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SUMMARY

The focus of this investigation was to provide results

that will support the selection of a reliable method of compres-

sive testing coupon specimens of filament-reinforced polymer-ma-

trix composite materials. Three test schemes were examined for

testing graphite/epoxy (Narmco T300/5208) composite material

specimens to failure in compression, including an adaptation of

the IITRI "wedge grip" compression fixture, a face-supported-

compression fixture, and an end-loaded-coupon fixture. The

effects of specimen size, specimen support arrangement and

method of load transfer on compressive behavior of Gr/Ep were

investigated.

Compression tests with the modified IITRI and face-support-

ed fixture were conducted on specimens of 12.5-, 25-, and 50-mm

widths; of 8-, 16-, and 24-ply thicknesses; and of [0], [_45],

and [0/_45/90] fiber orientations. The end-loaded-coupon fix-

ture was used to test 16-ply [0/_45/90] specimens.

Compressive stress-strain, strength, and modulus data ob-

tained with the three fixtures are presented with evaluations

showing the effects of all test parameters, including fiber ori-

entation. The IITRI fixture has the potential to provide good

stress/strain data to failure for unidirectional and quasi-iso-

tropic laminates. The face supported fixture was found to be

the most desirable for testing [_45] s laminates.



INTRODUCTION

The efficient use of filament reinforced composite mater-

ials in aerospace applications requires that their thermal, phy-

sical, and mechanical properties be established accurately. Be-

cause of the inhomogeneity and brittle nature of these compo-

sites, the properties measured are more sensitive to testing

equipment and procedures than are those for isotropic, homogene-

ous materials possessing some ductility. Reliable compressive

properties for composite materials are the most difficult of all

mechanical properties to acquire because of the sensitivity of

compression tests to a range of factors including test method,

quality of material and uneven loading of specimens (ref. i).

The importance of good compression test methods is related to

the fact that compression loads are often a dominant factor when

composites degrade under cyclic loading and environmental expo-

sure (ref. 2) and the fact that compressive strength is the pro-

perty most severely affected when composites experience environ-

mental degradation.

Compression test methods currently in use generally are of

three types: sandwich beam compression test method, unsupported

compression coupon test methods, and supported compression cou-

pon test methods. Reference I gives an evaluation of the sand-

wich beam compression test method, which has been highly regard-

ed as a dependable means of testing composite materials in com-

pression, although questions have been raised regarding the ef-

fects of the honeycomb on performance of the laminate. Draw-

backs include the relatively high cost of the sandwich beam spe-

cimen and its general unsuitability for environmental testing.

A host of fixtures have been employed to test specimens that are

unsupported in the gage length. Reference 3 presents a good de-

scription of the IITRI wedge-grip compression test fixture

which is perhaps the most widely used fixture of this class.

The supported compression coupon test methods include those pro-

cedures in which the specimen is fully supported in the gage
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length to prevent buckling during loading. References 4 and 5

contain good descriptions of fixtures of this class.

Three ASTM approved standard test procedures for compres-

sion tests of composite materials include "Test for Compressive

Properties of Rigid Plastics" (ref. 6), "Test for Compressive

Properties of Oriented Fiber Composites" (ref. 7), and "Flexure

Test of Flat Sandwich Constructions" (ref. 8).

This paper presents results from an evaluation of three

schemes for compression testing coupons of graphite/epoxy compo-

site material. These results are presented for the purpose of

identifying sensitivity of individual test techniques to lami-

nate, specimen, and test parameters and comparing results from

the three test schemes. The test fixtures utilized included an

adaptation of the IITRI compression fixture, a face-supported

compression fixture, and an end-loaded-coupon fixture.

PROCEDURE

Compression tests of Narmco T300/5208 graphite-fiber rein-

forced epoxy-resin matrix (Gr/Ep) composite material specimens

were conducted using three test fixtures. Table I defines the

number and type of specimens tested. Preliminary tests were

conducted with each fixture using 2024-T4 aluminum alloy sheet

specimens to verify the experimental procedures. All tests were

conducted at a nominal strain rate of 17 x 10 -5 (sec) -I.

IITRI Compression Test Fixture

The IITRI compression test fixture, shown in figure 1 was

modified to permit testing of 12.5-, 25-, and 50-mm wide speci-

mens. Figure I also shows a sketch of the IITRI specimen. Tabs

for the specimen were fabricated from a glass-reinforced epoxy-

matrix material (fiberglass) and were bonded to the specimen



using a 392 K cure adhesive. The wedge grips are bolted to each

tabbed end of the specimen. This prestressed the tabs trans-

verse to the plane of the specimen and prevented slippage of the

tabs under low axial loads. The outer surfaces of the wedge

grips react with mating surfaces in the upper and lower bolsters

to transmit compression loads to the specimen. The lower bolst-

er has two parallel alignment shafts that fit into two roller

bushings in the upper bolster to insure lateral alignment of the

upper and lower units. Axial alignment of the upper and lower

units is verified by gaging the parallelism of the matching sur-

faces. Axial alignment was adjusted as necessary by shimming

between the contact surfaces of the test machine and the bolst-

ers.

Considerable attention to detail was directed toward

achieving precision in fabricating specimens for the IITRI fix-

ture. One of the most critical details was to ensure that the

opposing tab surfaces which are gripped during loading are flat

within +25 _m.

Face-Supported Compression Test Fixture

Figure 2 shows an exploded view of the face-supported com-

pression fixture with a 50-mm wide specimen and a sketch of the

specimen. The specimen was mounted in the fixture with about

0.I mm clearance between the specimen and the inner platens.

