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SECTION 1

EXECUTIVE SUMMARY

This report was prepared by Future Systems Incorporated (FSI) for

NASA Headquarters under Contract Number NASW-3300. It defines an advanced

domestic satellite communications system (ADS) and identifies the technology

developments which are required for its implementation. The report draws

extensively on earlier work that had been sponsored by NASA Headquarters,

NASA-Lewis Research Center, and Marshall Space Flight Center.

1.1	 Traffic Projections

The utility of a satellite communications system can only be measured

against a traffic model. Taking into account earlier work performed by Western

Union and ITT for NASA-Lewis Research Center, FSI prepared an updated traffic

projection for U.S, domestic satellite communications service covering a period of

15 year.; mid-1980 to mid-1995. This model takes into account expected

technology advances and reductions in transmission costs, legislative and

regulatory changes permitting increased competition, and rising energy costs which

will encourage more extensive substitution of telecommunications for travel.

Satellite transmission requirements have been expressed in units of

transmission capacity equivalent to a typical domestic transponder with 36 MHz

bandwidth. Such a transponder is capable of transmitting approximately 1,000

one-way voice channels o; 64 Mbps of one-way data.* A summary of the total

requirements is shown in Table 1-1 and in Figure 1-1. Since there is still some

uncertainty concerning the development of video conferencing systems, we have

performed the subsequent analysis for a "high traffic" model which includes video

conferencing and for a "low traffic" model which contains voice and data

requirements only.

* The term "transponder' is used as a reference to express traffic levels. The
transponder capacity is assumed to remain constant over the study period.
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Table 1-1

Total Satellite Service Demand

(Number of Transponders)

Video
Year	 Conferencing	 Data	 Voice	 Total

1980	 2	 3	 70	 75

1985	 60	 24	 289	 373

1990	 3,980	 74	 660	 4,714

1995	 8,280	 120	 1,008	 9,408

Another important traffic element is T.V. distribution for network and

CATV application. Projected requirements are shown in Table 1-2.

Table 1-2

T.V. Transmission Requirements

(1980 -1995)

Video Channel
Year Requirements

1980 50

1985 100

1990 200

1995 350

TV distribution requires different payload configurations than point-to-point
traffic. In subsequent sections the development of spacecraft configurations
considers only point-to-point traffic.
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1.2	 System Evolution

The history and projected evolution of the U.S. domestic satellite

systems using an extension of conventional satellites is shown In Figure 1-2. The
resulting total in-orbit capacity is shown in Figure 1-3.

Follow-on satellites are expected to have higher EIRP at C-band and
Ku-band to permit h 4r capacity with smaller, lower cost earth stations and with
cross strapping between the two frequency bands.

	

1.3	 Orbit Utilization

The last few orbital slots available for use by U.S. domestic satellites
are already being contested by several domestic carriers. In the future, increasing
total systems demand can only be satisfied by increasing the capacity of each
satellite. Figure 1-4 shows the average capacity that is required to meet the
service demand as a function of time. Because of a number of factors, the actual
utilization of in-orbit capacity will be lower than 100 percent. This implies that
the design maximum capacity of the spacecraft in these slots will need to be higher
:'pan indicated. Some of the reasons for this inefficiency are:

The use of some slots for T.V. distribution. This function is not
compatible with the frequency reuse and switching provided for point to
point communications.

The operation of satellite systems by different entities. This results in
the situation where Carrier 1 may be filled up while (for some reason)
Carrier 2 may not be able to fill his available transponders. All systems
do not saturate at the same time.

The uneven distribution of traffic. This causes areas of high traffic
(such as New York City) to saturate well before areas of low traffic
density (such as the West). While some allowance can be made in
spacecraft construction for this tendency, it is not possible to forecast
the future traffic patterns with sufficient accuracy to eliminate it
entirely.

The conclusion from this analysis is that orbital congestion dictates the
development of high capacity satellites. A capacity in excess of what can be
achieved with conventional satellites will be needed between 1987 and 1996.

4
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The constraint of using a single Space Shuttle launch with an improved

upper stage for the advanced domestic satellite leads to a configuration such as

that shown in Table 1-3, with an antenna coverage as shown in Figure 1-5.

Table 1-3

Major Features of ADS Spacecraft

All-CONUS* * Offloaded*
System System

Primary	 East Coast

Capacity at Saturation
(36 MHz transponder) 3E7 578 195

Spacecraft BOL Mass (kg) 4,440 4,800 4,000

Launch Vehicle STS STS STS

Transfer Vehicle Centaur Centaur Centaur

Spacecraft EOL Power (kw) 11 16 5.5

Number of Antenna Beams*

at C-band 25 25 7

at Ku-band 11 14 5

At Ka-band 4 6 4

Antenna Beamwidth

at C- and Ku-band 1.30 1.30 1.30

at Ka-band 0.60 0.60 0.60

*	 does not count dual polarization as 2 beams

* *	 contiguous United States

*`*	 Part of the traffic is offloaded onto satellites over the Atlantic Ocean, which
do not have full CONUS visibility.	 Connectivity is established by means of
i,itersatellite links.

8



Figure 1-S

C-BAND AND Ku-BAND

SPOT BEAM ANTENNA COVERAGE OF CONUS

(Numbers 1, 2, 3 indicate freguency assignment)

KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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It should be noted that a major factor in increasing the satellite

capacity has been the allocation of additional frequency bands at the 1979 WARC.

While the exact time at which these bands would become available has not yet been

determined, we have assumed that as a result of WARC decisions, an additional

300 MHz would be available at C-band and an additional 500 MHz would be

available at Ku-band in the late 1980's when ADS would become operational.

With the advent of inter-satellite links some further increase in

systems capacity will be available by placing satellites to the east and west of the

U.S. service arc. Such satellites will achieve coverage of only part of CONUS, but

full systems connectivity is available through inter-satellite link connection.

Area coverage by means of multiple spot beams has the further

advantage that each country or region may use the total service arc. International

agreement must be reached, however, on size and positions of spot beams, and the

beam patterns of satellites serving different countries or regions must be meshed.

The interconnection of multiple spot beams places a major requirement

on the on-board switch. Because of weight limitations we have avoided baseband

processing and have instead provided satellite switched TDMA for the hearier

routes and IF switched links at 6.3 Mbps for the lighter routes. The latter is useful

for video conferencing and for low rate TDMA.

1.5	 Earth Station Configurations

As the spot beam and switching capability of the spacecraft increases,

the earth stations become simpler and cheaper. Higher satellite antenna gain

translates into lower earth station antenna gain and transmit power requirements.

More on-board switching leads to simpler baseband arrangements at earth stations.

Since video conferencing will take place largely at Ka-band where

adequate transmission capacity is available, a special operating mode has been

provided which is rain outage tolerant. When the rain attenuation exceeds the

available margin, the transmission bit rate (and the corresponding bandwidth) is

reduced from 6.3 Mbps to 64 kbps. This permits an additional 20 db of margin and

10



conferencing can proceed with audio and graphics support. Satisfactory avail-
abilities result in all cases.

	

1.6	 System Costs

Space segment costs are reduced substantially from today's values.

Annual transponder costs will be about $100,000 (1980 dollars). Coupled with low

earth station costs, the ADS system will be cost competitive for distances of more
than 50 km. for most typical applications. For video conferencing, satellite
transmission will be cheaper for any distance over which direct wiring is not
pract ical.

	

1.7	 Technology Identification

To implement the advanced domestic satellite, technology development
is needed in the following areas:

-	 Multiple-beam, frequency-reuse antennas

-	 High-capacity RP and IF switch hardware and architecture

-	 10-year reliabil.ty anu redundancy configuration for multi- beam
satellites

-	 Lightweight, moderate power (30 - 40 watts) solid state amplifiers
at GHz frequencies

-	 Integrated microwave subsystems

Intersatellite link technology

Packaging and deployment schemes to fit the Shuttle orbiter cargo
bay

°	 11



SECTION 2

INTRODUCTION

This report was prepared by Future Systems Incorporated (FSI) for

NASA Headquarters under Contract Number NASW -3300. It addresses the likely

development of U.S. domestic satellite communications systems and desirable

technology development to meet systems capability requirements. The report

draws extensively on information prepared under other prior or concurrent NASA

contracts, as listed below:

Reference Subject Author

1 Large Platforms FSI

2 18/30 GHz Systems Ford Aerospace

3 18/30 GHz Demand Western Union

4 18/30 GHz Systems Hughes

5 18/30 GHz Demand ITT

6 18/30 GHz Architecture TRW

7 On-Board Processing Mitre Corp.

8 Platform Payloads COMSAT

9 Platform Feasibility Aerospace Corp.

10 Platform Concepts General Dynamics

11 25 Year Forecast FSI

12 FCC Filing for Orbital Slots Hughes

13 Comments in Opposition to #12 SP Communications

14 On-Board Switching MIT Labs

In Report No. 221, FSI compared communications systems using large

platforms with systems using conventional satellites. As an extension of that work,

the present FSI report describes an advanced, high capacity communications

satellite system with the constraint that satellites are configured for the full

capacity of a single space shuttle launch. The designation for this system is

Advanced Domestic Satellite System (ADS).

12



In order to be able to measure the utility of a satellite communications

system it is necessary to define a traffic model. FSI has developed a traffic model

for U.S. domestic satellite traffic 1980 to 1995, covering data, voice, and video

requirements. This model takes into account work performed by Western Union

and ITT for NASA Lewis Research Center last year, as well as FSI's own

forecasting data base. The FSI traffic model also considers the fact that the U.S.

is now at the threshold of a telecommu.ications revolution. This revolution is

triggered by new technology which reduces switching and transmission costs and in-

creasing energy costs which encourage the use of telecommunications. Satellite

transmission is one key technology which permits rapid and economical expansion

of transmission capacity. Thus, the FSI traffic model is contingent on the

availability of high capacity advanced satellites of the type described in this

report. Section 3 describes the FSI traffic projections; the complete analysis

underlying these projections is presented in Arnex A.

In recommending a technology development program for NASA ; we

believe it is important to identify how the new technology will be used in an

operating system, and how it could be introduced. The transition from the present

system to new systems is especially important, considering existing investments in

space and ground segments. Transition should be accomplished not only with

minimum obsolescence of equipment, but also without service disruption. The

shortage cr orbital satellite locations on the geostationary arc is a further

complication. In order to provide a good understanding of transition requirements,

we have presented the current U.S. domestic space segment and its likely

evolution during the next few years. This information is shown in Section 4.

An analysis of the congestion of the geostationary are (Reference 11)

was performed in 1977. It projected that all slots available for satellites serving

North and South America would be occupied rapidly, and that sufficient systems

capacity could be provided only by increasing the capacity of individual spacecraft.

In fact, we have already reached a situation where two U.S. communications

carriers are competing for the last two orbital satellite positions which are needed

13
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for services they plan to offer (References 12 and 13). This competition underlines

the requirement for higher capacity satellites and we project that future applica-

tions for satellite systems will be compared by the FCC on the basis of systems

capacity. The satellite capacity which is required for a given orbital location can

be determined from the total systems capacity requirement and from the number

of orbital slots available for a given service area. An analysis of minimum

satellite capacity needed to satisfy total systems capacity requirements for U.S.

domestic systems is presented in Section 5.

In Section 6 'we have selected a conceptual spacecraft configuration

which can be launched on a single space shuttle flight with the use of a suitable

upper stage. Weight and power budgets are extrapolated from work which has

already been performed for NASA by others (References 2, 4, 6, and 10). The

overall spa •e segment needed to satisfy the total U.S. domestic traffic demand is

also presented in this section, along with estimates of space segment systems costs

and costs per channel.

Section 7 addresses the grounc, segment which is required to provide

service in conjunction with the space segment described in Section 6. Trunking and

direct-to-the-user service is provided and the requirement for terrestrial exten-

sions is examined. Estimates of ground segment costs and costs per channel are

made. Total systems costs for the space and ground segment are shown in

Section 8. These costs are compared with terrestrial microwave transmission and

fiber optics transmission costs. Finally, Section 9 identifies the required tech-

nology development and major conclusions are pi^esented in Section 10.

14



SECTION 3

U.S. DOMESTIC SATELLITE TRAFFIC PROJECTIONS

3.1	 Background

In a precursor study (Reference 1) FSI performed a comparison of large

communications platform systems with systems configured with conventional

satellites. In support of this study, FSI prepared traffic projections for U.S.

domestic communications satellite service. In parallel NASA Lewis Research

Center had commissioned two studies, one with Western Union and the other with

ITT U.S. Domestic 'Transmission Systems, for the preparation of satellite com-

munications service demand models (References 3 and 5). Taking into account this

earlier work and other information that has become available, FSI has prepared an

updated projection for U.S. domestic satellite communications service. This

projection is presented in this section.

The traffic projection covers a period of 15 years, mid-1980 to mid-

1995. The following information and factors have been considered in the

preparation of this projection:

1. Technology Advances

Rapid advances in communications technology are taking place and
these advances would have a significant impact :)n the future
development of communications facilities. These advances would
be in the area of low-cost space segment facilities, low-cost earth
stations, new microwave data distribution facilities of the type
proposed by Xerox XTEN, new data concentrating and switching
equipment, and finally development of practical fiber optics com-
munication systems.

2. Legislative and Regulatory Changes

Three bills addressing regulation and competition in the field of
telecommunications are currently before the U.S. Congress, and
the FCC is conducting its MTS/WATS inquiry. We expect the the
future communications environment will include increased com-
petition, and this competition will stimulate the introduction of
advanced technology and will insure that cost advantages gained
from this technology are passed through to the end-users.

15



3. Energy Costs

Rising energy costs will lead to the substitution of communications
for some travel. This will take the form of increased use of
facsimile and electronic mail, narrowband teleconferencing, and
full video conferencing.

This Section provides summary information on the traffic model.
Traffic is generally expressed in terms of number of equivalent 36 MHz C-band
transponders. Such transponders are capable of transmitting a digital rate of 60 to
64 Mbps or of approximately 1,000 one-way telephony channels. The use of
reference transponders is- not intended to imply that actual satellite facilities will
always be offered in terms of transponders with 36 MHz bandwidth. Annex A to
this report provides detailed backgound data that were used in the derivation of the
traffic estimate.

3.2	 Data Traffic

Data communications traffic consists of message traffic, computer
traffic, and narrowband teleconferencing traffic. While the total rate of informa-
tion transfer will increase greatly during the next 15 years, increased transmission
efficiencies will reduce the overall rate of increase of data traffic. The satellite

portion of the data service demand, howeve^, grows rapidly because of the inherent
economies of satellite service. Satellite data transmission requirements are shown
in Table 3-1.

Table 3-1
Data Transmission Requirements

Transmission Bit Rate	 Number of Equivalent
Year	 Mbps	 36 MHz Transponders

1980	 80	 3
1985	 963	 24
1990	 3,485	 74
1995	 6,216	 120

k'	 -	 16
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Our estimate of data communications traffic refers to that traffic

which is clearly identifiable as data traffic. This type of service will progressively

be transferred to packet type transmission systems with increasing transmission

efficiencies. In addition, there will remain some data transmission requirements

which are satisfied via conventional dial-up or leased telephony lines using

relatively inefficient transmission arrangements. Often such service is provided as

alternate voice/data service, where a transmission line is used for voice trans-

mission during part of the day, normally working hours, and for data transmission

at off-peak voice hours, normally evenings, perhaps for transmission of batch

computing information. In our model this type of traffic has been included in the

voice channel requirements section. The remaining data requirements will

therefore all be handled with relatively good efficiencies, and therefore, the

number of transponders required for this more efficient data transmission is
t	

relatively smaller than other estimates.

For the purpose of this study, the segregation of voice and data is not

important, since we expect that generally the same earth stations will be used to

handle both voice and data communications and the satellite transmission facilities

are completely interchangeable. In our model all transmissions are digital, and

therefore, a 64 kbps data channel is equivalent to a one-way voice channel.

3.3	 Telephony Service

Telephony service includes MTS, WATS, and private line service. The

satellite service demand is summarized in Table 3-2.

Table 3-2

Telephony Service Demand

Two-Way Circuits	 Number of Equivalent
Year	 in 1000's	 36 MHz Transponders

1980	 28	 70

1985	 130	 289

1990	 330	 660

1995	 504	 1,008

`	 17



3.4	 Video Conferencing

We expect that extensive video conferencing will be required and can

best be provided by means of satellite communications. The costs of transmission

and conference room facilities will be low, as shown below:

Space segment transmission costs per hour	 $10

Incremental earth station and conference
room facilities costs per hour	 $10

Communications carrier's administrative
expenses and profit per hour of use	 $10

Total hourly charge
	

$30

Rising costs and inconvenience of business travel will become a strong

incentive to substitute telecommunications for some travel. Video conferencing

will replace some air travel and some local travel and will be used as a more

efficient means of conducting business. Large and medium size corporations will

have their own conference rooms in lieu of public facilities. Once established, the

video conferencing system will lead to further decentralization of business,

permitting people to live where they wish and to work near their homes. Table 3-3

is the estimate of video conferencing requirements.

Table 3-3

Video Conferencing Requirements

Two-Way
Video Number of Equivalent

Year Circuits 36 MHz Transponders

1980 9 2

1985 293 60

1990 119,900 3,980

1995 41,400 8,280

18



We at FSI are firmly convinced that video conferencing will become an

important service offering; however, in recognition of the fact that public opinion

is divided concerning the value of video conferencing, we have treated the video

conferencing requirement as one of two alternatives. In the first system

Implementation scenario, we assume that there will be little or no video conferenc-

ing and the total point-to-point telecommunications requirements will consist only

of data and voice, In the second implementation scenario, we have assumed that

video conferencing will develop, and in this case video conferencing requirements

are included in the total.

3.5	 Total Point-to-Point Traffic

3.5.1	 Data and Voice Only

Total satellite service demand expressed in equivalent 36 MHz tran-

sponders is shown in Table 3-4 and Figures 3-1 and 3-2. Voice requirements are

always much larger than data transmission requirements and are therefore control-

ling the service.

Table 3-4

Total Satellite Service Demand

(Number of Transponders)

Year Data Voice Total

1980 3 70 73

1985 24 289 313

1990 74 660 734

1995 120 1,008 1,128

19
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3.5.2	 Data, Voice, and Video Conferencing

Total satellite service demand is again expressed in equivalent 36 MHz

transponders and is shown in Table 3-5 and Figures 3-3 and 3-4. Voice require-

mente, are always much larger than data transmission requirements and video

conterer,,eing becomes the controlling service as soon as adequate transmission

facilities, become available.

Table 3-5

Total Satellite Service Demand

(Number of Transponders)

Video
Year Conferencing Data Voice Total

1980 2 3 70 75

1985 60 24 289 373

1990 3,980 74 660 4,714

1995 8,280 120 1,008 9,408

For video Conferencing we have assumed that high quality transmission

will be used on the average in order to make this service acceptable. High quality

video Conferencing transmission requires a transmission rate of 6.3 Mbps per one-

way video Conferencing channel. It is assumed that interframe processing is

provided; that means the Information on one video frame is stored and compared

with the information on the next video frame and a technique is employed whereby

the primary information transmitted consists of changes between frames. In this

manner a 6.3 Mbps transmission for video conf.rt,icing applications provides full

resolution and signal-to-noise quality in concur, --ace with TV network standards;

however, this system would not be suitable for transmission of sports or other

events with rapidly changing background. It is fully suitable for Conferencing

applications; where background information is relatively static.

22
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3.6	 TV Distribution Requirements

This section summarizes point-to-multipoint TV distribution require-
ments. This type of traffic has been treated separate from point-to-point video
transmission, since it requires different facilities. We have included in this section
all requirements for network TV, occasional TV and CATV transmission. Other

applications, such as educational video, telemedicine, disaster relief and law
enforcement, are considered to be within the video conferencing category since
they do not have the characteristic of requiring widespread distribution, as is the
case with entertainment video.

3.6.1	 Transmission Facilities and Channel Requirements

Point-to-point transmissions can be provided via future high capacity
satellites with great efficiency of spectrum and orbital arc utilization through

multiple frequency reuse via narrow spot beams. Satellite capacity can be
increased by reducing the beam size and increasing the number of beams per
satellite. On the other hand, the characteristics of the point-to-multipoint
transmissions require wide area coverage by the same transmission signal; thus
satellite capacity cannot be increased through multiple frequency reuse. For this
reason we expect that the TV distribution satellites of the future will be quite
different from the high capacity communications satellites that will be employed
for point-to-point transmissions.

Future video transmission satellites will provide wide area coverage
beams, perhaps matched to the U.S, time zones. Each beam will provide coverage
at all available frequency bands, and dual polarization will be used at the lower
frequencies. The bandwidth of the transponders will be more closely matched to
the TV transmission requirements than is the case today.

It should also be noted that the uplink inhomogeneity between multi-
beam and area coverage satellites will require wide orbital spacings between the
two types of satellites. TV distribution satellites can be used to occupy the
intermediate spaces, provided that their uplinks are furnished by narrow beams. As
long as program originations remain within a few locations, this can easily be
accomplished.

i
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A further contributing factor will be the rising energy costs, whicn will

provide an incentive to increase the amount of entertainment that is available at

home. Table 3-6 shows estimates of TV transmission requirements for 1980, 1985,

1990, and the year 1995. Figure 3-5 is the FSI estimate for equivalent quality TV

transmission requirements, taking into account the above mentioned considera-

t ions.

