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ABSTRACT: With increased interest in soil moisture information for

applice.tions in stch disciplines as hydrology, meteorology and agriculture, an

overview is needed of both existing and proposed methods for soil moisture

determination. This paper discusses the methods of in-situ soil moisture

determination including gravimetric, nuclear, and electromagnetic techniques;

remote sensing approaches that use the reflected solar, thermal infrared, and

microwave portions of the electromagnetic spectrum; and soil physics models

that track the behaviour of water in the soil in response to meteorological

inputs (precipitation) and demands (evapotranspiration). The capacities of

use approaches to satisfy various user needs for soil moisture information

varies from application to application, but a conceptual scheme for merging

these approaches into integrated systems to provide soil moisture information

is proposed that has the potential for meeting various application

requirements.
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INTRODUCTION

The moisture content in the surface layers of the soil is an important

parameter for many applications in the disciplines of agriculture, hydrology

and meteorology. In the field of agriculture the recent paper by Idso et al.

(1975) describes the need for soil moisture information for improved yield

forecasting and irrigation scheduling, among others. In hydrology, the

moisture content of the soils surface layer is important for partitioning

rainfall into its runoff and infiltration components. In meteorology, soil

moisture determines the divir.on of net solar radiation into latent and

sensible heat components. Recent model studies indicated the importance of

soil moisture in such diverse phenomena as desertification (Cliarney, et al.

1977) and the central Florida sea breeze (Gannon, 1979).

The soil layer that we are considering in all these disciplines is that

which can interact with the atmosphere through evapotranspiration (ET), i.e.

the soil root zone. The moisture content of this soil layer fluctuates in

response to precipitation and potential evapotranspiration (PET). The

thickness of this layer will depend upon the type and stage of the soil's

plant cover, but it is typically about 1 or 2 meters. Thus, we will call the

moisture stored iv, this layer soil moisture. This moisture is only 0.005% of
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water on the earth's surface (Nace, 1964) but its seasonal variation accounts

for a 1.4 cm variation in sea level (Mather, 1976)..
	 a

In this paper we present a survey of the general methods for de^,ermining

soil moisture. The three general approaches which we will consider are

in-situ or point measurements, soil water models, and remote sensing.
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IN-SITU METHODS

Several in-situ measurement techniques will be described in this paper --

gavimetric, nuclear, electromagnetic, tensiometric, and hygrometric.

Gravimetric Techniques

The oven-drying technique is probably the most widely used of all the

gravimetric methods for measuring soil moisture, and it is often used to

calibrate other soil moisture determination. This method consists of

over-drying a soil sample at 105 0C until a constant weight is obtained.

Usually, this weight is obtained within 12 hours, but for large samples the

drying time increases. The wet weight of the soil sample is taken before

oven-drying. The amount of water in the sample can be determined and the

moisture content calculated and expressed on a percentage by dry soil weight

basis. If the volumetric water content is required, the gravimetric value is

multiplied by the bulk density of the soil:

	

9	
= WWwXcl	 100	

(1)
d	 w

	

where 8	 = volumetric water content (%)

W  = weight of water (g)

W  = dry weight of soil (g)

Yd = oven-dry bulk density (g/cm3)

Y  = density of water (g/cm3)

There are several advantages and disadvantages to the oven-drying

gravimetric procedure. Some advantages are:

a. Samples can be taken with an auger or tube sampler.

b. Sample acquisition is inexpensive.

	

C.	 Soil moisture content is easily calculated.
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Some disadvantages are:

a. Obtaining representative soil moisture values in

a heterogeneous soil profile is difficult.

b. Because samples are required over long periods of time to monitor

moisture movement or amount over time and space, this method can

be very destructive to the site.

Additional information on this procedure, as well as most of the others

discussed, can be found in Brakensiek et al (1974).

Nuclear Techniques

Neutron Scattering: The neutron scattering method is an indirect way of

determining soil moisture content. This method estimates the moisture content

of the soil by measuring the thermal or slow neutron density. Initial

development of the neutron probe began in 1950 (Belcher et al., 1950, 1952).

Gardner and Kirkham (1952) defined the principles on which the method is

actually based. Neutrons with high energy (a million electron volts or more),

are emitted by a radioactive source into the soil and are slowed down by

elastic collisions with nuclei of atoms and become thermalized. The average

energy loss is much greater from neutrons colliding with atoms of low atomic

weight (in soils, this is primarily hydrogen), than from colliding with

reavier atoms. As a result, hydrogen can slow fast neutrons much more

effectively than any other element present in the soil. The density of the

resultant cloud of slow neutrons is a function of the soil moisture content in

the liquid, solid or vapor state. The number of slow neutrons returning to

the detector per unit time over a known volume of influence or soil volume are

counted, and the soil moisture content is determined from a standard curve of

counts vs volumetric water content.

.
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	 Two types of neutron probes have been developed. One is a depth probe

that is lowered into the aoil through an access tube to the depth at which the

moisture content is desired. The other is a surface probe that gives the

moisture content of the top few centimeters of soil.

Several sources of high energy neutrons have been used. The

Americium-Beryllium (Am-Be) source seems to be the one most widely used (Bell

and McCulloch, 1966). Older units used a radium-beryllium (Ra-Be) source.

Van Bavel and Stirk (1967) found that this source eliminated gamma radiation,

decreased the probe weight, increased the count rate and possibly increased

the depth resolution of the soil moisture measurement.

The strength of the source varies with the type and manufacturer.

Van Bavel (1962) found that 1 or 2 millicuries (mc) of a Ra-Be source were

adequate. The strength of the source of Am-Be that Van Bavel and Stirk (1967)

used was 150 mc. Others (Long and French, 1967; Bell and McCulloch, 1966)

reported using Am-Be sources of 10, 30, 50, and 300 mc.

If subsurface measurements are required, the neutron probe must be placed

in an access tube that is usually closed at the bottom. The size and

composition of the tube offset the resultant neutron density (Stolzy and

Cahoon, 1957). The most acceptable access tube seems to be made of aluminum.

The method most used to install the tube in the field is to drill a slightly

undersized hole and tamp the access tube into the drilled hole to ensure a

tight fit.

The accuracy of the neutron probe can be determined from the deviation

calculated by regression analysis where neutron counts are converted to

volumetric moisture content (Visvalingam and Tandy, 1972). The calibration

depends upon the source strength, the nature of the detector, the geometry of

,-



6

the source and detector in the probe, the materials used to construct the

probe, the size and composition of the access tube, and the physical and

M
chemical properties of the soil (Wilson,, 1971). Visvalingam and Tandy 1.1972),

also found that vehicular ignition noise greatly influenced the neutron probe

readings, likely by influencing the readout electronics, rather than the

principle.

In laboratory calibrations the volume of soil used should be large enough

to be considered effectively infinite relative to the neutron flux.

Manufacturers of probes supply a generalized calibration curve with each unit.

However, if an accurate moisture content determination is desired, the probe

should be calibrated for each soil type. Procedures have been developed for

laboratory and field calibration (Douglass, 1966; King, 1967; Luebs et al.,

1968).

The moisture content value represents an average over a known volume of

soil. Therefore, in laboratory calibration the soil used should be

homogeneous in texture, structure, density and moisture content (Belcher et

al., 1950; Douglass, 1966; Van Bavel, 1961, 1962). Field calibration of the

neutron probe is reportedly extremely difficult (Lawless et al., 1963; Stewart

and Taylor, 1957); (Rawls et al., 1973).

