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ESTIMATION OF EFFECTIVE H'YDRO'LOGIC PROPERTIES OF SOILS

FROM OBSERVATIONS OF VEGETATION DENSITY

by

T07::.N E. TELLERS

and

PETER S. EAGLESON

ABSTRACT

An existing one-dimensional model of the annual water balance

is reviewed. Slight improvements are made in the method of calculating

the bare soil component of evaporation, and in the way surface retention

is handled. A natural selection hypothesis, which specifies the equilib-

rium vegetation density for a given, water-limited, climate-soil system,

is verified through comparisons with observed data and is employed in the

annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca.,

to estimate effective areal average soil properties. Comparison of CDF's

of annual basin yield derived using these soil properties with observed

CDF's provides excellenc verification of the soil-selection procedure.

This method of parameterization of the land surface should be useful with

present global circulation models, enabling them to account for both the

non-linearity in the reJationship between soil moisture flux and soil

moisture concentration, and the variability of soil properties from place

to place over the earth's surface.
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Chapter 1

INTRODUCTION

In order to increase the accuracy of global climate models,

a more sophisticated representation of the land surface boundary condi-

tion is required than that which is presently employed (GARP, 1978). The

interaction, in particular the water flux, between the atmosphere and

the soi.-vegetation system at this boundary is highly non-linear in

nature, and is not simply defined. Any attempt to satisfactorily

account for this nor-linearity in a model :gust incorporate two effects

which are not included in current models:

1. variability of soil properties and soil moisture

dynamics from place to place over the earth's surface, and

2. non-linearity in the relationship between soil moisture

flex and soil moisture concentration.

In this work, it is intended to make use of a one-dimensional

water balance at t.,: land-air interface in order to parameterize the

climate-soil-vegetation relationship in such a way as to reflect the

non-linearity and areal variability.
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Chapter 2

The specific objectives of this work are twofold:

The first objective is verification of a vegetal equilibrium

hypothesis developed by Eagleson (1978f). This hypothesis proposes

that the natural vegetation density it; a watershed will seek, through

natural selection, an optimal "climax" value at which available soil

moisture is a maximum. Comparison of a theoretical curve of evapo-

transpiration versus canopy density based on this hypothesis with

observed data will provide the necessary check on the accuracy of the

hypothesis.

The second objective is establishment of an algorithm for

estimating effective areal soil properties from observations of

vegetation density by using the natural selection hypothesis in a

one-dimensional water balance model. By defining the level of evapo-

transpiration from soil moisture through observations of the canopy

cover density, it may be possible, knowing the climate, to determine

the soil properties that enable the soil-vegetation system to respond

at the indicated level. The estimated values of these parameters can

then be used in the water balance equation to evaluate desired compo-

nents of the water flux. Verification of the desired algorithm will

be sought through comparison of computed and observed statistics

of annual yield.

15
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Chapter 3	 j

REVIEW OF LITERATURE

1
Past efforts to model the coupling among physical processes

of the atmosphere, soil, and vegetation across the land-surface inter-

face have been largely of two types:

1. Numerical studies which employ detailed formulations

of the processes involved. Examples of such studies are those of

Philip (1957), Sasamori (1970), Deardorff (1977), and Philip and de Vries

(1957). Although these models simuI.ate the system response to climatic

inputs very well, they usually do so in terms of a large number of

climate, soil, and vegetal parameters. Due to their complexity and

the detailed data requirements for their validation, these studies

have found little application in general circulation models.

2. Empirical studies which utilize validated interrelation-

ships among the principal variables. Because of the ease of their

application, and negligible programming and data requirements, most

global climate models use this type of parameterization of the land-

surface boundary with regard to actual evapotranspiration, average

soil moisture content, and runoff.

The primary GCM's today utilize the approach first introduced

by Manabe (1969) to parameterize the land surface boundary condition.

In this approach, the above mentioned parameters are handled in the

following way:

16



A. Evapotranspiration

Actual evapotranspiration is related to potential evapo-

transpiration linearly through the soil moisture and a single soil

parameter following the work of Budyko (1956). This parameterization

is

.,

e 	 s/k, s < k

e 	 =	 1 , k<s <1 	(3.1)

in which

e  = actual rate of evapotranspiration

ep = potential rate of evapotranspiration

s = effective soil moisture concentration

k = empirical coefficient, 0 <k < 1 generally assumed

to be constant everywhere

As mentioned above, the only soil parameter appearing in this

model is the empirical coefficient, k. This representation grossly

distorts the sensitivity of e  to s and makes no allowance for the spatial

variance of this sensitivity due both to soil type and to the presence

of vegetation.

More recently, Lettau (1969) and Lettau and Baradas (1973),

in their "evaporation climatonomy" formulation, refine the water

balance evapotranspiration term through use of an energy balance. This

approach seeks theoretical solutions in the form of "response functions"

17
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(i.e. evapotranspiration cycles, temperature, etc.) as a physical con-

sequence of a mathematically defined "forcing function" of the environ-

mental system. However, parameterization is achieved without any

explicit consideration of the soil and vegetal properties which will
i

control the evaporation under all but the most humid conditions. The

only input parameters linked to the land surface are evaporivity, e*

which is a non-dimensional measure of the capacity of land surfaces to

utilize solar energy for the evaporation of rainfall received in a

specified- time interval, and t* which denotes a characteristic soil

moisture residence time. Values for these parameters are either

assumed on the basis of empirical data, or are estimated from a systematic

classification of watersheds according to morphology, soil structure and

permeability, vegetation cover, etc. The lumping of all these para-

meters into a single term in no way fully represents the complex

interrelationships between the various processes involved in the

water balance.

Other studies concerning the evapotranspira'ion term are

those of Czarnowski (1964) and Ritchie (1972), and Ritchie and Burnett

(1971). Czarnowski assumes that total evapotranspiration is a sum of

plant transpiration, evaporation from surface retention, and evaporation

from soil, and that these values are functions of vegetation density,

and consequently of climatic factors. He treats the development of

plant cover as a function of the form

_ P
V

ti = 1-e m
	

(3.2)
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where

P - precipitation, mm

V  - sum of mean daily deficits of air humidity, nun Hg

Finally, he concludes that evapotranspiration can be expressed as

r
V = V M 1.17M + 

.4
M (3.3)

or

VC  J = M 1.17M + *4I
	

(3.4)
m

where the constants, 1.17 and .4 are determined by a least squares fit

to empirical data obtained primarily from cultivated agricultural

lands.

Ritchie (1972) and Ritchie and Burnett (1971) develop a set

of empirical functions relating leaf area index and fractional net

radiation at a soil surface for a row crop to plant evaporation

efficiency. These equations may be written

Rns - Rnoe 
.398LAi
	 (3.5)

T = .70LAi1 ^ 2 - .21	 (3.6)
e
P

where

LAi = leaf area index

19



Rns = net radiation reaching soil surface

Rno - net radiation above plant canopy

Relating leaf area index to canopy density using Equation (3.5) and

the assumption that

R	 i
ns = 1 - M	 (3.7)

Rno

gives

e	 1/2

	

-M	 - .2	 3.8T =	 ln(1 )	 1	 (	 )
J -	 -.70	 -	

8e	 .39
P

Again, the constants appearing in the above equations are determined

from the method of least squares.

While both of the above formulations are attempting to relate

evapotranspiration to more physically-significant parameters, there is

little inclusion of the actual physics. Since a linear regression is

performed to obtain the above equations, there is a lack of generality

and understanding of the sensitivity to other parameters besides vege-

tation

B. Soil Moisture

The change in the average soil moisture concentration is

determined from a water balance relation written

20
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nh t - i - eT ^- YS
 - YC;

	 (3.9)

l in which

h - thickness of surface layer

1. - intensity of rainfall

YS - intensity of surface runoff

Y  - intensity of percolation of water out of the surface

layer to groundwater

The product, nh, represents the maximum water content of

the surface layer and is assigned a value which is common for all

soil surfaces.

C. Runoff

Runoff, as written in Equation (3.9) consists of two different

components. Surface runoff is regulated by the infiltration of rainfall

and additions to soil moisture. Groundwater runoff is governed by the

state of soil moisture concentration. All global climate models use

highly simplified empirical formulae which lump these two dynamically

different runoff-generating processes into total yield relations of

the form

Y = Y(i,eT , s)

21



9

These relations include one or more coefficients which may incorporate

spatial variability, but there is no physical basis for their selection

without natural yield measurements.

The models referred to in the preceding paragraphs include

those of Arkawa (1972, U.C.L.A.); Somerville et al. (1979, G.I.S.S.);

Gates and Schlesinger (1977, Rand-O.S.U.); Sellers (1973, Arizona);

and Corby et al. (1978, B.M.O.). In all of these models, there is

no use of the present high level of physical understanding of the

natural processes involved to develop a generalized, accurate repre-

sentation of the land-surface interface.

Eagleson (1978a,b,c,d,e,f,g), has developed a generalized

water balance based upon simplified physics of the component processes.

The development is sufficiently rigorous to capture the essential

system dynamics yet simple enough to permit analytical solution.

The model produces valuable insights into the interactive role of

soil moisture in the determination of climate. Foremost in this

development is the accounting for the areal variability of soil pro-

perties over the earth's surface and the reflection of the inherent

non-linearity in the relationships between soil moisture concentration

and the interfacial moisture fluxes. This model will be presented

and utilized in the following chapters to attain the objectives

stated in Chapter 2.

22



Chapter k

THEORETICAL BACKGROUND

4.1 The Water Balance

The major source of theoretical background us

work of Eagleson (1978a,b,c,d,e,f,g). In these papers,

dimensional water balance based on soil moisture dynami

statistics of climatic data is derived. This water bal

in terms of annual expected values, may be represented

E[EPA] = E[ET A I + E[RS A I + E[RG A I

and

E[YAI = E[RS I + E[RG I
A	 A

where

E[ ] = expected value of [ ]

PA	annual precipitation

ET	annual evapotranspiration
A

RS	annual surface runoff
A

R 
	 = annual groundwater runoff
A

YA	= annual yield

23



An analytic expression is obtained for Equation (4.1) by deriving the

individual components through the use of derived probability distribu-

tions and one-dimensional dynamic equations approximating the physics

of the separate soil moisture fluxes. These expressions are then

introduced into Equation (4.1) to produce the equation for the (soil

moisture) water balance

mP (1-e -G-2a r(a + 1)C7 ') -
A

E[EP J J(E,M,kv ,h0) - E[Er ] + mTK M soc- Tw
A	 A

for

E[Er ] / mP < 
e-G-2a r(a + 1)a-'
	

(4.3a)
A	 A

(The term to the left of the equal sign is infiltration, the first

term to the right, total evapotranspiration, the second is evaporation

from surface retention, and the last two terms are groundwater runoff

[the first is groundwater recharge and the last is groundwater loss]).

