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ABSTRACT

The increasing use of broadband, pulse-echo ultrasonics in nondestruc-
tive evaluation of flaws and material properties has generated a need for
improved understanding of the way signals are modified by coupled and bonded
thin-lad ,r interfaces associated with transducers. This understanding is
most impk :ant when using frequency spectrum analyses for characterizing

N	 material properties. In this type of application, signals emanating from

w	
material specimens can be strongly influenced by couplant and bond-layers in
the acoustic path. computer sythesized waveforms were used to simulate a
range of interface conditions encountered in ultrasonic transducer systems
operating in the ?.0- to 8O-MHz regime. The adverse effects of thin-layer
multiple reflections associated with various acoustic impedance conditions
are demonstrated. The information presented is relevant to ultrasonic
transducer design, specimen preparation, and couplant selection.

INTRODUCTION

Ultrasonics for flaw detection and materials characterization is a
significant area i., nondestructive evaluation (NDE) technology (refs. 1-5).
The methodology usually involves broadband transducers in contact with sur-
faces of test specimens. When frequency spectrum analysis is used for char-
acterizing flaws and material properties, the results can be strongly in-
fluenced by couplant and bond-layers associated with the transducer
(ref. 1). These thin bond layers and also interconnecting cables can sig-
nificantly alter tha frequency spectra of high-frequency, broadband signals
such as those used in making ultrasonic attenuation measurements (refs. 2,
4, 5). For example, spectrum distortions can arise from interference
effects due to multiple reflz--tions in thin bond layers. In the case of
couplant layers the magnitude of the pressure applied to the ultrasonic
probe determines the resultant couplant thickness. Couplant thickness is an
important factor in determining the character tod acceptability of the sig-
nals from a mater ial (refs. 1, 5, b). The magnAude and nature of signal
distortions caused by bond-layer and couplant ^iilckness variations and their
related acoustic impedance effects are oftentimes ignored and inadequately
understood.

This report treats the effects of thin couplant and bond-layers asso-
ciated with transducers. Computer simulation methods are used to illustrate
the way signals emanating from material specimeris can be distorted by thin
layers in the acoustic path. Examples are given to demonstrate the adverse
effects of thin layers and also coaxial cables. In addition, conditions
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under which satisfactory results can be obtained are presented. This paper
is believed to be the first attempt to give a systematic account of thin-
layer effects as a function of layer thickness and acoustic impedance rela-
tive to adjacent materials. The information presented herein is relevant to
broadband transducer construction, specimen preparation, and couplant and
bond selection and can be an aid in recognizing unacceptable waveforms aris-
ing from signal distortions.

APPROACH

The key parameters examined are couplant and bond-layer thickness var-
iations and acoustic impedances of materials commonly occurring in contact
ultrasonic involving broadband, buffered probes (refs. 2-5). The frequency
range considered is from approx` r ately 20 to 80 MHz, centered at 50 MHz.
This range is important in the ultrasonic characterization of the mechanical
properties of a variety of materials. It is also a range in which the ad-
verse effects of thin layers become significant. The associated layer
thickness are from zero to 50 um which correspond to the wavelengths in-
volved.

The experimental difficulty of actually varying layer thickness at
uniformly spaced intervals from 0 to 50 um for a number of material com-
binations is avoided by use of a computer simulation technique. Using this
approach, mathematically synthesized waveforms are analyzed by means of a
high-speed digital computer and array processing algorithms. The physical
acoustics are straightforward, based on the premise of plane elastic waves.
The results can be shown to be in excellent agreement with effects that can
be observed by direct experimentation, as discussed later.

The transducer-specimen configuration illustrated in figure 1 is taken
as a model (refs. 7, H). As indica ,ced in the figure, the principal material
components are an absorber, a piezoelectric element, a buffer, bond layers,
a couplant, and the test specimen. The analysis is restricted to considera-
tion of a broadband, ultrasonic pulse signal moving from the specimen into
the piezoelement and thence into the adsorber. The buffer serves primarily
as a delay line that isolates the piezoelement and specimen. The purpose of
the adsorber is to prevent reentry of signals into the piezoelement.