Table 3-6

TV Transmission Requirementse
1980-1995

Video Ch&nnel
Year	 Requirements

1980	 50

1985	 100

1990	 200

1995	 350
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SECTION 4

SATELLITE SYSTEMS EVOLUTION

describes the current status of the U.S. domestic satellite

communications system and projects and their likely development during the next

few years. This projection is important to permit planning for transition from

conventional systems to the advanced satellite system described in this report.

4.1	 Historical Development and Current Status

The first commercial communications service on a U.S. domestic

communications satellite was provided by Western Union's Westar I satellite in

1974. Since that time, seven additional U.S. domestic satellites have been

successfully launched. These satellites are part of AT& ,r's Comstar system,

Western Union's Westar system, and RCA Americom's Satcom system. The eighth

satellite, RCA Satcom F-3, was lost in orbit, presumably upon apogee motor

malfunction. An additional seven satellites have been procured and will be

launched during the early 1980's. Among these additional satellites are Western

Union's follow-on to Westar, Advanced Westar, and a new entry into the U.S.

domestic satellite market, Satellite Business Systems. RCA's F-3 will be replaced

by F-4, already under construction.

In addition, others may soon join in the satellite communications

business. Included in these are Xerox, with its proposed Xerox Telecommunications

Network (XTEN) to be used for high speed data and voice both inter- and intracity,

the newly proposed partnership of Fairchild Industries, Continental Telephone

Corporation, and the Western Union Telephony Company. The latter entrant

proposes joint ownership of Western Union's Westar and Advanced Westar systems.

Thus, the formalization of this partnership, which still requires approval by the

FCC, will have substantial impact on the satellite communications market. For

example, American Satelite Corporation, a wholly-owned subsidiary of Fairchild

Industries, will have assured space segment at a competitive price relative to its

present situation where it leases space segment from a competitor. Telenet has
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announced its intention to construct an earth station network to supplement its
leased terrestrial facilities for the packet data network and SP Communications
has advised the FCC of its intention to operate a satellite network.

Table 4-1 shows the capacity launch dates for 17 operating and planned
U.S, domestic satellites including a fourth Westar, a fourth Comstar, and a third

SBS. Of those satellites shown, four have not yet received permission for launch
(Westar 4, Sat^om 4, Comstar D4, and SBS C). However, except for Westar 4,
these satellites are either under construction or already constructed. Figure 4-1
shows the projected in-orbit service of these presently operating and planned
satellites based on an expected mean life of 7 years. The projected in-orbit
capacity for these satellites along with total service demand is shown versus time
in Figure 4-2.

The comparison of currently existing and committed in-orbit capacity
with projected demand shown in Figure 4-2 shows that any slip in the projected
launch dates of the satellites not yet in-orbit will cause a shortage of capacity to
occur, perhaps as early as 1982. The launch of Satcom F4, for example, is
contingent on receipt of FCC approval relatively soon. In addition, the approach-
ing ends-of-life for some of the earlier satellites will affect the number of
operating transponders, and hence the number of in-orbit transponders will be
somewhat lower than that shown. At best, without new commitments, the shortage
will occur around 1983 when the first satellites begin to reach 7 years in-orbit.

4.2	 Projected New Satellite Programs

The projected shortage of in-orbit capacity provides an opportunity for

communications carriers to procure new satellite systems. Any new procurement
is subject to FCC approval, and the timespan required for approval introduces an
additional uncertainty into the projections. The allocation of orbital slots is
ancther problem. Table 4-2 shows possible launch dates for 4 second generation
satellite systems, which could conceivably be launched beginning around mid 1983.
This projected launch date allows some time for FCC approval to occur during 1980
and a 30 month procurement schedule. The transponder capacity for each satellite
of 48 transponders should be easily achievable through the use of both C-band and

Ku-band and frequency reuse. Figure 4-•3 shows the projected in-orbit lifetimes
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for these second generation satellites along with the projected in-orbit lifetimes of

the presently planned and operating satellites as previously shown. Figure 4-4

shows a comparison of available and required in-orbit capacity including the second

generation satellites. New spacecraft programs may come too late to eliminate

the in--.rtlit capacity shortage of 1981 and 1982, but adequate capacity can be

provided from 1983 on.

Table 4-1

Capacity and Launch Dates of

Operating and Planned U.S. Domestic Satellites

Number of Transponders Satellite, Launch Date

12 Westar 1 4/74

12 Westar 2 10/74

12 Westar 3 8/79

24 Westar 4 3/82

27 Advanced Westar 9/82

27 Advanced Westar 1/83

24 Satcom F1 12/75

24 Satcom F2 3/76

24 Satcom F4 6/81

24 Comstar D1 5/76

24 Comstar D2 7/76

24 Comstar D3 6/78

24 Comstar D4 3/81

10 SBS A 10/80

10 SBS B 1/81

10 SBS C 9/83
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Table 4-2

Projected Capacity and Launch Dates

For Second Generation U.S. Domestic Satellites

Number of Transponders	 Satellite	 Launch Date
i

36	 Carrier 1	 6/83

36	 Carrier 1	 9/83

36	 Carrier 2	 7/83

36	 Carrier 2	 10/83

36	 Carrier 3	 12/83

36	 Carrier 3	 1/84

36	 Carrier 4	 3/84

36	 Carrier 4	 6/84

The second generation satellites will most likely be a combination of

follow-on satellites to existing satellite systems, such as a follow-on RCA Satcom

and a follow-on Comstar, and new entrants into the U.S. domestic satellite market,

such as the recently proposed Hughes Communications system or the SPC system.

During the period of in-orbit shortage, special techniques will be

employed to increase satellite capacity. These techniques consist of companded

FM transmission, TDMA transmission with DSI,* and compressed video

ransm ission.

At this time, the following communications carriers are working

towards new satellite programs; however, no firm commitments have been made

ajd the FCC has not yet approved any of these systems:

Western Union Telegraph Company

Two satellites with 24 transponders each to offset the delay of the
Advanced Westar launches.

* Digital Speech Interpolation
35



Hughes Communications

Two satellites with 24 transponders each for lease to ou,r- r : arriers and
for corporate networks.

SP Communications

Filed with the FCC its intent to implement a satellite system.

AT&T Long Lines

Planning for a follow-on system to Comstar.

RCA American Communieations

Planning for a follow-on system to Satcom

4.3	 Characteristics of Follow-On Systems

At this time, most carriers are planning their follow-en spacecraft only

for the capacities and characteristics needed for their own requirements, without

adequate consideration of total U.S. domestic systems capacity requirements and

orbital arc efficiency. This approach, however, is bound to fail because of

conflicting claims for orbital satellite slots. We project that as a result of the

saturation of certain parts of the orbital arc, the FCC will be required to institute

more comprehensive planning for the totality of U.S. domestic system require-

ments. This will lead to satellites with higher capacity, multiple frequency bands,

and better connectivity. . New frequency bands made available at the 1979 WARC

will be allocated at an accelerated schedule. Typical characterid:ies of follow-on

satellites are summarized below.

Characteristics of New, Improved Satellites

By providing a new generation of domestic satellites, the opportunity

exists to improve on the characteristics of these satellites. Optimum character-

3

	 istics of a new generation of domestic satellites provide the following features:

Increased EIRP at C-band and Ku-band

This increase will permit achievement of higher capacity with small
diameter earth stations--for example, 4.5-meter diameter at C-band-
and would therefore lead to lower systems costs.
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Interconnection of C-band and Ku-band

In this manner, currently existing ^-band systems can expand by adding
new C-band or Ku-band stations for optimum network design.

New C•-band stations will be constructed in all cases where co-location
of stations with the central offices is practical. In other cases,
Ku-band stations would be implemented on a co-located basis. The new
satellites provide trunking service and direct-to-the-user serv.t'e both
at C-band and Ku-band in a fully interconnected mode.

Advantages of Shared Space Segment

Several new users of communications satellites will be able to share a

common set of satellites and derive a number of advantages from shared use:

Availability of G,-ostationary Are

The congestion of the geostationary arc limits the number of slots
available for U.S. domestic communications satellites. For this reason
additional satellites will have to have higher capacity and will have to
be shared by several users as shown in Figure 4-5.

Larger Capacity Satellites

Larger capacity satellites result in lower unit transmission cost (cost
per transponder) due to economies of scale.

Higher Transponder EIRP

With larger satellites, it is more practical to provide higher EIRP per
transponder, leading to higher transponder capacity with small earth
stations.

The result of these advantages are lower system transmission costs.
Earth stations will be located closer to the end user, thereby eliminat-
ing a significant portion of terrestrial extension costs.

Problem Areas

The introduction of a new generation of spacecraft requires the solution

of several problems:

1. The availability of orbital slots is limited. A two-stage coordina-
tion program is required.

a. Approval must be obtained from the FCC for a new satellite
program and proposed orbital locations.
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b. Once agreed by the FCC, application must be made by the
FCC with the International Frequency Registration Board to
obtain protection on a global basis. Particular attention must
be paid to the requirements of orbital locations for joint use at
C-band and Ku-band.

2. Because o certain program changes in the Space Transportation
System Program (Space Shuttle), the availability of launches during
the early 1980 1 .1 may be limited. For this reason, it will be
desirable to make an early reservation with NASA for intended
launch services. In the absence of assured Shuttle launches, the
carriers will plan on the use of the Delta launch vehicle, thereby
limiting the achievable capacity.

3. Coordination with rc .-r >ct to in tLerference from and into adjacent
satellite systems has Lo be carried out. Increased EIRP on the
proposed new satellites requires planning to demonstrate that
interference into adjacent systems is not excessive.

n

The above mentioned problems can be solved by careful planning and

early consideration of technical and regulatory aspects affecting system imple-

mentation.



SECTION 5

ORBIT UTILIZATION

5.1	 Orbital Arc Occupancy

This section provides information on the present and planned use of the

orbital arc. Table 5-1 shows the service arc-that is, the range of possible satellite

locations which provide adequate visibility for various countries. Table 5-2 shows

the existing and planned satellite locations for systems for North and South

America.

Table 5-1
Service Arc

Visibility Are
Minimum Elevation

World Reference Coverage Angle or 10 Degrees
Region Number Range (Degrees in West Longitude)

North America 1 Canada, Including Yukon
and NW Territories 114 - 116

2 Canada, Vancouver to Halifax 61 - 128

3 USA, Including Hawaii and Alaska	 133 - 134

4 USA, CONUS only 61 - 134

5 USA, CONUS and Hawaii 92 - 134

Latin America 6 Brazil 0 - 139

7 Colombia 10 - 143

8 Chile/Argentia 10 - 130

9 Total Regional Coverage 10 - 109

10 Mexico/Caribbean 46 - 143

a•
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Table 5-2

Satellite Locations

Satellite	 Location*	 Satellite	 Location*

Satcom F1 135 Westar 1 99

Satcom F3 132 Advanced Westar 99

Comstar Dl 128 Comstar D2 95

Westar 2 123.5 Westar 3 91

SBS A 122 Comstar D3 87

Satcom F2 119 U.S. Domestic 81.7

Anik A3 114

Anik A2 109 Brasilsat 75

Anik B1 109 Colombia 75

SBS B 106 Brasilsat 70

Anik Al 104 Brasilsat 65

Advanced Westar 103 Brasilsat 60

*Degrees west longitude

Shown are actual or planned locations of communications satellites

from 60 to 134 degrees west longitude. A 4-degree spacing is assumed as a

minimum to provide protection against intersatellite interference; thus within any

4-degrees there can generally be only one satellite per coverage area per frequency

band.

Most of the satellites shown are C-band, and thus each slot can also

handle a Ku-band satellite, but the congestion is evident. To some extent it will be

possible to retain already coordinated positions, but as more and more demand is

made on the arc, the situation will naturally become more critical.
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Figure 5-1 shows the orbital slots in graphical format. In the future it

will be possible to share slots for use by North and South America by means of

antenna discrimination.

The visibility arc for CONUS extends from about 61 to 134 degrees
west longitude. The present and planned occupancy for this portion of the arc is
shown schematically for C-band and Ku-band using 4-degree orbital slots. At
present there is only one operating Ku-band satellite, Anik B. There are eight
unoccupied slots at C-band, six of which have been coordinated, thus leaving only

two which have not been coordinated. The positions coordinated for Latin
American countries are likely to be available to U.S. domestic carriers provided
that there is sufficient isolation between antenna beams,for the ^ysiems which will
operate in different hemishperes. Taking these factors into account, there are six

slots available at this time for U.S. domestic satellite systems providing C-band
coverage of CONUS. Ku-band slots are more available at this time with only 5 out
of 19 slots presently coordinated. WARC decisions on the use of broadcast
satellites will have an important impact cn the availability of Ku-band slots.

5.2	 Spacecraft Capacity Requirements

The service arc for coverage of CONUS with a minimum elevation
angle of 10 degrees is about 74 degrees wide. With a four-degree spacing this
permits 19 satellites in orbit. Part of the same service arc is also required for
coverage of Canada and Latin America. At present the available antenna beam
isolation for spacecraft antennas is adequate to permit sharing of the same orbital
slot by North land South American countries, especially if satellite positions are
interleaved. However, different slots must be used for satellites serving adjacent
countries, such as the U.S. and Canada. At present there are probably 12 slots
available for service to the U.S. with three slots used by Canada and four requested

by South American countries.

At a time when advanced spacecraft with multi-beam antennas of the
type described in Section 6 are used by all countries which share the service are
with the U.S., each country will have available the total number of slots.
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Thus, at that time the number of slots available to the U.S. could be 19. It is

understood that this would require agreement on the technical characteristics of

the spacecraft, especially the antenna beam and frequency assignment plan. To be

conservative, however, we have assumed that only 16 slots would be available.

Based on the number of slots and on the service demand, the average required

spacecraft capacity versus time can be determined. This information is shown in

Table 5-3 and Figure 5-2.

Because of a number of factors, the actual utilization of in-orbit

capacity will be lower than 100 percent. This implies that the design maximum

capacity of the spacecraft in these slots will need to be higher than indicated.

Some of the reasons for this inefficiency are:

The use of some slots for TV distribution. This function is not
compatible with the frequency reuse and switching provided for point to
point communications.

The operation of satellite systems by different entities. This results in
the situation where Carrier 1 may be filled up, while (for some reason)
Carrier 2 may not be able to fill his available transponders. All systems
do not saturate at the same time.

The uneven distribution of traffic. This causes areas of high traffic
(such as New York City) to saturate well before areas of low traffic
density (such as the West). While some allowance can be made in
spacecraft construction for this tendency, it is not possible to forecast
the future traffic patterns with sufficient accuracy to eliminate it
entirely.

In an evolving system the spacecraft capacities vary. For example, at

present there are both 12 transponder and 24 transponder spacecraft in orbit. The

usable capacity is generally lower than the available capacity, because of the

nature of the traffic distribution. The usable capacity of future TV distribution

satellites will be lower than the usable capacity of point-to-point service satellites,

which permit more frequency reuses.

A good general design guideline for new spacecraft would be to select a

capacity that is at least as large as the required average capacity required at the

end of the projected lifetime. In a more precise evaluation one would take into
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Table 5-3

Required Average Spacecraft Capacity to Meet Service Demand

Number of Total Service Demand Average Spacecraft Capacity
Slots Allocated In No. of Transponders In No. of Transponders

Mid-Year Low Demand High Demand Low Demand	 High Demand
1980 7 123 125 IF 1

1981 7 1. 6 159 23 23

1982 9 197 200 22 22

1983 12 259 264 22 22

1984 16 325 338 20 21

1985 16 413 473 26 30

1986 16 508 774 32 48

1987 16 615 1,584 38 99

1988 16 727 2,401 45 150

1989 16 840 3,620 53 226

1990 16 934 4,914 58 307

1992 16 1,144 7,304 72 457

1993 16 1,252 8,172 78 511

1994 16 1,361 9,081 85 568

1995	 16	 1,468	 9,748	 92	 609

Note:	 Low demand includes voice and data traffic only.
High demand includes the above plus video conferencing.

Both include TV distribution.

,.a
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account the projected capacities and lifetimes of all satellites already in orbit or
committed, and then calculate the incremental capacity required for new or
replacement satellites.

Satellites operating in different frequency bands may be assigned to the
same orbital locations. In this manner a systems capacity, for example, of 48
transponders at one location may be achieved by means of two separate satellites:

one with 24 transponders at C-band and the other with 24 transponders at Ku-band.
Alternatively, both frequency bands may be combined on the same satellite,
leading to lower costs because of economies of scale and to better connectivity if
the two frequency bands are cross-strapped.

Based on this analysis, new satellites to pe introduced in the early
1980's should have capacities of about 48 transponders. Satellites introduced

around 1985 should have at least 72 transponders. Capacities of much more than
72 transponders will not be easily achievable with conventional approaches.
Therefore, in the high demand case the advanced satellite described in Section 6
should be operationally available around 1987. In the low demand case the
advanced satellite would not be needed from an orbit use point of view until the
early 1990's although systems economics will make its introduction desirable much
earlier.

Generally, the sooner the advanced satellite is introduced, the sooner

the system will benefit from the resulting economies. The efficient orbit
utilization for point-to-point services will provide more orbital arc for TV
distribution services.

5.3	 Connectivity

The following approaches may be taken to achieve network connectivity
when multiple satellites are used to provide coverage of a given area:

F
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1. Multiple Earth Station Antennas

High capacity trunking earth stations can be equipped with several
antennas, one for each satellite that is accessed directly. Since
these earth stations carry high capacities, the cost per channel will
be acceptable. However, this concept is not practical for low
capacity stations and for urban environments with space
limitations.

2. Multi-beam Torus Antennas

A single torus antenna equipped with multiple feeds may access
several satellites. This concept works best when the satellite
separation is small. The torus area and antenna expense increase
for larger satellite separations. Each feed must be equipped with
its owr receive and transmit RC circuitry.

3. Segregation of Communities of Interest

It will be attempted to segregate communities of interest on
separate satellites. This is possible for private corporate and
government networks and for the public networks offered by
specialized common carriers.

4. Intersatellite Links

Intersatellite links will be used to provide the required connectivity
for residual traffic which was not satisfied by one of the above
approaches. Intersatellite links lead to increased transmission
delay as shown in Figure 5-3. For the maximum beam separation
of 72 degrees for the U.S. service arc, this delay is still
considerably less than for double hop transmission and will probably
be acceptable for many applications. An attempt will be made,
however, to allocate traffic so as to lessen the intersatellite link
spacings.
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SPACECRAFT CONFIGURATION FOR SINGLE SHUTTLE LAUNCH

Background

NASA has already sponsored several studies aimed at defining spacecraft

or platform configurations. Among those studies listed in Section 2 of this report,

the following recent work has had the greatest impact on the selection of a

configuration for an advanced satellite for use in U.S. domestic systems:

(a) General Dynamics "Geostationary Platform Systems Concepts
Definition Study", Reference 10

(b) Mitre "Application of Advance On-Board Processing Concepts
to Future Satellite Communications Systems", Reference 7

(c) Ford "Concepts for 18/30 GHz Satellite Com:;.unication System
Study", Reference 2

(d) Hughes "18 and 30 GHz Fixed Service Communication Satellite
System Study", Reference 4

(e) TRW 1130/20 GHz Mixed Use Architecture Development Study",
Reference 6

(f) FSI "Large Communications Platforms Versus Smaller Satellites",
Reference 1

Major results of these studies have been used as a basis for the definition

of spacecraft configurations for the advanced operational system.

The FSI study (Reference 1) developed an operational platform con-

figuration based on LEO platform assembly from three Shuttle launches. This

capability has been scaled back to a single Shuttle launch. The General Dynamics

study (Reference 10) is still underway. Results from the second interim report

covering weight and power budgets for single Shuttle launch have been used as an

input to the operation configuration. The ;Mitre study (Reference 7) has made

important contributions to the understanding of communications spacecraft switch

design, which is a major technology problem. Ford, Hughes, and TRW (References
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2, 4, and 6) have studied 30/20 GHz satellite communications systems concepts for

trunking, direct-to-the-user, --A for mixed applications. Results from these

studies have been used as references for the development of weight and power

budgets, estimates of communications capability, and for technology evaluation.

Figure 6-1 is the block diagram. of the communications subsystem that

had been developed by FSI in its earlier study (Reference 1). It was largely

intended to show the general switch architecture that might be used on a large

platform for an arbitrary mfr. of communications requirements. Meanwhile,

SS/TDMA and baseband switching have been analyzed by Ford, Hughes, TRW, and

MITRE (References 2, 4, 6, and 7), and some of the results are summarized below.

Mitre concluded that a digital processor capable of performing high

speed switching of multiple T1 and T2 channels may be feasible in the 1990 to 2000

time frame and that extensive technology development is needed in various areas.

For a 1.00 x 100 RF switch, Mitre proposes a design goal equal to 4 percent of the

Bell System 4-ESS, or about 10,000 lbs. (4,500 kg) and 20 kW. Compared with this,

the earlier FSI allocation for the switch and transponder electronics was 2,500 kg

and less than 10 kW.

TRW describes an SS/TDMA system with 18 fixed beams and a scanning

beam system. An SS/TDMA switch matrix is provided, and in addition, the

scanning beam is associated with baseband processing with 3 GBp. throughput.

TRW's power allocation for the switch and digital processor is 475 watts, and the

total communications weight is 638 kg.