Otherwise,

MP 
= E[EP ] J(E,M,kv ,h0) + mTK(1)soc - Tw	 (4.3b)

A	 A

In the above,

E	 = annual surface retention
r 

24



Ep A = average annual potential evapotranspiration

J = evapotranspiration efficiency

G = gravitational infiltration parameter

o = capillary infiltration parameter

E = evapotranspiration parameter

M = vegetation canopy density

k  = plant transpiration coefficient

MT = mean length of rainy season

ho = surface retention capacity

so = average annual soil moisture

K(1) = saturated hydraulic conductivity

T = 1 year, seccnds

w = apparent velocity of capillary rise

MP - mean annual precipitation
A

c	 pore disconnectedness index

It will be helpful and important to review the development of

the expressions for evapotranspiration and surface runoff, and to

present an alternative approach for the former, and a slightly different

25
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interpretation for the latter.

4.2 Evapotranspiration

The expected value of annual evapotranspiration is derived

(Eagleson, 19784) by calculating bare soil evaporation and vegetal

transpiration for an interstorm period as functions of properties of

the storm sequence, the surface, the soil, and the average rate of

potential evapotranspiration, using observed distributions of the

random climatic variables, and averaging over the rainy season. The

bare soil evaporation and plant transpiration are determined by con-

;	 sidering the vertical flux of moisture in a soil column. In Figure

4.1, the modeled column of soil and the different moisture fluxes

are sketched. In this figure

f = bare soil exfiltration rate
e

M = vegetation canopy density

e  = vegetation transpiration rate

K(O0) = effective hydraulic conductivity at long-term average

soil moisture

It is assumed here that

1. Soil moisture throughout the surface boundary layer is

spatially uniform at the start of each interstorm period

at the long-term average value, s = so;

2. The medium is semi-infinite;

I
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3. The vegetation is distributed uniformly, and its roots

extend uniformly into the entire volume of the soil in

the surface boundary layer. This implicitly assumes that

the plant species have adapted by natural selection to

a A ensity and root structure which is in balance with

the available soil moisture;

4. The rate of moisture extraction by the roots is in

equilibrium with the transpiration rate by the leaves,

thus forming a uniformly distributed sink for soil

moisture of strength, Mev.

Following the work of Philip (1969), Eagleson writes the

total decrease in soil moisture during infiltration:

CO	 6

	

f	
0

 (0 0 - 0)dz = J zd0 = Fe (t) + [K(00) + Mev] t	 (4.4)

0	 01

where Fe (t) is the cumulative exfiltration in centimeters.

The integral on the left-hand side is evaluated in the manner

of Philip (1960). Assuming a vertical flow passage of constant

cross-section, the exfiltration rate is found to be

1
f

	

e 	2 Set 2 - 2[K ( 01 ) - K (90)l - Me 	 (4.5)

Note that this neglects the restriction, by vegetation canopy density,

of the bare soil area through which exfiltration occurs. Further

simplification and analysis result in the exfiltration capacity:

28
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fe z 2 Set 2 _, Mev

where Se is the exfiltration sorptivity.

A typical interstorm period, and the relationship between

various rates of evaporation and time for bare soil is illustrated

in Figure 4.2. In this figure, ep is the potential rate of bare

soil evaporation, which is considered a constant. The times, t o an

te, are evaluated by assuming

e - f
p	 e

when

fe(Ve) - f(-d to)
	

(4.7b)

and that

i	 - 0
x	

(4.8a)
e

when

(4.8b)t - t
e

respective)v. Exfiltration capacity, and ',Iiie times t o and t o , are

then used by Eagleson along with the relationships represented in

Figure 4.2 to determine total evapotranspiration, E T . To do this,
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ET from a unit land surface is proportioned according to

ET = (1-M)Es + ME 	 (4.9)

in which

E s = bare soil evaporation from soil moisture plus eva-

poration from soil surface retention

E  = evapotranspiration from vegetation plus evaporation

from plant surface retention.

It is not necessary to present the development of E[E s ] here.

This is done by calculating the volume under the solid line in Figure

4.2, multiplying by the joint probability distribution of storm depth

and time between storms, and integrating over the regions shown in

Figure 4.3. What is important to note is the previously mentioned

approximation made in the development of the bare soil exfiltration

capacity. The expression obtained for E[E s ], bare soil evapotrans-

piration for one interstorm period, from the above procedure is

-K

E[Es ] -
	 Y[K,J^ho] - 

+
Rho/ p	 Y[K,ah0 Rho^p] 

e 
BE

r(K)	 Xh0	 r(K)

-BE-R oh /^+ 1-Y[K^aho]	
jl-e	

p	
[1+Mkv + ( 2B) 1/2 E-w/ep]

r(K)	 l
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-CE-Rh°/ep	
1/2

•	 '

(2E)1/2 e - 
Eih 

°
/e
 p 11'(2, CE) - Y(2'BE)^

Rho/ep _K Y[K,ah0 +Rho/p (	 1/2	 3	 3+	 1 +	 ah	 r(K)	 { (2E)	 [y(2,CL)-,•(^2,BE)]
0

+ e CE [Mk + (2C) 1/2 E - w/ep ] - e BE [Mks + (2B) 1/2E - w/ep]

(4.10)

Here

M2k +(1-M)w/e 
pB =	 1-M	

+	 ° 	 (4.11)
1+M v-w/ep	 2(1+Mkt w/ep)2

and

C = 2 (Mks - w/ep) -2	(4.12)

Also,

R = reciprocal of mean time between storms

a = parameter of Gamma distribution of storm depth

K = paramater of Gamma distribution of storm depth

ho = surface retention capacity
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Upon studying Figure 4.1 and Equations (4.4) and (4.6)

it can be seen that the term, f e , is defined as the exfiltration rate

for bare soil, and F e as the total volume of moisture exfiltrated from

the soil column across the bare soil surface. The rate, f e , is

obtained by differentiating the volume, Fe, with respect to time.

The result of the differentiation leaves f  multiplied by the area

of bare soil. Thus, in the two-dimensional problem which includes

the presence of vegetation, f
e 
should be multiplied by the term, 1-M,

to account for the fact that only a fraction of the land surface, the

bare soil fraction, is exfiltrating at this rate. Equation (4.6)

should be rewritten as

(1-M)fe = 2 eS t 1/2 -
 
Mev (4.13)

The new form for the expected value of bare soil evaporation, E s , may

then be evaluated in terms of this altered expression for exfiltration.

The new expression for E[E s ] is

_	 Y[K'Xho)	 -BE	
Shop 

--K . ,y[K,Xh°+Sh°/ep^

E[Es.7l	
R	 1'(K)	 - e	 1+ a h

0	 r(K)

Y[ K, ah ]	 -BE-Rh /ep

	 I

1
1-	

r (K	
1-e	 °	 1+ 1 

M
	 2B) 

1/2 
E- g +Mkv

_	 p	 J

-CE-Rho/e  	 1/2 
E]

L	 P

_Rh /e
+	 1	 (2E)1/2 e
	 ° p 

L
Y( 2 , CE) - Y(2,BE)J

1-M
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+ 1 + Sh-° e

. _ K Y[K, Xh° + Oh
o /ep 	 a

	

I
	

-BE	 1	 w _	 1/2 1

ah	 r(K)	 e	 vo	 1-M ^
	- (2B)	 EI

	

J	 p	 1

- e CEr 1 
-K- - Mkv - (2C) 1/2E + 11M ( 2 E) 1/2 TY(3. CE) -Y(3. BE)

	

1-M le	 J	 i 2	 2	 .^
i.	 P

(4.14)

where

B - 1/(1+Mkv)
	

(4.15)

C + 1/2(M ^-w/ep)-2
	

(4.16)

ET is obtained in the same way as before; by multiplying the bare soil

term by (1-M), and the vegetation term by M. The result of this altera-

tion on the expected value of annual basin evapotranspiration will be

presented in a later section. Although this approach may seem more

accurate than the original, its use will create other, and possibly

greater problems. Attempting to expand the problem into two dimensions

at this point will cause some inconsistencies concerning evaluation of

the Philip exfiltration equation. This equation is

0

J zd9 - A1 t
1/2 +

,A2t + A3 t3/2 + ...	 (4.17)

1	 el
a

Since this was developed for a one-dimensional formulation, the
a^b^

'	 expressions obtained for the constants, A i , on the right hand side will
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not necessarily apply to the two-dimensional situation. This can be

seen by noting that in Equation (4.6), as M approaches the value of 1,

the right hand side does not go to zero, as it should for a fully

vegetated surface where there would be no bare soil exfiltration of

soil moisture. So, although there are certain misgivings about

Eagleson's original derivation, the alternate approach presented above

may involve more serious inaccuracies. However, for areas with a large

vegetal canopy density, where the effect of the vegetation on bare soil

exfiltration is large, this approach may come closer to reality than

the previous one.

4.3 Surface Runoff

To derive the probability of storm surface runoff, Eagleson
	 'i

(1978) integrates the difference between rainfall intensity and the

Philip infiltration equation over the duration of a rainstorm. Infil-

tration is assumed to occur uniformly over both bare soil and vegetated

portions of the surface. Illustrated in Figure 4.4 is a sequence of

surface states beginning from t = 0 at the start of the rainfall period.

In this figure

h0 = surface retention capacity

i = rainfall intensity

f i = infiltration capacity

t = storm duration
r

Ao = gravitational infiltration rate as modified by capillary

rise from the water table
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Initially, there is a withdrawal of rainfall to satisfy surface retention.

If t  is greater than ho/i, as shown, this surface retention reaches its

capacity, ho . If t  < ho/1, there would be no infiltration or runoff,

and the surface retention would equal the storm depth, h. For the case

illustrated in Figure 4.4, however, infiltration will begin at time

t = h /i. From this time until t = h /i + t , when f
i
* = i, infiltration0	 0	 o 

will take place at the rainfall rate, i. After this time, the capacity

of the soil to infiltrate moisture is no longer larger than the rainfall

intensity, and the excess is represented by the shaded area of the

figure. Rainfall excess, R S .9 is then generated until time t = t r . The
J

expected value of the rainfall excess is obtained in a manner similat to

that of the evapotranspiration.

