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ABSTRACT

This final report presents the results of a parametric design study

which was conducted to develop the significant characteristics and tech-

nology limitations of space deployable antenna systems with aperture

sizes ranging from 50 up to 300 m and F/n ratios between 0.5 and 3.0.

This study considered the Lockheed Missiles and Space Company, Inc.

wrap-rib type reflectors of both the prime and offset fed geometry and

associated feed support structures.

The significant constraints investigated as limitations on achievable

aperture were inherent manufacturability, orbit dynamic and thermal

stability, antenna weight and antenna stowed volume. A portion of the

study identified the maximum number of ribs and aperture size consid-

ering the limitations imposed by STS stowage volume and weight for

a wrap-rib reflector. The orbital thermal environment and approximation

error was then considered to identify the maximum operational frequency

for reflector efficiencies on the order of 85%. These results were

used to form the data base resulting in the defined maximum achievable

aperture size as a function of diameter, frequency and estimated cost.

t^.
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SUMMARY

The "Study of Wrap-Rib Antenna Resign" was conducted to determine the

applicability of the design for offset feed configurations in terms of

surface quality, cost, weight mechanical complexity and deployable feed

support structures for antennas up to 300 m in diameter. This activity

was accomplished by constructing an analytical model of the reflector

and feed support structure which developed detailed designs and perfor-

mance projections compatable with ascent system constraints and the

fundamental material property ar, <A geometry constraints of the designs.

Execution of the developed model allowed the generation of the refer-

ence data for the definition of the desired performance characteristics

as a function of aperture diameter.

The study identified that for the reflector the dominant errors, thus

the performance limiting errors, were those of thermal distortion and

surface approximation. All other error sources were shown to be an

order of magnitude less significant. The feed support structure did

not limit the antenna performance due to feed induced beam shift until

the focal length was increased to about three times the actual section

diameter for the offset geometry. The symmetric geometry was not feed

structure limited within, the scope of the parameters investigated. At

no time in the investigation were the Shuttle Transportation System

volume or weight constraints found to be the driving constraints on the

`	 achievement of the large aperture systems design.

As with any study one must be conservative when drawing conclusions.

With this conservatism in mind the following conclusions can be drawn

from the results:

k

x
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o Offset wrap rib antennas up to 150 m diameter are feasible for

operation at 2 to 3 GHz.

o STS computability is not a design driver.

o Cost and technical risks indicate a new data base of about 50 M

required prior to undertaking 100 to 150 m designs.

o Further activity should include active surface control and con-

y	 trol systems interaction studies.

It is hoped that further activity will define the reasonableness of de-

signs which are at the actual limits of the technical work performed -

300 m deployable antennas!

e
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SECTION 1

INTRODUCTION

This final report contains a summary of the technical activity accom-

plished under "Study of Wrap-Rib Antenna Design" for The Jet Propulsion

Laboratory, California Institute of Technology. The study activity was

specifically undertaken to identify the significant characteristics and

technology limitations of wrap--rib concept space deployable antenna

systems as the design is allowed to grow in size until constrained by

known technology. Practical considerations such as ground testability,

facility requirements, manufacturing techniques, etc. were intentionally

not used as constraints but addressed via the development of a program

plan. This program plan defines a logical, low risk approach toward

the evolution of the projected designs and a timely removal of signif-

icant risk prior to a flight experiment. 	 ,

The specific technical tasks performed in support of this contract and

reported herein were to (a) define the wrap rib antenna design for both

symmetric and offset configurations in terms of surface quality, cost,

weight and mechanical complexity, (b) develop a supporting deployable

feed support structure and characterize it in terms of performance im-

pact, cost, weight and mechanical complexity, and (c) develop a tech-

nical approach for implementation consisting of a combination of analy-

sis and component test, me;!cl testing, and possibly space flight hard-

ware demonstrations.

1

LOCKHEED MISSILES & SPACE COMPANY. INC.

^[^«_.	 na	 f4 -. Kll i. S ^,!	 n	 :.	 nw{..^:.oel..'^.e^o-r.... 	 ^	 T.



ipport Tower

rabolic Reflector

LMSC-D714613

k

v

SECTION 2

TECHNICAL DISCUSSION

2.1 ANTENNA GEOMETRY AND DESIGN APPROACH OVERVIEW

To date the lao3e antenna systems are most commonly constructed as

symmetric parabolic reflector systems. This geometry is shown in Figure 1.

Section Diameter

Figure 1. Typical Axi-Symmetric Parabolic
Antenna System

The axi-symmetric, deployable wrap,-rib parabolic reflector is based on

an approximation to a paraboloid of revolution. T'he wrap-rib antenna

is comprised of radially emmanating gores betweeij the ribs which take
the form of parabolic cylinders. The parabolic cylinders more closely

approximate a true paraboloid of revolution as the number of gores is

increased. The point of diminishing returns for this reflector in

terms of antenna performance is a function of both the radio frequency

2
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wavelength of `interest and the reflector diameter. Figure 2 illustrates

the physical appearance of the resulting reflector.

Central lluh r

1

Deployment Contro	 i
	 r

Device
	

flective Mesh

Ribs

^	 l
Deploying	

Deployed
Figure 2. Symmetric Wrap-Rib Reflector Concept

The gores are fabricated from a flexible membrane material which is

usually a knitted or woven fabric of electrically conductive material.

the gores are sewn to parabolically curved cantilevered ribs terminated

at the central hub structure in a hinge fitting. For launch the antenna

must be folded into a package size which will fit into the Shuttle Trans-

portation System. For stowage the ribs are rotated on the hinge pin,

then elastically buckled and wrapped around the hub. Once in space,

the reflector is deployed by a deployment restraint mechanism which sim-

ply controls the rate of energy release and therefore the deployment

rate.

The key elements in the feed support tower are the three lenticular

shaped longitudinal members which can support an appreciable load when

erect, but which can be folded upon themselves through the application

of lateral and axial forces. For resisting torsional and lateral shear

3
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forces, wire tension cables are ,provided. The battens are necessary

for supporting section hinges and for resisting the laterial, destabil-
izing cable reactions.

Figure 3 shows the overall mast system and emphasizes the stowage and

deployment systems. The inner system performs the actual, section-by-

section deployment and retraction of the mast through the use of thane

syncronous motor, sprocket, chain and development cog systems. It also

serves as the bottom mast section until that section, itself, is fully
erect.

QWx1LQ f

Figure 3. Redeployable Mast

4

LOCKHEED MISSILES & SPACE COMPANY. INC.i
*«r	

.A



F Al

•LMSC-D714613

2.1.1 Selection of Offset Antenna Design Approach

Geometrically an offset reflector is described by a paraboloid where

the geometric centerline is not coincident with the parabolic axis of

symmetry. In order to gain the electrical advantages of reduced block-

age the parabolic axis and therefore the focal point must in fact be

located external to the section aperture. This section can most easily

be visualized by forming a large paraboloid of diameter D and then pass-

ing a cylinder, with a parallel axis of symmetry, through the paraboloid

(Figure 4). If the cylinder has a diameter (d) less than D/2 and its

radius is common with the radius of the parabola, the section of the

paraboloid bounded by the cylinder is representative of the desired off-

set reflector surface. Further if D/2-d is larger than the radius of

the feed and the feed support structure is attached external to the

radius of the offset section there is no blockage of the electrical

field of view.

OFFSET

PAr RABOLOI

DIAMETER

OFFSET--

REFLECTOR

POSITION

PARENT REFLECT

DIAMETER

Figure 4. Offset Reflector Geometry

I

R
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This new surface can be described mathematically with a simple coordin-

ate transformation and rotation of the equations for the parent parabol-

oid. The result is a planar symmetric structure as opposed to the or-

iginal axisy=etric structure with impacts in manufacturing and assembly

costs due to the added geometrical complexity.