Although the analysis herein treats acoustical reverberations in thin
layers, the results are analogous to electronic reflections in coaxial
cables used to couple the transducer to a receiver network, as discussed
later. In all cases herein, the actual ultrasonic waves in the materials
are depicted and referred to in terms of their electrical signal analogs,
such as those emitted by the piezoelement in response to a transient pres-
sure wave.

GOVERNING EQUATIONS

A series of configurations, each involving three materials, are treated
in accordance with the schedule given in table 1. In each case, the central
material is the thin layer of bond or couplant. Transmission of ultrasonic
signals through the thin layer is analyzed by using the conventions illus-
trated schematically in f:-,,,,lure 2. As shown in the figure, signal progres-
sion is from material L-] through [2] into [1J. (The wave vectors are nor-
mal to the interfaces, not oblique as shown for schematic purposes,)-
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In general, the acoustic impedances of the three materials will differ
and hence give rise to the indicated multiple reflections within the thin
layer. The signal, E, that emerges in material Llj will tend to be an un-
resolved composite formed by superposition of the successive thin-layer re-
flections E O through E N . Once formed, E is unresolvable into its
components unless the layer thickness exceeds the mean wavelength of the
source signal, S. The spectrum of E will differ from that of S by vary-
ing degrees depending on layer thickness, acoustic impedances, and attenua-
tion in the layer.

The transmission, T, and reflection, R, coefficients for the interfaces
[1] - L1] and ^2] - L 3j are ^,i ven in terms of the acoustic, impedances, Z,
with dual subscripts indicating direction (ref. 9).
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^ Z3 } ZL,

The amplitAes of the successive reverberation signals EO to EN
are determined by tramission and reflection coefficients and layer thick-
ness, t, and attenuation coefficient, A:

C  = ST 3L,exp(-At)

E1 = EhIR23 exp(-^At)

(S)
E1	 E0R21R23 exp(-4At)

E N = EOR G1R23 exp(-ZNAt)

Each successive signal lags tie preceding one by the layer "round trip"
delay time, d, where d = A /v, and v is the velocity in the layer. The
composite signal E is formed by summing time-domain amplitude waveforms,
each displaced by the parenthetically indicated delay:

E = E  + E 1 (-d) + E 1 (-2d) + ... + EN (-Nd)	 (b)

This type of summation is readily ;accomplished by computer processing of
waveform arrays.

In the special case where the acoustic impedance of the layer equals or
closely approximates that of one contiguous material (i.e., Ze a Z3 or

Z2 s Z1),
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exp(-At)	 (1)

where TjI - dLjj(Lj + -7 1). AS layer thickoess approaches zero, L o , Sljj•

WAVLFORM SYNTHLSIS

The starting waveform, S, is synthesized from ideal amplitude and phase
spectra. The procedure is illustrated in figure J. To assure that the syn-
thesized waveform is authentic, an actual signal is acquired, digitized, and
analyzed in polar form by Fourier transformation. By using the real waveform
as a model, classical Gaussian amplitude and linear phase spectra are
created. Inverse Fourier transformation is used to synthesized a source
waveform, S. This procedure assures that any subsequent distortions become
evident upon inspection of the composite waveform, E. The synthetic wave-
form, S, is normalized to I volt (minimum to maxima;) and thereafter used as
a standard source signal for a particular center frequency and bandwidth.

Computer processing of S proceeds with the creation of waveform

arrays for LO through EN in accordance with the preceding equa-
tions. Economization of computer time requires selection of thesmallest
permissible number, N, of thin-layer reflections consistent with simulation
of actual conditions. Selection of N - IU is satisfactory for the range of
materials and conditions investigated herein. This follows from the fact
that the amplitude of each successive reflection is diminished exponentially
according to the attenuation coefficient of the layer material.