A question may be raised relating to the hai^jling of the

surface retention. In his development, Eagleson argues that the surface

retention must be subtracted from the rainfall excess, since it is

moisture that is not infiltrated into the soil. The expression he

obtained for the expected value of annual rainfall excess is then

E[R* ] = mP [e 
G-2Q 

r(a + 1)0 
6]	

(4.18)
s 	 A

in which

*
R = annual rainfall excess
s 

The expected value of annual surface retention, E , is then
rA

subtracted from this to get the annual surface runoff. This charges the

entire annual surface retention against those events producing rainfall

excess, however.
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r

CLAY

k(1)	 1.0x10 10

n	 .45

c	 12

CLAY-LOAM	 SILTY-LOAM	 SANDY-LOAM

2.8x10 10	 1.2x10 9	 2.5x10 9

.35	 .35	 .25

10	 6	 4

Table 4.1

REPRESENTATIVE SOIL PROPERTIES
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A slightly different interpretation of this rainfall excess

results from a closer examination of Figure 4.4 and the shaded area

therein. It is known, and mentioned above, that surface retention

must be satisfied before any infiltration can occur. From this, it

seems necessary to subtract the surface retention from the beginning

of the rainfall period, as indicated in the figure, rather than from

the rainfall excess at the end. The volume represented by the shaded

area would then be equal to the surface runoff, and not surface runoff

plus surface retention. The resulting water balance equation then

becomes

mP (1 - e
-G-2(y

r(u 6 6+l) - ) = E[EpA	vI J(E,M,kho) + mT K(1)sc - 'i 'w (4.19)A 

This alternative procedure will increase the calculated value of sur-

face runoff, and decrease the amount of moisture calculated as infiltra-

tion. The effect of this difference on the OF of annual yield will

be discussed in Chapter 6.

4.4 Vegetal Equilibrium Hypothesis

From examining the role of vegetation canopy density in the

average annual water balance, Eagleson (1978f) observed that for a given

set of climate and soil parameters and for a given k v , Equation (4.3)

defines so as a function of M. This relationship is illustrated in

Figure 4.5 by using four sets of representative soil properties, listed

in Table 4.1, and the conditions P A = m  and kv = 1, for the climates
A

of Clinton, Mass. aid Santa Paula, Calif. It can be seen that there

exists a particular value of M = M  for each climate-soil combination at
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which s o is a maximum. This point of maximum so corresponds to

maximum surface and groundwater runoff, which means, for fixed pre-

cipitation, that there is minimum evapotranspiration from soil moisture.

Thu-, at M = Mo , it is expected that the term representing evapo-

transpiration from soil moisture

E[E PA
	 rA
]J(E,M,kv,ho) - E[E ]
	

(4.20)

will be a minimum for a given climate-soil combination. This minimiza-

tion is seen in Figure 4.6 for the same information as that used in

Figure 4.5. Note that in Santa Paula, the clay and clay loam soils

cannot absorb enough water to produce canopy densities greater than 0.4

and 0.8, respectively, as long as v = 1.

The numerical value of v is a matter of some controversy.

Linacre, et al. (1970), report values of k  for water plants which range

from .6 to 2.5 depending upon species. Slatyer (1967, p. 53) states

that the value of v can be greater than one since total evapotranspira-

tion from a plant community, per unit land area, may exceed that from a

similar area of bare wet soil due to the larger actual evaporating

surface area. Kramer (1969, p. 338) however, states that evaporation from

a plant community never exceeds that from a similar area of wet soil. For

the present, v will not be allowed to exceed one.

From observations of the relationships presented above,

Eagleson (1978f) develops the vegetal equilibrium hypothesis mentioned

in Chapter 2. In the light of the above arguments, this hypothesis says

that natural vegetal systems of given species will develop a canopy density
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which produces minimum stress under local climatic conditions. A

necessary condition for minimum stress is that soil moisture take on

the largest possible value. Thus, by using this hypothesis, the given

climate, soil, and plant coefficient determine the equilibrium canopy

density, M = M0 , through the water balance equation, where the soil

moisture is maximum or, equivalently, where the soil moisture evapo-

transpiration is a minimum. Figure 4.7 illustrates the relationship

between the dimensionless evapotranspiration parameter, E, and the

dimensionless evapotranspiration function, J(E, kv), for the equilibrium

condition, M - M0 . This plot is obtained by minimizing evapotranspiration

from soil moisture for a given kv , (kv = 1 in this case), and E using

Eagleson's constant soil column cross-section assumption. The expression

£or E is

2Sn K(1) T(1) $e d+2
E _	 _	 s

Trme2	
0

p

in which

(4.21)

R = reciprocal of mean time between storms

n = porosity

k l) = saturated soil matrix potential

m = soil pore size distribution index

d = soil diffusivity index

^e = dimensionless desorption diffusivity

The other terms have been previously defined.

Also shown in Figure 4.7 is the M0 vs.E relationship for the

equilibrium condition, PA = mp A . As PA varies from mpA, E and thus,

1
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J(E, M0 , k v ) will change accordingly, while to the first approximation,

M will remain constant at M .
0

Eagleson (1978f) performs an asymptotic behavior analysis of

the evapotranspiration function to gain insight into the meaning of the

parameter, E. The evapotranspiration asymptotes shown in Figure 4.7

are thereby determined. The intersection of these two asymptotes occurs

at E = 2 /7r, which separates soil controlled from climate-controlled

evapotranspiration (Eagleson, 1978d). Thus, low values of E correspond

to relatively dry, warm climates, while larger values indicate humid

climates. As can be seen from Figure 4.7, low values of 11 0 occur for

low E values, and vegetation densities approaching 1 correspond to a

large E.

It can now be seen that observations of canopy cover will

provide a key to determining the effective properties of a soil for a

given climate. By using the vegetal equilibrium hypothesis in reverse,

observations of M0 may be used in the water balance to obtain information

about the soil if the climatic variables are known.

Figure 4.8, which is a plot of J vs. M
O 

can be obtained

directly from the information in Figure 4.7. Thus, from observations of

vegetation density, the evapotranspiration efficiency, J, can be deter-

mined. To assure the generality of this relationship, the sensitivit} of

J to its independent parameters is studied. From the expression obtained

by Eagleson (1978d), the primary parameters other than E and M are:

k  = plant coefficient

Ah0 accounts for storms which do not fill retention capacity

Sh0/ep measures effect of surface retention on exfiltration

K = parameter of Gamma distribution of storm depth
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The plots obtained by varying these parameters over their reported

ranges are presented in Figures 4.9, 4.10 and 4.11. Figure 4.9, which

holds K and k  constant at .5 and 1, respectively, illustrates the

insensitivity of the evapotranspiration function to changes in ah o as

compared to Rho/Ep . By holding Rho/ep equal to .1 and k  equal to

's 1, K is varied in Figure 4.10. As can be seen, the function changes

infinitesimally with changes in K. In Figure 4.11, the two variables

K and aho are held constant at median values, and Rho/ap and k  are

allowed to vary. From this analysis, the evapotranspiration function

is shown to be most sensitive to the two parameters, Rh /e and k .
o p	 v

Also shown in Figure 4.11 as dashed lines are the curves obtained

using the alternate formulation of evapotranspiration, Equation (4.14),

developed in Section 4.2. In review, this expression was developed

by accounting for the effect of the vegetated fraction of the soil

column surface on the vertical flux of the exfiltrating soil moisture

in Equation (4.6). Expanding the Philip exfiltration equation, which

was developed for the one-dimensional case of a constant cross-section,

to two dimensions introduced an inconsistency with the results Philip

obtained as explained in Section 4.2. By multiplying the term f  in

Equation (4.6) by (1-M), and not adjusting the terms on the right hand

side of the expression, an infinite exfiltration capacity is obtained

for the case when M = 1. Although the term (1-M) appears in the

denominator of several components of the equation (4.14) for bare soil

storm exfiltration volume, an infinite result is not obtained since the

total volume of bare soil exfiltration, E s , is weighted by (1-M) in
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Equation (4.9). The net result of this modification is to raise the

total evapotranspiration for a given value of M since the rate has

been increased. This is seen in Figure 4.11 where the dashed lines

are plotted above the corresponding solid lines for the same vegata-

tion density. The main problem with this approach, as mentioned

above, is that the terms on the right hand side of Equation (4.6)

do not identically go to zero as M approaches 1. If the necessary

corrections were known, the result would be a reduction in the bare

soil exfiltration capacity for each value of M. This would lower

the dashed lines of Figure 4.11. The actual function may therefore

lie somewhere between th^:;;e two sets of curves. With this in mind,

these plots will be used in the following chapters to study the

validity of the vegetal equilibrikun hypothesis, and to determine its

utility in estimating the effective average areal soil properties of

a natural watershed.
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Chapter 5

METHOD OF APPROACH

5.1 Vegetal Equilibrium Hypothesis

Verification of the vegetal equilibrium hypothesis presented

in Chapter 4 is the first objective of this work. This can be accomplished

through comparisons of actual data (from watersheds representing various

types of climates) with the hypothesized relationship illustrated in

Figure 4.11. In review, the hypothesis states that the vegetation

denisty seeks that value, Mo, which maximizes soil moisture. This value

maximizes water yield and thus, for a given climate and soil, minimizes

evapotranspiration from soil moisture. Minimum evapotranspiration

can be translated into a value of evaporation efficiency, J. (i.e. the

ratio of actual to potential evapotranspiration) leading to the

relationships previously presented in Figure 4.11.

The average annual water balance is presented by Eagleson

(1978a) as

E[PA]-EFTA]=E[RSA)+E[RGA] 
E[YA

1
	 (5.1)

which states that average annual precipitation minus average annual

evapotranspiration will equal the average annual basin yield which is

composed of surface runoff plus groundwater runoff. When analyzing

catchment data to calculate average annual actual evapotranspiration,

mean annual basin yield is subtracted from mean annual precipitation.
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Although relatively accurate annual precipitation data are readily

obtained from station records, yield information is only available

in the form of streamflow records. Therefore, it is necessary that

the total yield of the catchment studied appear as streamflow. This

means that the entire groundwater component of yield must be influent

to the stream channel upstream of the basin mouth. Linder such condi-

tions, most closely approached in humid climates, the total evapo-

transpiration is equal to precipitation minus streamflow. This

restriction may lead to overestimating actual evapotranspiration if

there are losses of yield to ungaged groundwater, or underestimation

if there is contribution to streamflow of groundwater from adjacent

watersheds.

Potential evapotranspiration is estimated by using the

modified Penman equation (Penman, 1948). The form used here is the

combination form as presented by Eagleson (1977)

U = qi(1-A) - qb+H
p	 Pe Le ('. +Y/Q)	 (5.2)

in which

qi = average rate of insols-tion.

q  = average rate of net outgoing long wave radiation

H = average residual sensible heat flux

A = shortwave albedo of surface

P e
 = mass density of evaporating water

Le = latent heat of vaporization

Y/A = atmospheric parameter, a function of atmospheric temperature

.	 ,
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The above parameters are calculated or estimated as follows:

q i = qi(4^); from Figure 5.1, where 0 = latitude

A = A (surface structure); from Table 5.1

1/(1 + Y/A) = f(TA); from Figure 5.2, where TA = average

annual temperature

Le = 597 cal/gr

pe = 1 gr/cm3

qb = (1 - .8N)[.245 -.145 x 10 l^TA]

H = qb /(.25 + 1/(1 - S))

The necessary climatic variables are available from U.S.

