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ABSTRACT

An elastomer damper has been designed, tested, and compared with the

performance of a hydraulic damper for a power transmission shaft. The six-

button Viton-70 damper was designed so that the elastomer damper or the hy-

draulic damper could be activated without upsetting the imbalance condition

of the assembly. This permitted a direct comparison of damper effectiveness.

The results show that the elastomer damper consistently performed better

than the hydraulic mount and permitted stable operation of the power trans-

mission shaft to speeds higher than obtained with the squeeze film damper.

Tests have been performed on shear specimens of Viton-70, Buna-N, EPDM,

and Neoprene to determine performance limitations imposed by strain, tempera-

ture, and frequency. Frequencies of between ii0 Hz and ii00 Hz were surveyed

with imposed strains between 0.0005 and 0.08 at temperatures of 32°C, 66°C,

and 80°C. From this data a set of design curves have been generated in a

unified format for each of the elastomer materials.
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I- SUMMARY

A program has been undertaken to: (i) determine the effectiveness of

an elastomer damper and compare it to that of a hydraulic mount on a power

transmission shaft and (2) determine the effects of frequency, strain, and

temperature on the dynamic properties of Viton-70, Buna-N, EPDM, and

Neoprene.

The Viton-70 elastomer damper has clearly showed its viability as an

effective rotor damper on the power transmission shaft. The elastomer per-

mitted higher operational speeds of the rotor and excellent control of syn-

chronous and nonsychronous excitation through all phases of testing. The

Viton-70 damper was superior to the hydraulic mount. The elastomer damping

capabilities were predictable and offered no special problems in this rotor

application.

EPDM, Viton-70, Buna-N, and Neoprene shear specimens were subjected to

a schedule of frequency, temperature, and strain. The maximum loss coeffi-

cients obtained were for Viton-70 at 32°C. EPDM, unlike the other materials,

showed a decrease in loss coefficient with increasing frequency. All mate-

rials showed a decrease in loss coefficient of between 0.i and 0.2 at 500 Hz

and 80°C. Viton-70 had the largest value of loss coefficients, approaching

1.0 at i000 Hz and 32°C.





II - INTRODUCTION

A shaft operating above one or more of its critical speeds is subjected

to any number of destabilizing mechanisms. Splines, material hysteresis,

aerodynamic forces, and fluid bearings can and do produce rotor loads which

encourage instabilities. With the trend towards higher power density gas

turbines and more compact power transmission shafting with long unsupported

shafts operating at higher speeds, significant expenditures of manpower and

facilities are required to insure safe, reliable operation.

Balancing technology has matured to a point at which the control of

synchronous vibrations is generally not an inhibiting factor in rotor design.

However, the Control of nonsynchronous excitations may require additional

consideration, such as the use of a hydraulic mount or squeeze film damper

to dissipate undesirable vibration and stabilize the rotor bearing assembly.

It is not surprising then to find squeeze film dampers on•a wide variety of

high-speed rotating machinery. But a squeeze film damper is expensive in a

number of ways. Close tolerance machining, oil supply, and associated plumb-

ing are generally required.

It is desirable to find a convenient dry compact damper which offers a

wide range of stiffness and damping characteristics and which can achieve

the same control of rotor vibrations offered by the squeeze film. However,

factors which have inhibited the growth and applications of elastomer dampers

are the limited availability of design-oriented data on their dynamic per-

formance, environmental stability, and consistency of predictable performance.

For several years, a program has been pursued at Mechanical Technology Incor-

porated (MTI) whose intent is to quantify dynamic performance of elastomer

dampers, to provide the capability to design for desired characteristics, to

evaluate the effects of environment, to demonstrate the effectiveness of

elastomers in vibration control, and to assess problems which may occur in

applications to high-speed rotating machinery. References i, 2, 3, and 4

document previous work under this MTI program.

Under this program a powerful test method for determining elastomer

component properties has been developed, entitled "The Base Excitation



Resonant Mass Method." This test method employs a large electromagnetic

shaker on which test specimens are mounted. The test specimens comprise a

one-degree-of-freedom spring-mass-damper system in which a variable mass is

excited at or near the resonant frequency of that mass mounted on an elasto-

meric spring. Transmissibility and phase angle across the elastomer spring

are measured and, in the region of resonance, allow accurate determination

of both stiffness and damping.

Under past test programs the effects of excitation frequency, specimen

geometry, environmental temperature, dynamic strain, and material have been

tested. Empirical approaches to predicting component properties have evolved

and their effectiveness has been evaluated under both translatory and rotat-

ing excitation.

As will be shown, the influence of strain was pronounced on each of the

materials tested: Viton-70, EPDM, Neoprene, and Buna-N. However, unlike

previous data obtained for polybutadiene (ref. 1), strain did not necessarily

provide a better unification of the data for all materials. In fact, for

Buna-N consistency of data was more apparent when plotted versus frequency.

Viton and Neoprene exhibited an increase in loss coefficient with

frequency and a decrease in loss coefficient with temperature, typical of

materials operating in the rubbery region. Buna-N does not show a consis-

tent decrease in loss coefficient with temperature and, in fact, for low

frequencies (less than 300 Hz), the loss coefficient increased between 32°C

and 66°C. EPDM shows a similar behavior with temperature and, in addition,

a pronounced increase in loss coefficient with frequency for all tempera-

tures, indicating a possible transition region behavior for this elastomer.

As a further part of this program, MTI has been actively engaged in

evaluating the dynamic properties of elastomers as well as evaluating their

potential for practical applications. To permit a comparison of an elasto-

meric damper with a squeeze film damper, a power transmission test facility

with an existing squeeze film damper was fitted with an interchangeable

elastomeric damper. The drive shaft tested was formed from a section of

aluminum tubing, 7.62 cm (3 in.) in diameter, 3.66 m (12 ft) long with a

wall thickness of 3.175 mm (0.125 _n.).
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Design requirements for the elastomeric damper included consideration

of shaft diassembly and reassembly imbalance changes. The elastomers were

required to replace the squeeze film damper, without the necessity of shaft/

damper disassembly. An outer ring elastomer support was fabricated as a

split ring and consequently could be removed without disturbing the shaft

balance. This change was made to the damper using six Viton-70 buttons

(3 equally circumferentially spaced on each end), 0.635 cm (0.25 in.) in

diameter, 0.635 cm high and preloaded to 10% strain. The six buttons pro-

vided a stiffness of approximately 7 x 105 N/m (4000 ib/in.) with a loss

factor of 0.75. This stiffness and damping selected was based upon a rotor

dynamics optimization study performed for both the squeeze film and elasto-

meric damper.

As will be shown, the elastomeric damper was clearly superior to the

squeeze film. Even when the shaft was carefully balanced just for squeeze

film operation, the elastomer constantly permitted high-speed operation.

