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SECTION 1
EXECUTIVE SUMMARY

This report was prepared by Future Systems Incorporated (FSI) for
NASA Headquarters under Contract Number NASW-3300. It defines an advanced
domestic satellite communications system (ADS) and identifies the technology
developments which are required for its implerhentation. The report draws
extensively on earlier work that had been sponsored by NASA Headquarters,
NASA-Lewis Research Center, and Marshall Space Flight Center.

1.1 Traffic Projections

The utility of a satellite communications system can only be measured
against a traffic model. Taking into account earlier work performed by Western
Union and ITT for NASA-Lewis Research Center, FSI prepared an updated traffic
projection for U.S. domestic satellite communications service covering a period of
15 years; mid-1980 to mid-1995. This model takes into account expected
technology advances and reductions in transmission costs, legislative and
regulatory changes permitting increased competition, and rising energy costs which
will encourage more extensive substitution of telecommunications for travel.

Satellite transmission requirements have been expressed in units of
transmission capacity equivalent to a typical domestic transponder with 36 MHz
bandwidth. Such a transponder is capable of transmitting approximately 1,000
one-way voice channels o 64 Mbps of one-way data.* A summary of the total
requirements is shown in Table 1-1 and in Figure 1-1. Since there is still some
uncertainty concerning the development of video conferencing systems, we have
performed the subsequent analysis for a "high traffic" model which includes video
conferencing and for a "low traffic" medel which contains voice and data
requirements only.

* The term "transponder" is used as a reference to express traffic levels. The
transponder capacity is assumed to remain constant over the study period.
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Table 1-1
Total Satellite Service Demand

(Number of Transponders)

Video
Year Conferencing Data Voice Total
1980 2 3 70 75
1985 ) 24 289 373
1990 3,980 74 660 4,714
1995 8,280 120 1,008 9,408

Another important traffic element is T.V. distribution for network and
CATYV application. Projected requirements are shown in Table 1-2.

Table 1-2
T.V, Transmission Requirements
(1980 - 1995)

Video Channel

Year Requirements
1980 50
1985 100
1990 200
1995 350

TV distribution requires different payload configurations than point-to-point
traffic. In subsequent sections the developrient of spacecraft configurations
considers only point-to-point traffie.



1.2 System Evolution

The history and projected evolution of the U.S. domestic satellite
systems using an extension of conventional satellites is shown in Figure 1-2, The
resulting total in-orbit capacity is shown in Figure 1-3.

Follow-on satellites are expected to have higher EIRP at C-band and
Ku-band to permit high capacity with smaller, lower cost earth stations and with

cross strapping between the two frequency bands.

1.3 Orbit Utilization

The last few orbital slots available for use by U.S. domestic satellites
are already being contested by several domestic carriers. In the future, increasing
total systems demand can only be satisfied by increasing the capacity of each
satellite. Figure 1-4 shows the average capacity that is required to meet the
service demand as a function of time. Because of a number of factors, the actual
utilization of in-orbit capacity will be lower than 100 percent. This implies that
the design maximum capacity of the spacecraft in these slots will need to be higher
“an indicated. Some of the reasons for this inefficiency are:

The use of some slots for T.V. distribution. This function is not
compatible with the frequency reuse and switching provided for point to
point communications.

The operation of satellite systems by different entities. This results in
the situation where Carrier 1 may be filled up while (for some reason)
Carrier 2 may not be uble to fill his available transponders. All systen:s
do not saturate at the same time.

The uneven distribution of traffic. This causes areas of high traffic
(such as New York City) to saturate well before areas of low traffic
density (such as the West). While some allowance can be made in
spacecraft construction for this tendency, it is not possible to forecast
the future traffic patterns with sufficient accuracy to eliminate it
entirely.

The conclusion from this analysis is that orbital congestion dictates the
development of high capecity satellites. A capacity in excess of what can be
achieved with conventional satellites will be needed between 1987 and 1996.

4
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1.4 Spr-

-+ Configurs :ion

The constraint of using a single Space Shuttle launch with an improved
upper stage for the advanced doniestic satellite leads to a configuration such as
that shown in Table 1-3, with an antenna coverage as shown in Figure 1-$.

Table 1-3

Major Features of ADS Spacecraft

All-CONUS** Offloaded* **
System System
Primary East Coast

Capacity at Saturation

(36 MHz transponder) 387 578 195
Spacecraft BOL Mass (kg) 4,440 4,800 4,000
Launch Vehicle STS STS STS
Transfer Vehicle Centaur Centaur Centaur
Spacecraft EOL Power (kw) 11 16 5.5
Number of Antenna Beams*

at C-band 25 25 7

at Ku-band 11 14 5

At Ka-band 4 6 4
Antenna Beamwidth

at C- and Ku-band 1.3° 1.3° 1.3°

at Ka-band 0.6° 0.6° 0.6°

* dces not count dual polarization as 2 beams

** contiguous United States

**+ Part of the traffic is offloaded onto sa‘ellites over the Atlantic Ocean, which
do not have full CONUS visibility. Connectivity is established by means of

intersatellite links.

8



Figure 1-5

i
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C-BAND AND Ku-BAND

SPOT BEAM ANTENNA COVERAGE OF CONUS
(Numbers 1, 2, 3 indicate freguency assignment)

KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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It should be noted that a major factor in increasing the satellite
capacity has been the allocation of additional frequency bands at the 1979 WARC.
While the exact time at which these bands would become available has not yet been
determined, we have assumed that as a result of WARC decisions, an additional
300 MHz would be available at C-band and an additional 500 MHz would be
available at Ku-band in the late 1980's when ADS would become operational.

With the advent of inter-satellite links some further increase in
systems capacity will be available by placing satellites to the east and west of the
U.S. service are. Such satellites will achieve coverége of only part of CONUS, but
full systems connectivity is available through inter-satellite link connection.

Area coverage by means of multiple spot beams has the further
advantage that each country or region may use the total service arc. International
agreement must be reached, however, on size and positions of spot beams, and the
beam patterns of satellites serving different countries or regions must be meshed.

The interconnection of multiple spot beams places a major requirement
on the on-board switch. Because of weight limitations we have avoided baseband
processing and have instead provided satellite switched TDMA for the hearier
routes and IF switched iinks at 6.3 Mbps for the lighter routes. The latter is useful
for video conferencing and for low rate TDMA.

1.5 Earth Station Configurations

As the spot beam and switching capability of the spacecraft increases,
the earth stations become simpler and cheaper. Higher satellite antenna gain
translates into lower earth station antenna gain and transmit power requirements.
More on-board switching leads to simpler baseband arrangements at earth stations.

Since video conferencing will take place largely at Ka-band where
adequate transmission capacity is available, a special operating mode has been
provided which is rain outage tolerant. When the rain attenuation exceeds the
available margin, the transmission bit rate (and the corresponding bandwidth) is
reduced from 6.3 Mbps to 64 kbps. This permits an additional 20 db of margin and

10



conferencing can proceed with audio and graphies support. Satisfactory avail-
abilities result in all cases.

1.6 System Costs

Space segment costs are reduced substantially from today's values.
Annual transponder costs will be about $100,000 (1980 dollars). Coupled with low
earth station costs, the ADS system will be cost competitive for distances of more
than 50 km. for most typical applications. For video conferencing, satellite
transmission will be cheaper for any distance o(rer which direet wiring is not
practical.

1.7 Technology Identification

To implement the advanced domestic satellite, technology development
is needed in the following areas:

- Multiple-beam, frequency-reuse antennas
-~ High-capacity RF and IF switch hardware and architecture

- 10-year reliabil.ty and redundancy configuration for multi- beam
satellites

-  Lightweight, moderate power (30 - 40 watts) solid state amplifiers
at GHz frequencies

-  Integrated microwave subsystems
- Intersatellite link technology

-  Packaging and deployment scheimes to fit the Shuttle orbiter cargo
bay

11



SECTION 2
INTRODUCTION

This report was prepared by Future Systems Incorporated (FSI) for
NASA Headquarters under Contract Number NASW-3300. It addresses the likely
development of U.S. domestic satellite communications systems and desirable
technology development 'to meet systems capability requirements. The report
draws extensively on information prepared under other prior or concurrent NASA

contracts, as listed below:

Reference Subject Author

1 Large Platforms FSI

2 18/30 GHz Systems Ford Aerospace

3 18/30 GHz Demand Western Union

4 18/30 GHz Systems Hughes

5 18/30 GHz Demand ITT

6 18/30 GHz Architecture TRW

7 On-Board Processing Mitre Corp.

8 Platform Payloads COMSAT

9 Platform Feasibility Aerospace Corp.
10 Platform Concepts General Dynamics
11 25 Year Forecast FSI
12 FCC Filing for Orbital Slots Hughes
13 Comments in Opposition to #12 SP Communications
14 On-Board Switching MIT Labs

In Report No. 221, FSI compared communications systems using large
platforms with systems using conventional satellites. As an extension of that work,
the present FSI report describes an advanced, high capacity communications
satellite system with the constraint that satellites are configured for the full
capacity of a single space shuttle launch. The designation for this system is
Advanced Domestic Satellite System (ADS).

12



In order to be able to measure the utility of a satellite communications
system it is necessary to define a traffic model. FSI has developed a traffic model
for U.S. domestic satellite traffic 1980 to 1995, covering data, voice, and video
requirements. This model takes into account work performed by Western Union
and ITT for NASA Lewis Research Center last year, as well as FSI's own
forecasting data base. The FSI traffic model also considers the faet that the U.S.
is now at the threshold of a telecommu..ications revolution. This revolution is
triggered by new technology which reduces switching and transmission costs and in-
creasing energy costs which encourage the use of telecommunications. Satellite
transmission is one key technology which permits rapid and economical expansion
of transmission capacity. Thus, the FSI traffic model is contingent on the
availability of high capacity advanced satellites of the type described in this
report. Section 3 describes the FSI traffic projections; the complete analysis
underlying these projections is presented in Arnex A.

In recommending a technology development program for NASA, we
believe it is important to identify how the new technology will be used in an
operating system, and how it could be introduced. The transition from the present
system to new systems is especially important, considering existing investments in
space and ground segments. Transition should be accomplished not only with
minimum obsolescence of equipment, but also without service disruption. The
shortage c{ orbital satellite locations on the geostationary arc is a further
complication. In order to provide a good understanding of transition requirements,
we have presented the current U.S. domestic space segment and its likely
evolution during the next few years. This information is shown in Section 4.

An analysis of the congestion of the geostationary arc (Reference 11)
was performed in 1977. It projected that all slots available for satellites serving
North and South America would be occupied rapidly, and that sufficient systems
capacity could be provided only by increasing the capacity of individual spacecraft.
In fact, we have already reached a situation where two U.S. communications
carriers are competing for the last two orbital satellite positions which are needed

13



for services they plan to offer (References 12 and 13). This competition underlines
tne requirement for higher capacity satellites and we project that future applica-
tions for satellite systems will be compared by the FCC on the basis of systems
capacity. The satellite capacity which is required for a given orbital location can
be determined from the total systems capacity requirement and from the number
of orbital slots available for a given service area. An analysis of minimum
satellite capacity needed to satisfy total systems capacity requirements for U.S.
domestic systems is presented in Section 5.

In Section 6 we have selected a concéptual spacecraft configuration
which can be launched on a single space shuttle flight with the use of a suitable
upper stage. Weight and power budgets are extrapolated from work which has
already been performed for NASA by others (References 2, 4, 6, and 10). The
overall spa e segment needed to satisfy the total U.S. domestic traffic demand is
also presented in this section, along with estimates of space segment systems costs
and costs per channel.

Section 7 addresses the grounc segment which is required to provide
service in conjunction with the space segment deseribed in Section 6. Trunking and
direct-to-the-user service is provided and the requirement for terrestrial exten-
sions is examined. Estimates of ground segment costs and costs per channel are
made. Total systems costs for the space and ground segment are shown in
Section 8. These costs are compared with terrestrial microwave transmission and
fiber opties transmission costs. Finally, Section 9 identifies the required tech-
nology development and major conclusions are presented in Section 10.

14



SECTION 3
U.S. DOMESTIC SATELLITE TRAFFIC PROJECTIONS

3.1 Background

In a precursor study (Reference 1) FSI performed a comparison of large
communications platform systems with systems configured with conventional
satellites. In support of this study, FSI prepared traffic p'rojections for U.S.
domestic communications satellite service. In parallel NASA Lewis Research
Center had commissioned two studies, one with Western Union and the other with
ITT U.S. Domestic Transmission Systems, for the preparation of satellite com-
munications service demand models (References 3 and 5). Taking into account this
earlier work and other information that has become available, FSI has prepared an
updated projection for U.S. domestic satellite communications service. This
projection is presented in this section.

The traffie projection covers a period of 15 years, mid-1980 to mid-
1995. The following information and factors have been considered in the

preparation of this projection:

1. Technology Advances

Rapid advances in communications technology are taking place and
these advances would have a significant impact on the future
development of communications facilities. These advances would
be in the area of low-cost space segment facilities, low-cost earth
stations, new microwave data distribution facilities of the type
proposed by Xerox XTEN, new data concentrating and switching
equipment, and finally development of practical fiber opties com-
munication systems.

2. Legislative and Regulatory Changes

Three bills addressing regulation and competition in the field of

" telecommunications are currently before the U.S. Congress, and
the FCC is conducting its MTS/WATS inquiry. We expect the the
future communications environment will include increased ecom-
petition, and this competition will stimulate the introduction of
advanced technology and will insure that cost advantages gained
from this technology are passed through to the end-users.

15



3. Energy Costs

Rising energy costs will lead to the substitution of communications
for some travel. This will take the form of increased use of
facsimile and electronic mail, narrowband teleconferencing, and

full video conferencing.
This Section provides summary information on the traffic model.
Traffie is generally expressed in terms of number of equivalent 36 MHz C-band
transponders. Such transponders are capeble of transmitting a digital rate of 60 to
64 Mbps or of approximately 1,000 one-way telephony channels. The use of
reference transponders is'not intended to imply that actual satellite facilities will
always be offered in terms of transponders with 36 MHz bandwidth. Annex A to
this report provides detailed backgound data that were used in the derivation of the

traffic estimate.
3.2 Data Traffic

Data communications traffic consists of message traffie, computer
traffie, and narrowband teleconferencing traffic. While the total rate of informa-
tion transfer will increase greatly during the next 15 years, increased transmission
efficiencies will reduce the overall rate of increase of data traffic. The satellite
portion of the data service demand, however, grows rapidly because of the inherent
economies of satellite service. Satellite data transmission requirements are shown
in Table 3-1.

Table 3-1
Data Transmission Requirements

Transmission Bit Rate Number of Equivalent
Year Mbps 36 MHz Transponders
1980 80 3
1985 963 24
1990 13,485 74
1995 6,216 120
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Our estimate of data communications traffic refers to that traffie
whiei is clearly identifiable as data traffie. This type of service will progressively
be transferred to packet type transmission systems with increasing transmission
efficiencies. In addition, there will remain some data transmission requirements
which are satisfied via conventional dial-up or leased telephony lines using
relatively inefficient transmission arrangements. Often such service is provided as
alternate voice/data service, where a transmission line is used for voice trans-
mission during part of the day, normally working hours, and for data transmission
at off-peak voice hours, normally evenings, perhaps for transmission of batch
computing information. In our model this type of tréffic has been included in the
voice channel requirements section. The remaining data requirements will
therefore all be handled with relatively good efficiencies, and therefore, the
number of transponders required for this more efficient data transmission is
relatively smaller than other estimates.

For the purpose of this study, the segregation of voice and data is not
important, since we expect that generally the same earth stations will be used to
handle both voice and data communications and the satellite transmission facilities
are completely interchangeable. In our model all transmissions are digital, and
therefore, a 64 kbps data channel is equivalent to a one-way voice channel.

3.3 Telephony Service

Telephony service includes MTS, WATS, and private line service. The
satellite service demand is summarized in Table 3-2.

Table 3-2
Telephony Service Demand

Two-Way Cireuits Number of Equivalent

Year in 1000's 36 MHz Transponders
1980 28 70
1985 130 289
1990 330 660
1995 504 1,008

17



3.4 Video Conferencing

We expect that extensive video conferencing will be required and can
best be provided by means of satellite communications. The costs of transmission

and conference room facilities will be low, as shown below

Space segment transmission costs per hour

Incremental earth station and conference

room facilities costs per hour

Communications carrier's administrative

expenses and profit per hour of use

Total hourly charge

$10
$10

$10
$30

Rising costs and inconvenience of business travel will become a strong

incentive to substitute telecommunications for some travel. Video conferencing

will replace some air travel and some local travel and will be used as a more

efficient means of conducting business. Large and medium size corporations will

have their own conference rooms in lieu of public facilities. Once established, the

video conferencing system will lead to further decentralization of business,

permitting people to live where they wish and to work near their homes. Table 3-3

is the estimate of video conferencing requirements.

Table 3-3
Video Conferencing Requirements

Two-Way
Video Number of Equivalent
Year Circuits 36 MHz Transponders
1980 9 2
1985 293 60
1990 19,900 3,980
1995 41,400 8,280

18



We at FSI are firmly convinced that video conferencing will become an
important service offering; however, in recognition of the fact that public opinion
is divided concerning the value of video conferencing, we have treated the video
conferencing requirement as one of two alternatives. In the first system
implementation scenario, we assume that there will be little or no video conferenc-
ing and the total point-to-point telecommunications requirements will consist only
of data and voice. In the second implementation scenario, we have assumed that
video conferencing will develop, and in this case video conferencing requirements
are included in the total.

3.5 Total Point-to-Point Traffie
3.5.1 Data and Voice Only

Total satellite service demand expressed in equivalent 36 MHz tran-
sponders is shown in Table 3-4 and Figures 3-1 and 3-2. Voice requirements are
always much larger than data transmission requirements and are therefore control-
ling the service.

Table 3-4
Total Satellite Service Demand

(Number of Transponders)

Year Data Voice Total
1980 3 70 73
1985 24 289 313
1990 74 660 734
1995 120 1,008 1,128

19
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3.5.2 Data, Voice, and Video Conferencing

Total satellite service demand is again expreszed in equivalent 36 MHz
transponders and is shown in Table 3-5 and Figures 3-3 and 3-4. Voice require-
ments gre always much larger than data transmission requirements and video
confrencing becomes the controlling service as soon as adequate transmission
facilities become available.

Table 3-5
Total Satellite Service Demand
(Number of Transponders)

Video
Year Conferencing Data Voice Total
1980 2 3 70 75
1985 60 24 289 373
1990 3,980 74 660 4,714
1995 8,230 120 1,008 9,408

For video conferencing we have assumed that high quality transmission
will be used on the average in order to make this service acceptable. High quality
video conferencing transmission requires a transmission rate of 6.3 Mbps per one-
way video conferencing channel. It is assumed that interframe processing is
provided; that means the information on one videc frame is stored and compared
with the information on the next video frame and a technique is employed whereby
the primary information transmitted consists of changes between frames. In this
manner a 6.3 Mbps transmission for video conf.rcacing applications provides full
resolution and signal-to-noise quality in concur.Zace with TV network standards;
however, this system would not be suitable for transmission of sports or other
events with rapidly changing background. It is fully suitable for conferencing
applications; where background information is relatively statie.
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3.6 TV Distribution Requirements

This section summarizes point-to-multipoint TV distribution require-
ments. This type of traffic has been treated separate from point-to-point video
transmission, since it requires different facilities. We have included in this section
all requirements for network TV, occasional TV and CATV transmission. Other
applications, such as educational video, telemedicine, disaster relief and law
enforcement, are considered to be within the video conferencing category since
they do not have the characteristic of requiring widespread distribution, as is the
case with entertainment video.

3.6.1 Transmission Facilities and Channel Requirements

Point-to-point transmissions can be provided via future high capacity
satellites with great efficiency of spectrum and orbital arc utilization through
multiple frequency reuse via narrow spot beams. Satellite capacity can be
increased by reducing the beam size and increasing the number of beams per
satellite. On the other hand, the characteristics of the point-to-multipoint
transmissions require wide area coverage by the same transmission signal; thus
satellite capacity cannot be increased through multiple frequency reuse. For this
reason we expect that the TV distribution satellites of the future will be quite
different from the high capacity communications satellites that will be employed
for point-to-point transmissions.