As a result of the manufacturing considerations the initial adaptation

of the wrap-rib design for use as an offset paraboloid retained as much

of the structural symmetries as possible. In fact, the reflector sec-

tion was constructed as a section of the parent parabola. This design,

known as the fan-flex, was fabricated and tested in 1975. Figure 5

presents a picture of a stowed antenna system containing two deployable

C an-flex reflectors and Figure 6 shows the system deployed during range

testing.

:d'v ► 	/ 	 •`
Vp

Figure 5. Stowed Offset Fan-Flex Ant,2nna 	 op/c7
OF N'g4.

ADOR PAQ,
QUgl yli
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FiRnre 6. Deployed Fan-Flex During Range Testing

The fan-flex, although successful in the aforementioned design appli-

cation presented some serious growth limitations. These were a large

stowed envelope relative to the wrap-rib, a long and therefore heavy

rib since the rib was edge mounted and had to be designed for ascent

loading, and a surface approximation ill-conditioned to the illumination

function of the surface. The end result was a design with limited

growth compared to the wrap-rib from a size and weight standpoint.

The logical -'zsign solution was to adapt the wrap-rib and minimize the

cost impact in the manufacturing and assembly areas. The offset wrap-

rib, shown in Figure 7, uses the radial rib s ystem attached to a central

hub as in the axis ymmetric design except that the hub is now located in

the center of the offset section with the plane of the hul, parallel to

the local slope of the section. The significant benefits of the adap-

tation are:

7
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• Rib length is reduced to approximately D/2 which reduces weight

and thermal distortions.

• Ribs can be wrapped around the central hub for storage during

ascent preserving a low volume package.

• Rib and surface designs developed and proven with the axisym-

metric wrap-rib are useable.

o. ' The radially increasing surface approximation error is well

conditioned with the offset reflector illumination function

distribution which minimizes the required number of ribs.

o A shaped cover can be used over the central hub to preserve the

surface contour.

i

Figure 7. Offset Wrap-Rib Design Approach

8
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2.1.2 Wrap Rib Overview

The wrap-rib design concept consists of a number (variable) of radial

ribs or beams which are cantilevered from a central hub structure.

Each of the ribs is attached to this hub through hinges. The radial

spoke system provides the mounting for the antenna structure. For par

-abolic or other curved reflectors, the ribs are formed in the required

shape, and reflective pie-shaped gores are attached between the ribs.

The rib cross section and material are chosen to permit the elastic

buckling of the ribs. This is to allow the ribs to be wrapped around

the hub structure in the ascent or stowed package configuration.

In the stowing process, the ribs and attached surface are rotated

about the rib hinges until the ribs are tangent to the hub. After this

rotation, the ribs are pulled around the hub and are wrapped up. The

elastic buckling of each rib accommodates this action. The surface

material is allowed to form a package between the ribs.

The elastic energy stored in the wrapped ribs is sufficient to accomp-

lish deployment of relatively small (less than 20 m) diameter systems.

In this case, the stowed package is contained by a series of hinged

doors which are held in place by a restraining cable. Deployment

occurs when the cable is severed. For the larger diameters,, the sur-

face loads and momentum exchange with the spacecraft will not allow

this free deployment. A deployment restraint system has been incorpor-

ated in the design to control this sudden release of strain energy.

9
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2.1.2.1 Ribs

Graphite epoxy was chosen as the rib material due to the inherently low

coefficient of thermal expansion that can be achieved. The particular

material composition and orientation selected is the Fiberite Company

is 0.005 inch HMS/34 tape in a (0°/90° /90 0 /0 0 ) laminate: The.properties

of these lamina materials and the resulting composite laminate are listed

in Table I.

The cross section designed for this rib is shown in Figure 8. For com-

parison purposes, the photographs in Figures 9 and 10 are of the ribs

fabricated during Independent Research and Development activities.

Mesh attachment is provided for by the addition of hollow eyelets in-

stalled near the parabolic edge of the rib. The purpose of these eye-

lets is to protect the sewing thread from the chaffing that would re-

sult from bare graphite epoxy holes.

W
G

t

6	 TIP

^.	 P

Figure 8. Lenticular Rib Cross Section

10
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Figure 9. GR/E Rib Mounted Cup-Down

iI

I^

I
1 7

 

JP

.O	 Figure 10. GR/E Rib ?founted Cup-Up
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Table 1. Material Properties Of Layup Configurations

Parameter	 HMS/HMS/HMS

(0/902/6)

Young's Modulus (msi)	 14.0

Shear Modulus (msi)	 0.60

Thermal Coefficient of Expansion

(x 10 6/°F)	 0.1

Ultimate Tensile Strength (ksi) 	 57.0

Ultimate Compressive Strength (ksi) 	 51.0

Thermal Conductivity (Btu/hr-ft-°F) 	 13.6

[It'

12
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2.1.2.2 Mesh

The rf reflective surface or mesh that is stretched between the radial

ribs is fabricated on a two bar, tricot knit machine, from 0.0012 inch

diameter gold plated molybdenum wire. The resulting mesh is similar to

that shown in Figure 11. The mechanical thermal and optical properties

for this particular 1mes1;, material are estimated from three known, tested

data points.

The reflection coefficient of a given knitted tricot mesh can be esti-

mated using the following relationship:

R S	 1
1+4 Sxln r S j 2

3.rd

A

where: S - Cell spacing/in

X = rf wavelength

d = Wire diameter

For the parametric analysis, a reflectivity of 95% was chosen and the

corresponding cell spacing was calculated from the relationship. A best

fit equation through the three known mesh stiffness data points was

derived. This allows*<d the mesh properties' to vary as a function of rf

frequency.

Fabrication of mesh gores is accomplished with the aid of a preload vi-

bration table. The mesh is rolled out onto a cutting table the surface

of which has been marked with the gore cut line. Weights of the approp-

riate value are attached to the perifery. The table is vibrated to

allow the mesh to reposition itself into a uniform load condition.

Strip magnets are placed along the cut line. Kevlar tape is bonded at

the gore line using flexible conductive epoxy. Mesh/rib tooling marks

13
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are attached to the mesh. The mesh is But t rolled, and delivered to the

reflector assembly area where the panels are indexed to the pre-marked

rib hub assembly and sewn in place.

2.1.2.3 I•Iub

The reflector hub is shown in drawing DDS-140 Figure 12 and Figure 13.

This hub is constructed from two machined 7075-T6 aluminum forgings tied

together with 0.024 inch 1075-T6 aluminum conical shear panels and

stiffened with machined ZK60 magnesium I-beam sections. The inner

machined ring becomes the spacecraft interface plane while the outer

zing provides attachment for the rib hinges. The top and bottom hub

covers are comprised of 0.014 AZ31B magnesium sheet material as a non-

structural element, and machined ZK60 magnesium I-Beam sections that

interface with the hub stiffeners via four number 10 titanium bolts.

These sections provide the structural load path in the axial direction

for the stowed rib mass during ascent. The view to space of the stowed

rib and mesh pack is occluded by the use of aluminized Kapton thermal

radiation shields.

The main structural elements are thermally protected by a multi-layer

radiation blanket. This blanket is comprised of a one mil outer layer of

aluminized Kapton (Kapton out) and 1/4 mil doubly aluminized mylar rad-

iation layers interleaved with lightweight polyester knit. The blanket is

attached to the top and bottom of the hub covers with hook and pile

fasteners. Local grounding tabs or straps are provided that penetrate

the blanket at selected positions and mechanically attached to the hub

structure.

The overall assembled hub configuration is designed to provide a high

torroid bending stiffness. This design goal was established from the

exacting contour accuracies required. It was found on the ATS-6 pro-

gram that it was desirable to minimize the hub rotation induced rib

15
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deflections during contour setting and subsequent measurements.

