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SUMMARY

The synthesis, implementation, and wind-tunnel test of two flutter-
suppression control laws for an aeroelastic model equipped with a trailing-
edge control surface are presented. One control law is based on the aerody-
namic energy method, and the other is based on results of optimal control
theory. Analytical methods used to design the control laws and evaluate their
performance are described. The test objective was to demonstrate an increase
in flutter dynamic pressure of at least 44 percent over a range of Mach numbers
by using active flutter suppression. At Mach 0.6, 0.8, and 0.9, increases in
flutter dynamic pressure were obtained but the full 44-percent increase was not
achieved. However at Mach 0.95, the 44-percent increase was achieved with both
control laws. Experimental results indicate that the performance of the sys-
tems is not so effective as that predicted by analysis. Also, the results
indicate that wind-tunnel turbulence plays an important role in both control-
law synthesis and demonstration of system performance.

INTRODUCTION

Application of active control technology, such as gust and maneuver load
alleviation and flutter suppression, offers the potential for substantial pay-
offs in terms of reduced structural mass (ref. 1). Because of its impact on
safety of flight in case of system failure, active flutter suppression is prob-
ably further from application in production aircraft than other active control
concepts. In order to reduce technical risks and explore the full benefits of
active flutter suppression, research is underway to advance this technology
with analytical studies (e.g., refs. 2 and 3), wind-tunnel studies (refs. 4
and 5), and flight experiments with both full-scale aircraft and remotely
piloted drones (refs. 6 and 7).

Two methods that have been proposed for synthesizing active flutter-
suppression control laws are the relaxed aerodynamic energy method (ref. 8)
and the optimal control theory (ref. 9). The method described in reference 8
takes into account advances in the aerodynamic energy method since it was
originally developed in reference 10. The optimal control-theory method
involves the practical implementation of an optimal control law from a very
limited number of feedback sensors.

The purpose of this paper is to report on the design of two flutter-
suppression control laws which were synthesized by using these methods and
to present results of wind-tunnel tests of their performance. The aeroelastic
model used for this study is described in reference 11 and was tested previ-
ously to evaluate the performance of a flutter-suppression system. The objec-
tive of this study was to design control laws which would demonstrate at least
a 44-percent increase in flutter dynamic pressure (20-percent increase in flut-
ter velocity) in the Mach number range from 0.6 to 0.9.



Aeroelastic analysis techniques used to calculate system performance are
presented in appendix A. Numerical results from applying the aerodynamic
energy and optimal control-theory synthesis techniques are presented in appen-
dixes B and C, respectively. A description of the mechanization of the control
laws is presented in appendix D.

SYMBOLS
ayrasn control-law gains, aerodynamic energy method
b reference semichord, m
by semichord length at spanwise location of inboard accelerometer, m
C(s) Laplace transform of output
c local chord, m
dt differential time
£ frequency, Hz
f(s) polynomial factor in feedback filter
g acceleration in gravitational units, 1g = 9.8 m/sec2
G(s) transfer function relating wing motion to control-surface deflection
H(s) transfer function relating control-surface deflection to wing motion
Hg (iw) control-surface frequency-response function
h vertical displacement, m
h vertical acceleration, g units
Iy servovalve current
L
J cost function
K¢ filter gain
Kp pressure gain in servo-actuator loop
Ky forward gain in servo-actuator loop
k reduced frequency, Wwb/V



L reference length used in gust spectrum, m

M Mach number

PSD power spectral density

Ap differential pressure across actuator

Q hydraulic fluid flow rate

Q(s) common denominator of transfer functions
1

q dynamic pressure, EOVZ, kPa

dmax = 1.44 x Calculated gf

R(s) Laplace transform of reference input

s Laplace variable

u control input

u optimal control input

G practical control input

v free-stream velocity, m/sec

Wg gust velocity, m/sec

o angle of attack at spanwise location of inboard accelerometer

Bise « 1By aerodynamic lag

84 control-surface deflection

8¢ control-surface command to actuator

8! control-surface command from control law

z viscous~damping coefficient

o fluid density, kg/m3

Owg root-mean-square gust velocity, m/sec

¢ phase angle of G (iw) H(iw)



b (w) input gust power spectrum (Von Karman)

$m phase margin

P (W) output power spectrum of control-surface response

w circular frequency, rad/sec

Wp natural frequency, rad/sec

Matrices:

a] system dynamics matrix, open loop

[A) system dynamics matrix for optimal control-law synthesis
(A;] real aerodynamic coefficient matrix

{B} control distribution vector

fce) row matrix of mode-shape amplitudes

[Fi] real coefficients of equations of motion

{Gi} real gust-velocity coefficients in equations of motion
1] identity matrix

K] generalized stiffness matrix

[K* ] optimal gain matrix

M) generalized mass matrix

fol output weighting matrix

[a] matrix representing approximate aerodynamic forces in Laplace plane
{q} generalized coordinate vector

[R] control weighting matrix

(7] transfer function matrix

[Ty transfer function numerator matrix

{u} control vector

{x} state variable vector

{x} state variable vector for optimal control-law synthesis



{v} output vector

(6] matrix of modal deflections at sensor location
Subscripts:

£ flutter

inbd location of inboard accelerometer

outbd location of outboard accelerometer

peak peak value

rms root-mean-square value

0.65c 65-percent chord

0.30c 30-percent chord

Dots over symbols denote derivative with respect to time.

AEROELASTIC MODEL AND ANALYSIS METHOD

The aeroelastic model used for this study was originally built to support
the DAST (Drones for Aerodynamic and Structural Testing) flight program
(ref. 7). The model is a dynamically scaled representation of a transport-
type research wing and is scaled to flutter within the operational limits of
the Langley Transonic Dynamics Tunnel. The model is equipped with a hydrauli-
cally actuated trailing-edge control surface which is located between the
76 .3-percent and 89.3-percent semispan stations and is 20 percent of the local
wing chord. A photograph of the model mounted in the wind tunnel is presented
in figure 1; its geometry is given in figure 2.

Structural Model

The bending and torsional stiffness of the model is provided by a single
aluminum spar of uniform cross section. Airfoil sections, constructed of balsa
wood and fiber glass, are attached to the spar in such a manner as not to con-
tribute to the bending and torsional stiffness of the wing.

For aeroelastic analysis purposes, the first 10 elastic modes were calcu-
lated by using a finite-element model of the spar with airfoil sections repre-
sented as lump masses. The calculated frequencies, which cover a range of 5.23
to 118.15 Hz, and generalized masses for these modes are presented in table I.
Prior to wind-tunnel tests, six modal frequencies and mode lines were experi-
mentally determined (mode 3, which is a fore and aft mode, was not measured)
and are presented in figure 3.



Actuator Model

The control surface is driven by an electrohydraulic servo-actuator system
similar to that described in reference 4. The servo-actuator loop serves two
functions: For zero command inputs it maintains a fixed control-surface posi-
tion relative to the wing; and for time varying inputs, it provides control-
surface motion in a manner dictated by the control law over its operating
frequency range. Control-surface displacement and rate capabilities for this
actuator are approximately +14° and 820 deg/sec, respectively.