Future video transmission satellites will provide wide area coverage
beams, perhaps matched to the U.S. time zones. Each beam will provide coverage
at all available frequency bands, and dual polarization will be used at the lower
frequencies. The bandwidth of the transponders will be more closely matched to
the TV transmission requirements than is the case today.

It should also be noted that the uplink inhomogeneity between multi-
beam and area coverage satellites will require wide orbital spacings between the
two types of satellites. TV distribution satellites can be used to occupy the
intermediate spaces, provided that their uplinks are furnished by narrow beams. As
long as program originations remain within a few locations, this can easily be
accomplished.
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A further contributing factor will be the rising energy costs, which will
provide an incentive to increase the amount of entertainment that is available at
home. Table 3-6 shows estimates of TV transmission requirements for 1980, 1985,
1990, and the year 1995. Figure 3-5 is the FSI estimate for equivalent quality TV
transmission requirements, taking into account the above mentioned considera-
tions.

Table 3-6
TV Transmission Requiremgnts
’ 1980-1995
Video Channel
Year Requirements
1980 . 50
1985 100
1990 200
1995 350
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SECTION 4
SATELLITE SYSTEMS EVOLUTION

This Section describes the current status of the U.S. domestic satellite
communications system and projects and their likely development during the next
few years. This projection is important to permit planning for transition from
conventional systems to the advanced satellite system described in this report.

4.1 Historical Development and Current Status

The first commercial communications service on a U.S. domestic
communications satellite was provided by Western Union's Westar I satellite in
1974. Since that time, seven additional U.S. domestic satellites have been
successfully launched. These satellites are part of AT&T's Comstar system,
Western Union's Westar system, and RCA Americom's Satcom system. The eighth
satellite, RCA Satcom F-3, was lost in orbit, presumably upon apogee motor
malfunction. An additional seven satellites have been procured and will be
launched during the early 1980's. Among these additional satellites are Western
Union's follow-on to Westar, Advanced Westar, and a new entry into the U.S.
domestic satellite market, Satellite Business Systems. RCA's F-3 will be replaced
by F-4, already under construction.

In addition, others may soon join in the satellite communications
business. Included in these are Xerox, with its proposed Xerox Telecommunications
Network (XTEN) to be used for high speed data and voice both inter- and intraeity,
the newly proposed partnership of Fairchild Industries, Continental Telephone
Corporation, and the Western Union Telephony Company. The latter entrant
proposes joint ownership of Western Union's Wostar and Advanced Westar systems.
Thus, the formalization of this partnership, which still requires approval by the
FCC, will have substantial impact on the satellite communications market. For
example, American Sate.lite Corporation, a wholly~owned subsidiary of Fairchild
Industries, will have assured space segment at a competitive price relative to its
present situation where it leases space segment from a competitor. Telenet has
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announced its intention to construct an earth station network to supplement its
leased terrestrial facilities for the packet data network and SP Communications
has advised the FCC of its intention to operate a saleliite network.

Table 4-1 shows the capacity launch dates for 17 operating and planned
U.S. domestie satellites including a fourth Westar, a fourth Comstar, and a third
SBS. Of those satellites shown, four have not yet received permission for launch
(Westar 4, Satoom 4, Comstar D4, and SBS C). However, except for Westar 4,
these satellites are either under construetion or already constructed. Figure 4-1
shows the projected in-orbit service of these presently operating and planned
satellites based on an expected mean life of 7 years. The projected in-orbit
capacity for these satellites along with total service demand is shown versus time
in Figure 4-2.

The comparison of currently existing and committed in-orbit capacity
with projected demand shown in Figure 4-2 shows that any slip in the projected
launch dates of the satellites not yet in-orbit will cause a shortage of capacity to
occur, perhaps as early as 1982. The launch of Satcom F4, for example, is
contingent on receipt of FCC approval relatively soon. In addition, the approach-
ing ends-of-life for some of the earlier satellites will affect the number of
operating transponders, and hence the number of in-orbit transponders will be
somewhat lower than that shown. At best, without new commitments, the shortage
will oceur around 1983 when the first satellites begin to reach 7 years in-orbit.

4.2 Projected New Satellite Programs

The projected shortage of in-orbit capacity provides an opportunity for
communications carriers to procure new satellite systems. Any new procurement
is subject to FCC approval, and the timespan required for approval introduces an
additional uncertainty into the projections. The allocation of orbital slots is
ancther problem. Table 4-2 shows possible launch dates for 4 second generation
satellite systems, which could conceijvably be launched beginning around mid 1983.
This projected launch date allows some time for FCC approval to occur during 1980
and a 30 month procurement schedule. The transponder capacity for each satellite
of 48 transponders should be easily achievable through the use of both C-band and
Ku-band and frequency reuse. Figure 4-3 shows the projected in-orbit lifetimes

29



for these second generation satellites along with the projected in-orbit lifetimes of
the presently planned and operating satellites as previously shown. Figure 4-4
shows a comparison of available and required in-orbit capacity including the second
generation satellites. New spacecraft programs may come too late to eliminate
the in-crhit capacity shortage of 1981 and 1982, but adequate capacity can be
provided from 1983 on. .

Table 4-1
Capacity and Launch Dates of
Operating and Planned U.S. Domestic Satellites

Number of Transponders Satellite Launch Date
12 Westar 1 4/74
12 : Westar 2 10/74
12 Westar 3 8/79
24 Westar 4 3/82
27 Advanced Westar 9/82
27 Advanced Westar 1/83
24 Satcom F1 12/75
24 Satcom F2 3/7€
24 Satecom F4 6/81
24 Comstar D1 &/76
24 Comstar D2 7/76
24 Comstar D3 6/78
24 Comstar D4 3/81
10 SBS A 10/80
10 SBS B 1/81
10 SBS C 9,/83
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Table 4-2
Projected Capacity and Launch Dates
For Second Generation U.S, Domestic Satellites

Number of Transponders Satellite Launch Date
36 Carrier 1 6/83
36 Carrier 1 9/83
36 Carrier 2 7/83
36 Carrier 2 10/83
36 Carrier 3 12/83
36 Carrier‘3 1/84
36 Carrier ¢4 3/84
36 Carrier 4 6/84

The second generation satellites will most likely be a combination of
follow-on satellites to existing satellite systems, such as a follow-on RCA Satcom
and a follow-on Comstar, and new entrants into the U.S. domestic satellite market,
such as the recently proposed Hughes Communications system or the SPC system.

During the period of in-orbit shortage, special techniques will be
employed to increuse satellite capacity. These techniques consist of companded
FM transmission, TDMA transmission with DSL* and compressed video
Lransmission.

At this time, the following communications carriers are working
towards new satellite programs; however, no firm commitments have been made

ajd the FCC has not yet approved any of these systems:

Western Union Telegraph Company

Two satellites with 24 transponders each to offset the delay of the
Advanced Westar launches.

* Digital Speech Interpolation
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Hughes Communications

Two satellites with 24 transponders each for lease to oti.~r carriers and
for corporate networks.

SP Communications

Filed with the FCC its intent to implement a satellite system.

AT&T Long Lines

Planning for a follow-on system to Comstar.

RCA American Communications

Planning for a follow-on system to Satcom

4.3 Characteristics of Follow-On Systems

At this time, most carriers are planning their follow-cn spacecraft only
for the capacities and characteristics needed for their own requirements, without
adequate consideration of total U.S. domestic systems capacity requirements and
orbital arc efficiency. This approach, however, is bound to fail because of
conflieting claims for orbital satellite slots. We project that as a result of the
saturation of certain parts of the orbital arc, the FCC will be required to institute
more comprehensive planning for the totality of U.S. domestic system require-
ments. This will lead to satellites with higher capacity, multiple frequency bands,
and better connectivity.. New frequency bands made available at the 1979 WARC
will be allocated at an accelerated schedule. Typical characteri:.ics of follow-on
satellites are summarized below.

Characteristics of New, Improved Satellites

By providing a new generation of domestic satellites, the opportunity
exists to improve on the characteristics of these satellites. Optimum character-
isties of a new generation of domestic satellites providc the following features:

Inereased EIRP at C-band and Ku-band

This increase will permit achievement of higher capacity with small
diameter earth stations--for example, 4.5-meter diameter at C-band—
and would therefore lead to lower systems costs.
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Interconnection of C-band and Ku-band

In this manner, currently existing C-band systemas can expand by adding
new C-band or Ku-band stations for optimum network design.

New C-band stations will be constructed in all cases where co-location
of stations with the central offices is practical. In other cases,
Ku-band stations would be implemented on a co-located basis. The new
satellites provide trunking service and direct-to-the-user serv.ce both
at C-band and Ku-band in a fully interconnected mode.

Advantages of Shared Space Segment

Several new users of communications satellites will be able to share a
common set of satellites and derive a number of advantages from shared use:

Availability of Goostationary Arce

The congestion of the geostationary arc limits the number of slots
available for U.S, domestic communications satellites. For this reason
additional satellites will have to have higher capacity and will have to
be shared by several users as shown in Figure 4-5.

Larger Capacity Satellites

Larger capacity satellites result in lower unit transmission cost (cost
per transponder) due to economies of scale.

Higher Transponder EIRP

With larger satellites, it is more practical to provide higher EIRP per
transponder, leading to higher transponder capacity with small earth
stations, '

The result of these advantages are lower system transmission costs.
Earth stations will be located closer to the end user, theredy eliminat-
ing a significant portion of terrestrial extension costs.

Problem Areas

The introduction of a new generation of spacecraft requires the solution
of several problems:

1. The availability of orbital slots is limited. A two-stage coordina-
tion program is required.

a. Approval must be obtained from the FCC for a new satellite
program and proposed orbital locations.
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b. Once agreed by the FCC, application must be made by the
FCC with the International Frequency Registration Board to
obtain protection on a global basis. Particular attention must
be paid to the requirements of orbital locations for joint use at
C-band and Ku-band.

2. Because of zertain program changes in the Space Transportation
System Program (Snace Shuttie), the availability of launches during
the early 1980'« may be limited. For this reason, it will be
desirable to make an early reservation with NASA for intended
launch services. In the absence of assured Shuttle launches, the
carriers will plan on the use of the Delta launch vehicle, thereby
limiting the achievatle canacity.

3. Coordination with rc.t et to interference from and into adjacent
satellite systems has 10 be carried out. Increased EIRP on the
proposed new satellites requires planning to demonstrate that
interference into adjacent systems is not excessive.

The above mentioned problems can be solved by careful planning and

early consideration of technical and regulatory aspects affecting system imple-
mentation,
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SECTION 5
ORBIT UTILIZATION

5.1 Orbital Are Occupancy

This section provides information on the present and planned use of the
orbital are. Table 5-1 shows the service arc-that is, the range of possible satellite
locations which provide adequate visibility for various countries. Table 5-2 shows
the existing and planned satellite locations for systems for North and South

America.
Table 5-1
Service Are
Visibility Are
Minimum Elevation
World Reference Coverage Angle or 10 Degrees
Kegion Number Range (Degrees in West Longitude)
North America 1 Canada, Including Yukon
and NW Territories 114 - 116
2 Canada, Vancouver to Halifax 61 -128
3 USA, Including Hawaii and Alaska 133 - 134
4 USA, CONUS only 61 - 134
5 USA, CONUS and Hawaii 92 - 134
Latin America 6 Brazil 0-139
7 Colombia 10 - 143
8 Chile/Argentia 10 - 130
9 Total Regional Coverage 10 - 109
10 Mexico/Caribbean 46 - 143
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Table 5-2
Satellite Locations

Satellite Location* Satellite Location*
Satcom F1 135 Westar 1 99
Satcom F3 132 Advanced Westar 99
Comstar D1 128 Comstar D2 95
Westar 2 l 123.5 Westar 3 91
SBS A 122 Comstar D3 87
Satcom F2 119 U.S. Domestic 81.7
Anik A3 114
Anik A2 108 Brasilsat 75
Anik Bl 109 Colombia 75
SBS B 106 Brasilsat 70
‘Anik Al 104 Brasilsat 65
Advanced Westar 103 Brasilsat 60

*Degrees west longitude

Shown are 'actual or planned locations of communications satellites
from 60 to 134 degrees west longitude., A 4-degree spacing is assumed as a
minimum to provide protection against intersatellite interference; thus within any
4-degrees there can generally be only one satellite per coverage area per frequency
band.

Most of the satellites shown are C-band, and thus each slot can also
handle a Ku-band satellite, but the congestion is evident. To some extent it will be
possible to retain already coordinated positions, but as more and more demand is
made on the arc, the situation will naturally become more critical.
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Figure 5-1 shows the orbital slots in graphical format. In the future it
will be possible to share slots for use by North and South America by means of
antenna diserimination.

The visibility are for CONUS extends from about 61 to 134 degrees
west longitude. The present and planned occupancy for this portion of the are is
shown schematically for C-band and Ku-band using 4-degree orbital slots. At
present there is only one operating Ku-band satellite, Anik B. There are eight
unoccupied slots at C—barid, six of which have been coordinated, thus leaving only
two which have not been coordinated. The positions coordinated for Latin
American countries are likely to be available to U.S. domestic carriers provided
that there is sufficient isolation between antenna beams. for thc sysiems which will
operate in different hemishperes. Taking these factors into account, there are six
slots available at this time for U.S. domestic satellite systems providing C-band
coverage of CONUS. Ku-band slots are more available at this time with only 5 out
of 19 slots presently coordinated. WARC decisions on the use of broadecast
satellites will have an important impact cn the availability of Ku-band slots.

5.2 Spacecraft Capacity Requireraents

The service arc for coverage of CONUS with a minimum elevation
angle of 10 degrees is about 74 degrees wide. With a four-degree spacing this
permits 19 satellites in orbit. Part of the same service arc is also required for
coverage of Canada and Latin Amcrica. At present the available antenna beam
isolation for spacecraft antennas is adequate to permit sharing of the same orbital
slot by North and South American countries, especially if satellite positions are
interleaved. However, different slots must be used for satellites serving adjacent
countries, such as the U.S. and Canada. At present there are probably 12 slots
available for service to the U.S. with three slots used by Canada and four requested
by South American countries.

At a time when advanced spacecraft with multi-beam antennas of the
type described in Section 6 are used by all countries which share the service arc
with the U.S., each country will have available the total number of slots.
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Thus, at that time the number of slots available to the U.S. could be 19. It is
understood that this would require agreement on the technical characteristics of
the spacecraft, especially the antenna beam and frequency assignment plan. To be
conservative, however, we have assumed that only 16 slots would be available.
Based on the number of slots and on the service demand, the average required
spacecraft capacity versus time can be determined. This information is shown in
Table 5-3 and Figure 5-2,

Because of a number of factors, the actual utilization of in-orbit
capacity will be lower than 100 percent. This irr{plies that the design maximum
capacity of the spacecraft in these slots will need to be higher than indicated.
Some of the reasons for this inefficiency are:

The use of some slots for TV distribution. This funetion is not
compatible with the frequency reuse and switching provided for point to
point communications.

The operation of satellite systems by different entities. This results in
the situation where Carrier 1 may be filled up, while (for some reason)
Carrier 2 may not be able to fill his available transponders. All systems
do not saturate at the same time.

The uneven distribution of traffie. This causes areas of high traffic
(such as New York City) to saturate well before areas of low traffic
density (such as the West). While some allowance can be made in
spacecraft construction for this tendency, it is not possible to forecast
the future traffic patterns with sufficient accuracy to eliminate it
entirely.

In an evolving system the spacecraft capacities vary. For example, at
present there are both 12 transponder and 24 transponder spacecraft in orbit. The
usable capacity is generally lower than the available capacity, because of the
nature of the traffic distribution. The usable capacity of future TV distribution
satellites will be lower than the usable capacity of point-to-point service satellites,
which permit more frequency reuses.

A good general design guideline for new spacecraft would be to select a
capacity that is at least as large as the required average capacity required at the
end of the projected lifetime. In a more precise evaluation one would take into
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Table 5-3
Required Average Spacecraft Capacity to Meet Service Demand

e

Number of Total Service Demand Average Spacecraft Capacity
Slots Allocated In No. of Transponders In No. of Transponders

Mid-Year Low_Demand High Demand Low Demand  High Deman
1980 7 123 125 18 18
1981 7 16 159 23 23
1982 9 | 137 200 22 22
1983 12 259 264 22 22
1984 16 325 338 20 21
1985 16 413 473 26 30
1986 16 508 774 32 48
1987 16 615 1,584 38 99
1988 16 727 2,401 45 150
1989 16 840 3,620 53 226
1990 16 934 4,914 58 307
1992 16 : 1,144 7,304 72 457
1993 16 1,252 8,172 78 511
1994 16 1,361 9,081 85 568
1995 16 1,468 9,748 92 609

Note: Low demand includes voice and data traffic only.
High demand includes the above plus video conferencing.

Both include TV distribution.
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account the projected capacities and lifetimes of all satellites already in orbit or
committed, and then calculate the incremental capacity required for new or
replacement satellites.

Satellites operating in different frequency bands may be assigned to the
same orbital locations. In this manner a systems capacity, for example, of 48
transponders at one location may be achieved by means of two separate satellites:
one with 24 transponders at C-band and the other with 24 transponders at Ku-band.
Alternatively, both frequency bands may be combined on the same satellite,
leading to lower costs because of economies of scale and to better connectivity if
the two frequency bands are cross-strapped.

Based on this analysis, new satellites to be introduced in the early
1980's should have capacities of about 48 transponders. Satellites introduced
around 1985 should have at least 72 transponders. Capacities of much more than
72 transponders will not be easily achievable with conventionul approaches.
Therefore, in the high demand case the advanced satellite described in Section 6
should be operationally available around 1987. In the low demand case the
advanced satellite would not be needed from an orbit use point of view until the
early 1990's although systems economics will make its introduction desirable much
earlier.

Generally, the sooner the advanced satellite is introduced, the sooner
the system will benefit from the resulting economies. The efficient orbit
utilization for point-to-point services will provide more orbital arc for TV
distribution services.

5.3 Connectivity

The following approaches may be taken to achieve network connectivity
when multiple satellites are used to provide coverage of a given area:
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Multiple Earth Station Antennas

High capacity trunking earth stations can be equipped with several
antennas, one for each satellite that is accessed directly. Since
these earth stations carry high capacities, the cost per channel will
be acceptable. However, this concept is not practical for low
capacity stations and for urban environments with space
limitations.

Multi-beam Torus Antennas

A single torus antenna equipped with multiple feeds may access
several satellites. This concept works best when the satellite
separation is small. The torus area and antenna expense increase
for larger satellite separations. Each feed must be equipped with
its owp receive and transmit RC circuitry.

Segregation of Communities of Interest

It will be attempted to segregate communities of interest on
separate satellites. This is possible for private corporate and
government networks and for the public networks offered by
specialized common carriers.

Intersatellite Links

Intersatellite links will be used to provide the required connectivity
for residual traffic which was not satisfied by one of the above
approaches. Intersatellite links lead to increased transmission
delay as shown in Figure 5-3. For the maximum beam separation
of 72 degrees for the U.S. service are, this delay is still
considerably less than for double hop transmission and will probably
be acceptable for many applications. An attempt will be made,
however, to allocate traffic so as to lessen the intersatellite link
spacings.
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SECTION 6
SPACECRAFT CONFIGURATION FOR SINGLE SHUTTLE LAUNCH

6.1 Background

NASA has already sponsored several studies aimed at defining spacecraft
or platform configurations. Among those studies listed in Section 2 of this report,
the following recent work has had the greatest impact on the selection of a
configuration for an advanced satellite for use in U.S, domestic systems:

(a) General Dynamics "Geostationary Platform Systems Concepts
Definition Study", Reference 10

(b) Mitre "Application of Advance On-Board Processing Concepts
to Future Satellite Communications Systems", Reference 7

(¢) Ford "Concepts for 18/30 GHz Satellite Com.iunication System
Study", Reference 2

(d) Hughes "18 and 30 GHz Fixed Service Communication Satellite
System Study", Reference 4

(e) TRW "30/20 GHz Mixed Use Architecture Development Study",
Reference 6

(f) FSI "Large Communications Platforms Versus Smaller Satellites",
Reference 1

Major results of these studies have been used as a basis for the definition
of spacecraft configurations for the advanced operational system.

