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SUMMARY

A new algorithm, which will transfer an aircraft from a given initial
position and heading to some final position and heading, has been developed
for the on-board synthesis of horizontal flightpaths. These so-called capture
trajectories have the basic form of a turn along a circular arc followed by a
segment of straight flight and a subsequent circular turn., The two circular
arcs may have different radii. The algorithm finds all such solutions possi-
ble, of which at least two and at most four exist, and selects the one with
the minimum path lcagth. Degenerate conditions in which one or more of the
basic segments is missing are handled without difficulty. The solution to
this problem i1s derived, and a Fortran listing of the algorithm is provided.

INTRODUCTION

Ames Research Center has been conducting studies involving use of on-
board synthesis of flightpaths for area-navigation-equipped aircraft operating
in the terminal area. The first step in the synthesis of a complete trajectory
is the generation of the ground track. A useful criterion for generating the
paths is to minimize the ground-track distance. The minimum-distance ground
track, if flown at constant ground speed, has been shown by Erzberger and Lee
(ref. 1) to consist of a series of straight lines and circular arcs.
Pecsvaradi (ref. 2) developed slgorithms for the on-board synthesis of hori-
zontal flightpaths in that form. The flightpaths (e.g., as shown in fig. 1)
consist of a fixed portion established by predetermined waypoints and a
capture trajectory that will transfer the aircraft from some arbitrary initial
position and heading to the desired final position and heading defined by the
capture waypoint. The basic form of the capture path is a turn followed by a
segment of straight flight and subsequently a final turn.

Flight-test experience has shown that the horizontal capture paths
derived from the minimum distance criterion provide efficient and operation-
ally acceptable terminal area trajectories for a varlety of applications
(refs. 3 and 4). The capture feature has been the subject of many favorable
comments by pilots; however, it has been found that when the aircraft and
capture waypoints are separated by less than four turning radii, the algorithm
of reference 2, used in earlier experiments, often failed to find a capture
path even though it is known (ref, 1) that at least two such paths always
exist.

The new capture algorithm developed here always yields the minimum-
distance horizontal path of the basic turn-straight-turn form, including




degenerate cases in which one or more segments of the basic capture path are
missing. The set of possible solutions for the minimum-distance capture path
(ref. 2) is not restricted to the basic turn-straight-turn pattern but may
also include a sequence of three circular arcs. The latter option applies to
a fairly restricted region in which the initial and final points are close to
each other; it is eliminated from the algorithm in the interest of simplicity
(as was done in ref. 2). The following section describes the algorithm and
presents the derivations of the equations used in it. The additional equa-
tions needed for implementation of the three-turn case are derived in appendix
A, and a Fortran listing of the algorithm is given in appendix B.

ANALYSIS

Figure 2 is used to explain the problem and to define the variables. The
turns are arcs of the circles shown in the figure and the straight portion of
the trajectory must be a line tangent to both circles. Since the initial and
final turns may be either clockwise or counterclockwise there are four possible
combinations of turning directions, two with the initial and final turns in
the same direction and two with the turns in opposite directions. Figure 3
illustrates one solution of each type. If a given pair of circles is entirely
separate—that is, if no part of one circle lies within the other —it is
possible to draw four tangent lines between the pair, but for only one of the
four will the vector D along the tangent line from the initial to the final
circle coincide with the direction of rotation at both tangent points, as
shown in the figure. Thus, there are at most four real solutions of the turn-
straight-turn form. The conditions for a real solution are derived next with
the aid of figure 2.

For convenience, the vector § from the center of the initial turn to the
center of the final turn is horizontal in the figure; however, the coordinate
system is arbitrary. Furthermore, the location of the centers of the circles
relative to an earth-fixed coordinate system—and hence the direction and
magnitude of Q —depends on the direction of the turns. The constants and
variables have been chosen so that the following discourse applies to all
possible combinations of turning direction.