During previous wind-tunnel tests of this model (ref. 11), the actuator
transfer function was experimentally measured. During those previous tests, a
100-Hz double-pole filter was added to the actuator electronics to decouple the
actuator from higher frequency structural modes. The combination of the filter
and actuator results in a transfer function associated with implementing the
control-system hardware. The following actuator transfer function was used
during the design process to model the actuator dynamics and filter:

a(s) 1.915 x 107 100 x 2 deg

- e (1)

c'(s) (s + 214) (s2 + 179.4s + 8.945 x 10%) (s + 100 x 2 )2 deg

Aerodynamic Model

Unsteady aerodynamic forces for the wing and control surface were computed
for different values of reduced frequency and Mach number by using a doublet
lattice aerodynamic computer program. The aerodynamic model used in this study
is described in reference 11. Unsteady aerodynamic forces were calculated for
the first 10 calculated structural modes, for a control-surface rotation, and

for a sinusoidal gust.

Analysis Method

For analysis purposes the structure, the control-surface actuator, and
the unsteady aerodynamic models are combined by approximating the variation in
frequency of the unsteady aerodynamics with a rational polynomial in the vari-
able s. A description of the analysis methods used to calculate the flutter
characteristics and the control-surface activity due to gusts is presented in

appendix A.

CONTROL LAWS

A block diagram of the two control laws that were designed for the wind-
tunnel model is given in figure 4. The synthesis techniques used were the
aerodynamic energy method and the optimal control theory. Details of the
synthesis methodology for each of these techniques are presented.



Because the physical size and location of the control surface were fixed
on the model, these quantities were not varied during the control-law design
process. Two locations for measuring wing accelerations were considered.
(See fig. 2.) The location of the inboard accelerometer is that specified by
the aerodynamic energy method. The outbhoard accelerometer is located at the
position used during the previous wind-tunnel tests (ref. 11). The inboard
accelerometer was used in the aerodynamic energy method, and the outboard
accelerometer was used in the optimal control-theory technique. In order to
show the difference in the mode shapes at the accelerometer locations, calcu-
lated modal displacements in each of the flexible modes for both accelerometer
locations are given in table I.

The design point selected for control-law synthesis was M = 0.9;
qd = 7.72 kPa. This design-point dynamic pressure corresponds to a 44-percent
increase in the measured flutter dynamic pressure of reference 11. System per-
formance was then evaluated at M = 0.6, 0.7, and 0.8 to insure that the con-
trol laws performed satisfactorily at off-design points.

Some Design Considerations

As stated previously, the objective of this study was to design control
laws and to demonstrate experimentally their capability of providing at least
a 44-percent increase in flutter dynamic pressure at Mach numbers from 0.6
to 0.9. This increase is illustrated in figure 5 (denoted by gpax) and is
based on the calculated system~off flutter characteristics. In order to dem-
onstrate this increase in flutter dynamic pressure, the active control system
must operate in the presence of tunnel turbulence within the rate and deflec-
tion limits of the actuator.

For design and analysis purposes a model of tunnel turbulence is required.
Measured values of tunnel turbulence (velocity fluctuations) were not avail-
able. A gust analysis was performed in reference 11 by using a Von Karman
turbulence spectrum in which the characteristic length was varied until the
calculated root-mean-square (rms) control-surface deflection matched the corre-
sponding experimental data. Although this turbulence spectrum may not be an
accurate representation of the tunnel turbulence, it did provide a reasonable
measure of control-surface deflection over the range of dynamic pressures
encountered during the previous tests. Based on these results, a Von Karman
turbulence spectrum with a characteristic length of 30.48 m and an intensity of
0.30 m/sec was used in the design of the control laws.

The commanded control-surface deflection and rate in response to tunnel
turbulence led to design goals on allowable rms control-surface deflection and
rate. Based on previous experimental results of an active flutter-suppression
system that was tested on this model, control-surface deflection was the criti-
cal factor; it is shown in reference 11 that rms control-surface deflections of
6.5° corresponded to commanded peak deflections greater than the *14° available
from the actuator. Therefore, in the present design study, predicted rms
control-surface deflection to tunnel turbulence should be less than 6° rms for
dynamic pressures up to gpax at all Mach numbers considered. No specific



constraint was placed on control-surface rate, except that the predicted peak
rate must be within the actuator limit (820 deg/sec) for a peak to rms ratio

Ga,peak <

| —
| =

the same as that considered for control-surface deflection |i.e.,
6a,rms

or 85,rmg £ 351 deg/sec).

The resulting design goals were:

(1) At M =0.6, 0.7, 0.8, and 0.9, the model will demonstrate at least a
44-percent increase in flutter dynamic pressure above the system-off boundary.

(2) Maximum control-surface deflections due to turbulence will be $6° rms.

(3) At M = 0.6, 0.7, 0.8, and 0.9, the active flutter-suppression system
will have a minimum #6-dB gain margin at all dynamic pressures up to qpax to
account for uncertainties in the design.

Synthesis Using Aerodynamic Energy Method

The control law used in this work is referred to in reference 12 as a
localized-~type transfer function. For a single trailing-edge control surface
the general form of this control law is expressed as

hg. 30¢

ays? aps? _—
— -+

s2 + 20qwys + w2

8o'(s) = [0 -1.86] + )
s2 + 2C5wps + wy2

(2)

where ajy, 37, Wy, ajz, G2, and Wy are positive free parameters. These
parameters permit the general form of the control law to be applied to a spe-
cific problem. The matrix coefficients 0, -1.86, 4, and 2.8 are derived in
reference 12 for a two-dimensional wing (i.e., the case of a wing undergoing
simple harmonic motion in pitch and plunge). The objective in this study is
to apply the method to a three-dimensional problem.

For the present application, the constant term o -1.86] is deleted
and through a simple transformation (ref. 12) the terms hgp 3090 and o are
replaced by a single term hg g5c. These modifications are made to simplify
the implementation of the control law. The form of the control law used in
the present study becomes

8



as? aps? 4hg 65¢
) =
s2 + 20ywys + w12 82 + 2C,wgs + wy2 br

8a'(s) = (3)

Reference 8 presents an approach for determining the free parameters in
equation (3) that provide the required stability while maintaining minimum
control~-surface activity in response to turbulence., For this study the
effects of the actuator and the goal of providing a *6-dB gain margin are
included in the synthesis procedure. The following steps are used to synthe-
size the control law:

Step 1: Assign initial values to the free parameters in equation (3)
that stabilize the wing at the design Mach number and dynamic
pressure.

Step 2: With the values of free parameters from step 1, determine new
values of the free parameters which result in minimum control
deflection in a continuous gust analysis at the design point.

Step 3: Determine control activity due to turbulence over a range of
tunnel conditions to insure that the off-design goals are
satisfied.

Step 4: Add the actuator transfer function and determine its effect
on stability.

Step 5: Based on the results of step 4, design a compensator that pro-
vides a minimum of *6-~dB gain margin at the maximum dynamic
pressure for each Mach number considered.

Step 6: Determine control-surface activity for the system including
compensator and compare with the results of step 3; modify
compensator if necessary.

Step 7: Check system stability over a range of Mach numbers and
dynamic pressures.