The FSI study (Reference 1) developed an ope.ational platform con-
figuration based on LEO platform assembly from three Shuttle launches. This
capability has been scaled back to a single Shuttle launch. The General Dynamics
study (Reference 10) is still underway. Results from the second interim report
covering weight and power budgets for single Shuttle launch have been used as an
input to the operation configuration. The Mitre study (Reference 7) has made
important contributions to the understanding of communications spacecraft switch

design, which is a major technolcgy problem. Ford, Hughes, and TRW (References




2, 4, and 6) have studied 30/20 GHz satellite communications systems concepts for
trunking, direct-to-the-user, -~d for mixed applications. Results from these
studies have been used as references for the development of weight and power
budgets, estimates of communications capability, and for technology evaluation.

Figure 6-1 is the block diagram of the communications subsystem that
had been developed by FSI in its earlier study (Reference 1). It was largely
intended to show the general switch architecture that might be used on a large
platform for an arbitrary mix of communications requirements. Meanwhile,
SS/TDMA and baseband sw}tching have been analyzed by Ford, Hughes, TRW, and
MITRE (References 2, 4, 6, and 7), and some of the results are summarized below.

Mitre concluded that a digital processor capable of performing high
speed switching of multiple T1 and T2 channels may be feasible in the 1990 to 2000
time frame and that extensive technology development is needed in various ereas.
For a 100 x 100 RF switch, Mitre proposes a design goal equal to 4 percent of the
Bell System 4-ESS, or about 10,000 lbs. (4,500 kg) and 20 kW. Compared with this,
the earlier FSI allocation for the switch and transponder electronics was 2,500 kg
and less than 10 kW.

TRW describes an SS/TDMA system with 18 fixed beams and a scanning
beam system. An SS/TDMA switch matrix is provided, and in addition, the
scanning beam is associated with baseband processing with 3 GBps throughput.
TRW's power allocation for the switch and digital processor is 475 watts, and the
total communications weight is 638 kg.

Thr Ford direct-to-the-user system includes a 25 x 25 baseband switch
with 3.75 GBps throughput. The power allocation for the switch and other
communications subsystems excluding the power amplifiers is 509 watts and the
total communications subsystem weight is 435 kg.

Hughes estimates that a 32 x 32 RF switch matrix woulc weigh 64 lbs.,
and a 64 x 64 matrix would weigh 512 Ibs. For a 25 beam direct-to-the-user
satellite, Hughes estimates a repeater weight of 667 kg and a power of 9,620 watts.
The weight and power for the switch is anly a small portion of the above allocation.
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6.2 System Architecture

FSI's selection of systems architecture for the Advanced Domestic
Satellite (ADS) was based on the following considerations:

1. Weight, Volume, and Power Constraints

The requirement for single Shuttle launch leads to reduced weight,
volume, and power allocations relative to FSI's platform configura-
tion (Reference 1).

2. Implementation Time Frame

Based on orbital arc constraints, an operational system should be
available by around 1987. This dietates more modest technology
objectives than would be possible with later implementation.

3. Traffie Distribution

Traffic distribution is an important input for the selection of
systems architecture. Transmission bandwidth requirements for
data, voice, and video conferencing will be in the ratio of 1 to 10 to
100. Video conferencing will develop in the most heavily populated
areas first, and therefore, a "cream skimmirg" ‘approach is
practical.

4. Availability Requirements

Severe propagation attenuation at the 30/20 GHz frequencies leads
to transmission diversity requirements for voice and data services.
Space diversity is expensive for low and medium capacity earth
stations, and frequency diversity (Reference 1) would place a too
demanding requirement on a first generation spacecraft switch for
single Shuttle launch application. Voice and data services will
therefore be provided primarily at C-band and Ku-band. Ku-band
will be used primarily for video ccnferencing with an cperating
arrangement as deseribed in Section 6.3.

5. TV Distribution Services

The ADS emphasizes high capacity by means of multiple spot
beams and frequency reuse. Flexible interconnectivity is obtained
by ou-board swiiching. A TV distribution system has different
requirements in terms of area or time zone coverage with fixed
uplinks and remote uplinks. The same spacecraft bus can
undoubtedly be used for these requirements, but the communica-
tions subsystem will be different. In this study we have
concentrated on the more complex point-to-point transmission
requirements, and TV distribution has not been covered in the
systems design
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The resulting spacecraft systems architecture is based on a reduced
number of beams for area coverage at C-band and Ku-band, and selective spot
beam coverage at Ka-band. For simplicity and reliability baseband switching is not
used on the first generation ADS, but it is expected that baseband switching will be
introduced on later spacecraft generations. An SS/TDMA transmission system is
used for high density trunk traffic, and IF switching at T-2 transmission rates
provides connectivity for T-2 trunks, low rate TD%A -«ystems, and video
conferencing. The communications subsystem block diagram is shown in Figure 6-
2.

Each spot beam is associated with its own receive and transmit feed,
low noise amplifier, output amplifier, and frequency converters. The frequency
band is divided as appropriate into two subbands: one for SS/TDMA operation, and
the other for multiple T-2 operation (6.3 MBps). The system contains one
frequency converter for each T-2 stream, and IF switching is greatly simplified
through the use of frequency synthesizers which transpose the T-2 signal to the
required relative frequency within the transponder bani. This arrangement is
similar to the well-known INTELSAT SPADE systeir or the domestic demand
assigned SCPC systems. ‘

Figure 6-3 shows the Conus beam coverage as secen from the satellite.
In our previous design for a communications platform with three Shuttle launches,
we provided the same area coverage for Ka-band. This was demanding on primary
power because of the large transmission bandwidth and precipitation attenuation
margin required. To reduce weight and power requirements we have reduced the
Ka-band coverage to spot beams for major city coverage. The Ka-band coverage is
shown in Figure 6-4.

6.3 East Coast Satellites

Prior FSI studies (Reference 1) showed that spacecraft saturation tends
to occur in the antenna beams covering the triangle formed by Boston, Chicago,
and Washington. When it becomes necessary to increase the systems capacity in
the slots available within the CONUS service are, we propose to allocate satellites
further east (which requires coordination with INTELSAT), to offload some of the
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Figure 6-3
SPOT BEAM ANTENNA COVERAGE OF CONUS
(Numbers 1, 2, 3 indicate freguency assignment)

Figure 6-4
KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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dense East Coast traffic. These satellites will achieve full CONUS coverage only
via intersatellite links, but at any rate a large traffic percentage will remain within
the East Coast area. The same principle may be used to offload the Los Angeles -
San Franeisco area, when this becomes necessary. '

East Coast satellites may be identical to the full CONUS satellites but
with squinted antenna beam pointing, or they may be of a special design to provide
coverage only for the high traffic areas, as shown in Figure 6-5.

Figure 6-5

HIGH-TRAFFIC AREA COVERAGE OF
EAST COAST SATELLITE
(Numbers 1, 2, 3 indicate frequency assignment)
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6.4 Frequency Bands Used

Based on the frequency band assignments made at the 1979 WARC, we
have assumed that the frequency bands shown in Table 6-1 will be used in the ADS
System. The available allocations and WARC 1979 results are shown in Figure 6-6.

Table 6-1
Frequency Band Assignments

Uplink Band Downlink Band Avaijlable Equivalent Number
MHz MHz Bandwidth MHz of Transponders
5,925-6,725 3,400-4,200 © 800* 20
512,750—13,250}
|14,000-14,500 11,200-12,200 1,000* 24
27,500-30,000 17,700-20,200 2,500 60

TOTAL 4,300 104

*Dual polarization is used in some beams at these frequencies, thus doubling the
available bandwidths and number of equivalent transponders.

WARC 1979 set the allocation for the frequency band covering 10.7
GHz te 11.7 GHz as internpational use only. We have assumed that one-half of this,
or 500 MHz, will become available for domestic use. At best, all 1000 MHz would
be available, and there is a possibility that none will be allocated. We have chosen
a middle cc.rse.

6.5 Traffic Assignment and System Capacity

Figures 6-7 and 6-8 show the traffic assignment to the different beams
and frequencies in the all-CONUS system. In a similar manner, Figures 6-9 through
6-12 show the traffic assignments for the system with offloading to an East Coast
satellite. Teable 6-2 summarizes the capacities and loading of the two systems.
The traffic divisions were all based on the population density and the telephone
density in major cities.
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TOTAL TRAFFIC = 102.2 TRANSPONDERS

Figure 6-10
TRAFFIC ON PRIMARY SATELLITE AT Ka-BAND
(36 MHz Transponders)
OFFLOADED SYSTEM

TOTAL TRAFFIC = 138.6 TRANSPONDERS

Figure 6-11
TOTAL TRAFFIC ON EAST COAST SATELLITE AT C-BAND AND Ku-BAND ONLY
(36 MHz Transponders)
OFFLOADED SYSTEM
a9



TOTAL TRAFFIC = 78.7 TRANSPONDERS

Figure 6-12
TRAFFIC ON EAST COAST SATELLITE AT Ka-BAND
(36 MHz Transponders)
OFFLOADED SYSTEM

6.6 Space Shuttle Launch Considerations

This section examines the capabilities of the STS, and the charging
philosophy adopted by NASA for Shutti. “‘ghts.

Capabilities

The Shuttle has a payload capacity of 65,000 pounds to low earth orbit.
The cargo bay is 60 feet in length and 15 feet in diameter.
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The basic capability will remain at 65,000 pound load into low earth
orbit of 180 nautical miles. The early flights during 1980 and 1981 will have a
significantly lower weight capability. Subsequent flights will offer gradual
upgrading, tirst, by operating the Space Shuttle main engine at higher thrust rating
and later by the addition of a light weight external tank and then a lighter weight
orbiter, For the time period of 1985 and later, it is expected that thrust
augmentation by means of solid rocket booster strap-ons will increase the basic
payload weight capability to 70,000 or even 85,000 pounds. This increased weight,
however, is not usable for geostationary missions- since the Shuttle landing
capability is not likely to increase above 65,000 or 70,000 pounds. Any of the
flights must be capable of being aborted at their early stages and accordingly, the
landing capability will be one of the limiting factors. For these reasons, it was
agreed that a weight capability of 65,000 pounds will be used in the FSI studies for
missions in the late 80's and early 90's.

Figure 6-13 illustrates the STS capability evolution as currently
envisioned.

One of the results of the work performed by General Dynamics has been
that communications payloads will be volume rather than mass limited on the STS.
This is especially so when the payload does not include the transfer vehicle, but
also holds for single-Shuttle launches. This is mainly due to the need for deployable
structures such as antennas and associated masts and feed assemblies. Such
structures cannot presentiy achieve a packirg density high enough to escape the
volume limitation.

Costs

The Shuttle price is $18 million plus $4.2 million for commercial users.
The $18 million is in 1975 dollars and must be escalated to the time at which each
of the progress payments is being made. The $4.2 million is a fixed charge, not
subject to escalation. The charge for government users is the same except that the
$4.2 million is not applicable. It is expected thet the Shuttle price will be adjusted
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after the fourth year of operation. Initial estimates were based on a total of 460
flights over a 12-year period peaking at about 50 flights per year.

Table 6-3 shows the schedule of progress payments to NASA for various
iead times. Figure 6-14 illustrates the methed used to calculate the charge factor
if less than the full Shuttle is used.

The first Shuttle flight is now expected for June 1980 as a test flight.
The first operational flight which will launch TDRSS 1.will take place between July
and September 1981. The second orbiter will becomes available in September 1982.

Table 6-3
Reimbursement Schedule

Number of months before Percent of Price
launch flight is
scheduled Months prior to scheduled launch date

33 27 21 15 9 3
33 Months or More 10 10 17 17 23 23
27-32 Months - 21 17 17 23 23
21-26 Months - - 40 17 23 23
15-20 Months - - - 61 23 23
9-14 Months - - - - 90 23
3-8 Months - - - - - 122

67




S T e @AM Y NV ALV dedd g SJalIenbpuol] yQVvN DN TeTS
¥1-9 adnity

HO10V4d avol . :
S2°0 600 (HO10V4d
. IDHVHI
: : . : rA o) 0
o_F m_o* mw_o v.o ( : 0 WNWINIW)
“ ~— /900
[
i
|
!
(
! - G0
|
I
I
i
o¢ 701 i
] ) 50!
L€ 06 S0 =15 - 0'L
HdO10Vd avon b
LS 96
59 S°82
spunog
Jo spuesnoyy, ui seaJ8a( ~ Gl
Wwdram ut uoneBuUIDUL
ALITIEVdVD FT1LLAHS 4
09
"Ld ‘"HLONIT AVOTAVd
YALVIYO ST HIATHOIHM = 4OLOVd AVOoT

~ALIDVAV) JTLLOAHS |
SUT "LHOIAM AVOTAVd -

d0Idd aaLvolgaa x mr)\ = Jor14dd




The minimum turn-around time of the Shuttle is 230 hours for nominal
missions. This does not include time required for unique changes or periodic
maintenance. Typical turn-around times for each orbiter initially will be 4 to 5
weeks. Through 1984 it is expected that each orbiter will provide about 10 flights.
After some operational experience it can be expected that basic turn-around times
would be reduced to less than 200 hours by curing certain bottlenecks which will
require some design changes in the launch pad facilities.

Upper Stages

Several types of upper stages with varying capabilities are planned for
use with the Shuttle. Among these are the Inertial Upper Stage, (IUS) and possibly
the Centaur. '

The IUS which is being built by Boeing for the Air Force has a weight
lifting capability of 5,000 pounds in synchronous orbit. It uses various combinations
of solid rocket engines with inertial control.

Special combinations of solid stage rockets are used for planetary
missions and some optimization may be possible to increase the weight lifting
capability also for geostationary orbit.

The preéent costs for the IUS, turn-key including all services, is
estimated at $16 million for a 1981 launch in then-years dollars. No policy has
been established yet for payment schedules. On a typical IUS launch it can be
expected that an additional $1 million may apply in optional charges for special
payload requirements. Costs past 1981 should be inflated.

Due to the high thrust provided by the solid-fuel motors, the IUS is not
well suited for structures deployed at LEO. The structures would need to be
considerably strengthened to withstand the relatively high acceleration.
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Studies have been conducted by NASA for the use of the Centaur as an
upper stage. The Centaur should be able to provide a capability of 10,000 to 12,000
pounds of payload in geostationary orbit, Estimates of unit costs are $20 million in
1980 dollars.

6.7 Spacecraft Characteristics

The spacecraft weight and power budget is shown in Table 6-4. Where
available, a comparison is made with other design studies. Major characteristies of
ADS are shown in Table 6-5. .

6.8 Offloaded System™

The traffic handling capacity of the offloaded system is higher, and
more physical transponders are required aboard the spacecraft. The major
characteristics of the Primary ADS and the East Coast satellite are shown in
Tables 6-6 and 6-7. The total spacecraft power and weight will need to be
increased for the offloaded system. With careful design, this increase should still
be within the single-Shuttle launch constraints. An advanced transfer vehicle will
probably be needed.

6.9 Cost Estimates

We have used the SAMSO model to calculate the development and
recurring costs for the ADS spacecraft. These numbers must be regarded with
some caution for several reasons. First, the weight and power of the ADS exceed
those of even the largest satellite used in the SAMSO data base. Second, the
SAMSO model is slightly weighted toward noncommunications satellites, and third,
the development cost does not take into account the additional technology
advances needed for ADS.

The cost estimates are shown in Table 6-8 along with estimates for
other related satellite projects.

* Excess traffic is offloaded onto additional satellites over the Atlantic Ocean,
which do not have full CONUS visibility. Connectivity is established by means
of intersatellite links.
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Table 6-5
Major Characteristiecs of ADS

Antennas
C-band 1 ~ 6 meters transmit
1 - 4 meters receive
Ku-band 1 - 2.5 meters transmit
1 - 2.0 meters receive
Ka-band - 3 meters transmit

3
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)

38 at C-band, G/T =10 dB/K
17 at Ku-band, G/T =7 dB/K
4 at Ka-band, G/T =10 dB/K

Power Amplifiers (one per physical transponder)

72 at C-band, 5 watts each
28 at Ku-band, 36 watts each
17 at Ka-band, 35 watts each

Switching Network

SS/TDMA RF Switch - 25 x 25

Multi-carrier IF Switeh - 100 inputs x 100 outputs with 6.3
MBps switching blocks.

Power Budget

Transponder Electronies 1 kW

Power Amplifiers 5.5 kW
Switching 3 kW
Spacecraft Power 0.5 kW

Intersatellite Link

Frequency: 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.

72




Table 6-6
Major Characteristics of ADS with Offloading
(Primary Satellite)

Antennas

C-band 1 - 6 meters transmit
1 - 4 meters receive

Ku-bana - 2.5 meters transmit
- 2.0 meters receive

Ka-band 3 - 3 meters transmit
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)

44 at C-band, G/T =10 dB/K
27 at Ku-band, G/T =7 dB/K
6 at Ka-band, G/T =10 dB/K

Power Amplifiers (one per physical transponder)

85 at C-band, S watts each
52 at Ku-band, 36 watts each
25 at Kaband, 35 watts each

Switching Network

S8S/TDMA RF Switeh - 25 x 25

Multi-carrier IF Switch - 140 inputs x 140 outputs with 6.3 MBps
switching blocks.

. Power Budget

" Transponder Electronics 1.3 kW
Power Amplifiers 10 kW
Switching 4 kW
Spacecraft Power 0.5 kW

Intersatellite Link

Frequency: 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.
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Table 6-7
Major-Characteristics of East Coast Satellite

Antennas

C-band 1 - 6 meters transmit
1 - 4 meters receive

Ku-band 1 - 2.5 meters transmit
1 - 2.0 meters rece@ve

Ka~band 3 - 3 meters trasmit
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)
14 at C-band, G/T = 10 dB/K '
8 at Ku-band, G/T =7 dB/K
4 at Ka-band, G/T =10 dB/K

Power Amplifiers (one per physical transponder)

26 at C-band, 5 watts each
14 at Ku-band, 36 watts each
15 at Ka-band, 35 watts each

Switching Network

SS/TDMA RF Switeh - 10 x 10

Mt.ltx-camer IF Switch - 45 inputs x 45 outputs with 6.3 MBps
switching blocks.

Power Budget

Transponder Electronies 0.5 kW
Power Armplifiers 3.5 kW
Switching 1 kw
Spacecraft Power 0.5 kW

Intersatellite Link

Frequency: 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.
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Table 6-8
Costs of Advanced Satellites
(Millions of 1980 Dollars)

Satellite Development Cost Unit Cost
NASA/MSFC Platform 78 89
Edelson/Morgan . 78. 89
Previous FSI Design 137 107
Hughes 18/30 Trunking 31 30.3*
Hughes 18/30 DTU 6.5 58.1*
Ford 18/30 Trunking 60 30.6*
Ford 18/30 DTU 85 54 *

General Dynamics Concept #1 (not available)

Current FSI ADS 150 98

*includes profit and incentives; average for 3 spacecraft

Launch costs are not included.
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6.10 Transmission Link Calculations

Tables 6-10 and 6-11 present sample link calculations for 250 MBps and
6.3 MBps transmissions. The modulation in all cases is 4-phase PSK with rate 7/8
coding. The link noise budget is shown in Table 6-9.