Later balancing with the elastomer in place permitted safe operation to

13,000 rpm, i000 rpm higher than achieved with the squeeze film. As the

maximum speed of this rotor has been restricted in past operation due to

subsynchronous excitation of the first mode (16 Hz), the elastomer clearly

demonstrated its ability to control synchronous as well as nonsynchronous

excitation and its viability as a damper for high-speed rotating machinery.





III - DESIGN OF ELASTOMER DAMPER FOR POWER TRANSMISSION SHAFT

Test Facility

The test facility used for this project was designed and constructed

at MTI for demonstrating the use of supercritical shafting. A sketch of the

test rig is presented in figure i. A 224-kW (300 horsepower) electric motor

is the prime mover for this facility. The motor drives a variable-speed

magnetic couplingwhile output speed is continuously variable from 50 to

3600 rpm. A gearbox with a ratio of approximately 5.7:1 was used to produce

a drive-shaft speed of up to 20,000 rpm. The test shaft was formed from a

section of aluminum tubing 7.62 cm (3 in.) in diameter and 3.66 m (12 ft)

long with a wall thickness of 3.175 mm (0.125 in.). Early testing without a

damper did not permit rig operation above 1200 rpm due to an instability

resulting from the subsynchronous excitation of the first critical speed at

16 Hz (ref. 5). The stability problems identified during this early stage

of testing clearly established that some form of external damping, coupled

with balancing, would be required to control shaft vibrations.

Several methods for applying external damping were investigated. An

oil squeeze film type damper was initially selected, based upon its proven

reliability and predictability in the level of damping achieved. Optimiza-

tion studies performed for the squeeze film had shown (ref. 5) that a hy-

draulic mount 7.62 cm (3 in.) long, 10.16 cm (4 in.) in diameter and with a

radial clearance of 0.635 mm (25 mils) would provide the "best" tradeoff in

stability in the first and third mode (the second mode was overdamped).

Testing showed that the dynamic stability of the test rig was improved

as a result of the squeeze film damper (figure 2). However, the addition of

external damping alone could not provide complete control of all test shaft

vibrations; the test shaft also had to be balanced to achieve safe operation

throughout its speed range. Through the combined use of external squeeze

film damping and balancing (ref. 5), the rig was safely operated to over

12,000 rpm while negotiating the first four flexural critical speeds of the

test shaft. This was over I0 times the speed which could be negotiated

without any external damping. The 16 Hz subsynchronous excitation of the

first mode, however, still limited performance (see figure 3).
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Rotor Support Optimization Studies

Previous rotor stability analysis performed for the design of the

squeeze film damper showed that the second mode permits heavy participation

of the damper (figures 4 and 5). This was confirmed by testing as the

second mode was not observed, verifying the stability analysis which indi-

cated a highly damped critical speed when operated with the squeeze film

mount (ref. 5). For the squeeze film damper, the stability assessment moti-

vated a selection of 7.5 x 105 N/m (4000 ib/in.) stiffness with a viscous

damping of 8750 N-s/m (50 Ib-sec/in.) to permit a reasonable tradeoff in the

stability of the first and third criticals and higher modes.

The analysis performed for the power transmission shaft mounted on the

squeeze film is applicable for the shaft mounted on the elastomer dampers.

Certainly, if an elastomeric material could be found to provide relatively

equivalent stiffness and damping to that of the squeeze film, then the opti-

mization would be complete. However, for a given stiffness and material

loss coefficient, the equivalent viscous damping diminishes as higher speeds

are attained, assuming that the stiffness remains fairly constant over the

range of testing. Therefore, an analytic model (figure 6) of the power

transmission shaft was constructed and used to evaluate the first two criti-

cal speeds, the first two modes were selected because:

• The first critical has been the most sensitive and has been

the cause of stability problems in limiting the maximum speed

of the rotor.

• The second critical was found to be overdamped for operation

with the squeeze film. If this mode was not highly damped on

the elastomer, an additional balancing stage would be required.

• Higher modes have generally not been a problem for the shaft

mounted on the squeeze film.

Figure 7 illustrates the effect on the log decrement of the first and

second mode as stiffness and elastomeric loss coefficient are varied. As

show_, for a stiffness range of between 4000-5000 ib/in. (typical of the

squeeze film damper), the log decrement of the first mode is approximately



0.09 and the log decrement of the second mode is greater than 2.0, for a

material loss coefficient of 0.75. This is compatible with the previous

analysis of the squeez e film damper support on the power transmission shaft.

From previous testing of Viton-70 O-rings (ref. 6),value of loss

coefficient of 0.75 was considered reasonable. Further design studies, per-

formed in reference i, indicate that a double row of three equally spaced,

circumferentially located Viton-70 buttons of 0.635 cm (0.25 in.) in diame-

ter and 0.635 cm (0.25 in.) high would produce an approximate stiffness of

7 x 105 N/m (4000 ib/in.).

Elastomer Damper Design

It is desirable, when comparing two damper configurations, namely, a

squeeze film and an elastomeric damper, to be able to accommodate change by

using a modular configuration which may be switched without requiring assem-

bly and disassembly of the system components. This provides not only time

savings, but also, and more important, permits minimum disturbance to the

balanced configuration. The modular, quick interchangeable configuration

was precisely the objective in this program. To accomplish this, a trade-

off had to be made, namely in compactness. Therefore, the design selected

for this work was not considered one which might be characteristic of a

production rotor environment, but one which could provide a meaningful com-

parison between an existing hydraulic mount and elastomeric damper.

Figure 8 illustrates the squeeze film as well as the elastomer design

of the damper for the power transmission shaft. The left side of the illus-

tration presents the squeeze film configuration with an O-ring provided

for added mobility of the mount assembly. The right side shows the modified,

or added parts, (shaded) along with the bumper screws for overload protection,

and the additional proximity probes to monitor elastomer excursions. These

modifications were made to both ends of the squeeze film assembly. To mount

the elastomer elements on the squeeze film assembly does not require dis-

assembly of the damper/power transmission shaft. A split outer ring (fig,

ure 9) permitted the damper to be changed without shaft disassembly. The

two-piece ring has provisions for up to six equally spaced elastomer elements



(three were used for this test). The slots guide the outer support platens

for the elastomer buttons (figure i0). The preload screws were adjusted

for a 10% preload on all buttons. Figures Ii, 12, and 13 show the elastomer

damper assembly mounted on the squeeze film housing. The elastomer buttons

were attached to the upper platens with Reis plastic TWA-1077 adhesive.