Thr Ford direct-to-the-user system includes a 25 x 25 baseband switch

with 3.75 GBps throughput. The power allocation for the switch and other

communications subsystems excluding the power amplifiers is 509 watts and the

total communications subsystem weight is 435 kg.

Hughes estimates that a 32 x 32 RF switch matrix wouk: weigh 64 lbs.,

and a 64 x 64 matrix would weigh 512 lbs. For a 25 beam direct-to-the-user

satellite, Hughes estimates a repeater weight of 667 kg and a power of 9,620 watts.

The weight and power for the switch is )nly a small portion of the above allocation.
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FSI's selection of systems architecture for the Advanced Domestic
Satellite (ADS) was based on the following considerations:

1. Weight, Volume, and Power Constraints

The requirement for single Shuttle launch leads to reduced weight,
volume, and power allocations relative to FSrs platform configura-
tion (Reference 1).

2. Implementation Time Frame

Based on orbital arc constraints, an operational system should be
available by around 1987. This dictates more modest technology
objectives than would be possible with later implementation.

3. Traffic Distribution

Traffic distribution is an important input for the selection of
systems architecture. Transmission bandwidth requirements for
data, voice, and video conferencing will be in the ratio of 1 to 10 to
100. Video conferencing will develop in the most heavily populated
areas first, and therefore, a "cream skimming" approach is
practical.

4. Availability Requirements

Severe propagation attenuation at the 30/20 GHz frequencies leads
to transmission diversity requirements for voice and data services.
Space diversity is expensive for low and medium capacity earth
stations, and frequency diversity (Reference 1) would place a too
demanding requirement on a first generation spacecraft switch for
single Shuttle launch application. Voice and data services will
therefore be provided primarily at C-band and Ku-band. Ku-band
will be used primarily for video ccnferencing with an operating
arrangement as described in Section 6.3.

5. TV Distribution Services

The ADS emphasizes high capacity by means of multiple spot
beams and frequency reuse. Flexible interconnectivity is obtained
by oi, -board switching. A TV distribution system has different
requirements in terms of area or time zone coverage with fixed
uplinks and remote uplinks. The same spacecraft bus can
undoubtedly be used for these requirements, but the communica-
tions subsystem will be different. In this study we have
concentrated on the more complex point-to-point transmission
requirements, and TV distribution has not been covered in the
systems design
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The resulting spacecraft systems architecture is based on a reduced

number of beams for area coverage at C-band and Ku-band, and selective spot

beam coverage at Ka-band. For simplicity and reliability baseband switching is not

used on the first generation ADS, but it is expected that baseband switching will be

introduced on later spacecraft generations. An SS/TDMA transmission system is

used for high density trunk traffic, and IF switching at T-2 transmission rates

provides connectivity for T-2 trunks, low rate TDMA ,ystems, and video

eonferencing. The communications subsystem block diagram is shown in Figure 6-

2.

Each spot beam is associated with its own receive and transmit feed,

low noise amplifier, output amplifier, and frequency converters. Tile frequency

band is divided as appropriate into two subbands: one for SS/TDMA operation, and

the other for multiple T-2 operation (6.3 MBps). The system contains one

frequency converter for each T-2 stream, and IF switching is greatly simplified

through the use of frequency synthesizers which transpose the T-2 signal to the

required relative frequency within the transponder ban This arrangement is

similar to the well-known INTELSAT SPADE systeio or the domestic demand

assigned SCPC systems.

Figure 6-3 shows the Bonus beam coverage as seen from the satellite.

In our previous design for a communications platform with three Shuttle launches,

we provided the same area coverage for Ka-band. This was demanding on primary

power because of the large transmission bandwidth and precipitation attenuation

margin required. To reduce weight and power requirements we have reduced the

Ka-band coverage to spot beams for major city coverage. The Ka-band coverage is

shown in Figure 6-4.

6.3	 East Coast Satellites

Prior FSI studies (Reference 1) showed that spacecraft saturation tends

to occur in the antenna beams covering the triangle formed by Boston, Chicago,

and Washington. When it becomes necessary to increase the systems capacity in

the slots available within the CQNUS service are, we propose to allocate satellites

further east (which requires coordination with INTELSAT), to offload some of the
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Figure 6-3

SPOT BEAM ANTENNA COVERAGE OF CONUS

(Numbers 1, 2, 3 indicate freguency assignment)

Figure 6-4

KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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dense East Coast traffic. These satellites will achieve full CONUS coverage only

via intersatellite links, but at any rate a large traffic percentage will remain within

the East Coast area. The same principle may be used to offload the Los Angeles -

San Francisco area, when this becomes necessary.

East Coast satellites may be identical to the full CONUS satellites but
4

with squinted antenna beam pointing, or they may be of a special design to provide

coverage only for the high traffic areas, as shown in Figure 6-5.

Figure 6-5

HIGH-TRAFFIC AREA COVERAGE OF
EAST COAST SATELLITE

(Numbers 1, 2, 3 indicate frequency assignment)
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6.4	 Frequency Bands Used

Based on the frequency band assignments made at the 1979 WARC, we

have assumed that the frequency bands shown in Table 6-1 will be used in the ADS

System. The available allocations and WARC 1979 results are shown in Figure 6-6.

Table 6-1

Frequency Band Assignments

Uplink Band	 Downlink Band	 Available	 Equivalent Number
MHz	 MHz	 Bandwidth MHz of Transponders

5,925-6,725	 3,400-4,200	 800*	 20f, 12.750-13,250   1
(14,000-14,5001	 11,200-12,200	 1,000*	 24

27,500-30,000	 179700-20,200	 2,500	 60

TOTAL 4,300 104

*Dual polarization is used in some beams at these frequencies, thus dOL!bling the
available bandwidths and number of equivalent transponders.

WARC 1979 set the allocation for the frequency band covering 10.7

GHz to 11.7 GHz as international use only. We have assumed that one-half of this,

or 500 INIHz, will become available for domestic use. At best, all 1000 MHz would

be available, and there is a possibility that none will be allocated. We have chosen

a middle c(,':rse.

6.5	 Traffic Assignment and System Capacity

Figures 6-7 and 6-8 show the traffic assignment to the different beams

and frequencies in the all-CONUS system. In a similar manner, Figures 6-9 through

6-12 show the traffic assignments for the system with offloading to an East Coast

satellite. Table 6-2 summarizes the capacities and loading of the two systems.

The traffic divisions were all based on the population density and the telephone

density in major cities.
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AVAILABLE BANDWIDTH (MHz)

FREQUENCY BAND
	 1000

UNCHANGED BY WARC 1979
2500 MHz AVAILABLE

100	 500	 1000

Figure 6-6

EFFECTS OF 1977 WARC ON FIXED SATELLITE ALLOCATIONS
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TOTAL TRAFFIC - 102.2 TRANSPONDERS

Figure 6-10

TRAFFIC ON PRIMARY SATELLITE AT Ka-BAND

(36 MHz Transponders)

OFFLOADED SYSTEM

TOTAL TRAFFIC = 138.8 TRANSPONDERS

Figure 6-11

TOTAL TRAFFIC ON EAST COAST SATELLITE AT C-BAND AND Ku-BAND ONLY

(36 MHz Transponders)

OFFLOADED SYSTEM
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TOTAL TRAFFIC - 75.7 TRANSPONDERS

Figure 6-12

TRAFFIC ON EAST COAST SATELLITE AT Ka-BAND

(36 MHz Transponders)

OFFLOADED SYSTEM

6.6	 Space Shuttle Launch Considerations

This section examines the capabilities of the STS, and the charging

philosophy adopted by NASA for Shuttk "ghts.

Capabilities

The Shuttle has a payload capacity of 65,000 pounds to low earth orbit.

The cargo bay is 60 feet in length and 15 feet in diameter.
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The basic capability will remain at 65,000 pound load into low earth

orbit of 160 nautical miles. The early flights during 1980 and 1981 will have a
significantly lower weight capability. Subsequent flights will offer gradual

upgrading, first, by operating the Space Shuttle main engine at higher thrust rating
and later by the addition of a light weight external tank and then a lighter weight
orbiter. For the time period of 1985 and later, it is expected that thrust
augmentation by means of solid rocket booster strap-ons will increase the basic
payload weight capability to 70,000 or even 85,000 pounds. This increased weight,
however, is not usable fop geostationary missions- since the Shuttle landing
capability is not likely to increase above 65,000 or 70,000 pounds. Any of the
flights must be capable of being aborted at their early stages and accordingly, the
landing capability will be one of the limiting factors. For these reasons, it was
agreed that a weight capability of 65,000 pounds will be used in the FSI studies for
missions in the late 80's and early 90's.

Figure 6-13 illustrates the STS capability evolution as currently
envisioned.

One of the results of the work performed by General Dynamics has been
that communications payloads will be volume rather than mass limited on the STS.
This is especially so when the payload does not include the transfer vehicle, but
also holds for single-Shuttle launches. This is mainly due to the need for deployable
structures such as antennas and associated masts and feed assemblies. Such
structures cannot presently achieve a packing density high enough to escape the
volume limitation.

Costs

The Shuttle price is $18 million plus $4.2 million for commercial users.
The $18 million is in 1975 dollars and must be escalated to the time at which each
of the progress payments is being made. The $4.2 million is a fixed charge, not
subject to escalation. The charge for government users is the same except that the
$4.2 million is not applicable. it is expected thet the Shuttle price will be adjusted
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after the fourth year of operation. Initial estimates were based on a total of 460

flights over a 12-year period peaking at about 50 flights per year.

Table 6-3 shows the schedule of progress payments to NASA for various

lead times. Figure 6-14 illustrates the method used to calculate the charge factor

if less than the full Shuttle is used.

The first Shuttle flight is now expected far June 1980 as a test flight.

The first operational flight which will launch TDRSS 1-will take place between July

and September 1981. The second orbiter will becomes available in September 1982.

Ta"-)le 6-3

F eimbursement Schedule

Number of months before	 Percent of Price
launch flight is

scheduled	 Months prior to scheduled launch date
33	 27	 21	 15	 9	 3

33 Months or More	 10	 10	 17 17 23 23

27-32 Months	 -	 21	 17 17 23 23

21-26 Months	 -	 -	 40 17 23 23

15-20 Months	 -	 -	 - 61 23 23

9-14 Months	 -	 -	 - - 90 23

3-8 Months	 -	 -	 - - - 122
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The minimum turn-around time of the Shuttle is 230 hours for nominal

missions. This does not include time required for unique changes or periodic

maintenance. Typical turn-around times for each orbiter initially will be 4 to 5

weeks. Through 1984 it is expected that each orbiter will provide about 10 flights.

After some operational experience it can be expected that basic turn-around times

would be reduced to less than 200 hours by curing certain bottlenecks which will

require some design changes in the launch pad facilities.

Upper Stages

Several types of upper stages with varying capabilities are planned for

use with the Shuttle. Among these are the Inertial Upper Stage, (IUS) and possibly
the Centaur.

The IUS which is being built by Boeing for the Air Force has a weight

lifting capability of 5,000 pounds in synchronous orbit. It uses various combinations

of solid roi ket engines with inertial control.

Special combinations of solid stage rockets are used for planetary

missions and some optimization may be possible to increase the weight lifting

capability also for geostationary orbit.

The, present costs for the IUS, turn-key including all. services, is

estimated at $16 million for a 1981 launch in then-years dollars. No policy has

been established yet for payment schedules. On a typical IUS launch it can be

expected that an additional $1 million may apply in optional charges for special

payload requirements. Costs past 1981 should be inflated.

Due to the high thrust provided by the solid-fuel motors, the IUS is not

well suited for structures deployed at LEO. The structures would need to be

considerably strengthened to withstand the relatively high acceleration.
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Studies have been conducted by NASA for the use of the Centaur as an

upper stage. The Centaur should be able to provide a capability of 10,000 to 12,000

pounds of payload in geostationary orbit. Estimates of unit costs are $20 million in

1980 dollars.

6.7	 Spacecraft Characteristics

The spacecraft weight and power budget is shown in Table 6-4. Where

available, a comparison is made with other design studies. Major characteristics of

ADS are shown in Table 6-5.

6.8	 Offloaded System*

The traffic handling capacity of the offloaded system is higher, and

more physical transponders are required aboard the spacecraft. The major

characteristics of the Primary ADS and the East Coast satellite are shown in

Tables 6-6 and 6-7. The total spacecraft power and weight will need to be

increased for the offloaded system. With careful design, this increase should still

be within the single-Shuttle launch constraints. An advanced transfer vehicle will

probably be needed.

6.9	 Cost Estimates

We have used the SAMSO model to calculate the development and

recurring costs for the ADS spacecraft. These numbers must be regarded with

some caution for several reasons. First, the weight and power of the ADS exceed

those of even the largest satellite used in the SAMSO data base. Second, the

SAMSO model is slightly weighted toward noncom munications satellites, and third,

the development cost does not take into account the additional technology

advances needed for ADS.

The cost estimates are shown in Table 6-8 along with estimates for

other related satellite projects.

* Excess traffic is offloaded onto additional satellites over the Atlantic Ocean,
which do not have full CONUS visibility. Connectivity is established by means
of intersatellite links.
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Table 6-5

Major Characteristics of ADS

Antennas

C-band	 1 - 6 meters transmit
1 - 4 meters receive

Ku-band	 1 - 2.5 meters transmit
1 - 2.0 meters receive

Ka-band	 3 - 3 meters transmit
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)

38 at C-band, G/T = 10 dB/K
17 at Ku-band, G/T = 7 dB/K
4 at Ka-band, G/T = 10 dB/K

Power Amplifiers (one per physical transponder)

72 at C-band, 5 watts each
28 at Ku-band, 36 watts each
17 at Ka-band, 35 watts each

Switching Network

SS/TDMA RF Switch - 25 x 25

Multi-carrier IF Switch - 100 inputs x 100 outputs with 6.3
MBps switching blocks.

Power Budget

Transponder Electronics 1 kW
Power Amplifiers 5.5 kW
Switching 3 kW
Spacecraft Power 0.5 kW

Intersatellite Link

Frequency:	 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.
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Table 6-6

Major Characteristics of ADS with nffloadinic

(Primary Satellite)

Antennas

C-band	 I - 6 meters transmit
1. - 4 meters receive

Ku-band	 1 - 2.5 meters transmit
1 - 2.0 meters receive

Ka-band	 3 - 3 meters transmit
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)

44 at C-band, G/T = 10 dB/K
27 at Ku-band, G/T = 7 dB/K
6 at Ka-band, G/T = 10 dB/K

Power Amplifiers (one per physical transponder)

85 at C-band,	 5 watts each
52 at Ku-band, 36 watts each
25 at Kaband, 35 watts each

Switching Network

SS/TDMA RF Switch - 25 x 25

Multi-carrier IF Switch - 140 inputs x 140 outputs with 6.3 MBps
switching blocks.

Power Budget

Transponder Electronics	 1.3 kW
Power Amplifiers	 10 kW
Switching	 4 kW
Spacecraft Power	 0.5 kW

Intersatellite Link

Frequency: 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.

73



Table 6-7

,Major-Characteristics of East Coast Satellite

Antennas

C-band	 1 - 6 meters transmit
1 - 4 meters receive

Ku-band	 1 - 2.5 meters transmit
1 - 2.0 meters receive

Ka-band	 3 - 3 meters trasmit
3 - 2 meters receive

Receiver Electronics (Wideband, one per beam per polarization)

14 at C-band, G/T = 10 dB/K
8 at Ku-band, G/T = 7 dB/K
4 at Ka-band, G/T = 10 dB/K

Power Amplifiers (one per physical transponder)

26 at C-band, 5 watts each
14 at Ku-band, 36 watts each
15 at Ka-band, 35 watts each

Switching Network

SS/TDMA RF Switch - 10 x 10

MLlti-carrier IF Switch - 45 inputs x 45 outputs with 6.3 MBps
switching blacks.

Power Budget

Transponder Electronics	 0.5 kW
Power Amplifiers	 3.5 kW
Switching	 1	 kW
Spacecraft Power	 0.5 kW

Intersatellite Link

Frequency: 23 GHz
32 GHz

Communication with one or two other satellites in geostationary
orbit.
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Table 6-8

Costs of Advanced Satellites

( Millions of 1980 Dollars)

Satellite	 Development Cost 	 Unit Cost

NASA/MSFC Platform 78 89

Edelson/Morgan 78 . 89

Previous FSI Design 137 107

Hughes 18/30 Trunking 31 30.3*

Hughes 18/30 DTU 36.5 58.1 *

Ford 18/30 Trunking 60 30.6*

Ford 18/30 D'rU 85 54

General Dynamics Concept #1 (not available)

Current FSI ADS 150 98

*includes profit and incentives; average for 3 spacecraft

Launch costs are not included.
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6.10	 Transmission Link Calculations

Tables 6-10 and 6-11 present sample link calculations for 250 MBps and
6.3 MBps transmissions. The modulation in all cases is 4-phase PSK with rate 7/8
coding. The link noise budget is shown in Table 6-9.

Table 6-9
Noise Budget

Theoretical Eb/No for uncoded 4-phase PSK
at a bit error rate of 10 -4 8.6 dB

Modem implementation margin 1.0 dB

Intersymbol distortion 3.0 dB

Coding gain for rate 7/8 forward error control coding 2.4 dB

Practical Eb/No for 4-phase PSK with rate 7/8
coding at a bit error rate of 10 -4 10.2 dB

Bandwidth to baud ratio 1.12

Carrier-to-noise ratio in the receiving bandwidth
for a bit error rate of 10-4 12.7 dB

Uplink carrier-to-noise ratio	 20	 dB

Downlink carrier-to-noise ratio 	 15	 dB

Adjacent beam carrier-to-noise ratio 	 20	 dB

Other interference carrier-to-noise ratio	 25	 dB

0 
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Table 6-10

Sample Transmission Link Budgets for a 250 111bps PSK Carrier

Downlink

Frequency Band, GHz

4/6	 11/14	 18/30

Satellite transmit RF power	 Watts 5 35 35

dBW 7 15.6 15.4

Line losses dB 0.5 0.5 0.5

Minimum antenna gain for
specified coverage dB 39 ' 39 43

Minimum platform transmit EIRP dBW 45.5 53.8 57.9

Free space path loss at
30 degree elevation dB 196.2 205 209.2

Transmission link margin dB 3 7 10

Minimum flux density at the
surface of the earth dBW/m2 -116.7 -114.8 -110.7

Earth station antenna diameter m 4.5 4.5 4.5

Earth station antenna gain dB 43.3 52.1 56.4

Receive system noise temperature K 155 385 500

Earth station G/T dB/K 21.4 26.2 29.4

Receive noise bandwidth MHz 130 145 145

Downlink carrier-to-noise ratio dB 15 15 15
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Table 6-10, Continued

Sample Transmission Link Budgets for a 250 Mbps PSK Carrier

Uplink

Frequency Band, GHz

4/6	 11/14	 18/30

Earth station transmit RF power

Line losses

Antenna diameter

Antenna gain

Earth station transmit EIRP

Free space path loss at
30 degree elevation

Transmission link margin

Flux density at the satellite

Minimum antenna gain for
specified coverage

Receive system noise temperature

Satellite G/T

Receive noise bandwidth

Uplink carrier-to-noise ratio

Watts 140 1100 3300

dBW 21.4 30.2 35.1

dB 1.0 1.0 1.0

m 4.5 4.5 4.5

dB 46.8 54.2 60.8

dBW 67.2 83.4 94.9

dB 1.99.6 207 213.7

dB 3 10 15

dBW/m 2 -98.4 -87.1 -83.1

0 39 39 43

K 1150 2200 3000

dB/K 8.4 5.6 8.2

MHz 130 145 145

dB 20 20 20
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Table 6-11

Sample Transmission Link Budgets for a 6.3 Nlbps PSK Carrier

(per carrier)

Downlink

Frequency Band, GHz

4/6 11/14 18/30

Satellite transmit RF power Watts 0.15 1.0 1
(per earner` dBW -8.2 0 -0.2

Line losses dB 0.5 0.5 0.5

Minimum antenna gain for dB 39 39 43
specified coverage

Minimum satellite transmit EIRP dBW .3 38.5 42.3

Free space path loss at
30 degree elevation dE 196.2 205 209.2

Transmission link margin dB 3 7 10

Minimum flux density at the 2surface of the earth OWA 4.1 9.5 26.3

Earth station antenna diameter m 11 7 7

Earth station antenna gain dB 51 55.9 60.2

Receive system noise temperature 0K 110 195 500

Earth station G/T dB/oK 30.5 32.9 29.4

Receive noise bandwidth MHz 4.1 4.1 4.1

Downlink carrier-to-noise ratio dB 15 15 15
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Table a-11, Continued

Sample Transmission Link Budgets for a 6.3 N:bps PSK Carrier

(per carrier)

Uplink_.—

Frequency Band, GHz

4/6 11/14 18/30

!	 Eart)i station transmit power Watts 4.2 30 791
(per carrier)

dBW 6.2 14.6 19.6

Line losses dB 1.0 1.0 1.0

Antenna diameter m 4.5 4.5 4.5

Antenna gain dB 46.8 54.2 60.8

Earth station transmit EIRP dEW 52 67.8 79.4

Free space path loss at
30 degree elevation dB 199.6 207 213.7

Transmission link margin dB 3 10 15

Flux density at the satellite dBW/m2 -113.6 -102.7 -98.7

Minimum satellite antenna gain dD- 39 39 43

Receive system noise temperature o 1150 2200 300

•atellite G/T dB/oK 8.4 5.6 8.2

Receive noise bandwidth MHz 4.1 4.1 4.1

Uplink carrier-to-noise ratio dB 20 20 20
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6.11	 Transition to the A.D.S. System

Assuming the the development of the A.D.S. system is begun in the near

future, it should be possible for carriers to plan on transition to this system by the
late 1980's. Figures 6-15 and 6-16 show the growth of demand and in-orbit
capacity for the high and low traffic scenarios. First launch of an A.D.S. space-
craft is assumed to occur in 1987. The fine-grain variations in capacity in later
years is caused by the demise of conventional spacecraft launched in the early
1980's.
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SECTION 7

EARTH STATION NETWORK CONFIGURATION

Any of the existing earth stations in the U.S. domestic satellite

communications systems will be able to operate with the ADS. In addition, a large

number of new earth stations will be constructed, and most of the new stations will

serve light traffic links.