Figure 2(a) is for the case where both turns are in the same direction
and the tangent vector D does not cross Q; in figure 2(b) the turns are in
opposite directions and T crosses Q. Initially the aircraft is at (X;,Y;)
in some inertial Cartesian coordinate system with heading H;, defined as
positive clockwise from the X-axis, and ¥V; is a unit vector in the direction
of the velocity. The vector distance from (X;,Y;) to the center of the turn
is given by u; R}, where R;] 1is the radius of turn and u; 1is a unit vector
normal to V)} and positive to the right of V;. Therefore, the vector from
(X;,Y;) to the center (XC;,YC;) is Rju; for a right turn and -R;u; for a
left turn. The directions of turn are accounted for by writing the radius
vector as R;Sju; where S; = + 1.0 for right turns and S) = - 1.0 for
left turns. Similarly the direction of the final turn is denoted by Sj;.
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The aircraft moves along the circle from (X;,Y]) to the tangent point
(X2,Y2), which has a radius vector R;S)u;. Vector D is the tangent vector
from (X2,Y2) at the end of the initial turn to (X3,Y3) at the beginning of the
final turn. The radius vector at (X3,Y3) 1s RySpu:, but since U and U3
must be normal to D, Up = U3. Likewise, the headings, Hz and H3, at the two
tangent points are equal. The final turn ends at (Xy,Yy) with heading H,
and radius vector R;Szuy. :

Using this notation we can write

b+ RauzS; = Rjuz$, + Q@

or
G = ﬁ.+ Ez (RzSz - RISI) (1)

and therefore, since D and U, are perpendicular,

D= [@2 - (Ry5; - Rysp?]HY? 2)

where by definition

Q= [(xcz - XC;)2 + (YC; - Ycl)z]llz (3)

It can be seen from equation (2) that no real solution exists if

Q < lRZSZ - R;S;|. When the turns are in opposite directions §; = -5, and
there is no real solution for Q < (R; + Rz), that is, if the circles inter-
sect. On the other hand, for rotations in the same direction §; = Sj, and a
real solution exists unless Q < |R2 - Rll, that is, unless one circle lies
entirely within the other.

If a real solution exists, then from the definition of the radius vectors

-R;S; sin Hy
Rjm S, = (4)
R1S; cos Hy
and
XC; =Xy
Riju;S; = (5)
YC, -Y)

Equating equations (4) and (5) gives

XC; = X; - R18; sin H,
* (6)

YC; = Y; + R;S; cos H)




Similarly

XCz = Xy ~ R282 sin H,

YC, = Y, + R282 cos Hy

(7

The radius vectors at the tangent points can be used in the same manner

to compute the components of X; and X3
X, = XC; + R3S) 8in Hp

Y, = YC; - R15; cos H,

>
w
[}

XCy + R3S sin Hz
Y3 = YC; - RS2 cos Hp
Subtracting (8a) from (9a) and (8b) from (9b) gives the components of D:
X3 - X2 = XCz -~ XC; + (R2S2 - R)S;) sin Hy
Y3 - Y = YC; - YC; - (R2S2 - R1S;) cos Hp z
Another expression for the components of D is:
X3 - X2 = D cos Hp
Y3 - Y, = D sin azz
Equating (10) and (11) gives
D cos Hp = (XC2 - XC;) + (R2S2 - R1S)) sin Hp
D sin Hy = (YC; - YC;) - (R2S2 - R1S)) cos Hy ;

Equations (12) can be solved for

(YC2 - YC1)D - (RS2 - R3S;) (XCy - XC))
sin “2 - Qr

(XC2 - XC1)D + (R2S2 - R18)) (YC2 - YCy)

Hy =

cos 2 Qz

(YC, - YC3)D - (R2S2 - R)8;) (XCz - XC))
tan Hp =

(XC, - XC1)D + (RzS2 - R15;) (YCy - YC;)

(8a)
(8b)
(9a)

(9b)

(10)

(11)

(12)

(13

(14)

(15)

Note that the quantities (XC; ~ YC;)/Q and (YC; - YC,;)/Q are the sine and

cosine, respectively, of the heading angle of Qf
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Equations (6)-(9) and (13)-(15) completely specify a capture trajectory
for one combination of §S; and S;; however, the length of the trajectory is
needed in order to determine which of the feasible trajectories gives the
minimum distance. The first turn angle is

TRy = (Hz - Hy) + 2rC; S,

where
(16)
;O if §; (Hp - H;)) 20
Ci =
14f S; (H; - Hy) <0
The second turn 1is
TRz = (Hy - Hy) + 27C38;
where ' 17)
0 if Sy (H, ~ H) 2 0
Cr =
14f S; (Hy - H2) < O
The lengths TD; of the two arcs are
) = Ry|TR|
(18)
TD; = R2|TRz|

and the length D of the straight segment is given by equation (2), and the
total length of ihe capture path is

DT = D + TD; + TD, (19)

It is possible to construct a "switching diagram" from which the flight-
path yielding the minimum distance solution for any set of initial and final
conditions is determined without finding all possible solutions. However,
the switching diagrams are very complex, and from the computation standpoint
it is simpler to solve for the length of all possible trajectories, as is
done in the Fortran subroutine (appendix B).