Table 6-9
Noise Budget

Theoretical Eb/N o for uncoded 4-phase PSK

at a bit error rate of 1074 8.6 dB
Modem implementation margin ' 1.0 dB
Intersymbol distortion 3.0 dB

Coding gain for rate 7/8 forward error control coding 2.4 dB

Practical Eb/N° for 4-phase PSK with rate 7/8
4

coding at a bit error rate of 10~ 10.2 dB
Bandwidth to baud ratio 1.12
Carrier-to-noise ratio in the receiving bandwidth
for a bit error rate of 1074 12.7 dB
Uplink carrier-to-noise ratio 20 dB
Downlink carrier-to-noise ratio 15 dB
. Adjacent beam carrier-to-noise ratio 20 dB
Other interference carrier-to-noise ratio 25 dB
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Table 6-10
Sample Transmission Link Budgets for @ 250 Mbps PSK Carrier

Downlink
Frequency Band, GHz
4/6 11/14 18/30
Satellite transmit RF power Watts 5 35 33
dBw 7 15.6 15.4
Line losses dB 0.5 0.5 0.5
Minimum antenna gain for
specified coverage dB 39 39 43
Minimum platform transmit EIRP dBw 45.5 53.8 57.9
Free space path loss at
30 degree elevation dB 196.2 265 209.2
Transmission link margin dB 3 7 10
Minimum flux density at the 9
surface of the earth dBW/m -116.7 -114.8 -110.7
Earth station antenna diameter m 4.5 4.5 4.5
Earth station antenna gain dB 43.3 52.1 56.4
Receive system noise temperature K 155 385 500
Earth station G/T dB/K 21.4 26.2 29.4
Receive noise bandwidth MHz 130 145 145
Downlink carrier-to-noise ratio dB 15 15 15
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Table 6-10, Continued
Sample Transmission Link Budgets for a 250 Mbps PSK Carrier

Uplink
Frequency Band, GHz
" 4/8 11/14 18/30
Earth station transmit RF power Watts 140 1100 3300
dBw 21.4 30.2 35.1
Line losses dB 1.0 0 1.0
Antenna diameter m 4.5 4.5 4.5
Antenna gain dB 46.8 54.2 60.8
Earth station transmit EIRP dBW 67.2 83.4 94.9
Free space path loss at
30 degree elevation dB 199.6 207 213.7
Transmission link margin dB 3 10 15
Flux density at the satellite dBW/m2 -98.4 -87.1 -83.1
Minimum antenna gain for
specified coverage ds 39 39 43
Receive system noise temperature K 1150 2200 3000
Satellite G/T | dB/K 8.4 5.6 8.2
Receive noise bandwidth MHz 130 145 145

Uplink carrier-to-noise ratio dB 20 20 20
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Table 6-11
Sample Trunsmission Link Budgets fur a 6.3 Mbps PSK Carrier

(per carrier)

Downlink
Frequency Band, GHz
4/6 11/14 18/30
Satellite transmit RF power Watts 0.15 1.0 1
(per carrier) dBW 8.2 0 0.2
Line losses dB 0.5 0.5 0.5
Minimum antenna gain for dB 39 39 43
specified coverage
Minimum satellite transmit EIRP dBw .3 38.5 42.3
Free space path loss at
30 degree elevation dB 196.2 205 209.2
Transmission link margin dB 3 7 10
Minimum flux density at the 9
surface of the earth dBw/n 4.1 9.5 26.3
Earth station antenna diameter m 11 7 7
Earth station antenna gain dB 51 55.9 60.2
Receive system noise temnerature ok 110 195 500
Earth station G/T dB/°K 30.5 32.9 29,4
Receive noise bandwidth MHz 4.1 4.1 4.1
Downlink carrier-to-noise ratio dB 15 15 15
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Table v-11, Continued

Sample Transmission Link Budgets for a 6.3 Mbps PSK Carrier

(per carrier)

Uplink
Frequency Band, GHz
_4/6 11/14 18/30
Earth staction transmit power Watts 4.2 30 791
(per carrier)
dBw 6.2 14.6 19.6
Line losses dB 1.0 1.0 1.0
Antenna diameter m 4.5 4.5 4.5
Antenna gain dB 46.8 54.2 60.8
Earth station transmit EIRP dEW 52 67.8 79.4
Free space path loss at
30 degree elevation dB 199.6 207 213.7
Transmission link margin dB 3 10 15
Flux density at the satellite dBwW/m?  -113.6  -102.7  -98.7
Minimum satellite antenna gain dB 39 39 43
Receive system noise temperature Ok 1150 2200 300
“atellite G/T dB/°K 8.4 5.6 8.2
Receive noise bandwidth MHz 4.1 4. 4.1
Uplink carrier-to-noise ratio dB 20 20

20
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6.11 Transition to the A.D.S. System

Assuming the the development of the A.D.S. system is begun in the near
future, it should be possible for carriers to plan on transition to this system by the
late 1980's. Figures 6-15 and 6-16 show the growth of demand and in-orbit
capacity for the high and low traffic scenarios. First launch of an A.D.S. space-
craft is assumed to occur in 1987. The fine—grain variations in capacity in later
years is caused by the demise of conventional spacecraft launched in the early
1980's. .
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SECTION 7
EARTH STATION NETWORK CONFIGURATION

Any of the existing earth stations in the U.S. domestic satellite
communications systems will be able to operate with the ADS. In addition, a large
number of new earth stations will be constructed, and most of the new stations will
serve light traffic links. '

In this section we have shown examples of typical earth stations. The
satellite-switched TDMA earth station imposes the least complexity upon the
satellite switch but results in the greatest complexity on the ground. The
multi-carrier PSK earth station will be simpler and less costly than the satellite-
switeched TDMA station if the number of carriers is small. If a single carrier is
provided for each transmission link, the switch would provide routing at IF.

All earth stations employ a basic {ront end consisting of an antenna
(ineluding mount, feed, and combiner), an LNA, a down-converter and an up-

converter, and final RF amplifier.

7.1 Satellite-Switched TDMA Earth Stations

The terminal equipment for a typical satellite-switched TDMA
(SS/TDMA) earth station consists of the following subsystems:

Mux/de mux
Common control equipment

QPSK modern

A functional block diagram for this type of station is shown in
Figure 7-1, and a brief discussion of the terminal equipment subsystems follows.
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The first multiplexing process accepts traffic consisting of analog voice
and digital bit streams at rates of 64 kbps, 1.544 Mbps and 6.3 Mbps and combines
this traffic into a single digital bit stream at a significantly higher rate. The
second multiplexer provides compression buffering for the continuous-to-burst rate
conversion, as well as transmit burst timing control via network memories. The
first demultiplexing process provides the reciprocal functions of receive burst
timing control and burst-to-continuous rate conversion. The second demultiplexer
accepts the continuous single digital bit stream and breaks it down into separate
traffic outputs consisting of analog voice and bit streams at rates of 64 kbps, 1.544
Mbps, and 6.3 Mbps. ’

The common control equipment performs functions associated with the
establishment and maintenance of frame synchronization, as well as the treatment
of data in order to obtain improved system performance. This equipment consists
of five main parts:

Burst synchronizer and time slot acquisition unit
Preamble generator

Unique word detectur

Scrambler/descrambler

Forward acting error correction codec

The burst synchronizer and associated time slot acquisition unit per-
form the function of acquisition and steady state synchronization of burst
transmissions from the earth station so that no TDMA burst overlapping occurs at
any time. The preamble generator assembles the overhead bits which are inserted
prior -to the encoded and scrambled data from the second multiplexer. It is turned
on and off by a timing pulse from the multiplexer which is, in turn, controlled by
data loaded into its network plan memory. The time reference for the multiplexer
is furnished by the burst synchronizer. The unique word detector monitors the
incoming data burst to identify the unique words which precede actual data
transmission. The scrambler/descrambler is included in the system to make the
transmitted data. stream more random in content, thereby avoiding the generation
of high power discrete spectral lines in the transmitted RF spectrum. The forward
acting error correction codec provides for improvement in the bit errnr rate
performance.
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The QPSK modem performs reciprocal functions. It accepts a bursted
data stream and modulates this information onto a suitable IF carrier using
quadrature phase shift keying. Alternately, it can take o QPSK modulated
spectrum and produce a bursted data stream output.

7.2 Multiple T-2 Carrier PSK Earth Stations

The terminal equipment for a typical multiple T-2 carrier PSK earth
station consists of the following subsystems:

Mux/demux

Codec

QPSK modem

Carrier combiner and divider networks

A functional block diagram for this type of station is shown in
Figure 7-2, and a brief discussion of the terminal equipment is given below.

The multiplexer accepts traffic consisting of analog voice and digital
-bit streams at rates of 64 kbps, 1.544 Mbps, and 6.3 Mbps and combines this traffic
into a single digital bit stream at a higher data rate. The demultiplexer provides
the reciprocal funection.

The codec provides forward acting error correction coding to the
outgoing data stream and uses such coding to improve the BER of the incoming
data stream.

The QPSK modem performs reciprocal functiors. It accepts a data
stream and modulates this informavion onto a suitable IF carrier using quadrature
phase shift keying. Alternately, it can take a QPSK modulated spectrum and
provide a continuous data stream output.

The c¢ombiner network frequency multiplexes the several carriers

before up-conversion and power amplification. The divider demultiplexes the
carriers before further processing upon reception.
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7.3 Single T-2 Carrier PSK Earth Stations

The terminal equipment for a typical single carrier PSK earth station
ccngists of the following subsystems:

Mux/demux
Codec
QPSK modem

A functional block diagram for this type of station is shown in
Figure 7-3, a.d a brief discussion of the terminal equipment is given below.

The multiplexer accepts traffic consisting of analog voice and digital
bit streams at rates of 64 kbps, 1.544 Mbps, or 6.3 Mbps and combines this traffic
into a singlc digital bit stream at a higher data rate. The demultiplexer provides
the reciprocal function.

The codec provides forward acting error correction coding to the
outgoing data stream and uses such coding to improve the BER of the incoming
data stream.

The QPSK modem performs reciprocal functions, It accepts a data
stream and modulates this information onto a suitable IF carrier using quadrature
phase shift keying. Alternately, it can take a QPSK modulated spectrum and
provide a continuous data stream output.

7.4 -« Video Conferencing Operation

Most of the video conferencing traffic will be carried at Ku- and
Ka-bands and will therefore experience rather severe rain attenuation in many
parts of the U.S. Tables 7-1a and 7-1b show the system margin needed for various
system availabilities. The figures in the table can be compared with the margins of
10 dB at Ku-band and 15 dB at Ka-band that the basic system provides. It can be
seen that in some regions of the country these margins do not provide an
acceptable availability. For such instances, the video conferencing transmission
system has been so designed as to provide additional margin. This is done as
follows. a9
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The system will monitor some indicator of the performance, either the
received signal level or the bit error rate. When a preset threshold is exceeded,
the transmission bit rate will be reduced from 6.3 Mbps to 64 kbps each way. The
IF bandwidth will be reduced accordingly. This will provide an additional 20dB of
margin for the reduced bit rate signal and will enable the conference to proceed
using audio only. The resulting outages and availabilities are shown in Table 7-2.
Figure 7-4 shows the CONUS rain zones.

Table 7-2
Video Conferencing System Availabilities

Rein Zone
Frequency
(GHz) 1 2 3 4 5 6
12 99.99* 99.99 99.99 99.99 91,99 99.99
14 99.99* 99,99 99.99 99.98 99.97 99.99
18 99,99* 99.99 99.99 99.¢7 99,96 99.99
30 99.98 99.96 99,95 99.8 99.7 99.95

* Video service retained

The practical aspects of this =irangement are less formidable than it
may seem at rirst. The developmen* uf an all-digital mudem covering the desired
range in which even the filters are implemented digitally is likely by as socorn as
1982, This will enable instantaneous alteration of the system transmission rate. In
addition, the minutes of the year during which the system will operate at the
reduced rate will be spread over the year and over the 24 hours of the day. Some
will occur at night or during relatively light usage periods; thus we expect that ‘he
average user will experience an actual inconvenience only about one-half as often
as Table 7-2 indicates.
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7.5 Earth Station Cost Estimates

Typical earth station costs are shown in Table 7-3. Cost trends are
shown in Table 7-4. All costs are for equipment only. An operational station must
include, for example, installation, transportation, integration, documentation, and
spares. Our economic model has assumed a factor of 40 percent of the equipment
costs to account for these additional cost items.

Table 7-3
Typical Earth Station Equipment Costs in 1987
(Thousands of 1980 Dollars)
Quantity = 1,000

Station Types

Single Multi-
Carrier Carrier
Item PSK PSK SS/TDMA
Front Ends
Antenna System
4/6 GHz 10 10 10
11/14 GHz 15 15 15
18/30 GHz 20 20 20
RF equipment
4/6 GHZ 4 4 20
11/14 GHz 5 5 40
18/30 GHz 6 6 60
Terminal Equipment (excluding
mux/demux) 5 25 50
Mux/demux 3 15 3
Totals:
4/2 GHz 22 54 83
11/14 GHz 28 60 108

18/30 GHz 34 66 133
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Table 7-4
Cost Trends for Typical Earth Station Equipment
(Thousands of 1980 Dollars)

Year Purchased

1980 1987
Quantity: 1 1000 1
Station Type
Single Carrier PSK
4/6 GHz 52 22 37
11/14 GHz 65 28 48
18/30 GHz 80 34 58
Multi-Carrier PSK
4/6 GHz 132 54 90
11/14 GHz 138 60 100
18/30 GHz 1€9 66 110
SS/TDMA
4/6 GHz 152 83 139
11/14 GHz 197 108 180
18/30 GHz 244 153 222

We estimate that the cost of baseband equipment and modems for the
dual bit-rate operation will be about 20 percent higher than for single-rate
operation. Due to the increased flexibility of all-digital equipment, we expect such
items to become commonplace by the mid 1980's.

7.6 Access Arrangements

The access arrangements used with the ADS system will vary according
to the type of earth station. The SS/TDMA stations will be used primarily for
trunking operation and video conferencing among larger cities. Access to these
stations will depend on the frequency band of operation. At C-band the stations
will probably not be located within the larger cities due to frequency coordination
problems. Interconnection to such stations will be via conventional terrestrial
microwave or fiber optics. Typical costs for such links are shown in Table 7-5 and
Table 7-6.
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Table 7-5
Fiber Optic Costs per Meter in 1980 Dollars for a 1987 System

(Installed)
(Rounded to Nearest Dollar)

Duplex Installation Cost
Capacity Rural Suburban City
(MBps) $3/m $7/m $10/m
90 8 12 15
100 9 13 16
270 12 16 19
360 13 17 | 20
Table 7-6
Terrestrial Microwave Costs

High case Low case

Cost Cost
Item Per site Per site
Land (including access) $ 5,000 $10,000
Site Building 45,000 5,000
Tower 12,500 7,400

Generator 45,000 -

HVAC 3,000 -
Radio - 40,000 6,000
Antenna 4,500 400
Waveguide 1,480 560
Mux - 4,800

Auxiliary link 9,400 -

Supervisory system 9,000 -
Test equipment and spares 7,700 1,000
Installation 20,800 4,600
Total $203,400 $39,760
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Stations which operate exclusively at Ka-band, and some stations which
opcrate at Ku-band. can be located in large downtown areas. Access to these
stations could be via fiber opties links. Fiber optics links offer large transinission
bandwidths, and the capacity that is installed is relatively independent of installa-
tion costs.

Single-carrier PSK and some multi-carrier PSK stations will be co-
located with the customer's premises. These stations will be used primarily for
private line voice and data networks and for video conferencing. No special access
arrangement will be needed for these stations.

98




8.1

model:

SECTION 8
SYSTEM COSTS

Cost Model

Engineering cost calculations were made using the following cost

Revenue requirements were calculated for each of the 10 years of
the study period, 1987 to 1996. Revenue requirements are the sum
of depreciation, operation and maintenance costs, and rate of
return on investment.

Straight-line depreciation over 10 years was used on all invest-
ments based on an assumed ADS and earth station useful life of 10
years. These calculations will yield conservative results since
some earth station equipment will have longer lifetimes.

All calculations were made in constant 1980 dollars. The allow-
ance for inflation was included in the proper choice of rate of
return on investment and present value factor.

Cost per circuit was calculated for each year and for the total
10-year program period.

Net investment was calculated as the difference of cumulative
investment and accumulated depreciation. In this manner, residual
systems value was also determined.

The sum of all revenue requirements and the sum of the present
values of all revenue requirements were calculated as an overall
measure of systems costs.
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Progress payments were required during the course of p'latform or
spacecraft development and production, ground segment con-
struction, and for Shuttle launches. Our cost estimates represent
the present value of the sum of these progress payments referred
to the date of deployment of space and ground segment, and they
are expressed in 1980 dollars.

Investment and O&M Schedule

The following‘ assumptions were made in addition to those listed in

Sections 6 and 7 of this report regarding the investment and O&M schedule:

1.

Shuttle Launch Costs

For ADS, the requirement is one Shuttle launch per satellite. The
total cost is $30 million plus an additional $20 million for the
transfer vehicle (Centaur).

Satellite Control Center and TT&C Investment Costs

In 1987 there will be four operational control centers and TT&C
systems operated by Western Union, RCA American Communica-
tions, AT&T, and SBS. These control centers will be adequate for
operations with ADS.

Earth Station Deployment and Costs

In addition to the basic equipment cost, 40 percent was added to
account for such costs as transportation, installation, integration,
and spares.
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Development and Deplovment

Development costs for the ADS system were assessed only once. This is
based on the assumption that NASA develops the satellite and charges their users
appropriately for it.

TT&C and Operations

Costs for TT&T and operations (included under O&M in the computer
model) were assessed as follows:

$3.9 million + $0.4N million
where N is the number of spacecraft in orbit including spares.

8.2 Space Segment Cost Calculations

Based on the above model and the costs for ADS culeulated in Section 6
using the SAMSO model, we have computed the cost per transponder year for the
ADS space segment. The transponder used is the 36 MHz reference transponder

-rather than the physical transponder actually used in the satellite design. The
results of the computer model are shown in Table 8-3 for the low traffic and
Table 8-4 for high traffic. The high traffic was modeled using the offloaded
system and each primary satellite launch is also accompanied by a launch of an
east coast coverage satellite. Costs for the offloaded satellite system were
assumed to be the same as for the all-CONUS coverage.

Launch schedules are shown in Tables 8-1 and 8-2. A spare was
launched for every four operating satellites or fraction thereof.

8.3 Ground Segment Cost Caleulations

The factors that make up the annual cost of the ground segment are
common to the entire system. We have thus calculated the annual costs for the
ground segment of typical users rather than for the system as a whole. Costs are
shown for transmission via a trunking earth station, a thin-route single carrier PSK
earth station, and a thin-route multi-carrier earth station.
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Table 8-1
Low Traffic Scenario Launch Schedule

(Including Spares)
Year Launches
1988 2
1990
1992 1
Table 8-2
High Traffic Scenario Launch Schedule
(Ineluding Spares)
Year Primary East Coast Common Spare
1987 2 2 1
1988 1 1 1
1989 2 2 1
1990 2 2 1
1991 1 1 0
1992 2 2 1
1993 1 1 1
1994 1 1 0
1995 1 1 1

The traffic carried by the earth station was assumed to grow to a
certain maximum over the 10-year period. This maximum depended on earth
station type: 6.3 Mbps for the single-carrier station, 31.5 Mbps for the multiple-
carrier station, and 63 Mbps for the SS/TDMA station. The growth pattern for this
traffic was assumed to be the same as that for the overall U.S. domestic traffic.

Earth station installation and integration was estimated to be 40
percent of the equipment costs. This increased cost was added to the equipment
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Table 8-3

Economic Model PForecast
SINGLE-SHUTTLE LAUNCH A.D.S. - LOW TRAFPFIC

PV of
N.t -----u-Q-Annu.I-------- co.t p‘r Annu.l

Year Invest Dep + O&M + ROI = Revnu Traffic XPONDER Revenue

1988 401.4 44.6 4.7 40.1 89.4 160.00 0.56 61.6
1989 356.8 44.6 4.7 35.7 85.0 277.00 0.31 §5.9
1990 445.4 59.4 5.1 44.5 109.0 437.00 0.25 68.4
1991 386.0 59.4 5.1 38.6 1103.1 599,00 0.17 61.8
1992 459.8 74.2 5.5 46.0 125.7 750.00 0.17 71.9
1993 385.6 74.2 5.5 38.6 118.3 972.00 0.12 64.6
1994 311.4 74.2 5.5 31.1 1l1l¢.8 1051.00 0.11 57.8
1995 237.2 74.2 5.5 23.7 103.4 1128,.00 0.09 $1.4
1996 163.0 74.2 s.5 16.3 96.0 1211.00 0.08 45.6
Total of Revenue Requirements = 941

Total Present Value of Revenue = 539

Average Cost per XPONDER per Year = 0.14

Note: Traffic is in XPONDER

Cost is $millions per XPONDER per year
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Table 8-4

Bconomic Model Porecast

SINGLE-SHUTTLE LAUNCE A.D.8. - RIGH TRAFrIC

".t ----o----“"n“.l--------

Year Invest Dep ¢ O&M + ROI = Revnu Traffic

1987 801.0 89.0 $5.9 80.1 175.0 $37.00
1988 1111.6 133.4 7.1 111.2 251.7 1402.00
1989 1644.2 207.4 9.1 164.4 380.9 2625.00
1990 2102.8 281.4 11.1 210.3 So02.8 3984.00
1991 2087.8 311.0 11.9 208.8 S31.7 $287.00

1992 2442,.8 385.0 13.9 244.3 643.2 6622.00
1993 2457.4 429.4 15,1 245,77 690.2 7748.00
1994 2294.4 459.0 18.9 229.4 704.3 8771.00
1998 223%.0 S03.4 17.1 223.5 744.0 9408.00
11996 1731.6 503.4 17.1 173.2 693.7 10091.00

Total of Revenue Requirements = 5317
Total Present Value of Revenue = 2995
Average Cost per XPONDER per Year = 0.09

Note: Traffic {is in XPONDER
Cost is $millions per XPONDER per year
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investment. This investment was depreciated over a 10-year period. The cost of
operations and maintenance for the earth station was estimated to be 20 percent of
the investment per year. A 10 percent return on investment over and above the
O&M costs was also used. Tables 8-5 through 8-7 show the computer modeling of
the typical user costs.