In this section we have shown examples of typical earth stations. The

satellite-switched TDMA earth station imposes the least complexity upon the

satellite switch but results in the greatest complexity on the ground. The

multi-carrier PSK earth station will be simpler and less costly than the satellite-

switched TDMA station if the number of carriers is small. If a single carrier is

provided for each transmission link, the switch would provide routing at IF.

All earth stations employ a basic front end consisting of an antenna

(including mount, feed, and combiner), an LNA, a down-converter and an up-

converter, and final RF amplifier.

7.1	 Satellite-Switched TDMA Earth Stations

The terminal equipment for a typical satellite-switched TDMA

(SS/TDMA) earth station consists of the following subsystems:

Mux/demux

Common control equipment

QPSK modern

A functional block diagram for this type of station is shown in

Figure 7-1, and a brief discussion of the terminal equipment subsystems follows.
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The first multiplexing process accepts traffic consisting of analog voice

and digital bit streams at rates of 64 kbps, 1.544 Mbps and 6.3 Mbps and combines

this traffic into a single digital bit stream at a significantly higher rate. Tire

second multiplexer provides compression buffering for the continuous-to-burst rate

conversion, as well as transmit burst timing control via network memories. The

first demultiplexing process provides the reciprocal functions of receive burst

timing control and burst-to-continuous rate conversion. The second demultiplexer

accepts the continuous single digital bit stream and breaks it down into separate

traffic outputs consisting of analog voice and bit streams at rates of 64 kbps, 1.544

Mbps, and 6.3 Mbps.

The common control equipment performs functions associated with the

establishment and maintenance of frame synchronization, as well as the treatment

of data in order to obtain improved system performance. This equipment consists

of five main parts:

Burst synchronizer and time slot acquisition unit

Preamble generator

Unique word detector

Scrambler/descra mbler

Forward acting error correction codec

The burst synchronizer and associated time slot acquisition unit per-

form the function of acquisition and steady state synchronization of burst

transmissions from the earth station so that no TDMA burst overlapping occurs at

any time. The preamble generator assembles the overhead bits which are inserted

prior -to the encoded and scrambled data from the second multiplexer. It is turned

on and off by a timing pulse from the multiplexer which is, in turn, controlled by

data loaded into its network plan memory. The time reference for the multiplexer

is furnished by the burst synchronizer. The unique word detector monitors the

incoming data burst to identify the unique words which precede actual data

transmission. The scrambler/descrambler is included in the system to make the

transmitted data. stream more random in content, thereby avoiding the generation

of high power discrete spectral lines in the transmitted RF spectrum. The forward

acting error correction codec provides for improvement in the bit error rate

performance.
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The QPSK modem performs reciprocal functions. It accepts a bursted

data stream and modulates this information onto a suitable IF carrier using

quadrature phase shift keying. Alternately, it can take r. QPSK modulated

spectrum and produce a bursted data stream output.

7.2	 Multiple T-2 Carrier PSK Earth Stations

The terminal equipment for a typical multiple T-2 carrier PSK earth

station consists of the following subsystems:

Mux/demux

Codec

QPSK modem

Carrier combiner and divider networks

A functional block diagram for this type of station is shown in

Figure 7-2, and a brief discussion of the terminal equipment is given below.

The multiplexer accepts traffic consisting of analog voice and digital

bit streams at rates of 64 kbps, 1.544 Mbps, and 6.3 Mbps and combines this traffic

into a single digital bit stream at a higher data rate. The demultiplexer provides

the reciprocal function.

The codec provides forward acting error correction coding to the

outgoing data stream and uses such coding to improve the BER of the incoming

data stream.

The QPSK modem performs reciprocal functions. It accepts a data

stream and modulates this information onto a suitable IF carrier using quadrature

phase shift keying. Alternately, it can take a QPSK modulated spectrum and

provide a continuous data stream output.

The combiner network frequency multiplexes the several carriers

before up-conversion and power amplification. The divider demultiplexes the

carriers before further processing upon reception.
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7.3	 Single T-2 Carrier PSK Earth stations

The terminal equipment for a typical single carrier PSK earth station

consists of the following subsystems:

Mux>demux

Codec

QPSK modem

A functional block diagram for this type of station is shown in

Figure 7-3, aad a brief discussion of the terminal equipment is given below.

The multiplexer accepts traffic consisting of ,analog voice and digital

bit streams at rates of 64 kbps, 1.544 Mbps, or 6.3 Mbps and combines this traffic

into a single digital bit stream at a higher data rate. The demultiplexer provides

the reciprocal function.

The codec provides forward acting error correction coding to the

outgoing data stream and uses such coding to improve the BER of the incoming

data stream.

The QPSK modem performs reciprocal functions. It accepts a data

stream and modulates this information onto a suitable IF carrier using quadrature

phase shift keying. Alternately, it can take a QPSK modulated spectrum and

provide a continuous data stream output.

7.4	 Video Conferencing Operation

Most of the video conferencing traffic will be carried at Ku- and

Ka-bands and will therefore experience rather severe rain attenuation in many

parts of the U.S. Tables 7-1a and 7-1b show the system margin needed for various

system availabilities. The figures in the table can be com pared with the margins of

10 dB at Ku-band .and 15 dB at Ka-band that the basic system provides. It can be

seen that in some regions of the country these margins do not provide an

acceptable availability. For such instances, the video conferencing transmission

system has been so designed as to provide additional margin. This is done as

follows.	 89
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The system will monitor some indicator of the performance, either the

received signal level or the bit error rate. When a preset threshold is exceeded,

the transmission bit rate will be reduced from 6.3 Mbps to 64 kbps each way. The

IF bandwidth will be reduced accordingly. This will provide an additional 20dB of

margin for the reduced bit rate signal and will enable the conference to proceed

using audio only. The resulting outages and availabilities are shown in Table 7-2.

Figure 7-4 shows the CONUS rain zones.

Table 7-2

Video Conferencing System Availabilities

Rain Zone

Frequency
(GHz) 1 2 3	 4 5 6

12 99.99* 99.99 99.99	 99.99 91.1.99 99.99

14 99.99* 99.99 99.99	 99.98 99.97 99.99

18 99.99* 99.99 99.99	 99.7 99.96 99.99

30 99.98 49.96 99.95	 99.8 99.7 99.95

* Video service retained

The practical aspects of t;+is ei-rangement are less formidable than it

may seem st first. The developmen t of an all-digital modem covering the desired

range in which even the filters are implemented digitally is likely by as soort as

1982. This will enable instantaneous alteration of the system transmission rate. In

addition, the minutes of the year during which the system will operate at the

reduced rate will be spread over the year and over the 24 hours of the day. Some

will occur at night or during relatively light usage periods; thus we expect that 'he

average user will experience an actual inconvenience only about one-half as often

as Table 7-2 indicates.
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7.5	 Earth Station Cost Estimates

Typical earth station costs are shown in Table 7-3. Cost trends are

shown in Table 7-4. All costs are for equipment only. An operational station must

include, for example, installation, transportation, integration, documentation, and

spares. Our economic model has assumed a factor of 40 percent of the equipment

costs to account for these additional cost items.

Table 7-3

Typical Earth Station Equipment Costs in 1987

(Thousands of 1980 Dollars)

Quantity = 1,000

Station Types

Single Multi-
Carrier Carrier

Item PSK PSK SS/TDMA

Front Ends

Antenna System
4/6 GHz 10 10 10
11/14 GHz 15 15 15
18/30 GHz 20 20 20

RF equipment
4/6 GHZ 4 4 20
11/14 GHz 5 5 40
18/30 GHz 6 6 60

Terminal Equipment (excluding
mux/demux) 5 25 50

Mux/demux 3 15 3

Totals:

4/2 GHz 22 54 83
11/14 GHz 28 60 108
18/30 GHz 34 66 133
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Table 7-4

Cost Trends for Typical Earth Station Equipment

(Thousands of 1980 Dollars)

Year Purchased

	

1980	 1987
i

Quantity:	 1	 1000	 1

Station Type

Single Carrier PSK
4/6 GHz	 52	 22	 37
11/14 GHz	 65	 28	 48
18/30 GHz	 80	 34	 58

Multi-Carrier PSK
4/6 GHz	 132	 54	 90
11/14 GHz	 138	 60	 100
18/30 GHz	 NO	 66	 110

SS/TDMA
4/6 GHz	 152	 83	 139
11/14 GHz	 197	 108	 180
18/30 GHz	 244	 133	 222

We estimate that the cost of baseband equipment and modems for the

dual bit-rate operation will be about 20 percent higher than for single-rate

operation. Due to the increased flexibility of all-digital equipment, we expect such

items to become commonplace by the mid 1980's.

7.6	 Access Arrangements

The access arrangements used with the ADS system will vary according

to the type of earth station. The SS/TDMA stations will be used primarily for

trunking operation and video conferencing among larger cities. Access to these

stations will depend on the frequency band of operation. At C-band the stations

will probably not be located within the larger cities due to frequency coordination

problems. Interconnection to such stations will be via conventional terrestrial

microwave or fiber optics. Typical costs for such links are shown in Table 7-5 and

Table 7 -6.
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Table 7-5

Fiber Optic Costs per Meter in 1980 Dollars for a 1987 System

(Installed)

(Rounded to Nearest Dollar)

Duplex Installation Cost
Capacity Rural Suburban City

(MBps) $3/m $7/m $10/m

90 8 12 15

100 9 13 16

270 12 16 19

360 13 17 20

Table 7-6

Terrestrial Microwave Costs

High case Low case
Cost Cost

Item Per site Per site

Land (including access) $	 5,000 $10,000

Site Building 45, 000 5,000

Tower 12,500 7,400

Generator 45,000 —

HVAC 3,000 —

Radio 40,000 6,000

Antenna 4,500 400

Waveguide 1,480 560

Mux — 4,800

Auxiliary link 9,400 —

Supervisory system 9,000 —

Test equipment and spares 7, 700 1,000

Installation 20,800 4,600

Total	 $203,400 $39,760
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Stations which operate exclusively at Ka-band, and some stations which

op,:rate at Ku-band. can be located in large downtown areas. Ac^ess to these

stations could be via fiber optics links. Fiber optics links offer large transinission

bandwidths, and the capacity that is installed is relatively independent of installa-

tion costs.

Single-carrier PSK and some multi-carrier PSK stations will be co-

located with the customer's premises. These stations will be used primarily for

private line voice and data networks and for video conferencing. No special access

arrangement will be needed for these stations.
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SECTION 8

SYSTEM COSTS

8.1	 Cost Model

Engineering cost calculations were made using the following cost

model:

1. Revenue requirements were calculated for each of the 10 years of

the study period, 1987 to 1996. Revenue requirements are the sum

of depreciation, operation and maintenance costs, and rate of

return on investment.

2. Straight-line depreciation over 10 years was used on all invest-

ments based on an assumed ADS and earth station useful life of 10

years. These calculations will yield conservative results since

some earth station equipment will have longer lifetimes.

3. All calculations were made in constant 1980 dollars. The allow-

ance for inflation was included in the proper choice of rate of

return on investment and present value factor.

4. Cost per circuit was calculated for each year and for the total

10-year program period.

5. Net investment was calculated as the difference of cumulative

investment and accumulated depreciation. In this manner, residual

systems value was also determined.

6. The sum of all revenue requirements and the sum of the present

values of all revenue requirements were calculated as an overall

measure of systems costs.
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7. Progress payments were required during the course of platform or

spacecraft development and production, ground segment con-

struction, and for Shuttle launches. Our cost estimates represent

the present value of the sum of these progress payments referred

to the date of deployment of space and ground segment, and they

are expressed in 1980 dollars.

Investment and O&M Schedule

The following assumptions were made in addition to those listed in

Sections 6 and 7 of this report regarding the investment and O&M schedule:

1. Shuttle Launch Costs

For ADS, the requirement is one Shuttle launch per satellite. The

total cost is $30 million plus an additional $20 million for the

transfer vehicle (Centaur).

2. Satellite Control Center and TT&C Investment Costs

In 1987 there will be four operational control centers and TT&C

systems operated by Western Union, RCA American Communica-

tions, AT&T, and SBS. These control centers will be adequate for

operations with ADS.

3. Earth Station Deployment and Costs

In addition to the basic equipment cost, 40 percent was added to

account for such costs as transportation, installation, integration,

and spares.
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Development and Deplovment

Development costs for the ADS system were assessed only once. This is

based on the assumption that NASA develops the satellite and charges their users

appropriately for it.

TT&C and Operations

Costs for TT&T and operations (included under O&M in the computer

model) were assessed as follows:

$3.9 million + $0AN million

where N is the number of spacecraft in orbit ,including spares.

	

8.2	 Space Segment Cost Calculations

Based on the above model and the costs for ADS calculated in Section 6

using the SAMSO model, we have computed the cost per transponder year for tj)e

ADS space segment. The transponder used is the 36 MHz reference transponder

rather than the physical transponder actually used in the satellite design. The

results of the computer model are shown in Table 8-3 for the low traffic and

Table 8-4 for high traffic. The high traffic was modeled using the offloaded

system and each primary satellite launch is also accompanied by a launch of an

east coast coverage satellite. Costs for the offloaded satellite system were

assumed to be the same as for the all-CONUS coverage.

Launch schedules are shown in Tables 8-1 and 8-2. A spare was

launched for every four operating satellites or fraction thereof.

	

8.3	 Ground Segment Cost Calculations

The factors that make up the annual cost of the ground segment are

common to the :entire system. We have thus calculated the annual costs for the

ground segment of typical users rather than for the system as a whole. Costs are

shown for transmission via a trunking earth station, a thin-route single carrier PSK

earth station, and a thin-route multi-carrier earth station.
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Table 8-1

Low Traffic Scenario Launch Schedule

(Including Spares)

Year	 Launches

1988	 2

1990	 1

1992	 1

Table 8-2

High Traffic Scenario Launch Schedule

(Including Spares)

Year	 Primary	 East Coast Common Spare

1987 2 2	 1

1988 1 1	 1

1989 2 2	 1

1990 2 2	 1

1991 1 1	 0

1992 2 2	 1

1993 1 1	 1

1994 1 1	 0

1995 1 1	 1

The traffic carried by the earth station was assumed to grow to a

certain maximum over the 10-year period. This maximum depended on earth

station type: 6.3 Mbps for the single-carrier station, 31.5 Mbps for the multiple-

carrier station, and 63 Mbps for the SS/TDMA station. The growth pattern for this

traffic was assumed to be the same as that for the overall U.S. domestic traffic.

Earth station installation and integration was estimated to be 40

percent of the equipment costs. This increased cost was added to the equipment
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Table 8-3

Economic Model Forecast
SINGLE-SHUTTLE LAUNCH A.D.S. - LOW TRAFFIC

PV of
Net ---------Annual-------- Cost per Annual

Year Invest Dep + 6&M + ROI a Revnu Traffic XPONDER Revenue

1988 401.4 44.6 4.7 40.1 89.4 160.00 0.56 61.6
1989 356.8 44.6 4.7 35.7 85.0 277.00 0.31 55.9
1990 445.4 59.4 5.1 44.5 109.0 437•.00 0.25 68.4
1991 386.0 59.4 3.1 38.6 103.1 599.00 0.17 6i.8

1992 459.8 74.2 5.5 46.0 125.7 750.00 0.17 71.9
1993 385.6 74.2 5.5 38.6 118.3 972.00 0.12 64.6
1994 311.4 74.2 5.5 31.1 110.8 1051.00 0.11 57.8
1995 237.2 74.2 S.S 23.7 103.4 1128.00 0.09 51.4
1996 163.0 74.2 S.5 16.3 96.0 1211.00 0.08 45.6

Total of Revenue Requirements	 941
Total Present Value of Revenue	 539
Average Cost per XPONDER per Year • 	 0.14

Notes Traffic is in XPONDER
Cost is $millions per XPONDER per year
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Table 8-4

sconomic Model Forecast
8INCLZ-SNOTTLE LAONCR A.D.S. - RICH TRAFFIC

PV of
Net ---------Annual-------- Cost per Annual

Year Invest Dep ♦ O&H + ROI a Revnu Traffic XPONDLR Revenue

1987 801.0 89.0 5.9 80.1 175.0 537.00 0.33 126.3
1988 1111.6 133.4 7.1 111.2 251.7 1402.00 0.18 173.4
1989 1644.2 207.4 9.1 164.4 380.9 2625.00 0.15 250.5
1990 2102.8 281.4 11.1 210.3 502.8 3984.00 0.13 315.6
1991 2087.8 311.0 11.9 208.8 531.7 5287.00 0.10 318.6

1992 2442.8 385.0 13.9 244.3 643.2 6622.00 0.10 367.8
1993 2457.4 429.4 15.1 2 ,.15.7 690.2 7748.00 0.09 376.8
1994 2294.4 459.0 15.9 229.4 704.3 8771.00 0.08 367.0
1995 2235.0 503.4 17.1 223.5 744.0 9408.00 0108 370.0
1996 1731.6 503.4 17.1 173.2 693.7 10091.00 0.07 329.3

Total of Revenue Requirements	 5317
Total present Value of Revenue 	 2995
Average Cost per XPONDER per Year	 0.09

Notes Traffic is in XPONDER
Cost is $millions per XPONDER per year

r
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Investment. This investment was depreciated over a 10-year period. The cost of

operations and maintenance for the earth station was estimated to be 20 percent of

the investment per year. A 10 percent return on investment over and above the

O&M costs was also used. Tables 8-5 through 8-7 show the computer modeling of

the typical user costs.

	

8.4	 Total Costs

We have combined the results of Sections 8.2 and 8.3 to obtain typical

total costs for transmission via the ADS system. Table 8-8 shows these total costs

per year for voice channels, data (per kbps), and video conferencing channels.