By applying these steps, the following transfer function was synthesized
for the wind-tunnel-model control law:

Sa(s) Sa 147.35(s + 78) deg "
hinba \%¢'/[s2 + 2(1)5.9s + 5.92] ¢

where hg,e5¢ = hipnbg. Numerical results are presented in appendix B. As
shown in this appendix, the control law meets all the goals of the design
except the 6-dB gain margin at M = 0.8 and 0.9. However the static gain of
the control law, that is,



S,

= 50 4B

hinbdl@s=o

is quite large and could result in a static deflection of the control surface
due to direct-current drift in the accelerometer output. In order to reduce
the static gain while minimizing changes at the higher frequencies, an arbi-
trary filter of the form s/(s + 10) was added to the control law defined by
equation (4). This filter reduced the static gain to zero while adding less
than 10° of phase lag at the flutter frequency. When this filter was added to
the control law defined by equation (4), the overall system gain had to be
adjusted slightly to maintain the -6-dB gain margin for all Mach numbers. The

resulting control law is

Sats)  [34 151.92s(s + 78) deg
—— = e = H(s) — (5)

hinba  \%c'/ (s + 10)[(s2 + 2(1)5.95 + 5.92] g

A Nyquist plot of the open-loop transfer function G(iw) H(iw) (where
H(iw) is defined by eq. (5) for s iw and G(iw) is the wing transfer
function indicated in fig. 4) at M = 0.9 and q = 7.72 kPa is presented in
figure 6. Gain margins (defined as =20 x logqg [G(iw) H(iw)l@¢=_1goo) of
~-6.4 dB and 5.7 dB and phase margins of -50° and 27° are indicated in figure 6.
Control-surface activity as a function of Mach number and dynamic pressure is
presented in figure 7. Control-surface deflection is below the 6° rms design
goal. The dynamic-pressure root locus at M = 0.9 is presented in figure 8.
With the control law defined by equation (5), the flutter mode is well damped
through @pay. A comparison of these results with those of appendix B (where
H(s) 1is defined by eq. (4)) shows that the s/(s + 10) filter has little
effect on the predicted performance of the system.

Synthesis Using Optimal Control-Theory Method

The method used to synthesize the optimal control law is described in ref-
erence 9. For purposes of completeness, the steps used to derive this control
law are given. The method can be divided into two parts: (1) Synthesis of a
full-state feedback control law using optimal regulator theory; and (2) synthe-
sis of a practical (acceleration) feedback control law using the results of (1).

Full-state feedback control-law design process.- Optimal regulator theory
provides for the minimization of a quadratic cost function of the output and

control variables (ref. 13)

J = j; [{Y}TfQJ{Y} + {u}T[R]{u}Jdt (6)
0

10



This minimization results in an optimal full-state feedback control law. The
procedure can be summarized as follows:

Step 1: Define the output and control variables that relate to the
performance goals (e.g., minimum control-surface displacement).

Step 2: Select initial weighting matrices (fg} anda [R]) in the cost
function,

Step 3: Solve for the optimal gains, thus minimizing the quadratic
cost function.

Step 4: Evaluate the design and, if necessary, adjust the weighting
matrices until performance goals are met.

Practical control-law design process.- The design process involves finding
the coefficients of a transfer function H(s) that minimizes the deviation of

~

u
the open-loop frequency response —(iWwW) from the full-state open-loop fre-

u
u

quency response —(iW). PFigure 9 shows block diagrams of the full-state feed-
u

back and practical systems. If the deviation away from the full-state feedback
system is small, the performance of the practical control law will be similar
to that of the full-state feedback control law.

The form of the transfer function H(s) to be used is

m
T (s2 + 20w 58 + ®y32)

H(s) = K¢ : : £(s) (7

n
I (s2 + 2z5w

j%n3gs + @

nj2)

The design variables are the gain K¢, damping ratios £, and natural frequen-
cies W,. The function £(s) is included to help achieve any desired charac-
teristics of the filter such as high-frequency rolloff,

~

u
An error function can be defined as the difference between —(iW) and
- u

u
—(iW) over a set of frequency points for which a close fit is desired. An
u

optimization algorithm can then be used to find the design variables Re, G,
and Wn that minimize the error function. The procedure can be outlined as
follows:

Step 1: Compute the open-loop frequency response G/u.

11



Step 2: Compute the frequency response between the output h and the
control u.

Step 3: Choose the initial number of numerator factors m and denomina-
tor factors n of the filter.

Step 4: Choose an £(s) to incorporate any desired characteristics of
the filter such as high-frequency rolloff.

Step 5: Minimize the error function by using an optimization algorithm
such as that of Davidon and Fletcher and Powell {(refs. 14 and 15,
respectively) .

~

Step 6: Examine the open-loop frequency response E(iw) to establish any
possible changes to f(s).

Step 7: If any changes to f(s) are established, repeat step 5.

Step 8: Repeat steps 3 to 7 for a family of m and n.

Step 9: Select the m, n, and £(s) that provide the smallest value
of the error function.

Step 10: Evaluate the design for a range of Mach numbers and dynamic
pressures.

By applying this methodology, the following transfer function was synthe-
sized for the wind-tunnel-model control law:

8a 8a \[2214\0s2 + 2(0.127) (121.21)s + 121.212]

houtba  \S¢'/\ S /[s2 + 2(0.962) (297.62)s + 297.622]

Cs2 + 2(0.088)269.14s + 269.142] 44

(8)

X

[s2 + 2(0.964)294.91s + 294.912] 9

Numerical results are presented in appendix C. As shown in this appendix, the
control law meets all the design requirements except the -6-dB gain margin at
M = 0.6. Before the control law was implemented, the direct-current drift,
which was referred to previously, in the accelerometer output had to be
accounted for. This problem is particularly critical in the present control
law because of the infinite static gain associated with a pure integrator of
the form 1/s. 1In order to alleviate this problem, the term 1/s was replaced
by 1/(s + 10), and an arbitrary washout filter of the form s/(s + 1) was
added to drive the static gain to zero. These changes add only a small amount

12



of phase lag (-10°) in the flutter frequency range. The resulting control
law is

8a 8a \/ 2214 s | [s2 + 2(0.127) (121.21)s + 121.212]

houtbg \oc'/ \8 ¥ 10/\s + 1/ [s2 + 2(0.962) (297.62)s + 297.622]

[s2 + 2(0.088) (269.14)s + 269.142] deg
x = H(s) — (9)
[s2 + 2(0.964) (294.91)s + 294.912] g

A Nyquist plot of the open-loop transfer function G(iw) H(iw) (where
H(iw) 1is defined by eg. (9)) at M = 0.9 and q = 7.24 kPa is presented in
figure 10. Control-surface activity as a function of Mach number and dynamic
pressure is presented in figure 11. The closed-loop root locus is presented in
figure 12, A comparison of these results with those of appendix C (where H(s)
is defined by eq. (8)), shows that the filter addition has little effect on
either the Nyquist diagram or the control-surface activity.

WIND-TUNNEL TESTS
Wind Tunnel

All experimental studies were conducted in the Langley Transonic Dynamics
Tunnel. The tunnel is a closed-circuit continuous-flow facility with a 4.88-m
square test section. It operates at stagnation pressures from near vacuum to
slightly above atmospheric and at Mach numbers from near 0 to 1.2. Mach num-
ber and dynamic pressure can be varied simultaneously, or independently, with
either air or freon as a test medium. Freon was used for all tests in this

study.

Control-Law Mechanization

A simplified block diagram of the flutter-suppression system was previously
presented in figure 4. A detailed description of the flutter-suppression-system
mechanization is presented in appendix D. Both control laws were programmed on
an analog computer located in the tunnel control room. The analog computer
processed the accelerometer output signal from the wing, and the control law
being used determined the appropriate actuator command signal. The command
signal was then passed to the servo-actuator system which controlled the posi-
tion of the control surface. For the flutter-suppression system-off tests, the

control surface was kept at 0° deflection by applying hydraulic pressure to the
actuator.