Strain gages were positioned on the specimen such that when the

specimen was mounted in the fixture, the 9ages were located

within the gap in the inner platens. Tests with this fixture

were conducted in a universal hydraulic testing machine with hy-

draulic grips. Compression loads are transmitted to the speci-

men through the specimen tabs. Considerable precaution was

taken in installing the fixture and specimen in the testing ma-

chine to ensure alignment of the specimen and testing machine

axes.
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End-Loaded-Coupon Compression Test Fixture

The end-loaded-coupon compression fixture (fig. 3) consists

of two end blocks with provisions to anchor the ends of coupon

specimens and a guide cylinder which ensures alignment of the

end blocks. The mating surfaces of the guide cylinder and the

end blocks are lubricated to minimize frictional loading of the

cylinder. Load is transmitted to the specimen by the end

blocks. The end blocks have retainers for anchoring the speci-

mens to the end blocks which also provide support of the speci-

men transverse to the load axis and prevent failure of the spe-

cimen by "brooming." Specimen width up to 25 mm may be accommo-
dated.

Instrumentation and Data Collection

Load-strain data were obtained for each specimen throughout

the test by monitoring the output of a load-cell mounted in the

load train Of the testing machine and by monitoring the output

from resistance strain gages positioned on the specimen as shown

in figure 4. Note the numbering sequence used to identify the

gages - gages one and three were on opposite sides of the speci-

men from gages two and four. The output from gage number two

was compared with the average output from gages one and three to

measure Out-of-plane bending in each specimen. An indication of

in-plane bending was obtained from the strain differences on

each side of the specimen. The output from gage number four was

compared with the output from other gages to identify large

strain gradients at the specimen edge. The nominal strain in a

specimen at a given load was determined as the average of tile

strains at the midpoint of the two sides, where the strain at

the midpoint of the side containing gages I and 3 is the average

of readings from those gages.

Data for each specimen were collected throughout the test

using an on-line digital computer. These data were stored on

magnetic tape.
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MATERIALS

Specimens were fabricated from three lots of Narmco T300/

5208, graphite/epoxy composite prepreg, which was purchased and

processed to conform to prepreg and laminate specification re-

quirements for commercial aircraft applications (ref. 9). Each

lot of prepreg underwent quality control checks which compared

prepreg and unidirectional laminate properties to specification

requirements. Prepreg properties examined included resin con-

tent, volatile content, gel time, and fiber area I weight. Lami-

ate properties examined included resin content, flexure

strength, flexure modulus, shear strength, void content, ply

thickness, and fiber volume. Table 2 shows quality control re-

sults for each lot of material. The quality of panels from

which specimens were machined was verified with ultrasonic C-

scan and by making measurements of resin content by weight, fi-

ber volume, density, and void content on samples from two re-

gions of each panel. Table 3 shows quality control results for

each panel.

Specimens were stored in a laboratory environment, 21-27°C

and about 70 percent relative humidity, for 6 to 12 months prior

to being tested.

RESULTS AND DISCUSSION

Results are presented from compression tests of coupons of

T300/5208 graphite/epoxy composite material with the IITRI com-

pression test fixture, a face-supported compression test fix-

ture, and an end-loaded-coupon compression test fixture. Data

are analyzed to identify sensitivities of techniques to lamin-

ate, specimen, and test parameters.

Modulus data from fixture checkout tests on 2024-T4 alumi-

num alloy sheet specimens tested in compression with the three

fixtures were within six percent of the published data (ref. i0)

and the coefficient of variation of the data was 0.9 percent,



0.4 percent, and 4 percent, respectively, for the llTRl,face-

supported, and end-loaded-coupon compression test fixtures.

These results suggest that test procedures for each fixture were

satisfactory.

Table 4 shows compression test results for T300/5208 Gr/Ep

composite material specimens. The ultimate compressive strength

was based on the maximum load applied to the specimen. The ulti-

mate strain was the highest strain indicated by any gage at max-

imum load. The secant modulus is the secant of the stress-

strain curve at an average compressive strain of 0.004 which is

in the range of strain encountered in applications of Gr/Ep com-

posites. The strain variations due to out-of-plane bending and

in-plane bending were also determined at an average compressive
strain of 0.004.

Uniformity of Load Transfer

The effect of nonuniform load transfer during compression

testing is to induce out-of-plane bending or in-plane bending

with accompanying strain variations. In extreme cases the bend-

ing can result in failure by buckling. Table 4 shows the aver-

age strain variations due to out-of-plane bending and in-plane

bending for each series of specimens tested. Out-of-plane and

in-plane strain variations were as high as 27 percent and 45

percent, 34 percent and 11 percent, and 12 percent and 30 per-

cent for specimens tested with the IITRI, face-supported, and

end-loaded-coupon fixtures, respectively.

The sensitivity of llTRl-specimen stress-strain curves to

flatness and parallelism of opposing tab surfaces of specimens

was confirmed early in the program. Figure 5 shows stress-

strain curves for a 25-mm wide 24-ply quasi-isotropic IITRI spe-

cimen (specimen 52, Table 4a). The data in figure 5(a), which

were obtained by preloading the specimen in the as-fabricated

condition, show strong evidence of out-of-plane and in-plane



bending. In view of these data tile tabs of tile specimen were

ground to be "flat and parallel" and the data in figure 5(b)

were obtained. Examination of the specimen disclosed signifi-

cant variations in flatness of the tabs, indicated by the inset

in figure 5(b), which resulted from grinding error. These vari-

ations were sufficient to produce the significant strain differ-

ences across the specimen shown here. The specimen was ground a

second time to be flat within +25 _m. Figure 5(c) shows the

stress-strain curves for the specimen loaded to failure. Note

the uniformity of strain across the specimen.

In light of results like those in figure 5, the tabs of a

number of IITRI specimens were machined to be flat and paral-

lel. In Table 4a the specimens that were machined are indicated

with an asterisk by their number.