	

8.5	 Comparison with Current Transmission Techniques

We have compared the cost of transmission using the Advanced

Domestic Satellite with the costs of using current transmission links: conventional

satellite, terrestrial microwave, and fiber optics. Tables 8-9 through 8-11 show

typical costs for these conventional techniques. Figures 8-1 and 8-2 present a

comparison of these with the ADS system on a per-channel per-year per-kilometer

basis. Voice, data (per kbps), and video conferencing are also shown.
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a
1 Table 8-5

Economic Model Forecast
A.D.S. GROUND SEGMENT - SINGLE CARRIER STATION

PV of
Not ---------Annual--- ----- Cost per Annual

Year Invest Deg + OAM + ROI n Revnu Traffic MAPS Revenue

1987 81.9 9.1 18.2 8.2 35.5 2.20 16.13 25.6
1988 72.8 9.1 18.2 7.3 34.6 2.70 12.81 23.8
1989 13.7 9.1 18.2 6.4 33.7 3.20 10.52 22.1
1990 54.6 9.1 18.2 5.5 32.8 3.70 8.85 20.6
1991 45.5 9.1 18.2 4.6 31.8 4.10 7.77 19.1

1992 36.4 9.1 18.2 3.6 30.9 4.60 6.73 17.7
1993 27.3 9.1 18.2 2.7 30.0 5.00 6.01 16.4
1994 18.2 9.1 18.2 1.8 29.1 5.40 5.39 15.2
1945 9.1 9.1 18.2 0.9 28.2 5.90 4.78 14.0
1996 0.0 9.1 18.2 0.0 27.3 6.30 4.33 13.0

Total of Revenue Requirements - 314
Total Present Value of Revenue 187
Average Cost per MEPS per Year • 7.28

Notes Traffic is in MAPS
Cost is $ thousands per MBPS	 per year
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Table 8-6

Economic Model Forecast
A.D.S. GROUND SEGMENT - MULTIPLE CARRIER STATION

PV of
Net ---------Annual--- ----- . Cost oer Annual

Year Invest Dep + O&M + ROI = Revnu Traffic t;:.rS Revenue

1987 173.7 19.3 38.6 17.4 75.3 11.00 6.84 54.3
1988 154.4 19.3 38.6 15.4 73.3 13.40 5.47 50.5
1989 135.1 19.3 38.6 13.5 71.4 16.00 4.46 47.0
1990 115.8 19.3 38.6 11.6 69.5 18.60 3.74 43.6
1991 96.5 19.3 38.6 9.7 67.5 20.50 3.30 40.5

1992 77.2 19.3 38.6 7.7 65.6 22.80 2.88 37.5
1993 57.9 19.3 38.6 5.8 63.7 25.00 2.55 34.8
1994 38.6 19.3 38,6 3.9 61.8 27.20 2.27 32.2
1995 19.3 19.3 38.6 1.9 59.8 29.40 2.04 29.8
1996 0.0 19.3 38.6 0.0 57.9 31.50 1.84 27.5

Total of Revenue Requirements = 666
Total Present Value of Revenue 398
Average Cost per MBPS per Year = 3.09

Note: Traffic is in MBPS
Cost is $ thousands per MBPS	 per year
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Economic Model Forecast
A.D.S. GROUND SEGMENT - SSJTDMA STATION

PV of
Net ---------Annual-- ------ Cost per Annual

Year Invest Dep + O&M + ROI - Revnu Traffic MBPS Revenue

1987 248.2 27.6 55.2 24.8 107.6 21.90 4.91 77.6
1988 220.6 27.6 55.2 22.1 104.8 26.80 3.91 72.2
1989 193.1 27.6 55.2 19.3 102.0 31.90 3.20 67.1
1990 165.5 27.6 55.2 16.5 99.3 37.20 2.67 62.3
1991 137.9 27.6 55.2 13.8 96.5 41.00 2.35 57.8

1992 110.3 27.6 55.2 11.0 93.8 45.50 2.06 53.6
1993 82.7 27.6 55.2 8.3 91.0 50.00 1.82 49.7
1994 55.2 27.6 55.2 5.5 88.3 54.30 1.63 46.0
1995 27.6 27.6 55.2 2.8 85.5 58.70 1.46 42.5
1996 0.0 27.6 55.2 0.0 82.7 63.00 1.31 39.3

Total of Revenue Requirements 952
Total Present Value of Revenue 568
Average Cost per MBPS per Year - 2.21

Note: Traffic is in MBPS

Cost is $ thousands per MBPS	 per year
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Table 8-9

Costs for Conventional Satellite Transmission in 1979 Dollars

Per Circuit Month

(Earth Segment Plus Space Segment)

Earth Station and Modulation/Access Type

Channel Ends 13-Meter
per FDM/FM 13-Meter 7-Meter

Earth Station Companded TDMA/DSI SCPC/PSK

1 -- -- 6,750

5 -- -- 1,750

10 -- -- 1,110

120 780 840 ---

240 580 490 ---

480 440 323 ---

1,200 250 220 --

Table 8-10

Summary of Microwave Radio Costs

(1979 Dollars)

Link Capacity in Circuits

10 24 120	 240 480 1,200

Cost per Circuit-Month
for One Hop 230 96 56	 28 14 5.60

Cost per Circuit-Month
per Kilometer 4.61 1.92 1.12	 0.56 0.28 0.11

Multiplex Equipment Cost
per Circuit-Month 53 53 53	 53 53 53
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Table 8-11

Fiber Optic Transmission Costs

(1979 Dollars per Circuit-Month per Kilometer)

Installation Costs
Circuits Rural Suburban City
per link $3/m $7/m $10/m

120 2.2 3.3 4.12

240 1.1 1.65 2.06

480 0.55 0.82 1.03

1,200 0.22 0.33 0.41

2,400 0.12 0.18 0.22

3,600 0.11 0.15 0.17
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SECTION 9

TECHNOLOGY DEVELOPMENT

This Section identifies technology which requires development before

the ADS can be implemented commercially.

9.1	 Spacecraft Antenna

9.1.1	 Area Coveraite Antennas

A spacecraft antenna design is required to provide area coverage of the

U.S. (CONUS, Alaska, Hawaii, and Puerto Rico) by means of multiple spot beams at

C-band and Ku-band. A nominal antenna beamwidth of 1.3 degrees at the 3 dB

point will lead to CONUS coverage by means of 24 beams. Gain variation over the

coverage area should be controlled for uniform transmission performance. Maxi-

mum to minimum gain variations of 4 dB would be a desirable objective, but

adequate systems performance can be achieved with larger variations. This will be

subject to systems trade-offs.

Ideally, a feed cluster associated with a single reflector would provide

full area coverage. However, if the resulting antenna gain variation is excessive,

three separate reflectors may be used to synthesize full area coverage. Separate

reflectors will probably be used for the different frequency bands, transmit and

receive. The C-band design is further complicated through the requirement for

dual polarization.

A very important characteristic is the sidelobe behavior. The com-

posite sidelobe level may become a major contributor to interference, both in the

uplink and in the downlink. The transmission system will incorporate adequate

error control coding to permit operation at low carrier to noise ratios in the

presence of sidelobe interference.

Table 9-1 lists the major antenna characteristics and Figure 9-1 shows

the required coverage pattern. Antenna designs must be suitable for satellites in
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the orbital range of 61 to 134 degrees, but prelaunch adjustments are permitted

for specific orbital assignments.

Table 9-1

Desirable Characteristics for Area Coverage Antennas

Frequency band	 C-band or Kq-band
Beam center antenna gain
Antenna gain variation over hexagonal coverage area 	 4 dB maximum

Diameter of hexagon (degrees as seen from satellite) 	 1.30

Frequency reuse pattern 	 1/3

Sidelobe interference ratio (total composite sidelobe
gain to minimum gain in the coverage area)	 30 dB

Gain Frequency Response	 ± 1 dB over 400mHz

Beam pointing stability	 ± 0.1 degree

9.1.2	 Ka-band Citv Coverage Antennas

In order to reduce spacecraft power requirements, Ka-band coverage is

achieved by individual spot beams aimed at the major cities and their surroundings.

Coverage requirements are shown in Figure 9-2 and major characteristics are

shown in Table 9-2. Pre-launch adjustments are permitted for specific orbital

assignments.

The major problem is to achieve adequate beam pointing accuracy and

stability for coverage of the specified cities. To avoid the complexity of individual

in-orbit adjustment of beams, accurate pre-launch measurements of antenna beam

pointing should be developed and pointing accuracy must be maintained in the

launch environment and in orbit. The alternative solution would be various

adjustment of beams in orbit by ground command.
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Figure 9-1

SPOT BEAM ANTENNA COVERAGE OF CONUS

(Numbers 1, 2, 3 indicate freguency assignment)

Figure 9-2

KA-BAND COVERAGE AND FREQUENCY ASSIGNMENT
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9.2	 On-board Switching

Interconnection of multiple beams and different frequency bands re-

quires extensive on-board switching. To simplify the switching requirements for

ADS, we have chosen to eliminate baseband processing and to proviee only

SS/TDMA and IF switching. The former technique will be used for high capacity

stations, and the latter for thin-route stations. Interconnection between the two

switches is not needed.

9.2.1	 SS/TDMA Switch

The SS/TDMA switch will be an extension of the switches already

designed for lower numbers of ports. Typical specifications are shown in Table

9-3.

Table 9-3

SS/TDMA Switch Specifications

Number of Inputs 25

Number of Outputs 25

Transfer Time 1 per sec.

Frequency Response +.1 dB

isolation 80 dB

Lisertion Loss 0.5 dB

Bandwidth 500 MHz

Maintenance-free operation over a 10-year minimum life

9.2.2	 IF Switch

I. A block diagram of the IV switching arrangement is shown in Figure 9-3

and the major characteristics are summarized in Table 9-4. The switch is designed

for a basic data rate of 6.3 Mbps. A dedicated frequency converter is provided for
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each carrier. Translation frequencies are determined by ground controlled

synthesizers. Large scale integration of analog and digital components will be

required for this equipment because of the large quantity of units needed.

Table 9-4i
IF Switch Characteristics

Number of Inputs	 150

Number of Outputs	 150

Blocking Probability	 0.01

Transitinr T ime	 1 per sec.

Isolation	 80 dB

Insertion Loss	 0.5 dB

Bandwidth	 200 MHz

Frequency Response	 ± 0.1 dB

Maintenance-free operation over a 10-year minimum life

9.3	 Spacecraft Reliab ility!

As the spacecraft complexity increases, spacecraft reliability becomes

a question of major concern. Spacecraft lifetimes of 10 years will be desirable,

and sufficient inherent reliability and redundency must be provided to achieve this

lifetime without loss of vital function.;. Fur example, a modest loss of capacity

will be tolerable, but a loss of trans,,jission links will not be acceptable. Switches

will have to be designed so the alternate paths can be followed to establish a

communications link in case of failure of any one individual path.

Reliability systems development will be ree , !ired so that the combina-

tion of high reliable components and redundancy/diversity design will lead to the

overall reliability objectives shown in Table 9-5.
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Table 9-5

S„Bcecraft Reliability Objectives

10-year unserviced life

100% of SS/TDMA Switch connections operational after 10 years

90% of IF Switch connections operational after 10 years

Full eclipse operations at 10 years

Station Keeping and Attitude Control within specifications at 10
years.

	

9.4	 Ka-band Technology

Ka-band operation is a necessary feature of the ADS; consequently

Ka-band technology must be developed. NASA-Lewis Research Center is engaged

in an extensive Ka-bane; technology program, and therefore, it is not necessary to

consider this subject here.

	

9.5	 lntersatellite Links

Network connectivity requires intersatellite links. For the first genera-

tion of ADS, the intersatellite links will transmit only the 6.3 Mbps carriers.

Development items for intersatellite links are as follows:

20-40 GHz Moderate Power TWTA's

Wideband Communications System

Tracking Antenna Subsystem

The Lincoln Experimental Satellites #8 and #9 have successfully

demonstrated the feasibility of intersatellitc links in the 36-38 GHz band.

Tracking antenna technology was also developed.

n
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SECTION 10

CONCLUSIONS

In this section, we have summariz( I the major conclusions which can be

drawn from this study.

10.1	 U.S. Domestic Satellite Traffic

Based on our own investigations and the results of a number of other

studies performed for NASA, substantial growth is expected in all sectors of U.S.

domestic telecommunications. Telephony, while a mature service, will none the

less continue to grow at substantial rates. In addition, the percentage of telephony

traffic carried by a satellite will increase due primarily to the economic

advantages of satellite transmission.

Data communcations is a service which is still in relative infancy. This

is primarily due to the lack of interconnected networks of high speed data

transmission channels. Such facilities are automatically provided in emerging

domestic satellite systems. The increasing' use of digital encoding for voice

transmission will enable the efficient transmission of data over the same channels.

Rising costs and the inconvenience of business travel will become a

strong incentive to substitute telecommunications for some travel. Video con-

ferencing will replace some air travel and some local travel and will be used as a

more efficient means of conducting business. In spite of the relative inconvenience

associated with current video conferencing facilities, a number of firms in the U.S.

have already made extensive use of these facilites. We anticipate that the

provision of relatively low cost video conferencing channels via satellite will

encourage substantial and explosive growth in video conferencing.

By 1995 a total of 120 transponders will be needed for data transmis-

sion, 1,000 transponders for voice transmission, and 8,000 transponders for video

conferencing.
121
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10.2	 Orbital Are Utilization

Due to the limited number of orbital slots available to the United

States, high capacity advanced satellites will be needed to meet the rising demand
during the late 1980's. The visability arc for the contiguous United States is shared
with Canada and most of the South American countries as well as Mexico and the
Caribbean Islands. Because of the need to minimize intersystem interference, a
coordinated and logical plan for satellite antenna patterns and frequency assign-
ments is needed. By 1987, the required average spacecraft capacity per orbital
slot will reach a level of at least 38 transponders and may go as high as 100
transponders. By 1995, the average capacity will be at least 92 transponders per

orbital slot and if video conferencing is provided will exceed 600 equivalent
transponders per orbital slot. In addition, the use of television distribution in some
slots will require the capacity of other slots to be even higher.

	

10.3	 Satellites For Single Shuttle Launch

Studies by FSI, General Dynamics, COMSAT, and others indicate that
satellites with usable capacities of 300 to 600 transponders will be feasible for

launch along with an orbital transfer vehicle in a single shuttle cargo bay. These
satellites will use all the available frequency bands, including frequencies recently
allocated by the WARC for fixed satellite service. These satellites will have the
following features:

1. Relatively large antenna aperatures, up to approximately 6 meters
in diameter.

2. Frequency reuse by means of multiple spot beams.

3. Intersatellite links to enable full connectivity of the network.

4. On-board switching, both at RF for TDMA systems, and at IF for
lighter traffic routes.

5. 10-year lifetime with improved reliability and station keeping
accuracy.

6. Improved transmission parameters enabling the use of relatively
simple, low-cost earth stations.
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We expect these satellites to cost approximately $100 million apiece

and about another $50 million to launch. Even considering this relatively high cost,

the average cost per equivalent transponder year will be about $100,000. In

addition. considerable savings .fill be availxbl- in the ground segment due to the

improved transmission parameters, and *he co-location of earth stations with

customer premises.

	

10.4	 Transmission Costs

Due to the reduced cost per transponder of the space segment, the

reduced cost for the earth stations and the elimination (in man y cases) of

interconnect costs, break-even distances with terrestrial facilities will generally be

less than 100 miles. For advanced services, such as high speed data communica-

tions or video teleconferencing, the break-even distances will be considerably

lower.

	

10.5	 Technology Development

In order for the advanced domestic system to be implemented

commercially, technology development will be required in a number of areas.

Antenna Design - Multiple beam frequency reuse antennas will be
required. These will provide area coverage by means of spot beams of
about 1.3 degrees beamwidth and coverage of major cities by means of
spot beams of about 0.5 to 0.6 degrees beamwidth. Major problems are
to achieve low sidelobe levels and sufficient beam pointing accuracy
and stability.

On-board Switching - Interconnection of multiple beams and different
frequency bands requires extensive on-board switching. For this first
generation advanced satellite, satellite switched TDMA switching at
RF, and IF switching will be provided. Interconnection between the two
switches will not be necessary.

Spacecraft Reliablity - As spacecraft complexity increases, spacecraft
reliability becomes a major concern. The target lifetime of 10 years
for this spacecraft will require substantial additional redundancy 'and
reliability systems development in the area of power amplifiers,
batteries, and station keeping and attitude control subsystems.
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Other areas which require technology development are intersatellite

links; light-weight, moderate power solid state amplifiers; integrated circuit

microwave subsystems, which will reduce the weight of the transponder; and

packaging and deployment schemes to enclosed the satellite within the shuttle

orbital bay.
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ANNEX A

TRAFFIC MODEL

A.1	 Introduction

This annex provides detailed information on the derivation of the

traffic model which is presented in Section 3 of this report. Extensive use was

made of the Western Union and ITT studies performed for NASA Lewis Research

Center (References 2 and 3). While we have used the information provided, we

have used our own judgment and other work previously performed by FSI in order to

derive traffic requirements.

The present forecast covers a period of 15 years, 1980 to 1995. Since it

is a long range forecast, it is important to consider the types of facilities which

will likely be available during this time period. Rapid advances in communications

technology are taking place at this time, and these advances will have a significant

impact on the future development of communications facilities. Some examples of

applicable technology advances are given below:

Fiber optics transmission links

New communications processors and switches

High capacity communications satellites

Low cost earth stations

New, low cost microwave transmission

Another important input in generating a traffic model is the regulatory

environment. The following three bills addressing regulation and competition in

the field of telecommunications are currently before the U.S. Congress:

S.611	 Hollings, Cannon, and Stevens

S.622	 Goldwater, Schmitt, and Pressler

H.H. 3333	 Van Deerlin, Collins, and Broyhill
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While the outcome of any new legislation affecting telecommunications
is completely uncertain, it is reasonable to assume that there will continue to be

some pressure to increase competition and that communications facilities brought

into service by * AT&T and by competing carriers will reflect this increasing

competition. FSI is under contract to the Office of Technology Assessment (OTA"

for certain work relating to the telecommunications study which is currently being;

performed for Congress, and we are therefore familiar with some aspects of

pending new legislation and with inquiries by the FCC concerning competition in

the NITS field

Rising energy costs will continue to have a major impact upon our IN( s

and the way in which we use telecommunications to redune travel. Since 1'977, P.)I

has studied the impact of energy costs on telecommunications, and we have

concluded that depletion of the world's oil reserves will continue to raise energy

costs at least over the duration of this study period and that energy cost increases

will be an additional stimulation of communications service demand. As travel

becomes more expensive and less convenient, there will be an increasing tendency

to substitute communications for some travel. This will lead to better

communications facilities being offered, and once they are available, communica-

tions use will further increase and communications costs will continue to drop.

In preparing a communications traffic forecast, one must also consider

the price elasticity, Le , the sensitivity of service demand to service price. While

voice communications . costs are already quite low, price elasticity will have a

major impact upon the use of video conferencing.

It is well known that video conferencing is much more d imanding of

transmission capacity than voice or data transmission. Using state-of-thc-art

coding equipment, the digital transmission capacity required for one video channel

is equivalent to the capacity required for about 100 voice channels. Since most

existing facilities have been designed for voice communications, it is obvious that

these facilities are inadequate for widespread use of video conferencing, and

therefore the costs per video channel are high. In turn, such hg9•+ costs ere a

deterrence to the development of video conferencing systems.
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Current technology permits the introduction of high capacity terrestrial

and satellite communications systems which can reduce the costs for video
transmission by at least one order of magnitude. The terrestrial solution for high
capacity transmission facilities is fiber optics. The satelltie solution is the
development of multi-beam satellites with multiple frequency reuse. A nationwide,

high capacity satellite system is easier and cheaper to introduce than a nationwide
fiber optics system. Accordingly, we have based our systems development scenario
on the early expansion of satellite facilities, but we expect that a terrestrial fiber
optics system will follow in due course.

The traffic forecast covers total U.S. requirements and does not address
the share of individual communications carriers. There are now two terrestrial
carriers (MCI and SPC) who provide MTS services in competition with the Bell
System. In addition ITT has announced its intention to offer a similar service, and
other carriers have MTS-type services under consideration. In many instances, the
present share of the market of these specialized communications carriers is small.
For example, the revenues of MCI and SPC are in the order of $100 million per year
each, while the toll revenues of the Bell System are about $20 billion per year; thus
these small specialized carriers have captured about 0.5 percent of the Bell System
market each, but their share of the market could grow. AT&T's decisions
concerning the introduction of new transmission facilities will largely determine
the share of the specialized carriers; however, for the purpose of this study we
have not adOressed the question of market share.

A.2	 Data Traffic
A.2.1	 Background

While video conferencing is an entirely new application with practically
no history of operational use, there is already some operational background for data
communications. Although no firm data has been published by the carriers, current
data communications revenues by all domestic carriers are estimated at ranging
from $2.4 billion (Reference 1) to $4.7 billion (Reference 2), arld data traffic is
estimated to grow at 17 percent annually (Reference 2).
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In 1978 NASA Lewis Research Center commissioned Western Union and

ITT to perform studies of communications service demand for U.S. domestic
satellite systems with special emphasis on the requirements for service at 18/30

GHz. The total contract amount of the two parallel studies was about $0.5 million,
and the two carriers have probably spent additional corporate funds to perform the
forecasts. These two studies represent the most detailed investigation of satellite
communications service demand that is publicly available, and the results have

therefore been used in this report. Future Systems Incorporated has been a
su'-)contractor to Western Union on the preparation of information for its report,
and certain FSI data has also been used by ITT in the preparation of the ITT report .

Data communications can be divided into the following categories:

Message Traffic

Message traffic is primarily composed of record communications
between individuals and/or organizations. It includes TWX/Telex,
facsimile, and electronic mail applications.

Computer Traffic

This category includes inquiry/response traffic between terminals and
computers plus computer network traffic for distributed processing,
funds transfer, and data base exchange.

Narrowband Teleconferencing

This includes image and character oriented data traffic in support of
audio/graphic teleconferencing plus freeze frame television.

Data transmission requirements can be expressed in terms of informa-
tion bits transmitted and in terms of transmission channel capacity. The ratio of
information bits to transmission channel capacity is the transmission efficiency.
For a given information rate, vastly different transmission channel capacities can
result depending upon the data transmission architecture that is used.

For example, if a circuit-switched data channel is used for an
interactive data communications application, the transmission efficiency may be
only a fraction 'of a percent because of the low rate at which the human operator
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types in data and interprets results and because of the transmission idle periods

when the time shared CPU performs its function. This low efficiency is one of the

reasons for the introduction of packet data communications networks where virtual

circuits are set up and where the transmission channel is shared by several virtual

channels.

Even in packet-switched networks, the transmission efficiency car ► be

low, perhaps 10 to 30 percent because the packet fill factor is low resulting in

larger transmission overhead. In some cases packet fill factors are intentionally

kept low in order to reduce network response time. For example, at a 300 baud

transmission speed it takes over 3 seconds to fill a typical Telenet packet of 1,024

bits. For other higher speed applications, transmission efficiencies of 50 to

70 percent are more typical.

The design of the transmission architecture, which determines the

transmission efficiency, will generally be dependent upon the transmission costs. In

networks where transmission costs are high, data processing and concentrating

equipment will be employed to reduce transmission line capacity requirements.

However, where transmission costs are low, lower efficiencies will be permitted in

order to save processing equipment costs. In our forecast for data service

requirements, we refer to transmission channel data rates rather than to raw

information data rates.

In the case of video conferencing, we have concluded that the total

traffic will be carried on satellite circuits except for intrafacility traffic. For data

applications, however, it is necessary to distinguish between satellite and

terrestrial traffic.