13



Test Techniques and Procedures

In evaluation of a flutter-suppression system, it is necessary to measure
damping of the flutter mode. Most techniques used to measure damping involve
exciting the model with a known input through the control surface and measuring
the transient response. Previous tests of the model indicated a difficulty in
measuring a reliable flutter mode damping through control-surface excitation
because of relatively large amounts of wing acceleration caused by tunnel tur-
bulence. Therefore no attempt was made to measure damping during these tests.
However the Peak-Hold Spectrum method described in reference 4 was used during
online tests to evaluate the performance of the systems. Instead of damping,
this method uses the inverse of the model response to turbulence as a stability

criterion.

For most of these tests, Mach number was held constant while dynamic pres-
sure was increased by continuously bleeding freon into the tunnel. Data were
gathered and analyzed at points where both dynamic pressure and Mach number
were held constant. The primary data acquired during the tunnel tests included
rms control-surface deflection, time-response strip chart recordings of control-
surface deflection, and peak acceleration response of the wing at discrete test
points obtained by using a spectrum analyzer. All instrumentation signals
(including strain gauges, accelerometers, and control-surface position sensor)
were recorded on magnetic tape.

Wing without flutter-~suppression (system-off) tests were performed to
establish the basic-wing flutter boundary. These tests were followed by
closed-loop (system-on) tests of both control systems to evaluate their effect
on raising the flutter dynamic pressure.

RESULTS AND DISCUSSION

Experimental flutter studies of the model were conducted at Mach numbers
of 0.6, 0.8, 0.9, and 0.95., During the closed-loop testing, unexpectedly large
control-surface deflections of a random nature were encountered above the
gsystem~off flutter boundary. Because of these peak deflections (which at
times approached the +14° limit as dynamic pressure was increased), the test
objectives of demonstrating a 44-percent increase in flutter dynamic pressure
from M =0.6 to M= 0.9 could not be met. However, tests were added at
M = 0.95 that were successful in demonstrating the 44-percent increase for
both control laws.

Wing Without Flutter Suppression

Experimental results.- The system~off flutter characteristics are pre-
sented in figure 13 in terms of the variation of flutter dynamic pressure

and flutter frequency with Mach number. These experimental results repeated
those measured at M = 0.6 and M = 0.8 in the earlier study of reference 11,
Results fram the present test at M = 0.9 indicate about a 9-percent decrease
in flutter dynamic pressure from the earlier results. This decrease is

believed to be attributable to slight differences in the mass distribution of

14
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the model between the two tests. (During the previous tests the model was
equipped with a leading-edge control-surface actuator combination. Prior to
the present studies the actuator was replaced with a rigid connection which
resulted in some slight mass differences.)

Comparison of analytical and experimental results.—- The dynamic pressure
root locus plot at M = 0.9 for the system off is presented in figure 14.
Calculations were also performed at M = 0.6, 0.7, 0.8, and 0.95 to establish
the calculated flutter boundary shown in figure 13. The agreement between cal-
culations and experiment is good across the Mach number range.

Wing With Flutter Suppression

A summary of the maximum dynamic pressures to which the model was tested
(above that for the wing without flutter suppression) is presented in fig-
ure 15. The test objective of demonstrating a 44-percent increase in flutter
dynamic pressure from M = 0.6 to M = 0.9 was not achieved. However, at
M = 0.95, both control laws demonstrated a 44-percent increase in flutter
dynamic pressure. At M = 0.9, increases in dynamic pressure of 35 percent and
27 percent were demonstrated by the optimal control law and the energy control
law, respectively, before control-surface saturation occurred. At saturation,
the control surface was forced against its mechanical stop, thus resulting in
a system—off flutter instability. At M = 0.6 and 0.8, both control laws dem-
onstrated increases in dynamic pressure, but these tests were terminated when
it became obvious that the 44-percent increase could not be achieved.

The performance of the flutter-suppression systems is illustrated by the
oscillograph records of the outboard wing accelerometer and the control-surface
position presented in figure 16. (The records shown are for the aerodynamic
energy control law, but similar results were also obtained for the optimal
control law.) The test condition was a dynamic pressure 10 percent above the
system-off flutter point at M = 0.9. Time is increasing from left to right
in the figure. The trace starts with the flutter-suppression system turned on.
The system was turned off for approximately 4.5 sec and then turned on again.
During the time the control system was turned off, the wing began to flutter
as evidenced by the rapid buildup of acceleration amplitude. The effect of
turning the system back on was a rapid suppression of the oscillatory motion.

Another illustration of the performance of the control systems is pre-
sented in figure 17. Presented in the figure is the peak output acceleration
plotted against frequency obtained from the spectrum analyzer for the wing
without flutter suppression and for each of the two control laws turned on.
These data were measured at a dynamic pressure just below the system-off
flutter dynamic pressure at M = 0.9. A decrease in amplitude and an upward
shift in frequency of the maximum response resulting from operation of the
flutter—-suppression systems are illustrated.

Aerodynamic energy method results.— The first series of closed-loop tests
were performed at M = 0.9. During this first series of tests,. it became evi-
dent from measurements of the actuator hydraulic pressure that the control

15



surface was approaching the rate limit of the actuator (rate saturation)
because of the response in the 40- to 50-Hz range. Analysis results (fig. 7)
did not predict rates in the range of saturation (820 deg/sec) for the control
law. Refer to figure 3 and note that the inboard accelerometer is located in
an area of significant modal response for the fourth and fifth flexible modes.
In lieu of adding electronic filters to reduce this response, the feedback sen-
sor was shifted from the inboard to the outboard accelerometer. The outboard
accelerometer is located very near the node lines for these modes. Since this
method was developed for a two-dimensional wing, it is not surprising that
small variations in the accelerometer location may be required. No attempts
were made to adjust the overall gain of the flutter-suppression system even
though the modal displacement in the first flexible mode is approximately

20 percent greater at the outboard accelerometer location.

An alternate aerodynamic energy control law was therefore implemented on
the model by simply replacing hjpng by houthg in equation (5). A
Nyquist plot of the open-loop transfer function (based on hgytpg) at
M=10.9 and q = qpzx Lis presented in figure 18. By comparing these results
with those in figure 6, a significant change in the positive gain margin is
apparent. The Nyquist plot indicated that the positive gain margin could have
been significantly improved by simply reducing the overall gain of the control
law to reflect the increased amplitude of the first mode at the outboard accel-
erometer location. Control-surface activity for the alternate control law as
a function of dynamic pressure at various Mach numbers is presented in fig-
ure 19. A comparison of these results with those in figure 7 shows only slight
increases in control-surface activity. A root locus plot (M = 0.9) using the
alternate aerodynamic energy control law is presented in figure 20. Comparing
root loci between the two aerodynamic energy control laws (figs. 8 and 20)
shows that the roots of the first flexible mode are not significantly changed.
The roots of the second and fourth flexible modes couple in the alternate
control law to produce an instability. However the instability occurs above
dpax+ During wind-tunnel tests of the alternate energy control law the rate
saturation problem d4id not reoccur.

Experimental results were obtained for both accelerometer locations at
M=0.6, 0.8, and 0.9. At M = 0.95, only the outboard accelerometer was used.
Figure 21 presents the control-surface rms deflection and the frequency of the
flutter mode from the spectrum analyzer at M = 0.6, 0.8, 0.9, and 0.95. For
comparison purposes analytical results are also presented. At M = 0.6, the
measured rms displacement is well below the calculated data. At the other Mach
numbers the rms deflections compare more favorably with analysis. Frequency of
the flutter mode compares reasonably well with predicted results across the
Mach number range. Predicted values of flutter dynamic pressure, flutter fre-
quency, and control-surface response at gp,x for the aerodynamic energy con-—
trol laws are given in table II.