Figure 6 shows representative "best" and "worst" stress-

strain curves for the three fixtures. Figure 6(a) shows repre-

sentative stress-strain curves for the specimens tested with tile

IITRI fixture. Figures 6(b) and 6(c) show similar curves for

specimens tested with the face-supported fixture and tile end-

loaded-coupon fixture, respectively. The characteristics of the

curves shown here are typical in that stress-strain curves for

IITRI specimens were generally continuous from start of testing

to failure, while the curves for face-supported specimens fre-

quently exhibited large changes in slope particularly as the

stress in the specimens neared ultimate. This characteristic

with the face-supported fixture is no doubt related to the fact

that the longer gage length specimens, even when supported by

the fixture, experience some out-of-plane buckling. This buckl-

ing, which might not precipitate catastrophic failure, produces

assymmetry in the specimen and may result in total failure at an

average stress less than the compressive ultimate stress. The

stress-strain curves for end-loaded-coupon specimens were simi-

lar to those for the IITRI specimens.



Figure 7 shows the effect of total strain variation on com-

pressive strength of Gr/Ep composite specimens tested with the

IITRI fixture, where total strain is the sum of the in-plane

strain variation and the out-of-plane strain variation. These

data show a consistent trend toward lower strength with higher

strain variations. Note the linear relationship between

strength and strain variation for 12.5- and 50-mm wide unidirec-

tional specimens with higher strength occurring at lower strain

variation. Also note the strong effect of specimen width. Sim-

ilar data for 25-mm wide unidirectional specimens did not show

this trend. The quasi-isotropic data show the trend toward low-

er strength with greater strain variation; however, the effects

of specimen width and thickness were not evident. Compressive

strength versus total strain variation data for specimens tested

with the end-loaded-coupon fixture and the face-supported fix-

ture do not show the consistent trends noted for the IITRI fix-

ture data which is probably due to the lesser precision of these

fixtures in producing compressive strength failures in composite

material specimens.

Ultimate Compressive Strength

Specimen width effects. - Figure 8 shows average ultimate

compressive strength as a function of specimen width for 16-ply

Gr/Ep composite material in three fiber orientations. Data are

shown for the IITRI fixture and the face-supported fixture. The

most noteworthy point here is the difference in results from the

two fixtures for the [_45/_4512s laminate. The ultimate com-

pressive strength results from the face-supported fixture are

nearly constant at about 200 MPa as compared to the results from

the IITRI fixture which vary linearly from 190 to 330 MPa over a

range of specimen widths from 12.5 mm to 50 mm. The wide range

in strength of [_45/T4512s specimens tested with the IITRI fix-

ture probably result from the biaxial state of stress present in

low-aspect-ratio specimens of high Poisson's ratio under load.
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The ultimate compressive strength of quasi-isotropic speci-

mens tested with the IITRI fixture and the face-supported fix-

ture were independent of specimen width with the IITRI fixture

producing consistently higher strength results than the face-

supported fixture (fig. 8).

Note the substantially lower strength of the 50-mm wide un-

idirectional specimens tested with the face-supported fixture

compared to other data for unidirectional specimens (fig. 8).

The face-supported fixture was examined after testing the 50-mm

wide specimens and was found to be bent. This explains the low-

er strength obtained for that series of specimens and points to

the importance of fabricating the test fixture from high-yield-

strength materials when very high loads are expected.

Specimen thickness effects.- Figure 9 shows the variation

in average ultimate compressive strength with specimen thickness

for quasi-isotropic specimens tested with the face-supported

fixture and for quasi-isotropic specimens tested with the IITRI

fixture. The significant point here is the lower average

strengths of 8-ply specimens tested with each fixture. Examina-

tion of stress-strain data for individual specimens represented

by the data in figure 9 showed some evidence of buckling in 8-

ply specimens tested in each fixture.

Comparison of strength by fixtures. - Figure i0 shows a

comparison of ultimate compressive strength data for 16-ply,

quasi-isotropic, 25-mm wide specimens tested with the end-load-

ed-coupon fixture, the IITRI fixture, and the face-supported

fixture. The shaded region of each bar represents the range of

values. The IITRI fixture produced the highest average strength

at 552 MPa followed by the end-loaded-coupon fixture at 531

MPa. The data obtained with the face-supported fixture exhibits

less scatter than the data with the other fixtures. The higher

strength of specimens tested with the IITRI fixture is the re-

sult of greater precision in alignment and loading of speci-

mens with that fixture compared to the other two fixtures.
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Compressive Stiffness

Figures 11(a) and 11(b) show average secant modulus as a

function of specimen width and thickness for specimens tested

with the IITRI fixture and the face-supported fixture. The

noteworthy fact shown here is that modulus is independent of

specimen width for every case except for the [_45/T45] specimens

tested with the IITRI fixture where modulus is linear with width

and shows a 17% change over the width range from 12.5 to 50 mm.

As noted earlier in discussion of the strength data for [_45/

_45] specimens tested with the IITRI fixture, change in modulus

with specimen width is probably due to the biaxial state of

stress present in low aspect ratio specimens of high Poisson's

ratio under load.

Figure 12 shows a comparison of secant modulus data for

16-ply, quasi-isotropic, 25-mm wide specimens tested with the

end-loaded-coupon fixture, the IITRI fixture, and the face-sup-

ported fixture. The shaded region of each bar represents the

range of values. The average modulus was approximately the same

for all fixtures. Variability in modulus for the specimens

tested was satisfactorily low; even the face-supported fixture

data which have the most scatter have a coefficient of variation

of only 5.6 percent.

Failure Modes

Failures in the quasi-isotropic and [_45/¥45] s specimens

tested with the IITRI fixture were always centered in the gage

length of the specimens, whereas fractures of the unidirectional

specimens were generally located nearer the tab ends. Failures

in specimens tested with the face-supported fixture were gene-

rally 25 mm or more away from the tab ends; however, the unidi-

rectional specimens tended to fail nearer the tab ends than
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did the other specimen types. The quasi-isotropic specimens

tested with the end-loaded-coupon fixture failed in the center

of the gage length with no evidence of brooming at the specimen
ends.