In the past the use of satellites for data applications has been handi

capped by the existing protocols which did not allow for the satellite transmission

delay. Satellite transmission often results in low throughput because of the rela-

tively long waiting times for acknowledgement receipt. modern data transmission

protocols make allowance for the satellite transmission delay; thus this problem

will gradually disappear.
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A.2.2	 Estimate of Messa ge Service Demand

Message service demand is divided into the following categories:

TWX/Telex Traffic

Conventional Facsimile Traffic

Advanced Electronic Mail

A.2.2.1	 TWX/Telex Service Demand

The demand estimate for this service category is based upon estimates

of the number of terminals in use. Table A-1 lists several available estimates of

terminal population along with the source of information. All estimates were

converted into a number of messages per year based on the following conversion

factors:

Five Messages per Day per Terminal and 250 Days per Year

$1.60 per Message
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Table A-1
r

TWX/Telex Estimates

Conversion	 MSOS/
Period	 Estimate	 Pastor	 Year	 SOUP"

1575 100,000 Terminals 1250 mat/yr. HIM Business Communieatlona, 1575-1555
1-1%/yr. growth per terminal May 1575, A.D. Little

1574 $200M Comm. $1.10/ 125M
Carrier Revenue Message

1510 $250-210 Comm. $1.10/ In-
Carrier Revenue . Message 175M

1577 111,000 Terminals 1250 msg/yr. 125M Cost-Effective Switching System
per terminal Design - L. Stier, Western Union

Into. Systems, Telecomm.	 Aug. 1577

1571 loom Fgs/Yr. 1 loom Xerox Corp. Petition for Rule Making
before FCC Nov. 11, 1171, App. C

1571 i245M Comm. $1.10/Meg. 152M Telecomm. Market Opportunities In
Carrier Revenue the U.S., 1171; Intairnst9. Resource

Devei. Inc., April 1571

1510 $270m $1.10/Msg. 11/M

1512 $2I11m $1.10/mag. 181M

IS$$ $225m Comm. $1.10 Mog. 202M
Carrier Revenue

1570 10,000 Terminals 1250 Meg/yr. loom Impacts of Elect"nic Comm 	 Systems
per terminal on the U.S.P.S. 1575-1115, C-10201

Feb.	 14,	 1177, A.D. Little, PI-I

1575 101,000 Terminals 1250 M gt/yr. 122M
per terminal

1115 115,000 Terminals 1250 Meg/yr. Illm
per terminal

1$10 IS$M Mags/yr. 1 I51m

1571 11,000 Terminals 1250 mag/yr. 101M Ctnimunieations News Dec. 1171, ►25

1572 15,000 Terminals Illm

1172 57,000 Terminals " 121m

1571 102,000 Terminals 121M

1575 103,000 Terminals

11741 110,000 Terminal " 131M

1577 115.000 Terminals It/M

1571 111,000 Terminals LI/M

Source: Reference
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The various estimates are plotted in Figure A-1. The estimated decline

in demand past 1985 is based on the expectation that current TWX/Telex terminals

will be retired in favor of more efficient message terminals In future years.

The number of messages Is converted into a number of bits by assuming

120 words per message, six characters per word, and eight bits per character

resulting in 5,760 bits per message. Annual traffic Is then converted into peak busy

hour traffic by assuming 250 business days per year, 24 hours per day, and a peak to

average factor of four. On this basis one busy hour Mbps at 100 percent efficiency

converts into 5.4 terabits per year. Transmission line efficency is assumed to

range from 1 to 10 percent. The results are shown In Table A-2.

Table A-2

Projected TWX/Telex Service Demand

Busy Hour
Messages per Traffic in Transmission Transmission	 i

Year Terabits Efficiencies Capacity in
Year (Millions) per Year in Percent Mbps (one-way)

1980 150 0.86 1 15.9

1985 170 0.98 2 9.1

1990 145 0.84 5 3.1

1995 120 0.69 10 1.3

Thus it is found that in terms of overall transmission capacity

requirements, the TWX/Telex traffic is small. Not only do the message require-

ments decrease with time, but also the transmission line efficiencies increase due

to increasing use of the more efficient packet networks.
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A.2.2.2	 Conventional Facsimile Service Demand

Since the late 1960 's, business use of facsimile has developed into a

viable market. Table A-3 shows various estimates of the number of terminals

installed, and Figure A-2 is a graphic presentation of the same information. There

is a wide diversion of estimates, but the assumed growth rates are uniform at about

18 percent per ,ear. We have averaged these estimates and extrapolated them

with a gradually dropping growth rate also shown in Figure A-2. The resulting

service demand is shown in Table A-4. The following conversion factors were used:

1,800 Pages per Year per Terminal

300,000 F zr per Page
(This resu l ;, ^ in 0,54 terabits per 1,000 terminals per year.)

250 Days per Year

14 Hours per Day

Peak to Average Factor = 4

As before, with 100 percent transmission efficiency, one terabit per

year converts into 0.185 Mbps.
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Table A-4 '

Facsimile Service Demand Estimate

Number of
	

One-Way Data
Facsimile
	

Traffic in
	

Transmission
	

Transmission
Terminals
	

Terabits
	

Efficiency
	

Requirement
Year
	

(1,000)
	

per Year
	

(Percent)
	

Mbps

1980 260 140 15 173

1985 600 324 17.5 343

1990 1,150 621 20 575

1995 1,700 918 22.5 756

A.2.2.3	 Advanced Electronic Mail Systems

With the introduction of new terminal .y.)Ps and new data transmission

facilities, the development of advanced electronic mail systems is expected. The

following developments are expected to take place:

1. Diversion of physical mail to electronic mail.

2. New document distribution networks.

3. Increased use of communicating word processors and character-
oriented message terminals.

4. Increased use of facsimile transmissions with increased speed,
convenience, and quality at reduced costs.

5. Office of the future practices by government and industry.

6. Decentralization of work locations with increased communications
demands.

To some extent these advanced new services will substitute for the

conventional facsimile services and the TWX/Telex services described in Sections

A.2.2.1 and A.2.2.2. For this reason the growth of these conventional services was

assumed to slow dowm and even reverse in later years.

Several estimates of advanced electronic mail service requirements

have been made by A. D. Little, Frost do Sullivan, Xerox, George Washington

University and others. A composite estimate derived from Reference 3 is shown in

Table A-5.
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Table A-5

Projected Traffic Demand Due to

Advanced Electronic Mail Systems

Year

1980	 1990	 2000

Business to Business	 Mail Vol. ( Pieces x 10 9 )	 12.5	 15.2	 18.6

First Class Mail	 •96 Diverted to EMS	 0.25%	 25%	 50%

Vol. to EMS (x 109 )	 . 03	 3.8	 9.3

Business to Home do	 Mail Vol. ( Pieces x 10 9 )	 16.2	 19.7	 24.1

Home to Business	 % Diverted to EMS	 0016	 5%	 20%

Vol. to EMS (x 109 )	 0	 1.0	 4.8

Business to Business	 Mail Vol.	 (Pieces x 1.09 ) 38.6 51.9 69.7

Private Mail	 % Diverted to EMS 0.5% 60% 80%

Vol. to EMS (x 109 ) .19 31.1 55.8

Mail Volume Total ( Pieces x 10 9 ) 67.3 86.8 112.4

Diverted to EMS Total (Pieces x 10 9 ) .22 35.9 69.9

Percent Image/Character Modes 90/10 50/50 20/80

Projected Image Mode Pages (x 109 )* .20 18.0 14.0

Projected Character Mode Pages (x 109 ) 0.02 18.0 55.9

Image Mode Bits/Yr. @ 300,000 B/Pg. (x 10 12 )** 60 5,400 4,200

Char. Mode Bits/Yr. @ 20,000 B/Pg. (x 10 12 ) 6 360 1,120

*Assumes one page per piece of mail
**Assumes slightly better resolution than today's typical FAX

Source: Reference 3

E
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This estimate is translated into busy hour transmission capacity

requirements in Table A-6. Based on 250 days per year and a peaking factor of

4 at 100 percent transmission line efficiency one terabit per year corresponds to

0.185 Mbps.

Table A-6

Advanced Electronic Mail

Service Demand Estimate

Year

1980	 1990	 2000

Terabits per Year

Image Mode 60 5,400 4,200

Character Mode 6 360 1,120

Tctal 66 5,760 5,320

Transmission Efficiency 30% 40% 50%

One-Way Data

Transmission Requirement (Mbps) 40 2,670 1,970

To permit interpolation to other years, advanced electronic mail

service demand estimate has been plotted on Figure A-3.

t
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Figure A-3

ADVANCED ELECTRONIC MAIL
SERVICE DEMAND

(One-Way MBps)
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A.2.2.4	 Total Message Service Demand

Table A-7 lists the total message service demand in one-way Mbps.

Table A-7

Total Message Service Demand

(One-Way Mbps)

Advanced
Conventional	 Electronic

Year	 TWX/Telex	 Facsimile	 Mail	 Total

1980 16.0 173 '40 230

81 14.4 205 60 279

82 13.0 235 100 348

83 12.8 265 190 468

84 10.4 305 360 675

1985 9.0 340 620 969

86 7.6 380 1,000 1,388

87 6.2 425 1,400 1,831

88 5.0 475 1,850 2,330

89 3.9 525 29250 2,779

1990 3.0 575 2,670 3,250

91 2.2 620 2,900 3,522

92 1.7 660 3,050 3,712

V 1.4 700 3,100 3,801

94 1.3 735 3,050 3,786

1995 1.3 760 2,950 3,711
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A.2.3	 Estimate of Computer Communication Service Demand
s

Computer-related communications requirements can be grouped
into several categories as follows:

Computer to Terminal Communications

This involves terminals of the interactive and remote batch type at
speeds ranging up to about 19.2 kbps.

CPU to CPU Communications

This category includes primarily transfers of data base contents from
one central computer facility to another.

Electronic Funds Transfer

This includes both check clearing data transfers and credit card
initiated transfers.

A.2.3.1	 Computer to Terminal Communications

The forecast of this segment of the computer-related requirements is
based on several forecasts of the number of computer terminals in use in the next
20 years. Table A-8 shows a detailed forecast of this type. We have converted
these values to a traffic estimate based on a traffic production of 380 MB per
terminal per year. This factor is a composite of data production for the several
terminal types shown in the table. The total forecast is shown in Figure A-4.

In converting to the data rate requirements shown in Figure A-4, we
have employed the following factors:

250 business days per year
24 hours per day
Peak factor of 4 (over 24 hours)

Transmission efficiency of 70 percent, reflecting the use
of advanced packet network protocols

F_	 The resulting total transmission requirement is shown in Table A-9.
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Table A-8

Installed Terminals

Year

1976 1980 1990 2000

Alpha/numeric CRT
Single Station
Nonprogrammable 260 530 2,114 5,483

Alpha/numeric CRT
Single Station
User Prog. On-Line 24 101 940 3,002

Alpha/numeric CRT
Multi-Station
Nonprogrammable 226 180 35 7

Alpha/numeric CRT
Multi-Station
User Prog. 85 425 1,719 4,460

Alpha/numeric CRT
Single Station
User Prog. Batch 39 178 719 1,866

Teleprinter
Non-Programmable 425 573 933 1,519

Teleprinter ,
User Program 51 195 1,207 3,749

Totals 1,110 2,182 7,667 20,086

Source: Reference 5
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Table A-9

Terminal to CPU Traffic

Year

	

1980	 1985	 1990	 1995

Number of
Terminals
(1,000'x)	 20180	 4,600	 71670	 13,600

Terabits
per Year	 830	 1,750	 2,910	 5,170

Transmission
Efficiency	 2%	 5%	 7.5%	 10%

One-Way Data
Transmission
Requirement (Mbps) 7,680 	 6,480	 7,190	 9,570

It is interesting to note that the total transmission requirement does

not change greatly with time, although the information transfer increases

substantially. This is due to the assumption that increasing portions of the total

traffic are transmitted in the packet mode thus raising the total transmission

efficiency. The efficiency of transmission in a circuit switched mode is generally

less than 1 percent, while the efficiency In the packet mode may be 50 percent.

However, even if 90 percent of the traffic is transmitted in the packet mode, the

remaining 10 percent of the traffic with 1 percent efficiency depresses the overall

transmission efficiency.

A.2.3.2	 CPU to CPU Transmissions

This component of the data transmission market is quite difficult to

estimate since there is very little of it in existence today. However, we have

assumed that ultimately there will be a large fraction of the terminal to CPU

traffic that will require data base access. In order to support this component, the
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data base contents must be transferred from one central computing facility to

another. The transfers will be relatively less frequent than the accesses so the

data traffic generated by the data base transfers will be smaller than the traffic

generated by terminal to CPU communications.

Another source for this type of traffic is distributed processing. We

have expressed this type of traffic as a fraction of the terminal to CPU traffic

as shown in Figure A-5. Since this traffic is transferred without human intervention,

the transmission efficiencies are higher than in the terminal to CPU case. Table

A-10 shows the resulting transmission requirement.

Table A-10

CPU to CPU Traffic

Year

1980	 1985	 1990	 1995

Terminal to
CPU Traffic
(Terabits per Year) 	 830	 1,750	 2,910	 5,170

Traffic Ratio	 0.05	 0.07	 0.13	 0.26

CPU to CPU
Traffic
(Terabits peg Year)	 41	 123	 380	 1,340

Transm iss icn
Efficiency	 4%	 7%	 10%	 15%

One-Way Data
Transmission
Requirement (Mbps) 	 190	 325	 700	 1,650
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A.2.3.3	 Electronic Funds Transfer

This portion of the market will be concerned primarily with the

clearinghouse function for check handling and the growing volume of credit card

initiated funds transfers. Most of the growth in this service will come from the

gradual conversion to this method of transaction handling, since there are strong

indications that the volume of transactions is reaching a saturation region with

rather slow growth. The forecast from Reference 3 shown in Table A-11 has been

converted to a data rate requirement as shown in Table A-12. The transmission

efficiency is assumed to. range from 10 percent to 30 percent, since storage and

data compression techniques can eliminate the inefficiencies caused by human

interaction.

Table A-11

EFT Traffic Demand

Year

1980 1990 2000

Number of Checks per Year

(3: 109 ) 36.3 50.1 63.8

Potential Traffic (Terabits)
at 1,000 Bits per Check 36.3 50.1 63.8

Percent Converted to EFT 10 60 90

EFT Terabits 3.6 30.1 57.4

Source: Reference 3

j
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Table A-12

Transmission Recuirements for EFT

Year
E	 1980	 1985	 1990	 1995

Terabits per Year	 4	 lh	 30	 44

Transmission
Efficiency (Percent)	 10	 15	 20	 30

One-Way Data
Transmission
Requirement ( Mbps)	 7	 20	 28	 27

A.2.3.4	 Total Computer Communications Service Demand

Table A-13 lists the estimate total computer communications service

demand in one-way Mbps.

A.2.4	 Narrowband Teleconferencing Service Demand

Narrowband teleconferencing is the poor cousin of video conferencing.

It includes all the features of a video conferencing facility except video:

High Quality Audio, Perhaps Sterophonic
High Quality, High Speed Fax
Electronic Blackboard
Character Mode Terminals
Freeze Frame Television

Conferencing facilities of this type will be constructed with transmis-

sion bandwidth requir cments ranging from 19.2 kbps to 112 kbps, two way. Table

A-14 is the ITT forecast for this type of traffic.
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Table A-13

Total Computer Communications Service Demand

(One-Way Mbps)

_ Terminal
1 to CPU CPU to CPU EFT Total

Year Traffic Traffic Traffic Traffic

1980 7,680 190 7.0 7,880

81 7,250 200 9.5 _7,460

82 6,950 220 12.5 7,183

83 6,750 245 15.0 7,010

84 6,600 280 17.5 6,898

1985 6,480 325 20.0 6,830

86 6,450 380 22.0 6,852

87 6,500 440 24.0 6,964

88 6,650 510 26.0 7,186

89 6,850 600 27.0 7,477

1990 7,190 700 28.0 7,920

91 7,500 820 28.5 8,349

92 7,900 970 28.5 8,899

93 8,350 1,130 28.5 9,509

94 8,850 1,340 28.0 10,218

1995 9,570 1,650 27 11,250
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Table A-14

Narrowband Teleconferencing

Year
1980	 1990 2000

1. Enplanements 234 x 10 6 383 x 10 6 575 x 106

2. Business Enplanements @ 40% 1 93.6 x 106 153 x 106 230 x 106

3. Conferences
(Bus. Enplanements x .675) 2 63.2 x 10 6 103 x 10 6 155 x 106

4. Conferences Potentially Replaceable
by Audio/Graphic Teleconf.

(@ 45%) 1 28,4 x 10 6 46.4 x 10 6 69.8 x 106

5. Percentage Realized 1% 25% 50%

6. Number of Audio/Graphic Teleconf. .284 x 10 6 11.5 x 10 6 34.9 x 106

7. Pages per Year (@ 10 per Teleconf.) 2.84 x 10 6 116 x 10 6 349 x 106

8. Percent Image/Character Modes 95/5 90/10 75/25

9. Pages/Year Image Mode 2.70 x 10 6 104 x 10 6 262 x 106

10. Image Mode Bits/Yr. 3
(@ 400,000 Bits/Pg.) 121.08 x 10 1241.6 x 10 12104 x 10

11. Pages/Year Character Mode .142 x 10 6 11.6 x 10 6 87.3 x 106

12. Character Mode Bits/Yr.
.003 x 10 12 .232 x 10 12 1.75 x 1012(@ 20,000 Bits/Pg.)

13. Teleconf. Hrs./Yr.	 (@ 2 Hrs./Conf.) .568 x 10 6 23.2 x 10 6 69.8 x 106

14. Teleconf. Hrs./Yr. with

! Freeze Frame TV .114 x 10 6 4.64 x 10 6 14.0 x 106

15. Bits/Yr. for Freeze Frame TV 7.88 x 10 12 320 x 10 12 968 x 1012

1. Technology Assessment of Telcom./Transportation Interactions, Vol. 2-SRI May 1977.

2. Business enplanements x (2.7 Conf./Round Trip) (2 Travelers) (2 enplane men ts/round trip).

3. Based on 85 percent office copy quality at 300,000 bits/page and 15 percent letter quality at
1,000,000 bits/page.

4. Assumes that 20 percent of audio/graphic conferences require additional capability for freeze
frame TV on each of two 9.6 kbps channels (30 - 60 sec. refresh rate with image compression).

r. A-27

iii



3

3

Transmission requirements for this type of traffic are presented in

Table A-15.

Table A-15

Transmission Requirements for Narrowband Conferencing

Year

1980 1985 1990 1995

Terabits per Year

Image Mode 1 19 42 69.0

Character Mode -- 0.1 0.2 1.0

Freeze Frame TV 8 135 320 555

Total 9 154 362 625

Transmission Efficiency

(Percent)	 10	 12.5	 15	 20

Transmission

Requirement (Mbps) 	 17	 228	 447	 578

A.2.5	 Satellite Versus Terrestrial Transmission

In determining the satellite capture ratio, ITT has first eliminated all

traffic-over distances of less than 200 miles and has then estimated the capture

ratios listed in Table A-16.
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Table A-16

ITT Estimate of Percent Capture by Satellite

Year

1980	 1990	 2000

Voice	 2	 15	 25

Video	 50	 60	 60

Data	 1	 50	 60

Source: Reference 5

While the overall ITT results may be correct within the estimating

accuracy that can be expected, FSI experience indicates that networking aspects

will be important in satellite versus terrestrial transmission trades. Once a

satellite network is established with earth stations available at many locations to

provide long distance communications, then it will be found convenient from a

network design point of view to transmit also shorter distance traffic over the

satellite network.

The distribution of interstate MTS traffic is shown in Figure A-6. It

shows that the mean communications distance increases with time. The solid lines

are derived from the ITT study; the dashed line is the FSI extrapolation for the year

1990. We expect that data communications traffic will follow similar patterns.

Based on FSI communications systems design experience, in a network

even data links with 20-mile distance are candidates for satellite transmission;

therefore, we do not consider it appropriate to eliminate any distance range from

the addressable market. Instead we have estimated the overall satellite system

capture ratios shown in Table A-17.
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A.2.6	 Total Data Transmission Requirements for Satellite Facilities

Table A-17 summarizes the total U.S. domestic data transmission. -e-

quirements and calculates satellite data transmission requirements based on
estimated capture ratios. Table A-18 shows the expected capacities per equivalent

36 MHz C-band transponder and the resulting number of transponders required for

data transmission. Please note that the term transponder is used only for reference

purposes. Actual spacecraft will employ different transmission configurations.

Transponder capacity is expected to increase with time as a larE*er

percentage of traffic is converted to high rate TDMA transmission.

l
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Table A-17

Total Data Transmission Forecast

Total Total Total
Message Computer Narrowband Data Satellite Satellite
Service Service Conferencing Scrvice Percent Traffic

Year (Mbps) (Mbps) (Mbps) (Mbps) Capture (Mbps)

1980 230 7,880 17 8,027 1 80

81 279 7,460 55 7,794 2 156

82 348 7,183 95 7,626 3 229

83 468 7,010 135 7,613 6 457

84 675 6,898 178 7,751 9 698

1985 969 6,830 228 8,027 12 963

86 1,388 6,852 275 8,515 16 1,362

87 1,831 6,964 325 9,120 19 1,733

88 2,330 7,186 370 9,886 23 2,274

89 2,779 7,477 412 10,668 28 2,987

1990 3,250 7,920 447 11,617 30 3,485

91 3,522 8,349 480 12,351 33 4,076

92 3,712 8,899 510 13,121 35 4,592

93 3,801 9,509 535 13,845 37 5,123

94 3,786 10,218 555 14,559 39 5,678

1995 3,711 11,250 578 15,539 40 6,216
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Table A-18
Satellite Transponder Requirements

for Data Transmission

R

` Average
Satellite Transponder
Traffic Capacity Number of

Year (Mbps) (Mbps) Transponders

1980 80 30 3

81 156 32 5

82 229 34 7

83 45. 36 13

84 698 38 18

1985 963 40 24

86 1,362 41 33

87 1,733 43 40

88 2,274 44 52

89 2,987 46 65

1990 3,485 47 74

91 4,076 48 85

92 4,592 49 94

93 5,123 50 102

94 5,678 51 I11

1995 6,216 52 120

j
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A.3	 Voice Service

The requirement for voice communications services is most directly

correlated with population, social factors and business activity. Unlike video

conferencing and data communications services, technological innovations will

probably not play a major role in the growth of voice services. Major categories of

voice services are:

Message Telecommunications Services (MTS)

Wide Area Telecommunications Services (WATS)

Private Line Services

Other voice services are audio program transmissions and trunk mobile

audio transmissions. These services, however, are negligible compared to the three

major categories and have therefore not been considered in the study.