No matter what type of calibration is used, all electrical equipment has

the potential to drift. Therefore, primary standards should be used to

periodically recalibrate the probe. Various recalibrati,on procedures have

been reported (Churayev and Rode, 1966; Long and French, 1967; Marais and

Smit, 1958, 1962; Holmes, 1966; Olgaard and Haahr, 1968; Luebs et al., 1968;

Stone et al., 1966; Stewart and Taylor, 1957; Ursic, 1967; Bowman and King,

1965; Bell and Eeles, 1967).
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The sphere of influence of the neutron probe measurement , is the volume
y

over which the average moisture content is calculated and depends on the

1
amount of moisture in the soil. Van Bavel et al. (1956) and Glasstone and

gdlund (1957) defined the sphere of influence as that volume which contains

95% of all the thermal neutrons. This concept has been criticized by Mortier

et al. (1960) and Olgaard (1965). They suggest that the sphere of importance

is the one which, if all the soil and water outs;de the sphere were removed,

would yield a neutron flux at the source that is 95% of the flux obtained in

an infinite medium,,

The volume of soil measured is very important when measuring soil moisture

with depth. In many studies, the diameter of the sphere of influence cannot

be easily related to resolution because of the heterogeneity with soil depth

due to pedogenesis or the depositional trends that occurred over a long

geologic time period. The vertical resolution is critical to many studies,

especially those dealing with monitoring soil moisture in time and space.

The advantages of the neutron probe axe:

a. Moisture can be measured regardless of its physical state.

b. Average moisture contents can be determined with depth.

C.	 The system can be interfaced to accommodate automatic recording.

d. Temporal soil moisture changes can be easily monitored.

e. Rapid changes in soil moisture can be detected.

f. Readings are directly related to soil moisture.

`	

The disadvantages are:

a.	 Inadequate depth resolution makes measurement of absolute

fmoisture content impossible and limits its use in studying

evaporation, infiltration, percolation and placement of the

phreatic water surface.

i

e	 .. y
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b. The moisture measurement depends on many physical and chemical

properties of the soil which are, in themselves, difficult to

measure.

c. Care must be taken to minimize health risk.

d. The sphere of influence of the depth probe does not allow for an

accurate measurement of soil water at or near the soil surface.

Stone et al. (1966) stated that the accuracy of neutron probe measurements

exceeds that of standard techniques, but Stewart and Taylor (1957) argued that

it is slightly inferior. if the neutron probe is used, the purchaser should

look for a stable, portable, durable model with stable electronics and power

components, compatible with available equipment (Bella 1969; Bell and

McCulloch, 1966; Zuber and Cameron, 1.966).

Gamma-Ray Attenuation: The gamma-ray attenuation method is a radioactive

technique that can be used to determine soil moisture content value within a

1 to 2 cm ,soil layer. This method assumes that scattering and absorption of

gamma-rays are related to the density of matter in their path and that the

specific gravity of a soil remains relatively constant as moisture content

increases or decreases changing wet density. Changes in wet density are

measured by the gamma transmission technique and the moisture content

determined from this density change.

Gamma-rays may be collimated to a narrow beam, which permits obtaining a

representative reading at any position in the soil. The method first became

known in the early 1950'x. Work by Gurr (1962), Ferguson and Gardner (1962),

Davidson et al. (1963), and Dmitriyev (1966) was instrumental in developing

the theoretical basis and procedure for its use.
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The basic equipment includes a gamma source surrounded by a collimator, a

detector with a collimator, and a scaler. (lurr (1962) ^:sed a 25-mc cesium 137

source: with a lead collimator, with the beam emerging from a circular hole

4.8 mm in diameter. A scintillation counter was used as a detector, shielded

by a lead collimator containing a 12.5-mm-diameter hole. Mansell et al. (1973)

stated that collimated radiation from 300 me each of 
241 

Amand 
137 

Ca

provided a high intensity beam comprising 60 and 662 KeV photons. Count rates

measured by a single detector and a two-channel gamma spectrometer were

corrected for coincidence losses due to pulse-resolving time. They concluded

that error in soil water content measurement by the dual energy gamma

attenuation method will probably not exceed a standard deviation of 1%.

The gamma ray attenuation technique has the same advantages as items b, c

and d listed under neutron meters, as well as the following:

a. Data can be obtained over very small horizontal or vertical

distances.

b. The measurement is nondestructive.

Its disadvantages are:

a. Large variations in bulk density and moisture content can occi. ► ,r

in highly stratified soils and limit spatial resolution.

b. Field instrumentation is costly and difficult to use.

co	 Extreme care must be taken to ensure that the radioactive source

is not a health hazard.

Soane (1967) and Corey et al. (1971) also used dual energy, collimated

beam gamma-rays to simultaneously measure density and moisture contents of

soil columns. Others who have investigated the technique include. Gardner and

(



,a	 Roberts (1967) and Gardner at al. (1972). In their studies they used two

collit.ated beams of monoenergetie gamma-rays fLvia 241
	 137
Am  and	 Cs but

moved the soil column from one beam to another. Xo :heir study, the error in

Yd and 6 resulted from the randomness of the emission from the sources,

random error in attenuation coefficients and soil column thickness

measurements, presence of a small higher energy peak in the 
241 

Amspectrum,

and counting dead time.

Goit at al. (1976) showed experimentally that the variability due to	 £

differences in id and 8 of a soil within the beam of a dual-energy system

caused large measurement errors. Noiziger (1978) concluded from his studies

that, indeed, large error in the measurement of Y d and 8 can occur in highly

stratified material when using the dual gamma technique. Generally, small

errors occur if Yd and Q 6tAuge linearly in the collimated beam. He also 	 !

confirmed that both the dual gamma and single systems accurately measure the

average water content in the collimated beam if the bulk density of the soil

is constant. However, the average water content in the beam may not represent

the water content at the middle of the collimated beam and in the middle of 	
E

I

the present time period. Prom this study, graphs were prepared to estimate

the error due to inhomogeneity of the soil.

A. major problem in many cold regions is the inability to measure in situ

water conditions in the freezing, thawing or frozen state. Goit at al. (1976)

conducted studies to evaluate attenuation of a dual gamma beam and found that

it was a powerful technique for investigating the swelling phenomena

associated with freezing soil. They found that errors resulted when

attenuation equations developed for homogeneous mixtures were applied to



stratified media. Nofziger (1978) determined thr.t the errors in 8 and Yd

due to nonutti:form soil systems must be considered to establish the overall

i
accuracy of gt^11-ua ray measurements.

Since attenuation of gamma rays is independent of the state of the water

in the material tested, the measurement of attenuation is unaffected by the

transition of liquid water to ice. Therefore, the use of gamma attenuation

has an advantage since measurements of dry bulk density and total water

content ( including i.ce) t in grams per cubic centimeter can be made

simultaneously.	
i

in-Situ Electromagnetic Techniques

Electromagnetic techniques include those methods which depend upon the

effect of moisture on the electrical properties of soil. The magnetic

permeability of soils is very nearly that of free spice and, hence, the

approach reduces to methods of exploiting the moisture dependence of the

dielectric properties of soil.

The dielectric properties of the moist soil may be characterized by a

frequency dependent complex dielectric response function (bottcher, 1952):

F M - rr M - j 4 (w)
	

(2)

where

r(w) = the real part of 9

i (w) = the imaginary part of

i	 m square root of -1

and w is the (angular) frequency.

The function tx( w) is about constant from w-0 out to the neighborhood

of the relaxation frequency 14 of dipoles in the medium. The time wR.l

is the time constant for the decay of polarization, when the electric field
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i
is removed. Beyond wk,the function 

^'r 
decreases until in the visible

i	 region of the spectrum, and it is equal, to the index of refraction squared.

The real tart of the dielectric response function is a measure of the energy

stored by the dipoles aligned in an applied electromagnetic field. When the

frequency is greater then w R, the dipoles can no longer follow the field and

the ability of the medium to store electric field energy decreases.

The function E, i ( w) is a measure of the energy dissipation rate in the

medium. Viewed as a function of frequency, and starting from low , it rises

to a peak at w  and, thereafter, decreases. The behavior described is due

to the permanent dipoles in the soil medium. In complicated heterogeneous

media, there may be more than one relaxation mechanism and more than one

absorption peak. Furthermore, at frequencies above, the medium may show

further dispersion and absorption regicAs due to direct molecular

excitations. The frequency 
W  

will generally lie in the microwave range

(18 Ghz in H20), whereas the latter molecular excitations will be in the

submillmeter or infrared regions of the spectrum (Bottcher, 1952; Hasted,

1974). In soils t, R is reduced to around 1 GH z due to the binding of the

water molecules to the soil particles (Hoekstra and Delaney, 1974).