The outp ut composite waveform, L, is synthesized by array addition of
corresponding time-domain elements of EO through EN. This corre-
sponds to matrix addition of amplitudes of the N pressure wave coirpo-
nents. The composite waveform, E, is subsequently Fourier transformed into
polar amplitude and phase spectra and the results are exhibited graphically,
as explained in the next section.

USULTS

Tho results presented are restricted to a few key material combinations
that illustrate pivotal conditions. 'Ifiese materials and acoustical proper-
ties are listed ill table 11. 

Tile 
graphical results and associated data are

organized and presented in the order indicated in table 1, in seven sets of
figures, figures 4 to 10. The first figure in each set summarizes tile data
associated with the remaining figures. The remaining figures in each set
appear in order of increasing layer thickness and show variations in the
composite waveform, E, and its amplitude spectrum as layer thickness in-
creases from zero to 40 pm. For all the material combinations examined, tile
phase spectra remain linear, with no significant change in slope, and ex-
hibit no interesting features with increasing layer thickness. Phase spec-
tra are therefore omitted.

In figures 4 to10, the OUI/IN amplitude gives the current value of the

ratio E/S for each thickness. The RNIS (root mean square) energy level is
the ratio of the current energy of L relative to its initial value at zero
thickness. The variation of the RMS energy level with layer thickness is
shown in the summary graphs at the beginning of each set of figures. Spec-
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tral skewing is a measure of signal distortion and is computed as percent

displacement of the current peak frequency from the nominal (i.e., original)
peak frequency associated with the undistorted waveform at zero thickness.
The dashed curve in the amplitude spectrum graph is included to show the
amount of spectrum distortion that accompanies increasing layer thicknesses.

UISCUSSION

For material combinations having poorly matched acoustic impedances,
the least energy transfer (i.e,., r.iinimum RMS energy for the composite sig-
nal E) occurs at layer thicknesses of 114 wavelength (figs. 4(a), 7(a), and
9(a)). Under this condition destructive interference prevails. A secondary
maximum follows at layer thicknesses of 1/2 wavelength because of construc-
tive interference. The relative normalized RMS energy levels of these
minima and maxima are identical irrespective of the source-signal center
frequency. For example, at 20 MHz center frequency, RMS curves are similar
to those in figure 4(a) except that they "stretch" to the right, i.e., the
1/4 wavelength minima occur further to the right and initial negative slopes
are less.

The adverse effects of multiple reflections in thin layers become ap-
parent by comparing amplitude spectra shown in figures 4, 7, and 9 for 112
wavelength layers. For example, figures 4(h), 7(1), and 9(i) illustrate a
classical reduction in spectral bandwidth as the result of a "ringing"
layer. These figures contrast sharply with the virtually undisturbed broad-
band spectra obtained with impedance matching (figs. 5, 6, d, and 10,
e. g .). Figures 4, 7, and 9 also illustrate that although RMS energy reduc-
tion with increasing layer thickness may appear tolerable, the associated
spectral distortions can be quite unacceptable. Certainly, any procedure
that relies on sQeetrum analysis must at least take account of such distor-
tions and avoid them, if possible.

When different materials are combined, there are practical limitations
on the ability to control acoustic impedances. By way of compromise, an
alternative to perfectly matched impedances would simply require, for exam-
ple, that

L1 < Z z < Z, or Z 1	Z2 > Zj

wherein the layer acoustic impedance lies between that of contiguousmate-
rials; see figures b, 6, H, and 10. In these cases, there is a much smaller
loss of signal strength due tj reverberations: the RMS level of E drops
by less than 5 percent as compared with -50 percent (fig. 5(a) vs. fig.
4(a)) as layer thickness approaches 1/2 wavelength. Moreover, inteference
effects become insignificant relative to attenuation, as predicted by the
previous equation for Z2 a Z1 or Z2 0 Zg, equation (7). Energy

loss due solely to attenuation is indicated by the dashed lines in the first
graph of each set (figs. 4 to 10). Examination of figures 5(a), 6(a), 8(a),
and 10(a) indicates that for layers with intermediate impedances the compo-
site signal will have only slight or no distortion because it is merely
diminished by attenuation in the layer.