ITT performed a major survey of voice requirements and reported the

results of this survey in a study for NASA Lewis Research Center (Reference 3).

FSI used the basic conclusions with respect to total voice circuit requirements as a

basis for its forecast of satellite communications requirements.

The ITT study examined:

Population

Households

Gross National Product (GNP)

Population Sorted by Age Brackets

Disposable Personal Income

Employment Figures

17f found that of all these factors, correlation with population, number

of households and GNP, were most promising for projecting growth of telephone

circuit requirements. Based on these factors, ITT projected total number of calls

and average call durations, which determined total traffic volume. Based on

historical operating statistics, peaking factors were derived in order to be able to

calculate busy hour voice circuit requirements.
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ITT performed separate calculations for the peak busy hour in the

evening which is due to residential traffic primarily, and for the busy hour during

daytime which is controlled by business communications. The study concluded that

the busy hour circuit requirements determined by residential traffic were slightly

higher than the daytime busy hour circuit requirements determined by business

traffic. When the voice requirements are combined with data and video

teleconferencing traffic, however, the business peak hour becomes the controlling

factor for the total traffic. For this reason, in our forecast we hFve used the ITT

figures for business busy hour circuit requirements. These are shown in Table A-19.

From an estimated percent of satellite capture and an assumed average

number of duplex circuits per transponder, we have derived the forecast for the

number of 36 MHz equivalent bandwidth transponders required to support telephony

service demand for U.S. domestic communications.

Table A-19

Telephony Service Demand

Year 1980 1985 1990 1995

Total requirements in
millions of duplex
can circuits

MTS 0.52 0.8 1.33 2.03

WATS 0.31 0.47 0.70 0.97

Private Line 0.28 0.38 .72 1.20

Total 1.11 1.65 2.75 4.20

Satellite Capture, percent 2.5 7.9 12 12

Average number of duplex
circuits per transponder	 400	 450	 500	 500

Number of 36 MHz
transponders required	 70	 289	 660	 1008

*Source: Reference 5
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AA	 Video Conferencing

A.4.1	 Background

Experimental video conferencing systems have been in operation in the

U.S. and in other countries for some time, and experiments have been conducted to

determine the value of video. It was found that for certain applications, audio

supported by facsimile was adequate and that the additional value of video was

judged small compared to the high cost of video transmission. Other users found

that video made an important contribution to the communications process.

AT&T operates the Picturephone Meeting Service which is a public

video conferencing service. In addition, AT&T operates a private video

conferencing network for its own use. The AT&T conference room facilities lend

themselves well to formal conferences. However, the charges for the service are

high, amounting to $390 per hour, for example, for the Washington to San Francisco

link. Established video transmission facilities are used on a shared basis with the

TV networks. Even at the high hourly rate charged, it is not certain that the fully

allocated costs would be covered if dedicated facilities are used with larger

conferencing traffic volume

The main disadvantage of the current system is its lack of convenience.

For example, if a suburban Washington user requires a conference with a client in

Palo Alto, California, each party would incur 2 hours of automobile travel for the

round trip to the conference room, perhaps with the inconvenience of rush hour city

traffic and parking problems. This loss of time and inconvenience along with the

high hourly rates make the value of video conferencing questionable, compared

with. the other alternatives of telephone conversations and long distance travel.

In order for video conferencing to become universally accepted, two

developments are requir-nd:

1. Video transmission costs must be reduced substantially.

2. Conference rooms must be widely available without local travel.
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FSI predicts that both these developments will take place during the

time period covered by the forecast, and that as a result the basic objections to

video conferencing will be removed. It is clear that even then there will be a large

percentage of business people who will dislike video conferencing and will try to

avoid using it. The extensive use of video conferencing will need changed behavior

patterns which will take time to establish. However, even if only a small

percentage of the business community uses video conferencing, the need for very

substantial new transmission facilities will result.

A.4.2	 Video Conferencing System Implementation

The initial users of video conforencin3 services on a large scale will be
t	 '

large corporations. These same corporations also have requirements for high

volumes of voice and data communicati%ns services and will have provided

dedicated earth station facilities for those services. These same earth stations can

then be used for transmission and reception of video conferencing traffic at very

low incremental costs.

High quality video conferencing transmission using interframe coding

with compression techniques can be accomplished at the T-2 transmission rate of

6.3 Mbps per second for individual one-way channels. The video transmission

coding equipment for this compressed transmission is still expensive, in the order

of $50,000 per circuit end if purchased in small quantities today. During the next

few years, considering larger quantity purchases, costs will go down to about

$10.000 per circuit end which will make the acquisition of such units by major

corporations quite practical.

Another required investment will be conference room facilities.

Depending on the sophistication and complexity, the required video cameras,

monitors, facsimiia circuits, electronic blackboard, voice-operated audio facilities,

and video recorders could bring the required investment costs to a level of perhaps

$50,000 per conference room facility. In this area as well, substantial reductions in

costs can be expected, and some less ambitious conference facilities will be

available for an investment cost of perhaps $10,000 per conference room as soon as

equipment is constructed in larger quantities.
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Based on these considerations, major corporate locations will be able to

add video conferencing facilities to their existing earth station system at an

investment cost of about $20,000 per facility, which translates into an amortized

monthly cost of about $600 per month. If the conference room is used only for an

average of 3 hours per working day, the monthly cost for the facilities translates

into about $10 per hour of use.

Current U.S. domestic communications satellites have very low

capacity when used for video conferencing. Table A-20 s' ^ vs the total number of

two-way video circuits that can be transmitted through each of the existing and

planned communication satellites assuming 6.3 Mbps per one-way per video

transmission.

Table A-20

Video Conferencing Capacity of Existing and Planned Satellites

Number of
Satellite	 Number of	 Two-Way

Type	 Transponders Video Circuits*

Western Union's Westar

RCA's Satcom

AT&T's Comstar

Western Union's Advanced Westar

12 60

24 120

24 120

28** 140

*Based on v multiple access transmission rate of 63 Mbps per

transponder and 6.3 Mbps per one-way video conferencing channel.

**Digital capacity is translated into transponders at 63 Mbps per

transponder.

t-
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The space segment transmission costs can easily be calculated.

Assuming a transponder lease charge of $1 million per year, the transponder

transmission capacity of five two-way video circuits results in an annual cost per

video circuit of $200,000. With 100,000 paid minutes per year, the per minute cost

of the space segment would be $2, resulting in an hourly cost of $120. Even if users

were willing to pay this high transmission charge, the small video conferencing

capacity per satellite would make widespread use of current communication

satellites for video conferencing completely prohibitive since the number of

available orbital positions is too small.

Therefore, both from a cost point of view and from the point of view of

use of the orbital arc, it will be necessary to make a transition to high capacity

satellites of the type described in Section 3, U.S. Domestic Satellite Traffic

Projections. In that section it was shown that space segment transmission costs for

video conferencing circuits would be in the order of $10 per hour.

Based on these considerations, it is concluded that future video circuit

transmission costs will be in the order of $30 per hour (expressed in 1979 dollars)

with a cost breakdown as shown below:

Space segment transmission costs per hour 	 $10

Incremental earth station and conference room
facilities costs per hour	 10

Communications carriers administrative
expenses and profit per hour of use 	 10

Total hourly charge
	

$30

A video conferencing per minute cost of 50 cents compares favorably

with current long distance telephone rates of 10 cents to 30 cents per minute. Our

pre ise of video conferencing use is thus based on the assumption that adequate

facilities will be established leading to low costs, and that these facilities will be

widely available for convenient use of video conferencing including person-to-

person communications.
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A.4.3	 The Impact of Ener v Costs on Travel and Telecommunications

The U.S. balance of payments deficit is caused largely by Al imports.

Future increases in oil prices will make oil import reductions mandatory. Some

substitution of telecommunications for travel and some substitution of electronic

mail for physical mail delivery will be important contributions to energy

conservation. A new generation of high capacity satellites will be needed in the

late 1980's to permit this substitution. The universal availability of low cost

communications facilities will not only reduce energy consumption, but it will also

change work and life styles and will lead to a general improvement in the quality of

life. For these reasons, the development and implementation of high capacity

communications satellite systems will become a matter of national priority in the

U.S. and perhaps in other countries.

The World Oil Shortage Starts by 1995

Figure A-7 is an estimate of the cycle of world oil consumption. It

shows the oil consumption rate versus time. Starting with a very low rate around

the year 1900, we experienced an exponential growth up to the current rate of

approximately 20 billion barrels* of oil per year. By 1977, approximately 340

billion barrels had already been consumed. Another 560 billion barrels are known

oil reserves not yet produced. It is estimated that total world oil reserves

originally were about 2,500 billion barrels. Thus, to date we have consumed 14

percent of the world's total oil.

It is estimated th°it oil consumption will continue to increase and peak

at a rate of 40 billion barrels around the year 2000. At that time we will have

consumed about half of the world's oil. Thereafter oil consumption will decline.

and by the year 2050 we will have consumed 95 percent of the world's initial oil,

reserves.

Ultimately recoverable oil reserves are an estimate of how much oil

will eventually be produced. They include as yet undiscovered oil worldwide,

including off-shore, and an allowance for enhanced recovery techniques. Estimates

by different experts vary as can be seen from the following figures:

*One barrel equv.ls 42 U.S. gallons or 159 liters.
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Total World Oil Reserves

	

Source	 in Billion Barrels

Hendricks (USGS)	 2,500

Ryman (Exxon)	 2,090

Shell	 1,800

Hubbert	 2,100

Warman BP	 2,000

Weeks	 2,290

Mood do Geiger	 2 000Y	 g	 ^

The variation of estimates around the 2,000 billion barrel figure is

small. The low estimate is 10 percent below the assumed figure, and the high

estimate is about 25 percent above. These variations affect the time of oil

shortfall but not the actual result. At the peak consumption rate of 37 billion

barrels per year, an extra 5,000 billion barrels will only last for an extra 13 years.

Figure A-8 shows the annual oil consumption per capita plotted versus

GNP per capita for 11 world model zones. As the GNP per capita of each country

increases, it can be expected that the demand of oil will increase correspondingly.

This information has been used to determine the future oil demand. Highlights of

world energy consumption between 1950 and 1975 are shown below:

1. Total world energy consumption has grown at 5.3 percent per year.

2. Total world oil consumption has grown at 7.2 percent per year.

3. World oil consumption for transportation has grown at 7.6 percent
per year.

4. The total energy produced by oil has grown from 28 percent to 43
percent.

5. In 1975, 37 percent of the total oil consumed was used for
transportation.
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Figure A-9 shows the annual world oil supply and demand. Starting in

1995, an increasing gap between supply and demand will develop. This approaching

world oil shortage will be accompanied by continuing sharp increases in prices for

oil and other forms of energy, leading to the absolute requirement for reductions of

oil imports for the U.S. and for many other countries.

A.4.4	 The Inconvenience of Business Travel

As a result of rising fuel costs, airlines have cut back on their number

of flights. For this reason, it becomes more difficult to obtain reservations on

short notice and to change travel plans in accordance with business requirements.

The occurrence of overbooking of flights increases, and unless the business traveler

arrives early at the airport, there is a significant chance that a confirmed flight

will be unavailable due to overbooking. Airplanes are typically fully loaded as

compared to the average 50 percent loading that was customary in the past.

Airport facilities are inadequate, and the congestion at airports has increased. In

many larger cities there are long waiting times on the runway prior to takeoff, and

airplanes are stacked in a holding pattern prior to landing. All these events make

air travel less and less desirable and more and more inconvenient. This trend will

continue in future years.

Local travel by means of personal automobile also becomes increasingly

more inconvenient, at least in the larger cities. Inadequate highway facilities for

the entrance to large cities lead to extensive rush hour traffic jams, and traffic

congestion periods extend well into mid-morning. Travelers to offices in cities find

that parking is expensive, inconvenient and often unavailable. For these reasons

local travel within or to major cities continues to become more inconvenient, more

time consuming and less desirable. Public rapid transit systems have not kept pace

with the commuting requirements.

The increasing inconvenience, loss of time and coot of business travel,

both in terms of long distance and local travel, will become an increasingly . more

powerful incentive to use alternatives to travel. Telecommunications will be used

extensively in lieu of long distance and local travel.
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Once satisfactory teleconferencing facilities have been established, a

further change will occur in our work and life styles which will lead to a general

improvement in the quality of life. This change will consist of decentralization of

work locations. A large percentage of the white collar work fore- will be able to

live at locations of their choice regardless of locations of corporate facilities.

Teleconferencing, including the use of video, will permit effective communication

between workers. This trend will lead to a further increase in video conferencing

service demand.

A.4.5	 Video Conferencing to Replace Air Travel

The forecast of video conferencing, requirements as a replacement of

air travel consists of three elements:

1. A forecast for U.S. domestic air travel during the forecasting
period

2. A forecast of the percentage of trips that will be replaced by video
conferencing

3. An estimate of the conference requirements per replaced trip

Details on these three elements are presented below.

Air Travel Forecast

Air travel information was obtained from an FAA publication

(Reference 15). Air traffic statistics were collected for the number of passengers

enplaned for a 10-year period, and a correlation was developed for airline

passengers per year per 1,000 population and GNP per capita. Based on GNP and

population forecasts over the forecasting period, total U.S. airline passengers per

year were predicted, using the correlation developed for the earlier 10-year period.

The historical enplanement, GNP per capita and population data are shown in Table

A-21.
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Table A-21

Historical Air Traffic, GNP Per Capita and Population Data
i

Number of
Enplaned Passengers

Percent	 GNP/Capita	 Population
Year	 Millions	 Increase	 (1979 Dollars)	 (11-lillions)

1967 132.1 8,580 198.7
68 152.2 15.2 8,870 200.7
69 159.2 4.6 92000 202.7

1970 171.7 7.9 818'0 204.9
71 173.7 1.2 9,040 207.1
72 188.9 8.8 9,950 208.9
73 202.2 7.0 9,940 210.4
74 207.4 2.6 9,670 211.9

1975 205.1 -1.1 9,420 213.5
76 223.8 9.1 9,920 215.1

The correlation obtained from the data in Table 4-2 has been expressed

by the following relationship:

P = 10[A log B+C)

where

P -	 Annual airline passengers per 1,000 population

A =	 1.42

B = GNP/capita in 1979 dollars

C =	 2.6

Forecasts for population in future years were derived from United

Nations and Bureau of Census data, and future GNP/capita was based on an

assumed real growth of 2 percent per year. These forecasts, along with the

resulting air travel forecast, are shown in Table A-22. Of course, this forecast

applies prior to the subtraction of air travel that will be displaced by

teleconferencing.
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Table A-22

Estimates of Future U.S. Population, GNP Per Capita and Air Travel

Number of
Enplaned Passengers

Population	 GNP/Capita	 Percent
Year	 (Millions)	 (1979 Dollars)	 (Millions)	 Increase

1980 221.6 11,250 250
81 223.2 11,450 262 4.8
82 224.8 11,660 272 3.8
83 226.4 11,870 285 4.8
84 228.0 12,080 295 3.5

1985 229.7 12,300 307 4.1
86 231.3 12,520 317 3.3
87 233.0 12,750 330 4.1
88 234.7 12,980 340 3.0
89 236.4 13,210 352 3.5

1990 238.1 13,450 365 3.7
91 239.8 13,690 377 3.3
92 241.5 13,940 390 2.4
93 243.2 14,190 402 3.1
94 245.0 14,440 415 3.2

1995	 246.7	 14,700	 431	 3.9

Figure A-10 shows the historical data and the forecast of annual

passengers enplaned. Also shown are ITT forecasts (Reference 3), which were

developed independently.

Percentage of Air Travel Replaced U Video Conferencing

Video conferencing is expected to replace some business travel.

Estimates of business intercity travel as a function of total intercity travel range

from 40 percent (Reference 3) to 50 percent (Reference 16). ITT estimates that 45

percent of the business travel is potentially replaceable by audio/graphic

teleconferencing, and that 25 percent of this potential will be realized by the year

1990 and 50 percent by the year 2000. Experimental use indicates that

teleconferencing can he employed for 50 to 80 percent of the required face-to-face

meetings (Reference 17), and Interplan Corporation (Reference 18) estimates are

given in Table A-22.
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Table A-22

Assumed Susceptibility of Work-Related Trips

of the White Collar Work Force to Substitution U Telecommunications

Susceptibility of
Work-Related

Trips to Number of
White Collar Substitution People Involved

Subgroups (Percent) in Substitution

Professional and Technical 65 6,0510000

Managers, Officials and Proprietors 20 1,4819000

Clerical Workers 75 8,859,000

Salesworkers 5 227,000

Total 16,618,000

Source:	 Reference 18

In addition, Interplan Corporation has estimated that some nonwork

related travel can also be substituted by telecommunications. These estimates are

given in Table A-23.

Table A-23

Assumed Susceptibility of Nonwork-Related Trips

to Substitution by Telecommunications

Susceptibility of Travel to
Purpose of	 Communications	 Substitution

Travel	 (Percent)

Family Business
Medical and Dental	 5
Shopping	 50
Other	 25

Educational, Civic and Religious 	 25

Social and Recreational	 5

Source: Reference 18
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Considering the ringe of ,hese estimates and the personal judgement of

the FSI staff, we have assumed that 8 percent of the presently projected airline

travel can be replaced by video conferencing by the year 1995.

Widespread use of video conferencing requires both capital investment

and adaptation of the user. As an example of the introduction rate of a new

communications medium, the growth of television in the United States is shown i:i

Figure A-11. This statistic shows that TV receivers in the U.S. grew at 500 percent

per year during the initial years after receivers became available, and growth

tapered to 5 percent in later years. We have used a similar 'S" curve to estimate

the percentage of air travel that can be replaced by video conferencing. Our

assumed transition curve is shown in Figure A-12. The high growth rate begins by

1984, and it is assumed that a high capacity satellite system will be operationally

available by 1986. Early video conferencing is assumed to take place on precursor

satellites.

Conference Requirements Per Replaced Trip

The ITT study (Reference 3) estimates that each business enplanement

replaced by conferencing requires 1.35 conference hours. An earlier FSI study

(Reference 19) assumed one conference hour per replaced enplanement. The FSI

figure is derived as follows:

1. A business conference is attended by an average of two people.*

2. A conference requires a round trip, therefore four enplanements.

3. The average trip leads to two 2-hour conferences.*

Since the two estimates are close to each other, we have used the more

conservative FSI figure, and we have based the conferencing requirements on 1

hour of conferencing per enplanement.

Video conferencing through satellites can be provided in one very large

demand-assigned pool, and thus the circuit loading will be very high and the system

will still provide an excellent grade of service. As in the case of telephony, we

estimate that 100,000 paid minutes per year are possible for each circuit.

*Based on personal experience and subjective judgement of FSI staff members.
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Assuming 250 business days per year, this would be equivalent to 6.7 hours of use

per day. We expect that there will also be some weekend use, and thus the assumed

use is considered reasonable. We have therefore translated video conferencing

hours into circuits on the basis of 1,670 hours per circuit year.

Circuit Demand Forecast

Video conferencing circuit demand is determined as follows:

V =	 E	 r
1670 ' IN

where

V - Number of video conferencing circuits

E = Number of passengers enplaned per year

r - Percent air travel replaced by conferencing

Resulting circuit requirements are shown in Table A-24.

Table A-24

Video Conferencing Circuits Required for Air Travel Substitution

Airline
Passengers Percent Required Two-Way
Enplaned Air Travel Video Conferencing

Mid-Year (Millions) Replaced Circuits

1980 250 0.003 5
81 262 0.004 7
82 272 0.006 10
83 285 3.01 18
84 295 0.03 53

1985 307 0.15 280
86 317 0.70 1,300
87 330 2.4 4,700
88 340 3.8 7,700
89 352 5.1 10,700

1990 365 E.0 13,100
4	

91 377 6.8 15,400
92 390 7,3 17,000
93 402 7.5 18,100
94 415 7.8 19,400

1995 431 8.0 20,600
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A.4.6	 Video Conferencing to Replace Local Travel

3	 Once video conferencing ft cilities are established to replace long

distance travel, they can also be used to replace local travel at low incrementalii
cost. As was shown in an earlier section, the space segment transmission costs are

only about $10 per hour or $5 for a half-hour conference. The cost of time, travel

and parking will be higher than this for most local travel applications. For this

reason, local video conferencing could become a very large element of the total

video conferencing service demand. However, to be conservative we have assumed

the same low travel replacement percentages as for airline travel (Figure A-12) but

with a delay of 2.5 years.

