed to allow a user to satisfy real-time navigation requirements
by the calculation of pousition and velocity using simultaneous pseudo
range and pseudo range~rate measurements from several GPS satellites (4,
5,6]. The requirements for determining the orbits of low altitude satel~-
lites in near real-time, ccupled with the need for increased accuracy,
generates an interest in evaluating the GPS as a means for satisfying
satellite orbit determination requirements. With the development of com-
pact low-power computers and atomic clocks, the ability to perform the
satellite navigation function on-board the spacecraft in an autonomous
navigation mode is an attractive alternative to telemetering the GPS
range and range-rate measurements to the ground for processing by a
ground—~based orbit determination program (6].

Allowable computer storage and execution times will place constraints on
the model and the algorithms which can be selected to estimate the satel-
lite's state. To minimize the storage requirenients and achieve a real-~
time state estimate, the estimate of the satellite orbit will be performed
on-board, sequentially, using a Kalman-Bucy filter [7]. One problem
which must be considered if a sequential data processing method is used
is the problem of filter divergence [8]. The divergence occurs due to
either (1) dynamic or measurement model error, or (2) numerical errors
introduced during the computation process. Since most computers for
autunomous satellite navigation will have a short wordlength, this second
cause of divergence will be of considerable importance.

The problem of filter divergence has led to a number of s:udies aimed at
the development of stable estimation algorithms. The square-root measure-
ment update algorithm proposed by Potter [9,10] has been used in a number
of applications to prevent divergence caused by a computed non-positive
definite covariance matrix. The algorithm preposed by Carlson [11]
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allows the measurement update to be accomplished inoan efficicat manner
by maintaining a triangular square vroot covariance matrix, In {12], a
triangular decomposition which {a free of square root operations is pro=-
posed. The "square root free" algorithm is reported to be faster than
the Carlson-Cholesky algorithm, The squarc root covariance matrix must
be maintained in triangular form during the time propagation il these two
algorithms are to be applicable, Usuallv, the square root covsriance
matrix time update destroys the matrix triavvularity and a vetvianpulari-
zation at each potential observation epoch wust bde emploved, This pro-
cedure requires an additiocaal computation eftort and an associaced
computation time penalty, A recent development by Tapley, et al [13,14],
in whicli the time update ol the square root covariance matrix is main-
tained in lower triangular form throughout the entire estimacion process,
can be adopted to obtain a complete trianpgular square root estimation
algorithm,

The objective of this investigation is to cvaluate the performince ot
the various square root algorithms in performing on-board satellice
orbit determination using the Global Positioning Svitem. The evalua-
tion 1is based on a comparison of the computation time and the state

estimate accuracy. The effect of the numerical integration method on
the estimate accuracy is considered also.

2. Filter Model

The models of the satellite dvnamics ard of the observation state rela-
tion have a critical {mpact on the computer storave requirement and on
the execution time for the navigation alporithm, It the models are too
complex, unacceptably larpe storage requizements and computation fimes
will occur, However, if the models are oo simple, the accouracy of the
navigation estimate will be depraded below an aceeptable value,  The
following model fs selected as o compromise between the reguirements for
accuraey and efticiency,

Dyvnamic Equations,  The dvoamic medel Tor the moticon of the user satellite
and the associated model of the satellite clock behavior are combined ro
obtain a filter model which centains nine state variables.  The aine com-
ponents of the state vector are: position (ry V1Y, velocioy vy 1),
clock bias (b), clock drirt (), and clock=drift medel corvelation puara-
meter (8). The Jifferential cquations detininpe these parameters in the
tilter are:

r =v (D)

K3 - - -

v = + a, + . )
& J A4 {

. .

b= {3

now Bpn o+ & )

n
B~ g ()
>

.
where () = d¢ )AdT, oog., the independoat variable is the satellite
clock time.
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The stochastic processes, {v, En and EB, are white noise foreing functions

which are assumed to have the following statistics:

E[(e) ], =0

I (6)
E[g(e)g ()], = Q ()8 (L-1)

where the subscript 1 indicates the appropriate member of the set

{v,n,8}.

The filter uses relatively simple models for pravitational force, 2, and
the atmospheric drag forces, a,. The geopotential model adopted for the
filter is obtained by truncating the Goddard Earth Model (GEM) 7 [15] to
the fourth degree and order. The drag acceleration {s calculated as

b R derelvrel &)
where the atmospheric density,y, is approximated by the exponer-ial
model:

y = y e k(R (8)

The values of the drag model parameters assumed for this investigation
zre: ho = 840,000 m, y = 5.74%107'" kg/m?, k = 7.58%10"%m, and
d = 1.18x10"% m?/kg.

The clock bias, b, and drift, n, estimated bv the filter, are used to
predict the true time of the user's clock v the equation

t=T~-b —-n (t-v) C
Q O O

where the subscript (o) indicates the epoch ot the last evaluation of the
parameters.

Variational Eguations. Linecar variationa! ccuations are required to
implement the sequential estimation algorithim {8]. The equations are
derived by the linearization of Egs. (1) through (S). JFurther details
can be found in [15].

Observation State Relation. The observaticn types processed during the
study are pseudo range and pseudo range~rate. The
can be expressed, mathematically, as:

actual measurements

= 0 4 A +
P, = F Xam Sa (10)
. - . + é'-) + -,
P p 0o np (1D

where pm and pm are the measured valuecs o! the range and range-rate, p
* L]
and p are the actual geometric range and range-rate, Ap and Aom are range
m

and range-rate biases due to errors in the us
lite's clock, and the Si are zoro mean whit

er!
noise sequences with known
variances.
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The modeled values of the measurements have the form

Gp s QC + (b~ bs)c (12)
Gé = 0, + (n - ns)c (13)

where pc and oc are the computed values of range and range-rate, b, n,
bs and ng are the predicted biases and dritts in the satellize clock

and in the GPS clocks, based en previous measurements, and ¢ is the
speed of light.