Optimal control-theory method results.- At M = 0.9, a 35-percent increase
in flutter dynamic pressure (see fig. 15) was demonstrated before excessive
control-surface deflection saturated the system, thereby resulting in system-
off flutter. At M = 0.6 and 0.8, the tests were terminated after small
increases were achieved in dynamic pressure because of peak control-surface
deflections. At M = 0,95, the desired 44-percent increase in flutter dynamic
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pressure was demonstrated. At this condition peak control-surface deflections
were in the range of 9°,

Figure 22 presents the rms control deflection and the frequency of the
flutter mode from the spectrum analyzer at M = 0.6, 0.8, 0.9, and 0.95. For
comparison purposes analytical results are also presented. In general, the
measured rms deflection is well below that of the analytical data. Frequency
of the flutter mode compares favorably with the analytical data across the Mach
number range. Predicted values of flutter dynamic pressure, flutter frequency,
and control-surface response at qp,x for the optimal control theory control
law are given in table II.

Problem Areas

The major problem that occurred during the wind-tunnel tests was excessive
control-surface peak deflections. Even though the rms control deflection was
below that predicted by analysis (see figs. 21 and 22), the peak deflections
were beyond the capability of the actuator. The ratios of measured peak to
average rms control deflections at M = 0.9 and M = 0.95 as a function of
dynamic pressure are presented in figure 23. Also presented are unpublished
data acquired during the wind-tunnel study reported in reference 11. Based on
the previous study, it was assumed that at the higher dynamic pressures the
maximum ratio of peak to rms control deflection would be in the range of 3.
Since the maximum rms control deflection was predicted to be less than 4° at
M = 0.9, the resulting peak deflections would be well within the actuator
limits. At M = 0.9 for the optimal control law, ratios of measured peak to
rms control deflection ranged from a minimum of 3.3 at the lower dynamic pres-
sures to a maximum of 4.7 at the higher dynamic pressures. At this Mach number
the 44-percent goal could not be achieved because of control-surface saturation.
At M = 0.95 for the optimal control law, this ratio varies from a minimum of
1.6 to a maximum of 2.1 and the goal of a 44-percent increase in dynamic pres-
sure was achieved.

Control-surface deflection is a function of dynamic pressure, the inten-
sity and frequency distribution of the turbulence in the wind tunnel, and the
effectiveness of the flutter-suppression system. It was impossible during the
wind~-tunnel tests to separate these effects quantitatively. As mentioned pre-—
viously, an adequate model of wind-tunnel turbulence is not available. 1In
addition, the response of the wing to tunnel turbulence (both system on and
off) was so large that subcritical measurements aimed at evaluating the flutter
mode damping could not be performed. However, some qualitative data are avail-
able which indicate areas of concern.

During the tests the relative stability of the wing was evaluated by using
the Peak-Hold Spectrum method, as described in reference 4. As stated previ-
ously, instead of damping, this method uses the inverse of the model response
to turbulence as a measure of relative stability. For the flutter mode the
inverse amplitude obtained from a Peak-Hold Spectrum is plotted against dynamic
pressure. At flutter the inverse amplitude goes to zero. These data can be
used to establish a damping trend which can then be extrapolated to predict the
flutter dynamic pressure. Measurements of the inverse amplitude of the flutter
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mode at M = 0.9 as a function of dynamic pressure are presented in figure 24
(the inverse amplitude is normalized by dynamic pressure in an effort to sepa-
rate the forced response due to dynamic-pressure changes from those due to
damping changes). Results are presented for the flutter-suppression system
turned off and on (optimal control law). A curve drawn through the system-off
points (circular symbols) indicates that the flutter point can be reasonably
extrapolated from the subcritical data. Extrapolating the system-on points
(square symbols) indicates that flutter would occur between the measured
saturation point (q = 6.64 kPa) and the predicted flutter point (q = 9.03 kPa).

The impact of these results becomes more apparent when predicted values
of flutter mode damping are considered. The predicted flutter mode damping
for the system off, the aerodynamic energy control law, the optimal control
law, and the control law published in reference 11 are presented in figure 25.
Between 5 and 7 kPa the level of damping for all three control laws is substan-
tially larger than the maximum value of damping for the system off. By assum-
ing that the parameter on the ordinate in figure 24 is proportional to damping,
the level of damping indicated by the system-on curve is of the same order as
that for the system-off data. (For example, at g = 6.5 kPa, the system-on
damping is the same as the system-off damping at q = 3.8 kPa.) This level of
damping is not indicated by the analysis. Therefore, it can be assumed that
the control systems are not so effective in generating damping in the flutter
mode as predicted. In general, control-surface aerodynamic hinge moments are
overpredicted by unsteady theory when compared to experimental data and could
account for the differences between theory and experiment.

Wind-tunnel turbulence compounds the problem of excessive control-surface
deflections. As shown in reference 16, the magnitude of unsteady pressure
fluctuations in the Langley Transonic Dynamics Tunnel peaks between M = 0.85
and M = 0.9 and then decreases rapidly as Mach number is increased. During
most of the wind-tunnel tests Mach number was held constant while dynamic pres-
sure was increased by bleeding in freon. The last run at M = 0.95 was per-
formed by varying dynamic pressure and Mach number simultaneously along a line
of constant tunnel pressure. During this run a significant reduction in the
control-surface response occurred above M = 0.93. At M = 0.95, peak deflec-
tions of the control surface were in the range of 6° even though the dynamic
pressure was only 6 percent less than the maximum dynamic pressure at M = 0.9.
At M = 0.9, control-surface deflections were greater than 149, thereby result-
ing in saturation. This problem indicates a pressing need for a satisfactory
definition of wind-tunnel turbulence.

To date three control laws have been experimentally tested on the model.
These include the two control laws described in this paper and the control law
presented in reference 11. At M = 0.9 increases in flutter dynamic pressure,
prior to control-surface saturation, have varied from 42 percent (ref. 11) to
35 percent for the optimal control law and to 27 percent for the aerodynamic
energy control law., Predicted values of rms control-surface deflection are in
the opposite order; that is, the aerodynamic energy control law requires the
least deflection, followed by the optimal control law, and finally the control
law from reference 11. Refer to figure 25 and note that the predicted level of
flutter mode damping varies in the same order as the dynamic pressure for which
each control law is saturated. It appears that a minimum level of flutter mode
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damping (which is sufficient for stability) is required to overcome the forced
response of the model because of turbulence.

CONCLUSIONS

Two methods for designing active flutter—suppression control laws, the
aerodynamic energy method and the optimal control theory, have been presented.
These methods were applied to an aeroelastic wind-tunnel model equipped with a
hydraulically actuated trailing-edge control surface. The resulting systems
were tested in the Langley Transonic Dynamics Tunnel. Some important conclu-
sions of this study are:

1. The application of both the aerodynamic energy method and the optimal
control theory resulted in control laws that were effective in suppressing
flutter. At Mach 0.6, 0.8, and 0.9, modest increases in the flutter dynamic
pressure were measured. At Mach 0.95, both control laws demonstrated
44-percent increases in flutter dynamic pressure.