Test Setup and Sequence

The rig was originally set up for checkout and initial operation with

the hydraulic mount active. Initial operation of the rig provided difficulty

as repeatability was not apparent. In fact, several "jumps" in unbalance

response were prevalent throughout early testing. Disassembly of the power

transmission shaft and inspection of the couplings showed extreme distortion

of the disk elements comprising the Rexnord couplings. These were replaced,

the power transmission shaft realigned, and testing resumed with the opera-

tion of the shaft satisfactory for this effort.

Figure 14 illustrates the location and designation of the proximity

probes which were active throughout this testing. In addition, phase ref-

erence was provided through a Spectral Dynamics Fiber-Optics Tachometer.

A Digital Equipment Corp. PDP 11/34 was used for automatic data acquisition

and balancing. All data were recorded on a Sangamo Sabre VI recorder. The

test sequence was as follows:

• Run rig with squeeze film to first critical as a baseline

condition.

• Install elastomers and drain squeeze film (do not flush yet

as oil coating provides protection for possible overload con-

dition). Operate through third critical.

• Flush squeeze film (Toluene and Acetone). Operate with elas-

tomer damper.

• Remove elastomers, fill hydraulic mount and compare results

with above.

• Balance for squeeze film operation.

l0



• Drain and flush squeeze film, install elastomers and compare

results with above.

• Operate elastomer damper to maximum operating speed.

ii





IV - TEST RESULTS - ELASTOMER DAMPER FOR POWER TRANSMISSION SHAFT

Figures 15 through 20 provide synchronous response traces (runout cor-

rected) for selected proximity probes. This represents data obtained from

the first balancing attempt using the elastomer damper. The shaft was bal-

anced to 7600 rpm without any special problems. At this speed, the shaft

was climbing the fourth bending mode and, at this point, it was decided to

disassemble the elastomer and activate the hydraulic mount.

The maximum speed obtained with the squeeze film active (without re-

balance) was 3500 rpm as shown in figures 21 through 26. The speed limita-

tion was a result of the very large and rapidly increasing orbits for Probe

#3, as shown in figure 26. A comparison of the response of Probe #3 for

the elastomer and squeeze film damper is shown in figure 27. It is note-

worthy that, although the shaft orbits were larger when thesqueeze film was

in operation which limited the operating speed of the rotor, the damper or-

bits were larger for the elastomer than for squeeze film operation (figures

16 and 22).

With the power transmission shaft still mounted on the squeeze film

damper, additional balancing was performed to reduce the severity of the

first and third mode. The elastomer was then installed, the squeeze film

cavity drained and flushed, and the shaft operated to maximum speed. Fig-

ure 28 illustrates the results. The elastomer, although providing poorer

response through the first critical than the hydraulic mount, did permit

operation through the third mode to 7400 rpm.

In this final configuration, the elastomer-supported power-transmission

shaft was balanced for operation to maximum obtainable speed. Although sub-

synchronous excitation of the first mode again limited the maximum speed of

operation (figure 29), the elastomer damper permitted operation to 13,000

rpm (figure 30), which is i000 rpm higher in speed than achieved at any

time with the squeeze film damper operational.

Observation of operation of the elastomer damper performance did not

show any of the observed severity of nonsynchronous effects previously

13



documented with the squeeze film (ref. 7). In fact, the rig performed in

a consistent fashion with the one/rev dominating all speed conditions at

maximum speed (figure 29). The previously observed cage excitation of lower

modes as well as the two-per-rev excitation of higher modes was not evident

with the elastomer damper, but was present, as previously documented in

reference 7, with operation of the squeeze film.
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V - CONCLUSIONS/RECOMMENDATIONS

ELASTOMER DAMPER FOR POWER TRANSMISSION SHAFT

• The elastomer damper permitted operation of the power trans-

mission shaft to 13,000 rpm; i000 rpm higher than obtained in

previous balancing effort with the squeeze film damper.

• Nonsynchronous excitation of the first mode (16 Hz) limited

the maximum speed obtained with elastomer damper active.

• The elastomer damper provided superior control over the non-

synchronous excitation previously observed with the squeeze film

damper active.

• The low-cost and simple elastomer damper has proven to offer a

viable damper alternative to a hydraulic mount for certain

applications.

• Elastomers are generally restricted to temperature environments

less than 400°F. Efforts to increase this limitation are recom-

mended in order to permit elastomers to be used in applications,

such as gas turbines, where temperatures may exceed this

limitation.

• Future efforts are recommended to evaluate elastomer dampers in

sustaining overload, rotor transient and the effects of oil and

fuel contamination to permit a selection of elastomers which may

sustain many environmental conditions.

• A compact low-cost elastomer configuration, suitable to high

technology advanced rotor designs should be evaluated on engines

such as for the cruise missile mission.
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Vl - TEST PROGRAM - ELASTOMER PERFORMANCE LIMITS

The investigation of effects of strain, ambient temperature, and fre-

quency on elastomer component properties was performed using the Base

Excitation Resonant Mass test method. This test method was developed under

preceding phases of the program and the details are provided in references

2, 3, and 4. For completeness, a brief discussion of the method follows.

The Base Excitation Resonant Mass test method employs an electromagnetic

shaker to apply base excitation to a one-degree-of-freedom spring-mass-damper

system. The e]astomer test elements form the spring and damper upon which a

rigid mass is supported whose magnitude can be varied over a wide range.

The response of the supported mass is a function of the input excitation

and the dynamic characteristic of the spring mass damper system. Acceler-

ometers are used to measure the shaker excitation and the response of the

mass. A tracking filter, phase meter, and digital voltmeter are employed to

determine the amplitude of the input excitation, the amplitude of the response

component at the same frequency as the input excitation, and the phase angle

between input excitation and response. Amplitude across the test specimen

is a controlled, independent variable which is measured by a capacitance

probe.

A computerized data acquisition system acquires amplitude and phase

information for one input accelerometer and three output accelerometers

mounted on the resonant mass and from the capacitance displacement probe.•

In addition, temperature values are acquired via a computer-controlled

scanner from as many as twenty different thermocouples at various locations

in the test specimen. Data is acquired over a range of frequencies for

which resonant or near resonant behavior is observed. The criterion nor-

mally employed is that the phase angle should lie between 15 ° and 165 °. A

wide range of test frequencies is achieved by varying the supported mass

and acquiring data satisfying this criterion for each mass tested.

Data reduction software determines the transmissibility between input

excitation and response and, from this quantity and the phase angle, stiff-

ness and damping of the elastomer test specimen are readily calculated.
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Other quantities calculated include the amplitude across the elastomer and

the energy dissipation per unit volume. The operator is provided with an

immediate printout of stiffness, damping, strain, dissipation, and tempera-

ture values as each test point is completed. These quantities can be re-

viewed for consistency and the point rejected or accepted. Preserved data

is stored on a disk and is available for subsequent summary printout at the

end of each test series.