The linearized observation-state matrix H is computed by taking partial
derivatives of GD and Gé with respect tc the state. The complete ex-

pressions for G and C;, along with the partial derivatives, are given
b
in [15].

3. Observation Simulation Model

Observations generated for this study are pseude range and pseudo range-
rate measurements as observed by the LANDSAT-D satellite using the six
satellites of the Phase I GPS constellation., The computer software used
to generate the observations is a modification of the program developed
by Kruczynski [5]. Further details on the software modifications, which
were made to simulate the orbit of the LANDSAT satellite, are given in
[15]).

The simulation philosophy was to produce a phvsically realizable set of
data points against which the filters could be tested and evaluated.
Simplified models of the GPS satellites were used to reduce cowputer time
requirements.

The description of the observation generation program can be broken into

four basic areas: (1) simulation of GPS satellite motion, (2) simulation
of LANDSAT-D motion, (3) simulation of clocks, and (4) simulacion of the

measurement process.

Simulation of GPS Satellite Moticn. For simplicity, the uFS satellites
are assumed to move in circular orbits arcund a point mass earth. The
GPS satellite motion can be determined, then, by using a closed form
solution and a set of Keplerian elvments defined at some specified epoch,
This approximation will not have a significant impact on the results pre-
sented here because of the relatively short time interval involved in

the simulation.

The epoch orbital elements for the Thase [ oPS constellation are the
following:

Long. of Asc. Mean
Satellite Node (Deg) Anomalv (Deg)
1 -130. 0.
2 ~130. 40,
3 ~130. 80. (continued...)
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Long. of Asc.
Satellits  Node (Deg) = Anomaly (Deg)
4 110, 40,
3 110, 80.
6 110. 120,

The GPS satellites are assumed to ba in circular orbits (e =0) with
inclinations of 63° and periods of 12 hours (43,200 sec). These slements
are referenced to a coordinate system whose xy-plane is the sarth's
aquator and whose xz-plane lies along the Greenwich Meridian.

Simulation of LANDSAT-D Motion. The force model used to simulate the
LANDSAT-D motion contains the effacts of the earth's non-spherical mass
distribution and the effects of atmospheric drag, The gravitational
accelerations for the observation simulations are obtained using the GEM?
geopotential modal truncated at order and degree 8. The drag acceleration
is computed by using Eqs. (7) and (8), with the same set of constants as
specified previously.

The epoch conditions for LANDSAT-D and the GPS satellites were chosen so
that the resulting simulated observations would accurately reflect the

possible extremes of GPS satellite visibility. The epoch elements chosen
for LANDSAT-D are:

a £ 7.086901 x 10°m

e £ 0.001

i £ 987181

Q = 3540878

w T 180°

f (true anomaly) T -185°¢

These elements are specified at the GPS system time t=0. The epoch
elements previously listed for the GPS constellation are specified at
the GPS system time t =-7200 sec. This difference in initial epoch is
included in the simulation program's updates for the user and GPS states.

Simulation of Clocks. The values of the LANDSAT-D and GPS clock phase
and frequency errors can be calculated as the sum of three different
error sources: a noise-free phase error with a polynomial form (g.);
an error due to exponentially correlated frequency noise (éz); and”a
random walk bias error (83).

The polynomial error term is expressed mathematically as:

e (t) = a, + a (t-a) + (aA/Z)(t—al)z (14)

The exact form of the error models and the coefficients used in the models
are given in [5].
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Simulation of Measurement Process. To generate tha observations, thea
GPS satellites are "sampled' evary six secunds in ascending numerical
order. Upon calculation of the geometric range vector betwsen the
LANDSAT-D and & GPS satellite, a measurement is accepted {f the GPS
satellite is no more than 20° below the LANDSAT-D local horizontal. If
a satellite is rejected because of this geometric constraint, the next
higher numberad satellite is samplad in the sams manner, The procedure
is repeated until a ''visible' GPS satellite is found. If none of tha
six satellites is considered visible &t a particular time, no meggsurament
is taken. Then, all satellite vehicles are propagated forward six seconds
and the procedure is repeatsd. A random number of measuraments is re-
jected in gn effort to simulate measurement losses due to actual system
problems such as neriodic faillures in signal acquisition or bad data in
the GPS transmission. A CGaussgian error term is added to each of the
geometric observations to account for purely random anomalies in the
measurement process. The standard deviations for the random errors are:
Op ™ 2, m, and 0y = .2 m/sec. If no satellites are visible at a particu-
lar time, the user's clock errors and position and velocity magnitudes

are recorded on a file to be used to compute navigation errors during
data gaps.,

4, Filter Algorithms

The filter used to process the GPS measurements will consist of two major
segments., These segments are: (1) the measurement update segment, and
(2) the time propagation segment. The measurement update segment receives
the observations at a given time epoch and processes these observations

to obtain an updated estimate of the state. The propagation segment maps
the estimate and the associated state error covariance matrix forward in
time to the next observation epoch. For each measurement update algorithm,
there arve two propagation algorithms which can be consideved. The primary
difference in the propagation algorithms is determined by whether one
integrates the state transition matrix for propagating the state error
covariance matrix or whether the differential equation for the state er-
ror covariance matrix is integrated directly. The filter algorithms

compared in this investigation are:
(1) The Extended Kalman-Bucy Filter [8,10]
(2) The Carlson-Cholesky Filter [11,13]
(3) The Potter Filter [9,10]
(4) The UDU Filter [12,14])

The state error covariance matrix can be based on the following set of
differential equations:

B(e) = A(E)P(e) + B(o)aT(r) + Qo) (15)

where A(t) = [3F(X,t)/9X] , the nx1 state vector, X(t) is defined to

T =+T.=T, . ,
have the components X (t) = [r iv ib,n,’], F{X,t) is an nx 1l vector whose

*
components are the right-hand sides of Egs. (1) through (5), and [ ]