8.4 Total Costs
We have combined the results of Sections 8.2 and 8.3 to obtain typical
total costs for transmission via the ADS system. Table 8-8 shows these total costs

per year for voice channels, data (per kbps), and video conferencing channels.

8.5 Comparison with Current Transmission Techniques

We have compared the cost of transmission using the Advanced
Domestic Satellite with the costs of using current transmission links: conventional
satellite, terrestrial microwave, and fiber optics. Tables 8-9 through 8-11 show
typical costs for these conventional techniques. Figures 8-1 and 8-2 present a
comparison of these with the ADS system on a per-channel per-year per-kilometer
basis. Voice, data (per kbps), and video conferencing are also shown.
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Table 8-5

Economic Model Forecast
A.D.8. GROUND SEGMENT - SINGLE CARRIER STATION

PV of

Net cmvecncne- AfMull=mecc=w= Cost per Annual
Year Invest Dep + O&M + ROI = Revnu Traffic MBPS Revenue
1987 81.9 9.1 18.2 8.2 358.5 2.20 16.13 25.6
l988 72.8 9.1 18.2 7.3 34.6 2.70 12.81 23.8
1989 63.7 9.1 18.2 6.4 33.7 3.20 10.52 22,1
1990 54.6 9.1 18.2 5.5 32.8 3.70 8.85 20.8
1991 45.5 9.1 18.2 4.6 31.8 4.10 7.77 19.1
1992 36.4 9.1 18.2 3.6 30.9 4.60 6.73 17.7
1993 27.3 9.1 18.2 2,7 30.0 5S.00 6.01 16.4
1994 18,2 9.1 18.2 1.8 29.1 5.40 5.39 15,2
1945 9.1 9.1 18.2 0.9 28,2 5.90 4.78 14,0
1996 0.0 9.1 18.2 0.0 27.13 §.30 4.32 13.0
Total of Revenue Requirements = 314
Total Present Value of Revenue =~ 187
Average Cost per MBPS per Year = 7.28

Note: Traffic is in MBPS
Cost is § thousands per MBPS per year
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Table 8-6

Economic Model Forecast
A.D.S. GROUND SEGMENT - MULTIPLE CARRIER STATION

. PV of

Net -------=-=-Annual-------- . Cost ver Annual
Year Invest Dep + O&M + ROI = Revnu Traffic 13..¢8 Revenue
1987 173.7 19.3 38.6 17.4 75.3 11.00 6.84 54.3
1988 154.4 19.3 38,6 15.4 73.3 13.40 5.47 50.5
1989 135.1 19.3 38.6 13.5 71.4 16.00 4.46 47.0
1990 115.8 19.3 38,6 11.6 69.5 18.60 3.74 43.6
1991 96.5 19.3 38.6 9.7 67.5 20.50 3.30 40.5
1992 77.2 19.3 38,6 7.7 65.6 22.80 2,88 37.5
1993 57.9 19.3 38,6 5.8 63.7 25,00 2,55 34,8
1994 3.6 19.3 38.6 3.9 61.8 27.20 2,27 32,2
1995 19.3 19.3 38.6 1.9 59.8 29.40 2.04 29.8
1996 0.0 19.3 138.6 0.0 57.9 31.50 1.84 27.5
Total of Revenue Requirements = 666
Total Present Value of Revenue = 398
Average Cost per MBPS per Year = 3.09

1

Note: Traffic is in MBPS
Cost is $§ thousands per MBPS per year
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Year

1987
1988
1989
1990
1991

1992
1993
1994
1995
1996

Net
Invest

248.2
220.6
193.1
165.5
137.9

110.3
82.7
55.2
27.6

0.0

A.D.S.

Dep + O&M + ROI = Revnu

27.6
27.6
27.6
27.6
27.6

27.6
27.6
27.6
27.6
27.6

55.2
55.2
55.2
55.2
§8.2

55.2
55.2
55.2
55.2
55.2

Table 8-7

Economic Model Forecast

24,8
22.1
19.3
16.5
13.8

1

SN
O wWwMwoO

Total of Revenue Regquirements =

Total Present Value of Revenue =
Average Cost per MBPS

Note:

Traffic is in MBPS
Cost is § thousands per MBPS

per Y

Traffic
107.6 2}.90
104.8 26,80
102.0 31.90
99.3 37.20
96.5 41.0¢
93.8 45.50
91.0 50.00
88.3 54.30
85.5 58.70
82.7 63.00
952
568
ear = 2.21
rer year
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GROUND SEGMENT - SS/TDMA STATION

Cost per
MBPS

4.91
3.91
3.20
2.67
2,35

2.06
l1.82
1,63
1.46
1.31

PV of
Annual
Revenue

77.6
72.2
67.1
62.3
57.8

53.6
49.7
46.0
42.5
39.3
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Table 8-9
Costs for Conventional Satellite Transmission in 1979 Dollars
Per Circuit Month
(Earth Segment Plus Space Segment)

Earth Station and Modulation/Access Type
Channel Ends 13-Meter

per FDM/FM 13-Meter 7-Meter
Earth Station . Companded TDMA/DSI SCPC/PSK
1 —_ e 6,750
5 - - 1,750
10 —_ - 1,110
120 780 840 —
240 580 490 -
480 440 32) —_—
1,200 250 220 —_
Table 8-10

Summary of Microwave Radio Costs
(1979 Dollars)

Link Capacity in Circuits

10 24 120 240 480 1,200
Cost per Circuit-Month
for One Hop 230 96 56 28 14 5.60
Cost per Circuit-Month
per Kilometer 4.61 1.92 1.12 0.56 0.28 0.11
Multiplex Equipment Cost :
per Circuit-Month 53 53 53 . 53 53 53
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Table 8-11
Fiber Cptic Transmission Costs

(1979 Dollars per Circuit-Month per Kilometer)

Installation Costs

Circuits Rural Suburban City
per link $3/m $7/m $10/m
120 _ 2.2 3.3 4.12
240 1.1 1.65 2.06
480 0.55 0.82 1.03
1,200 0.22 0.33 - 0.41
2,400 0.12 0.18 0.22
3,600 0.11 0.15 0.17
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SECTION 9
TECHNOLOGY DEVELOPMENT

This Section identifies technology which requires development before
the ADS can be implemented commercially.

9.1 Spacecraft Antenna

9.1.1 Area Coverage Antennas

A spacecraft antenna design is required to provide area coverage of the
U.S. (CONUS, Alaska, Hawaii, and Puerto Rico) by means of multiple spot beams at
C-band and Ku-band. A nominal antenna beamwidth of 1.3 degrees at the 3 dB
point will lead to CONUS coverage by means of 24 beams. Gain variation over the
coverage area should be controlled for uniform transmission performance. Maxi-
mum to minimum gain variations of 4 dB would be a desirable objective, but
adequate systems performance can be achieved with larger variations. This will be
subject to systems trade-offs.

Ideally, a feed cluster associated with a single reflector would provide
full area coverage. However, if the resulting antenna gain variation is excessive,
three separate reflectors may be used to synthesize full area coverage. Separate
reflectors will probably be used for the different frequeney bands, transmit and
receive. The C-band design is further complicated through the requirement for
dual polarization.

A very important characteristic is the sidelobe behavior. The com-
posite sidelobe level may become a major contributor to interference, both in the
uplink and in the downlink. The transmission system will incorporate adequate
error control coding to permit operation at low carrier to noise ratios in the
presence of sidelobe interference. '

Table 9-1 lists the major antenna characteristics and Figure 9-1 shows
the required coverage pattern. Antenna designs must be suitable for satellites in
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the orbital range of 61 to 134 degrees, but pre-launch adjustments are permitted
for specific orbital assignments.

Table 9-1
Desirable Characteristics for Area Coverage Antennas

Frequency band C-band or Kq-band
Beam center antenna gain

Antenna gain variation over hexagonal coverage area 4 dB maximum
Diameter of hexagon (degrees as seen from satellite) 1.3°

Frequency reuse pattern 1/3

Sidelobe interference ratio (total composite sidelobe

gain to minimum gain in the coverage area) 30 dB

Gain Frequency Response +1dB over 400mHz
Beam pointing stability + 0.1 degree

9.1.2 Ka-band City Coverage Antennas

In order to reduce spacecraft power requirements, Ka-band coverage is
achieved by individual spot beams aimed at the major cities and their surroundings.
Coverage requirements are shown in Figure 9-2 and major characteristics are
shown in Table 9-2. Pre-launch adjustments are permitted for specific orbital
assignments.

The major problem is to achieve adequate beam pointing accuracy und
stability for coverage of the specified cities. To avoid the complexity of individual
in-orbit adjustment of beams, accurate pre-launch measurements of antenna beam
pointing should be developed and pointing accuracy must be maintained in the
launch environment and in orbit. The alternative solution would be various
adjustment of beams in orbit by ground command.




Figure 9-1
SPOT BEAM ANTENNA COVERAGE OF CONUS
(Numbers 1, 2, 3 indicate freguency assignment)

Figure 9-9
KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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9.2 On-board Switching

Interconnection of multiple beams and different frequency bands re-
quires extensive on-board switching. To simplify the switching requirements for
ADS, we have chosen to eliminate baseband processing and to provida only
SS/TDMA and IF switehing. The former technique will be used for high capacity
stations, and the latter for thin-route stations. Interconnection between the two
switches is not needed.

9.2.1 SS/TDMA Switeh

The SS/TDMA switch will be an extension of the switches already
designed for lower numbers of ports. Typical specifications are shown in Table
9-31

Table 9-3
SS/TDMA Switch Specifications

Number of Inputs 25
Number of Outputs 25
Transfer Time 1 per sec.
Frequency Response +.1dB
'solation 80 dB
Insertion Loss 0.5 dB
Bandwidth 500 MHz

Maintenance-free operation over a 10-year minimum life

9.2.2 IF Switeh

A block diagram of the 1t switching arrangement is shown in Figure 9-3
and the major characteristies are summarized in Table 9-4. The switch is designed
for a basic data rate of 6.3 Mbps. A dedicated frequency converter is provided for
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each carrier. Translation frequencies are determined by ground controlled
synthesizers. Large scale integration of anulog and digitali components will be
required for this equipment because of the large quantity of units needed.

Table 9-4
IF Switeh Characteristics

Number of Inputs . 150
Number of Outputs 150
Blocking Probability 0.01
Transition Time 1 per sec.
Isolation 80 dB
Insertion Loss 0.5 dB
Bandwidth 200 MHz
Frequency Response +0.1dB

Maintenance-free operation over a 10-year minimum life

9.3 Spacecraft Reliability

As the spacecraft complexity increases, spacecraft reliability becomes
a question of major concern. Spacecraft lifetimes of 10 years will be desirable,
and sufficient inherent reliability and redundency must be provided to achieve this
lifetime without loss of vital functioni. Fzor example, a modest loss of capacity
will be tolerable, but a loss of trans.uission links will not be acceptable. Switcﬁes
will have to be designed so the alternate paths can be followed to establish a
communications link in case of failure of any one individual path.

Reliability systems development will be recvired so that the combina-
tion of high reliable components and redundancy/diversity design will lead to the
overall reliability objectives shown in Table 9-5.
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Table 9-5
Spacecraft Reliability Objectives

- 10-year unserviced life

- 100% of SS/TDMA Switch connections operational after 10 vears
- 90% of IF Switch connections operational after 10 years

-  Full eclipse operations at 10 years ]

-  Station Keeplng and Attitude Control within specifications at 10
years.

9.4 Ka-band Technology

Ka-band operation is a necessary feature of the ADS; consequently
Ka-band technology must be developed. NASA-Lewis Research Center is engaged
in an extensive Ka-banu technology program, and therefore, it is not necessary to
consider this subject here.

9.5 Intersatellite Links

Network connectivity requires intersatellite links. For the first genera-
tion of ADS, the intersatellite links will transmit only the 6.3 Mbps carriers.
Development items for intersatellite links are as follows:

20-40 GHz Moderate Power TWTA's
Wideband Communications System
Track:ng Antenna Subsystem

The Lincoln Experimental Satellites #8 and #9 have successfully

demonstrated the feasibility of intersatellite links in the 36-38 GHz band.
Tracking antenna tecl:nology was also developed.
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SECTION 10
CONCLUSIONS

In this section, we have summarize 1 the major conclusions which can be
drawn from this study.

10.1 U.S. Domestiec Satellite Traffic

Based on our own investigaticns and the results of a number of other
studies performed for NASA, substantial growth is expected in all sectors of U.S.
domestic telecommunications. Telephony, while a mature service, will none the
less continue to grow at substantial rates. In addition, the percentage of telephony
traffic carried by a satellite will increase due primarily to the economic
advantages of satellite transmission.

Data communcations is a service which is still in relative infaney. This
is primarily due to the lack of interconnected networks of high speed data
transmission channels. Such facilities are automatically provided in emerging
domestic satellite systems. The increasing use of digital encoding for voice
transmission will enable the efficient transmission of data over the same channels.

Rising costs and the inconvenience of business travel will become a
strong incentive to substitute telecommunications for some travel. Video con-
fereneing will replace some air travel and some local travel and will be used as a
more efficient means of conducting business. In spite of the relative inconvenience
associated with current video conferencing facilities, a number of firms in the U.S.
have already made extensive use of these facilites. We anticipate that the
provision of relatively low cost video conferencing channels via satellite will
encourage substantial and explosive growth in video conferencing. '

By 1995 a total of 120 transponders will be needed for data transmis-
sion, 1,000 transponders for voice transmission, and 8,000 transponders for video

conferencing.
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10.2 Orbital Are Utilization

Due to the limited number of orbital slots available to the United
States, high capacity advanced satellites will be needed to meet the rising demand
during the late 1980's. The visability arc for the contiguous United States is shared
with Canada and most of the South American countries as well as Mexico and the
Caribbean Islands. Because of the need to minimize intersystem interference, a
coordinated and logical plan for satellite antenna patterns and frequency assign-
ments is needed. By 1987, the required average spacecraft capacity per orbital
slot will reach a level of at least 38 transponders and may go as high as 100
transponders. By 1995, the average capacity will be at least 92 transponders per
orbital slot and if video conferencing is provided will exceed 600 equivalent
transponders per orbital slot. In addition, the use of television distribution in some
slots will require the capacity of other slots to be even higher.

10.3 Satellites For Single Shuttle Launch

Studies by FSI, General Dynamics, COMSAT, and others indicate that
satellites with usable capacities of 300 to 600 transponders will be feasible for
launch along with an orbital transfer vehicle in a single shuttle cargo bay. These
satellites will use all the available frequency bands, including frequencies recently
allocated by the WARC for fixed satellite service. These satellites will have the
following features:

1. Relatively large antenna aperatures, up to approximately 6 meters
in diameter.

2. Frequency reuse by means of multiple spot beams.

3. Intersatellite links to enable full connectivity of the network.

4. On-board switching, both at RF for TDMA systems, and at IF for
lighter traffic routes.

5. 10-year lifetime with improved reliability and station keeping
accuracy.

6. Improved transmission parameters enabling the use of relatively
simple, low-cost earth stations.
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We expect these satellites to cost approximately $100 million apicce
and about another $50 million to launch. Even considering this relatively high cost,
the average cost per equivalent transponder year will be about $100,000. In
addition. considerable savings ./ill be availabl- in the ground segment due to the
improved transmission parameters, and *he co-location of earth stations with
customer premises.

10.4 Transmission Costs

Due to the reduced cost per transponder of the space segment, the
reduced cost for the earth stations and the elimination (in manv cases) of
interconnect costs, break-even distances with terrestrial facilities will generally be
less than 100 miles. For advanceri services, such as high speed data communica-
tions or video teleconferencing, the break-even distances will be considerably
lower.

10,5 Technology Development

In order for the advanced domestic system to be implemented
commercially, technology development will be required in a number of areas.

Antenna Design - Multiple beam frequency reuse antennas will be
required. These will provide area coverage by means of spot beams of
about 1.3 degrees beamwidth and ccverage of major cities by means of
spot beams of about 0.5 to 0.6 degrees beamwidth. Major problems are
to achieve low sidelobe levels and sufficient beam pointing accuracy
and stability.

On-board Switching - Interconnection of multiple beams and different
frequency bands requires extensive on-board switching. For this first
generation advanced satellite, satellite switched TDMA switching at
RF, and IF switching will be provided. Interconnection between the two
switches will not be necessary.

Spacecraft Reliablity - As spacecraft complexity increases, spacecraft
reliability becomes a major concern. The target lifetime of 10 years
for this spacecraft will require substantial additional redundancy and
reliability systems development in the area of power amplifiers,
batteries, and station keeping and attitude control subsystems.
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Other areas which require technology development are intersatellite
links; light-weight, moderate power solid state amplifiers; integrated circuit
microwave subsystems, which will reduce the weight of the transponder; and
packaging and deployment schemes to enclosed the satellite within the shuttle
orbital bay.
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ANNEX A
TRAFFIC MODEL

All Introduction

This annex provides detailed information on the derivation of the
traffic model which is presented in Section 3 of this report. Extensive use was
made of the Western Union and ITT studies perforined for NASA Lewis Research
Center (References 2 and 3). While we have used the information provided, we
have used our own judgment and other work previously performed by FSI in order to
derive traffic requirements.

The present forecast covers a period of 15 years, 1980 to 1995. Since it
is a long range forecast, it is important to consider the types of facilities which
will likely be available during this time period. Rapid advances in communications
technology are taking place at this time, and these advances will have a significant
impact on the future development of communications facilities. Some examples of
applicable technology advances are given below:

Fiber optics transmission links

New communications processors and switches
High capacity communications satellites

Low cost earth stations

New, low cost microwave transmission

Another important input in generating a traffic model is the regulatory
environment. The following three bills addressing regulation and competition in
the field of telecommunications are currently before the U.S. Congress:

S.611 Hollings, Cannon, and Stevens
S.622 Goldwater, Schmitt, and Pressler
H.R. 3333 Van Deerlin, Collins, and Broyhill




While the outcome of any new legislation affecting telecommunications
is completely uncertain, it is reasonable to assume that there will continue to be
some pressure to increase competition and that communications facilities brought
into service by AT&T and by competing carriers will reflect this increasing
competition. FSI is under contract to the Office of Technology Assessment (OTA!
for certain work relating to the telecommunications study which is currently being
performed for Congress, and we are therefore familiar with some aspects of
pending new legislation and with inquiries by the FCC concerning competition in
the MTS field

Rising energy costs will continue to have a major impact upon our lives
and the way in which we use telecommunications to reduce travel. Since i977, Fil
has studied the impact of energy costs on telecommunications, and we have
concluded that depletion of the world's oil reserves will continue to raise energy
costs at least over the duration of this study period and that energy cost increases
will be an additional stimulation of communications service demand. As travel
becomes more expensive and less convenient, there will be an increasing tendency
to substitute communications for some travel. This will lead to better
communications facilities being offered, and once they are available, communica-
tions use will further increase and communications costs will continue to drop.

In preparing a communications traffic forecast, one must also consider
the price elasticity, i.e , the sensitivity of service demand to service price. While
voice communications costs are already quite low, price elasticity will have a
major impact upon the use of video conferencing.