2. Calculations with the synthesized control laws indicated larger values
of flutter mode damping than the test data showed. Additional work is required
to account for the uncertainties in the unsteady aerodynamics of oscillating
control surfaces.

3. A Von Karman gust spectrum does not appear to represent accurately the
wind~-tunnel turbulence model. Additional work is needed to define accurately
the tunnel turbulence model and its application to the prediction of control-
surface activity because it is a major factor in the design and evaluation of
system performance.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 12, 1980
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APPENDIX A

AEROELASTIC ANALYSIS

A description of the analysis used to calculate the flutter characteris-
tics, both with and without active controls, is given in this appendix. Also
given is a description of the gust-response analysis used to calculate control-

surface deflection and rate.

The equations of motion for a flexible vehicle may be expressed in matrix
form as

-‘ ~ ] ~
M)s2 + [2zMwy)s + [R] + EpVZ[Q] {q} = - ;pV{Qg}wg (A1)

where [M] represents the generalized mass matrix; [2CMw,], the structural

damping matrix; [K], the generalizeg stiffness matrix; [6]. the complex
aerodynamic matrix due to motion; {Qgl}, the complex aerodynamic vector due

to gust disturbance; and {q}, the response vector. All the matrices in equa-
tion (A1) are of the size n x (n + r), where n 1is the number of structural
modes and r 1is the number of active control surfaces. By expressing the

response vector as

ds
{q} = (A2)
dec

equation (A1) can be written as

. 1 PN ds 1 ~
[Ms:Mc]sz + [ZCanEO]s + [KSEKC] + ;pVZ[QSEQc] = - ;DV{Qg}wg (A3)
dc

where the subscript s denotes a structural quantity and ¢, a control quan-
tity. The equation that relates control-surface motion to wing response (con-

trol law) can be expressed as

{ag} = [T]ld]{ag} (24)
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where [T] is the transfer function matrix and [¢] is the matrix of modal

displacements at the sensor location. Typically, [T] is expressed as a
rational polynomial in s by letting

[TN ]

Q(s)

[r] =

where Q(s) 1is a scalar polynomial representing the common denominator of
all the elements of [T], and [Ty] is a matrix of the resulting numerators.
Equation (A4) can now be expressed as

(Ty] (4]

{go} = ——— {qg} (A5)
¢ o) s

Typically, the elements of the aerodynamic matrices Qg, Qo, and Qg
are available as tabular functions of reduced frequency k, whereas the control
law is expressed in terms of a rational polynomial in the Laplace variable s.

The variation of the aerodynamic matrices with s can be approximated by the
representation

~ 2 6 (Agls
0] = [ag] + [a4] % s + [A2]<§> s2 + jE:-——~:1————— (A6)

m=3
s + — By
1 m-2

where [Q] is Qgsr Q¢r and aG and all of the matrix coefficients and
B-values are real. Substitution of equations (A5) and (A6) into equation (A3)

and multiplication by Q(s) yields a matrix polynomial expression in s of
the form

([Fg) + [m)s + [Fy)s2 + . . . [Fpls™{qg) = ({Gg} + {G1)s + . . . {GplsMwy
(A7)

where the matrix coefficients [Fj] and {G;} are functions of Mach number,
velocity, and dynamic pressure. For flutter analyses only the homogeneous part
of equation (A7) is solved; that is

([Fgl + [Fq)s + [Fyls2 + . . . [FplsMi{ggl =0 (A8)
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By using the relationship

e h
Sm_.I {qS}
sm=2  {qgg}
{x} = . .
s0  {qg}
_ J

equation (A8) can be reduced to a set of first-order equations of the form
s{x} = [al{x} (A9)

The eigenvalues of equation (A9) are the roots of the characteristic flutter
equation. Root loci can be constructed to correspond to the variation in the
eigenvalues of the system described by equation (A9) as a function of dynamic
pressure.

Gust-response analyses are performed by using power-spectral-density (PSD)
techniques similar to those described in reference 11. The modal response of

the system per unit gust velocity can be determined by solving equation (A7) at
discrete values of s(s = iw); that is

{ag(iw)} 17!
_ = [K[Fo] + [Fls + [Fpls2 + . . . [Fn]sn){qs}

x [({Go} + {G] s+ ... {Gn}s“>wg]

The control-surface response can then be evaluated by

¥g

{getim}  [1y1lo] {gg(im}
= (A10)

Wy Q(iw) Wg

The PSD functions of control-surface response are determined by
b0 (w) = o1 (w) [HS(iw) |2
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qc(iw)
where Hg(iw) = Element of control-surface frequency-response vector
w
g9
(eq. (A10)) and ¢1(w) = Input gust spectrum defined by
8
owg?L|1 + ;(1.3391.1,0/V)2
w1 + (1.339Lw/v)2]11/6
where Owg, = 1.0. The rms value of the control-surface response per unit rms
gust velocity Owg is defined by
1/2
Sa dc *
—_— = | —— = d)o(u)) 4dw (A11)
Owg/rms Ovg /rms 0

23



APPENDIX B

NUMERICAL. RESULTS OBTAINED BY USING AERODYNAMIC ENERGY METHOD

The numerical results obtained from applying the aerodynamic energy
method are presented in this appendix. The format of the appendix parallels
the design steps described in the text. Analytical methods used to perform
the design steps are described in the following references:

(a) Optimization (ref. 8)

(b) Nyquist criterion (ref. 17)

(c) Stability and gust response (ref. 11)

The design steps are as follows:

24

Step 1 - Initialization of free parameters: The boundary corresponding

Step 2 -

to a 44-percent increase in flutter dynamic pressure is indicated
by the dashed-line curve in figure 5. Based on previous experi-
ence and guidelines presented in reference 8, the following val-
ues were assigned the free parameters in equation (3)

Wy = 35 wy = 75
1 = 0.99 oy = 0.99
ay = 2.0 ap = 2.0

The resulting system is stable above the boundary defined
by dpax-
Minimum control-surface activity: The design point selected for

the optimization was M = 0.9; g = 7.72 kPa. During the optimi-
zation, the free parameters were constrained as follows:

o
i

(LU] 102) £ 75

0.5 £ (%7,%2) S 1.0

o
748

{ay,a3) £ 2.0

The following results were obtained when the system was optimized
for minimum control-surface deflection at the design point:



Step 3 -

Step 4 -

APPENDIX B

a; = 0.984 ag = 0
1 =1.0 Lo = 1.0
wy = 5.9 wg = 75.0
resulting in
I 0.984s2 ]4hinba
8ao'(s) = rad (B1)
s2 + 2(1.0)5.9s + 5.92J by

Control-surface rates and displacements at the design point are

Sa,rms = 189.2 deg/sec

8a,rms = 3.62°

Control-surface activity over a range of tunnel conditions: By
using equation (B1), control-surface rates and deflections were
calculated at M = 0.6, 0.7, 0.8, and 0.9 as a function of
dynamic pressure. These results are presented in figure 26.
Maximum control-surface rate and displacement occur at M = 0.6;
dpax = 10.62 kPa and are 260 deg/sec and 4.9°, respectively.
Control-surface activity below qpzyx is well within the goals
set for the design.