Close attention to coupling conditions in contact ultrasonics has been
urged by previous investigators (refs. 1, 5, 6). Optimum coupling demands
virtually perfect flatness for the buffer-specimen interface and the appli-
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cation of substantial force to minimize the couplant layer. figure 4 shows
that in the C0- to 80-MHz range couplant thickness should be less than ap-
proximately 1 um to avoid serious spectral distortions in the case of the
typical materials: fused quartz, glycerine, and steel. This requirement is
primarily a result of the acoustic mismatch of the glycerine with the con-
tiguous materials. Among the practical alternatives to glycerine that are
convenient and safe to use (water, oils, gels, silicones), none have acous-
tic impedances that are significantly different.

It is apparent in figure 5 that an ideal fluid couplant, fluid- X, would

have an acoustic impedance close to that of the buffer material (e.g., glass
or quartz). It would allow free movement of the transducer over the speci-
men surface and would relax surface r la^ness tolerances. Fluid-X also
allows the couplant-layer thickness to exceed 10 um without serious con-
sequences on signal fidelity. Methylene iodide would qualify as fluid-X
with an acrylic buffer; see figure 6. In cases where the very low attenua-
tion and ruggedness of fused quartz are preferred, potential candidates for
fluid-X are colloidal suspensions of submicrometer particles of metal, metal
oxides, or ceramics. Gallium may be useful in restricted applications since
it liquefies at -30' C and readily wets glasses.

The effect of couplant thickness variations shown for synthetic wave-
forms in figures 4(b) to (1) can be readily verified by applying increasing
force to a specimen held against a similar buffered transducer. The source
signal can be the first echo from the free back surface of the specimen. AS
the pressure is increased and the couplant thickness diminishes, a sequence
of waveforms on an oscilloscope will duplicate those appearing in the fig-
ures. if the buffer and specimen surfaces are sufficiently flat, and the
couplant thickness is uniform to within 1 urn, an essentially undistorted
waveform will be observed, if the transducer itself is free of internal dis-
torting layers.

As indicated in figures 8 and 10, bond-layers (within the transducer)
with intermediate impedances yield good signals over a thickness range of
approximately 40 um. These examples assume that the absorber and bond both
consist of tungsten-loaded epoxy. The ideal situation would be to cast and
cure the absorber material in place and thus avoid the bond-layer al
together. However, better properties are achieved if the absorber material
is formed separately under high-pressure curing (ref. 7). The previous
reference also suggests tailoring tungsten-loaded epoxy bond-layers that
approach the acoustic impedance of PZT piezoelements (see table 11). To
satisfy broadband damping conditions, the bond-layer on either side of the
piezoelement should have either slightly higher or slightly lower acoustic
impedance (ref. 9). The results presented herein suggest that the bond-
layer thickness is not critical under this condition, and therefore, it does
not need to be held to a few micrometers.

It can usually be assumed that the ultrasonic receiver, oscilloscope,
and associated electronic networks amplify and reproduce signals emitted by
the piezoelement in a consistent-manner. However, the coaxial cable that
links the transducer to the electronic network can introduce severe distor-
tions in the signal. In this case, the cable is analogous to a thin layer
sustaining multiple reflections. Resultant waveform distortions can be
shown to be identical to those appearing in figures 4, 7, and g as a result
of thin-layer reverberations. For coaxial cables having lengths of approxi-
mately l m, delay times are in excess of 3 nsec, and they are or the same
order as delays in thin layers several micrometers thick.