Contour adjustments is provided by a differential pitch lend screw mech-

anism as in Figure 14. This device consists of a concentric right hand

threaded shaft and barrel. The internal thresh is a 32 pitch 1/4 inch

diameter while the barrel outside thread is a 28 pitch, 3/8 inch dia-

meter. One revolution of the barrel causes the internal shaft to ad-

vance 0.0045 inches and produces a proportional rib tip motion. This sys-

tem provides high precision contour adjustment sensitivity.

..r_ rq I %.n a nRQnu

Figure 14. Rib Adjustment Mechanism

2.1.2.4 Deployment Control Device

The deployment control mechanism, called the "re-wrap" concept is essen-

tially a reel-to-reel tape drive. With the reflector in the stowed con-

figuration, a restraint tape is attached at the central hub and wrapped

circumferentially along every third rib. This tape then travels over a set

of 45° bevel idlers, through a slack take-up mechanism and terminates at

18
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a spool that is a part of the central hub (ref.Figure 13). The bevel

idlers are mounted to a gear driver carriage ring mounted on bearings.

In operation, the drive motor is energized driving the carriage ring.

This causes the tape to travel over the bevel idlers, and re-wrap around

the central spool. This gradually releases the radial pressure on the

stowed ribs, allowing the self contained stored energy to deploy the

ribs at a controlled rate. For stowage, the operation is simply re-

versed causing the ribs to again wrap around the central hub.

2.1.3 Feed Support Structure

Previous programs have devoted little attention to definition of the

feed support structures required to support a deployable antenna de-

sign. As a result a review was conducted of the candidate design

approaches and the significant characteristics of each design developed.

This review is overviewed in Figure 15. These results indicated that

the most probable design concept in terms of weight efficiency and

stability should rely on a triangular geometry..

Two of the designs, the Astromast and the Tri-Extender have been dev-

eloped to the point of concept demonstration. The Astromast has been

well characterized and demonstrated to be capable of automatic extension

and retraction. The Tri•-Extender as previously configured showed po-

tential for increased stiffness due to a different design mechanism but

had only been developed as a one way deployable system. As a result,

the study activity was directed at investigating a modification and

characterization of the Tri-Extender to provide an alternate approach

to the Astromast. It was felt that a design approach selection could

be made in a future study and the mast limitations on antenna technology

growth indicated would be similar with either system.

The key elements in the LMSC Redeployable Mast are the three lenticular

shaped longitudinal members which can support an appreciable longitudinal

19
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LMSC-D714613

load when erect, but which can be folded upon themselves through the

application of lateral and axial forces, as shown in Figure 16.

Figure 17 illustrates the way in which the characteristics of the len-

ticular members are used to obtain a lightweight mast design. The de-

ployed section lengths and the dimension "b" between the lenticular

members are bounded by several considerations including optimum column.

lengths between hinges, stowage diameter limitations, minimum batten

and hinge weights, etc. The previous study showed that, within reason-

able limits, aspect ratios of 0.5 to 1.5 are compatable with stowage

constraints and a value of 1.0 provided the optimum stiffness/weight

results. For resisting torsional and lateral shear forces, wire tension

cables are provided. The battens are necessary for supporting section

hinges and for resisting the lateral, destabilizing cable reactions.

Figure 3 shows the overall mast system and emphasizes the stowage and

deployment systems. The inner system performs the actual, section-by-

section deployment and retraction of the mast through the use of three

synchronous motor, sprocket, chain and deployment cog systems. It also

serves as the bottom mast section until that section, itself, is fully

erect. The guide rails in which these devices operate, are also provided

with ramp cams which actuate the strikers for collapsing the lenticulars

during retraction. The outer base system acts as the stowage bay for

both the mast sections and the inner base system which must be extended

during mast extension or retraction, but is retracted into the outer

base system during full stowage. A chain drive system is also provided

for the latter purpose. In detail, the operating sequences for deploy-

ment and retraction are as follows:

1. Extend the upper portion of the extension/retraction cage.

This is accomplished with a chain drive system.

2. Deploy the boom by activating the deployment /retraction chain

drive. This drive is a chain loop at each of the three corners

of the mast. Three cogs are attached in such a manner that
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a

cog to cog linear dimension matches the linear dimension of

one mast section. One cog engages the compression spider

(batten) at the top of the stowed stack while the other re-

leases the batten at the top of the just deployed section.

During the deployment of each section, the cog follows the

batten through the section extension, thereby retaining the

stored energy of each section within the extension system.

This follows until all of the sections have been erected. The

incrementally deployed mast is stabilized at all times during

deployment because the portion deployed is fastened at three

points to the moving cog chains.

3. Retract the boom by reversing the direction of the deployment/

retraction chain drive. This works identically to the deploy-

ment sequence but in reverse. The additional requirement is

that the longerons be buckled laterally as the cog is engaged

and then apply a compressive axial load to complete the fold

stowing of the lenticular section longerons. A trip arm built

into the longeron end accomplishes this lateral buckling. The

longeron first engages a one way ramp on the side of the chain

carrier. The loading caused by the ramp causes a local lateral

load on the longeron which collapses the lenticular cross sec-

tion. Cog-retraction folds the longeron. Alternating the

placement of the trip arm, or striker, on the longerons allows

folding in alternate directions to minimize stowed height.

4. Retract the upper portion of the extension/retraction cage.

The cable deployment system is reversed.
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2.1.4 System Ascent and Deployment

The configuration is reasonably well defined for maximum eff

of an offset fed antenna system. Figure 18 presents an over

the ascent sequence through the operational state of the vehicle. ine

STS stack shows an IUS attached to a vehicle from which the stowed

feed support tower and reflector are attached. After achieving the

desired operational orbit the deployment sequence begins with the tower

extending, separating the vehicle from the reflector. The final event

is the reflector deployment which occurs after the feed support tower

has been completely deployed. The operational vehicle configuration

was chosen to place the feeds, electronics and electrical power system

components together for maximum efficiency since for the offset con-

figuration this package does not block the antenna aperture.

Figure 18. Offset Fed Antenna System Operational Sequence
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The symmetric antenna system can be used in a similar configuration.

The system performance would be greatly degraded, however, by the

blockage of the aperture from the feed support tower (ref. Figure 1)

and by the solar arrays which would be attached to the feed located

"	 in the equipment section. An alternate configuration would be to

locate the solar arrays aft of the reflector and accept the shadowing

of the solar arrays by the reflector structure.
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2.2 PERFORMANCE MODEL

Study Approach

The approach taken to develop the parametric design and performance

data focussed on the construction of computer aided reflector and

mast design packages. The reflector design package was constructed

to accept basic material and structural element characteristics and

develop design solutions which satisfied these inputs and the mission

constraints of weight, stowed diameter and antenna system geometry.

The developed designs were then analyzed to detezmine the extent of

orbital and assembly surface errors, deployment integrity, and devel-

opment costs.

Having defined the reflector size and operational frequency, a mast

design could be developed with a design constraint that the pointing

error be held to less than 0.05 beamwidths. The mast design package

approach was similar to the reflector package.

This developed program is overviewed in Figure 19.

DESIGN
CHARACTERISTICS

STRUCTURAL
CHARACTERISTICS

MATERIAL
CHARACTERISTICS -Z

DESIGN
CHARACTERISTICS

STRUCTURAL
CHARACTERISTICS

MATERIAL
CHARACTERISTICS-Z

DESIGN CONSTRAINTS	 REFLECTOR MAST	 63E5,1^h1MAST
•	 WEIGHT	 DESIGN	 STABILITY DESIGN	 ANO

P•	 DIAMETER	 PACKAGE	 CONSTRAINT D4IORMAi^C'
PACKAGE	 V$CRIpTION• GEOMETRY

ANALYSIS PACKAGE ANALYSIS PACKAGE
• THERMAL • THERMAL
•	 RIB STABILITY • STRUCTURAL DYNAMIC:
•	 STRUCTURAL DYNAMICS • COST
o	 VISCOELASTIC CREEP CONSTRAINT COMPATABILITY• MFG/ASSY ERRORS
• COST

CONSTRAINT COMPATABILITY

Figure 19. Modeling Approach
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The computer program assembled for this study of necessity provided

more capability than a simple parametric study tool. In fact, it is

required to generate a complete preliminary design and performance

analysis. The flow chart for the program is presented in Figure 20.