&
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indicates that the elements of the matrix are evaluated on the reference
solution X*(t). Alternately, the covariance matrix can be propagated by
using the state-transition matrix, @(t,tk), where é(t,tk) = A(t)¢(t,ck);

@(ck,tk) = I, The integral of Eq. (15) can be expressed, then, as:

T Fik) T
Pk-i-l - Ntk-#l"k)Pk $ (tk+l’tk) + jt ¢(t,T)Q(T)P (t,T)dT (le6)
k
Rather than evaluate the integral in Eq. (16), an average value, Tk, is
used, where

r+1

r, = ave J o(t,T)Q(e)d (¢, T)dT (17)
t
K

Using Eq. (17), Eq. (16) can be expressed as:

P = ¢(

T
b r
R S S I S LR g (18)

The square root estimation algorithms can be based on either Eq. (15) or
Eq. (18). In the numerical simulations described in the next section,
methods based on both approaches are compared. The use of Eq. (15) al-
lows a triangular square root factorization for the covariance to be
maintained during the propagation interval. Propagation with Eq. (18)
will destroy triangularity and, after the propagation interval, special
computation techniques are required to obtain a new square root covari-
ance matrix. For the square root propagation algerithms based on

Eq. (15), the relative advantage of maintaining the covariance matrix

in triangular form is offset by a more complicated form for the govern-—
ing differential equation.

Further discussion of the algorithms as well as the specific implementa-
tion used for this investigation is given in [15].

3. Algorithm Comparison

The numerical performance of the algovithms discussed in Section 4 was
compared by conducting a series of computer simulations in which the algo-
rithms were used to process GPS range and range-rate observations. Ob-
servations were simulated for a GPS system time interval of 10,000 sec.
from the LANDSAT-D orbit. This is approximately 1.7 revolutions of
LANDSAT-D. A history of the number of GPS satellites visible from LAND-
SAT-D, versus time, is shown in Fig. 1. It can be seen that the number

of satellites visible varies from zero to six, the number of satellites

in the Phase I GPS constellation.

The numerical results obtained with each filter are very similar to those
shown in Figs. 2, 3, and 4. The plots in these three figures are,
respectively, RSS position error versus time, RSS velocity error versus
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time, and the error in the time estimate versus time. This solution was

generated with the UDU(®) algorithm and a modified Euler integrator with
an integration step size of gix seconds.

Two types of error growth are visible in each of the figures. First,
there are two time periods in each of the plots during which large ervor
growth occurs, Comparison of the three figures with Fig, 1 shows a io-
incidence between the occurrence of the large error and the periods when
fewear than four GP8 satellites are visible. The lzrge errors result

from the inability of the filter model to predict the state estimate
through time periods of limited observation data.

The second type of error growth occurs gradually. After each period of
low satellite visibility, the navigation error is reduced to a lower level.
However, the average value of the lower-level navigation error increases
during each successive period of good satellite visibility. Additional
simulations run with algorithms other than the one used to generate Figs.
2, 3, and 4 produced nearly identical error plots., It is likely that the
long-term error growth is caused by the influence of geopotential model
error on the estimate of the LANDSAT-D clock parameters. The large errors
result from the periodic reduction of GPS satellite visibility. DBoth er-
ror types require further study; however, since the primary purpose of
this investigation is the comparison of the algorithm efficiencies, in-
depth study of the causes of the large error growth and methods for their
removal is deferred to a later investigation.

Operation Count Comparison. As an evaluation of the theoretical compu-
tational efficiency, operation counts of the number of numeric opera-
tions have been made for the seven different time update algorithms
under consideration., The operations recorded are the additions (sub-
tractions), multiplications, divisions, and square roots required to
perform a single time update of the state error covariance matrix or

the square root covariance matrix. The operation counts required to in-
corporate the measurements are discussed in [12].

Table 1 and 2 give the number of operations for the covariance time
update of a system with an n-dimension state vector, whose complete nxn-
transition matrix is obtained by numerical integration. The dimension
of the system's state noise covariance matrix is m. The counts are
broken into three groups depending on whether the operations occur once
per time update interval, once per integration step, or once per inte-
gration function evaluation.

The operation count per integration step depends on the type of numeri-
cal integrator being employed. Tables 1l and 2 give the values for a
second~order Euler integrator with two function evaluations per step.

The coefficients of the n’? terms in the table will increase significantly

for higher order integrators (roughly as a factor of k(k+1)/2, where k is
the number of function evaluations).

If the assumption of an Euler integrator is maintained and the integra-
tion step is specified, then the three count groups can be combined to
give the total number of operaticns for a covariance time update,
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Assuming that a time update occurs every six seconde and the integration
step slze is six seconds, the total number of operation counts can be
computed, The result is shown in Table 3.

The total counts show that direct covariance integration algorithms have
fewer operations if all transition matrix elements are numerically
integrated in the ($) algorithms., In this situation, the diract inta-
gration methods have fewer equations to numerically integrate, fewer
operations in each funetion evaluation, and are not forced to retriangu-
larize at the end of the update,

However, it is often the case that the solution to gome of the elements
of the transition matrix can be obtained analytically. In such a case,
the number of terms to be numerically integrated can be reduced. A
similar reduction in integration vector size has not proven feasible for
the algorithm based on direct integration of the covariance matrix.
Therefore, a full n(n+l)/2 set of covariance elements must be integrated
numerically.

Sk

The actual numerical operation counts for each time update algorithm ara C
shown in Table 4, These values reflect the following set of assumptions:

(1) The state vector size, n, is ll; the measurement noise co~
variance vector, m, has the dimension of 8. The eleven
state filter is the maximum filter size used in these studies.
For the ll-state filter, a two parameter model is used to
estimate the drag coefficient ([14].

(2) Use of all possible analytical function matrix updates
(elements updated analytically are those derived from the
clock parameter differential equations).

(3) The modified Euler integrator with two function evaluations
per step is used.

(4) An integration step size of six seconds is adopted.