The preceding description generally applies to all dispersive media. In a

soil, the values of F, r are typically between 3 and 5, whereas the value of

C r for water is about 80. Hence, relatively small amounts of free water in a

soil will greatly affect its electromagnetic properties. This dependence is

shot-m in Figure I t which presents the results of laboratory measurements at

wavelengths of 21 and 1.55 cm (frequencies of 1.4 and 19.4 Ghz). The

wavelength dependence is due to the difference in the dielectric properties of

water at these two wavelengths.
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At low wavelength levels there is a slow increase with soil moisturep but,

above a certain point, the slope of the curve sharply increases which is due

to the behavior of the water in the soil. When water is first added to a soil

it is nightly bound to the soil particles. In this state the water molecules

are not free to become aligned and the dielectric properties of this water

resemble those of ice. As the layer of water around the soil particle becomes

larger, the binding to the particle decreases and the water molecules behave

ar they do in the liquid; hence, the greater slope at the higher soil moisture

values. The transition moisture depends on the soil texture, i.e.,

particle-size distribution is less for a sand and larger for a clay and has

been found to be linearly dependent on the wilting point for the soil. This

Effect had been demonstrated in laboratory measurements of the dielectric

constant (U;ndien, 1971; Newton, 1977).

This .dependence of the dielectric properties of a soil on moisture content

can be used for either an in situ sensor or a remote sensor. In this section

in situ devices, measuring either soil resistivity or capacitance, will be

discussed; the remote sensor approaches will be presented later.

A variety of implantable sensors, responsive either to resistivity Qi),

polarization C r.• ), or to both have been constructed (Wexler, 1965; Roth,

1966; Thomas, 1963; Gagne and Outwater, 1961; DePlater, 1955; Silva et ai.,

1974). Traditionally, these have been designed for operation at frequencies

below 1MHz. Recently, however, due to a steady decrease in the physical size

of high quality, high frequency components, implantable sensors have become a

practical reality (Selig et al., 1975; Walsh et al., 1979: Layman, 1979;

Wobschall, 1978).
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The resistivity of soils depends 
on 

moisture content and, lic-size, can serve

as the basis for it sensor. It is possible either to measure the resistivity

between electrodes 
in 

a soil. or to measure the resistivity of a material in

equilibrium with the soil. Sensors of either kind can be very compact and an

array of them can be connected to standard data collection platforms. The

difficulty with resistive sensors is that the absolute value of soil

resistivity depends on ion concontiation an well as 
on moisture concentraGon

(Bouyoucos and Mick, 1948). 'Therefore, careful calibration is required for

this teclinique. Even with careful calibration, the instrument may require

frequent recalibration due to changes in organic or salt conceutrat"ons. The

calibration problem becomes less severe as the operating frequency is

increased, since the relative contribution of ion motion decreases.

Implantable sensors, which are sensitive to polarization, t ,
R
 , in essence

measure capacitance (Thomas, 1963; Gagne and Outw ► ter, 1961; DePlaterg 1955:

Selig et al., 1975; Walsh et al., 1979; Layman, 1979). This parameter is the

electrical quantity which is the most direct indicator of moisture

concentration. When the moisture held in the soil can be regarded as free, as

it is in most sandy soils t the relationship between t. 
r 

and moisture is

linear. Furthermore, even in more complicated materials, where the water is

relatively tightly bound, such is a montmorillonitie clay, it is possible to

determine moisture content by measuring the cripacitance of an implanted

sensor. Because of this, several capacitive sensors have been constructed.

Most of the
s
e have been designed for operation below 1. MHz, although more

recently some work has also been done tip to 100 MIN (WobschalIq 1978;

Walsh et al., 1979; Layman, 1979; Silva et al.p 1974). The motivation for

increasing the operation frequency is again to minimize the contribution of

A

--A
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ionic conductivity, which it it is Large, can make accurate measurement

capacitance difficult. Ono other promising technique is to work at 10 to 100

MHz frequencyp and to utilize a bridge technique that allows a determination

of both 
Fr 

and Af These can be used separately an moisture indicators

(Walsh of al., 1979; Layman, 1979).

The main advantages of either resistor or capacitor type devices are that

they are capable in principle of providing absolute values for soil moisture

with calibration, and they can he implanted at any depth. This means that

moisture profile data can be obtained by this method. A wide variety of

sensor configurations varying from very small to quite large are possible nodl

hence, there is some control over the sensor volume 
of 

influence. The

precision of both the realadve and onpacitive sensors is high. 
The 

first of

these 
is 

also relatively accurate whop other parameters are adequately

controlled, whereas the second has n rolatively high intrinsic accuracy which

is more nearly independent of parameters other than moisture. This follows

from the fact that the capacitive sensors are directly responsive to the

amount of polarized energy stored in the region of the sensor and this

quantity is normally dominated by the water present.

The moisture sensor must be implanted properly to minimize disturbances to

the soil. In addition, there are questions of long term reliability,

maintenance of the calibration, and the interface with romote collection

platforms. Overall, it would seem that the relative advantages in some

applications would warrant serious cooAderntion of the implantable sensors.

Tensiometric Techniques

The term "tensiometer" was used by Richards and Gardner (1936) as all

I	
unambiguous reference to the porous cup and vacuum gouge comblantioo for
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measuring capillary tension or the energy with which water is held by the

soil. However, tensiometers were used to measure sail water tension in

unsaturated soils as early as 1922 (Gardner et al., 1922). Richards (1949)

and others have r+ade extensive developments and improvements in the

tensiometers used in the field and laboratory soil water studies.

The energy term can be expressed as A`F which is defined as the common log

of the height of a water column in centim ,•, ets equivalent to the soil moisture

tension, or it can be expressed as a suction (negative pressure) or a

potential (energy per unit mass). Elrick (1967) recognized six components of

the total energy of soil water, of which matric suction is one. Matric

suction is the pressure difference across a boundary permeable only to water

and solutes, which separates bulk water and soil water in hydraulic,

chemical and thermal equilibrium. Dissolved salts or chemica'is in the soil

water contribute to solute suction. Baver et al (1972) suggested using the

term "capillary potential" to denote the total potential, which includes not

only surface tension forces but also the osmotic and adhesion forces.

The most widely known method for measuring the capillary or moisture

potential is based upon the so-called suction force of the soil for water

(Bauer et al., 1972, Richards, 1965). Tensiometers are used to measure the

suction and consist of a liquid- (usually water) filled porous ceramic cup

connected by a continuous liquid column to a manometer or vacuum gauge. In

some designs, the liquid is an ethylene glycol-water solution and the

measuring gauge a transducer with electrical output. The transducer output

can be interfaced to near real time data acquisition systems.: The use of an

ethylene glycol-water solution as a replacement for water in the tensiometer

allows the use of a tensiometer/transducer system in cold areas

.	 .. ......... . _.
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(McKim et al., 1976). Since the tensiometer/transducer system has a millivolt

output, it is well suited for automatic (including satellite relay) recording

systems (McKim et al., 1975; Elzeftawy and Mansell, 1975; Gillham et al.,

1976).

Essential steps in the technique include de-airing the water or solution

in the tensiometer, placing the tensiometer system in the soil, and allowing

it to come to equilibrium with the soil water. The ceramic cup is porous to

water and solute but not to air, so that water can flow, and soil water

conditions or change in moisture content can be determined. Basically,

tensiometers measure the curvature of the water meniscus in the pores of the

ceramic cup which, at equilibrium, is related to the force with which the

water is held by the soil. As the soil water content increases, it is held at

a lower tension; when the tensiometer reads zero, the soil is saturated, and

there is zero water tension. The highest tension reading that can bo obtained

with a tensiometer is about 1 bar 0 atmosphere). In most instances, data

cannot be obtained beyond 0.8-0.9 bar because the air entry value of the

ceramic cup is exceeded. This means that the moisture content range over

which the tensiometer can be used is limited. Richards (1949) stated that for

coarse, sandy soils the range of the tensiometer may cover more than 90% of

the available moisture content range. Clay soils pose a different problem.