APPLICATIONS AND EXAMPLE TRAJECTORIES

The algorithm, which was incorporated into an on-board guidance system
for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), has been tested
in simulations and during flight tests (ref. 4). In this application the
fixed portion of the flightpath referred to in the introduction may include a
number of predetermined waypoints (e.g., as shown in fig. 3). The subroutine
is called sequentially to synthesize the path between successive pairs of way-
points working backward from the final one. The path between waypoints 3 and
4 is synthesized by entering the following input variables
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X) = X(wP3) Xy = X(WPy)
Y; = Y(WP3) Y, = Y(WP,)
Rp = 0 R, = 0
Hy =0 H, = 0

Note that 1f R; = O then points (X;,Y;), (XC;,YC;), and (X2,Y7) are
identical and the value of H; 1is arbitrary; the same is true of (X,,Y,),
(XC2,YC2), and (X3,Y3) and the heading H,. The resulting trajectory moves
from (X;.Y;) to (X4,Y,) with heading

IY“-Yl
Hz = tan™' g—5—
2 X - X

which (if waypoints 3 and 4 are specified properly) is the runway heading.
The path from waypoint 2 to waypoint 3 is synthesized by calling the sub-
routine with the input variables

X; = X(WP,) Xy = X(WP3)
Y, = Y(WP2) Y, = Y(WP3)
H =0 Hy, = H(WP3)
Ry =0 R2 = R; (an input constant)

As in the previous case, (X;,Y;), (XC;,YC;), and (X2,Y2) are identical and
H, is the heading at waypoint 3 computed in the previous step. The heading
of the tangent path and the coordinates of the beginning of the turn are
returned in H; and (X3,Y3), respectively. The synthesis of the fixed path
is carried out in this fashion for successive pairs of waypoints until the
initial waypoint is reached. Then the algorithm is used to synthesize the
capture trajectory to one of the fixed waypoints.

The photographs of the simulator cockpit display in figure 4 illustrate
some close-in capture trajectories which would not have been found with the
previous algorithm. If necessary for compatibility with ATC procedures, the
algorithm could easily be modified to allow the pilot to select any of the
possible capture trajectory patterns instead of the one giving the minimum
path length.

CONCLUDING REMARKS

The solution of the turn-straight-turn capture flightpath problem
developed here involves generating all possible solutions, of which there are
at least two and at most four, and ihen selecting the one with the shortest
path length. Because all possible solutions are obtained, criteria other than
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minimum path length could be used. Por example, a nonminimum path length
solution may be chosen in order to avoid a restricted airspace region. The
closed-form equations determining the solutions are easily solved on currently
available area-navigation computers or on a microprocessor. Other important
flightpath problems in the terminal area can be approached via the capture
solution. These include path stretching, holding patterns, and flight through
a sequence of waypoints, all of which can bc formulated as a sequence of turn-
straight-turn capture problems.




APPENDIX A

DERIVATION OF THE THREE CIRCULAR ARC PATTERNS

It can be shown by geometrical construction that there are at most four
turn-turn-turn type trajectories for the horizontal capture problem, namely,
two each of the right-left-right and left-right-left patterns. However, it
was shown in reference 1 that the middle turn must exceed 7 radians for a
minimum-path-length trajectory. This requirement eliminates one trajectory of
each pattern leaving at most two eligible three-turn trajectories,

The problem is illustrated in figure 5 for the right-left-right pattern.
The vectors in the figure are defined as before, recognizing that in this case
S = S). In order to satisfy the requirement that the middle turn exceed
radians its center must be on the opposite side of Q from the straight seg-
ment of the right-straight-right solution shown for comparison. Furthermore,
no three-arc solution exists for Q > R; + Ry + 2Rj3.