b
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ro assure undistorted signal transmission, there should be electrical
impedance matc^ing of the (;able to both the transducer and electronic net-
work. The impedance of the cable should match ti ►e 50-ohm terminations con-
ventionally provided in ultrasonic systems. Nevertheless, additional fine
a 0ustment may be required and can be provided by adding variable resistors
at either end of the cable, as illustrated in figure I.I. A "damping' resis-
tor for this purpf)se is usually shunted acrobs the cable input connector in
ultrasonic receivers. A variable, auxiliary damping resistor built into the
transducer housing, as in figure 11, great 'ry enhances signal fidelity. The
author has found this auxiliary impedance matching capa.'W ity indispensible
for correcting aberrations peculiar to commercial transducer assemblies.
Impedance adjustments at both ends of the cable provide a means to compen-
sate for the effects of electronic and acoustic reverberations.

It is worth becomming familiar with the renegade waveforms shown in the
examples given herein. Any waveform having pronounced asymmetry or Excess
ringdown oscillations should be suspect unless it is recovered from a mate-
rial sample known to introduce distortions (as with coarse grains, lamina-
tions, etc.). Illustrative examples of acceptable and unacceptable wave-
forms produced by varying the auxiliary damping resistance, and hence the
degree of cable impedance matching, appear in figure U. Any adjustment in
coupling, bonding, and cable impedance matching will, of course, change the
"system" modulation transfer characteristic. However, these adjustments are
discretionary and should be made for convenience in subsequent deconvolu-
tions of signals recovered from specimen materials.

tONCtUSIONS

Computer synthesis was used to simulate thin couplant and bond-layer
effects associated with broadband ultrasonic transducers. It was shown that
these Oin layers in the acoustic path can produce distortions in ultrasonic
signals and that These distortions become apparent and serious in the fre-
quency regime from approximately 20 to 80 MHz. Selected examples are given
to illustrate the potentially adverse effects of thin layers and practical
approaches to recognizing and minimizing these effects. The results support
the following conclusions:

1. When couplant or bond-layer acoustic impedances are significantly
less than those of both of the contiguous materials joined (as with quartz,
glycerine, and steel), the layer thickness should be less than 1 um to avoid
adverse signal distortion effects. This imposes a similar limitation on
specimen surface flatness variations, which should be held to fractions of a
micrometer in the transducer contact area.

2. The preceding toleran-e limitation is removed when acoustic imped-
ances of couplant or bond-layers are intermediate between those of the mate.,
rials joined. In this case, exact matching of the layer and contiguous
material acoustic impedance is unnecessary, and the layer thickness can
exceed several tens of micrometers. In the cases illustrated, the signal is
merely diminished by attenuation in the layer while distortions are mini-
mized or absent.

3. Additional corrections to enhance signal fidelity can be made by
inserting an auxiliary damping resistor in the transducer housing to comple-
ment an input damping resistor in the receiver housing and thereby compen-
sate for adverse reverberation effects introduced by cable or transducer
impedance mismatch effects.

y^ a



The use of computer-simulated experimentation involving synthesized
waveforms has clarified questions concerning multiple reverberation effects
in thin layers. Additional work using this approach is recommended to study
the effects of compound layers within transducers (relative to piezo
elements) and within material specimens (with lamellar microstructures).
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TABLE 1.	 SLHEDULE OF MATERIAL LONFIGURATIONS ANALYZED FOR THIN -LAYER

ENERGY TRANSFER AND MULTIPLE-REFLELTION EFFELTSa

Principal
variableb

Parametric

relationq

Material sequenced Results,
figure -

[1 J L2J
C,

Coup l ant
thickness

Z1 > Ze < Z3 Buffer
(quartz)

Loup l ant
(glycerine)

Specimen
(steel)

4(a)-(1)

ZI < Z< < Z3 Buffer
(quartz)

Louplant
(fluid-X)

Specimen
(steel)

5(a)-(f)