An overview of this flow chart is presented in Figure 21 and was sel-

ected to introduce the operation.

Figure 21 was developed from study case input data, computer programs,

and output data. There are thirty six input values, two of which des-

cribe mission constraints (weight and stowed diameter).) The remaining

variables are design and material characteristics. The main computer

program develops the requirement comnatable antenna designs and di-

rectly outputs a summary of the key output parameters while writing all

of the detailed information to a file. Any or all of the design cases

can be recovered in a readable form at a time selected by the user.

This detailed information contains complete element design descriptions,

weight breakdown and performance budget and can be used as a baseline 	
^J

preliminary design.

II
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2.2.1 Design Package Computer Program

The reflector design program (see Appendix A) reads a data file which

contains all of the design inputs and constraint information. These

parameters, examples of which are shown in Figure 22, can be changed

at the time of program execution.

The first calculation performed is that of the minimum wrap radius for

the predetermined rib geometry. The relationship used is

where

E	 = Youngs Modulus

t	 Material Thickness

111-2, 112-1= Poisson Ratios'for each axis

R1 & R2 - Respective Flattening and Wrapping Radii

a	 = Combiner' Flattening and Wrapping Stress.

The flattening radius R is determined from the height (h) and width (w)

of the rib according to the relationship

R= 1 (w2+h2)
8w

The design input file contains the rib root geometries to determine

this along with a linear taper ratio to determine the width of the rib

a	 at the tip. The lenticular radius determined for the root section is

used in conjunction with the width to determine the rib tip cross

section height.
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1 r ^ n ^'AI-1r
`^(V 1

,14.
RH1r
^5.

FUR
-2

HOW
1

DATA OUTPUT FILE NAME
TRI 9

OFF T.ET(I) OP SYMMETRIC Q) 7
I

THIS IS 4!4	 OFFSET	 REFLECTOR u^

I1RTR FILES CRN FS FOUND ON FILE- TR1

THE FOLLOWING IS R SUMMARY OF THE D4T4 FILEt

1- rc t 	 gSFL. PEFL. MRST 1114ST TOTAL STS
C.41: E	 111A.-	 MT. FRS4 WT. FRSO. 'AT. LVISTH

NO.	 FT)	 ( LF-S) uBH2) (LBS) (GLC) (LBS) (M

1	 2355.	 255-517. 0.15 35512. 0.12 7a(179. -.55.04 ]
2	 1974.	 25399. 0.24 30459. 0.17 55955. 547.04
3	 1577.	 24354. 0.33 25979. 0.23 50733. 455.04 -	 4

4	 1441.	 24157. 0.45 "254. 0.31 45411. 400.39
5	 13 4 1:0.	 2'3213. 0.51 1990. 0.42 4503. 347.39
5	 1099.	 22203. 0.90 16909. 0.55 39011. 303.04
7	 550.	 20574. 1.05 14593. 0.72 355'52. 255.04
9	 930.	 19409. 1.39 12935. 0.94 32244. 232.04
9	 724.	 17959. 1.93 11199. 1. 24 29157. 202.71
10	 5:R 0.	 15322. 2.44 9739. 1.64 26050. 175.71
1t •	544.	 14742. 3.29 9414. 2.2.0 23155. 153.04
12	 455.	 12953. 4.49 7203. 3.01 20155. 131.39
13	 393.	 11237. 5.32 5035. 4.22 17323. 111.39

Figure 22.	 Example Of Summary Output
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At this point the maximum number of ribs (N) that can be physically

placed around the determined minimum hub of radius r is calculated from

N	 r

Sin 1 (w + c)
2r

where	 w - Rib Width

c - Rib to Rib Spacing

Having determined the number of ribs, their maximum length, and there-

fore the reflector diameter can be determined by using the available

anular area (a) between the hub (r h) and the STS envelope(rs).

A - w (rs2 - rh2)

But A is also equal to the projected area of the stowed rib package or

A - NU
n

where	 L - The Rib Length

n - Packaging Efficiency

N - Number of Ribs

so that	 L - n 
.TM 

(rs 2, - rh2 ) .
N t

Having determined the maximum aperture diameter with a minimum number

of ribs the surface approximation error is calculated and is compared

to a predetermined maximum RMS. The number of ribs is incremented by

four until the calculated RMS error is less than the desired maximum.

At this point, the program computes the hub weight based on the geo-

metry described in Section 2.1.2.3, the rib weight, and the mesh weight

III
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which is optimized to the maximum operating wavelength of 30 times the

curreut RMS error (30 6). The thermal distortion, manufacturing and

viscoelastic creep errors are calculated. These errors are combined

through an RSS and the maximum operating frequency is determined from

the 30 6 relationship. The stowed mast geometry is defined based on

the allowable STS diameter envelope the desired f/D ratio and the allow-

able beam shift, Thus defined, the mast weight structural and thermal

properties are determined.

At this point the program calls a costing subroutine to determine the

projected development and production costs of the reflector and feed

support structure. This cost algorythm is based on the ATS-6 program

performance and on historical data points on several quoting exercises

for other programs. It utilizes the frequency, diameter, and f/D ratio

with empirically derived exponential factors. These factors are then

applied to a normal program percentage breakout of design, analysis,

test, manufacturing, and materials.

These data are written to a data file with identification marks and

also to the computer terminal in summary form.

The next constraint the program recognizes is the predetermined minimum

RMS for the reflector.

If the program finds no cases.that satisfy the maximum RMS condition

with the minimum hub size, the hub diameter is -?.ncremented to a larger

value thereby allowing more ribs and a corresponding smaller aperture

and the process is itterate:d until at the liamtt the hub and the STS

envelope are the same size indicating a solid non deployable reflector

is required.

At this point, a second program is exercised to display the particular

parameters of a given reflector. Figure 22 contains an example of the sum-
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Mary output results while Figure 23 illustrates the detail "PRINT"

program output.

mm	
2.2.2 Analytical Description of an Off-Set Wrap-Rib Reflector

A computer program has been prepared in Fortran IV which describes

the off-set wrap-rib reflector. The program optimizes the location of

each rib by systematic search, and computes the optimum location for 	 w

that rib. The program contains a generalized illumination function 	 l

which can be executed. If an illumination function weighting is not
	

i

desired, the RMS value for uniform illumination can be obtained. Al-

though the program was developed for an offset reflector, it applies

to symmetric reflectors also by setting the off-set dimension equal

to zero.

a
The program provides for up to 20 subintervals in the radial direction. 	 {

The prograr. operates by iterating on the focal length of the rib to

arrive at the minimum RMS for the reflector.

The analytical derivation for this solution, a listing of the program

symbols, and a sample run are contained in Appendix F.

2.2.3 Thermal Distortion Analysis

This part of study focussed on obtaining an estimate of the surface

distortion of large wrap-rib parabolic reflectors with lenticular rib

section in an outer space environment.