Let Hy be the heading of Q, defined in the text and define a unit
vector Vg with heading angle, Hy; as follows

m
Ho = Hy + 51 3

Then ¥V 1s perpendicular to Q and points in the direction of flight where
Q intersects the circle of the initial turn. From the law of cosines

Q2 + (R; + R3)2 - (Ry + R3)?

E cos A' = 3q (R, + R3) (A1)
Q% + (Rz + R3)2 - (R) + Ry)?

cos B' = 7q (R, + R3) (A2)

f The direction of turn is accounted for by defining
) A= 5)A' (A3)

| and
3 = §;B' (A4)
Using these definitions it can be seen from the figure that
Hg = Hg + A

(AS5)

Hg = Hg - B+ n

From the definition of Hp and the equations derived in the text
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S;(YC; ~ YCy)

8in Ho ~

Q

-S;(XC, - XCp)

cos Ho =

Xs = XC, +
Ys = YC; -

Xg = XCo +

Ye - YCZ
The turn angles are calculated as
TR) = (Hs -

where

0 1if
Cs - ;
1 if

TR, = (Hy -

vhere

0 1if
ce - |

1 1f

TRy = (Hg -

0 if
Cy = {

1 if

where

Q

R1S; sin Hs
R1S) cos Hss
R2S; sin Hg
R2S8; cos Hg %
follows

H1) + 2nCsS)
(Hg - H1)S; 2 0
(Hs - H})S; < 0
Hg) + 2nCg$S)
(Hy - Hg)S 2 0
(Hy - Hg)S < 0
Hg) - 2nC78,
(Hs - Hg)S; 2 0
(Hs - Hg)Sy < 0

The tocal length of the trajectory is therefore

TR = Ry|TR;| + Ry|TRy| + Ry|TR|

-
2

wh L N
o T, :Q‘&trrz

~ 9

(A6)

(A7)

Hg, A, and B,

(A8)

(A9)

(A10)

(A11)

(A12)

(A1)

(AS) can be used with double-angle trigonometric identities to obtain
ons for sin Hg, cos Hg, sin Hg and cos Hg, in terms of
appropriate subscripts in equations (8) and (9) in the text gives
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APPENDIX B

FORTRAN SUBROUTINE FOR CAPTURE ALGORITHM

SUBPNUTINE NEWPSTIX1eY1eH1421 oX&4,Y44R2 yHEIX24Y24H2,
1X3,Y3,TR1,TR2,TC1,Tr2,N)

INPUTS— INITIAL POSITION, HEADING, AND TURN RANTUS X1.Yienlyhl
FINAL POSITION, HFANINA, AND TURN 2ANTUS X4yYayndyn2
IF FINAL HFADING ISNT SPECIFIED SFT P2 T O,
#1 AND H4& MUST BF IN RANGE CF -P] TO P?

THOPI=6,28318531
1 CONTINUE
CrSHe=CNS(H4A)
SINHe=SIN(H&)
COSH1=CAS(H])
SINHL=SIN(HL)

DTMIN TS MINIMUYM PATH LENGTH
DTMIN=1,.E+10
KFM=0
KFS=1

SELFCT PATTERN TYPE
12 CONTINUE

RIGHT-STRAIGHT-RIGHT
S1=1.0
S2=1.0
GO Y0 20

14 CONTINUE

LFFT-STRAIGHT=~R IGHT
Si=~-1.
S2=1,
KFS=2
60 T0 20
16 CONTIMUE

RIGHT-STRAIGHT~LEFT
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Si=},
§$2=-1,
KFSa3

A0 1IN 20

18 CANTTNUF

c LEFT=-STRAIGHT-LEFT
Si==1,
§$?2==1,

N KFSséh

’ . 20 CONTIMUE

s EnNel

FIND CFNTERS NF TUFNS
SIGNP L=S 1R
SIGNR2a528R 2
XClaX1-STGNR] #SIMH]
YC1l=Y1+STIGNR]L*COASK]
XC2=X4-STGNR2*STNHA
YCo2=Y4¢SIGNO2#COSHS

c QSQ 1S SQUARF NF NISTANCF BETWFEN FFNTFRS
XN1=XC2-XC1
YN1sYC2-YCl
CSN=XNI*¢2+YN]1#%2

C NSC 1S SQUARE NF TANGFNT PATH
NSG=STGNRI-SIGNR2
DSQ0=QSC-NSAse2

c IF DSAICO NO SOLUTICN
IF{NSQ.LT.0.) GO 70 36
D=SNRT(DSA)