Addition of actuator transfer function: A block diagram of
the flutter-suppression system is illustrated in the following
sketch:

a Wing inbd=
(1)
) 5 '
Actuator | C | Structural] ¢ Control |_
4) filter (3) law (9)

Sketch A
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The transfer function relating control deflection &, to the
command 65' is (see eq. (1))

8a (s) (1.915 x 107) (628.3) 2 deg

Sc'(S) (s + 214)(s2 + 179.4s + 8.945 x 10%4) (s + 628.3)2 deg

By using equation (B1) and letting Hinbd = Szhinbd' the control-
system transfer function is written as

Sa Sa 60 GC'
= il et | Bt | R
hinpa  \%/\% ho.65¢,
or
Sa 8.02 x 1016 d3  py)

hy. g5c [s2 + 2(1)5.9s5 + 5.927(s + 628.3)2(s + 214) (s% + 179.45 + 8.945 x 10%) 9

The stability of the closed-loop system was determined by
using a Nyquist analysis (ref. 17). This method was chosen
because of the ease in determining gain margins. 1In order to
apply the Nyquist method, the blocks in sketch A are combined
in the following manner:

\

R(s) G(s) C(s)
\ (1) o

H(s) -
(2) x (3) x (4) [

Sketch B

where G(s) is the wing transfer function with respect to
control-surface motion (block (1) in sketch A) and H(s)
is the transfer function defined by block (2} x block (3)
x block (4) (sketch A). The closed-loop transfer function
is defined by
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Step 5 -
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C(s) G(s)

R(s) 1 + G(s)H(s)

The stability of the closed-loop system is determined by evalu-
ating encirclements of the -1 + 0i point by the locus of the
open-loop transfer function G(iw) H(iw) as W varies from

o to =x,

The locus of G(iw) H(iw) at the design point is presented
in figure 27. (Since G(iw) H(iw) and G(-iw) H(-iw) are sym-
metrical with respect to the real axis, only the results for
positive frequencies are presented.) Arrows indicate increasing
frequency. The dashed-line curve represents a unit circle, the
center of which is at the origin of the complex plane. Since
there are no net clockwise encirclements of the -1 + 0i point,
the closed-loop system is unstable at the design point for the
control system defined by equation (B2). The frequency of the
instability is approximately 84 rps.

Compensator design: In order to account for phase lags intro-
duced by equation (1), a simple lead filter of the form s + W,
was introduced into equation (B2). The value of w,; was fixed
by determining the amount of phase lead required to compensate
for the phase lag introduced by equation (1) at the instability
frequency of 84 rps; that is,

Denominator terms Phase lag @Qw = 84
(s + 628.3)2 15,20
(s + 214) 21.49
(s2 + 179.4s + 8.945 x 10%) 10.4°

47.0° total lag

The value of w®,, to compensate for the 47° phase lag, is 78 rps.
When s + 78 was added to equation (B2), the overall gain was
adjusted so that the static gain (w = 0) from equation (B2) was
retained. This results in the control-system transfer function

$a 1.03 x 1015(s + 78) deg (B3)
hp.ese [ + 2(1)5.98 + 5.92](s + 628.3)2(s + 214) (s + 179.4s + 8.945 x 10%) 9

Nyquist plots of the open-loop transfer function
G(iw) H(iw) (with H(s) defined by eq. (B3)) indicated that
the gain margins at gqpax £for all Mach numbers were less than
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Step 6 -

Step 7 -
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+6 dB. The static gain was then increased until a minimum gain
margin of -6 dB was achieved at qpazx for all Mach numbers. The
resulting control-system transfer function is

84 S5 147.35(s + 78) ]deg (B4)

hinbd Sc'/l 82 + 2(1)5.9s + 5.92J g

The Nyquist plot, with H(s) defined by equation (B4), at dqpax
for M = 0.9 1is presented in figure 28. At M = 0.6 and 0.7,
the +6-dB gain margin requirement is met. At M = 0.9 and 0.8,
gain margins are slightly less than 6 dB. Reducing the static
gain at M = 0.9 and 0.8 would allow the #6-~dB gain margin to
be achieved but would also require gain scheduling to achieve
the -6-dB gain margin at the lower Mach numbers. Since gain-
margin goals are somewhat arbitrary, the control-system transfer
function defined by equation (B4) was judged to be acceptable in
meeting the gain-margin design goals.

Control-surface activity with actuator and compensator: By using
equation (B4), control~surface rates and deflections were calcu-
lated at four Mach numbers as a function of dynamic pressure.
These results are presented in figure 29. At the design point

(M = 0.9; qgmpax = 7.72 kPa), control-surface rate and displace-
ment are

Sa,rms = 181 deg/sec

|

and

(o]
]

a,rms = 3.62°

Compare these results with those of step 3, and note that the
response of the control surface at the design point has not been
adversely affected. Compare the results of figure 29 with those
of figure 26, and note that the maximum rates at the higher
dynamic pressures are reduced, the rates at the lower dynamic
pressures are increased, and the deflections remain relatively
unchanged. Control-surface rates and displacements are given

in table II.

Closed-loop dynamic-pressure root loci: Flutter calculations
were performed across the Mach number range by using the transfer
function defined by equation (B4). At M =0.9 and M = 0.8,
the flutter dynamic pressures are well above the boundary defined
by dpax (fig. 5). At M = 0.6 and 0.7, no flutter is predicted
up to a maximum dynamic pressure of 12.2 kPa. Figure 30 presents
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a typical dynamic-pressure root locus at M = 0.9, A comparison
of these results with those of figure 14 (no flutter suppression)
indicates that flutter is delayed by modifying flexible modes 1
and 2. The higher frequency modes are largely unaffected by the
flutter-suppression system. Without flutter suppression, flutter
is predicted to occur at a dynamic pressure of 5.03 kPa. With
flutter suppression, flutter is predicted to occur at a dynamic
pressure of 11.2 kPa.
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NUMERICAL RESULTS OBTAINED BY USING OPTIMAL CONTROL THEORY

The numerical results obtained from applying the optimal control-theory
method are presented in this appendix.

Optimal Control-Law Design

For the optimal control-law design, zero-state weighting ([Q] = 0) was
selected since this yields a set of gains that provide the smallest control-
input amplitude (ref. 17). Once the full-state feedback gain matrix was deter-
mined, the optimal Nyquist diagram for the single input case was constructed by
solving

= iw )
u (1% = |R*][iwr - A]-1{B} (c1)

u(iw)

The resulting Nyquist diagram (fig. 31) is a counterclockwise circle of radius
unity centered on the (-1,0) point. The full-state feedback control law pro-
vides gain margins of -6 dB and o and phase margins of +60°,

Practical Control-Law Design

By using the accelerometer location shown in figure 2, the output fre-
quency response was calculated by

houtbd

—— = lcg)[iwr - a]-1{B} (€2)
u (iw)

where [Cg4)] is a row matrix of mode-shape displacements (table I) at the sen-
sor location. In the frequency plane the feedback filter (eq. (7)) has the
form

H(iw) = K¢ f (iw) (C3)