Weather Bureau publications. They must be averaged over the rainy

season which is assumed to be identical with the vegetation growing

season.

Equation (5.2) gives the average potential evapotranspiration

rate. The total potential volume is obtained by multiplying e  by the

season length as determined from monthly rainfall records.

With actual and potential evapotranspiration known, the only

remaining variables needed for comparison with the hypothesis are the

vegetation species (to obtain k v ) and the canopy density. The canopy

density is estimated either from aerial photographs, from personal

observation, or from literature available for the catchment studied.

In this work, no photographs were available, and it was possible to

estimate only ranges of density from the information in the literature,

depending upon each author's method of measurement and interpretation.

As a result of this uncertainty regarding the type and canopy density of
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M^

Table 5-1

Albedo of Natural Surfaces
(from Ref.	 [171)

Surface Albedo, A Surface Albedo, A

Water 0.03-0.40 Spring wheat 0.10-0.25

Black, dry soil 0.14 Winter wheat 0.16-0.23

Black, moist soil 0.08 Winter rye 0.18-0.23

Gray, dry soil 0.25-0.30 High, dense grass 0.18-0.20

Gray, moist soil 0.10-0.12 Green grass 0.26

Blue, dry loam 0.23 Grass dried in sun 0.19.

Blue, moist loam 0.16 Tops of oak 0.18

Desert loam 0.29-0.31 Tops of pine 0.14

Yellow sand 0.35 Tops of fir 0.10

White sand 0.34-0.40 Cotton 0.20-0.22

River sand 0.43 Rice field 0.12

Bright, fine sand 0.37 Lettuce 0.22

Rock 0.12-0.15 Beets 0.18

Densely urbanized Potatoes 0.19
areas 0.15-0.25

Heather 0.10
Snow 0.40-0.85

Sea ice 0.36-0.50

57



a\

0
4

4 "00

O
4 0

Kn 40
WwWU V
ua +	 0
?W LO	 44

N(n O	 4J
cr. cr-^W

4 4
Icyrl2

Q Q
Z 3

C7
Z

04

^I 4
O +

^
H
Q u

_W

W =
0

^g
Q

+

^v'lay

IZW
J

.^
Qa. 3

► ^ v

_ZO IFp
M

2 0
X Q

w +

a N
Q ^

O
11

Wz ^4
+

4	 ^
4O

0

a
^ o

H
.Q

CD
—O

Qo

0
I'll-	 cv	 r4?U^	 ^

0 0 0 0 0

H+qb-(b'-I)!b
d a a, Md

N Z
M O

Q
QO	 LLN

Z
Q

N O
CL

Q

O	 lij
N

J

Q
O	 F-

Z .̂.
I d N W r I

w a
W w

LLI

Q

Q

W

I

J z
0

58



the vegetation, the other variable which is a function of the surface

structure, albedo, is subject to error as well. Therefore, the

catchments studied will be plotted on Figure 4.11 in terms of the

expected range of both J and Mo.

5.2 Estimation of Effective Soil Properties

The second goal of this work is to use the hypothesized

relationship between vegetation canopy density and evapotranspiration

to estimate effective average areal properties of the soil.

Three types of parameters are considered: climate, soil

and vegetation. The climatic and vegetal properties are easily obtained

from observations; this leaves the four soil parameters, s o , k(1), n,

and c to be determined from the derived relationships between climate,

soil. and vegetation.

The range of values of the porosity, n, is known to be quite

small, from .25 to about .45, and does not have a large effect on solu-

tions of the water balance equation. Assuming a value for n leaves the

soil moisture, intrinsic permeability, and pore disconnectedness index

as unknowns. To solve for these variables, three equations or relation-

ships are needed which incorporate the vegetation and climate as well.

The first relationship is the water balance, Equation (4.3), which

expresses the soil moisture, s09 as an implicit function of the climate,

vegetation and soil. The vegetal equilibrium hypothesis provides the

second relationship between the same three parameters. The third

expression used is a rather weakly correlated regression between the
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intrinsic permeability of the soil, k(1), and its pore size distri-

bution index, m, presented in Figure 5.3. This expression is

(Eagleson, Personal Communication)

k(1) _ (512.7)2.75
	

cm 	 (5.3)

where

m - 2/(c-3)	 (5.4)

The coefficient of determination of this regression is small

due to the extreme variability of these parameters in nature. The effect

of this regression equation on the derived CDF of annual yield will be

observed in Chapter 6.

In order to explain the procedure followed in the estimation

of soil properties, ?L is necessary to present mathematically'the water

balance and the vegetal equilibrium hypothesis. The mean annual water

balance, Equation (4.3), is again

mPA (1 - e-G-26
	

^P(a+1)Q ) = E[EpAI J(E,M,kv ,ho ) - E[ErAI + mT K(1)sc - Tw

a

for

E[E 
]/mP 

< e 
G-2Q 

r(Q + 1)Q 6
rA	 A

Otherwise,

(5.5a)

mp = E[Ep ] J(E, M, kv , ho) + mT K(1) s  - Tw	 (5.5b)
A	 A

If the interpretation of surface runoff developed in Section

4.3 is used, the above equation becomes
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mP (1 - e-G-26 r(6 + 1)^ G) = E[EpA] J(E,M,kv ,ho) + mTK(1)sc - TwA 

(5.6)

Although the components and symbols have been defined earlier,

their full expressions have not all been stated. In the above equations

G = ctK(l)[(1 + so ) c/2 - w/K(1)]	 (5.7)

nn
 
 K(1) 4(1)(1 - so ) 2 ^i (d , so) 1/3

CF=

	

	 (5.8)
6^r 6 

E[EP A ] = m. mt 
b 
[1 - M(1 - kv)] e 	 (5.9)

K(l) = k(1) yw/uw 	(5.10)

6	 1/2

4'(1) = w 
1K(J) 

n	 (5.11)
yw 	 ^(m)

a = reciprocal of mean storm intensity

n = reciprocal of mean storm depth

d=2+1/m

S = reciprocal of mean storm duration

M = mean number of stormsV

m  = mean time between storms
b

y
w 

= specific weight of water

a = surface tension of water
w

uw = viscosity of water

0.66 + 0.55/m + 0.14/m2
^(m) = pore shape parameter = 10
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The vegetal equilibrium hypothesis states that

aE[ET ]

am = 0
	 at	 M M	 (5.12)o 

where, as mentioned before,

E[ET J = evapotranspiration from soil moisture;
A

which is

E[ET 	vJ = J(E, M, k, ho) E[E ] - E{E r ]	 (5.13)
A	 PA	 A

e	 ((	 -6110/ep r[K, aho]
E[Er ] = S m

V
 (1 - M) i1 - e	 r(K)

A	 ll

C

6ho/e -K Y[K, (aho + Rho/ep)]
1 + ---^ar,^	 r(K)

(	 -6h0/ep r [K, XkVh0]
+ kvM 	 e	

T(K)

6ho/e -K Y[ K , (Xkho + Rho/ep)]l
- Il + A h P	

v 
	 }	 (5.14)

LL	 v o 1	 r (K)	 JJJ

Therefore,

aE[ET J	 aE[EP ]	 a J(E, M, k v , h o )

	

amA 
= J (E, M, kv, h

o ) 
-

am + E[Ep ]	 all
A	

aE[ Er J

am

	

A	 (5.15)

with
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For v = 1, all M sensitivity comes from J(E, M, kv , ho ), which will then

have a minimum at Mo , in which special case, according to Equations

(5.11) and (5.12),

3J(E, M, kv , ho)

am	 = 0	 at M = M 	 (5.16)

As discussed in Section 4.4, evapotranspiration efficiency, J,

can be determined, for a given climate, fron. observations of vegetation

density and species by using the vegetal equilibrium hypothesis, Eq.

(5.14). The actual procedure for doing this is to pick a value for the

evaporati.3n parameter, E, and calculate J for different values of M until

evapotranspiration from soil moisture, Eq. (5.13), is minimized. If

the vegetation density obtained which minimizes ET is not equal to the
A

observed value, E is incremented and a new M  is found. For a fixed

climate, variations in E correspond to variations in the soil properties

k(1), c, n, ands 0
. Therefore, what is actually done is seeking the soil

which produces the observed vegetation canopy density for a specific

climate. Once this value of evapotranspiration is found, the value of

E is also known, which is a function only of the soil parameters for a

given climate.

With this information in mind, the following procedure is used

to estimate the average areal effective soil parameters for a given set

of climatic and vegetal parameters:

1. A value for n is assumed and k is set = 1
v
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2. The above procedure is followed to determine E

3. The lowest possible value for c, approximately 3.1, is

picked as an initial value

4. k(1) is calculated from Equation (5.3)

5. With these values for the three soil parameters, n, k(1),

and c, it can be seen from Eq. (4.21) that s
0 

remains as

the only variable needed for determining E. With E known

from step 2, so is calculated

6. Annual precipitation is calculated via Equations (5.5)

through (5.10)

7a. If the annual precipitation from Step 6 is not equal to Lhe

actual mean rainfall, c is incremented upward from its

initially low value and Steps 4-6 are repeated

7b. Due to the approximation introduced by using Equation (5.3),

the precipitation, PA, calculated in Step 6 may never

exactly equal the actual mean value, mP , for any value
A

of C. PA will approach mP as c is increased, coming to
A

within AP  of equality at intermediate c before diverging

again for large c. For low values of c, the calculated

k(1) is large, representing a soil with high permeability

and well connected pores. With evapotranspiration

specified at the optimum (i.e., minimum) value, a large

precipitation is therefore calculated in order to produce

the inevitably large groundwater yield of the highly porous
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soil. For large c and small k(1), the soil is extremely

impervious and the surface yield will be high. With

minimum evapotranspiration, a large value for precipitation

is again needed. Somewhere between these two extremes, a

set of suitable soil parameters is obtained which gives an

annual precipitation, PA, which is closest to the actual

mean, mP . This relationship is illustrated in Figure 5.4.
A

Holding c constant at the value which gives the minimum

AP 
A$ 

k(1) is then deviated from regression equation (5.3)

until another minimum in calculated precipitation is

reached. If this value is above the mean precipitation,

c is decreased, if it is below the mean, c is increased.

Another search is done on k(1) until the minimum precipi-

tation is found. This step is repeated until the minimum

calculated precipitation is equal to the mean

8. If the values obtained for k(1) and c are not consistent

with the assumed porosity, n is adjusted to a more appro-

priate value corresponding to a more pervious or impervious

soil type depending on the values of k(1) and c. Steps 1

through 7 are repeated.

The soil parameters obtained from Steps 1-8 are used to

construct the OF of annual yield in the same manner. as Eagleson (1978g).