Figure 31 provides a schematic of the Base Excitation Resonant Mass test

rig. Included in this figure are a number of items not referred to in the

preceding summary description. The preload air spring is a pressurized air

cylinder which can apply a downward force on the elastomer specimen and is

used for all compression tests to ensure that the test elements never go

into tension. The axial motion mass guide spokes are used when very large

masses are supported on the elastomer to ensure that motion is purely verti-

cal and that undesirable rocking motion does not occur. The mass support

air spring is used to relieve the force applied by very large masses to the

test specimen. In the present series of tests, mass values were limited to

those which did not require the axial motion guide spokes or the mass sup-

port air spring. Figure 32 is a photograph of the electromagnetic shaker

with part of the Base Excitation Resonant Mass test rig mounted upon it.

The outer dark-colored metal casing is the outside of the preload air spring

and its means of attachment to the table. Protruding from the top of the

casing is a small added mass; through the side of the casing may be seen

part of a test specimen and to the left of the shaker may be seen a heater

which provides a source of hot air for controlling the ambient temperature

of the elastomer test specimen. Figure 33 is a schematic of the data acqui-

sition system for the elastomer tests. The data acquisition items previously

discussed may now be seen in more detail. In addition to the items previ-

ously discussed, this schematic shows the various ways that the operator

can monitor the testing process, i.e., via oscilloscopes, the temperature

indicator readout, and the teletype terminal.

As shown in figure 34, the typical elastomer shear test specimen em-

ployed in the present series of tests consists of a central square metal

block surrounded by four similar slotted blocks. The slotted blocks are
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clamped to the shaker table and the central mass is attached to each slot-

ted block via an elastomer sheet of approximately 3.15 mm (i/8 in.) thick-

ness and 50.8 mm x 31.75 mm (2.0 in. x 1.25 in.) in sheared area for each

interface. Thus the central block forms the resonant mass. This mass may

be added to by passing a rod through the central hole and adding mass at

the top of the rod. Three output acclerometers are shown mounted On the

central block together with a fourth dummy accelerometer for inertial

symmetry.

Test Plan

For each of the elastomer materials (Viton-70, Buna-N, Neoprene, EPDM)

the test plan followed for this investigation of strain, frequency, and am-

bient temperature effects is defined by tables I, II, and III (pages 22 and 23).

In table I are listed the test series executed for the shear specimen. As may

be seen, a full combination of frequency and strain values was executed at

each of the three ambient temperatures (32°C, 66°C, 80°C).

Table I defines the combinations of strain and frequency which were

executed. Strain values between 0.0005 and 0.08 were tested while frequen-

cies between i00 Hz and ii00 Hz were tested. Table III defines the actual

vibration amplitudes for the shear specimens which were required to achieve

the strain amplitudes of table II. Actual values of strain frequency com-

binations which were tested for each specimen are presented in figures 35

through 46. _

Test Procedure

The following step-by-step process defines the procedure followed by

the operator in executing the tests for elastomer performance limits:

i. A resonant mass is selected and installed.

2. Operator enters information describing the test conditions

and resonant mass.

3. The elastomer test sample cavity is enclosed and the tempera-

ture control system given time to adjust ambient temperature

to the desired value.
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4. With low vibration levels applied to the base of the elasto-

mer holding fixture, frequency scans are conducted until the

approximate resonant frequency of the system is found. It

may be noted here that for a base-excited, single-degree-of-

freedom spring-damper-mass system, resonance occurs at an

angle smaller than 90 ° The deviation from 90° is essentially

determined by the amount of damping in the system.

5. While the predetermined strain in the elastomer test sample

is maintained by adjustment of the shaker power input level,

the vibration frequency is adjusted to obtain the nearest

specified test frequency. Provided none of the acceleration

and displacement signals show signs of abnormalities (distor-

tions or indications of nonaxial motion of the resonant mass),

the operator instructs the computer to acquire data.

6. Computer acquires data in the form of amplitude and phase for

each sensor and temperature for each thermocouple. The com-

puter provides to the operator an immediate calculation of

stiffness, damping, and power dissipation per unit volume

of elastomer along with the raw data from the sensors and

thermocouples.

7. Operator reviews these data and calculated results and indi-

cates to the computer that either the data point is acceptable

or not acceptable (normally it is acceptable).

8. If acceptable, the computer stores the data on a disk file;

if not acceptable, the data point is discarded.

9. The vibration frequency is changed to the next nearest test

frequency (with the phase angle between 15 ° and 165°).

i0. Steps five through nine are repeated for each specified value

of strain.

ii. Tests, comprising Steps 1 through i0, are then repeated with

each of the remaining masses in turn, each mass giving a dy-

namic system with a different resonant frequency, permitting

data to be taken at other test frequencies.
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12. The ambient temperature in the test sample cavity is adjusted

to the next specified value.

13. Steps 1 through 12 are repeated until data at all desired tem-

peratures are obtained.

In addition to testing for dynamic properties, Neoprene, Viton-70,

Buna-N, and EPDM were tested to determine their thermal conductivity, coef-

ficient of expansion, specific heat, and chemical content. Some of these

properties are for use in analytical predictions while other properties are

considered to be of value in design applications. The tests were performed

by the Rubber and Plastics Research Association of Great Britain (RAPRA).

Results are reported in tables IV through VIII.
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TABLE I - TEST PLAN FOR ELASTOMER PERFORMANCE LIMITS

Shear Specimen Tests for Each Material

A. For a temperature of 32°C at each combination of

frequency and strain defined by table II, measure

elastomer stiffness and damping.

B. For a temperature of 66°C at each combination of

frequency and strain defined by table II, measure

elastomer stiffness and damping.