The results can be combined into an equivalent addition count by
weighting the multiplications, divisions and square roots by their rela-
tive execution times. The simulations have been performed on a CDC6600
computer system which has the following operation times weights:

Add 1
Mult 2.5 <@
Div 7.25

Sq.Root 62.5

The use of these weights with the counts of Table 4 gives the operation
counts in Table 5 expressed in equivalent numbers of additions. Total
value of equivalent additions in Table 5 indicates the relative effici-
ency of the algorithms in performing covariance time updates under the
assumptions described above. It can be observed from Table 5 that the
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square root algorithm based on the P=UDU’ transformation in combination
with the ¢ propagation compares quite favorably with the conventional
extended Kalman-Bucy filter, Note that if the symmetric properties of

Eq. (15) are used, the P operation count is substantially less than either
of the other algorithms. Detailed investigations have indicated that
there are numerical problems associated with integrating the nx(n+l)/2
differential equations obtained by invoking the symmetry requirements on
?. This fact illustrates the point that the numerical stability is as
important as numerical efficiency in anv autonomous satellite application.

Numerical Comparison. In addition to the operation counts described in
the previous section, specific numerical simulations were performed on
the algorithms to determine their actual relative performance in per-
forming navigation computations, Tables & through 9 contain the results
obtained in these simulations. The numerical results were obtained using
the following conditions for numerical integration of the appropriate
differential equations.

(1) Vvariable step (2)4 Runge-Kutta with the absolute single-step

error Eolerance of 107¢, and a relative single-step tolerance
of 1077,

(2) Fixed step fourth order Runge-Xutta with a six-seccend step
size,

(3) Fixed step, second-~order Euler integrator with a three-second
step size, and

(4) TFixed step, second-order Kuler intesrator with a step size of
six secounds.

The four different integrators were used Lo shew how the relative per-
formance changes as a function of the order and method of integration,

the integration step sice, and the method by which the integration step
is selected.

The data are presented in each of the tables in the following mauner. The
columns are, from left to right:

The algorithm used for covariance matrix propagation,

The total measurement update time,

The total propagation time,

The propagation time normalized by the lowest propagation
time,

The total computation time for time and measurement updates,
The RSS of the position magnitude error,

. The RSS of the velocity magnitude error.

R R OVRN S B 2

~N O n

The times are given in seconds; the position errors are expressed in meters,

and velocity errors are given in meters per secend. The algorithms are
listed in ovrder of increasing total computation times.
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The results indicate that the algorithm performance has a strong de-
pendence on the characteristics of the numerical integration algorithm.
In general, the ($) algorithms have lower propagation times than their
directly integrated counterparts. The significant deviation from this
rule is shown in the results of Table 9, where the direct integration
methods shows computation time advantages.

The other variations in performance of the algorithms are quite unexpected,.
Although the computation times of all algorithms decrease as the order of
integration is lowered and the step size is increased, the estimation ac~-
curaciaes of the algorithms incraasge w1th thege same changes in integration
characteristics, In one case, the (UD) algorichm fails to complete a
simulation with the fourth order Iintegrator and a 'six-second integration
step but runs successfully and competitively with the second-order inte-
grator at the same step size,

To rule out the possibility of computer roundoff error as a cause of this
anomaly, tests were conducted on the Euler integrator. With step sizes

as low as 0.5 sec., the Euler algorithm approached the results of a well
validated high order multistep integration code [16]. These results ruled
out the liklihood of roundoff error or coding error as the cause for the
anomalous characteristics in the estimation accuracy. The effect is
believed to be caused by a complex interaction between the stability
characteristics of the estimator and the integrator.

The relative performance of the algorithms in Table 9 leads to a second
unexpected trend in the numerical results. The predicted vrelative per-
formance based on the operation counts in Table 5 does no’. agrece with the

actual results obtained in Table 9.

Specifically, the i.crerical perfor-

mance of the UD algorithm is better than
dicted by the operation counts while the
this discrepancy is thought to be coding
operation count or the possible parallel

the relative pe-“ormance {rea-

W is not as good. The cause for
overhead not accounted for in the
multiplication capability of the

CDC6600, This question requires further investigation.

6. Conclusions

Based on the results given in the previous section, saveral general con-
clusions can be drawn. First, the estimation algorithm performance has
a strong dependence on the order and methad used for integrating the
differential equations involved in propagaving the state estimate and
the state estimate covariance matrix between observation epochs. This
dependence has not been fully understood and requires further considera-
tion. Based on the results presented here, the square root method based
on the UD transformation in combination with the state transition matrix
propagation approach appears to be the best overall square root method.
However, for the Euler integrator using a six-second integration step,
the best overall results were obtained with the UD algorithm., Finally,
the single-step Euler numerical integration algorithm yields a more ac-—
curate and stable estimate than the fourth order Runge-Kutta algorithms,

In relating the results presented in this paper to the microprocessor
environment, several factors should be remembered. Of greatest importance
is the fact that the timing comparisons have been obtained under conditions
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which are different than those existing for on-board computar imple-
mentations. Table 3 and 4 are of most significance for the on~board i
application in which a high~level language, such as FORTRAN, will proba-
bly not be used. The overhead associated with FORTRAN is the most 4
probable cause of the discrepancies between the performance comparisons :
in cterms of operation count versus execution times. The on-board imple~
mentation will be in assembly language and should approach the operation
count performance given in Tables 3 and 4, although other factors must
be considered also.
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Table 1.

Operation Counts for (d) Algorithms
Broken Down by Frequency.