For example, for soils containing over 42% montmorillonite clay, the tension

can change from 200 to 800 cm H 2O with a 1% change in volumetric water

content (Abele, 1979).

Soil moisture measurement procedures using tensiometer/transducer systems

are ways to monitor water movement in the :field. Recent studies by Bianchi

(1962), K1ute and Peters (1962), Watson (1967), Rice (1969), Anderson and

Burt, (1977) have shown the advantages of using pressure transducers to
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produce a fast response, low volume displacement tensiometer system. These

types of systems are capable of monitoring moisture movement that occurs

rapidly in infiltration, irrigation, groundwater recharge, and

evapotranspiration.

Tensiometers have been used for years to measure soil tension. During

recent years advancements in system design and performance have made possible

the implementation of soil moisture field monitoring programs. However, care

still needs to be taken in assessing the use of the system. Listed below are

some of the advantages and disadvantages of using tensiometers.

Advantages

a. Systems are easy to design and construct.

b. The system costs relatively little.

C.	 Information can be obtained on moisture flow under saturated and

unsaturated conditions in near real time.

d. The tensiometer can usually be placed in the soil easily and

usually with minimal disturbance.

e. The system can operate over long time periods.

f. Using the tensiometer/transducer system the response

time is very rapid.

g. Different types of liquids can be used like ethylene

glycol solution to obtain data during freezing and thawing

conditions.

h. Systems can use with + reading tensiometers to read both water

table elevation and soil moisture tension, depending on the soil

water status.

i



rr
19

Disadvantages

a. The tensiometer can be broken easily during installation.

b. Can only be determined within the 0 to 800-cm

water tension range.

c. Field installations drift electronically.

Hygrometric Techniques

Tie relationship between moisture :ontent in porous materials and the

relative humidity (RH) of the immediate atmosphere is reasonably well known.

Therefore, several relatively simple apparatus for measuring RH have been

designed. Basically, the sensors can be classified into seven types of

hygrometers -- electrical resistance, capacitance, piezoelectric sorption,

infrared absorption and transmission, dimensionally varying element, dew

point, and psychrometey.

Electrical resistance hygrometers utilize chemical salts and acids,

aluminum oxide, electrolysis, thermal, and white hydrocol to measure RH.

Bouyoucos and Cook (1965) considered the white hydrocol hygrometer as the best

available. The measured resistance of the resistive element is a function of

RH. They stated that casting the sta:.nless steel electrodes in white hydrocol

(a form of plaster of Paris) causes greater accuracy because the cement sets

hard, is pure, has a low solubility and contains no added salts.

Phene et al (1971, 1973) developed a heat dissipation sensor that was used

to measure the soil moisture potential. The accuracy of the matrix potential

sensor proved to be as good as or better than that of the thermocouple

psychrometer or salinity measurements. The sensor, which had high sensitivity
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in the 0 to -2 bar matrix potential range, had an accuracy of + 0.2 bar. The

accuracy decreased progressively to +1 bar at a matrix potential of -10 bar.

The primary advantages of using the hygrometer techniques are the

simplicity of the apparatus and the low cost. Basic disadvantages include the

soil components deteriorating the sensing element and the special calibration

required for each material to be tested. The main use for this technology

seems to be in applications where RH in the material is directly related to

other properties. One example would be drying and shrinkage of cements.

SOIL WATER MODELS

Recent developments of soil water models based on column mass balance

gives us an alternative to directly or indirectly measuring of soil moisture

in the field. Figure 2 is a schematic diagram of the physical system and

driving forces that must be considered in modeling the system.

Based upon conservation of mass, the soil moisture in the system at any

time can be determined using the relationship

SMt = SMt-1 +P-R+L+E-T+C-Q	 (3)

where:

SMt = soil moisture volume at time t

SMt-1 = soil moisture volume at previous time

P	 = precipitation

R	 surface runoff

L	 = net lateral subsurface flow

E	 evaporation or condensation

T	 = transpiration

C	 = capillary rise from lower levels

Q	 = percolation

i	 ^}
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This generalized model represents only a single column that is homogeneous

horizontally &t all levels. Actual systems will be heterogeneous.

Neterogenenua systems can be represented by spatial averages or by linking

columns to ac:sount for the spatial variability.

Publialied soil moisture models vary in the level. of detail they use in

representing the physical system and the temporal variations of the driving

forces. Some of the important differences between models are listed below:

-	 Method used for computing the potential evapotranspiration.

-	 Method used for computing infiltration and runoff.

-	 Temporal definition of evaporative demand and precipitation.

-	 Consideration of saturated and unsaturated layers.

-	 Number of soil layers used.

Method used for computing soil evaporation and plant transpiration.

-	 Consideration of the thermal properties of the soil system.

Many of the published models which simulate soil moisture were developed

for agricultural applications. A very simple model, described by Holmes and

Robertson (1959) 9 treats the soil as a single homogeneous layer. Potential

evapotranspiration is computed empirically and the actual evaporation is set

equal to this as long as moisture is available. All precipitation becomes

infiltration and groundwater interactions are ignored. All computations are

performed on a daily basis.

Jensen et al. (1971) developed an irrigation scheduling model that takes

into account the soil moisture. Evapotranspiration is computed on a daily

basis using one of several alternative procedures. Actual evapotranspiration

is not affected by moisture deficits. Infiltration must be computed

externally. Percolation is computed using an empirical relationship. In this

model, the soil is treated as a single layer.
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Holmes and Robertson (1959) presented and described another model, the

Modulated Soil Moisture Model which is slightly more sophisticated than those

described above. This model utilizes a two layer soil system and considers

the fact that actual evaporation will generally not equal, the potential due to

moisture deficits. The two are set equal until the moisture in the upper zone

is depleted. Thereafter, moisture is extracted front the lower zone at a

reduced rate proportional to the moisture level. This model also allows a

simple runoff computation.

Baier and Robertson (1966) improved on these models with one called the

Versatile Soil Moisture Budget Model. In this model the soil is divided into

several layers and the available water for each is taken to be the difference

between its field capacity and wilting point. Evapotranspiration can occur

simult'rtneously from each layer and depends on the soil moisture present and

the particular soil and plants involved, which are represented by

coefficients. Flow between layers is considered; however, the technique used

is empirical as is the procedure used for computing infiltration.

Saxton et al (1974) developed a much more comprehensive model that will

simulate soil-plant-atmosphere-water systems in greater detail, than the models

described above. A flow chart of the model is shown in Figure 3.

As illustrated, this model considers all of the factors influencing the

system. Some processes, like soil moisture redistribution, are modeled using

a physics-based approach whereas others, like plant transpiration, are

semiempirical.

Many other models have been developed which resemble those mentioned

above. Additional information can be found in Saxton and McGuinness (1979),

rd
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Feddes at al. (1978), Hildreth (1978), Singh (1971), Ranemasu at al. (1976),

Stuff and Dale (1978), Shaw (1963), Goldstein at al (1974), Ritchie (1972),

and Youker and Edwards (1969).

All of these models were developed primarily for agricultural

applications. Hydrologists have also developed water balance models that

include a soil moisture component. State-of-the -art examples of the

approaches used in hydrologic modeling can be ,found in the U. S. Department of

Agriculture Hydrograph Laboratory (USDAHL) Model (Holtan at al., 1975) and the

National Weather Service River Forecast Model (NWSRFS) (Peck, 1976). Other

models are reviewed in Fleming (1975). Most of these models will perform a

continuous simulation of the volumes and rates of water movement occuring in

each component of the watershed.