In this paper, the annual water balance is written as
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WATER BALANCE SOLUTIONS USING SOIL PROPERTIES FROM EQUATION (5.3)
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Y
A	 A	

TA	 s 	 gA
=P -E =R +R	 (5.17)

In order to relate the annual water balance, (5.17), to the

mean annual water balance, (5.1), Eagleson defines a climatic mean, mc,

where PA = mP and ET = E[ET ], and expands (5.17) about this point in
A	 A	 A

a multidimensional Taylor expansion [Hildebrand, 1959, p. 353]. By

taking expected values of this expansion term by term, neglecting higher

order terms, and assuming all variances, covariances, and curvatures

are small, the "first order approximation" of E[YA ] is obtained:

E[YA] = PA - ETA = Rs A + R 
gA	

(5.18)

This allows the use of the mean annual water balance equation to

calculate annual values by letting the annual precipitation, and thus

the average annual soil moisture, vary. The CDF of annual yield can

then be calculated. Comparison of this CDF with that obtained from

observations of annual streamflow provides the test for the accuracy

of the estimated parameters, n, k(1) and c.

Chapter 6 will present the results of this procedure in the

form of annual CDF's of basin yield, in aidition to verification of the

equilibrium vegetation density hypothesis.
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Chapter 6

PRESENTATION OF RESULTS

6.1 Verification of Vegetal Equilibrium Hypothesis

The results of the applied methods of analysis explained in

Chapter 5 are presented in this chapter. The vegetal equilibrium hypo-

thesis is verified first in order to assure its validity for use in the

estimation of soil parameters.

Appendix A presents the individual catchments studied, the

data used, location of the catchment, the values obtained for potential

and actual evapotranspiration, vegetation density, and the estimated

valua of J.

Figure 6.1 presents the agreement of these experimental data

with the hypothesized theoretical curves of Figure 4.11. As can be

seen, the dashed curves, which represent the derivation accounting for

the presence of vegetation at the surface of the soil column in the

exfiltration equation, provides a better fit for catchments with a

vegetal canopy density greater than 0.2. This may mean that the presence

of vegetation has a much greater effect on soil moisture exfiltration

than previously believed. Although the equation used has serious flaws,

they may be negligible compared to the possible importance of the

presence of vegetation.

Possible reasons for catchments W-4, W-5, and part of W-8

lying above the curve may be ungaged yield which escapes through
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i
i

groundwater aquifers, or flaws in the vegetal equilibrium hypothesis.

Until it can be determined if all these yields are present in the

observed streamflows, the vegetal equilibrium hypothesis would seem to

give a reasonably accurate relationship between vegetation density and

evapotranspiration.

Also shown on Figure 6.1 are the results obtained from the

empirical formulas developed by Czarnowski (1964) and Ritchie and

Barnett (1971). These functions exhibit the same type of relationship

between evaporation efficiency and vegetation density, but do not fit

the observed data quite so well as Equations (4.10) or (4.14). The fact

that the data for these studies are primarily from agricultural areas,

where cultivation and irrigation significantly violate the assumption

of natural watersheds, is a likely reason for the poor observed fit.

6.2 Estimatic.L of Effective Average Areal Soil Properties

To determine the accuracy of the procedure described in Section

5.2, the two catchments studied here will be those studied by Eagleson

(1978f, g); Clinton, Ma. and Santa Paula, Ca. Table 6.1 presents the

list of necessary input variables (Eagleson, 1978g) and the computer

program employed is listed in Appendix B. Tables 6.2 and 6.4 list the

results obtained for the inputs given in Table 6.1. Listed probabilities

are calculated for given PA/mP using the Poisson model of Eagleson
A

(1978b). In Clinton, the value of M  is held constant for the entire

range of soil moistures, while in Santa Paula, the vegetation density

is allowed to 4ary with annual precipitation, as explained by Eagleson
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N

(1978g). These results are obtained using the form of surface runoff

developed in Section 4.3 and presented in Section 5.2, (Equation 5.6).

Figures 6.2 and 6.3 present the results in the form of CDF's of annual

yield.

Figure 6.2, which represents Santa Paula, also shows the CDF

obtained by Eagleson (1978g) for his silty-loam soil, which is listed in

Table 6.3. The soil properties estimated by the algorithm explained in

Section 5.2 indicated a slightly less permeable soil than the silty loam.

This soil gives an improved fit over the entire range of CDF values,

especially in the critical lower tail.

The results for Clinton are illustrated in Figure 6.3. The

soil properties obtained in this case indicate, again, a more impermeable

soil than the silty-loam employed by Eagleson. Although these values

for k(1) and c are quite different, the resulting OF of annual yield is

indistinguishable from that obtained for silty-loam. To facilitate the

comparison between the two results, Table 6.5 lists the annual water

balance components for Clinton, using the silty-loam soil properties.

Since the esLimated soil properties represent a tighter soil which reduces

the mobility of moisture, the soil moisture values are higher than for

the silty-loam. The other major differences between the two soils are

the values for surface and groundwater runoff. The more permeable zilty-

loam yields a large groundwater component, and a surface runoff component

which seems unrealistically low for all values of annual precipitation.

In the case of the estimated soil properties, the surface runoff is

A
}

j
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Clinton, Mass.
}

.15 ep cm/day

3
m 
	 days
b

.32
m 	

days
r

365
m 	 days

.5 K

.1 ho cm

0 w/e
P

8.4 TA °C

94 MP
	 cm
A

1 k
v

.8 M
0

Santa Paula, Ca.

.273

10.4

1.43

212

.25

.l

0

13.8

54

1

.4

Table 6.1

INPUT CLIMATE AND VEGETATION PARAMETERS
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greater and the groundwater runoff lower than for the silty-loam soil.

The identical CDF's of yield for the two soils can be explained in the

1=	 following manner:

In this development, the storage of moisture is not taken

into account, therefore, yield is equal to precipitation minus evapotrans-

piration. In the Clinton system, evapotranspiration is controlled primar-

ily by the climate (Eagleson, 1978d), and is relatively insensitive to

the soil properties except for extreme cases. Thus, for a given precipi-

tation, evapotranspiration and hence yield, will be the same for different

types of soil. The only variations occur in the proportioning of yield

between surface and groundwater runoff. The permeable soil encourages

gravitational percolation and hence groundwater, while the impermeable

soil rejects precipitation as surface runoff.

In Santa Paula, where evapotranspiration is primarily soil

controlled, the yield is more sensitive to changes in the soil properties,

and thus there is a difference in the CDF's for the two different soils.

In Figure 6.4, the estimated soil properties are used to show

the effect on the yield CDF of the two methods of handling surface reten-

tion in calculating surface runoff. As expected, the values obtained for

yield, using Eq. (5.5) are reduced from those calculated by Eq. (5.6) due

to the reduction of rainfall excess in favor of surface retention.

Although the difference between the two equations is not large, Equation

(5.6) still fits the observed data better in the lower tail.

Tables 6.6 and 6.7 list the CDF's obtained for Clinton and

Santa Paula, using Eq. (5.5). Again, in the case of Clinton, the CDF is

i
i

i
i
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identical to that obtained from L' • . (5.6). This can again be attributed

to the fact that Clinton is primarily climate controlled, and evapotrans-

I;	 piration is held almost constant near the potential regardless of the

n ,	 amount of water that is infiltrated or removed as surface runoff.

In order to study the sensitivity of the results presented

here to the vegetation density, values of M  that bracket the observed

values are used in the soil property estimation program. Figure 6.5

illustrates the results obtainci for Santa Paula, which are listed in

Table 6.8. Inputing an M  of 0.2 generates a set of soil properties

that produces more yield and less evapotranspiration than the soil obtained

using an M  of 0.4. By specifying such a low vegetation density, the

vegetal equilibrium hypothesis used in the water balance produces a low

value of evaporation efficiency, J (Figure 4.8). This corresponds to an

annual evapotranspiration considerably below the potential. By reducing

the evapotranspiration, the yield must be increased for a given precipi-

tation, as can be seen by Eq. (5.1).

On the other hand, attempting to input an M  which is greater

than 0.41 does not give a solution. That is, no soil can be found for

the Santa Paula climate which will produce a vegetation density much

larger than the observed value of .4. The climatic variables, ep, 
MP ,
A

and m  , at Santa Paula prohibit the system from sustaining a larger
b

vegetation density, and thus a higher evaporation efficiency. If annual

precipitation is increased, or e  decreased, the resulting increased

availability of moisture would allow a greater Mo.

The samz type of results are seen in Figure 6.6 and Table 6.9

for Clinton. Even though the vegetatic, density is already large, and

..
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evapotranspiration is near the potential, it is still impossible to find

a soil which allows an M  much larger than the observed value of 0.8.

Again, reduction of M  produces a soil which generates a larger amount

'	 of annual yield for the same reasons mentioned for Santa Paula.

On the basis of these comparisons we see the soil properties

determined from the estimation algorithm describe the behavior of these

two systems very well through the water balance model. A brief summary,

and conclusions drawn from these results will be presented in Chapter 7.

Although the yield CDF's for Clinton derived from varying

soil properties are identical, the values obtained for the average annual

soil moisture vary significantly between the silty-loam soil and the

soil found from the algorithm. Since soil moisture is a state variable,

it is desirable to be able to verify the accuracy of its prediction.

One possible method for doing this would be to compare the CDF's of

surface ru-11off, rather than total yield. It has been noticed that the

surface runoff components of the annual water balance are much more sensi-

tive to changes in soil properties than is the total yield. One problem

with this, however, is the lack of measurements of surface runoff, al-

though streamflow in arid climates may actually be composed totally of

surface runoff.
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Chapter 7

SUMMARY AND CONCLUSIONS

A one-dimensional water balance model (Eagleson, 1978a,b,c,d,

e,f) is employed to parameterize the climate -soil-vegetation relationship

at the land-air interface. A vegetal equilibrium hypothesis proposed by

Eagleson (1978f) provides a second relationship 'between the climate, soil

and vegetation.

Improvements are made in the method of calculating the bare

soil component of evaporation, and in the way surface retention is

handled.

The vegetal equilibrium hypothesis is developed, and its use

in the water balance is explained. The sensitivity of this hypothesis

to various parameters of the evapotranspiration function is explored.

It is found that the two parameters to which the system is most sensitive

are Sho / ep , which can be readily evaluated, and ^, whose value is uncer-

tain. It: is believed that k
v 

is usually equal to one, except in very

dry climates, where the plants transpire at a rate less than an equiva-

lent area of bare wet soil. In this work, k
v 

is held at its nominal

value, 1.

Reasonable verification of the vegetal equilibrium hypothesis

is obtained through comparisons of the theoretical relationship between

density of canopy cover and the evapotranspiration efficiency to data

obtained from observations in watersheds representing various types of
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climates.