Algorithm Adds Mults Divs Sq.Rts.
EKF(&) per update 2n’+ 2m 20 +m+l - -
per step¥* 3n? 2n* - -
per fcn.eval., n? n? - -
wpu($) per update 1.5n%+.5n24n | 1.50+2n2+.5n -1 _
+5uwin’m Ak (n? +n) o+l
per step 3n? 2n® - -
per fcn.eval. n’ n’ - -
CARL($) per update 1.5n*nin’m | Losatmi-usn | ) -
+m +n’mrm
per step 3n? 2n® - -
per fcn.eval, n’ o’ - -
POTT(@) per update 2n3+n’mtm 2n’+.5n%=.5n n=1+4m _
+n% m+m
per step 3n® 2n® - -
per fen.eval., | n® n’ - -

*per step calculations assume second-order Euler integrator with
two function evaluations.

Table 2. Operation Counts for (P) Algorithms
Broken Down by Frequency.
Algorithm Adds Mults Divs Sq.Rts.
P per step 3(n%4+n)/2 (n%+n) - -
per fcn. eval, n*+n?+m? a3 - -
UD per step 3(n%+n)/2 n’4n - -
per fcn. eval. n +4n +2n-3 n +3n +n-3 no+n
bl
W per step 3(n24n)/2 n’+n - -
v
per fcn. eval. nd+n? a°=.5n%+,5n .5(n2+n) -
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mkr(4) 4a’+30 +2m hu’+2ntartl - -
b ($) 3.50%+3.50%n | 3.3n%#4n*+.5a el oo
+Smrin®n m(n4n)41
cARLSON ($) 3.5n° #nt4nlmim | 3.50%+30%-. 50 wetim | ;j
+nmim ;
POTTER($) in+inimimim | 4n'+2.50%-.5n pettm | nim !
| +n ot k
P 20’ +5n%+3n-tm? 2nd+2n?+2n - - f
UD - 20%49.50745.50-6 | 25747024306 2(n+n)
if o’ +3.50° 41,50 | 2n%+2p Len2eny | |
]
Table 4. Numerical Operation Counts,
- GPS Problem.
Algorithm Additions Meltiplications Divisions Sq.R.odt:s
EKF (&) 3434 3455 12 -
UDU ($) 3880 4035 22 -
CARLSON ($) 3837 3824 30 19
POTTE" ($) 4642 4429 30 19
P 3230 2792 - -
UD 3866 3536 264 -
W 3102 2684 66 -




Table 5. Numerical Operation Counts (GPS Problem). Equivalent
Additions (CDC6600) for Modified Euler, Step Size=6,
Wghed,

Algorithm Additions | Wghtd.,Mults. | Wghtd.Divs.| Sq.Rts. b

EKF ($) 3434, 8637.5 87. - 12156.5
upu ($) 3880. 10085.0 159.5 - 14124.5
CARLSON($) 3837. 9560.0 217.5 1187.5 14802.0
POTTER () 4442, 11072.5 217.5 1187.5 16919.5
P 3230. 6980.0 - - 10210.0
) 3866. 8840. 264 - 14620.0
W 3102. 6710. 478.5 - 10290.5
Table 6. Numerical Algorithm Comparison. Variable Steg (2)4 Runge-

Kutta. Error Tolerance: REL=10"2, ABS = 10~
Meas. Time Norm Total Accuracy

Algorithm Update Update Time Update RSS Pos. | RSS Vel.
EKF ($) 8.172 67.377 | 1.000 75.549 163.4 452

EKF (P) 8.255 83.325 | 1.237 91.580 163.3 452

uDu ($) 8.110 86.241 | 1.280 94,351 163.2 452
CARL () 18.459 87.820 | 1.303 | 106.279 163.2 452
POTT ($) 9.981 97.158 | 1.442 | 107.139 | 163.4 452
CARL (W) 20.198 98.321 | 1.459 | 118.519 163.4 452

UDU (UD) 7.729 119.456 | 1.773 | 127.185 163.3 452
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Table 7. Numevical Algorithm Comparison.
Pourth Order Runge-Rutta, Step Sizs = § gzec,

T Veas. | Time | Worm | Total | Accuracy.

Algorithm Update | Update Time | Update | RS j

2k ($) 7.909 | 65,340 | 1.000 | 73.249 | 163.4 | .452 §
¥ (3) 9.144 | 77,024 | 1,079 | 86,168 | 163.3 452 :
upu ($) 8.015 | 84.362 | 1.291 | 92,377 | 163.2 | 452

CARL($) | 19,361 | 84,784 | 1.298 | 104.145 | 163.2 .452

POTT($) 9,379 | 95.122 | 1.456 | 104.50L | 163.2 452

CARL (W) 19.045 | 96.933 | 1.484 | 115.978 | 163.4 .452 A
upy (D) - - - - - -

Table 8, Numerical Algorithm Comparisonm.
Modifiad Euler, Step Siza = 3 gec.

Meas. Time | Norm | Total | _ _Aécurgg%r_rv‘
Algorithm Update | Updste Time | Update | RSS Pos. | RSS Val,
EKF () 7.981 64,688 | 1.000 | 72.079| 148.5 sl
EKF () 8.341 75.224 | 1,163 | 83.567 | 146.8 441
unu ($) 7.867 32.872 | 1.281 | 90.739| 146.8 41
CARL () 19.110 83.625 | 1.293 | 102.735| 146.8 ab)
POTT($) 9.893 93.319 | 1.443 | 103.212 | 146.8 41
UDU (D) 5.972 102.631 ] 1.590 | 109.803 | 146.0 440
CARL (W) 18.818 95,112 | 1.470 | 113.930| 146.5 441 $
Table 9. Nume:.cal Algorithm Comparison.
Modified Euler, Step Size = 6 sec.
Meas. Time Norm Total Accuracy
Algorithm Update Update Time Update R8S Pos. | RSS Vel.
EKF (P) 7.246 38.609 | 1.000 | 45.555 113.1 431
; EXF () 8.057 42,792 | 1.108 | 50.849 120.3 L4632
! UDU (UB) 8.045 | 51.131 | 1.324 | 59.176 | 111.4 433 |
‘ CARL (W) 19.402 42,886 | 1.111 | 62.288 126.3 .438 |
; unu ($) 8.216 61.296 | 1.588 | 69.508 117.6 432
: CARL ($) 19,122 62.404 | 1.616 | 81.526 117.6 L6432
POTT (%) 10.186 71.897 | 1.862 | 82.083 117.6 (632

18




i IR Gt St g pilaes o Sishat i

1% ]

—
-

Visible Satellites
o ~

Sec * 1J-3

Figure 1. GPS Satellite Visibility vs. Tinme

320.00

24000

Meters

160-00
e

00 60.09
3
i\j

, X

oF SN PAGE

. L4 T 4 T T
.00 20.00 40.00 60.00 30.00

Secs «10?