C. For a temperature of 80°C at each combination of

frequency and strain defined by table II, measure

elastomer stiffness and damping.
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TABLE II - FREQUENCY AND STRAIN COMBINATIONS TO BE TESTED

Frequency Number

Strain i 2 3 4 5 6 7 8 9 i0

0.0005 S S S S S S S S S S

0.001 S S S S S S S S S S

0.002 S S S S S S S S S S

0.004 S S S S S S S S S S

0.005 S S S S S S S S S S

0.008 S S S S S S S S S S

0.01 S S S S S S S S S S

0.02 S S S S S S S S S S

0.05 S S S S S S S S S S

0.08 S S S S S S S S S S

S = Shear Specimen Test

TABLE III - VALUES OF STRAIN AND ACTUAL AMPLITUDES

Amplitude For

Shear Specimen

Strain (microns/Mils P-P)

0.0005 1.59/0.0625

0.001 3.18/0.125

0.002 6.35/0.25

0.004 12.70/0.5

0.005 15.88/0.625

0.008 25.40/1.0

0.01 31.75/1.25

0.02 63.50/2.5

0.05 158.80/6.25

0.08 254.00/10.0
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TABLE IV - COMPOSITION (PARTS BY WEIGHT)

EPDM BUNA-N

NORDEL 1440 600.0 PERBUNA N 3302 700.0

ZINC OXIDE 30.0 ZINC OXIDE 35.0

STEARIC ACID 6.0 STEARIC ACID 14.0

HAF N330 540.0 N774 SRF BLACK 525.0

SUN-PAR 2280 240.0 DOP 105.0

VULCAFOR 2DBC 12.0 ANTIOXIDANT 4010NA 7.0

TMTD 3.0 SULPHUR MC i0.5

MBT 6.0 MBTS i0.5

SULPHUR 9.0 TMTM 3.5

TOTAL 1446.0 TOTAL 1410.5

VITON NEOPRENE

VITON B 70 1700.0 NEOPRENE WRT 800.0

SEVACARB MT 510.0 MAGLITE D 32.0

MAGLITE D (MGO) 51.0 FEF N550 520.0

STURGE VE 102.0 DOS 80.0

VITON CURATIVE 20 31.0 CIRCOLITE RPO 40.0

VITON CURATIVE 30 54.4 FACTICE 820 64.0

TOTAL 2448.4 PARAFFIN WAX 8.0

OCTAMINE 8.0

ZINC OXIDE 40.0

STEARIC ACID 8.0

ROBAL PM 6.0

TOTAL 1606.0
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TABLE V - THERMAL CONDUCTIVITY (WATTS/METER KELVIN)

VITON

TEMPERATURE (DEGREE C) K

27.7 0.2924

48.4 0.2926

57.7 0.2928

67.4 0.2930

77.6 0.2948

94.4 0.2937

95.1 0.2887

100.7 0.2882

BUNA-N

28.4 0.4105

37.2 0.4079

46.6 0.4067

57.3 0.4045

66.4 0.4044

78.5 0.3983

87.2 0.3947

98.6 0.3902

NEOPRENE

32.4 0.4216

36.7 0.4226

50.8 0.4223

66.0 .0.4222

101.5 0.4235

EPDM

32.8 0.3985

45.3 0.3961
56.3 0.3969

65.8 0.3958

76.2 0.3957

85.0 0.3958

94.1 0.3930

i03.1 0.3901
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TABLE Vl - SPECIFIC HEAT (JOULES/GRAMKELVIN)

TEMP. (DEGREE C) VITON BUNA-N NEOPRENE EPDM

45 1.17 1.45 1.30 1.61

50 1.19 1.49 1.34 1.63

55 1.20 1.50 1.36 1.66

60 1.21 1.53 1.36 1.72

65 1.22 1.54 1.41 1.75

70 1.23 1.57 1.43 1.70

75 1.23 1.60 1.45 1.72

80 1.24 1.63 1.47 1.72

85 1.25 1.66 1.49 1.74

90 1.25 1.69 1.51 1.77

95 1.25 1.71 1.54 1.81

i00 1.26 1.70 1.59 1.83

TABLE Vll - THERMAL COEFFICIENT OF LINEAR EXPANSION

(Per °C) x 105

VlTON 15.9

BUNA-N 27.7

NEOPRENE 20.4

EPDM 21.3

TABLE VIII - HARDNESS (SHORE A)

VlTON 78

BUNA-N 70

NEOPRENE 74

EPDM 75
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VII - TEST RESULTS - ELASTOMER PERFORMANCE LIMITS

Table I presented a schedule of frequency and strain combinations to

be tested for EPDM, Buna-N, Viton-70 and Neoprene. However, as previously

noted, indications of nonaxial motion or inability to maintain a phase

angle difference of between 15 ° and 165 ° for various weight combinations

would be cause for data rejection. Figures 35 through 46 represent the

actual test points which were used to create the material data base. As

shown, frequencies as low as i00 Hz (figure 37) and as high as ii00 Hz

(figure 43) were achieved at various stages of testing. Figures 35 through

37 provide the test conditions for EPDM, figures 38 through 40 for Buna-N,

figures 41 through 43 for Viton-70, and figures 44 through 46 for Neoprene.

Six weights were used throughout this testing. Thus several combina-

tions (including no weight addition) were available to obtain acceptable

data. Table IX provides a listing of the weights used.

Data obtained from the minicomputer-based Data Acquisition System has

been prepared for presentation in four distinct formats for each material

and at each of the temperatures of interest (32°C, 66°C and 80°C). These

are:

• Stiffness and damping (N/m) versus frequency (Hz)

• Loss coefficient versus frequency (Hz)

• Stiffness and damping (N/m) versus strain

• Loss coefficient versus strain

Therefore, for figures 47 through 94, a linear least squares curve fit has

been obtained with frequency as the independent variable. With strain as

the independent variable, a second order least squares fit has been used.

Data from these curves have been used to generate figures 95 through 103

which presents temperature and frequency behavior of the loss coefficient

for each material. As will be discussed in detail below, the data have also

been used for additional nonlinear regression models to provide design curves

in a unified format for extracting shear storage and loss moduli as a func-

tion of frequency, strain and temperature (figures 104 through iii).
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TABLE IX - VALUES OF WEIGHT ADDITIONS

Kg Lbs

0.974 2.14

1.686 3.71

2.054 4.52

3.025 6.66

7.050 15.5

12.276 27.0
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EDPM Test Results

The test results for EPDM are plotted in figures 47 through 50 for

32°C, figures 51 through 54 for 66°C, and figures 55 through 58 for 80°C.

The data can be said to suggest the following general trends:

• Stiffness increases with increasing frequency

• Stiffness decreases with increasing temperature

• Loss coefficient slightly decreases with increase in frequency

• Loss coefficient decreases between 32°C and 66°C, but increases

between 66°C and 80°C.

To provide some clarity with respect to the sensitivity of loss coef-

ficient with frequency and temperature, figure 98 was generated from the

regression curves of figures 47 through 58. From figure 98, it is apparent

that the loss coefficient at 32°C is more frequency sensitive than at either

66°C or 80°C. Further, below 400 Hz, the loss coefficient decreases between

32°C and 66°C, but increases for all frequencies from 66°C to 80°C. As

these trends are based upon least square curve fits of data which have con-

siderable scatter, one must be cautious in interpretation. This trend may

indicate that EPDM is operating closer to the transition region than the

rubbery region. Further substantiation of this is the fact that, for all

the materials tested, EPDM has the highest value of stiffness reported.

Figures 47 through 58 clearly indicate that a wide scatter of data is

achieved when plotting data versus frequency and that the compactness and

dependency upon strain is more consistent and pronounced.