(iw)2 + 2C5wp3 (iw) + wnjzj

3z
| —
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Various values of m and n were tried, and the combination that provided the
smallest value of the error function (m = 2, n = 2) was determined. The low-

frequency (3 rad/sec to 60 rad/sec) portion of the open-loop frequency response
{(not shown) indicated the need for an integrator., The error function was again
minimized with the previously determined values of m and n and with 1/(iw)
as the polynomial factor £(iw) in the filter. The optimization algorithm did
not result in a -6-dB gain margin; therefore the gain Kg¢ was increased until

a gain margin of -6 dB was achieved, thereby resulting in the control law

8¢’ 2214[s2 + 2(0.127) (121.21)s + 121.212

houtbd Lsz + 2(0.962) (297.62)s + 297.622

s2 + 2(0.088) (269.14)s + 269.142]deg

X

(C4)
s2 + 2(0.964) (294.91)s + 294.912J 9

Calculations were performed across the Mach number range by using the con-
trol law defined by equation (C4). All across the Mach number range, the flut-
ter dynamic pressures are above the 44-percent-increase requirement. Figure 32
presents the dynamic-pressure root locus at M = 0.9. A comparison of these
results with those of figure 14 (no flutter suppression) indicates that the
control law increases the damping of the flutter mode while having very little
effect on the other modes. Control-surface deflections and rates are presented
in figure 33 for all four Mach numbers as a function of dynamic pressure. The
largest values of 84, rpg (5.5°) and 9d,,rpg (270 deg/sec) occur at the
largest value of dynamic pressure investigated (M = 0.6; g = 10.77 kPa).
Open-loop frequency responses (Nyquist diagrams) with H(s) defined by equa-
tion (C4) were calculated to establish gain and phase margins. Figure 34 shows
the Nyquist diagram at the design condition. The gain margins are -6.27 dB and
13.60 dB with phase margins of -59° and 41°. The Nyquist diagrams at the other
Mach numbers (not shown) are similar in character to that at M = 0.9.
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- CONTROL-SYSTEM MECHANIZATION

A brief description of the design and operation of the actuator loops and
control~law feedback loops is given in this appendix. The flutter-suppression
control system (fig. 4) consists of the trailing-edge actuator loop, the opti-
mal control law or the energy control-law loop and a structural filter. The
actuator loop is an electrohydraulic position feedback system contained in a
hard wired unit that could not be modified during the test. The control laws
were programmed on the analog computer and could be modified as necessary to
adjust the performance of the control system. A second-order low-pass filter
was included to avoid a previously encountered high-frequency wing structural
hydraulic-fluid instability.

Actuator Loop

Figure 35 is a block diagram of the actuator loop. The actuator loop must
be capable of displacing the control surfaces in the exact manner dictated by
the control law over the operating frequency range of the system. The actuator
performance can be described as follows:

(1) The bandwidth of the actuator loop must be sufficiently greater than
the closed-loop operating frequency of the control system but small enough to

avoid high-frequency instabilities.

(2) The actuators must have sufficient amplitude and rate capability.

(3) The actuators must provide sufficient torque to drive the control sur-
face under all operating conditions.

(4) The hysteresis of the actuator must be small enough so that the per-
formance is not degraded. In this case, 0.1° was considered adequate.

The operation of the loop, as shown in figure 35, can be described in
the following manner. A trailing-edge command voltage Gc is compared to
the trailing-edge position Ga; the error is amplified by the forward-loop
gain K,,. The servovalve amplifier converts this signal into the servovalve
current I, which controls the flow Q of the hydraulic fluid into the
actuator. The integral of this flow rate is proportional to the change in the
position of the trailing edge. The surface will continue to move until the
error between the surface and the command is zero. Because of the deadband
inherent in the construction of the servovalve, the actuator response will have
a certain degree of hysteresis. The degree of hysteresis is inversely propor-
tional to the static forward-loop gain of the system. Since increasing the
forward-loop gain destabilizes the system, the pressure-loop gain K is used
to obtain the desired transient response of the system, while the forward-loop
gain K, is adjusted to control the hysteresis. This stabilizing gain must
have the static component removed with a high-pass filter so that the actuator
will not respond to any applied loads that the control surface encounters. The
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APPENDIX D

measured frequency response and hysteresis of the closed-loop system are shown
in figures 36 and 37, respectively. The actuator deadband from figure 37 indi-
cates that the hysteresis of the actuator was 0.1°. By characterizing the
response shown in figure 36 as a second~order system, it can be shown that the
dominant oscillatory mode of approximately 40 Hz has a critical damping ratio
of 0.24 and characterizes the motion of the actuator.

Control-Law Feedback Loop

The control-law feedback provides the required compensation from the sen-
sor to the trailing-edge command. The control laws were programmed on an analog
computer. The capabilities were as follows:

(1) The program was able to use either accelerometer signal with either
control law

(2) Either control law was selected
(3) The control law was able to be switched on or off

The differential equations for the energy control law, the optimal control
law, and the structural filter were programmed on the analog computer by the
application of Johnson's mechanization method for transfer functions (ref. 18).
The analog program that results from using this method is presented in fig-
ure 38. The system was scaled so that a sinusoidal acceleration input of 5g
at a frequency of 8 Hz would neither exceed a trailing command of 20° nor over-
load any amplifier in the analog circuit. Refer to figure 38, and note that
manual switch 4 is used to choose the sensor to be used in the control law.
Switch 0 was used to select the control law to be used. When this relay was
in the set position, the energy control law was engaged, and when it was reset,
the optimal control law was engaged. Manual switch 3 was used to turn the
control command on or off. 1In the off position, a zero trailing-edge command
was sent to the actuator control loop.
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TABLE I.~ CALCULATED FREQUENCY, GENERALIZED MASS, AND MODAL DISPLACEMENT DATA

Natural

Generalized

Modal displacements

Mode | frequency, mass,
Hz kg Outboard accelerometer | Inboard accelerometer
1 5.23 3.68 0.923 0.767
2 19.13 7.77 -.636 -.470
3 20.91 7.04 -.000 -.000
4 25.77 2.97 .345 -.205
5 46.11 4.7 .176 -.359
6 61.23 4.76 .236 -.751
7 79.68 5.16 .020 -.663
8 86.03 11.30 .000 .001
9 98.09 7.56 .044 -.997
10 118.15 5.50 .017 -.121
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TABLE II.- SUMMARY OF ANALYTICAL CLOSED-LOOP RESULTS

*Analysis

Aerodynamic energy Aerodynamic energy Optimal control law
;condition | hinbd houtba houtbd
9maxs| 9fr | f£s sa,rmsr 6a,rmsr e, | E£s 6a,rms' a,rmss | £+ | ££r 6a,rmsr Sa,rms’
M kPa | kPa |Hz deg |deg/sec| kPa |Hz deg |deg/sec| kPa |Hz deg |deg/sec
(a) (b) (b) (c) (b) (b) (b) (by
|0.6 {10.62]>12 -==1 5,2 235 |11.83]24.0{ 5.9 245 |11.93]6.7] 6.2 309
.71 9.79>12 -~ 4.7 225 (10.73}23.9{ 5.1 227 {10.89{6.9{ 5.8 298
.8 | 8.69| 11.40}5.3| 4.2 215 9.62123.7| 4.5 211 9.9317.1 5.2 270
.9 | 7.24) 10.44]5.3] 3.6 187 8.28423.4] 3.7 186 9.03{7.0f 4.1 218
.95 6.34(—=~=m= —] - -~ 7.57]123.2] 3.3 165 8.76(6.9] 3.3 180

a1.44qf (analysis) from figure 5.

valuated at q = gpgx.
CInstability in mode 2.
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Figure 1.-
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6€

® Outboard accelerometer

B Inboard accelerometer

1.943 m
1.778 m
1.736 m

9m

876 m———

Figure 2.- Model geometry.
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Figure 3.~ Measured node lines and frequencies of first six natural vibration modes.
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M=10.9; q = dpax- (H(iw) defined by eq. (5); arrows indicate
increasing frequency.)
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