Figure 13 consists of photographs of failed IITRI specimens

having the three fiber orientations tested. The types of fail-

ure shown here are typical of the failures experienced through-

out the test program. Figure 13(a) is a photograph of a unidi-

rectional specimen (specimen 10, Table 4a) with numerous splits

in the gage length parallel to the fibers in addition to a frac-

ture across the specimen normal to the fiber direction. Exami-

nation of failed specimens showed little evidence of delamina-

tion in this or similar specimens. Figures 13(b) and 13(c) are

photographs of quasi-isotropic and [_45/¥45] s specimens (speci-

mens 38 and 71, Table 4a), respectively. Both of these speci-

mens experienced extensive interlaminar failures between neigh-

boring dissimilar plies. In general, the failed [_45/T45] s spe-
cimens showed very little evidence of fiber fractures whereas

the failed quasi-isotropic specimens showed extensive evidence

of fiber fractures.

To gain more insight into the mode of failure of specimens

tested in this program, consider that reference II states that

since the microbuckling strength of Gr/Ep composite material is

approximately equal to the shear modulus of the composite and

specimens tested in compression fail at a fraction of that lev-

el, the mode of failure must be something other than microbuckl-

ing. Reference ii further states that the critical parameter

which is responsible for the low compressive strength of Gr/Ep

composites is the transverse tensile strength and that, if com-

posite materials have sufficiently high transverse tensile

strength, the compressive strength of unidirectional composites

approaches their tensile strength. Note that the average ulti-

mate compressive strength of all unidirectional specimens tested

with the IITRI fixture was 1500 MPa compared to an ultimate
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tensile strength of 1450 MPa (ref. 12). Furthermore, following

the assumption of reference 11 that the tensile and compressive

strength and stiffness of graphite fibers are the same, the

average of all strain-to-failure data for unidirectional speci-

mens tested with the IITRI fixture is 1.43 percent compared to

the 1.32 percent strain-to-failure for T300 graphite fibers ob-

tained from published data (ref. 13). These points indicate

that unidirectional specimens tested with the IITRI fixture

failed by compressive strength failure rather than by microbuck-

ling or general buckling, that compressive strength failure of

unidirectional Gr/Ep composite material is governed by fiber be-

havior, and that the fiber failure mode is similar to the ten-

sile failure of the fiber. Additionally these results suggest

that the IITRI fixture produces near maximum compressive

strength data for unidirectional Gr/Ep composite material.

Comparison of compressive strength and stiffness data for

unidirectional face-supported specimens with tensile data for

Gr/Ep strength and fiber stiffness were less favorable than for

the IITRI specimens. These specimens failed at lower stress

levels than the IITRI specimens as a result of the greater in-

stability of the longer gage length specimens.

The average strain-to-failure of 16-ply and greater thick-

ness quasi-isotropic specimens tested with the IITRI fixture,

the face-supported fixture, and the end-loaded-coupon fixture

compares favorably with the estimated fiber maximum-strain-to-

failure. This suggests that the compressive behavior of quasi-

isotropic composites tested in these fixtures is primarily gov-

erned by the unidirectional fibers.

Failure of the [_45/T4512s specimens occurred in the form

of delamination of the plies. In light of this fact, the maxi-

mum fiber strain for the [_45/¥4512s specimens should be less

than the strains encountered in the unidirectional and quasi-

isotropic specimens. The strain-to-failure of specimens tested

with the face-supported fixture was quite constant at about
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2.2%, which, assuming uniform compression over the length and

width of the specimen, is equivalent to 0.22% fiber strain or

about 1/6 the maximum fiber strain encountered in the unidirec-

tional and quasi-isotropic specimens.

The strain-to-failure of the [+45/T45] s specimens tested

with the IITRI fixture varied approximately linearly with speci-

men width ranging from 3.3% at a width of 12.5 mm to 4.9% at a

width of 50 mm. This wide range of failure strain and accom-

panying failure stresses is probably the result of the biaxial

state of stress that exists in loading low-aspect-ratio speci-

mens of high Poisson's ratio.

CONCLUDING REMARKS

Compression tests of T300/5208 Gr/Ep composite material

were performed using a modified IITRI fixture, a face-supported

fixture, and an end-loaded-coupon fixture to determine the ef-

fects of loading, specimen width, specimen thickness, and fiber

orientation on the compressive behavior of graphite/epoxy compo-

site material. Each specimen was instrumented with four longi-

tudinal strain gages to determine the extent of strain variation

in the specimen during the test.

Based on results reported herein, no single test fixture

appears universally adequate for compression testing. However,

each of the three fixtures has the potential to provide reliable

compressive properties data in certain instances. For example,

the IITRI fixture provided the most consistent data for unidi-

rectional composite specimens while the face-supported fixture

provided the most consistent results for [+45/T45] s specimens.
The IITRI fixture was found to be sensitive to flatness and

parallelism of opposing tab surfaces of specimens. Specimen

variances of this type produced significant strain variations in

the specimens. Specimens experiencing large strain variations
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during testing had lower compressive strengths than did more un-

iformly strained specimens. Tests of 16- and 24-ply unidirec-

tional and quasi-isotropic specimens using the IITRI fixture

produced high strength values with specimen failures governed by

O-degree fibers in both cases. Tests of 8-ply specimens showed

evidence of failure by buckling and correspondingly lower

strengths.

The strength data from [_45/745] s specimens tested with the

IITRI fixture showed a strong dependence on specimen width which

is probably the result of the biaxial state of stress that ex-

ists in low-aspect-ratio specimens of high Poisson's ratio under

axial load. These specimens failed by delamination of the

plies.