A computational scheme is developed which considers the effects of

thermal and mesh pretension loads simultaneously. For a given orbit

and its orientation, the thermal program given the temperature gradient

along the length and the height of a lenticular rib section. The
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T'r'•'E
721

13

wwAw

THIS IS AM	 OFFSET	 REFLECTOR

DATA FILES	 TRI	 CASE !4'JMI:EPt 13

DESCRIPTIVE DFT9 FOP PEFLECTOR DESIGNS

PEFLEC70P FOCAL LENGTH (FT.)- 54$.40SE CTION DIAMETER (FT.) u 323.20
FOCAL LENGTH TO WAIVE R RATIO v 2.00

NU III ER OF RIBS • 94.00
SUPLc ACE 4PPPOY ERROR (IM. RMS) : 0.0193

PIP H14'SE PADIUS (IM.)	 . 53.51
PIP TIP RADIUS (IN.)	 + 1939.20

FIB FOOT HEIGHT (14.)	 + 20.00
PIP FOOT WIDTH (IN.)	 - 4.00
P IE TIP HEIGHT (14.)	 + 11.70

RIF TIP YIDTH (IM.)	 - 1.33
PIP THICN4ESS (IM.)	 s 0.0190

4UF OUTSIDE DIAMETER (FT.)	 + 14.97
49P INSIDE DIAMETER (FT.) + 9.50

M9P HEIGHT (IM.)	 + 24.53

YE I GMT SUMMARY:

HUE SINS 40.55
S4E9R 'JEB * 33.21

4E90 MEB PINS . 2.53
HUP STIFFENERS s 27.42

4VB SINS 13.15
MINCE ASSEMBLY * 47.00

MOTOR S SEAR IIPIVE - 12.00
TRPS SUIDSS v 15.45

TAPE PS9L ASS'Y - 31.97
I'EPLOY/.R ETRACT TAPE-	 159.34

FINS GERP : 14.99
DRIVE .SUPPORT ENT v 59.49

HOLE COVER : 39.32
RIBS -	 6155.73
MESH -	 1199.55

TOTAL YEIGHT =	 7771.33

CUNTIN':EMCY	 (20:)	 -	 1554.27

!19XIMUM YEI54T .	 9325.50	 POUNDS

THIS IS A TPI-EMENI IER "AST CONFISL Ir,ED FOP

THE PEFLECTOP FOUND INS

	

DATA FILES TRI	 CASE	 !PUNTERS	 13

D CS .RIPTIVE DATA FO G' DES15M2

	

MgST LE45TH ( rT) -	 919.35

	

OcFS ET LENGTH (FT) s	 152.95
	opcyi LSL LENGTH (c T) v	 1+55.50

	

Y IDTH (FT) s	 9.93

	

FAY LENSTH WT) s	 9.22

	

NSPELT PATIO =	 1.04

	

STOYEO DIAMETEP (FT) - 	 13.75

	

S70YED LENGTH (FT) - 	 30.57

	

N9T'JP9L FF'E4"JE4CY (CPS) - 	 0.0911

	

THERMAL BEAN SHIFT SAES) + 	 0.0007

	

cRE9. FOP 0. (I .̀P'J (GM2) •	 9.51

'JEISHT SUNMtiPYt

	

L ON':EPON .	 1279.79

	

FATTENS .	 230.93

	

C91 ,LES s	 13.27
J014TS	 257.00

	

MOTOP DRIVE s	 12.00
	S'UPP'ORT ST4:ICTURE s	 109.32

	

TOTAL MEISHT s	 1911.30

	

COMTINSENCY (20:) - 	 392.25

	

MAXIMUM YEIGHT a	 2293.55 LPS.

bIE• ISHT PER DEPLOYED INCH :	 0.2223

MAST DEVELO°MENT COST (1M) = 	 43.55

MAST PECUPRINS COST '1•M) -	 21.59

THIS IS 9M	 OFFSET PEFLECTOR

DATA FILE: TP1	 CASE N'J'1BER:	 13
ESTIMATED =T BATA:

ESTIMSTED DEVEL'O'PMENT COST 'MILLIONS)

ESTIMSTED PECLIPPING COST (MILLIONS) s

177.45
THE FOLLOWING IS 9 PEFLEC709 LOSS F:UGET:

97.75
% I C'FACE FPPF'OXIMRTIOM + 0.0193

THERMAL ERROR s 0.0404
RIB CONTOUP EF'ROR s 0.0020

PIP SEGCIE!iT JOINT ERROR- 0.0075
PIP ROOT TO TIP 14ST. ERROR - 0.0033

RIP VISCOELASTIC "CREEP' ERROR : 0.0032

TOTAL SURFACE ERROR s 0.0457	 14CHES RIMS

TR°E NSNE
END

_	 EXIT
Figure 23. Example Of Detail Output
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effects of the thermal load and mesh pretension are used to calculate

the rib distortion and the resulting degradation of the reflector sur-

face integrity.

The thermal effect is iteratively combined with the initial mesh pre-

load to arrive at the final distorted shape of the rib from which sur-

face RMS relative to a perfect paraboloid is calculated.

The temperature routine contained in Appendix B was based on a steady

state 14 transverse node model developed at LMSC in 1977 and contained

in Appendix C. It has been enhanced for this project to Include the

effects of solar angle changes, the addition of multilayer blankets,

and as illustrated in Figure 24 the rib-to-rib shadow effects as a

function of the number of ribs, the solar angle, the f/D ratio, and

the radial position along the rib. For conservatism it considers only

the ribs which would be normal to the sun vector (at a solar angle of

0°). Appendix B also contains the distortion routine.

Appendix D gives a brief description of the analytical procedure used

to develop the distortion model. Appendix E describes the ana1ytics

required to describe the rib cross sectional properties.
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Figure 24. Thermal Model Geometry
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t	 2.3 ' PERFORMANCE PROJECTIONS

This section of the report is devoted to presentation of the data de-

veloped during the study on the performance projections of the sym-

metric and offset wrap-rib antenna designs. 	 The most significant of

the results is of course the projection of the upper bound of surface

quality as a function of diameter. 	 These data are presented in Figure

25.	 The limit on frequency of operation was defined as a total RMS

error allowable of 1/30 of the operating wavelength. 	 The RMS was an

area weighted function only, i.e., a uniform illumination case. 	 Errors

included were surface approximation, thermal distortion, rib contour

manufacturing, rib assembly, reflector assembly and graphite epoxy vis-

coelastic creep.	 It is interesting to note that constraints on achiev-

able operating frequency were reflector design induced for diameters

less than 95 m and STS diameter for apertures above 95 m. I

2.3.1 Weight Impact on Aperture Size

The aperture limit derivation was performed with a weight constraint 	 1

of 3620 Kg, a full STS load. These data have been expanded for the

larger diameter region and displayed for both offset and symmetric

geometries in Figure 26.

i
Two other cases were considered. The first was a limit of 2270 Kg

which is compatable with a synchronous component for assembly at al-

titude. The 681 Kg case represents a subsystem weight compatable with

r	 a full spacecraft system to be delivered to synchronous orbit.

The performance advantage of the offset geometry is evident in the

figure. Two effects contribute, those being the effective doubling

of the focal length due to the geometry and the improved approximation

error due to an integral reduction in surface curvature. The result

being a higher operating frequency for the same diameter for an offset

reflector.
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Figure 25. Upper Limit of Surface Quality
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2.3.2 STS Stowed Volume

The algorithm constrained the developed parametric designs so that the

stowed diameter of the reflector and feed support tower never exceeded

the 4.57 m limit of the STS bay. Figure 27 displays the stowed package

length for the reflector and feed support tower stack. The results

indicate there is no significant STS volume constraint imposed on the

growth of the concept. The length allocation for a complete load is

approximately 17 m.

//SYMMETRIC

(328)	 (656)	 (964)	 (131

APERATURE DIAMETER -- M  (FT)

Figure 27. Antenna Systems Stowed Length Requirements
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2.3.3 Surface Figure Considerations

The surface figure of a graphite epoxy reflector structure is a fun-

ction of six separate contributors; rib segment fabrication, rib as-

sembly, reflector assembly, viscoelastic creep, thermal distortion,

and designed surface approximation. The total effect of these errors

was calculated as the root-sum-squared (RSS) of the individual error

components.