In the USDAHL Model, illustrated in Figure 4, the spatial variability of

soils and vegetation is accounted For by using zones within which the

hydrologic parameters are averaged. Within each zone the soil is subdivided

into several homogeneous layers determined from hydraulic properties.

Evapotranspiration is computed daily using an empirical equation which

considers the crop and soil, characteristics, as well as the current soil

moisture. Evapotranspiration is drawn from the first two layers, which are

considered to be the root zone. These computations are performed daily.

Infiltration is also based on soil and crop characteristics and the current

soil moisture. A 1-hour time step is used for these computations. The

procedure used for soil moisture redistribution and percolation only considers

gravity flow.

7n the NWSRFS Model, illustrated in Figure 5 9 two zones are used to

simulate soil water storage and movement. The upper layer is that which

responds quickly to rainfall and controls overland flow. It is usually very



24

shallow. The lower layer is the balance of the soil column extending to the

«bEer table. Soil hydraulic properties are averaged within each layer.

Moib6ure is stored as either tension or free water. Infiltration, percolation

and soil moisture redistribution involve the free water and are computed using

empirical equations that use as a controlling factor the ratio of the free

water present to the field capacity of the layer involved . Evapotrans-

piration is also computed using an empirical procedure. Actual,

evapotranspiration is set equal to the potential until all moisture in the

upper layer is depleted. When this occurs, moisture is extracted from the

lower zone using an equation which considers the moisture deficit and the crop

characteristics. A 6 y-hour time step is used for simulation.

Most of the models mentioned in preceding sections were developed for

practical application to such problems as crop yield estimation, irrigation

planning, and runoff forecasting. They were developed to use readily

available meteorological, data for inputs and, therefore, they usually use

a 1-day time step. Goldstein et al (1974) pointed out that models which

employ a 1-day averaging will produce accurate weekly average results;

however, the daily results will show some deviation on any given day.

Jensen et al (101) made the same point. They noted that expected daily

errors between 10 and 15 % should become negligible over 10 to 20 days.

In some situations, especially research, information of greater time

resolution and accuracy than can be provided by these models is required. 	 R

Several complex models capable of simulating soil-plant-atmosphere-water

systems have been proposed. Generally these models are more physically based

than the models described above. Increased detail is usually costly and these

complex models usually have high data and computer requirements, especially if

simulation over extended periods is desired.
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Much research has been done on the physics of soil water movement and

stow=age under bare soil conditions. These models usually involve solving the

equations describing one dimensional vertical unsaturated Flow and

horizontal saturated flow. Most of the published models differ on the

boundary conditions imposed and the numerical approximations used For ooluti.on.

Hillel (1977) described several physically based models designed to

simulate soil water conditions under bare soil conditions. All of the models

were programmed using a versatile simulation language called Continuous

Simulation Modeling Programs (CSMP) (Speckhavt and Green, 1976). Other

examples 1 this type of model are presented in Hanks et al. (1969), Warrick

et al. (1971), Bresler (1973), Remson et al. (1971), and Pikul et al. (1974).

Some progress has been made at linking these one dimensional models to

represent spatially varied systems. Figure 6 is a schematic of one such model

presented by Hillel (1977). Others, such as that of Freeze (1978), have

extended the solutions to two-dimensional problems.

including the effects of plants in detailed models greatly increases their

complexity. Published models that simulate these effects include those

presented by Van Bavel and Ahmed (1976), Lemon et al. (1973) } Makkink and

vanHeemst (1975), Hanson (1975), Slack et al. (1977), Feddes et al. ('1976),

Neuman et al. (1975), and Nimah and Hanks (1973).

The reader can gather from the number of references cited in this section

that there are a multitude of models which have been developed and

documented. A comprehensive description of each, along with their respective

advantages and disadvantages, is beyond the scope of this paper. In general,
1*

a model can be found in the literature that is adaptable to almost every

problem. The ?rinciple advantage of models is that they can provide soil

ltr
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moisture information on a timely basis without the necessity of Meld visits.

A general disadvantage to models is the error of their estimates.

REMOTE SENSING APPROACHES

The remote sensing of soil moisture depends upon the measurement of

electromagnetic energy that has either been reflected or emitted from the soil

surface. The variation of the intensity of this radiation with soil moisture

depends on either the dielectric properties (index of refraction), its

temperature or a combination of bout. The particular property that is

important depends on the wavelength region that is being considered as

indicated in Table 1.

Table 1

Electromagnetic Properties for Soil Moisture Sensing

Wavelength region. Property observed

Reflected solar soil otbedo/index of refraction

Thermal infrared surface temperature

Active microwave backscatter coefficient/

dielectric properties

Passive microwave microwave emmision/dielectri.c

properties 6 soil temperature

The use of reflected solar energy is not a very promising tool for soil,

moisture determination because the soil spectral reflectance vs water content

relationship depends on several other variables, like spectral reflectance of

the dry soil, surface roughness, geometry of illumination, organic matter

i e
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and soil texture (Jackson, et al 1978). These complicating factors plus the

fact that it responds to only a thin surface layer limit the utility of solar

reflectance measurements for soil moisture determinations, and thus will not

	

3	 be discussed further here.

Water is unique in that it is near the extremes in its thermal and

dielectric properties. As a result, the corresponding properties in the soil

are highly dependent on its moisture content. These properties are accessible

to remote &,nsing through measurements at the thermal infrared OVI m) and

microwave (lcm to 50cm) wavelengths. The approaches are (Schmugge, 1978):

1. Thermal Infrared

Measurement of the diurnal range of surface temperature

Measurement of the crop canopy temperature

2. Microwave

Active: Measurement of the radar backscattered coefficient

Passive: Measurement of the microwave emission or

brightness temperature

Thermal methods

	

I •	 The amplitude of the diurnal range of surface temperature for the soil is

a function of both internal and external factors. The internal factors are

thermal conductivity (K), and heat capacity (C), where P = (KC) 1/2 defines

what is known as "thermal ii.ertia." The external factors are primarily

meteorological--solar radiation, air temperature, relative humidity,

cloudiness, and wind. The combined effect of these external factors is that

of the driving function for the diurnal variation of surface temperature.

Thermal inertia then is an indication of the soil's resistance to this driving

i
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force. Since both ti ►e heat capacity And thermal conductivity of a soil

increase with an increase of soil moisture, the resulting thermal inertia will

increase.

A complicating factor is the effect of surface evaporation in reducing the

net energy input to the soil from the sun. Evaporation complements the other

effects of water in soil by reducing the amplitude of tl ►e surface diurnal

temperature cycle. As a result the day-night temperature difference is an

indicator of some combination of soil moisture and surface evaporation.

The basic phenommena has been studied in experiments at the U.S. Water

Conservation Laboratory in Phoenix, Arizona, where soil temperatures were

measured with a thermocouple versus time, before and after irrigation (Idso,

et al., 1975). They observed a dramatic difference in the maximum

temperatures before and after an irrigation. On succeeding days the maximum

temperature increases as the field dries out.

The summary of results from many such experiments is shown in Figure 7

where the amplitude of the diurnal range is plotted as function of the soil

moisture as measured at the surface and at 0 to 1, 0 to 2, and 0 to 4 cm

layers. There is a good correlation with the soil moisture in the 0 to 2 and

0 to 4 cm layers of the soil, and this response is related to the thermal

inertia of tl ►e soil. Initially, when the surface is moist, the temperatures

are more or less controlled by evaporation. Once the surface layer dries

below a certain level, the temperature will be determined by the thermal

inertia of the soil. These results indicate that for this particular soil,

the diurnal range of surface temperature is a good measure of its moisture

content in the surface layer (2 to 4 cm) layer.
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These temperatures measurements were repeated for different soil types that

ranged from sandy or light soils to heavy clay soils. It is clear that for a

given diurnal temperature difference, there can be a wide range of moisture 	
9

content for these soils (Idso et al.., 1975). 	 j

However, the T values observed as the soils dried through the transitions

between the stages of drying were about the some for 411 of the soil types

studied. Thus, they concluded (Idso et al., 1975) that the relationship

between T and moisture content depends on soil type. The relationship

between T and pressure potential (the tension with which water is held by

soil, particles) is independent of soil. type. This is the baaf;:is for expressing

moisture values as a percent of field capacity (FC), where ,field cepaci.ty is

the moisture, content at the -1/3 bar pressure potential.