Unidirectional and quasi-isotropic specimens tested with

the face-supported fixture experienced a small amount of strain

variation at low loads; however, at loads approaching failure

the long gage length specimens experienced varying amounts of

general instability which resulted in failure at lower stresses

than were achieved in specimens tested with the IITRI fixture.

This strength differential is greatest for unidirectional speci-

mens. These data were independent of specimen width, but depen-

dent on specimen thickness to the extent that 8-ply specimens

failed at much lower stress levels than did thicker specimens.

Tests of 16-ply [_45/T45] s specimens with the face-support-

ed fixture produced results independent of width. Failure of

these specimens was by delamination of plies.

Modulus data from the three fixtures were not significantly

different except for tests of [_45/T45] specimens with the IITRI

fixture which showed a strong variation with specimen width.
The coefficient of variation of the modulus data was less than

nine percent for every series of test.

Data obtained with the end-loaded-coupon fixture are not

substantially different from the data obtained with the IITRI

and face-supported fixtures. In view of this and the simplicity

15



of the specimen and the fixture, further study of the end-load-

ed-coupon fixture is justified.
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TABLE i.- NUMBER AND TYPE OF SPECIMENS TESTED

FTB_RORIENTATION [0] [0/-+45/90] [+45]

NO. PLIES 8 16 24 8 16 24 8 16 24

TYPE/NO. SPEC

IITRI -

12.5 mm - 6 - 5 5 5 - 5 -
25 mm - 4 - 5 5 5 - 6 -
5O mm - 5 - 6 5 6 - 5 -

FACE SUPPORTED -

12.5 mm .... 6 ....
25 mm 6 - 5 5 6 - 5 -
5O mm - 4 - - 4 - - 5 -

END LOADED -
25 mm .... i0 ....

18



TABLE 2.- QUALITY CONTROL RESULTS FOR T300/5208 Gr/Ep PREPREG.

PROPERTY LOT NO.

- 3PECIFICATION

PREPREG LAMINATE REQUIREMENT 859 1071 1081

Resin Content % 42.0 42.3 40.4 41.5

Resin Content, % - 19.7 24.9 25.3

Volatile Content. Wt % 3 1.04 0.58 0.84

Gel Time, Min 19.9 18.7 20.5 20.5

Fiber Wt gm m2 147 - 157 157.5 148.9 152.2

Flex. Strength, MPa 2096 2096 2165 2089

Flex. Modulus GPa 158 150 169 146

Shear Strength, MPa 128 137 154 i_5

Void Content Vol % - - 0.95 0.62

- - 0.12 0.13
Ply Thickness_ mm

iFiber Vol, % - - 68.1 67.8



TABLE 3.- QUALITY CONTROL RESULTS FOR T300/5208 Gr/Ep PANELS

PANEL RESIN CON- FIBER DENSITY, VOID

NO. TENT, WT.% i VOL. % kg/m3 CONTENT, VOL.
%

A 28.54 64.25 1565 0.48

B 27.54 65.54 1574 0.23

C 27.66 65.20 1568 0.54

E 27.02 65.65 1565 0.96

F 26.92 65,46 1571 0,66

G 27.13 65.58 1566 0.86

H 28.50 64.34 1566 0.41

I 27.79 64.83 1562 0.90

J 29.45 63.36 1563 0.30

L 28.64 64.14 1564 0.49

M 28.41 64.26 1562 0.80

N 28.93 63.71 1560 0.66

i 29.17 63.31 1555 0.87

3 26.62 66.47 1516 0.39

6 27.79 64.93 1565 0.74

8 25.74 67.39 1579 0.52

9 26.32 66.40 1568 1.01

i0 25.42 67.61 1577 0.72

ii 26.71 65.81 1563 1.18

12 24.38 61.77 1580 0.90

14 26.35 66.59 1573 0.66

16 26.19 66.50 1568 1.08

16A 26.38 66.62 1574 0.60

17/19 24.62 68.31 1577 1.00

22 27.41 65.44 1569 0.61

23/25 25.81 67.55 1584 0.16

26/27/28 27.16 65.80 1572 0.49

29/31 27.76 65.14 1569 0.48

32/34 25.72 67.34 1577 0.63

35/37 25.75 67.36 1578 0.55

2O



TABLE 4.- COMPRESSION TEST RESULTS FOR T300/5208 GRAPHITE EPOXY MATERIAL

(a) IITRI COMPRESSION TEST FIXTURE

SPEC. TAB LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAIN VARIATION
NO. TOL., NO. NO. ORIENTATION PLYS mm MODULUS,