The surface approximation and the thermal distortion are the dominant

error contributors for the cases performed. It is interesting to note

from Figure 28, that for the smaller (less than 300 meters) symmetric

apertures and correspondingly higher frequencies, the thermal distor-

tion is the larger of the two while at larger apertures and lower

frequencies, the surface approximation dominates. This is due to the

rib limiting effect of the STS diameter constraint which takes over at

about that point.
(1.0
25.4

TOTAL n 	 p12

THERMAL

RIB SEGMENT FAB

(0.001)
0.0254	 noe

(656)	 (1312)	 (2000)

-	 APERATURE DIAMETER -M (FT)

Figure 28. Surface Figure of STS Diameter
Constrained Symmetric Antenna
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The longer f/D ratio for the offset antenna causes the surface approx-

imation errors to be less than for the symmetric system. As a result,

the thermal distortion error for the offset reflector, Figure 29, is

the dominant factor throughout the area o f interest.

11. 0)
25.4 TOTAL . ^di

z

c :, rx
a
W
W
u

of 0.254

(0.001)
o.o^st

SURFACE
APPROXIMATION

IREFLECTOR
ASSEMBLY`S

IR113 ASSEM9LY

VISCOELASTIC
CREEP	

RIB SEGMENT FAR

0	 100	 200	 Soo	 400
(328)	 (656)	 (914)	 (1312)

APERATURE DIAMETER -M (FT)

1

Figure 29. Surface Figure of STS Diameter
Constrained Offset Antenna
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s	 When the weight limit of 2300 Kg was applied, the surface approximation

error for the symmetric case was found to become dominant at a much

smaller aperture. This occurs due to the decrease in the number of

ribs that must occur at a given diameter in order to meet the weight

constraint. This effect can be seen by comparing Figures 28 and 30.

SURFACE
APPROXIMATION

TOTAL	
61 2
	 THERMAL

VISCOELASTIC CREEP

REFLECTOR ASSEMBLY

RIB ASSEMBLY

(0.001)	 L
0.0254 0

RIB SEGMENT FAB

I	 I	 I
100	 200	 300	 400

(320)	 (656)	 (984)	 (1312;
APERTURE DIAMETER — M (FT)

Figure 30. Synchronous P/L Surface Characteristics
For a Symmetric Antenna
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When the 2300 Kg weight constraint is applied to the offset antenna,

the surface approximation error more closely matches the thermal dis-

tortion contribution. Comparison of Figures 29 and 30 illustrate this

effect.

(w.o)
23.4

TOTAL M	 ft(2

	

0,02S4 0	 100	 200	 300
(228)	 (656)	 (!!M)

APERTURE DIAMETER-M (FT)

Figure 31. Synchronous P/L Surface Characteristics
For an Offset Antenna
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Limiting the allowable reflector weight to 680 Kg results in a surface

figure that is almost totally driven by the surface approximation con-

tribution and in fact, the thermal error became comparable to those	 y

associated with material properties and fabrication capabilities.

This, shown in Figure 32, is due to the greatly reduced aperture assoc-

iated with the lighter system.
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Figure 32. Synchronous Component Surface Characteristics
For a Symmetric Antenna
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Applying the 680 Kg limit to the offset reflector, see Figure 33, had

the same effect on the error distribution as for the symmetric antenna.

The effect of the higher f/D ratio can be readily seen in comparing

this and the previous chart.

TOTAL n 	 I

SURFACE APPROXIMATION
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REFLECTOR ASSEMBLY
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Figure 33. Synchronous Component Surface Characteristics
For an Offset Antenna
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2.3.4 Sensitivity to Design Parameters

The relationship the f/D ratio has on the frequency and aperture is

illustrated in Figure 34. A given offset reflector with a parent f/D

ratio of 0.25 will not perform at as high a frequency as the same re-

flector configured with an f/D ratio of 0.50. At a design frequency,

a larger aperture can be obtained for a longer f/D ratio throughout the

region of interest. This effect is present up to an f/D ratio of ap-

proximately 0.75. Beyond that, the curvature effect is no longer dom-
inant.

The reason for this effect is due to the segmented reflector geometry.

As the reflector curvature becomes less (higher f/D and flatter re-

flector) the effect of the flat panel approximation becomes less sig-

nificant. In the limit, with an f/D of infinity, the reflector would

be a flat plate and the segmented reflector would exactly approximate

the surface.

6
f/Dp r 0.23

f/0P a 0.50

f10P = 0.7511.0,1.5

= S
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w 3
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z 2
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f	 `

r
0	 100	 200	 300	 400

(128)	 (656)	 (964)	 (1312)

APERTURE DIAMETER - M (FT)

Figure 34. Antenna System Sensitivity To f/D
For An Offset Antenna
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Because of the impact of thermal distortion on the antenna performance,

•	 it is important to understand the causal parameters. One of the major

contributors is the coefficient of thermal expansion (CTE). For the

majority of the analysies performed on this study, a CTE of 1 x 10-7/°F

was chosen to reflect a graphite epoxy reference structure. The per-

formance sensitivity to this property can be seen in Figure 35,,

Another property of the structure materials that has a significant

effect on performance is the thermal conductivity. The advent of metal

matrix composites (MMC), which combines the distortion coefficient of

the graphite fibers with the thermal conductivity of metals, has had

a significant effect on the projection of antenna performance.

The top curve in this figure was prepared using the properties typical

of graphite magnesium MMC. The CTE used is 1 x 10 -7 /°F and the thermal

conductivity is 18 BTU/HR - OF FT. The corresponding K for the

graphite epoxy structure is 13.5 BTU/HR - O F - FT.
10
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Figure 35. Antenna Sensitivity To Material Characteristics
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Application of the MMC properties to the analysis of the offset re-

flector results in reduced surface figure errors due to the lower

thermal distortion and thereby increases the useable aperture dia-

meter at a given frequency. Note also, in Figure 36, the MMC materials

will not exhibit the viscoelastic creep error associated with graphite

resin composites.
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Figure 36. Surface Figure Characteristics With Metal Matrix Ribs
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Throughout the analyses thus far presented, the rib configuration has

been held as a constant varying only in length and parabolic shape.

This lenticular rib has a hub attachment cross section (rib root) of

one inch wide, four inches high and a width taper of 3:1. The effect of

changing the rib root geometry to five inch wide, twenty inches high can be

seen in Figure 37. Increasing the rib width and height of the rib has

the effect of reducing the number of ribs that can be attached to the

hub. This in turn, reduces the useable operating frequency at a given

diameter and increasing the system weight. Neither effect provides a

significant impact on the projected performance limits for the design.
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Figure 37. Antenna System Sensitivity To Rib Design
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2.3.5 Projected Antenna Costs

Figure 38 presents the developed projected costs for an offset antenna

as a function of aperture size, weight and operating frequency. The

data shows that for low frequency apertures the cost is reasonably pro-

portional to weight or diameter. As operating frequency limits are

pushed the costs start to rise rapidly. This seems to occur in the 50

to 100 million dollar range for frequencies greater than 2 GHz.
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Figure 38. Offset Antenna Cost Projections
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The data presented in Figure 39 presents the cost factor for an offset

antenna. This increase is between. 15 and 30%. The 30% factor is dom-

inated by size and extra mast length costs while at the higher freq-

uencies, small diameter, the costs for maintaining a highly accurate

reflector surface dominates.
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1.1	 1.?	 1.3	 1.1	 1.3

DEVELOPMENT COST FACTOR
(OFFSET + SYMMETRIC COST)