Buna-N Test Results

Data obtained for the Buna-N specimen is presented in figures 59 through

62 for 32°C, figures 63 through 66 for 66°C, and figures 67 through 70 for

80°C. From this data, the following trends are suggested:

• Stiffness increases with increase in frequency

• Loss coefficient increases with increase in frequency
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• Loss coefficient increases or decreases with temperature

increase (depending upon frequency domain)

• Stiffness decreases with a temperature increase.

Unlike EPDM, the data for Buna-N suggests a compactness when plotted

against frequency, figure 62 and a more pronounced scatter when plotted

versus strain, figure 60. A plot of loss coefficient versus frequency for

the three temperatures (32°C, 66°C and 80°C), figure 99 indicates an increase

and then a decrease in loss coefficient with a corresponding increase in

temperature for low frequencies (less than 250 Hz). For higher frequencies

the loss coefficient steadily decreases with a temperature rise. Unlike

EPDM (figure 98), the loss coefficient of Buna-N increases with an increase

in frequency at a prescribed temperature (positive slope of curves on

figure 99).

Viton-70 Test Results

Figures 71 through 81 presents the data for Viton-70 from this series

of elastomer shear specimen tests. The 32°C data is presented in figures

71 through 74, the 66°C data in figures 75 through 78, and the 80°C data in

figures 79 through 81. Viton-70 showed the highest values of loss coeffi-

cient for any of the materials tested with values close to 1.0 at 32°C,

figure 72. The general data trends for Viton-70 are:

• Stiffness increasing with frequency

• Stiffness decreasing with temperature

• Loss coefficient increasing with frequency

• Loss coefficient decreasing with temperature.

Figure i00 provides a plot of temperature and frequency dependence of

the Viton-70 test series. The trends provided by the shear specimen tests

for Viton-70 were compared with previous tests performed at MTI on Viton-70

O-rings (ref. 6). Figure 102 shows this comparison. As seen, excellent

comparison was achieved and all data appear to provide reasonable results.
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The consistency of loss coefficient sensitivity with temperature and

frequency strongly suggests that Viton-70 is operating in the rubbery region

for elastomers. As temperature was increased, the general compactness of

the data was apparent when plotted against frequency (figures 78 and 81),

with the large scatter of data when plotted versus strain at lower tempera-

tures (figures 73 and 74).

Neoprene Test Data

The test results for Neoprene are plotted in figures 83 through 86 for

32°C, figures 87 through 90 for 66°C, and figures 91 through 94 for 80°C.

The data for Neoprene follows the same general trends as that reported above

for Viton-70. The main exception is the magnitude of values. The maximum

value of this loss coefficient for Neoprene is approximately 0.3, figure 85

for 32°C, ii00 Hz. As seen from figure i01, the temperature/frequency trends

are consistent and again indicate the influence of rubbery behavior for this

elastomer.

Material Comparison

The values of loss coefficient obtained from the least squares curve

fit have been plotted for the three temperatures for each material. Fig-

ure 95 shows the frequency dependent behavior of the four materials at 32°C.

Viton-70 has the largest values of loss coefficient for the entire frequency

spectrum. The trend of increased loss coefficient with an increase in fre-

quency is maintained by Viton, Neoprene and Buna. Only EPDM shows a reduc-

tion of loss coefficient with increase in frequency. EPDM maintains its

negative slope for the 660C data (figure 96) and the 800C data (figure 97).

It is interesting that at 80°C all materials tested show a loss coefficient

of between 0.i and 0.2 for the entire frequency envelope. This trend is

shown again in figure 103 which provides an illustration of the sensitivity

of the loss coefficient to temperature of all materials tested at 500 Hz.
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Power Law Coefficients

The regression curves can be expressed analytically by a power law

relationship in frequency. The coefficients have been calculated for the

relationships and are provided in table X.

Unified Format Design Curves

By assuming that the first order log approximation is reasonable for

frequency dependence and that the influence of strain is reasonably approxi-

mated by the second order regression, then further approximation can be

achieved to assist in using this data in a design environment. The develop-

ment of the equations used in this regression process are documented in

Appendix A. The final form of the equations are:

T

lOgl0 (G'_) = a7 + a2 (lOgl0_ T + loglom) +

2

a41ogl0s + a5 (loglog) ; a7 = lOgl0a 6

T

lOgl0 (G"_) = b7 + b2 (logloe T + loglom) +

b41oglo_ + b5(logloE) 2" b7 = loglOb 6

where a5 through a7, b5 through b7 have been determined from a least squares

evaluation of the elastomer data obtained from shear testing: further defining

G', and G" as the storage and loss shear moduli

C1 (T-Tc)

lOgl0_ T = C2 + (T-Tc)

where CI, C2 are constants per table XI

T is the characteristic temperature (°K) per table XI
c

is the circular frequency (rad/sec)

T is the temperature (°K)

€ is the strain
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TABLE X " POWER LAW COEFFICIENTS

STIFFNESSCOEFFICIENT DAMPINGCOEFFICIENT LOSS COEFFICIENTm

A1 Bl A2 B2 A3 B3

EPDM-32°C 1,500 x 107 0,005724 2,586 x 106 0,03136 0,1724 -0,02588

EPDM_66oc 8,372 x 106 0,08814 1,346 x 106 0,0529 0,1601 -0,03524

EPDM_80oc 3,194 x 106 0,01985 9,204 x 106 0,09834 0,2882 -0,1002

BUNA-N-32°C 3,523 x 106 0,1435 4,980 x 104 0,5215 0,01413 0.3780

BUNA-N-66°C 1,543 x 106 0,1822 6,346 x 104 0,3736 0,04113 0,1914

BUNA_N-80°C 2,620 x 106 0,1157 1,057 x 105 0,2731 0,04033 0,1574

VITON-70-32°C 1,384 x 106 0,3359 4,203 x 104 0,7276 0,03037 0,3918

VITON-70-66°C. 4,132 x 106 0,1200 5,729 x 104 0,4805 0,01386 0,3605

VITON-70-80°C 4,973 x 106 0,08202 1,753 x 105 0,2753 0,03525 0,1933

NEOPRENE-32°C 3,088 x 106 0,1673 2,455 x 105 0,3019 0,1258 0.013

NEOPRENE-66°C 1,630 x 106 0,2167 1,844 x 105 0,2526 0,I132 0,03568

NEOPRENE-80°C 3,979 x 106 0,1003 3,664 x 105 0,01415 0,0921 0,04116

WHERE: STIFFNESS: k' = A1mBl N/m

DAMPING: k" = A2_B2 = nk' N/m

LOSS COEFFICIENT n = A3mB3

IS CIRCULARFREQUENCYRAD/SEC

Lo
80525



TABLE Xl

Values for Ct,__._CC2and Characteristic Temperature (Tc_.)