It is well known that video conferencing is much more d:manding of
transmission capacity than voice or data transmission. Using state-of-the-art
coding equipment, the digital transmission capacity required for one video channel
is equivalent to the capacity required for about 100 voice channels. Since most
existing facilities have been designed for voice communications, it is obvious that
these facilities are inadequate for widespread use of video conferencing, and
therefore the costs per video chénnel are high. In turn, such higih costs are a
deterrence to the development of video conferencing systems.
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Current technology permits the introduction of high capacity terrestrial
and satellite communications systems which can reduce the costs for video
transmission by at least one order of magnitude. The terrestrial solution for high
capacity transmission facilities is fiber opties. The satelltie solution is the
development of multi-beam satellites with multiple frequency reuse. A nationwide,
high capacity satellite system is easier and cheaper to introduce than a nationwide
fiber opties system. Accordingly, we have based our systems development scenario
on the early expansion of satellite facilities, but we expect that a terrestrial fiber
opties system will follow in due course.

The traffie forecast covers total U.S. requirements and does not address
the share of individual communications carriers. There are now two terrestrial
carriers (MCI and SPC) who provide MTS services in competition with the Bell
System. In addition ITT has announced its intention to offer a similar service, and
other carriers have MTS-type services under consideration. In many instances, the
present share of the market of these specialized communications carriers is small.
For example, the revenues of MCI and SPC are in the order of $100 million per year
each, while the toll revenues of the Bell System are about $20 billion per year; thus
these small specialized carriers have captured about 0.5 percent of the Bell System
market each, but their share of the market could grow. AT&T's decisions
concerning the introduction of new transmission facilities will largely determine
the share of the specialized carriers; however, for the purpose of this study we
have not ad’ressed the question of market share.

A.2 Data Traffic
A.2.1 Background

While video conferencing is an entirely new application with practically
no history of operational use, there is already some operational background for déta
communications. Although no firm data has been published by the carriers, current
data communications revenues by all domestic carriers are estimated at ranging
from $2.4 billion (Reference 1) to $4.7 billion (Reference 2), and data traffic is
estimated to grow at 17 percent annually (Reference 2).



In 1978 NASA Lewis Research Center commissioned Western Union and
ITT to perform studies of communicatinns service demand for U.S. domestic
satellite systems with special emphasis on the requirements for service at 18/30
GHz. The total contract amount of the two parallel studies was about $0.5 million,
and the two carriers have probably spent additional corporate funds to perform the
forecasts. These two studies represent the¢ most detailed investigation of satellite
communications service demand that is publicly available, and the results have
therefore been used in this report. Future Systems Incorporated has been 2
subcontractor to Western Union on the preparation of information for its report,
snd certain FSI data has also been used by ITT in the preparation of the ITT report.

Data communications can be divided into the following categories:

Message Traffic

Message traffic is primarily composed of record communications
between individuals and/or organizations. It includes TWX/Telex,
faesimile, and electronic mail applications.

Computer Traffic

This category includes inquiry/response traffic between terminals and
computers plus computer network traffic for distributed processing,
funds transfer, and data base exchange.

Narrowband Teleconferencing

This includes image and character oriented data traffic in support of
audio/graphic teleconferencing plus freeze frame television.

Data transmission requirements can be expressed in terms of informa-
tion bits transmitted and in terms of transmission channel capacity. The ratio of
information bits to transmission channel capacity is the transmission efficiency.
For a given information rate, vastly different transmission channel capacities can
result depending upon the data transmission architecture that is used. '

For example, if a circuit-switched data channel is used for an
intersctive data communications application, the transmission efficiency may be
only a rraction of a percent because of the low rate at which the human operator
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types in data and interprets results and because of the transmission idle periods
when the time shared CPU performs its function. This low efficiency is one of the
reasons for the introduction of packet data communications networks where virtual
circuits are set up and where the transmission channel is shared by several virtual
channels.

Even in packet-switched networks, the transmission efficiency can be
low, perhaps 10 to 30 percent because the packet fill factor is low resulting in
larger transmission overhead. In some cases packet fill factors are intentionally
kept low in order to reduce network response time, For example, at a 300 baud
transmission speed it takes over 3 seconds to fill a typical Telenet packet of 1,024
bits. For other higher speed applications, transmission efficiencies of 50 to
70 percent are more typical.

The design of the transmission architecture, which determines the
transmission efficiency, will generally be dependent upon the transmission costs. In
networks where transmission costs are high, data processing and concentrating
equipment will be employed to reduce transmission line cepacity requirements.
However, where transmission costs are low, lower efficiencies will be permitted in
order to save processing equipment costs. In our forecast for data service
requirements, we refer to transmission channel data rates rather than to raw
information data rates.

In the case of video conferencing, we have concluded that the total
traffic will be carried on satellite circuits except for intrafacility traffic. For data
applications, however, it is necessary to distinguish between satellite and
terrestrial traffic.

In the past the use of satellites for data applications has been handi--
capped by the existing protocols which did not allow for the satellite transmission
delay. Satellite transmission often results in low throughput because of the rela-
tively long waiting times for acknowledgement receipt. Modern data transmission
protocols make allowance for the satellite transmission delay; thus this problem
will gradually disappear.
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A.2.2 Estimate of Message Service Demand

Message service demand is divided into the following categories:

TWX/Telex Traffic
Conventional Facesimile Traffic
Advanced Electronic Mail

A.2.21 TWX/Telex Service Demand

The demand estimate for this service category is based upon estimates
of the number of terminals in use. Table A-1 lists several available estimates of
terminal population along with the source of information. All estimates were
converted into a number of messages per year based 6n the following conversion
factors:

Five Messages per Day per Terminal and 250 Days per Year
$1.60 per Message




Table A-1

TWX/Telex Estimates

Conversion MSQSs/
Period Estimate Pactor Year Soures
1978 100,000 Terminals 1250 msg/ye. 125M Businmas Comnrunieations, 1975-1988
4-%/yr. growth per terminal May 1978, A.D. Little
1974 $200M Comm. $1.60/ 1288 "
Carrier Revenue Message
1980 $230-200 Comm. $1.60/ 186~ " E
Carrier Revenue . Message 175M 4
nmnmn 111,000 Terminals 1250 msg/yr. 139M Cost-Etfective Switching System
per terminal Design - L. Stier, Western Union
Info. Systems, Telecomm. Aug. 1977
197¢ 100M Pge/Yr. 1 108M Xerox Corp. Petition for Rule Making
before PCC Nov. 16, 1978, App. C
1970 $245M Comm. $1.60/Msg. 153M . Telecomm. Market Oppoetunities in
Carrier Revenue the U.8., 1978; Internatl, Resource
Devel. Ine., Aptil 1978
1980 $270M $1.60/Mag. 168M "
1983 $295M $1.680/Msg. 184M "
1988 $325M Comm. $1.80 Msg. 203M "
Catrier Revenue
1970 80,000 Terminals 1250 Msg/yr. 100M Impects of Electronic Comm Systems
per terminal on the U.S.P.S. 1975-1985, C-80209
Ped. 14, 1977, A.D. Little, Pe-9
1978 106,000 Terminals 1250 Msg/yr. 13IM "
per terminal
1998 143,000 Terminals 1250 Msg/yr. 181M .
per terminal
1980 156M Msgs/yr. 1 156M .
197t 81,000 Terminsls 1250 Msg/yr. 101M Cemmunlcations News Dec. 1978, P29
1972 89,000 Terminals " 111M "
1873 97,000 Terminels " 121M .
1974 102,000 Terminals " 128M .
1978 105,000 Terminals . 13IM "
1876 110,000 Terminals . 138M .
1977 115,000 Terminals . 144M .
1978 119,000 Terminals " 14IM "

Source: Reference




The varjous astimates are plotted in Figure A-1. The estimated decline
in demand past 1985 is based on the expectation that current TWX/Telex terminals
will be retired in favor of more efficient message terminals in future years.

The number of messages is converted into a number of bits by assuming
120 words per message, six characters per word, and eight bits per character
resulting in 5,760 bits per message. Annual traffic is then converted into peak busy
hour traffic by assuming 250 business days per year, 24 hours per day, and a peak to
average factor of four. On this basis one busy hour Mbps at 100 percent efficiency
converts into 5.4 terabjts per year. Transmission line efficency is assumed to
range from 1 to 10 percent. The results are shown in Table A-2,

Table A-2
Projected TWX/Telex Service Demand

Busy Hour

Messages per Traffie in Transmission Transmission

Year Terabits Efficiencies Capacity in

Year (Millions) per Year in Percent  Mbps (one-way)

1980 150 0.86 1 15.9
1985 170 0.98 2 9.1
1990 145 0.84 5 3.1
1995 120 0.69 10 1.3

Thus it is found that in terms of overall transmission capacity
requirements, the TWX/Telex traffic is small. Not only do the message require-

ments decrease with time, but also the transmission line efficiencies increase due
to increasing use of the more efficient packet networks. '
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A.2.2.2 Conventional Facsimile Service Demand

Since the late 1960's, business use of facsimile has developed into a
viable market. Table A-3 shows various estimates of the number of terminals
installed, and Figure A-2 is a graphic presentation of the same information. There
is a wide diversion of estimates, but the assumed growth rates are uniform at about
18 percent per year. We have averaged these estimates and extrapolated them
with a gradually dronping growth rate also shown in Figure A-2. The resulting
service demand is shown in Table A-4. The following conversion factors were used:

1,800 Pages per Year per Terminal

300,000 E - per Page
(This resu’.s in 0.54 terabits per 1,000 terminals per year.)

250 Days per Year
24 Hours per Day
Peak to Average Factor = 4

As before, with 100 percent transmission efficiency, one terabit per
year converts into 0.185 Mbps.
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Table A-4
Facsimile Service Demand Estimate

Number of One-Way Data
Facsimile Traffic in Transmission Transmission
Terminals Terabits Efficiency Requirement
Year (1,000) per Year (Percent) Mbps
1980 260 140 15 173
1985 600 324 17.5 343
1990 1,150 621 20 575
1995 1,700 918 22.5 756

A.2.2.3 Advanced Electronic Mail Systems

With the introduetion of new terminal iy)es and new data transmission
facilities, the development of advanced elsotronic mail systems is expected. The
following developments are expected to take place:

1. Diversion of physical mail to electronic mail.
2, New document distribution networks.

3. Increased use of communicating word processors and character-
oriented message terminals.

4. Increased use of facsimile transmissions with increased speed,
convenience, and quality at reduced costs.

5. Office of the future practices by government and industry.

6. Decentralization of work locations with increased communications
. demands.

To some extent these advanced new services will substitute for the
conventional facsimile services and the TWX/Telex services deseribed in Sections
A.2.2.1 and A.2.2.2. For this reason the growth of these conventional services was
assumed to slow dowm and even reverse in later vears.

Several estimates of advanced electronic mail service requirements
have been made by A. D. Little, Frost & Sullivan, Xerox, George Washington
University and others. A composite estimate derived from Reference 3 is shown in
Table A-5.
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Table A-5
Projected Traffic Demand Due to
Advanced Electronic Mail Systems

Year
1980 1990 2000
Business to Business Mail Vol. (Pieces x 109) 12.5 15.2 18.6
First Class Mail ‘% Diverted to EMS 0.25% 25% 50%
Vol. to EMS (x 10%) .03 3.8 9.3
Business to Home &  Mail Vol. (Pieces x 10°)  16.2 19.7  24.]
Home to Business % Diverted to EMS 0% 5% 20%
Vol. to EMS (x 10°) 0 1.0 4.8
Business to Business Mail Vol. (Pieces x 1.09) 38.6 51.9 69.7
Private Mail % Diverted to EMS 0.5% 60% 80%
Vol. to EMS (x 10°) .19 31.1  55.8
" Mail Volume Total (Pieces x 10°) 67.3 86.8  112.4
Diverted to EMS Total (Pieces x 10°) .22 35.9  69.9
Percent Image/Character Modes 90/10 50/50 20/80
Projected Image Mode Pages (x 10%)* .20 18.0 14.0
Projected Character Mode Pages (x 109) 0.02 18.0 55.9
Image Mode Bits/Yr. @ 300,000 B/Pg. (x 1012)** g0 5,400 4,200
Char. Mode Bits/Yr. @ 20,000 B/Pg. (x 10'%) 6 360 1,120

*Assumes one page per piece of mail
**Assumes slightly better resolution than today's typical FAX

Source: Reference 3
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This estimate is translated into busy hour transmission capacity

requirements in Table A-6. Based on 250 days per year and a peaking factor of

4 at 100 percent transmission line efficiency one terabit per year corresponds to

0.185 Mbps.

Table A-§
Advanced Electronic Mail
Service Demand Estimate

Year
1980 1990 2000

Terabits per Year

Image Mode 60 5,400 4,200

Character Mode 6 360 1,120

Tetal 66 5,760 5,320
Transmission Efficiency 30% 40% 50%
One-Way Data
Transmission: Requirement (Mbps) 40 2,670 1,970

To permit interpolation to other years, advanced electronic mail

service demand estimate has been plotted on Figure A-3.
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A.2.2.4  Total Message Service Demand

Table A-7 lists the total message service demand in one-way Mbps.

Table A-7
Total Message Service Demand
(One-Way Mbps)

Advanced

Conventional Electronie
Year TWX/Telex Facsimile Mail Total
1980 16.0 173 40 230
81 14.4 205 60 279
82 13.0 235 : 100 348
83 12.8 265 190 468
84 10.4 305 360 675
1985 9.0 340 620 969
- 86 7.8 380 1,000 1,388
87 6.2 425 1,400 1,831
88 5.0 475 1,850 2,330
89 : 3.9 525 2,250 2,719
1980 3.0 575 2,670 3,250
91 . 2.2 620 2,900 3,522
92 1.7 660 3,050 3,712
93 1.4 700 3,100 3,801
94 1.3 735 3,050 3,786
1995 1.3 760 2,950 3,711
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Estimate of Computer Communication Service Demand

Computer-related communications requirements can be grouped

into several categories as follows:

A.2.3.1

Computer to Terminal Communications

This involves terminals of the interactive and remote batch type at
speeds ranging up to about 19.2 kbps.

CPU to CPU Communications

This category includes primarily transfers of data base contents from
one central computer facility to another.

Electronic Funds Transfer

This includes both check clearing data transfers and credit card
initiated transfers.

Computer to Terminal Communications

The forecast of this segment of the computer-related requirements is

based on several forecasts of the number of computer terminals in use in the next
20 years. Table A-8 shows a detailed forecast of this type. We have converted

these values to a traffic estimate based on a traffic production of 380 MB per

terminal per year. This factor is a composite of data production for the several

terminal types shown in the table. The total forecast is shown in Figure A-4.

In converting to the data rate requirements shown in Figure A-4, we

have employed the following factors:

250 business days per year
24 hours per day
Peak factor of 4 (over 24 hours)

Transmission efficiency of 70 percent, reflecting the usc
of advanced packet network protocols

The resulting total transmission requirement is shown in Table A-9.
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Table A-8
Installed Terminals

i e

Year
- 1976 1980 1990 2000

Alpha/numeric CRT
Single Station
Nonprogrammable . 260 530 2,114 5,483
Alpha/numeric CRT
Single Station
User Prog. On-Line 24 101 940 3,002
Alpha/numeric CRT
Multi-Station
Nonprogrammable 226 180 35 7
Alpha/numeric CRT
Multi-Station
User Prog. 85 425 1,719 4,460
Alpha/numeric CRT
Single Station

. User Prog. Batch 39 178 719 1,866
Teleprinter
Non-Programmable 425 573 933 1,519
Teleprinter .
User Program 51 185 1,207 3,749
Totals 1,110 2,182 7,667 20,086

Source: Reference 5
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Table A-$
Terminal to CPU Traffic

Year

1980 1985 1990 1995
Number of
Terminals
(1,000's) 2,180 4,600 7,870 13,600
Terabits
per Year 830 1,750 2,910 5,170
Transmission
Efficiency 2% 5% : 7.5% 10%
One-Way Data
Transmission
Requirement (Mbps) 7,680 6,480 7,190 9,570

It is interesting to note that the total transmission requirement does
not change greatly with time, although the information transfer increases
substantially. This is due to the assumption that increasing portions of the total
traffic are transmitted in the packet mode thus raising the total transmission
efficiency. The efficiency of transmission in a circuit switched mode is generally
less than 1 percent, while the efficiency in the packet mode may be 50 percent.
However, even if 90 percent of the traffic is transmitted in the packet mode, the
remaining 10 percent of the traffic with 1 percent efficiency depresses the overall
transmission efficiency.

A.2.3.2 CPU to CPU Transmissions

This component of the data transmission market is quite difficult to
estimate since there is very little of it in existence today. However, we have
assumed that ultimately there will be a large fraction of the terminal to CPU
traffic that will require data base access. In order to support this component, the
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data base contents must be transferred from one central computing facility to
another. The transfers will be relatively less frequent than the accesses so the
data traffic generated by the data base transfers will be smaller than the traffic
generated by terminal to CPU communications.

Another source for this type of traffic is distributed processing. We 3
have expressed this type of traffic as a fraction of the terminal to CPU traffic E
as shown in Figure A-5, Since this traffic is transferred without human intervention,
the transmission efficiencies are higher than in the terminal to CPU case. Table 11
A-10 shows the resulting transmission requirement. 1

Table A-10
CPU to CPU Traffic

Year

1980 1985 1990 1995 ’
Terminal to
CPU Traffic
"(Terabits per Year) 830 1,750 2,910 5,170
Traffic Ratio 0.05 0.07 0.13 0.26
CPU to CPU
Traffic
(Terabits pe: Year) 41 123 380 1,340
Transmissicn
Efficiency 4% 7% 10% 15%
One-Way Data
Transmission
Requirement (Mbps) 190 325 700 1,650
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A.2.3.3 Electronic Funds Transfer ' A §

; This portion of the market will be concerned primarily with the i3
clearinghouse function for eheck handling and the growing volume of credit card |
initiated funds transfers. Most of the growth in this service will come from the
gradual conversion to this method of transaction handling, since there are strong
indications that the volume of transactions is reaching a saturation region with
rather slow growth. The forecast from Reference 3 shown in Table A-11 has been

A

converted to a data rate requirement as shown in Table A-12. The transmission
efficiency is assumed to.range from 10 percent to 30 percent, since storage and

data compression techniques can eliminate the inefficiencies caused by human
interaction.

Table A-11
EFT Traffiec Demand

Year
1980 1990 2000
" Number of Checks per Year
(x 10%) 36.3 50.1 63.8
~Potential Traffic (Terabits)
at 1,000 Bits per Check 36.3 50.1 63.8
Percent Converted to EFT 10 60 90

EFT Terabits 3.6 30.1 57.4

Source: Reference §
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Table A-12
Transmission Requirements for EFT

Year

1980 1985 1990 1995
Terabits per Year 4 16 30 44
Transmission )
Efficiency (Percent) 10 15 20 30
One-Way Data
Transmission
Requirement (Mbps) 7 20 28 27

A2.34 Total Computer Communications Service Demand

Table A-13 lists the estimate total computer communications service
demand in one-way Mbps.

A.2.4 Narrowband Teleconferencing Service Demand

Narrcwband teleconferencing is the poor cousin of video conferencing.
It includes all the features of a video conferencing facility except video:

High Quality Audio, Perhaps Sterophonic
High Quality, High Speed Fax

Electronic Blackboard

Character Mode Terminals

Freeze Frame Television

Conferencing facilities of this type will be constructed with transmis-
sion bandwidth requircments ranging from 19.2 kbps to 112 kbps, two way. Table
A-14 is the ITT forecast for this type of traffic.
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Table A-13
Total Computer Communications Service Demand
(One-Way Mbps)

Terminal
to CPU CPU to CPU EFT Total
Year Traffic Traffic Traffic Traffic
1980 7,680 190 7.0 7,880
81 7,250 200 9.5 7,460
82 6,950 220 12.5 7,183
83 6,750 245 15.0 7,010
84 6,600 280 17.5 6,898
1985 6,480 325 20.0 6,830
86 6,450 380 22.0 6,852
87 6,500 440 24.0 6,964
88 6,650 510 26.0 7,186
89 6,850 600 27.0 7,477
1990 7,190 700 28.0 7,920
91 7,500 820 28.5 8,349
92 7,900 970 28.5 8,899
93 8,350 1,130 28.5 9,509
94 8,850 1,340 28.0 10,218
1995 9,570 1,650 27 11,250
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Table A-14

Narrowband Teleconferencing

Year
1980 2000

1. Enplanements 234 x 105 383 x 108 575 x 10°
2. Business Enplanements @ 40%1 93.6 x 106 153 x 106 230 x 106
3. Conferences 9 6 6 6

(Bus. Enplanements x .675) 63.2 x 10 103 x 10 155 x 10
4. Conferences Potentially Replaceable

by Audio/Graphic Teleconf.