Figure 39. Offset Vs Symmetric Antenna Cost Comparison
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2.4 PROGRAM PLAN

The data developed during the initial efforts of this study clearly

indicate the potential of the wrap-rib design approach for achieving

aperture sizes up to 300 m in diameter. The concerns of course with

such a forecast are the limitations imposed by recognizing that the

forecast is based on present knowledge. The accuracy of projecting

performance over one and one half orders of magnitude must be subject

to some concerns. A review of the study activity yields concern with

the following items:

• Manufacturability of Large Components

• Assembly Alignment Facility Requirements

• Mesh Management During Deploy/Retract

• Vehicle Stability Requirements During Deployment

• Lack of 1-G Testability (Contour and Strength)

• Operational Control System Interaction/Stability

As a result of the first three of these concerns, it is felt that a

new data base is required to develop the experience necessary to demon-

strate confidence in the performance projections. A logical data base

is afforded by a 50 to 55 m diameter reflector segment. Only by the

actual production of full scale hardware can the techniques required

for tooling, fabrication and assembly be developed; and only by the

deployments of a full scale model can the problems associated with de-

ployment verification in a gravitational environment be understood and

solved. Therefore, the proposed program includes the design, pro-

duction and deployment demonstration of a sectional model of a 55-meter-

diameter wrap-rib reflector. A four rib, three gore model in which the

central gore is relatively isolated from the free boundary effects will

provide the best and most economic possible simulation of a complete

reflector short of a full assembly.

. M
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The approach selected will provide confirmation of predicted design

parameters (e.g. weight and stowed volume) as well as furnishing val-

uable scaling data. The selected design and the fabrication and test
1

x	 methods employed apply to a wide range of reflector diameters and op-

erating frequencies. Scaling data will be directly available since rib

lengths can be easily extended by splicing additional segments, and the

hub/deployment mechanism method and the mesh style (opening size) can

be easily modified for optimum reflectivity at any design operating

frequency. All the essential technology associated with the 55-meter- 	 _.t

diameter reflector model is equally applicable to either symmetric or

offset reflectol' designs. Flight quality materials will be used as ex-

tensively as practical in the construction of this model.

Major objectives and goals for the engineering model construction and

test are summarized below:

o Demonstration, with a full scale working model, of the

deployment characteristics of the 55-meter-diameter 	 t

reflector.

o Demonstration and verification of large reflector fabri-

cation, assembly, and alignment techniques and procedures.

o Verification of the durability and stability of the mesh,

ribs, deployment drive assembly, and test equipment by

repeated deployments.

o Development and verification of tooling designed for rib

and gore assembly fabrication.

o Development and demonstration of stowage and handling

techniques and procedures for the reflector and the test

equipment.

o Verification of the predicted packaged density of the ribs

and gore assemblies.
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o 'Verification of the overhead support system operation.

o Veirification of the deployment envelope of the reflector.

o Demonstration of the reflector design capability to over-

come induced failure modes, including mesh and cord snags

or hangups.

o Improvement of manufacturing operations associated with

the reflector and test equipment design based on the ex-

perience of fabrication and test of a full scale working

model.

Most of these objectives can only be realized by the fabrication and

test of a full scale working model of the 55-meter-diameter reflector.

2.4.1 55-Metec--Diameter Model Design

Design features of the proposed 4-rib engineering model and test equip-

ment are summarized as follows:

RIB ASSEMBLIES	 Complete assemblies including typical root section,

attach fittings and 4 or 5 radial splices. Rib will

be of tapered lenticular cross-section and made from

GFRP.

GORE ASSEMBLIES	 Low stiffness mesh knitted from gold-plated molyb•-

denum wire with adjustable cord assemblies made

from Invar wire.

HUB ASSEMBLY	 Dimensionally and functionally equivalent to flight

type design for a 55-meter-diameter reflector.

Tape rollers will be spaced as in a 48 rib reflector.
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TEST EQUIPMENT	 Overhead support system of fixed rails, movable

carriages and balance beams. Counter-rotating

turntable used to mount reflector model.

Rib and Rib Splice Design

The maximum length of a continuous rib segment is limited to approxi-

mately 6 m by the capacity of the curing autoclave construction of

these very long ribs requires splices at several radial locations.

These splices, however, need to be carefully designed to maintain the

functional and structural integrity of the rib.

In 1979 the LMSC Independent Research and Development Program investi-

gated methods of fabricating these splices. Analytical studies showed

that splice configurations with very low flexural stiffness character-

istics would minimize stress concentrations when flattening and fold-

ing the rib. These flexible splices, when positioned at an angle to

the transverse axis of the rib, also localize discontinuity effects

between the nonadjacent members.

Five different splice configurations were designed and tested. A

sketch of a test rib containing splice candidates is shown in Figure

40 together with the construction of the splices. All candidates were

subjected to multiple flexural cycles to a 0.28 m wrap radius. Splicas

1 and 2 survived all tests and the rib radial splices used for the 55-

meter-diameter model will be adapted Irom either of those designs.

The rib, which has a lenticular tapered cross section will be constructed

from 3 to 4 layers of GFRP tape or fabric that will be selected based

on the results of studies conducted during the initial phase of the

program.
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Figure 40. Lenticular Rib Splice Details
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Mesh Gore Design

The reflective mesh that will be used for the 55-meter-diameter reflec-

tor model was developed by LMSC during 1978 under Independent Research

and Development funding. This mesh (Figure 41) is a two-bar tricot 	 -^

knit produced by Continental Warp Knits, Angler Division, on a 168.0 	 i

inch wide tricot machine specially modified and used exclusively for

knitting fabric from fine wire. Goldplated (6% by weight) 1.2-mil=dia

molybdenum wire is obtained from Sylvania. Mesh opening size is ap-

proximately 9 mm by 9 mm when preloaded to the design value.

Cord assemblies will include fittings at each end for attachment to

the rib, and adjusting tirnbuckle and a small (0.005) diameter Invar

wire that spans two adjacent ribs. Approximately 30 cord assemblies

will be used in each gore, spaced 1 m apart along the rib surface. The

cord assemblies in a gravitational environment, depress mesh pillow by

increasing chordal and radial load ratio in the surface; allow post-

assembly adjustment of surface loads; and produce a preloaded, therm-

ally invariant, orbital contour. Since the stiffness of the cord

assemblies is much greater than that of the mesh, the reflector per-

formance is nearly independent of mesh preload and is insensitive to

uncertainties in the mechanical properties of the mesh. The cord as-

semblies will be made from drawn and annealed Invar-36. Each of the

four edges of the gore assembly will be terminated by bonding to a

Kevlar•-47 fabric strip approximately 6.35 mm wide by 0.13 mm thick.

2.4,2 55-Meter-Diameter Reflector Test Equipment

The reflector model ribs will be supported by a system of test equip-

ment during furling and deployment operations. This test equipment

will be a passive overhead support system that progressively offloads

the weight of r-ho ribs and mesh as they are unfurled from the central
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Figure 41. Gold Plated Molybdenum Wire Mesh
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hub mechanism. The test equipment will consist of four fixed overhead

support rails on each of which, four sets of balance beam/carriage as-

semblies will ride. These balance beams will be attached at • predeter-

•	 mined positions during the deployment.

The natural motion of the ribs will be tracked by the carriage assem-

blies in the radial direction and by the balance beams in the vertical

and lateral directions. To maintain the rib positions approximately

colinear with the overhead support rails the hub will be mounted to a

platform that rotates opposite to the direction of ring that moves the

deployment tape assemblies.

This simple, passive overhead support system that provides three de-

grees of freedom offsets gravitational forces and moments during de-

ployment and will support the deployed model in such a way that distor-

tion of the parabolic shape is minimized.