It should be emphasized that these experiments were all made in the field,

using thermal-couples, and were not remotely sensed. In March 1975, an

experiment was performed in which remotely sensed thermal infrared.

temperatures from all
	 platform were compared with the in situ

thermocouple measurements over a 5-day period. Figure 8 presents the results

from both the field experiments (from Figure 7) and the aircraft experiments

(Regi,nato et al,., 1976; Schmugge et al., 1978). The field results are

expressed as a percent of .Field capacity so they call 	 compared with the

aircraft results obtained over a wade range of soil textures. There was good

agreement between the thermocouple measurements and the remotely sensed

radiation measurements made from the aircraft, indicating that the conclusions

based on the thermocouple field measurements would also be valid for radiation

temperature observations.



This technique is not Applicable to fields with a vegetative canopy.

However, the difference between canopy temperature and ambient air temperature

has been shown to be an indicator of crop stress. Thus, a cropped surface is

viewed, if the vegetation is reflecting the soil moisture status, a potential

exists for monitoring effective soil moisture over the rooting depths of the

particular crop. Following this argument, Jackson et al. (1977) established

that a running sum of daily values called "Stress Degree Days" (SDD) can

potentially be used for irrigation scheduling. Millard et al. (1977b)

confirmed feasibility of this approach for fully grown wheat on the basis of

airborne data. Similarly, stress degree days have been successfully

correlated with the yield of wheat U dso et al., 1975).

Microwave Methods

As discussed previously, the dielectric properties of a soil are strong

functions of its moisture content. Since the dielectric properties of a

medium determine the propagation characteristics for electromagnetic waves in

the medium, they will effect the emissive and reflective properties at the

surface. As a result, these latter two quantities for a soil will depend on

its moisture content, which can be measured in the microwave region of the

spectrum by radiometric (passive) and radar (active) techniques. This

physical. relationship between the microwave response and soil moisture plus

the ability of the microwave sensors to penetrate clouds makes them very

attractive for use as soil moisture sensors. In the following sections

results will be presented demonstrating this sensitivity to soil moisture,

along with a discussion of some of the noise factors, e.g. vegetation and

surface roughness, which affect the relationship between the sensor response

and soil moisture.

yt
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Passive microwave

A microwave radiometer measures the thermal emission from the surface and

at these wavelengths the intensity of the observed emission is essentially

proportional to the product of the temperature and emissivity of the surface

(Rayleigh-Jeans approximation). This product is commonly referred to as
	 r

brightness temperature. All our results will be expressed as brightness

temperatures (T B). The value of T B observed by a radiometer at a height h

above the ground is
TB - r	 r 

tsky * (I - 
r) 

Tsoil *matm	
(4)

where r is the surface reflectivity and 	 the atmospheric transmission. The

first term is the reflected sky brightness temperaturep which depo,ds on

wavelength and atmospheric conditions; the second term is the emission from

the soil (1-r=e, the emissivity); and the third term is the contribution from

the atmosphere between the surface and the receiver. At the longer

wavelengths, i.e., those best suited for soil moisture sensing, the

atmospheric effects are minimal and will be neglected in this discussion..

Thermal microwave emission from soils is generated within the soil

volume. The amount of energy generated at any point within the volume

depends on the soil dielectric properties (or soil moisture) and the soil

temperature at that point. As energy propagates upward through the soil

volume from its point of origin, it is affected by the dielectric (soil

moisture) gradients along the path of propagation. In addition, as the energy

crosses the surface boundary it is reduced by the effective transmission

coefficient (emissivity), which is determined by the dielectric

characteristics of the soil near the surface.
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The emission from the soil, surface can be expressed as:
00

TB	a fT(z)cx (z) exp(- Sa (z')dz I )dz	 (5)

where T(z) is the temperature profile and 04 (z) is the absorptivity as a

function of depth which depends on moisture content. Results from numerical
a

solutions to this equation have been presented by Njoku and Kong (1977)

Wilheit (1978) and Burke et al. (1979). These papers have included results

which indicate that the models do a good job of predicting TB for a smooth

surface. One of the most significant results from these models is that the

effective sampling depth is on the order of only a few tenths of a wavelength

(Wilheit, 1978). Thus, for a 21 -cm-wavelength radiometer this is about

2 to S cm.

The range of dielectric constant presented in Figure 1 produces a change

in emissivity from greater than 0.9 for a dry soil to less than 0.6 for a wet

soil, assuming an isotropic soil with a smooth surface. This change in

emissivity for a soil has been observed by truck mounted radiometers in field

experiments (Poe et al., 1971; Blinn and Quade, 1972; Schanda et al., 1978;

Newton, 1977) and by radiometers in aircraft (Schmugge, 1974; Burke et a11978;

Choudhury, et al, 1979) and satellites (Eagleman and Lin, 1976; Schmugge et

al, 1977). In no case were emissivities as low as 0.6 observed for real

surfaces. This is primarily due to the effects of surface roughness which

generally has the effect of increasing the surface emissivity.

As can be seen in Figure 1, there is a greater range of dielectric

constant for soils at the 21-cm wavelengths. This fact, combined with a

larger soil moisture sampling depth and better ability to penetrate a

vegetative canopy, makes the longer wavelength sensors better suited for

radiometric soil-moisture sensing.
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In Figure 9a And b, the .field measurements of Newton (1977) are plotted

versus angle of observation for Various moisture contents and for three levels

of surface roughness. The horizontal polarization is that for which the

electric field of the water is parallel to the surface and the vertical

polarization is perpendicular to it. These results indicate the effect of

moisture content on the observed values of T  and the effer:t of surface

roughness which is to increase the effective emissivity at all angles and to

decrease the difference in T B for the two polarizations at the larger angles.

For the smooth field there is a 100 K change in TB from wet to dry soils

and clearly this range is reduced by surface roughness. The effect of the

roughness is to decrease the reflectivity of the surface and thus to increase

its emissivity. For a dry field the reflectivity is already small (4— 0.1) so

that the resulting increase in emissivity is small. As seen in Figure 10b,

surface roughness has a significant effect for wet fields where the

reflectivity is larger ( > 0.4). Thus, the range of T B for the rough field

is reduced to about 60 K. The smooth and rough fields represent the extremes

of surface conditions that are likely to be encountered, e.g. the rough

surface was on a field with a heavy clay soil (clay fraction 60%) that had

been deep plowed, which produced large clods. Therefore, the medium rough

field, with a TB range of 80 K, is probably more representative of the

average surface roughness condition that will be encountered. Another

important observation from Figures 9a and b is that the average of the

vertical and horizontal TB "s is essentially independent of angle out to

40°. This indicates that the sensitivity of this quantity, 1/1(TBV+

TBH), to soil moisture will be independent of angle. This result will be

useful if the radiometer is to be scanned to provide an image.

c
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When the brightness temperatures for the medium rough field are plotted vs

soil moisture in the 0 to 2-cm layer, there is an approximate linear decrease

of TB (Figure 9c). As the thickness of the layer increases, both the slope

and intercept of the linear regression Also increase. This is because the

moisture values for the high TB cases increase, whereas they remozin

essentially the same in the low T B or wet cases. This type of behavior was

also seen in the results obtained from aircraft platforms and has led us to

conclude that the soil moisture sampling depth is within the 2 to 5-cm range

for the 21-cm wavelength. This agrees with the predictions of theoretical

models of radiative transfer in soils (Wilheitp 1978; and Burke et al, 1979).