(@ 45%)1 28.4 x 108 46.4 x 108 69.8 x 10°
5. Percentage Realized 1% 25% 50%
6. Number of Audio/Graphic Teleconf. .284 x 108 11.5 x 108 34.9 x 108
7. Pages per Year (@ 10 per Teleconf.) 2.84 x 108 116 x 105 349 x 10°
8. Percent Image/Character Modes 95/5 90/10 75/25
9. Pages/Year Image Mode 2.70 x 108 104 x 10° 262 x 10°
10. Image Mode Bits/Yr. 3 ' 12 12 12

(@ 400,000 Bits/Pg.) 1.08 x 10 41.6 x 10 104 x 10
11. Pages/Year Character Mode .142 x 108 11.6 x 10° 87.3 x 108
12. Character Mode Bits/Yr. 12 12 12

(@ 20,000 Bits/Pg.) .003 x 10 .232 x 10 1.75 x 10°“
13. Teleconf. Hrs./Yr. (@ 2 Hrs./Conf.) 568 x 106 23.2 x 106 69.8 x 106
14. Teleconf. Hrs./Yr. with

Freeze Frame TV 114 x 108 4.64 x 10° 14.0 x 10°

. 4 12 12 12

15. Bits/Yr. for Freeze Frame TV 7.88 x 10 320 x 10 968 x 10
1. Technology Assessment of Telcom./Transportation Interactions, Vol. 2-SRI May 1977.
2. Business enplanements x (2.7 Conf./Round Trip) (2 Travelers) (2 enplanements/round trip).
3. Based on 85 percent office copy quality at 300,000 bits/page and 15 percent letter quality at

1,000,000 bits/page.
4. Assumes that 20 percent of audio/graphic conferences require additional capability for freeze

frame TV on each of two 9.6 kbps channels (30 - 60 sec. refresh rate with image compression).
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Transmission requirements for this type of traffic are presented in
Table A-15,

Table A-15

Transmission Requirements for Narrowband Conferencing

Year
1980 1985 1990 1995

Terabits per Year

Image Mode 1 19 42 69.0

Character Mode - 0.1 i 0.2 1.0

Freeze Frame TV 8 135 320 555

Total 9 154 362 625
Transmission Efficiency
(Percent) 10 12.5 15 20
Transmission
Requirement (Mbps) 17 228 447 578
A.2.5 Satellite Versus Terrestrial ‘Cransmission

In determining the satellite capture ratio, ITT has first eliminated all
traffic-over distances of less than 200 miles and has then estimated the capture
ratios listed in Table A-16.
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Table A-16
ITT Estimate of Percent Capture by Satellite

Year
1980 1990 2000
Voice 2 15 25
Video 50 60 60
Data . 1 50 60

Source: Reference 5

While the overall ITT results may be correct within the estimating
accuracy that can be expected, FSI experience indicates that networking aspects
will be important in satellite versus terrestrial transmission trades. Once a
satellite network is established with earth stations available at many locations to
provide long distance communications, then it will be found convenient from a
network design point of view to transmit also shorter distance traffic over the
satellite network.

The distribution of interstate MTS traffic is shown in Figure A-6. It
shows that the mean communications distance increases with time. The solid lines
are derived from the ITT study; the dashed line is the FSI extrapolation for the year
1990. We expect that data communications traffic will follow similar patterns.

Based on FSI communications systems design experience, in a network
even data links with 20-mile distance are candidates for satellite transmission;
therefore, we do not consider it appropriate to eliminate any distance range from
the addressable market. Instead we have estimated the overall satellite system
capture ratios shown in Table A-17.
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A.2.6 Total Data Transmission Requirements for Satellite Facilities

Table A-17 summarizes the total U.S. domestic data transmissior ~2-
quirements and caleulates satellite data transmission requirements based on
estimated capture ratios. Table A-18 shows the expected capacities per equivalent
36 MHz C-band transponder and the resulting number of transponders required for
data transmission. Please note that the term transponder is used only for reference
purposes. Actual spacecraft will employ different transmission configurations.

Transponder capacity is expected to increase with time as a larger

percentage of traffic is converted to high rate TDMA transmission.
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Table A-17
Total Data Transmission Forecast

Total Total Total

Message Computer Narrowband Data Satellite  Satellite

Service Service  Conferencing Scrvice Percent Traffie

Year (Mbps) (Mbps) (Mbps) (Mbps) Capture (Mbps)
1980 230 7,880 17 8,027 1 80
81 279 7,460 55 7,794 2 156
82 348 7,183 95 7,626 3 229
83 468 7,010 135 7,613 6 457
84 675 6,898 178 7,751 9 698
1985 969 . 6,830 228 8,027 12 963
86 1,388 6,852 275 8,515 16 1,362
87 1,831 6,964 325 9,120 19 1,733
88 2,330 7,186 370 9,886 23 2,274
89 2,779 7,477 412 10,668 28 2,987
1990 3,250 7,920 447 11,617 30 3,485
91 3,522 8,349 480 12,351 33 4,076
92 3,712 8,899 510 13,121 35 4,592
93 3,801 9,509 535 13,845 37 5,123
94 3,786 - 10,218 555 14,559 39 5,678
1995 - 3,711 11,250 578 15,539 40 6,216
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Table A-18
Satellite Transponder Requirements

for Data Transmission

Average
Satellite Transponder
Traffic Ceapacity Number of

Year (Mbps) (Mbps) Transponders
1980 © 80 30

81 156 32

82 229 . 34 7

83 45% 36 ‘ 13

84 698 38 18
1985 963 40 24

86 1,362 41 33

87 1,733 43 40

88 2,274 44 52

89 2,987 46 65
1990 3,485 47 74

91 4,076 48 85

92 4,592 49 94

93 5,123 50 102

94 5,678 51 111
1995 6,216 52 120
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A Voice Service

The requirement for voice communications services is most directly
correlated with population, social factors and business activity. Unlike video
conferencing and data communications services, technological innovations will

probably not play a major role in the growth of voice serv.ces. Major categories of
voice services are:

Message Telecommunications Services (MTS)
Wide Area Telecommunications Services (WATS)
Private Line Services

Other voice services are audio program transmissions and trunk mobile
audio transmissions. These services, however, are negligible compared to the three
major categories and have therefore not been considered in the study.

ITT performed a major survey of voice requirements and reported the

results of this survey in a study for NASA Lewis Research Center (Reference 3).

FSI used the basic conclusions with respect to total voice eircuit requirements as a
_basis for its forecast of satellite communications requirements.

The ITT study examined:

Population

Households

Gross National Product (GNP)
Population Sorted by Age Brackets
Disposable Personeal Income
Employment Figures

IT! found that of all these factors, correlation with population, number
of households and GNP, were most promising for projecting growth of telephone
circuit requirements. Based on these factors, ITT projected total number of calls
and average call durations, which determined total traffic volume. Based on
historical operating statistics, peaking factors were derived in order to be able to
calculate busy hour voice circuit requirements.
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ITT performed separate calculations for the peak busy hour in the
evening which is due to residential traffic primarily, and for the busy hour during
daytime which is controlled by business communications. The study concluded that
the busy hour circuit requirements determined by residential traffic were slightly
higher than the daytime busy hour circuit requirements determ'ned by business
traffiec. When the voice requirements are combined with data and video
teleconfzrencing traffic, however, the business peak hour becomes the controlling
factor for the total traffic. For this reason, in our forecast we heve used the ITT
figures for business busy hour circuit requirements. These are shown in Table A-19.

From zn estimated percent of satellite capture and an assumed average
number of duplex circuits per transponder, we have derived the forecast for the
number of 36 MHz equivalent bandwidth transponders required to support telephony
service demand for U.S. domestic communications.

Table A-19
Telephonv Service Demand

Year 1980 1985 1990 1995

Total requirements in
millions of duplex
cell cireuits

MTS 0.52 0.8 1.33 2.03
WATS 0.31 0.47 0.70 0.97
Private Line 0.28 0.38 .72 1.20
Total 1.11 1.65 2.75 4.20

Satellite Capture, percent 2.5 7.9 12 12

Average number of duplex
rircuits per transponder 400 450 500 500

Number of 36 MHz
transponders required 70 289 660 1008

*Source: Reference $
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A4 Video Conferencing
Ad.l Background

Experimental video conferencing systems have been in operation in the
U.S. and in other countries for some time, and experiments have been conducted to
determine the value of video. It was found that for certain applications, audio
supported by facsimile was adequate and that the additional value of video was
judged small compared to the high cost of video transmission. Other users found
that video made an important contribution to the communications process.

AT&T operates the Picturephone Meeting Service which is a public
video conferencing service. In addition, AT&T operates a private video
conferencing network for its own use. The AT&T conference room facilities lend
themselves well to formal conferences. However, the charges for the service are
high, amounting to $390 per hour, for example, for the Washington to San Francisco
link. Established video transmission facilities are used on a shared basis with the
TV networks. Even at the high hourly rate charged, it is not certain that the fully
allocated costs would be covered if dedicated facilities are used with larger
conferencing traffic volume

The main disadvantage of the current system is its lack of convenience.
For example, if a suburban Washington user requires a conference with a client in
Palo Alto, California, each party would incur 2 hours of automobile travel for the
round trip to the conference room, perhaps with the inconvenience of rush hour city
traffic and parking problems. This loss of time and inconvenience along with the
high hourly rates make the value of video conferencing questicnable, compared
with.the other alternatives of telephone conversations and long distance travel.

In order for video conferencing to become universally accepted, two
developments are requirad:

1. Video transmission costs must be reduced substantially.
2. Conference rooms must be widely available without local travel.
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FSI prediets that both these developments will take place during the
time period covered by the forecast, and that as a result the basic objections to
video conferencing will be removed. It is clear that even then there will be a large
percentage of business people who will dislike video conferencing and will try to
avoid using it. The extensive use of video conferencing will need changed behavior
patterns which will take time to establish. However, even if only a small
percentage of the business community uses video conferencing, the need for very
substantial new transmission facilities will resuit.

Ad.2 Video Conferencing System Implementation

Thre initial users of video conf{erencing services on & large scale will be
large corporations. These same corporations aiso have requirements for high
volumes of voice and data communications services and will have provided
dedicated earth station facilities for thoce services. These same earth stations can
then be used for transmission and reception of video conferencing traffic at very
low incremental costs.

High quality video conferencing transmission using interframe coding
with compression techniques can be accomplished at the T-2 transmission rate of
6.3 Mbps per second for individual one-way channels. The video transmission
coding equipment for this compressed transmission is still expensive, in the order
of $50,000 per circuit end if purchased in small quantities today. During the next
few years, considering larger quantity purchases, costs will go down to about
$10.000 per circuit end which will make the acquisition of such units by major
corporations quite practical.

Another required investment will be conference room facilities.
Depending on the sophistication and complexity, the required ‘ideo cameras,
monitors, facsimiie circuits, eleetronic blackboard, voice-operated audio facilities,
and video recorders could bring the required investment costs to a level of perhaps
$50,000 per conference room facility. In this area as well, substantial reductions in
costs can be expected, and some less ambitious conference facilities will be
available for an investment cost of perhaps $10,000 per conference room as soon as
equipment is constructed in larger quantities.
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Based on these considerations, major corporate locations will be able to
add video conferencing facilities to their existing earth station system at an
investment cost of about $20,00¢ per facility, which translates into an amortized
monthly cost of about $600 per month. If the conference room is used only for an
average of 3 hours per working day, the monthly cost for the facilities translates
into about $10 per hour of use.

Current U.S. domestic communications satellites have very low
capacity when used for video conferencing. Table A-20 s-~ws the total number of
two-way video circuits that can be transmitted through eacn of the existing and
planned communication satellites assuming 6.3 Mbps per one-way per video
transmission.

Table A-20
Video Conferencing Capacity of Existing and Planned Satellites

Number of
Satellite Number of Two-Way
Type Transponders Video Circuits*
Western Union's Westar 12 60
RCA's Satcom 24 120
AT&T's Comstar 24 120
Western Union's Advanced Westar 28%* 140

*Based on & multiple access transmission rate of 63 Mbps per
transponder and 6.3 Mbps per one-way video conferzneing channel.

**Digital capacity is translated into transponders at 63 Mbps per
transponder.
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The space segment transmission costs can easily be calculated.
Assuming a transponder lease charge of $1 million per year, the transponder
transmission capacity of five two-way video circuits results in an annual cost per
video circuit of $200,000. With 100,000 paid minutes per year, the per minute cost
of the space segment would be $2, resulting in an hourly cost of $120. Even if users
were willing to pay this high transmission charge, the small video conferencing
capacity per satellite would make widespread use of current communication
satellites for video conferencing completely prohibitive since the number of
available orbital positions is too small.

Therefore, both from a cost point of view and from the point of view of
use of the orbital arec, it will be necessary to make a transition to high capacity
satellites of the type desceribed in Section 3, U.S. Domestic Satellite Traffic
Projections. In that section it was shown that space segment transmission costs for
video conferencing circuits would be in the order of $10 per hour.

Based on these considerations, it is concluded that future video circuit
transmission costs will be in the order of $30 per hour (expressed in 1979 dollars)
with a cost breakdown as shown below:

Space segment transmission costs per hour $10
Incremental earth station and conference room

facilities costs per hour 10
Communications carriers administrative

expenses and profit per hour of use _10
Total hourly charge $30

A video conferencing per minute cost of 50 cents compares favcrably -
with current long distance telephone rates of 10 cents to 30 cents per minute. Our -
pre ise of video conferencing use is thus based on the assumption that adequate
facilities will be established leading to low costs, and that these facilities will be
widely available for convenient use of video conferencing including persdn—to-
person communications.

A-39




A4 The Impact of Energy Costs on Travel and Telecommunications

The U.S. balance of payments deficit is caused largely by il imports.
Future increases in oil prices will make oil import reductions mandatory. Some
substitution of teleccmmunications for travel and some substitution of electronic
mail for physical mail delivery will be important contributions to energy
conservation. A new generation of high capacity satellites will be needed in the
late 1980's to permit this substitution. The universal availability of low cost
communications facilities will not only reduce energy consumption, but it will also
change work and life styles and will lead to a general improvement in the quality of
life. For these reasons, the development and implementation of high capacity
communications satellite systems will become a matter of national priority in the
U.S. and perhaps in other countries. ’

The World Oil Shortage Starts by 1995

Figure A-7 is an estimate of the cycle of world oil consumption. It
shows the oil consumption rate versus time. Starting with a very low rate around
the year 1900, we experienced an exponential growth up to the current rate of
approximately 20 billion barrels* of oil per year. By 1977, approximately 340
 billion barrels had already been consumed. Another 560 billion barrels are known
oil reserves not yet produced. It is estimated that total world oil reserves
originally were about 2,500 billion barrels. Thus, to date we have consumed 14
percent of the world's total oil.

It is estimated that oil consumption will continue to increase and peak
at a rate of 40 billion barrels around the year 2000. At that time we will have
consumed about half of the world's oil. Thereafter oil consumption will decline,
and by the year 2050 we will have consumed 95 percent of the world's initial oil
reserves.

Ultimately recoverable oil reserves are an estimate of how much oil
will eventually be produced. They include as yet undiscovered oil worldwide,
including off-shore, and an allowance for enhanced recovery techniques. Estimates
by different experts vary as can be seen from the following figures:

*One barrel equels 42 U.S. gallons or 159 liters.
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Total World Oil Reserves

Source in Billion Barrels
Hendricks (USGS) 2,500
Ryman (Exxon) 2,090
Shell 1,800
Hubbert 2,100
Warman (BP) 2,000
Weeks 2,290
Moody & Geiger 2,000

The variation of estimates around the 2,000 billion barrel figure is
small. The low estimate is 10 percent below the assumed figure, and the high
estimate is about 25 percent above. These variations affect the time of oil
shortfall but not the actual result. At the peak consumption rate of 37 billion
barrels per year, an extra 5,000 billion barrels will only last for an extra 13 years.

Figure A-8 shows the annual oil consumption per capita plotted versus
GNP per capita for 11 world model zones. As the GNP per capita of each country
increases, it can be expected that the demand of oil will increase correspondingly.
* This information has been used to determine the future oil demand. Highlights of
werld energy consumption between 1950 and 1975 are shown below:

1. Totel world energy consumption has grown at 5.3 percent per year.
2. Total world oil consumption has grown at 7.2 percent per year.

3. World oil consumption for transportation has grown at 7.6 percent’
per year.

4. The total energy produced by oil has grown from 28 percen* to 43.
percent.

5. In 1975, 37 percent of the total oil consumed was used for
transportation.
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Figure A-9 shows the annual world oil supply and demand. Starting in
19935, an increasing gap between supply and demand will develop. This approaching
world oil shortage will be accompanied by continuing sharp increases in prices for
oil and other forms of energy, leading to the absolute requirement for reductions of
oil imports for the U.S. and for many other countries.

Add The Inconvenience of Business Travel

As a result of rising fuel costs, airlines have cut back on their number
of flights. For this reason, it becomes more difficult to obtain reservations on
short notice and to change travel plans in accordance with business requirements.
The occurrence of overbooking of flights increases, and unless the business traveler
arrives early at the airport, there is a signifiéant chance that a confirmed flight
will be unavailable due to overbooking. Airplanes are typically fully loaded as
compared to the average 50 percent loading that was customary in the past.
Airport facilities are inadequate, and the congestion at airports has increased. In
many larger cities there are long waiting times on the runway prior to takeoff, and
airplanes are stacked in a holding pattern prior to landing. All these events make
air travel less and less desirable and more and more inconvenient. This trend will

continue in future years.

Local travel by means of personal automobile also becomes increasingly
more inconvenient, at least in the larger cities. Inadequate highway facilities for
the entrance to large cities lead to extensive rush hour traffic jams, and traffic
congestion periods extend well into mid-morning. Travelers to offices in cities find
that parking is expensive, inconvenient and often unavailable. For these reasons
local travel within or to major cities continues to become more inconvenient, more

time consuming and less desirable. Publie rapid transit systems have not kept pace

with the commuting requirements.

The increasing inconvenience, loss of time and cost of business travel,
both in terms of long distance and local travel, will become an increasingly more
powerful incentive to use alternatives to travel. Telecommunications will be used
extensively in lieu of long distance and local travel.
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Once satisfactory teleconferencing facilities have been established, a
further change will occur in our work and life styles which will lead to a general
improvement in the quality of life. This change will consist of decentralization of
work locations. A large percentage of the white collar work force will be able to
live at locations of their choice regardless of locations of corporate facilities.
Teleconferencing, including the use of video, will permit effective communication
between workers. This trend will lead to a further increase in video conferencing
service demand.

A4S Video Conferencing to Replace Air Travel

The forecast of video conferencing requirements as a replacement of

air travel consists of three elements:

1. A forecast for U.S. domestic air travel during the forecasting
pericd

2. A forecast of the percentage of trips that wili be replaced by video
conferencing
3. An estimate of the conference requirements per replaced trip

Details on these three elements are presented below.