The Statistical Abstract of the United States (Reference 20) indicates

that in 1975 approximately 51 percent of the work force were white collar workers,

of which 22 percent were managers and administrators. Assuming that the typical

corporate hierarchy consists of about five people reporting at each level and

everyone above the lowest managerial level regularly engages in local travel for

business conferences, then this would amount to about 4 to 5 percent of the total

white collar work force engaging in regular local travel.

Table A-25 shows the number of managers or administrators for several

years beginning in 1960. The percentage of managers and administrators to total

blue collar workers has remained fairly constant of the time period shown. The

growth in the number of managers and administrators has been at an average

annual rate of 2 percent during that same time period. We have assumed that this

growth rate will remain constant throughout the study period of this report. As

previously described, we estimate that approximately 25 percent of managers and

administrators travel regularly for local business. As such, this group comprises

the potential users of video conferencing as a replacement for local travel.
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Table A-25

Summary Data on White Collar Workers

and Managers/Administrators

Total Number	 Managers/Administrators
of White Collar Workers	 Number	 Percent of

Year	 (Thousands)	 (Thousands)	 Total

1960 28,522 7,067 24.8

1965 31,852 7,340 23

1970 37,997 8,289 21.8

1975 42,227 8,891 21.1

1978 46,673 10,026 21.5

Source: Reference 20

Table A-26 shows the forecast of potential video conferencing users for 	 1

the period 1980 to 1995 on the basis that the users are comprised of 25 percent of

all managers and administrators. It is assumed that each user would have two

conferences per weak for 50 weeks per year. The total number of local

conferences which could be replaced by video conferences, and the forecast of

actual video conferences is shown in Table A-27. As in the previous section, a

video conferencing circuit is assumed to accommodate 1,670 conference hours per

year.

For percent capture, we have used the growth model of Figure A-12 but

with Ai time delay of 2.5 years. The reason for this delay is the expectation that

successful local conferencing will require a much larger conferencing network than

is needed for long distance conferencing. In the initial phases when there are only

few conference room facilities, users will accept some limited local travel for a

long distance conference. Local travel for a local conference, however, is

considered to be less likely.
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Table A-26

Summary of Forecasts of Managers, Administrators

and Potential Video Conferencing Users for

Replacement of Local Travel (1980 - 1995)

(Millions)

Number of Potential Video
Managers and Conferencing

Year Adm inistrators Users

1980 10.4 2.6

81 10.6 2.7

82 10.9 2.7

83 11.1 2.8

84 11.3 2.8

1985 11.5 2.9

86 11.7 2.9

87 1'2 3

88 12.2 3.1

89 12.5 3.1

1990 12.7 3.2

91 13 3.2

92 13.2 3.3

93 13.5 3.4

94 13.8 3.4

1995 14 3.5
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A.4.7	 Other Sources of Video Conferencing Service Demand

Once a video confereneing network has been established, it will be used

for many applications, for which no trip would have been made in absence of the

network. Video confereneing will be used because it improves the efficiency of the

conduct of business. Its availability will permit the further decentralization of

business, permitting people to live at locations of their preference and to work near

their homes. The resulting requirements will be large, and no serious effort has

peen made to estimate their magnitude.

Table 6-1 of this report lists the ITT estimate of toll circuit

requirements for voice transmission. Based , on this estimate, we have made a

projection of video confereneing requirements, assuming that one-third of 1

percent of the 1995 telephone calls would be augmented by video. The growth

curve used has the same "S" shape of Figure A-12 with a time delay of 2.5 years to

account for a later introduction of facilities. The resulting video circuit demand is

shown in Table A-28.

A.4.8	 Satellite Versus Terrestrial Transmission

Considering current tariffs for high speed data transmission and for

video transmission, we have concluded that essentially 100 percent of the video

confereneing service demand developed in this section will be carried via satellite

facilities. We believe that the existing terrestrial network will be unable to come

close to the low satellite transmission costs of 50 cents per paid minute for a video

confereneing call.

In the long run, terrestrial fiber optics trunks will be placed in service

along with the associated switching centers and local loops. When this development

has progressed to nationwide implementation, fiber optics transmission will be a

viable alternative to satellite transmission. However, we have assumed that a

' nationwide fiber optics network will not be in place 'prior to 1995, and therefore the

satellite network was assumed to carry the major portion of the public and private

video confereneing traffic.
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Table A-28

Forecast of Service Demand for

Video Conferencing Circuits to Augment Voice Circuits

ITT Estimate Required
of Duplex Two-way

Toll Circuits Percent Video Conferencing
Year (Millions) Capture Circuits

1980 1.1 .0001 2
81 1.1 .0001 2
82 1.2 .0001 2
83 1.3 .0002 3
84 1.4 .0002 3

1985 1.6 .0004 7
86 1.8 .0008 15
87 2.0 .0038 80
88 2.2 .017 370
89 2.4 .072 1,800

1990 2.7 0.14 3,800
91 3.0 0.2 6,000
92 3.3 0.25 8,300
93 3.6 0.29 10,000
94 3.8 0.31 12,000

1995 4.0 0.33 13,000

Additional local video conferencing traffic will be carried on fiber optic

intraplant facilities. Fiber optics will also be used for interconnection of the earth

stations with various conferencing facilities throughout corpora.-- establishments.

This traffic is not included in the forecasts presented in this section.

A.4.9	 Total Satellite Video Conferencing Service Demand

Table A-29 and Figure A•-13 show the estimate of total demand for

video conferencing satellite circuits.
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Table A-29

Total Demand for Two-Way Video ConferencinR Satellite CIrcuits

Equivalent Number
Air T^avel Local Travel Voice Circuit of 36 MHz

Year
3

Replacement Replacement Augmentation Total Transponders

i

1980 5 2 2 9 2

81 7 2 2 it 3

82 10 3 2 15 3

83 18 4 3 25 5

84 53 5 3 61 13

1985 280 6 7 293 60

86 1,300 14 15 1,329 266

87 4,700 63 80 4,843 969

88 7,700 300 370 8,370 1,674

89 10,700 1,400 1,800 13,900 2,780

1990 13,100 3,000 3,800 19,900 3,980

91 15,400 4,200 6,000 25,600 5,120

92 17,000 5,500 89300 309800 6,160

93 18,100 6,500 10,000 34,600 6,920

94 19,400 ?,200 12,000 38,600 7,120

1995 20,600 7,800 13,000 41,400 8,280
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A.5	 Total Point-to-Point Traffic

A.5.1	 Voice and Data

Table A-30 and Figures A-14 and A-15 show the total voice and data

requirements. Figure A-14 uses a logarithmic ordinate, while Figure A-15 uses a

linear ordinate to provide a better impression of the range of projected

requirements. The results indicate that throughout the study period voice will be

the dominant Factor.

Table A-30

Satellite Transponder Requirements

(Number of Equivalent 36 MHz Transponders)

Year Data Voice Total

1980 3 70 73
81 5 95 100
82 7 125 132
83 13 170 183
84 18 220 238

1985 24 289 313
86 33 360 393
87 40 440 480
88 52 520 572
89 65 600 665

1990 74 660 734
91 85 730 815
92 94 800 894
93 :02 870 972
94 111 940 1,051

1995 120 1,008 1,128
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A.5.2	 Voice, Data and Video Conferencing

Tables A-31 and Figures A-16 and A-17 show the three major

components and the total point-to-point satellite service demand. Figure A-16

uses a logarithmic ordinate, while Figure A-17 uses a linear ordinate to provide a

better impression of the range of projected requirements. The results indicate that

in the early years voice dominates, but video conferencing becomes the major

traffic component in later years.

Table A-31

Satellite Transponder Requirements

(Number of Equivalent 36 MHz Transponders)

Year
Video

Conferencing Data Voice Total

1980 2 3 70 75
81 3 5 95 103
82 3 7 125 135
83 5 13 170 188
84 13 18 220 251

1985 60 24 289 373
86 266 33 360 659
87 969 40 440 19449
88 1,674 52 520 2,246
89 2,780 65 600 3,445

1990 39980 74 660 4,714
91 59120 85 730 5,935
92 6,160 94 800 79054
93 6,920 102 870 7,892
94 7,720 111 940 8,771

1995 8,280 120 19008 9,408
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A.6	 TV Distribution

This section summarizes point-to-multipoint TV distribution

requirements and how they were derived. Also included in this section of the annex

are the cost assumption for high capacity video transmission satellites.

A.6.1	 Cost Assumption

Future video transmission satellites will provide wide area coverage

beams, perhaps matched to the U.S. time zones. Each beam will provide coverage

at all available frequency bands, and dual polarization will be used at the lower

frequencies. The bandwidth of the transponders will be more closely matched to

the TV transmission requirements than is the case today. For FM transmission, a

bandwidth of 25 MHz will be adequate instead of the 36 MHz presently allocated.

For digital transmission, a bit rate of about 20 Mbps will be used with advanced

video compression techniques. Video compression equipment will be generally

available at low cost because of the large production quantities required for video

conferencing. Therefore, we expect a shift from FM to digital transmission.

As a result, each 500 MHz band will permit the transmission of 18

FM video signals without re-use, instead of the present 12. With digital

transmission at 20 Mbps, 4-phase PSK and rate 7/8 forward error control coding, it

will be possible to transmit 30 video channels per 500 MHz band. In both cases,

allowance has been made for guardbands between transponders or carriers.

Over the four time zones of CONUS, the use of four snot beams with

careful beam shaping will permit dual frequency use. Making use of both.

polarizations at C-band and Ku-band, it will be possible to use the frequency band

four times. It :s not expected that polarization re-use would be employed at Ka-

band. The resulting maximum TV transmission capacity per satellite is shown in

Table A-32.
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Table A-32

Potential TV Video Transmission Capacity

for CONUS Coveraze SateLlites

t	 (Number of Video Channels)

i

Transmission Frequency FM at Digital at
Technique Uses 25 MHz 20 Mbps

C-band	 (500 MHZ) 4 72 120

Ku-band	 (500 MHz) 4 72 120

Ka-band (2500 MHz)	 2	 180	 300

Total
	

324	 540

Assuming a three satellite program with a mix of FM and digital

transmissions, the cost for the space segment per TV channel year will be under

$100,000 per year or $1 per minute of transmission. Since each channel is shared

by a large number of users, the transmission costs will have become negligible.

It should also be noted that the up-link inhomogeneity between multi-

beam and area coverage satellites will require wide orbital spacings between the

two types of satellites. TV distribution satellites can be used to occupy the

intermediate spaces, provided that their up-links are furnished by narrow beams.

As long as program originations remain within a few locations, this can easily be

accomplished.
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t
A.6.2	 Video Channel Requirements

Satellite video channel requirements could be constrained by the

following factor:

1. Transmission costs

2. Spectrum limitations

3. Programing costs

4. End-user requirements

h As shown in Section A.6.1, satellite transmission costs will be reduced

to less than $100,000 per video channel year. When this charge is divided among

100 users or more, the monthly cost per user is less than $100, so that satellite

transmission costs will cease to be a limiting factor. Table A-33 shows TV

transmission requirements for the years 1980, 1990 and 2000 as estimated by

Western Union, ITT and FSI.

Table A-33

Estimates of TV Transmission Requirements

Source Western Union ITT2 FSI3

1980	 Networks 45 10
Occasional Use	 29 15
CATV 79 35

Total t53 60 50

1990	 Networks 52 12
Occasional Use	 39 18
CATV 84 50

Total 175 80 200

2000	 Networks 59 12
Occasional Use	 40 19
CATV 88 60

Total 187 91 500

1Reference 2, total demand
Reference 3, total demand

3 FSI estimate of satellite demand
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Spectrum limitations will continue to apply for TV retransmission by

the broadcast stations but will not be important in the case of cable TV.

Programming costs have been a major factor in limiting the

establishment of additional TV networks. The primary reason for the high

i programing costs is the fact that each of the three commercial networks has only

one channel and must use it to succeed in the rating competion. In order to achieve

an acceptable rating, the single program must appeal to the largest possible number

of TV viewers. If a network could have several channels at its disposal, it could

attract a larger total number of viewers by catering to more specialized interests,

which do not coincide with those of the majority viewer. Such specialized

programing can often be accomplished at a fraction , of the cost of some of the

major shows. As soon as CATV is more widespread, networks will have the ability

to deliver several channels to the viewer and will at that point introduce multiple

programs.

One of the end-user requirements is to be able to see a given program

at a convenient time. This requirement can be met by recording and retrans-

mission. The viewer may record the program, or an intermediate operator may

offer recording and retransmission, or the program originator may transmit the

same program several different times. The latter case will become practical once

the satellite transmission costs have been reduced, as shown in Section A.6.1, and

provided that local distribution is feasible, that is, via CATV systems. Multiple

transmission of the same program leads to an increase in channel requirements

without an ir,: cease in programing costs.

Limitations in bandwidth in the radio spectrum are the main reason

for the relatively poor quality of video. With the advent of cable TV, it will

become possible to offer higher resolution and better quality video systems.

Efforts will be made to make video presentations more lifelike, including attempts

to offer three-dimensional images. Better quality or three-dimensional trans-

mission will increase the effective satellite transmission requirements.

I
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In summary, transmission capacity requirements will increase for

a combination of the following reasons:

1. Development of more programs

2. Multiple transmission of programs at different times

3. Increased transmission quality

The FSI estimate is based on the premise that increasing affluence

will make society more leisure oriented, leading to a large increase in the enter-

tainment industry. Repeated transmission of an increasing number of programs

will lead to a multiplication of transmission channel requirements. Further in-

creases in the late 1980's and early 1990's will result from the introduction of

higher quality sysems.

A-7 3



REFERENCES

1. Future Systems Incorporated. "Large Communications Platforms Versus

Smaller Satellites," FSI Report No. 221, Gaithersburg, Maryland, February

1979.

2. Ford Aerospace and Communications Corporation, Western Development

Laboratories Division. "Concepts for 18/30 GHz Satellite Communication

System Study," Volume I, Final Report. NASA Contract NAS3-21362,

November 1979.

3. Gabriszeski, T., P. Reiner, J. Rogers, and W. Terbo. 11 18/30 GHz Fixed

Communications Systems Service Demand," Western Union Telegraph

Company, July 1979, Vol. II.

4. Hughes Aircraft Company, Space and Communications Group. "18 and 30

GHz Fixed Service Communication Satellite System Study," Executive

Summary. NASA Contract NAS3-21367, September 1979.

5. Gamble, R. B., M. Westheimer, H. R. Seltzer, and K. M. Speter. 1130/20 GHz

Fixed Communications Systems Service Demand Assessment for the Lewis

Research Center," ITT U.S. Telephone and Telegraph Corporation, August

1979.

6. -TRW, Inc., Space Systems Division. 1130/20 GHz Mixed Use Architecture

Development Study," Executive Summary. NASA Contract NAS3-21933,

OIctober 1979.

7. Katz, J.L., M. Hoffman, S.L. Kota, J.M. Ruddy, and B.E. White, MITRE-

Bedford. "Application of Advanced On-Board Processing Concepts to Future

Satellite Communications Systems," Vol. I, Final Report. June 1979.



z

8. COMSAT Laboratories, Clarksburg, Maryland. "Geostationary Platforms

Mission and Payload Requirement Study." June 19, 1979.

9. Aerospace Report No. ATR-79(7749)-1, Vol. I. "Geostationary Platform

Feasibility Study," Volume I: Executive Summary.

10. General Dynamics, Convair Division. Contract NAS8-33527. "Geosta-

tionary Platform Systems Concepts Definition Study." June 18, 1979.

11. Future Systems Incorporated. "World Environment and Satellite Communi-

cations 1978-2003: A Review of Opportunities," FSI Report No. 104,

Gaithersburg, Maryland, May 1978.

12. Hughes Communications, Inc. "Application for a Domestic Communications

Satellite System," presented before the Federal Communications Commis-

sion, Washington, D. C. November 30, 1979.

13. Southern Pacific Communications Company (SPC). Comments in Opposition

to Reference 12.

14. Staelin, Prof. David H., and Dr. Robert L. Harvey, MIT Research Laboratory

and Lincoln Laboratory. "Future Large Broadband Switched Satellite

Communications Networks," Final Technical Report. NASA Contract NAS5-

25091, December 1979.

15. "FAA Statistical Handbook of Aviation," U.S. Department of Transportation,

Federal Aviation Administration, 1976.

16. Polishuk, Paul. "Review of the Impact of Telecommunications Substitutes

for Travel," IEEE Transactions on Communications, Vol. COM-23, No. 10,

October 1975.



17. Kohl, Kay, Thomas G. Newman, Jr. and Joseph F. Tomey. "Facilitating

Organizational Decentralization Through Teleconferencing," IEEE Trans-

actions on Communications, Vol. COM-23, No. 10, October 1975, pp. 1098-

.	 1103.

18. Interplan Corporation. "Reducing the Need to Travel," March 1974.

19. Future Systems Incorporated. "World Environment and Satellite Communi-

cations 1978 - 2003: A Review of Opportunities," FSI Report No. 104, May

1978.

20. Statistical Abstract of the United States.


	1980014056.pdf
	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF
	0001B12.TIF
	0001B13.TIF
	0001B14.TIF
	0001C01.TIF
	0001C02.TIF
	0001C03.TIF
	0001C04.TIF
	0001C05.TIF
	0001C06.TIF
	0001C07.TIF
	0001C08.TIF
	0001C09.TIF
	0001C10.TIF
	0001C11.TIF
	0001C12.TIF
	0001C13.TIF
	0001C14.TIF
	0001D01.TIF
	0001D02.TIF
	0001D03.TIF
	0001D04.TIF
	0001D05.TIF
	0001D06.TIF
	0001D07.TIF
	0001D08.TIF
	0001D09.TIF
	0001D10.TIF
	0001D11.TIF
	0001D12.TIF
	0001D13.TIF
	0001D14.TIF
	0001E01.TIF
	0001E02.TIF
	0001E03.TIF
	0001E04.TIF
	0001E05.TIF
	0001E06.TIF
	0001E07.TIF
	0001E08.TIF
	0001E09.TIF
	0001E10.TIF
	0001E11.TIF
	0001E12.TIF
	0001E13.TIF
	0001E14.TIF
	0001F01.TIF
	0001F02.TIF
	0001F03.TIF
	0001F04.TIF
	0001F05.TIF
	0001F06.TIF
	0001F07.TIF
	0001F08.TIF
	0001F09.TIF
	0001F10.TIF
	0001F11.TIF
	0001F12.TIF
	0001F13.TIF
	0001F14.TIF
	0001G01.TIF
	0001G02.TIF
	0001G03.TIF
	0001G04.TIF
	0001G05.TIF
	0001G06.TIF
	0001G07.TIF
	0001G08.TIF
	0001G09.TIF
	0001G10.TIF
	0001G11.TIF
	0001G12.TIF
	0001G13.TIF
	0001G14.TIF
	0002A02.TIF
	0002A03.TIF
	0002A04.TIF
	0002A05.TIF
	0002A06.TIF
	0002A07.TIF
	0002A08.TIF
	0002A09.TIF
	0002A10.TIF
	0002A11.TIF
	0002A12.TIF
	0002A13.TIF
	0002A14.TIF
	0002B01.TIF
	0002B02.TIF
	0002B03.TIF
	0002B04.TIF
	0002B05.TIF
	0002B06.TIF
	0002B07.TIF
	0002B08.TIF
	0002B09.TIF
	0002B10.TIF
	0002B11.TIF
	0002B12.TIF
	0002B13.TIF
	0002B14.TIF
	0002C01.TIF
	0002C02.TIF
	0002C03.TIF
	0002C04.TIF
	0002C05.TIF
	0002C06.TIF
	0002C07.TIF
	0002C08.TIF
	0002C09.TIF
	0002C10.TIF
	0002C11.TIF
	0002C12.TIF
	0002C13.TIF
	0002C14.TIF
	0002D01.TIF
	0002D02.TIF
	0002D03.TIF
	0002D04.TIF
	0002D05.TIF
	0002D06.TIF
	0002D07.TIF
	0002D08.TIF
	0002D09.TIF
	0002D10.TIF
	0002D11.TIF
	0002D12.TIF
	0002D13.TIF
	0002D14.TIF
	0002E01.TIF
	0002E02.TIF
	0002E03.TIF
	0002E04.TIF
	0002E05.TIF
	0002E06.TIF
	0002E07.TIF
	0002E08.TIF
	0002E09.TIF
	0002E10.TIF
	0002E11.TIF
	0002E12.TIF
	0002E13.TIF
	0002E14.TIF
	0002F01.TIF
	0002F02.TIF
	0002F03.TIF
	0002F04.TIF
	0002F05.TIF
	0002F06.TIF
	0002F07.TIF
	0002F08.TIF
	0002F09.TIF
	0002F10.TIF
	0002F11.TIF
	0002F12.TIF
	0002F13.TIF
	0002F14.TIF
	0002G01.TIF
	0002G02.TIF
	0002G03.TIF
	0002G04.TIF
	0002G05.TIF
	0002G06.TIF
	0002G07.TIF
	0002G08.TIF
	0002G09.TIF
	0002G10.TIF
	0002G11.TIF
	0002G12.TIF
	0002G13.TIF
	0002G14.TIF
	0003A02.TIF
	0003A03.TIF
	0003A04.TIF
	0003A05.TIF
	0003A06.TIF
	0003A07.TIF
	0003A08.TIF
	0003A09.TIF
	0003A10.TIF
	0003A11.TIF
	0003A12.TIF