for the Test Materials

Elastomer C C2 T **Material 1 c (°K)

Viton (CFM) -8.86 101.6 306

Buna-N (NBR) -8.86 i01.6 293

Neoprene (CR) -8.86 101.6 272

EPDM -8.86 101.6 267

** Estimated from transition temperature (Tg + 50)
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By applying the results of the regression analysis for the purposes of

developing design curves, figures 104 through iii result where:

• EPDM properties are shown in figures 104 and 105

• Buna-N properties are shown in figures 106 and 107

• Viton-70 properties are shown in figures 108 and 109

• Neoprene properties are shown in figures ii0 and iii

The steps necessary to use the design curves are as follows:

i. Select a frequency of interest (m, rad/sec)

2. Select a temperature of interest (T, °K)

3. Find values of CI, C2 and Tc from table XI

4. Calculate sT
T T

c (G" c
5. Find values of reduced moduli (G' -i-), -i-)

6. Calculate G' and G"

Physical and Chemical Properties

Physical and chemical properties as reported by Rubber and Plastics

Research, Association of Great Britain (RAPRA) are reported in Tables IV

through VIII and contain composition, thermal conductivity, specific heat,

thermal coefficient of expansion and hardness.
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Vlll - CONCLUSIONS/RECOMMENDATIONS - ELASTOMER PERFORMANCE LIMITS

The following observations have been made from the results of these

tests:

• Viton-70 is extremely sensitive to frequency and temperature

(loss coefficient rises with increasing frequency and falls

with increasing temperature).

• Unlike the other materials, loss coefficient for Viton-70 falls

at high strain (may be related to self-heating and temperature

sensitivity).

• Unlike the other materials, loss coefficient for EPDI_ falls

with increasing frequency.

• At low temperature, the loss coefficient for Viton-70 (0.7) is

substantially higher and Buna-N (0.15) somewhat lower than for

the other materials.

• At high temperature, the loss coefficients for all the materials

are approximately equal (0.15) for an excitation of 500 Hz.

• Buna-N and EPDM are the least affected by temperature.

• Elastomers capable of withstanding temperatures in excess of

400°F should be evaluated for dynamic properties.

• Hot rig testing of elastomer dampers is recommended to permit

evaluation of dampers in controlled thermal environments.

• Materials with loss coefficients in excess of the 0.15 value at

80°C should be evaluated to provide a more flexible data base

for elastomer damper design.
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APPENDIX A

Treating the distortion in the shear specimens as pure shear, the shear

storage and loss moduli are directly proportional to the measured stiffness

and damping val.ues, respectively, and may be calculated from

G' = K 't (A-I)
A

G" - lit
= K _ (A-2)

where

G' = shear storage modulus - N/m 2

G" = shear loss modulus - N/m 2

K' = stiffness of shear specimen (real part) - N/m

K" = damping of shear specimen (imaginary part of stiffness) - N/m

t = thickness of shear elements - m
2

A = total bonded area (one side only) of shear elements - m

Thus the shear moduli (like the stiffness and damping) are functions

of frequency, temperature and dynamic strain.

Assuming that dynamic strain is the other important independent variable

and that the effects of strain and reduced frequency can be separated, the

reduced shear moduli are given by

G'r = f' (_r_) g' (_) (A-3)

G" = f" (_T_) g" (_) (A-4)r

where the f's and g's represent unknown functions, _Tm is the reduced fre-

quency, and g is the dynamic strain. The coefficient sT is determined from

CI(T - Tc) (A-D)
l°gl0eT = C2 + (T - Tc)

where the constants C1 and C2 depend on the elastomer material composition.

Using the approximation that the logarithms of the shear moduli vary

approximately linearly with the logarithm of the frequency and extending
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this relationship to the reduced frequency, the logarithm of the functions

f' and f" are linearly related to the logarithm of the reduced frequency.

Thus, the functions themselves are of the form

f' (_T_) = al(_T_)a2 (A-6)

f" (_Tm) = bl(eTm)b2 (A-7)

where the a's and b's are constants which are determined empirically for

any particular elastomer material.

The logarithms of the shear moduli have been shown to possess a quad-

ratic relationship to the logarithm of the dynamic strain. Thus, the loga-

rith_ of the functions g' and g" take the form

lOgl0g'(_) = a3 + a4 lOgl0E + a5(lOgl0c) 2 (A-8)

lOgl0g"(_ ) = b3 + b4 lOgl0_ + b5(lOgl0E) 2 (A-9)

to give

a4 + (a51ogloE)
' (A-10)

g' (_) = a3_

b4 + (b51Ogl0c)

g"(v) = b_v (A-II)

where a_ and b_ are the antilogarithms of a3 and b3, respectively, i.e.,

a3 , b3
a_ = i0 , b3 = i0

Equations (A-6), (A-7), (A-8) and (A-9) may be substituted into equa-

tion (A-3) and (A-4) to give the reduced shear moduli as

i

a2 a4 (aSlogloE)

G' = a6 _ E a6 aI 'r (aTm) ; = " a3 (A-12)

b2 b4 (b51Ogl0_)
G" = b6(CTW) € c • b6 = bI 'r ' " b 3 (A-13)
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The relations for the original shear moduli can be determined from

Tc G" G" Tc
the definition reduced frequency, G'r = G' (_-); r = (-_-); then:

G' = a6(_) (eTa)a2 € a4 (a51°gl0_) (A-14)
c

G" = b6(_) (eT m)b2s b4E (b51°gl0s) (A-15)
c

Equations (A-14) and (A-15) can be made linear with respect to the un-

known coefficients by taking the logarithm of both sides of these equations

to give

lOgl0(G'_) = a7 + a2(lOgl0e T + lOgl0m) +

a41ogl0g + a5(lOgl0g)21 a7 = lOgl0a 6 (A-16)

,,Tc

lOgl0(G" T- ) = b 7 + b2(lOgl0_ T + lOgl0m) +

2
b41Ogl0E + b5(lOgl0c ) ; b7 = lOgl0b6 (A-17)

From the experimental data which has been generated for a particular

elastomer material, the unknown coefficients of equations (A-16) and (A-17)

can be found using a standard statistical regression analysis. The results

have been plotted in figures 105 through iii.
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Figure 2 Sketch of Squeeze-Film Damper Designed to Suppress Vibrations in
Supercritical Power Transmission Shaft
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FLEX, SHAFT - _PlINE C_UPLING ANALYSIS - TPRnPOSAL NASA 11-6-78 F,G,