An algorithm is derived which searches for the soil properties

that produce, in a given climate, the level of evapotranspiration deter-

mined through observations of vegetation density. By using the vegetal

equilibrium hypothesis, the water balance, and a regression equation relat-

ing the soil's intrinsic permeability and pore size distribution index,

a consistent set of soil properties is found which generates the implied

evapotranspiration and also satisfies the mean annual water balance.

This estimation of soil proparties produces results, through

the water balance, in the form of CDF's of annual basin yield, that

describe the observed behavior of the Clinton and Santa Paula systems

very well. In both Clinton and Santa Paula, the soils determined were

slightly less permeable than the silty-loam which Eagleson (1978g) used

as his best-fitting soil. These soils also produce a more realistic

(although unverified) surface runoff component than those used by

Eagleson.

A remaining important question is the sensitivity of the

water balance model to the vegetation parameters, M  and k v . Inclusion

of this analysis was beyond the scope of this study, and it is left as

an important subject of future work.

From this summary, the following conclusions may be drawn:

1. The vegetal equilibrium hypothesis is sufficiently valid

to justify its use as a supplementary water balance rela-

tionship between the soil, climate, and the vegetation.
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2. The algorithm for estimating the effective areal soil

properties works well, producing CDF's of annual yield

which fit the observed CDF's closely.

3. It is more accurate to subtract surface retention from

the volume of infiltrated precipitation at the beginning

of the rainfall period than from the rainfall excess.

4. Use of the vegetal equilibrium hypothesis and the soil

estimation algorithm should facilitate the incorporation

of the areal variability of soil properties and soil

moisture dynamics into global climate models.

4

93



Chapter S

RECOMMENDATIONS FOR FUTURE WORK

Questions remaining and subjects for future study are:

1. Evaluation of the Philip exfiltration equation for a

varying soil column cross-section.

2. Sensitivity of the water balance to vegetation through

the parameters, Poo and ^.

3. Development of a procedure for determining the accuracy

of predicted values of average annual soil moisture.
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Appendix A

DATA FOR CATCHMENTS STUDIED IN VERIFICATION OF

VEGETAL EQUILIBRIUM HYPOTHESIS
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W-1

Location:	 Albuquerque, New Mexico

Latitude:	 = 35°N

Rainfall:	 P = 4.37 in.	 ET = 4.37 - .2
A

Streamflow;	 Q = .2 in.	 = 4.77 in.

Season Length = 4 mos., July - Oct.

Cloud Cover: N = .37

Humidit y :	 S = 39.97%

Temperature: T = 69.61°F

Vegetation Density: M  = .12 to .15

Albedo: A =	 .25	 to	 .3

	

ep =	 15.47 in/season to	 14.19 in/season

	

J =	 .27	 to	 .294

Watershed Conditions: Rough broken rangeland. About 85% is bare. Sparse

vegetation consists of short grasses, shrubs, and a few small juniper

and pinion trees.

Comments: The value for M  is estimated directly from the percent bare

ground, and taking into account the crown spread of the trees.

Source*: Hydrologic Data for Experimental '«,,w.ersheds in the United States,

1967. U.S.D.A.

* Indicates reference from which vegetation density values are obtained,
and in some cases, precipitation and streamflow data as well. All other
data is obtained from U.S. Weather Bureau publications and U.S.i;.S.
reports of surface water resources.
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W-2

Location:	 Cornfield Wash, New Mexico

Latitude:	 0 - 35°N

Rainfall:	 P - 6.29 in.

Streamf low:	 Q - function of Mo

Season Length	 = 4 mos., Jt. - Oct.

Cloud Cover:	 N = .37

Humidity:	 S - 39.97%

Temperature:	 T = 69.61°x'

Vegetation Density: M  - .16

M = .24
0

Albedo:	 A =

e =
p

M - .16	 J =
0

M = .24	 J =0

	Q 	 = 1.07 in.	 ET = 5.22 in.
A

	

Q	 .28 in.	 ET = 6.01 in.
A

	

.25	 to	 .30

15.47 in/season to 14.19 in/season

	

.34	 to	 .37

	

.39	 to	 .42

Watershed Conditions: The dominant vegetation is galleta grass. Remain-

ing areas have a mixture of other grasses, Russian thistle, and big sage-

brush in small upland drainages.

Comments: Runoff data was recorded as a function of percent bare soil in

the paper used as the source, therefore, the calculation of E T gives two
A

values, one for each M0 and Q data pair. Vegetation density values were

recorded for each v Jue of percent bare soil, and the two extreme values

were used here.
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W-2 (continued)

Source: F. A. Branson and J. B. Owen, "Plant Cover, Runoff and Sediment

Yield Relationships on Mancos Shale in Western Colorado," W.R.R.,

60), 1979.



W-3, W-4, W-5
. 1

Location:	 Tombstone, Ariz.

Latitude:	 0 - 32°N

Rainfall:	 PW-3 = 8.65 in

Streamflow:	 QW 3 - .64 in.

PW-4 = 8.65 in.

QW-4 - .21 in.

PW-5 = 8.65 in.

QW
-5 = 1.09 in.

Season Length	 - 3 mos., July - Sept.

Cloud Cover:	 N -	 .35

Humidity:	 S -	 .4467

Temperature:	 T - 82.17°F

ET	 = 8.01 in.

AJ-3

ET	- 8.44 in.

A,1'-4

ET	= 7.56 in.

-5

Vegetation Density: 	 M	 - .35 to .4
°W-3

M	 - .25 to	 .3
°W--4

M	 - .2	 to .25
°W-5

Albedo:	 A = .24 to .30

e	 = 13.45 in/season to 12.14 in/season
P

JW-3 = .60 to .66

JW-4 = .63 to .70

JW-5 = .56 to .62

Watershed Conditions: All watersheds have cover of desert shrubs

(whitehorn, creosote bush, tarbush) with an understory of grass (black

grama, t000sa grass, blue grama, sideoats grama, and curly mesquite grass).
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W-3: Entire area covered by shrubs with 38% crown spread. M  z .35 to .40.

W-4: 78% of area covered by shrubs with crown spread of 30%. Remaining

22% covered with grass with .2% basal area. M  z .25 to .3.

W-5: Shrub canopy approximately 20%. Remaining area covered by grass

with .2% basal area. M  -- .2 to .25.

Comments: The three watersheds are all sub-catchments of a larger catch-

ment. Therefore, while vegetation densities and streamflow vary slightly,

the annual climatic properties are all the same.
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.
W-6

Location:	 Flagstaff, Arizona

Latitude	 0 = 35 0N

Rainfall:	 P = 12.38 in.

Streamflow:	 Q -	 .4 in.

Season Length	 = 7 mos., July Jan.

Cloud Corer:	 N =	 .4

Humidity:	 S -	 .52

Temperature:	 T = 47.13°F

ET - 11.98 in.
A

Vegetation Density: M  = .3 to .35

Albedo:	 A =	 .2	 to	 .25'

	

e =	 20.63 in/season to	 18.95 in/season
p

	

J =	 .58	 to	 .63

Watershed Conditions: The terrain is undulating uplands dissected by many

small drainages. The vegetation is mainly upper pinion juniper woodland

with a sparse understory of grasses.

Source: Brown, H.W., "Characteristics of Recession Flows from Small Water-

sheds in a Semiarid Region," W.R.R., 1(4), 1965.
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Q = .96 in.,

Q = .35 in.,

.25	 to

16.04 in/season	 to

ET = 3.73 in.
A

ET = 4.34 in.
A

.30

14.66 in/season

J = .23	 to	 .25

J = .27	 to	 .30

w-7

Location:	 Badger Wash, Colorado

Latitude:	 ^ = 38°N

Rainfall:	 P - 4.69 in.

Streamflow:	 Q = function of M0

Season Length	 = 6 mos., August. - Jan.

Cloud Cover:	 N =	 .5

Humidity:	 S =	 .4817

Temperature:	 T = 47.8°F

Vegetation Density: M0 = .13,

M0 = .26,

A =

e -
p

M- .13:
o -

M = .26:
0

Watershed Conditions: The catchment is in a semiarid area with pre-

dominantly desert-type shrubs.

Comments: This data was obtained in the same way as that for W-2. Thus,

the values for J are presented in the same way.

This watershed is located in an area where there is considerable

snowfall. The model used in this work does not account for snowmelt in any

way, and only works with yield resulting from precipitation in the form of

rainfall. Therefore, if the yield measurement includes runoff from snow-

melt, the value of precipitation used here is not large enough to account
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W-7 (continued)

for that much streamflow, and the resulting calculated value of actual

evapotranspiration is too small. It would not be surprising then if the

value plotted for J vs. M  is below the hypothesized curve.

Source: Branson, F. A. and J. B. Owen, "Plant Cover, Runoff, and Sediment

Yield Relationships on Mancos Shale in Western Colorado," W.R.R., 6(3),

1979.
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Location:

Latitude:
f

+	 Rainfall:

Streamflow:

Season Length:

Cloud Cover:

Humidity:

Temperature:

W-8

Santa Paula, California

- 34.4°N

P = 21.26 in.

Q = 6.85 in.

= 7 mos., Oct. - Apr.

N = .37

S = .6897

T = 53.06°F

ET = 14.41 in.
A

.5Vegetation Density: M  = 	 .35
	

to

Albedo:	 A	 .2	 to

e	 21.23 in/season to
p

J =	 .68	 to

.32

16.73 in/season

.86

Watershed Conditions: Fairly rugged terrain with wide variation of vege-

tation type. Dominant species are desert-type shrubs which are common in

Southern California mountain ranges.

Source: 1) Eagleson, P. S., "Climate, Soil and Vegetation," Parts 1-7,

W.R.R., 14(5), Oct. 1978.

2) On-site observations.
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W-9, W-10

Location: Chickasha, Oklahoma

Latitude: ^ - 35°N

Rainfall: PW_9 = 23.52 in.

Streamflow: qW_9 - 1.12 in.

PW-10 = 23.52 in.

q
W-10 = 3.77 in.

Season Length: - 7 mos., Apr. - Oct.

Cloud Cover: N = .47

Humidity: S = 67%

Temperature: T = 70.61°1'

E	 X2.40 in.T 

`W_9

ET 19.75 in.

AW-10

Vegetation Density: 	 M	 =
ow-9
M	 =
oW-10

Albedo:	 A	 =

e	 =
p

W-9: J	 =

W-10: J	 =

	

.45	 to	 .57

	.2 	 to	 .3

	

.18	 to	 .24

	

28.80 in/season to	 26.09 in/season

	

.78	 to	 .86

	

.69	 to	 .76

Watershed Conditions: The vegetation of both catchments consists of native

grasses (buffalo grass, blue grama, little bluestem). Values of M  are

interpreted from radiation shielding values obtained from average values of

leaf area index and percent mulch cover. The equation used is (2)

M	
1 _ ns = e .4(LAi+2.5M)

o	 Rno
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where

Rns = net radiation reaching the soil surface

Rno = n, radiation above plant canopy

LAi = leaf area index

M = fraction of surface covered by Mulch

Comments: It is reported in the source paper that W-10 is constantly

overgrazed, thus, it is likely that the value obtained for M  is unnaturally

small., and the plotted ;position of this catchment will be above the hypo-

thesized curve.