Z1 < Z2 < Z3 Buffer
(acrylic)

Louplant
(M-iodide)

Specimen
(steel)

6(a)-(f)

Bond-layer
thickness

Z1 > Z ? < Zs Piezoelement
(PZT)

Bond
(epoxy)

Buffer
(quartz)

7(a)-(1)

Z1 > Zz > Z3 Piezoelement
(PZT)

Bond
(W-epoxy)

Buffer
(quartz)

8(a)-(f)

Bond-layer
thickness

Z1 > Z< < Z,$ Absorber
(W-epoxy)

Bond
(epoxy)

Piezoelement
(PZT)

9(a)-(i)

Z1 < Z Z < Z3 Absorber
(W-epoxy)

Bond
(W-epoxy)

Piezoelement
(PZT)

10(a)-(f)

aResults cover nominal range from [O to 80 MHz centered at 50 MHz.
bThin-layer thickness ranges front zero to 40 pin at 1-um steps.

cAcoustic impedance, Z, is the pr r duct of density by (longitudinal) velocity.

aMaterial properties and further identification appear in table 11.
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TABLL 11. - SLLLLTIU MA1`ERI ALS, ALOUSTIu PROP<RTILS, ANU HUNLr IONS

Function Materiala Density,b Velocityc impedanced
9/cm3 cm/psec 9/cm4usec

Piezoelectric FZT (4 or b) 7.0 U.dyb 3.0^

transduction lead-zirconate (1.b-7,1) (0.,^8-0.41) (C.ti-s,[)

element niobate ceramic

Absorber, W-epoxy, 40 to 11 & It 0.41 e..s & t.b
piezoelement 5U percent (10-13) (0.17-0,44) ;1.7-4.1)
backing tungsten powder

in epoxy resin

Adhesive bond Epoxy resin Lee U.tb U.3z
1-1.3) (0 . 44-0.a) (0. td-O.,sb)

Uuffer, delay fused quartz, i.eu 0.59b 1.4

quartz glass (U.b9-O.bO ) (1.3U-1.31)
Acrylic resin 1.18 (0.457-0.47) (U.sib-O.Ji`J)

L,ouplant Glycerine 1.4b 0.192 0.e44
Methylene . iodide 3.33 .098 .0 o
Water	 ( [q	 !..) 1.OU .148 .148

Specimen Mild steel 7.60 O.b9b 4.b8
Stainless steel 7.1e ,598 4.bd
Maraging steel 8.03 .bb 4.4

aTabulation is limited to materials selected asrepresentative for
the purposes of this report in illustrating `hin-layer effects.

bProperty values not in parentheses are used for illustrative cases,
parenthetical values are quoted to ind icate actual range of variation.

cLongitudinal ( compressional) ultrasonic wave velocity.
dAcoustic impedance, Z, equals product of density and velocity,
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THIN LAYER o*xcY 'TRANSFER AND INTERFERENCE EFFECTS AT 50 MHZ

MATERIAL SYSTEM 	 DENSITY	 VELOCITY	 IMPEDANCE

SCOVENCE	 (GiCM3)	 (CMrus)	 (f3CMZUS)

C13 FUSED OUARTZ (MUFFER) 	 212	 .593	 1 309
C23 GLYCERINE (COUPLANT) 	 1,26	 .192	 24192
C33 STEEL (SPECIMEN) 	 7.03	 .396	 4 67"

THIN LAYER C23 ATTENUATION COEFFICIENT n 60 HP,0CM (AT 50 MHz)

COMPOSITE SIGNAL Rt1S ENERGY (SOLID CURVES) t ATTENUATION (DOTTED CURVE)
1.1	 1.1

0 •,,,,,,,,,,,
	

•

.7	 7
,6	 .6
.3	 .5
.4	 .4

LAYER THIC*EU# MICROH3	 MWALIENGTHS IN LAYER I(IO

(a)