NO,STATIONS NO,nFARINGS _ATFRIALS LOG,DECPHNT NO,TARLES NO,SPEEDS ITERATIONS AOJ,VECTOR INPUT N365C NOMEG
3_ 3 3 0 0 I 15 0 I 3 0

IPRINT IUNITS MOIAG NCOUP
0 0 0 22

CONV,EXTRAPOL, CONV.ITFRATION
.IO00000E-04 .IO00000F-O_

ROTOR DATA
STATION MAS_tLBS POLAR H,IN TRNSV,_,IN LENGTH OIA(STIFF) DIA(MASS) INNER DIA, YOUNGS MOO (5HEARI*G DENSITY

! O, O, O. ,2400E+02 ,3000E.OI ,3000EfOI ,2750E*01 ,1000El08 o298gE+07 ,IO00E+O0
2 O, O. O, .5000E*O0 ,3000E*OI ,388gE+01 ,2750E.01 ,IO00E.O8 ,2989E*07 ,IO00E*O0
3 O, O. n, ,1750E.02 ,3000E.OI .3000E.Ol ,2750E*01 ,IO00E.OR ,2989E.07 .lO00E.O0

O, O, O, ,5000E_O0 ,3000E*OI .388gE*01 ,2750E*01 ,IO00E+OB ,298gE+07 .,!O00E.O0
5 n. O, O, ,1750E.02 .3000E*OI .3000E+OI ,2750E.01 ,IO00E.OB ,29BgE*07 .IO00E.O0
6 O, O. O, ,5000E.O0 ,3000E.OI ,38BgE.OI ,2?50E*01 ,IO00E_08 ,2gBgE+O? ,IO00E.O0
? O, n, O, ,I?SOE.02 ,3000E+OI ,3000E*OI ,2750E.0! ,IO00ELOB ,2989E.O7 ,lO00E.O0
8 O, O. O, .5000E+O0 ,3000E*OI ,388gE*01 ,2750E.01 olO00E+OB ,298gE*07 ,IOOOE.O0
g O. O. O. ,1750E+02 ,300QE.OI ,3000E+OI ,2750E.01 .IO00E.08 ,298gE.07 ,IO00E.O0
I0 O, O, O, ,SO00E.O0 ,3000E.Ol ,3889E.OI ,2750E*01 ,IO00E*O8 .2989E'07 ,IO00E.O0
11 O, O, O, ,17SOE$02 ,3000E.OI ,3000E*O! ,2750E.01 ,IO00E.08 ,2989E*07 ,IO00E*O0
12 0. O. O. ,5000E+O0 ,3000E+OI ,38BqE+OI ,2750E'01 ,IO00E.08 ,298gE*O7 ,lO00E*O0
13 O, O, O" ,1750E_02 ,300_E+OI ,3000E+OI ,2750E+01 ,IO00E+08 .2989EI07 ,IO00E.O0
I_ O. O. O, ,5000E.O0 ,3000F*01 ,388gE_01 ,2750E.01 ,IO00E.08 ,298gE+07 ,IO00E.O0
IS O, O, O. ,ilSoE+02 .3000E*OI ,3000E.OI ,2750E.01 ,lO00E+08 ,298gE+07 .ioooE;OO
16 O, O. O. ,3140E.01 ,3000E*OI ,3000E.OI ,2750E*01 ,IO00E,OB ,2989E+07 o!O00E+O0
17 O. O, O, ,500nE.O0 ,3000E+OI ,4325E?01 ,2750E+01 ,IO00E.O8 ,298gE.07 ,lO00E.O0
18 O. O. O, ,IQOOE?O0 ,3000E*OI ,3400E.01 ,2750E$01 ,IO00E*08 ,2gBgE*07 ,!O00E.O0
19 O, O. O, .1480E.01 ,3000E.OI ,3325E_01 ,2750E+01 ,IO00E+O8 ,2989E.07 ,IO00E+O0
20 O, O. O, ,IgOOE?O0 ,3000E+O] ,3_OOE+OI ,2750E*01 ,IO00E+08 ,2989E_07 ,IO00E$O0
21 O, O, O, ,67gOE.O0 ,3000E.O| ,6550E*01 ,2750E*01 ,IO00E+08 ,2989E*07 ,IO00E'O0
2_ O, O, O, ,IO00E'02 ,IO00E+O0 O, O, ,3000E_OB ,B6BOE*07 ,2830E$O0
23 ,1933E.01 ,9017E;OI ,4550E.01 ,5000E+O0 ,1378E*01 ,137BE.Of O, ,]O00E.O8 ,8650E*07 ,2830E+O0
24 ,3300ELO0 ,5030E_00 ,2500F+00 ,50OOE+O0 ,137_E+01 ,1378E*01 O. ,3000E+08 ,8650E.07 ,2830E;O 0
25 O, O, O, ,R3]OE?OI ,1620E*01 ,1620E_01 O. ,3000E*08 ,8650E+07 .2830E*00
26 .?_80E*O0 O, O, ,I2OOE*O! ,137BE$01 ,1378E.01 O, ,3000E+OB ,8650E'07 ,2B30E+O0
27 O, O. O. ,4P2OELOI ,1700E?OI ,I?OOE.OI O, ,3000E?08 ,B6SOE$07 ,2830E;00
28 O, O, O, ,4780EL01 ,1700E*OI ,1700E*OI O, ,]O00E*O8 ,8650E*0? ,2830E*00
2g ,5R_OE+O0 ,7710EkO0 ,4340E.00 ,lO00E.O1 ,1250E$01 ,12SOE*OI O, .3000E+08 ,8650E$07 ,2830E*00
30 .6070E.00 O, O, ,SO00E.O0 ,300QE.OI ,3000E+Ol ,2460E+01 ,IO00E+O8 ,298gE$07 ,IO00E*O0
31 O, O, _, ,IO00ELOI ,3210E*01 ,3210E*01 ,2680E*01 ,IO00E.OB ,298gE$07 ,!O00E'O0
32 O, O, O, O, O, O, O, ,IO00E+O8 ,2989E+07 ,IO00E.O0

ASY_METRIC ROTOR ANALYSIS

ELASTIC ASYMMETRY AT THF FOLLNWING STATIONS

STA, NOHINAL DIAl, DISTANCE A/C _OMENI_ oF INErTIa
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Figure 6 Rotor Model Data
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Flgure 9 Spllt Rlng Conflgurat|on Elastomer Damper
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Flgure 10 Elastomer Damper Assembly
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Figure 12 Alternate View of Elastomer Damper Installatlon
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Flgure 13 Elastomer Damper ModlflcaUon of Squeeze-Fllm Assembly
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Figure 32 View of Shake-Table-Mounted Elaslomer Test Rig with Preload Cylinder and Small Mass
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Figure 34 Test Assembly of Four Elastomer Shear Specimens
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