"y Y

} C M2 1S HFADING OF TANGENT VECTOR
| COSH2={NEXNI-CSG*YNL) /080
SINH2=(DSGEXN]+D*YNL) 7050

b H2=ATAN?({SINH2,CNSH2)
c
| ¢ CAMPUTE LENGTHS NF TUPNS
TR1=H2-H1

IF(RP1.50.0.) TR1=0,
IFL(TR]I*S1).GED.) GN TN 24
TRI=TR1+¢TWNPIeSI]
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24 CIONYINUE
TR2=H4-H2
1F{R?2.,EQ.N.) TR2=0,
IFL{TR2%S2) ., "E.N.Y O TN 30
TR2=TP 2+ TWNPI*S2

30 CANTINUE
TD1=R1*ARS{TR1)
TN2=R2*ABRS(TR?)

C DTOT IS TOTAL LENGTH CF DPATH
DTNT=TNL+TD2+0
IF(KF".FQ.T7) GO TC SO0

C
c FINDS (UP TO ) FOUR SOLUTINNS AND USES SHARTEST
r
c
C COMDARE NTAT WITH PPEVINUS NINTMUM
IF{NTMINGLE.NTOT) S5C TO 36
DIMIN=DTOT
KFEM=KF S

26 CONTINUR
50 T0 (l4416,18,4C)4KFS
493 CONTINUF
KFS=KEW
KFM=T
GN 10D (12,14,1&4500),KFS
500 CANTINUF
C
C COMBUTE POSITINNS OF TANGENT POINTS
X2=XC1+SIGNR1#SINH2
Y?2=YC1-SIANR1*CNSKE?
X3=XC2+SIGNR2%SINE2
*=YC7-SIGNR2*COSH?2
RFETURN
END




EE B S S SERRLE S ToOERTEEEORED R e Em o T
o RS T Ty 4 2 5

REFERENCES

Erzberger, H.; and Lee, H. Q.: Optimum Horizontal Guidance Techniques
for Aircraft. J. Aircraft, vol. 8, no. 2, Feb., 1971, pp. 95-101.

Pecsvaradi, Thomas: Four-Dimensional Guidance Algorithms for Aircraft
in an Air Traffic Control Environment. NASA TN D-7829, 1975.

Lee, Homer Q.; Neuman, Frank; and Hardy, Gordon H.: 4-D Area Navigation
System Description and Flight Test Results. NASA TN D-7874, 1975.

Erzberger, Heinz; and MclLean, John D.: Fuel-Conservative Guidance System
for Powered-Lift Alrcraft. AIAA Guidance and Control Conference,

August 6-8, 1979, Boulder, Colorado, pp. 79-1709. (Also available
as NASA TM-78595.)

13




Vg N
/
/ \ CAPTURE
l’ TRAJECTORIES
\
\
\\
ﬂVVP1 \ {
\ \
\
\
\
FIXED \
ROUTE \ i
\
\ |
\ |
|
\ |
vy / AIRCRAFT
\\ , FLIGHTPATH
AV | /
\i
/
WP, WP, Iy /
u\ /
\ /
EXTENDED
RUNWAY
CENTERLINE
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Figure 2.~ Calculation of capture paths.
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Figure 3.- Synthesis of fixed path through a sequence of waypoints.
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(a) SEQUENCE OF CAPTURES OF WAYPOINT 6 FROM DOWNWIND APPROACH. TURN
RADII 5000 ft, INITIAL SPEED = 140 knots, SPEED AT WAYPOINT 6 = 73 knots.

(b) TWO CAPTURES OF WAYPOINT 4. TURN RADII 6300 ft AND 3600 ft. INITIAL
SPEED = 100 knots, SPEED AT WAYPO!NT 4 = 140 knots. WIND = 20 knots.




TURN

INITIAL
TURN

SECOND TURN

Figure 5.- Right~left~right pattern with corresponding right-straight-right
case.
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