Figure 2. RSS Position Error vs. Time

1D0.00

19

km&umm&zﬁ:}a“ o

BT L T TN TRy




TS e AR TIET

Meters/Second

4

Sec x10

©
.00 20.00

Figure 3.

0-08

080

.00 20.00

Q

10.00 §0.00 80.90 100.90
)
Soc w10

RSS Velocity Error vs. Time

-0.08

-16

-0.24

-0.32

Figure 4,

System Time Brror vs, Time

20

s K

o am e ah ey e M e e Gl % e e

fa il . L L

pia e e el eadEi 2 deg el i

L noemt e tliagh lolii s 4 s i



APPENDIX C

S e

T L



ol i

78-1428

A Triangular Covariance Factorization for >
Sequential Filtering Algorithms

B. D. Tapley and J. G. Peters, University of ,,
Texas, Austin, Texas :
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Dertvation c,g the Square-Root Propagation
Equationa in Trisngular Form

The differentisl agquation for propsgating the
state ervor covariance matyiy can be enprossed as

BeabsBalag, (1)
where

P ® state eryor covariance matrix

& E iinsnrizad dynamics mgtrix -

Q £ atate m&sg covariance metris.

the follewing &nfiaitima are uaadx

pegm’ ; gGeoz @
end, if tﬂm first part of (2) is éifl’ormuaté&

with respect te time and substituted imte (1), the -

rosults can be rearranged te form
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iowing obeervations can be nads rngamtm 831
There ave n(n—l)lz unknown slements in C. The pro-

ducts D and OB are lower trianguler erssting _
a{n+l)/2 unknowme. Therefore, the o ¥ n gysten of
equations (8} have [n{n-1)/2 + n{a+l)}f2] = n x n
upknowns which can be determined uniquely.

An expansion of (8) into matrix clewents
indicates the method of solution. (In this expan-
sion § is_assumed to be a diagonal matris wim
elements q“ - q“/z L3 IR W
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the ﬁT‘lncrix. After an uppe. trinngulnr_rnw of
C is computed, the condition toat Lij cj£
{(1-3,,004m § J=1,..,,1=1) 1« invoked to evaluate
the corresponding lower trisngular columm of C.
Then a column of the lower triangular elements of
¥ con be evaluated, Once the M matrix elements
are determined, the next row of the upper triangu-

lnr c nlamants ig computed as 1s a column of
il and B elemants. This process is repeated until

all § and B values are determined. The U and B
elements ara deterwined in the following manner,
From (6) and (7) define

=
"
norzr
=18

M+ T= Uﬁ + (10)

The expansion of N in summation notation ypives

n . n 0,4
v, =) 0,3, 4+ ) ik
Mg ¥ Ty k§1 1k%; kzi )
i=),ovyn  J%1,.0..0,14 (D

But, since D iu disgonzl, (11) becomes

0 g AL
Mij + Tij U“djj + 5

i=l,...,n 5 4=1,...,1 (L2)

(=4 8]
"

: - z v, 1. crefore 2
t:zoiei, 1 0 and Lij 1 Therefore, (1

d,, =2, + T, ) -1,

i 1 {1 NP ¢ [QR A

For £ = §, (12) {s rearranpged to obtaln the
differentlal equation

g,.d
S 5 I B B
1 + Tij > )/djj

i=1,...,n 5 J=1,...,1-1 (14)

UU = (M

Equations (13) and (14) are the forms of the
differential equations to be employed in the
derivative routine of a numerical integrator. The
clements 1ij and Mij are computed as outlined

previously, and formalized in the following
algorithm,

Triangular Square~Root Propagation Algerithm

Given the elements of the gquare-root atate
rror covariance in lower triangular UD form,

(A}
Q £ Q/2, and A(t), the differential equations
G

13 and 311 can be computed as follows:

ORIGINAL PAGE IS
OF POOR QUALITY
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I ;‘ A\ “3“ 1=} -ty n
G
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i=1,...,0 3 j=i¥l,.,.,n

i-1
) M ota - kf‘ Hu‘vik i=l,...,n
o
() Hij : 'Cix - kfl Hiktjk
f=l,....n 5 §=1,...,4-1
(5) doclen e ) i=1,...,n

: “ifu
(6) Uil (Hii * l‘i Ty ),djl

f=l,,,,,n  §*l,...,1=1

Preitminary Numerical Results

e two methods for time propagation of the
squate-reot covariance matrix {n th: UDU algorithm
were ovaluinted to determine the relative computa-
tienal speed ard inregration accura'y. The test
problem ctosen was g planar Keplerfan orhic at an

altitude ot ROU km ahave the earth,  This problem
was choser tor che ot lowirg reasons:

Lo The poot o' o wimntde ey allows for giick fmple-
mentation and corputatieon tisme,

J000he eviatence ot on analvtical solution pives a

standard teor measarine the aceyracy of the
mirerioal fnteeration,

30 The ort it chewen approzimates those of proposed
operat fonal satellites (such as LANDSAT-1) which

will use -guare-root algorithms in onboard navigation
computers,

The tw mothods were evaluated by integrating the
state and square-root covari{ance matrix equations
for one revolution,® Tosition-velocity components,
state covarfance, and {ntepration times were
tabulated at the end of the revolution as well as
at 174, 172, and 3/4 points in the orbit., The
fntepratfon was performed with a Runge-Kutta algo-
rithm of fourth order (RK2(4)). The time compari-
sons woere made with variable atepqlze intugration
at_relative error tolevaaces of 1077, 1077, and
1077 Comparfoens were also made for threv

fixed stop sizes,

The standard “or measuring the accuracy of
the numerical {ntesration of the covariance matrix
was penerated by integrating the state and square-
reot covarfanoe equationa at a tight tolerance
with a high-order multi-step integrator. Covariance
accuracy was measared as the relative error {n the
magnitude of the diagonal pos{tion and velocity
covariance elements, The error was measured
relative to the standard solution described at the
bqginnips of the paragraph.