C13 FUSED QUARTZ (DVFFER) C23 GLYCERINE (COUPLANT) C33 STEEL (SPECIMEN>

LAYER C23 THICKNESS n 0 MICRON	 OUTiIH AMPLITUDE n .437237

WAVELENGTHS IN LAYER n 0	 RMS ENERGY LEVEL n 1

AT NOMINAL FREQUENCY n 50 MH2	 PEAK FREQUENCY • 50 MiZ

LAYER DEWY n 0 HAHOSEC	 SPECTRAL SKEWING n 0 R

IE`-33 
V	 COMPOSITE SIGNAL	 IE10 VS	 LIT	 .P:CTRt7'

40a	 • ,.

200	 6

0 •	4

-2b0	 2

-400	 •

MEGAHERTZ
(b)

f.

u

LAYER C23 THICKNESS n 2 MICRON

WAVELENGTHS IN LAYER 0320033

AT NOMINAL. FREQUEHCY n 50 MHZ

LAYER DELAY n 2.08333 NANOSEC

lE-3 V
6.00	 COMPOSITE SIGNAL

400

200

0

OUT/IN AMPLITUDE n .272133

RMS ENERGY LEVEL n .610224

PEAK FREQUENCY n 48 MHZ

SPECTRAL. SKEWING n -4 %c

SE-9 US	
AMPLITUDE SPECTRUM

le

•

6

4

2

0

aAt+1'

yap

HAM09ECOHDS	 MEGAHERTZ
(C)

Figure 4, - Degeneration of composite signal and its fre-
quency spectrum as glycerine couplant layer thickness
between quartz buffer and steel specimen increases from
0 to 38 micron. Illustration of case where layer im-
pedance is less than that of either contiguous material,
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Figure 5. - Variation of composite signal and its fre-
quency spectrum as Couplant layer thickness between
quartz buffer and steel specimen increases from 0 to

-.	 30 micron. Illustration of case where layer impedance
is intermediate between that of contiguous materials.
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THIN LAYER ENERGY TRANSFCR AND INTERFEREHCE EFFECTS AT 50 MHZ

MATERIAL SYSTEM	 DENSI1Y	 VELOCITY	 IMPEDANCE
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Figure b,. Variation of composite signal and its fre-
quency spectrum as couplant layer thickness between
acrylic buffer and steel specimen increases from 0
to 30 micron. Illustration of case where layer im-
pedance is intermediate between that of contiguous
materials,
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THIN LAYER ENERGY TRANSFER AND INTERFERENCC CFFECTS AT 31 MHZ
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Figure 7. - Degeneration of composite signal and its fre -
quency spectrum as bond layer thickness between PZT

piezoelement and quartz buffer increases from 0 to 38
micron. Illustration of case where layer impedance is
less than that of either contiguous material.
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Figure 7. - Continued.
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Figure 8. _ Variation of composite signal and its fre-
quency spectrum as bond layer thickness tetween PZT
piezoelement and quartz buffer increases from 0 to
30 micron. Illustration of case woere layer imped-
ance is intermediate between that of contiguous
materials.
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Figure 9> - Degeneration of composite signal and its fre-
quency spectrum as bond layer thickness between tungsten-
epoxy absorber and PZT'piexoelement increases from 0 to
26 micron.. Illustration of case where layer impedance
is less than that of either contiguous material.
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Figure 10. - Variation of composite signal and its fre-
quency spectrum as bond layer thickness between tungsten-
epoxy`absorber and PZT piezoelement increases from 0 to
30 micron. Illustration of case where layer impedance
is intermediate between that of contiguous materials.
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Figure 10. - Concluded.
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Figure 12. - Waveforms and frequency spectra associated
with acceptable and unacceptable signals. Waveform

series was generated by increasing electrical imped-
ance mismatch of cable and transducer via the auxiliary
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resistance increases from top to bottom, 2 to 50 Ohm,
approximately.
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