Source: 1) Hydrologic Data for Experimental Agricultural Watersheds in the

U.S. 1976. U.S.D.A.

2) J. T. Ritchie, E. D. Rhoades and C. W. Richardson, "Calculating

r
	 Evaporation from Native Grassland Watersheds," Transactions of

the A.S.C.E., Aug. 1976.
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W-11

Location: Clinton, Massachusetts

Latitude: ^ = 42.50°N

Rainfall: P - 43.82 in. ET	 22.01 in.
A

Streamflow: Q = 21.81 in.

Season Length: = 12 mos.

Cloud Cover: N = .35

Humidity: S = .70

Temperature: T = 47.12°F

Vegetation Density: M0 = .8 to	 .9

Albedo: A	 = .25 to	 .30

e	 = 24.25 in / season to	 21 . 64 in/season
P

J	 = .91 to	 1.02

Watershed Conditions: No specific conditions are available, only the range

of vegetation density.

Source: It Eagleson, P. S., "Climate, Soil and Vegetation," Parts 1-7,

W.R.R., 14(5), Oct. 1975.

2) Visual observations of nearby watersheds.
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Appendix B

FORTRAN PROGRAM FOR ESTIMATION OF SOIL PROPERTIES
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c THIS PROGRAM CALCULATES EFFECTIVE AREAL AVERAGE SOIL PROPERTIES. WHEN
e THE SOIL PROPERTIES ARE VARIED USING A REGRESSION EQUATION, CALCULATED
c PRECIPITATION, Pa, REACHES A MINIMUM AT A MEDIAN VALUE OF c. THE PARA-
c METER, k(1), IS THEN DEVIATRD FROM THE REGRESSION UNTIL ANOTHER MINI-
c MUM Pa IS FOUND. DEPENDING ON WHETHER THIS VALUE FOR Pa IS ABOVE OR
c BELOW THE KNOWN VALUE OF mpa, THE PARAMETER c, IS INCREMENTED UP OR
c DOWN, AND k(1) IS SEARCHED AGAIN UNTIL ANOTHER MINIMUM IS REACHED.
c THIS INCREMENTATION AND SEARCHING IS CONTINUED UNTIL THE MIMIMUN Pa
c FOUND IS EQUAL TO mpa.

integer change,ftm,cfbl,runs,number,mon,iter
real*8 mnu,pl
real mtb,mtr,mh,mpa
real mi,mo,m,n,nu,kl,k2

c DIMENSIONLESS INFILTRATION DIFFUSIVITY
fii(d,so)=1./(d*(1.-so)**(1.45-.0375 *d)+5./3.)

c PORE SHAPE PARAMETER
fi(em)=10.**(.66+.55/em+.14/em**2.)

print,'Input parameters in the correct units.'
print,'ep,cm/day mtb,days mtr,days tau,days kappa,-.'
print,'ho,em w/ep,- ta,degrees C.'
input,epr,mtb,mtr,tau,ak,ho,wep,ta

pistol=l
c IF pistol=l, THE ARRAY OF FACTORIALS IN THE CDF SUBROUTINE HAS NOT
c BEEN CALCULATED YET. ONCE pistol=2, THE FACTORIALS HAVE BEEN STORED
c AND THE LINES WHICH DO THIS CALCULATION ARE THEN SKIPPED.

5	 print,'Input mpa,cm kv,- Mo,- n,.- .'
input,mpa,akv,mo,n
print,'For annually varying Mo,type 1, for constant Mo,type 2'
input,mon
if(mon.eq.0)stop

r
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change=l
e IF change=l, SOIL PROPERTIES ARE NOT YET DETERMINED. IF change=2, THE
c SOIL PROPERTIES HAVE BEEN DETERMINED AND ONLY THOSE STEPS NEEDED FOR
c DERIVING THE CDF OF THE WATER BALANCE COMPONENTS ARE USED.

runs=l
c IF runs=l, THIS IS THE FIRST SET OF SOIL PROPERTIES USED, AND NO COM-
c PARISON OF CALCULATED Pa IS POSSIBLE. IF runs=2, THE NEW VALUE OF Pa
c IS COMPARED TO THE OLD VALUE TO SEE IF A MINIMUM HAS BEEN REACHED.

cfbl =l
c IF cfbl=l, THIS IS THE FIRST DEVIATION OF k(1) FROM THE REGRESSION
c AND NO COMPARISON OF Pa IS DONE. IF cfbl=2, THE Pa CALULATED WITH
c THIS k(1) IS COMPARED TO THAT CALCULATED USING THE PREVIOUS k(1) TO
c SEE IF THE SECOND MINIMUN HAS BEEN REACHED.

ftm=1
c IF ftm=1, THE SECOND MIMIMUM HAS JUST BEEN FOUND, BUT IF THIS MINIMUM
c PaOmpa, c MUST BE CHANGED AND THE ENTIRE PROCESS MUST BE REPEATED.
c THE VALUE OF THE DIFFERENCE BETWEEN THE MINIMUM Pa AND mpa, awbal, IS
c PRESERVED AND COMPARED TO THE NEXT ONE OBTAINED. THIS COMPARISON IS
c SIGNALED WHEN ftm=2. WHEN awbal < .001, THE SOIL PROPERTIES HAVE BEEN
c FOUND.

c SET INITIAL VALUES
pl=0.0
so =0.0
des=.1
dics=.1

c	 COMPUTE WATER CONSTANTS
c	 sut=SURFACE TENSION
c	 nu=VISCOSITY
c	 gamsw=SPECIFIC WEIGHT
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call WATCN(ta,sut,nu,gamsw)

caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

c	 COMPUTE CLIMATIC PARAMETERS

delta=1./mtr
mh=mpa/(tau/(mtb+mtr))
mnu=tau/(mtb+mtr)
mi=mh/mtr
eta=1./mh
alpha=l./mi
pi=3.14159

beta=1./mtb
epa=epratauamtb/(mtb+mtr)
al=ak/mh
alh=alaho
bhe_betaaho/epr
if(ho.eq.0.0)goto 10
ble=beta/(alaepr)
goto 20

10	 ble=0.0
20	 alkh=alhaakv

blke=ble/akv
30	 if(change.eq.1)goto 40

caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
print
print
print,' so	 E	 Mo	 Pa/mpa	 Ya/mpa	 RSA

do 400 i=1,45
so=so+.02
e=ecnstasoaad2
fiid=fii(di,so)

caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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40	 if(change.eq.2)goto 45
goto 50

45	 if(mon.eq.2)goto 60
goto 55

e TO SPEED UP THE SEARCH FOR THE VALUE OF a THAT MINIMIZES ETA AT THE
c OBSERVED Mo, a AND m ARE GIVEN INITIAL VALUES DEPENDING ON THE VAL-
r UE OF Mo. BY PICKING A VALUE FOR e, THE m THAT MINIMIZES ETA CAN BE
e FOUND. IF THIS m0Mo, ANOTHER a IS PICKED UNTIL m=Mo.

50 if(mo.ge ..2)e=.3
if(mo.ge ..3)e=.5
if(mo.ge ..4)e=1.
if(mo.ge ..6)e= 3.
if(mo.ge ..7)e=6.
if(mo.ge ..8)e=10.
if(mo.ge..9)e=20.

55	 if(e.ge..01)bm=.1
if(e.ge..l)bm=.4
if(e.ge.1.)bm=.6
if(e.ge.10.)bm=.9
if(mo.1t..4)de=.01
if(mo.ge ..4)de=.1
number=l

60	 iter=l
dm=.01

70	 bmkv=bm*akv

e COMPUTE EVAPOTRANSPIRATION PARAMETERS, B & C.
b=((1.-bm)/(1.+bmkv)+(bmkv*bm)/(2.*(1.+bmkv)**2.))
if(bmkv.eq.0.0)goto 80
e=1./(2.*(bmkv#bmkv))
goto 90

80	 a=1.e10
90	 be=b*e
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ce=aminl(c*e,80.)

gamk=gamt(ak,alh)/gamma(ak)
gamkl=gamt(ak,alh+bhe)/gamma(ak)
gambe=gamt(1.5,be)
gamce=gamt(1.5,ce)
gamkv=gamt(ak,alkh)/gamma(ak)
gamkvl=gamt(ak,(alkh+bhe))/gamma(ak)

c COMPUTE ANNUAL EVAPORATION FROM °'7RFACE RETENTION
era=epr/beta*((1.-bm)*(1.-exp(-bhe)*(1.-gamk)-(1.+ble)**(-ak)

&	 *gamkl )
&	 +bmkv*(1.-exp(-bhe)*(1.-gamkv)-(1.+ble)**(-ak)*gamkvl))*mnu

eram=era

c COMPUTE INTERSTOF44 BARE SOIL EVAPORATION
esj=gawk-(1.+ble)**(-ak)*gamkl*exp(-be)+

& (1.-gamk)*(1.-exp(-be-bhe)*(l.+bmkv+sgrt(2.*b)*e-wep)
& +exp(-ce-bhe)*(bmkv+sgrt(2.*c)*e)
& +sgrt(2.*e)*exp(-bhe)*(gambe-gambe))
& +(l.+ble)**(-ak)*gamkl*(sgrt(2.*e)*(gamee-gambe)
& +exp(-ce)*(bmkv+sgrt(2.*c)*e)
& -exp(-be)*(bmkv+sgrt(2.*b)*e-wep))

c COMPUTE EVAPOTRANSPIRATION FUNCTION
hj=l./(1-bm+bmkv)*((1-bm)*esj+bmkv)
ETN=hj*(1.-bm+bmkv)

if(change.eq.2)goto 95
goto 100

95	 if(mon.eq.2)goto 160
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c THESE LINES FIND THE M THAT MINIMIZES ETA.
c IF iter=l, IT IS THE FIRST TIME THROUGH AND NO COMPARISON IS MADE

100	 if(iter.eq.l)goto 120
if(abs(dm).lt..000001)goto 150
if(ETN.gt.ETMIN)goto 110
goto 120

110	 bm=bm-1.5*dm
dm=-.5*dm
goto 130

120	 ETMIN=ETN
bmin=bm
iter=2
bm=bm+dm

130	 if(bm)140,70,70
140	 bm=.1*(bm-dm)

q=q+1
if(q.lt.u)goto 70

c AT THIS POINT, NO Mo CAN BE FOUND THAT IS GREATER THAN 0 9 AND NEW PAR-
c AMETERS MUST BE INPUT.

goto 395

150	 bm=bmin
ETN=ETMIN

160	 if(change.eq.2)goto 230

c THESE LINES FIND THE E CORRESPONDING TO THE GIVEN Mo.
c IF number=1, IT IS THE FIRST TIME THROUGH AND NO COMPARISON IS MADE.

diff=mo-bm
if(abs(diff).lt..0001)goto 200
if(number.eq.1)goto 170
if(diff*diffold.le.0.0)goto 190
if(number.eq.2)goto 180

170	 if(diff.1t.0.0)de=-1.*de
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number=2
180	 diffold=diff

e=e+de
goto 60

190	 de=-de*.5
diffold=diff
e=e+de
goto 60

200	 continue

c AT THIS POINT, THE VALUE OF a HAS BEEN DETERMINED, AND SOIL PROPER-
c TIES ARE NOW SEARCHED.

es=4.
210	 m=2./(cs-3.)

fie=fi(m)
dE=2.+1./m
di=cs-1./m-1.
d2=dE+2.
fied=fie(dE)

c REGRESSION EQUATION
kl=(m/512.7)**2.75

k2=k1
dkl=kl/10.