Numerical comparisons were performed on a CDC 6600/
ALO0 computer using single precision aritumeric,
Integration t.mes and accuracies will vary with
differert mochines,

i
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In the actual operatien

ol thie time propagaiion

algerithm with measurement update., the treguency

ol mfoasurerants bas an ol tect
tine toquinrad tor propayatioe,
tented Sere, thia s true o

a hiph noasureeent rate ray

stepsize that the {ntegrator may ta
alyy whenever the apdate alporithe vy
triuangularization at the time

daowe

e o utation
Por U o]t the
| S T FRPIN Pae ot

the i lowan i
rew AL on-

TR STSERN I )

G teasurerent

a hipgh measurement rate reguttos that this pre-
coedure be perforned more often, fnoteasiig, the

computation time, For reasons

measureent rate et fect was

of simplicitey, the

sivwlated by the tore

fnterval value specified for vach calit to the
numerf{cal integrator.  The sinulatiens were run

with diffevent Integration intervads o o

Odate

the eftects of difterent measurement rate.,

The Inftial condfticns
Mlalionn weled

State:

Ay v Ooom IR Myt
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171 . 373
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where TRUTCE ) T P ),
(R} [
o baeinad o state covarfane e
N = 0.
RN , 0
’ i .
a Low Yy s
¢ N . |[_‘. . = . 1)
i oo
Pab o Do throngs e wh w
ety dn o rhe ot [
Satiance tor the lwe tine o

Gruantitics are tabulated as !

ronumerical int-

Iy
.

NN

BN

T N
T ts ‘
M ‘ . .l‘
Vot : e

e e Ll

' Lo
tien tolerance and simulated otate,
Ghe transitfon=matrix propapation merthic Dois les i,

.
nated (5), and the sguare-roo Vot Lo St
.
pration method is denoted by (UL AL
fatoperation tines are tabelated oomiili
Piscuns poFs ol

Fased on the tabulated data shiowsn 0 Lad den

1 through 4, the (9) time update algorit

. o
superier to the (U,D) method i

vonputation el f -
.

clency for this particular test problem,  Speciti-

cally, the following trends
corformance have been deduced

. . Fer all measurement
(v) alporithm operates faster

velative Sleorithe

fron the results:

ates tested, the
‘or a given integra-

tion tolerance., The difference jn computatfon
speed increases nonlinearly as integration

tolerance becomes tighter,
2

measurement rates tested, the

2. For the fixed step sives ant tor the

(o) adporizln Cfrers

faster intepration time and bipher weour g baokh

OR’G,NAL PAG
'GE
OF Poogr Capps ,T'._S

.
derivative reutfne call fs cheaper for the (7)) code

Carpronisar Iy LT Coveraen Yo ).

.

e T alecrlthe plve a hiher ot
st o avourny ot tiyht tolerances, but with a
et e naley b tntevratfon tine, The ot

.
Accurate ~olution resales with the (U, equation
Lol anteyrated gt tngle step relat{ve error
o leramoe o T

e St erent rates inerease, the Ji0
terence fo redative sertormance of the twooupdate
cethods Peeores =il ere The nalor remaining
dittoerenoe s o dntewtation time occur ot tiesht
tolerances, and ditterenoes in accuracy occur at

Toose tolerances, ol {n fixed-step cases,

i oor difterence in the performance
tothe two alger{thuns was amexpected,  The cause
of the Jif e ence is, evidentiv, the significantls

.
Wl ler sty tre reprired in o the (U,D) {ntesra-
tion a steo-sice soovmall that the method's

advantaye of jategratiog fewer equatfons 131 ¢,

This Indisates that the (l.',!zl) update would be more
competitive fnoa problen where an external factor,
such as hich  data rate,  constrains the integra=«
tion step swire, Nach o constraint would not atlow

the (o) methad 20 use Its abllity to take larger
fntegrazion <teps at o vdven telerance, and could
Torve it te take crteps of the order of magnitude

.
o these tacd B the (7D) code, Also of note s

that the hocber i measnremopt rate, the more

often the Y ateerithn {8 forced to perform matrix
st loponaa foatong, which Increase computation

tire.  The namerical resaits o the tables (ndicate
that the lareo disparity Ln comparative performanee

decreanes na the e ement rate fncrcases, It
ey thees pe s thar e drection of search for
\
%' Pl atd o sttt ey b d wostd e e
i oot ward Lvstems with reqsurerent o rates
. fererration grep siee,
cror o e, e can e treedly chooen by

.
TSP SR PAL U oot Y rmothod is the more
etriciont,

ALt calt o inr cratica steps appear to he
e omader e toprest ot ctticient operation of the
..
CULNY methed dn thiis e Ten three other factors

.
et Inteyration speedoand stouald be natdered

Pootarttor v nararsive et ficieney studie,

oA yer vived alvantage of the (LD uplate
i its pe cent tor nuaervically Integrat iog

I

vl eonatican: only, as opposed to the oo« n

cquat fons tegrated fa the (3) algorithm, For
the test probles where o4, the numbers of ejua-
tions to be dnteerated are 10 and 16, reenect ively,

Derivat{ve sutine calis stf{ll require less ompu-
tation time tor the (4) pethod.  Perhaps a lorge:

state vector woild he necessary for the (l:',f".) to
show a time saviaes due to {ts smaller integration
vectoer sfize, This result will be highly problem-
dependent, but tests with larger state vectors
would be enlishitenine,