±_m MPa % GPa OUT-OF-PLANE IN-PLANE

1 19 1071 35/37 [0] 16 12.5 1296 1.1 131 l0 15

2 19 i071 35/37 [0] 16 12.5 1400 1.3 136 9 0

3 13 1071 35/37 [0] 16 12.5 1400 1.4 132 12 2

4 38 1071 35/37 [0] 16 12.5 1413 1.2 137 3 4

5 13 1071 35/37 [0] 16 12.5 1503 1.3 135 i0 3

6 6 1071 35/37 [0] 16 12.5 1448 1.4 123 3 0

AVERAGE _X [0] 16 12.5 1413 1.3 132 8 4
7* 25 1081 N [0] 16 25 ,(i) (i) 130 3 5

8* 38 1081 N [0] 16 25 1710 1.6 129 i0 5

9* 25 1081 N [0] 16 25 1620 2.0 134 0 8

10* 25 1081 N [0] 16 25 1455 1.4 132 8 9

AVERAGE __ [0] 16 25 1593 1.7 131 5 7
ii i071 35/37 [0] 16 50 1551 1.5 143 2 34

12 1071 35/37 [0] 16 50 1565 1.7 129 14 18

13 1071 35/37 [0] 16 50 1620 - 145 2 8

14 1071 35/37 [0] 16 50 1434 1.3 135 12 36

15 1071 35/37 [0] 16 50 1420 1.4 135 15 43

AVERAGE _X [0] 16 50 1517 1.5 137 9 28

16 25 1081 H [0/±45/90] 8 12.5 545 1.3 52 i 1

17 38 1081 H [0/±45/90] 8 12.5 352 0.8 51 i0 6

18 38 1081 H [0/±45/90] 8 12.5 524 1.5 50 3 5

19 64 1081 H [0/±45/90] 8 12.5 476 i.i 51 5 3

20 38 1081 17/19 [0/±45/90] 8 12.5 524 i.i 54 2 4

AVERAGE __ [0/±45/90] 8 12.5 483 1.2 52 4 4

*TABS GROUND TO BE PARALLEL

(i) SPEC. SLIPPED IN GRIPS - DID NOT FAIL



TABLE 4.- COMPRESSIONTEST RESULTSFOR T300/5208GRAPHITEEPOXYMATERIAL (CONT'D)

_o (a) IITRI COMPRESSIONTEST FIXTURE

SPEC. TAB LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, EL&STIC % STRAINVARIATION
NO. TOL., NO. NO. ORIENTATION PLY _m MODULUS,

±_m MPa % GPa OUT-OF-PLANE IN-PLANE

21" 38 1081 H [0/!45/90] 8 25 490 1.5 50 19 18

22* 50 1081 H [0/±45/90] 8 25 448 i.i 48 i0 3

23* 25 i081 H [oI±_519o] 8 25 510 1.4 48 9 0

24* 19 1081 H [01±45190] 8 25 476 1.3 50 i0 5

25* 13 1081 H [0/±45/90] 8 25 510 i.i 50 13 25

AVERAGE _ _ [01±45190] 8 25 490 1.3 49 12 10
26 1081 H [0/145/90] 8 50 448 i.i 52 4 19

27 1081 H [0/±45/90] 8 50 476 i.i 52 19 31

28 1081 H [0/±45/90] 8 50 448 1.2 47 5 28

29 1081 H [0/±45/90] 8 50 524 1.5 52 3 15

30 1081 H [0/±45/90] 8 50 531 1.3 53 27 15

31 10.81 H [0/±45/90] 8 50 517 1.3 52 4 16

_ [o1±4519o] 8 50 hgo 1.3 52 lO 21
i

AVERAGE

32* 32 1081 I [01±45190] 16 12.5 607 1.5 52 20 5

33* 38 1081 I [0/145/90] 16 12.5 400 1.0 44 13 8

34* 13 i081 I [0/±45/90] 16 12.5 552 1.4 46 - 3

35* 38 i081 I [0/±45/90] 16 12.5 545 1.3 48 3 i

36* 50 1081 I [0/±45/90] 16 _ 12.5 565 1.5 48 7 6

[oI±45190]16 12.5 531 1.3 48 11 5AVERAGE

37* 25 1081 I [0/±45/90] 16 25 586 1.5 47 5 i0

38* 64 i081 I [0/±45/90] 16 25 627 1.6 46 7 4

39* 25 1081 I [0/±45/90] 16 25 476 1.3 48 ii 45

40* 25 1081 I [0/±45/90] 16 25 517 1.4 48 5 28

41" 19 1081 I [oi±45i9o] 16 25 593 1.5 50 8 15

X X [0/±45/90] 16 25 558 1.5 48 " 7 20
AVERAGE

*TABS GROUND TO BE PARALLEL



TABLE 4.- COMPRESSION TEST RESULTS FOR T300/5208 GRAPHITE EPOXY MATERIAL (CONT'D)

(a) llTR1 COMPRESSION TEST FIXTURE

SPEC. TAB LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN ELASTIC % STRAIN VARIATION
NO. TOL., NO. NO. ORIENTATION PLYS mm MODULUS

±Dm MPa % GPa OUT-OF-PLANE IN-PLANE

42* 25 1081 I [0/±45/90] 16 50 579 1.4 51 8 4

43* 50 1081 I [0/±45/90] 16 50 579 1.3 48 3 15

44* 1081 I [0/±45/90] 16 50 565 1.4 49 2 15

45* 25 1071 22 [0/±45/90] 16 50 538 1.3 52 6 6

46* 50 1081 I [0/±45/90] 16 50 607 1.6 48 4 ll

AVERAGE __ [01±45190] 16 50 572 1.4 50 5 lo

47* 50 1071 23/25 [0/±45/90] 24 12.5 558 1.5 48 i 3

48* 50 1071 23/25 [0/±45/90] 24 12.5 558 1.2 52 0 6

49* 50 1081 J [0/±45/90] 24 12.5 538 1.4 47 7 4

50* i00 1081 J [0/±45/90] 24 12.5 627 1.6 51 8 9

51" 75 1081 J [0/±45/90] 24 12.5 641 1.5 52 3 4

AVERAGE __ [01±45190] 24 12.5 586 1.4 50 4 5
52* 25 1081 J [01±45/90] 24 25 607 1.4 49 4 i

53* 50 1081 J [0/±45/90] 24 25 558 1.4 48 3 4

54* 25 1081 J [0/±45/90] 24 25 620 1.5 49 8 0

55* i081 J [0/±45/90] 24 25 607 1.5 48 7 3

56* 25 1081 J [0/±45/90] 24 25 503 1.5 40 3 16

AVERAGE _X__ {o1±4519o} 24 25 579 1.5 47 5 5

57 1071 23/25 [oI±4519o] 24 50 552 1.3 54 0 9

58 lO71 23125 [01±_519o] 24 50 579 1.5 54 0 23

59 1071 23/25 [0/±45/90] 24 50 621 1.5 53 13 20

60 1071 23/25 [0/±45/90] 24 50 613 1.4 54 8 6

61 1071 23/25 [0/±45/90] 24 50 558 1.3 53 16 25

62 1071 23/25 [0/±45/90] 24 50 552 1.4 53 ii 33

AVERAGE __ [0/±45/90] 24 50 5T9 1.4 54 8 19

_o*TABS GROUND TO BE PARALLEL
oo
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TABLE 4.- COMPRESSION TEST RESULTS FOR T300/5208 GRAPHITE EPOXY MATERIAL (CONT'D)