Results from a 1975 aircraft experiment over irrigated agricultural fields

are presented in Figure 10 (Choudhury et al, 1979). These results were

obtained over fields with a range of soil textures from sandy loam to heavy

clays. In the analysis it was observed that there was a dependence of the

TB response to soil moisture on the soil texture, i.e. the slope was greater

for sandy soils which had a narrower range of soil moistures (0 - 20%)

compared with the clay soils (0 - 357.). To take this texture dependence into

account the soil moisture values presented in Figure 11 are normalized to the

field capacity (FC) value for the particular soil which were estimated from

the measured soil textures.

The solid symbols in Figure 10 are calculated values of T B obtained with

the Wilheit (1978) model using the measured moisture and temperature profiles

for the fields. The solid line connects the values determined assuming a

smooth surface, and the dashed line connects the values adjusted for surface

E^
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roughness using a one parameter model. The dashed line fits the observed

values quite well. The values of the parameter were selected empirically to

give a best fit to the data and it is clear that the same value works well for

both the dawn and midday flights. The effects of soil temperature are seen in

the TB differences between the dawn and midday flights.

There is little change in TB for soil moisture values for the 0 to 2 cm

layer out to about 30% of field capacity. When the data are replotted vs the

0 to 5 cm layer, the flat region extends out to about 50% of PC with a steeper

slope beyond that value. In Figure 1 1 the dielectric curve broke at a

moisture level of about 10/., which for the soil involved would be 40 to 50% of

FC. Thus, these aircraft results support the conclusion that the sampling

depth is about 2 to 5 cm.

A vegetative canopy will act as an Absorbing layer whose effect will

depend on the amount of vegetation and the wavelength of observation.

Basharinov and Shutko (1978) and Kirdiashev et al, (1979). 	 have reported on

observations made in the USSR over the 3 to 30--cm wavelength range for a

variety of crops. Their results are summarized in Figure 11, where the

vegetation factor is the effective transmissivity of the vegetation. Thus,

for small grains the sensitivity is 80 to 90% of that expected for bare ground

at wavelenghts greater than 10 cm. Broad leaf cultures, like mature corn or

cotton, transmit only 20 - 30% of the radiation from the soil at wavelengths

shorter than 10 cm and about 60% at the 30-cm wavelength. They observed 30 to

40% sensitivity for a forest at the 30-cm wavelength, although they did not

mention the type or height of trees. These results are encouraging for the

use of long wavelength radiometric approaches.

mew
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	 The Earth Resources Experiment Package (EREP) on board Skylab contained a

21-cm radiometer. This sensor was non scanning with a 115 km field of view

between half power points. With this coarse spatial resolution, it would be

difficult to directly compare sensor response and soil moisture measurements.

However, there have been two reports of indirect comparisons. McFarland

(1976) showed a strong relationship between the Skylab 21-cm brightness

temperatures and the Antecedent Precipitation Index (API) for data obtained

during a pass starting over the Texas and Oklahoma panhandles and proceeding

southeast toward the Gulf of Mexico.

Eagleman and Lin (1976) carried the analysis of the Skylab data a step

further and compared the brightness temperature with estimates of the soil

moisture over the radiometer footprint. The soil moisture estimates were

based on a combination of actual ground measurements and calculations of the

soil moisture using a climatic water balance model. They obtained a

correlation of 0.96 with data obtained during five different Skylab passes

over Texas, Oklahoma and Kansas. This result is very good considering the

difficulty of obtaining soil moisture information over a footprint of such a

size and considering the fact that the brightness temperature was averaged

over the wide range of cultural conditions that occurred over the area.

These results from space supported by the more detailed aircraft and

ground measurements presented earlier strongly support the possibility of

using microwave radiometers for soil moisture sensing. A difficulty with this

approach is that the spatial resolution is limited by the size of the antenna

which can be flown. For example, at a wavelength of 21 cm, a 10 m X 10 m

antenna is required to yield 20-km resolution from a satellite altitude of

y
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800 km. It is possible to make use of the coherent nature of the signal in

active microwave systems (Synthetic Aperture Radar, SAR) to obtain better

spatial resolutions (Moore, 1975) and it is this approach which we discuss

next.

Active Microwave

The backscattering from an extended target, such as a soil medium, is

characterized in terms of the target's scattering coefficient or . Thus, oL,

represents the link between the target properties and the scatterometer

responses. For a given set of sensor parameters (wavelength, polarization and

incidence angle relative to 0 0),	 (`o of bare soil is a function of the soil

surface roughness and dielectric properties which depends on the moisture

content. The variations of us, with soil moisture, surface roughness,

incidence angle, and observation frequency have been studied extensively in

ground-based experiments conducted by scientists at the University of Kansas

(Ulaby, 1.974; Ulaby et al l 1974; Batlivala and Ul.aby, 1977) using a truck

mounted 1 to 18 GHz (30-1.6 wavelengths) active microwave system.

To understand the effects of incidence angle and surface roughness

consider the plots of 	 00 versus angle presented in Figure 12 for five fields

with essentially the same moisture content but with considerably different

surface roughness. At the longest wavelength (1.1 Oz, Figure 12a), ao for

the smoother fields is very sensitive to incidence angle near nadir, while for

the roiAgh field cc is almost independent of angle. At an angle of about

5 0 , the effects of roughness are minimized, As the wavelength decreases,

Figures 12b and 12c, all the fields appear rougher, especially the smooth

field, and as a result the five curves intersect at larger angles. At 4.25

GHz, they intersect at 10 0 , and it was this combination of angle and
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frequency that yielded the best sensitivity to moil moisture independent to

roughness (Ulaby and Batlivala, 1976! and Ulaby et al, 1978).

These experiments were performed in both 1974 and 1975, the first

experiment was performed on a field with high clay content (62X), whereas for

the second, the clay content was lower. Although both experiments provided

the same specifications of the radar parameters for soil moisture sensing,

i.e., frequency around 4.75 GHz and a 7-17 0 nadir angle, the observed

sensitivity of oa to soil moisture in the 0 to lcm layer was different for

the two experiments, Figure 13b. When the soli moisture content is expressed

as a percent of field capacity to account for textural, differences, the

sensitivities became almost identical (Figure 13a) with a correlation of

0.84. This dependence on the percent of field capacity resembles to that

observed with the thermal inertia and passive microwave techniques, Similarly

the sampling depth for active microwave sensors also seems to be limited to

the surface few centimeters of the soil for the wavelengths considered in the

Kansas study (Ulaby et al, 1978),

Although'no detailed airborne investigations have yet been reported on the

active microwave response to the soil moisture content beneath a vegetation

canopy, we observed the difference between dry soil and soil undergoing

irrigation in 1971 while conducting radar observations of agricultural

fields. During a flight by the NASA/JSCSPP3A aircraft over a test site near

Garden City, Kansas, (Dickey et al) using a 13.3. GHz scatterometer measured

several fields, each of which (from aerial photography and field crew's

reports) contained sections into which irrigation water was flowing and

sections ready for irrigation but not yet wetted. For one of these fields,
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a corn field, the effect of the irrigation on the radar return seemed to

produce a difference of about 7 dB at angles within 40 0 from nadir between

the irrigated and non-irrigated sections. Since all ground conditions, except

soil water content, were similar over the entire field, the differences

in qc can only be attributed to the effect of moisture.

The presence of a vegetation canopy over the soil surface reduces the

sensitivity of the radar backscatter to soil moisture by: a) attenuating the

signal as it travels through the canopy down to the soil and back and by

b) contributing a backscatter component of its own. Moreover, both factors

are, in general, a function of several canopy parameters, including plant

shape, height and moisture content, and vegetation density. The effect of the

vegetation cover on the radar response to soil moisture is to reduce the

sensitivity by about 40% when the bare soil and vegetation-covered responses

are compared as a function of percent of FC in the top 5 cm. The

vegetation-covered response represents data for several crops, wheat, corn,

soybeans, and milo, covering the wade range of growth conditions (Ulaby,

et al, 1977)

There are many similarities in the two microwave approaches to soil

moisture sensing, e.g. ability to penetrate clouds and moderate amounts of

vegetation and the limitation to sampling only the surface 2 - 5cm of the

soil. The major difference is that of spatial resolution, for passive systems

the resolution is limited by the size of the antenna, and this for practical

reasons will be limited to 5 to lOkm. On the other hand, using the synthetic

apperature techniques, spatial resolutions of 100 m or less are possible from
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space, e.go 25-m resolution# was obtained at the 18 cm synthetic aperature

radar on the Seasat Satellite. The problems with the latter approach is the

difficulty in getting an absolute calibration for the SAlt, the strong

sensitivity to surface roughness and look angle, and the large amount of data

that would have be 'handled in any operational. context.