.
D, The (4 alaorithn presented here approxi-
miates the proceas nofse with an analytic trapezofd

rule Iatecyatice, This approximation removes an

. . .
s ctase troe the (VY alportithem, The (U,D)
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mathod accounts {or process ncime exactly. In the
simulations, the process noise spproximation had

no discernable affect on covarisnce accuracy. Pre-
diction {ntervals were small., Intultively, the
process noiss approximation will become loss aceu~
rate as the measuremsnt vate dacrsases, or if

there 1a » long prediction interval with no msasurs-
pents, The degree of accuracy degradation that would
oceur in an actual filesvring problem with long
prediction intervals has not besn addressed hers,
but worits study. If the approximation were not

to give the desired accuracy, an n * n quadrature

would have to be added to the ($) algoritim, ‘The

-

Tabls 1
Integration Times & Covariance Error
25-8econd Data Rate

TOLERANCE

Rev 10710 10°F 1077 Fixed
1/4 U,D 58858 6240 953 -
¢ 9548 1246 751 -
1/2 U,0 73211 7698 1726 -
$ 19063 2668 1496 -
3/4 U,D 106970 11535 2495 -
¢ 28590 3671 2229 -
1 0,D 147757 15503 3260 -
$ 38078 4895 2942 -
COVARIANCE ERROR (1 REVOLUTION)
Pos g 5 0 9.74x107% 5.14x107% -
vel 2.32x1071Y 9.27x107%  5,34x10 -
Pos & 1.62x10_° 1.61x10_° 1.51*10:: -
Vel 1.46%107% 1.46%10°% 1.36%10 -
Table 2

Integration Times & Covariance Error
10-Second Data Rate

TOLERANCE

Rev 10710 107¢ 1072 Fixed
1/4 G,D 59640 6831 2075 -
$ 10232 1817 1820 1709
1/2 U,D 74635 8723 3980 -
$ 20515 3594 3462 3441
3/4 U,D 109016 12917 5904 -
é 30854 5370 5391 5130
1 0,D 148035 17488 7816 -
$ 41090 7146 7170 6778
COVARIANCE ERROR (1 REVOLUTION)
Pos 5 5 O 8.49»10_° 2.99v107° -
Vel °° 0 8.34x107% 2.99x107% -
Pos 3 2.57x10 7 2.55x10°7 2,55x1077 2.55x10"7
Vel 2,34x1077  2,32%1077  2,32x1077  2,32x1077

ars<ocitted fncrease (n computational buyrden might

improve the competitiveness of tha (U,D) updats,

3., PFor orbsr problems with higher order
forcing funerione thaa that tested, the accaptable
stopsise will bocome smaller as the forcing funetion
becomes loss swosth. Tha psrcentage raduction in
stop sige to accomodate the wore irregular forcimg
function mey nat be the sews for the two algorithms,
changing thetir relative efficiencies. This probles.
iz coupled with that of the offect of measursment
gate on step size, The combination of the two
factora determines allowable step sixze and, there-
fore, integration spesd.

Table 3
Integration Time & Covariance Error
$-Second Data Rate

TOLERANCE

Rev 1071¢ 107 107? Pixad
1/4 ,b 61281 7923 3812 3688
boonasr 3619 3599 3410
172 0.0 76846 11728 1576 7409
Poo22512 7251 7203 6860
3/4 0,D 112596 16886 11404 11103
34125 10871 10836 10327
1 0.9 153250 22182 15224 14810
b 45457 14487 14428 13668
COVARYANCE ERROR (1 REVOLUTION)
Cos eho 0 7250 2.73v10 4.29*10:;
el 2,324107%" 7,647107% 2,73x107%  4.29x10

Pos 1 6,25:10 % 6.25¥107% 6.25x10 " 6.25x10_°
vel * 5,797107" 5,79¢107% s5.70x107% 5,79x10°°

Table 4
Integration Times & Covariance Error
2-Second Data Rate

TOLERANCE

Rev 17t 1078 1072 Fixad
174 0,5 63370 12638 9534 9238
d 15439 8857 8916 8403
1/2 0.0 82088 22013 19025 18553
& 30918 17701 17872 17083
3/6 11,0 119973 31768 28456 27711
b 46532 26648 26883 25633
10,0 163553 41182 37966 36741
b 62087 35562 35876 364187
COVARTANCE ERROR (1 REVOLUTION)
Pos o s O 5.25¢107% 3.75.107" 1.87.107°
Vel ~'" 2.32»107 %1 5.79x10 % 3.74~10"* 1.87x10 3

.00<10™" 1.00x10°% 1.00x10"* 1,00x10 8

Pos 1 ~ _ _ _
9,27+10° " 9,27x10°° 9.27x10° % 9,27x10°

Vel

“re

o sl




Lonclustona

Baged on th2 numerical results obtained for

the example problem conridered in the investigation,
it is concluded chat:

— the (‘) algorithm is the more efficient in
terms of tha integration time required to
achfieve a specified computation accuracy

~— the (ﬁ,ﬁ) method can achieve the highest
computation accuracy but with a heavy penalty
in integration time

— the (ﬁ,ﬁ) algorithm has an advantage in terms
of core storage, as it requires an integration
vector of n(n+l)/2 elements, as opposed to the

L3
n X n elements required .n the (¥) method

= the disparfty in etficicency between the two
rmethods becomes less as the simulated measure-
rment rate is increasced,

The performance of the (ﬁ.b) propagation algorithm
tor this test problem was nudt what had been desired,
Yet, results {ndicate there are at least two s{tu-

ationg where the (ﬁ,ﬁ) method may ofter fmproved
etficiencies. These are in svstems with measure-
ment tates high enough to constrain Integration
stepsize, and during larpe prediction intervals
without measurcements, where analvtic approximation
of the process noise may not be adequate.
the arcas where future research will

These are
continue,
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