(a) IITRI COMPRESSION TEST FIXTURE

SPEC. TAB LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAIN VARIATION
NO. TOL., NO. NO. ORIENTATION PLYS mm MODULUS,

±_m MPa % GPa 0UT-OF-PLANE IN-PLANE

63* 50 1081 H [±45] 16 12.5 187 3.1 17.2 6 0

64* 13 1081 H [_45] 16 12.5 183 3.3 17.2 0 13

65* 25 1081 H [±45] 16 12.5 197 3.2 15.9 2 4

66* 13 1071 17/19 [±45] 16 12.5 195 3.3 17.2 1 0

67* 50 1081 H [145] 16 12.5 197 3.7 15.9 1 0
,,n

_>_ [±45] 16 12.5 192 3.3 16.5 2 3AVERAGE

68* 25 1081 L [±45] 16 25 208 3.5 16.5 13 13

69* 38 1081 L [±45] 16 25 214 3.5 16.5 i0 15

70* 38 1081 L [±45] 16 25 222 3.8 16.5 l0 15

71" 19 1081 L [±45] 16 25 215 4.4 17.2 7 5

72* 50 1081 L [±45] 16 25 220 4.0 17.9 15 20

73* 50 1081 L [±45] 16 25 225 3.8 18.6 9 18

AVERAOE __ [±_5] 16 25 217 3.8 17.2 ii 14

74 32 i071 29/31 [±45] 16 50 352 4.9 18.6 5 0

75 38 1071 29/31 [±45] 16 50 297 4.9 20.0 58 5

76 75 1071 29/31 [±45] 16 50 311 4.9 18.6 6 8

77 50 1071 29/31 [±45] 16 50 330 4.9 19.3 i 9

78 38 1071 29/31 [±_5] 16 50 364 4.7 20.7 3 18

AVERAGE __<_ [±45] 16 50 331 4.9 19.3 5 8

*TABSGROUNDTO BE-PARALLEL



TABLE4.- COMPRESSIONTEST RESULTSFOR T300/5208GRAPHITEEPOXY MATERIAL(CONT_D)

(b) FACE-SUPPORTED-COUPONCOMPRESSIONTEST FIXTURE

SPEC. LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAINVARIATION
NO. NO. NO. ORIENTATION PLYS mm MODULUS

MPa % GPa OUT-OF-PLANE IN-PLANE

1 1081 G [0] 16 25 1358 1.3 128 8 2

2 1081 G [0] 16 25 1386 1.2 128 - 7

3 i081 G [0] 16 25 (i) (I) 132 9 i

4 1081 O [0] 16 25 1296 i.i 136 5 3

5 1081 G [0] 16 25 1289 1.3 133 6. 1

6 1081 G [0] 16 25 1255 I.i 125 6 2

AVERAGE __ [0] 16 25 1317 1.2 130 7 3

7 1071 16 [0] 16 50 1158 1.0 135 lh 2

8 1071 16 [0] 16 50 1158 1.2 127 ii 2

9 1071 16 [0] 16 50 1227 1.3 133 34 2

i0 1071 . 16 [0] 16 50 13.72 .8 132 24 3

AVERAGE X _ [0] 16 50 1179 i.i 132 21 2

ii 1081 A [0/±45/90] 8 25 434 i.i 48 1 2

12 1081 A [0/±45/90] 8 25 3_I .7 49 1 6

13 1081 A [0/±45/90] 8 25 365 .8 49 0 i

14 1081 A [0/±45/90] 8 25 441 1.0 50 2 i

15 1081 A [0/±45/90] 8 25 524 1.2 50 6 ll

AVERAGE [01±45190] 8 25 421 1.0 50 2 4
16 lO81 B [01±45190] 16 12.5 503 1.4 29 5 i

17 1081 B [0/±45/90] 16 12.5 558 - 48 - -

18 1081 B [0/±45/90] 16 12.5 517 1.3 46 I i

19 1081 B [0/±45/90] 16 12.5 462 1.2 26 i 4

20 1081 B [0/±45/90] 16 12.5 522 1.5 28 1 0

21 1081 B [0/±45/90] 16 12.5 510 1.3 47 i i

AVERAGE __ [01±45190] 16 12.5 510 1.3 47 2 1

(i) SPEC. SLIPPED IN GRIPS- DID NOT FAlL



TABLE 4.- COMPRESSIONTEST RESULTSFOR T300/5208GRAPHITEEPOXYMATERIAL(CONT'D)

(b)FACE-SUPPORTED-COUPONCOMPRESSIONTEST FIXTURE

SPEC. LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAIN VARIATION
NO. NO. NO. ORIENTATION PLYS mm MODULUS,

MPa % GPa OUT-OF-PLANE IN-PLANE

22 1081 B [oi±h519o] 16 25 524 1.0 54 0 i

23 1081 B [01±45190] 16 25 524 1.3 51 5 2

24 1081 B [0/±45/90] 16 25 545 1.3 h8 5 0

25 lO81 B [o/±45/9o] 16 25 483 ....