2.4.3 Reflector Model Fabrication and Assemblv

Manufacturing of the 55-meter-diameter model ribs will require the fab-

rication and assembly of right-hand and left-hand GFRP rib segment

halves. Rib halves will be bonded to form the lenticular cross-section

and then mated to the root attachment.

Tuoling for the layup, bonding, alignment, and assembly of the ribs will

be machined from aluminum plate. Engineering drawings generated by com-

puter aided drafting techniques will be used directly to create numer-

ical control tapes for machining the mold surface into aluminum tooling

plates. These individual layup tools will also be used as rib assembly

tooling during the splicing assembly operations. NC witness points will

be machined into the tool to facilitate alignment and inspection.
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The model surface will consist of three gore sections measuring approx-

imately 27 m along the two long sides and approximately 3.6 m opposite

the apex. Gore sections will be fabricated from a single piece of gold-

plated molybdenum wire knitted fabric. A flat pattern layout of the

gore and cord lines will be located on a load table. A uniform pre-

tension will be applied to all four edges of a rectangular panel prior

to cutting it to analytically predetermined dimensions. Rubber strip

magnets will hold the cut gore as the Kevlar edge strips are bonded in

place and the presized cord assemblies are woven into the gore. The

gore will then be folded and rolled onto a large spool for storage until

final assembly to the ribs.

Each of the ribs will be attached to the hub by suspending it from the

overhead support rails and attaching it at its root to a fitting mount-

ed on the hub. The overhead test equipment will be substituted for the

temporary lifting lines. Each of the remaining ribs will be installed

in succeeding order. When all four ribs have been installed and fast-

ened to the hub they will be furled. A rib-only (without mesh) deploy-

ment will be performed to verify functional operation of the hub and

rib assembly before installing the mesh gores.

The gore installation is initiated with the ribs furled on the hub.

Starting at the tips, the gores will be attached to the ribs as they

are deployed outward. The previously fabricated gore assemblies, con-

tained the reinforcement cords, are payed off of their larger storage

spools as the ribs are extended. When the ribs are completely deployed

the final assembly is complete and packaging and deployment testing will

begin.

2.4.4 55-Meter-Diameter Reflector Model Implimentation Schedule

The implimentation schedule for the design, production and test of the
A. a

four rib 55-meter-diameter reflector model is shown in Figure 42. A
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start date of January 1, 1980 has been used. Program completion is in-

dicated as July 1, 1981 producing a program duration of 18 months.

Early activities, initiated at start of contract, are primarily assoc-

iated with rib design, analysis,.and component development tests since

rib production represents the longest and most critical element of the

schedule. These analyses and tests must be completed during the first

three months of the program in order to support the rib tooling design

of sort. Rib component development tests will include coupon level

strength measurements of the selected GFRP material and layup, short

(approximately 2.5 m) beam tests to verify rib wrapping character-

istics, and demonstration of the selected splice and root section de-

signs. Analytical studies will include strength analyses of the rib

(splices and root section), deployed stability analyses, mesh and cord

preload optimization and calculations of rib and gore dimensions re-

quired for tooling design.

Rib design documentation will be in the form of CADAM produced drawings

so that numerically controlled milling machine tapes may be made di-

rectly from design drawings. An order for sufficient tooling material

(recast aluminum)  must be placed during the first quarter. This mat-

erial will be delivered to CALAC where the 10 seperate rib layup tools

will be machined. Layup and cure of the segments will be accomplished

in the LMSC composites manufacturing facility using an existing 24 foot

capacity autoclave. Segment joining (rib assembly) will also be done

in the composites fabrication area.

A critical milestone in the production of the gore assemblies is the

a	 placement of the gold-plated molybdenum wire order with Sylvania. This

•	 wire is delivered directly to Continental Warp Knits where it is knitted

into a continuous piece sufficient to fabricate the three gores. The

major tool associated with the fabrication of the gore assemblies is a

large table on which the rectangular mesh panels are pretensioned, cut,

LOCKHEED MISSILES & SPACE COMPANY. INC.
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and fitted with edge terminating strips. Construction of this table

will be completed by mid February 1981. Assembly of all gores will be

completed by the end of March 1981 and available for installation on

the model.

The hub assembly, which includes the spool and tape deployment mech-

anism, will be completed and functionally tested before the end of

March 1981. Reflector model final assembly will begin at that time.

A facility of suitable dimensions (approximately 55 feet high, 100

feet long and 50 feet wide) will be available by early March for

installation of the overhead test equipment.

Six weeks have been allocated for the performance of the eight scheduled

deployments.

..I
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i	
SECTION 3

CONCLUSIONS

The activities performed in support of this study clearly indicate

that the wrap-rib reflector approach toward achieving large apertures

in space is a viable candidate. A detailed analysis of the design

indicates that diameters of 150 to 300 m are possible. These apertures

exhibit characteristics which will allow operation at frequencies in

the 1 to 3 GHz region. It was further determined that adapting the

concept to an offset geometry antenna is not only feasible but allows

the concept to be extended for additional performance in either freq-

uency or diameter. The mast configuration developed has been shown to

be computable with both the STS constraints and the antenna thermal

stability requirements.

The cost algorithm results indicate that the large apertures are going

to be expensive if pursued to the limits of technology. However, the

results also indicate that the technology impacts on cost do not become

a major driver until 150 m in diameter is exceeded. At 150 m in dia-

meter a 2 to 3 GH reflector is forecasted to have a cost that is reason-

ably dependent on the system weight (ref. Figure 42) and not driven by

manufacturing and assembly precision as indicated by the slope of the

cost growth curve.

The ability to forecast technology growth over one and one half orders

of magnitude must be questioned. Therefore the final conclusions

should be conservatively stated and reflect these scaling concerns.

These restrained conclusions are as follows:

o Offset wrap rib antennas up to 150 m diameter are feasible

for operation at 2 to 3 GHz.
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• STS compatibility is not a design driver.

• Cost and technical risks indicate a new data base re-

quired prior to undertaking 100 to 150 m designs.

• Further activity should include active surface control

and control systems interaction studies.
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SECTION 4

RECOMMENDATIONS

W

The results of the investigation were surprising and satisfying. Pro-

jections indicate the appropriateness of the Wrap-Rib for large dia-

meter antennas. Technically however, there are concerns which must be

addressed prior to a development program undertaking. The projected

costs and technical risks indicate the necessity of developing an early

data base at a size which could comfortably be analytically* scaled and

which would reduce risk through demonstration. This program, identi-

fied below, would involve developing a testable segment of a 50 m aper-

ture. This would be used to validate the design and provide a scaling

factor of 2 or 3 for the 100 to 150 m missions. The dominant effects

of thermal distortions in the performance projections indicate orbital

surface adjustment may prove cost effective and should be investigated.

Finally, since the design is being defined the stability and control

system interactions and limitations should be identified,

ESTABLISH A COST EFFECTIVE 50 M DATA BASE

• MANUFACTURE AND TEST COMPONENTS/PROCESSES

• ASSEMBLE 1-0 TESTABLE SEGMENT
• DEMONSTRATE DEPLOYMENT AND RETRACTION

• MEASURE DEPLOYED CONTOUR WITH OFFLOADING TEST AID

• UPDATE DESIGN AND DESIGN ALGORITHM

EVALUATE BENEFITS OF INCORPORATING ACTIVE FIGURE CONTROL

• ONE TIME ADJUSTMENT
• CONTINUOUS ADJUSTMENT
• DEGREES OF FREEDOM REQUIRED

• COSTS

INVESTIGATE CONTROL SYSTEM INTERACTION

• DEFINE PRELIMINARY REQUIREMENTS
• INVESTIGATE ACTIVE DAMPING AND DISTRIBUTED CONTROL SYSTEM
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SECTION 5

NEW TECHNOLOGY

There were no applicable new technology items identified during the

conduct of this study.

I	 I
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