220	 continue
bkl=kl*gamsw/nu
sil=sgrt(n/(k1*fic))*sut/gamsw
sigc=n*eta**2.*bkl*sit/(pi*m*delta)*72000.
eenst=2.*beta*n*bkl*sit*fied/(pi*m*epr**2.)*86400.

c SOIL MOISTURE IS CALCULATED.
so=(e/ecnst)**(1./d2)
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fiid=fii(di,so)

e	 COMPUTE WATER BALANCE

c	 COMPUTE ANNUAL EVAPOTRANSPIRATION
230	 ETA=ETN*epa

c	 COMPUTE ANNUAL GROUNDWATER RUNOFF
RGA=tau*bkl*so**cs *86400

sigrf= (si ge*fiid*(1.-so) **2.) **.33333
g=alpha*bkl*86400*.5*(1.+so**cs)
blop=g+2. *sigrf
if(blop.gt .85.)blop=85.
blip=exp(-blop)*gamma(sigrf+l.)*sigrf**(-sigrf)
if(blip.gt ..95)blip=.95

c***********************************************************************

e	 COMPUTE PRECIPITATION,YIELD,RUNOFF
Pa=(ETA+RGA)/(1.-blip)
RSA=blip*Pa
Ya=RSA+RGA
if(ehange.eq.2)goto 380
awbal=Pa-mpa

e NOTE-awbal IS THE DIFFERENCE BETWEEN CALCULATED Pa AND KNOWN mpa. THE
c FOLLOWING LINES WILL PERFORM THE SEARCH FOR SOIL PROPERTIES THAT PRO-
c DUCE Pa=mpa.

if(cfbl.eq.2)goto 260
if(ftm.eq.2)goto 280
if(runs.eq.1)goto 250

c THESE LINES PERFORM THE FIRST MINIMIZATION WHICH ADHERES TO THE RE-
c GRESSION EQUATION.
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if(abs(dcs).lt..001)goto 260
if(awbal.gt .awbol)goto 240
goto 250

240	 cs=cs-1.5*dcs
des=-.5*dcs
goto 210

250	 awbol=awbal
cs=cs+dcs
runs=2
goto 210

c THESE LINES PERFORM THE SECOND MINIMIZATION WHICH HOLDS c CONSTANT
c AND DEVIATES k(1) FROM THE REGRESSION.

260	 if(cfbl.eq.2)goto 270
if(abs(awbal).lt..001)goto 320
if(cfbl.eq.1)goto 280

270	 if(abs(dk1).lt.k2/1000.)9oto 320
if(awbal.gt .awbol)gote 290

280	 awbol=awbal
k1=k1-dk1

c SINCE k(1) VARIES BY ORDERS OF MAGNITUDE, dk1 MUST BE REDEFINED IF
c k(1) GETS TOO BIG OR SMALL.

if(k1.lt.k2/9)goto 300
if(k1.gt.k2*9)goto 310
efbl=2
goto 220

290	 k1=k1+1.5*dk1
dk1=-.5*dk1
goto 220

300	 dk1=dk1/10.
k2=k1
goto 220
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310	 dkl=dkl*10
k2_kl
goto 220

e THESE LINES PERFORM THE SEARCH ON c WHICH LOCATES THE MIHIMUN Pa FROM
c THE ABOVE PROCEDURE WHICH EQUALS mpa.

320	 cfbl=l
if(abs(awbal).lt..01)goto "I"':
if(ftm.eq.1)goto 330
if(awbal*awbold.1t.0.0)goto 350
goto 340

330	 if(awbal.gt.0.0)dies=-1.*dies
ftmm2

340	 awbold=awbal
es=cs+dies
goto 210

350	 dies=-dies*.5
awboldmawbal
cs=cs+dies
goto 210

e^^^r^re*•^^^ar^sefe^^^sfsa*^rsrr•as^reeaa^t^+ts^^t #as**ese*+^es^afss^aa^rr^^*sa
360	 print,'AVERAGE EFFECTIVE PARAMETERS'

print 370,e,so,kl,03
370	 format('E=',f6.3,2x,' 3o=', f5.3,2x,'k(1):',el6.7,2x,'o=',f6.3)

change=2
so=0.0
goto 30

380	 yl=Ya/mpa
pl=Pa/mpa
if(pl.1t..2)goto 395

c	 COMPUTE CDF OF PRECIPITATION
call PROBZ(mnu,pl,prob,ak)
if(prob.1t..009)goto 395
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if(prob.gt ..99)goto 410
print 390,so,e,bm,pl,yl,RSA,RGA,ETA,prob

390	 format(f4.2,3x, f6. 3,3x, f5. 3,3x, t"1.4,3x.,f7.4,3x,f7.493x,f7.3,3x
A	 ,f6.3,3x,f7.4)

395	 continue
400	 continua
410	 goto 5

end

c THIS FUNCTION COMPUTES THE INCOMPLETE GAMMA FUNCTION.
function gamt(a,x)
if(x.eq.0)goto 40
if(x.gt.100)goto 50
sum=1./a
an=1.0
old=sum

33 old=old*x/(a+an)
if(old/sum-1.e-6)20,10,10

10 an=an+1.
sum=sum+old
if(an-300.)33,33,12

12 continue
20 xxx=(a*alog(x)+alog(sum)-x)

if(xxx.1t.-80.)goto 40
gamt=(exp(xxx))
goto 60

40 gamt=0.0
goto 60

50 g,-4,- -gamma (a)
60 return

end

c This function computes the gamma function by a Stirling approx.
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function gamma(y)
x=y+1.
pi=3.14159
stirlzl./(12.*x)
stir2=1./(288.*x**2.)
3tir3=-139./(51840-*x**3.)
stir4=-571./(2488320.*x**4.)
stir=l+stirl+stir2+stir3+stir4
gamma=exp(-x) *x**(x-.5)*sgrt(2. fpi) Ostir/y

end

subroutine WATCN(ta,sut,nu,gamsw)
real nu,nut
dimension sutt(ll),nut(ll),gamst(ll)
data sutt/75.6,74.9,74.2,73.5,72.0,72.1,71.4,70.7,70.0,

	

&	 69.3,68.6/
data nut/17.93e-3,15.18e-3,13.09e-3,11.44e-3,10.08e-3,8.94e-3,

	

&	 8.e-3,7.2e-3,6.53e-3,5.97e-3,5.94e-3/
data gamst/0.99987,0.9999999,0.99973,0.99913,0.99823,0.99708

	

&	 ,0.99568,0.99406,0.99225,0.9902,o.98807/
if(ta.gt .50.)go to 10
ita=ifix(ta*.2)+1
frac=ta-float(ifix(ta))
ital=ita+1
sut=(sutt(ital)-sutt(ita))*0.2*frac+sutt(ita)
nu=(nut(ital)-nut(ita))*0.2*frac+nut(ita)
gamsw=((gamst(ital)-gamst(ita))*.2*fraa+gamat(ita))*980.
return

	

10	 sut=sutt(ll)
nu=nut(11)
gamsw=gamst(ll)
return
end

c***********************************************************************
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c DIMENSIONLESS EVILTRATION DIFFUSIVITY
function fie(d)
dimension y(6)
data y/0.18,0.11,0.077,0.056,0.044,0.034/
if(d.gt.7.) goto 10
x=d-1.
if(x.lt.1.)x=1.
i=ifix(x)
frac=x-float(i)
yl=alog(y(i))
y2=alog(y(i+1))
fie=exp((y2-y1)*frac+yl)
return

10	 fie=.034
return
end

c********************e**************************************************
subroutine PROBZ(mnu,pl,prob,ak)

c	 THIS PROGRAM COMPUTES THE CDF OF NORMALIZED PRECIPITATION.
real*8 fac(500)
real*8 x,a,dlog,gama,gamlid,eps
real*8 m,k,w,t,z,zl,zu,inz
real*8 pl,mnu
real*8 xold,xsum,suml,sum2,tot,vtot,vold,vnew
integer v,vm,vmax

if(pistol.eq.2) goto 301
do 300 j=1,500
vtot=0.Od0
do 700 iv=1,j

	

700	 vtot=vtot+dlog(dble(float(iv)))
fac(j)=vtot

	

300	 continue

	

301	 continue
eps=l.e-5

I
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pistol=2
w=mnu
W.
k=ak

c
	

INITIALIZING VALUES
c

m=w*t
Z=p1
vm=ifix(sngl(m))

vmax=ifix(sngl(3.*m))
3	 x=m*k*z

ii=0
Jj =1
sum1=0.Od0
sum2=0.OdO

13	 v=vm-ii
if(v.eq.0)goto 500

23	 if(v.eq.vmax)goto 600
c
c

t
	 c
	

COMPUTE LOG INCOMPLETE GAMMA DISTRUBITION
a=dble(float(v))*k
xold=l.OdO/a
xsum=l.OdO/a
i=1

100	 xold=(xold/(a+i))*x
xsum=xsum+xold
if((xold/xsum).le.eps)gotc 200
i=i+1
goto 100

200	 continue
call mlgama(a,gamm,ier)
gamlid=a*dlog(x) -x+dlog(xsum)-dble(gamm)

c
c
	

COMPUTE THE SUMMATION OF ALL V TERMS
c

R
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vold=dble(float(v))*dlog(m)-fao(v)+gamlid-m
if(vold.le.-85.)vold=-85.
vnew=dexp(vold)
if(v.gt.vm)goto 800
suml=suml+vnew
if((vnew/suml).le.eps)goto 500
ii=ii+1
goto 13

500	 v=vm+ii
goto 23

800	 sum2=sum2+vnew
if((vnew/sum2).le.eps)goto 600
jj=jj+1
goto 500

c
c	 COMPUTE CDF OF NORMALIZED PRECIPITATION
e

600	 if(m.gt.85.)m=85.
prob=suml+sum2+dexp(-m)
return
end
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