26 I081 B [oi±4519o] 16 25 510 1.4 48 4 3

AVERAGEX_ [01±45190] 16 25 51_ 1.3 50 _ 2
27 1071 6 [0/±h5/90] 16 50 490 1.3 46 I0 2

28 1071 6 [0/±45/90] 16 50 545 1.3 41 0 3

29 1071 6 [0/±45/90] 16 50 517 1.3 50 6 4

30 1071 6 [0/±45/90] 16 50 496 1.4 45 0 i

AVERAGE __ [0/±45/90] 16 50 510 1.3 46 4 3
31 lO81 c [o/±_5/9o] 24 25 565 1.3 48 4 o

32 1081 C [0/±45/90] 24 25 407 1.0 48 7 i

33 1081 C [01±45/90] 24 25 510 1.2 48 1 3

34 1081 C [0/±45/90] 24 25 531 1.4 48 i 3

35 1081 C [0/±45/90] 24 25 538 1.4 48 7 2

36 1081 C [0/±45/90] 24 25 483 1.3 46 2 2

AVERAGE__ [0/±45/90] 24 25 503 1.3 48 4 2

37 1071 16 [±45] 16 25 207 2.0 16.5 3 3

38 1071 16 [±45] 16 25 183 1.9 17.9 6 0

39 1071 16 [±45] 16 25 193 2.4 17.9 4 i

40 1071 16 [±45] 16 25 197 2.2 17.9 4 3

41 i071 16 [±45] 16 25 199 2.4 18.6 2 0

AVERAGE__<_ [±45] 16 25 196 2.2 17.9 4 1



TABLE 4.- COMPRESSION TEST RESULTS FOR T300/5208 GRAPHITE EPOXY MATERIAL (CONT'D)

(b) FACE-SUPPORTED-COUPON COMPRESSION TEST FIXTURE

SPEC. LOT PANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAIN VARIATION

NO. NO. NO. ORIENTATION PLYS mm MODULUS,

MPa % GPa OUT-0F-PLANE IN-PLANE

42 1071 12 [±45] 16 50 203 2.4 17-9 3 2

43 1071 12 [±45] 16 50 203 2.5 18.6 5 2

44 1071 12 [±45] 16 50 202 2.4 17.9 5 5

45 1071 12 [±45] 16 50 204 2.1 18.6 4 2

46 1071 12 [±45] 16 50 214 1.9 15.9 3 6

AVE_E__ [±451 16 _o 2o5 2.3 17.9 _ 3
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TABLE 4.- COMPRESSION TEST RESULTS FOR T300/5208 GRAPHITE EPOXY MATERIAL (CONT'D)

(c) END-LOADED-COUPON COMPRESSION TEST FIXTURE

SPEC. LOT IPANEL FIBER THICKNESS, WIDTH, ULT. STRENGTH, ULT. STRAIN, ELASTIC % STRAIN VARIATION

NO. NO. NO. ORIENTATION PLYS mm MODULUS,
MPa % GPa OUT-OF-PLANE IN-PLANE

i 859 i [0/±45/90] 16 25 441 1.0 50 3 5

2 859 i [0/±45/90] 16 25 545 1.5 50 6 5

3 859 l [oi±45/9o] 16 25 572 1.5 48 l 16

4 859 i [0/±45/90] 16 25 579 1.4 49 5 0

5 859 i [0/±45/90] 16 25 517 1.4 48 12 Ii

6 859 i [0/±45/90] 16 25 552 1.4 50 i 30

7 859 i [0/±45/90] 16 25 538 1.5 51 ii 3

8 859 I [0/±45/90] 16 25 510 1.3 48 6 5

9 859 i [0/±45/90] 16 25 538 1.4 50 3 18

i0 859 i [0/±45/90] 16 25 496 1.2 50 7 6

AVERAGE _<_ _ [0/±45/90] 16 25 531 1.4 50 6 10 I
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Figure 1.- Schematic of IITRI fixture and sketch of specimen.
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Figure 2.- Exploded view of face-supported fixture with specimen and sketch ofspecimen.
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Figure 3.- Sketch of end-loaded-coupon fixture and specimen.
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Figure 4.- Location of strain gages on specimen.
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Figure 5.- Compressive stress-strain curves for 25-mm wide, 24-ply
thick, quasi-isotropic specimen tested with the 33
IITRI fixture (Spec #52- Table 4a).
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Figure 6.- Representative best and worst compressive stress-strain
34 curves for Gr/Ep composite material specimens.
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Figure 7.- Effect of strain variation on compressive strength of
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Figure 8.- Average compressive strength of 16-ply Gr/Ep composite
material as a function of specimen width.
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Figure 9.- Average compressive strength of quasi-isotropic Gr/Ep
composite material as a function of specimen thickness.
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Figure 10.- Compressive strength of 25-mm wide 16-ply
quasi-isotropic Gr/Ep specimens tested with
the end-loaded, IITRI, and face-supported
fixtures.
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Figure ll(a).- Secant modulus at .004 strain of Gr/Ep composite
material as a function of specimen width and
thickness for specimens testedwith the IITRI
fixture.
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Figure ll(b).- Secant modulus at .004 strain of Gr/Ep composite
material as a function of specimen width and
thickness for specimens tested with the face-
supported fixture.
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Figure 12.- Secan£ modulus at .004 strain of 25-mm wide 16-ply thick
quasi-isotropic Gr/Ep specimens tested with the end-loaded,
IITRI, and face-supported fixtures.
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Figure 13.- Photographs of failed 16-ply 25-mm-wide specimens tested in IITRI
fixture.
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[0/~45/90J specimens.

Compressive stress-strain, strength, and modulus data obtained with
the three fi xt.u res are presented with evaluations showing the effects of
all test parameters, including fiber orientation. The I ITR I fixture has
the potential to provide good stress/strain data to failure for unidi-
rectional and quasi-isotropic laminates. The face supported fixture was
found to be the most desirable for testing [~45Js laminates.
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