The sensitivity to soil moisture of the three remote sensing approaches

discussed here has been demonstrated in field or aircraft experiments and to a

certain extent from spacecraft platforms. These experiments have also

indicated some of the problems associated with each approach. These problems

are summarized in Table 2, which presents a comparison of the remote-sensing

approaches. Some of the limitations listed are of a fundamental nature, like

cloud cover effects at thermal infrared, whereas others could be reduced or

eliminated by more advanced technology, like larger antennas to achieve

improved radiometer resolution or the development SAR calibration techniques.

There is a fundamental, limitation which applies to all of the approaches, i.e.

they seem to be sensing the moisture content in a layer only 5 - 14 cm thick

at the surface. This limitation implies that remote sensing approaches will

not be able to satisfy those applications which require knowledge of the

moisture conditions in the root zone of the soil.

v°
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TABLE 2

Comparison of Remote Sensing Approaches

^

a'.

_._
APPROACH ADVANTAGES

"i
LIMITATIONS NOISE SOURCES

Thermal Infrared Nigh resolution Cloud cover, Local Met
(10-12 m) possible (400 m) limits frequency conditions

of coverage

Large swath Partial vege-
tative cover

Basic physics well
understood Surface topo-

graphy

Passive Microwave Independence of Poor spatial Surface
atmosphere resolution roughness

(5-10 km at best)

Moderate vege- Interference from Vegetative
tation penetration manmade radiation cover

sources,	 limits
operating wave- Soil temper-
lengths ature

Active Microwave Independence of Limited swath Surface
the atmosphere width roughness

High resolution Calibration Surface slope
possible of SAR

Vegetative
cover
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DISCUSSION

Most hydrologic, agricultural and meterological applications that could

benefit from soil moisture measurements have three general requirements,

frequent observations, an estimate of moisture within the top 1 to 2 of the

soil and, generally, a description of moisture variations over large study

areas, - i.e., a county or state. In preceding sections, we have pointed out

some of the advantages and disadvantages of the thiec approaches than can be

used to collect soil, moisture data. None of the individual techniques

completely satisfies the requirements of the applications in a cost-effective

manner.

In situ methods can accurately estimate soil moisture throughout the

profile. However, the information is reliable only at the point of

measureme!.a. To achieve a specified level of accuracy in estimating the areal

average for most applications, a large number of point samples will be

required. For example, in a study of a large number of intensively sampled

.Melds (20 or more samples per field), Bell et al. (1979) found that for 90%

of the cases, the standard deviation (a) of soil moisture in the surface soil

layers was less than 4%. Snedecor and Cochran (1967) presented the following

relationship for estimating the required sample size:

n = 4 ( 2) 2 	 (6)

where n is the sample size and L is the desired level of accuracy. Using this

equation and specifying L 	 2% and a' = 4% (from Bell et al. (1979)), the

required number of samples would be 16. Thus, if a large number of individual

field estimates are required, the costs can become prohibitive. In addition,

the current state-of-the-art methods generally require on site observations

since reliable remote devices have not been developed. Thus, a significant

commitment of manpower is required.

i!
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Soil water models provide East answers, as well as predi.ctionio, of the

soil water regime in as field or over a region. These models require large

amounts of meteorological input data that can be difficult and costly to

obtain, Model. parameters and functions are also difficult to determine. in

addition, various sources introduce error into the model predictions that can

lead to significant deviations.

Remote-bensing methods offer rapid data collection over large areas on a

repetitive basis. Several questions still need to be answered concerning the

dependence of sensor observations on soil moisture and other parameters, like

vegetation. The major problems related to remote sensing seems to be the

spatial resolution, depth of penetration, and cost. For the spatial

resolution, the passive microwave sensors will measure the areal soil. moisture

over ground areas about 1 km 2 in size from satellite altitudes.. Presently,

we do not know how useful such a measurement would be. The lim.tell depth of

penetration of these systems is also a severe drawback. Even if such data

were available, how could it be used?

These observations lead us to concluded that a cost-effective soil

moisture monitoring program must utilize all three of the approaches and not

,just one. Each has its advantages and disadvantages, an integrated system

should be designed to capitalize on the advantages and minimize the

disadvantages. In-situ methods which we consider the most accurate could be

used sparingly in such a system for calibration and verifiction of models and

remote-sensing measurements. These other two appraches could be used to

interpolate between the point measurements for estimating areal averages.

Remotely sensed measurements could provide an estimate of the surface

conditions, which could then be extrapolated via a model or used to update a
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model simulation. These remotely sensed measurements could also be processed

rapidly to give us a quick look at the general condition over large areas.

In summary, we reviewed a wide variety of methods for estimating soil

moisture in this paper. Each has its own advantages and disadvantages related

to large scale soil moisture monitoring. If a successful monitoring system is

to be developed, it must incorporated all of these approaches. A very brief

description of such an integrated system was presented; however, considerable

research is needed to develop an optimal system.
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FIGURE CAPTIONS

1. Real and imaginary parts of the dielectric constant for clay loam soils
at wavelength of 21 cm (1.41 GHz) (Lundien, 1971) and 1.55 cm (19.35 GHz)
(Wang, 1978).

2. Schematic diagram of Sail-Plant-Atmospliere-Water (SPAW) system.

3. Flow chart of SPAW Model. (Saxton, et al., 1974).

4. The USDAHL Model (Holtan and Yaramanoglu, 1977).

5. The NWSRFS Model (Peck, 1976).

6. A distributed soil moisture simulation model.

7. Summary of results for the diurnal temperature variation versus soil
moisture (Ydso, et al., 1975).

8. Plot of AT versus soil moisture in the 0-2 cm layer. The symbols repre-
sent the different types of temperature measurement; • - n surface
thermocouple, () - hand held radiometer, n - aircraft data over test plot,
x	 aircraft data over the general agricultural fields. (0, u, o, 4^ from
Regi.nato, et al., 1976; x from Schmugge, et al., 1978)

9. Results from field measurements performed at Texas A & M University:
(a) TB versus angle for different moisture levels; (b) T B versus angle
for different surface roughness at about the same moisture level; (c) TB
versus soil moisture in different layers for the medium rough .field
(Newton, 1977).

10. Aircraft observations of TB over agricultural fields around Phoenix,
Arizona from March 1975 flights for both early morning and midday flights.

11. Effect of vegetation on passive microwave sensing of soil moisture.
Three curves are 1) small grains; wheat, barley, rye and grass, 2) broad
leaf cultures, like mature corn and cotton, and, 3) mixed forest.

12. Angular response of scattering coefficient for the five fields for high
levels of moisture content at: (a) L-band (1.1 GHz-27 cm); (b) C-band
(4.25 GHz-7 cm); (c) X-band (7.25 GHz-4.1 cm). 1975 soil moisture ex-
periment (Batlivala and Ulaby, 1977.).

13. Backscattering coefficient plotted as a function of soil moisture given
(a) in % of field capacity of top 1 cm and (b) volumetrically in top cm.
1974 and 1975 bare soil experiment data are combined (Batlivala and
Ulaby, 1977.) .
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DATA FROM
BASHARINOV & SHUTKO (1978)
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Figure 11. Effect of vegetation on } p assive microwave sensing of soil
moisture. Three curves are 1) small grains; wheat, barley, rye and

2) broad leaf cultures, like mature corn and cotton,
and, 3) mixed forest,
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