Air Travel Forecast

Ajr travel information was obtained from an FAA publication
(Reference 15). Air traffic statistics were collected for the number of passengers
enplaned for a 10-year period, and a correlation was developed for airline
passengers per year per 1,000 population and GNP per capita. Based on GNP and
population forecasts over the forecasting period, total U.S. airline passengers per
year were predicted, using the correlation developed for the earlier 10~-year period.
The historical enplanement, GNP per capita and population data are shown in Table
A-21. '
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Table A-21
@ Historical Air Traffic, GNP Per Capita and Population Data

3 Number of
Enplaned Passengers
i Percent GNP/Capita Population

i Year © Millions Increase (1979 Dollars)  (lfillions)
1967 132.1 8,580 198.7
68 152.2 - 15.2 8,870 200.7
69 159.2 4.6 9,000 202.7
1970 171.7 7.9 8,870 204.9
71 173.7 1.2 2,040 207.1
72 188.9 8.8 9,950 208.9
73 202.2 7.0 9,940 210.4
74 207.4 2.6 9,670 211.9
1975 205.1 -1.1 9,420 213.5
76 - 223.8 9.1 9,920 215.1

The correlation obtained from the data in Table 4-2 has been expressed
by the following relationship:

P = 10[“°gB+C]

where

. P = Annual airline passengers per 1,000 population
A = 142
B = GNP/capita in 1979 dollars
C = 26

Forecasts for population in future years were derived from United
Nations and Bureau of Census data, and future GNP/capita was based on an
assumed real growth of 2 percent per year. These forecasts, along with the
resulting air travel forecast, are shown in Table A-22. Of course, this forecast
applies prior to the subtraction of air travel that will be displaced by
teleconferencing.
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Table A-22
Estimates of Future U.S. Population, GNP Per Capita and Air Travel

Number of

Enplaned Passengers

Population GNP/Capita Percent

Year (Millions) (1979 Dollars)  (Millions) Increase

1980 221.6 11,250 250

81 223.2 11,450 262 4.8
82 224.8 11,660 272 3.8
83 226.4 11,870 285 4.8
84 228.0 12,080 295 3.5
1985 229.17 12,300 307 4.1
86 231.3 12,520 317 3.3
87 233.0 12,750 330 4.1
88 234.7 12,980 340 3.0
89 236.4 13,210 352 3.5
1990 238.1 13,450 365 3.7
91 239.8 13,690 377 3.3
92 241.5 13,940 390 1.4
93 243.2 14,190 402 3.1
94 245.0 14,440 415 3.2
1995 246.7 14,700 431 3.9

Figure A-10 shows the historical data and the forecast of annual
passengers enplaned. Also shown are ITT forecasts (Reference 3), which were
developed independently.

Percentage of Air Travel Replaced by Video Conferencing

Video conferencing is expected to replace some business travel.
Estimates of business intercity travel as a function of total intercity travel range
from 40 percent (Reference 3) to 50 percent {Reference 16). ITT estimates that 45
percent of the business travel is potentially replaceable by audio/graphic
teleconferencing, and that 25 percent of this potential will be realized by the year
1990 and 50 percent by the year 2000. Experimental use indicates that
teleconferencing can bc employed for 50 to 80 percent of the required face-to-face
meetings (Reference 17}, 2nd Interplan Corporation (Reference 18) estimates are
given in Table A-22.
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Table A-22
Assumed Susceptibility of Work-Related Trips

of the White Collar Work Force to Substitution by Telecommunications

Susceptibility of
Work-Related
Trips to Number of
White Collar Substitution People Involved
Subgroups (Percent) in Substitution
Professional and Technical 85 - 6,051,000
Maneagers, Officials and Proprietors 20 1,481,000
Clerical Workers 75 8,859,000
Salesworkers S 227,000
Total 16,618,000

Source: Reference 18

In addition, Interplan Corporation has estimated that some nonwork
related travel can glso be substituted by telecommunications. These estimates are
given in Table A-23.

Table A-23°
Assumed Susceptibility of Nonwork-Related Trips
to Substitution by Telecommunications

Susceptibility of Travel to
Purpose of Communications Substitution
Travel (Percent)

Family Business

Medical and Dental 5
Shopping 50
Other 25
Educational, Civiec and Religious 25
Social and Recreational 5

Source: Reference 18
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Considering the ringe of (hese estimates and the personal judgement of
the FSI staff, we have assumed that 8 percent of the presently projected airline
travel can be replaced by video conferencing by the year 1995,

Widespread use of video conferencing requires both capital investment
and adaptation of the user. As an example of the introduction rate of a new
communications medium, the growth of television in the United States is shown in
Figure A-11. This statistic shows that TV receivers in the U.S, grew at 500 percent
per year during the initial years after receivers became available, and growth
tapered tc 5 percent in later years. We have used a similar "S" curve to estimate
the percentage of air travel that can be replaced by video conferencing. Our
assurned transition curve is shown in Figure A~12. The high growth rate begins by
1984, and it is assumed that a high capacity satelliie system will be operationally
available by 1986. Early video conferencing is assumed to take place on precursor
satellites.

Conference Requirements Per Replaced Trip

The ITT study (Reference 3) estimates that each business enplanement

. replaced by conferencing requires 1.35 conference hours. An earlier FSI study

(Reference 19) assumed one conference hour per replaced enplanement. The FSI
figure is derived as follows:

1. A business conference is attended by an average of two people.*
2. A conference requires a round trip, therefore four enplanements.
3. The average trip leads to two 2-hour conferences.*

Since the two estimates are close to each other, we have used the more
conservative FSI figure, and we have based the conferencing requirements on 1
hour of conferencing per enplanement.

Video conferencing through satellites can be pruvided in one very large
demand-assigned pool, and thus the circuit loading will be very high and the system .
will still provide an excellent grade of service. As in the case of telephony, we
estimate that 100,000 paid minutes per year are possible for each circuit.

*Based on personal experience and subjective judgement of FSI staf{ members.
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Assuming 250 business days per year, this would be equivalent to 6.7 hours of use
per day. We expect that there will also be some weekend use, and thus the assumed
use is considered reasonable. We have therefore translated video conferencing
hours into circuits on the basis of 1,670 hours per circuit year.

Circuit Demand Forecast

Video conferencing circuit demand is determined as follows:

= E r
V= 1570 0 Too
where
V= Number of video conferencing circuits
E = Number of passengers enplaned per year
r = Percent air travel replaced by conferencing
Resulting circuit requirements are shown in Table A-24.
Table A-24
Video Conferencing Circuits Required for Air Travel Substitution
Airline
Passengers Percent Required Two-Way
Enplaned Air Travel Video Conferencing
Mid-Year (Millions) Replaced Circuits
1980 250 0.003 5
- 81 262 6.004 (
82 272 0.006 10
83 285 J.01 18
84 295 0.03 53
1385 307 0.15 280
86 317 0.70 1,300
87 330 2.4 4,700
88 340 3.8 7,700
89 352 5.1 | 10,700
1990 365 €.0 13,100
91 - 377 6.8 15,400
92 390 7.3 17,000
93 402 7.5 18,100
94 415 7.8 19,400
1995 431 8.0 20,600
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A4.6 Video Conferencing to Replace Local Travel

Once video conferencing f: cilities are established to replace long
distance travel, they can also be used to replace local travel at low incremental
cost. As was shown in an earlier section, the space segment transmission costs are
only about $10 per hour or $5 for a half-hour conference. The cost of time, travel
and parking will be higher than this for most local travel applications. For this
reason, local video conferencing could become a very large element of the total
video conferencing service demand. However, to be conservative we have assumed
the same low travel replacement percentages as for airline travel (Figure A-12) but
with a delay of 2.5 years.

The Statistical Abstract of the United States (Reference 20) indicates
that in 1978 approximately 51 percent of the work force were white collar workers,
of which 22 percent were managers and administrators. Assuming that the typical
corporate hierarchy consists of about five people reporting at each level and
everyone above the lowest managerial level regularly engages in local travel for
business conferences, then this would amount to about 4 to 5 percent of the total
white collar werk force engaging in regular local travel.

Table A-25 shows the number of managers or administrators for several
years beginning in 1960. The percentage of managers and administrators to total
blue collar workers has remained fairly constant of the time period shown. The
growth in the number of managers and administrators has been at an average
annual rate of 2 percent during that same time period. We have assumed that this
growth'rate will remain constant throughout the study period of this report. As
previously deseribed, we estimate that approximately 25 percent of managers and

administrators travel regularly for local business. As such, this group comprises

the potential users of video conferencing as a replacement for local travel.
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Table A-25
Summary Data on White Collar Workers

and Managers/Administrators

Total Number Managers/Administrators
of White Collar Workers Number Percent of

Year (Thousands) (Thousands) Total
1960 _28,522 7,067 24.8
1965 31,852 7,340 23
1970 37,997 8,289 21.8
1975 42,227 8,891 21.1
1978 46,673 10,026 - 21.5

Source: Reference 20

Table A-26 shows the forecast of potential video conferencing users for
the period 1980 to 1955 on the basis that the users are comprised of 25 percent of
all managers and administrators. It is assumed that each user would have two
‘conferences per weak for 50 weeks per year. The total number of local
conferences which could be replaced by video conferences, and the forecast of
actual video conferences is shown in Table A-27. As in the previous section, a
video confereneing circuit is assumed to accommodate 1,670 conference hours per
year.

For percent capture, we have used the growth model of Figure A-12 but
with a time delay of 2.5 years. The reason for this delay is the expectation that

successful local conferencing will require a much larger conferencing network than -
is needed for long distance conferencing. In the initial phases when there are only -

few conference room facilities, users will accept some limited local travel for a
long distance conference. Local travel for a local conference, however, is

considered to be less likely.




Table A-26
Summary of Forecasts of Managers, Administrators

and Potential Video Conferencing Users for
Replacement of Local Travel (1980 - 1995)

(Millions)
Number of Potential Video
Managers and Conferencing

Year Administrators Users
1980 10.4 2.6

81 10.6 2.7

82 10.9 2.7

83 11.1 2.8

84 11.3 2.8
1985 11.5 2.9

86 11.7 2.9

87 12 3

88 12.2 3.1

89 12.5 3.1
1990 12.7 3.2

91 ' 13 3.2

92 13.2 3.3

93 13.5 3.4

94 13.8 3.4
1995 14 3.5
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A.4.7 Other Sources of Video Conferencing Service Demand

Once a videv conferencing network has been established, it will be used
for many applications, for which no trip would have been made in absence of the
network. Video conferencing will be used because it improves the efficiency of the
conduct of business. Its availability will permit the further decentralization of
business, permitting people to live at locations of their preference and to work near
their homes. The resulting requirements will be large, and no serious effort has
heen made to estimate their magnitude.

Table 6-1 of this report lists the ITT estimate of toll circuit
requirements for voice transmission. Based on this estimate, we have made a
projection of video conferencing requirements, assuming that one-third of 1
percent of the 1995 telephone calls would be augmented by video. The growth
curve used has the same "S" shape of Figure A-12 with a time delay of 2.5 years to
account for a later introduction of facilities. The resulting video circuit demand is
shown in Table A-28.

A.4.8 Satellite Versus Terrestrial Transmission

Considering current tariffs for high speed data transmission and for
video transmission, we have concluded that essentially 100 percent of the video
conferencing service demand developed in this section will be carried via satellite
facilities. We believe that the existing terrestrial network will be unable to come
close to the low satellite transmission costs of 50 cents per paid minute for a video
conferencing call.

In the long run, terrestrial fiber optics trunks will be placed in service
along with the associated switching centers and local loops. When this developmeni_
has progressed to nationwide implementation, fiber optics transmission will be a
viable alternative to satellite transmission. However, we have assumed that a
nationwide fiber opties network will not be in place prior to 1995, and therefore the
satellite network was assumed to carry the major portion of the public and private
video conferenéing traffic.
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Table A-28
Forecast of Service Demand for

Video Conferencing Circuits to Augment Voice Circuits

ITT Estimate Required
of Duplex Two-Way
Toll Cireuits Percent Video Conferencing

Year (Millions) Capture Circuits
1980 1.1 .0001 2
81 1.1 .0001 2
82 1.2 .0001 2
83 1.3 .0002 3
84 1.4 .0002 3
1985 1.6 .0004 7
86 1.8 .0008 15
87 2.0 .0038 80
88 2.2 017 370
89 2.4 .072 1,800
1990 2.7 0.14 3,800
91 3.0 0.2 6,000
92 3.3 0.25 8,300
93 3.6 0.29 10,000
94 3.8 0.31 12,000
1995 4.0 0.33 13,000

Additional local video conferencing traffic will be carried on fiber optic
intraplant facilities. Fiber opties will also be used for interconnection of the earth
stations with various conferencing facilities throughout corpora.: establishments.
This.traffic is not included in the forecasts presented in this section.

A.4.9 Total Satellite Video Conferencing Service Demand

Table A-29 and Figure A--13 show the estimate of total demand for
video conferencing satellite circuits.
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Table A-29
Total Demand for Two-Way Video Conferencing Satellite Circuits

Equivalent Number

Air Travel  Local Travel Voice Circuit of 36 MHz
Year Replacement Replacement Augmentation Total Transponders
1980 2 2 9 2
81 2 2 11 3
82 10 3 2 15 3
83 18 4 3 25 5
84 53 5 3 61 13
1985 280 6 7 293 60
86 1,300 14 15 1,329 266
87 4,700 63 80 4,843 969
88 7,700 300 370 8,370 1,674
89 10,700 1,400 1,800 13,900 2,780
1990 13,100 3,000 3,800 19,900 3,980
91 15,400 4,200 6,000 25,600 5,120
92 17,000 5,500 8,300 30,800 6,160
93 18,100 6,500 10,000 34,600 6,920
94 19,400 7,200 12,000 38,600 7,720
1995 201,600 7,800 13,000 41,400 8,280
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A5 Tctal Point-to-Point Traffic
ALl Voice and Data

Table A-30 and Figures A-14 and A-~15 show the total voice and data
requireinents. Figure A-14 uses a logarithmic ordinate, while Figure A-15 uses a
linear ordinate to provide a better impression of the range of projected
requirements. The results indicate that throughout the study period voice will be
the dominant factor.

Table A-30
Satellite Transponder Requirements
(Number of Equivalent 36 MHz Transponders)

Year Data Voice Total
1980 3 70 73
81 5 95 100
82 7 125 132
83 13 170 183
84 18 220 238
1985 24 289 313
86 33 360 393
87 40 440 480
88 52 520 572
89 65 600 665
1990 74 660 734
91 85 730 815
92 94 800 894
93 102 870 972
94 111 940 1,051
1995 120 1,008 1,128
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A.5.2

Voice, Data and Video Conferencing

Tables A-31 and Figures A-16 and A-17 show the three major

components and the total point-to-point satellite service demand. Figure A-16

uses a logarithmic ordinate, while Figure A-17 uses a linear ordinate to provide a

better impression of the range of projected requirements. The results indicate that

in the early years voice dominates, but video conferencing becomes the major

traffic component in later years.

Table A-31
Satellite Transponder Requirements

(Number of Equivalent 36 MHz Transponders)

Video
Year Conferencing Data Voice Total
1980 2 3 70 75
81 3 5 95 103
82 3 7 125 135
83 5 13 170 188
84 13 18 220 251
1985 60 24 ) 289 - 373
86 266 33 360 659
87 969 40 440 1,449
88 1,674 52 520 2,246
89 2,780 65 600 3,445
1990 3,980 74 660 4,714
91 5,120 85 730 5,935
. 92 6,160 94 800 7,054
93 6,920 102 870 7,892
94 7,720 111 940 8,771
1995 8,280 120 1,008 9,408
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A.6 TV Distribution

This section summarizes point-to-multipoint TV  distribution
requirements and how they were derived. Also included in this section of the annex
are the cost assumption for high capacity video transmission satellites.

A.6.1 Cost Assumption

Future video transmission satellites williprovide wide area coverage
beams, perhaps matched to the U.S. time zones. Each beam will provide coverage
at all available frequency bands, and dual polarization will be used at the lower
frequencies. The bandwidth of the transponders will be more closely matched to
the TV transmission requirements than is the case today. For FM transmission, a
bandwidth of 25 MHz will be adequate instead of the 36 MHz presently allocated.
For digital transmission, a bit rate of about 20 Mbps will be used with advanced
video compression techniques. Video ccompression equipment will be generally
available at low cost because of the large production quantities required for video
conferencing. Therefore, we expect a shift from FM to digital transmission.

As a result, each 500 MHz band will permit the transmission of 18
FM video signals without re-use, instead of the present 12. With digital
transmission at 20 Mbps, 4-phase PSK and rate 7/8 forward error control coding, it
will be possible to transmit 30 video channels per 500 MHz band. In both cases,
allowance has been made for guardbands between transponders or carriers.

Over the four time zones of CONUS, the use of four spot beams with
careful beam shaping will permit dual frequency use. Making use of both.
polarizations at C-band and Ku-band, it will be possible to use the frequency band
four times. It is not expected that polarization re-use would be employed at Ka-
band. The resulting maximum TV transmission capacity per satellite is shown in
Table A-32. '
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Table A-32
Potential TV Video Transmission Capacity
| for CONUS3 Coverage Sateulites
(Number of Video Channels)

Transmission Frequency FM at Digital at
Technigue Uses 25 MHz 20 Mbps
C-band (500 MHZ) 4 72 120
Ku-band (500 MHz) 4 72 120
Ka-band (2500 MHz) 2 180 300
Total 324 540

Assuming a three satellite program with a mix of FM and digital
transmissions, the cost for the space segment per TV channel year will be under
$100,000 per year or $1 per minute of transmission. Since each channel is shared
by a large number of users, the transmission costs will have become negligible.

It should also be noted that the up-link inhoinogeneity between multi-
beam and area coverage satellites will require wide orbital spacings between the
two types of satellites. TV distribution satellites can be used to occupy the
intermediate spaces, provided that their up-links are furnished by narrow beams.
As long as program originations remain within a few locations, this can easily be
accomplished.
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A.6.2 Video Channel Requirements

Satellite video channel requirements could be constrained by the
following factor:

—
.

Transmission costs

Spectrum limitations
Programing costs

A.OON

. End-user requirements

As shown in Section A.6.1, satellite transmission costs will be reduced
to less than $100,000 per video channel year. When this charge is divided among
100 users or more, the monthly cost per user is less than $100, so that satellite
transmission costs will cease to be a limiting factor. Table A-33 shows TV
transmission requirements for the years 1980, 1990 and 2000 as estimated by
Western Union, ITT and FSI.

Table A-33
Estimates of TV Transmission Requirements

Source Western Union1 IT’[‘2 FSI3
1980 Networks 45 10

Occasional Use 29 15

CATV 79 35

Total 153 60 50
1990  Networks 52 12

Occasional Use 39 18

CATV 84 50

Total 175 80 200
2000 Networks 59 12

Occasional Use 40 19

CATYV 88 60

Total 187 91 500

1Ret‘erence 2, total demand
2Reference 3, total demand
FSI estimate of satellite demand
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Spectrum limitations will continue to apply for TV retransmission by
the broadeast stations but will not be important in the case of cable TV.

Programming costs have been a major factor in limiting the
establishment of additional TV networks. The primary reason for the high
programing costs is the fact that each of the three commercial networks has only
one channel and must use it to succeed in the rating competion. In order to achieve
an acceptable rating, the single program must appeal to the largest possible number
of TV viewers. If a network could have several. channels at its disposal, it could
attract a larger total number of viewers by catering to more specialized interests,
which do not coincide with those of the majority viewer. Such specialized
programing can often be accomplished at a fraction of the cost of some of the
major shows., As soon as CATV is more widespread, networks will have the ability
to deliver several channels to the viewer and will at that pnint introduce multiple
programs.

One of the end-user requirements is to be able to see a given program
at a convenient time. This requirement can be met by recording and retrans-
mission. The viewer may record the program, or an intermediate operator may
offer recording and retransmission, or the program originator may transmit the
same program several different times. The latter case will become practical once
the satellite transmission costs have been reduced, as shown in Section A.6.1, and
provided that local distribution is feasible, that is, via CATV systems. Multiple
transmission of the same program leads to an increase in channel requirements
without an in.-rease in programing costs.

Limitations in bandwidth in the radio spectrum are the main reason
for the relatively poor quality of video. With the advent of cable TV, it will
become possible to offer higher resolution and better quality video systems.
Efforts will be made to make video presentations more lifelike, including attempts
to offer three-dimensional images. Better quality or three-dimensional trans-
mission will increase the effective satellite transmission requirements.
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In summary, transmission capacity requirements will increase for
a combination of the following reasons:

1. Development of more programs
2. Multiple transmission of programs at different times
3. Increased transmission quality

The FSI estimate is based on the premise that increasing affluence
will make society more leisure oriented, leading to a large increase in the enter-
tainment industry. Repeated transmission of en increasing number of programs
will lead to a multiplication of transmission channel requirements. Further in-
creases in the late 1980's and early 1990's will result from the introduction of
higher quality sysems. '
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