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Gravimetric Tidal Loading Computed from Integrated
Greens Functions

Clyde C. Goad
National. Geodetic Survey

National Ocean Survey, NOAA
Rockville,'Md. 20852

ABSTRACT. The usual method of predicting the
effects of ocean tides on geodetic, measure-
ments is to use impulse response functions
(called Green's functions) by convolving them
with the desired ocean tide model... Because
ocean tide representations are usually ex-
pressed as areas or cells of constant ampli-
tude and phase, it has been found that the
integrals of Green's functions are more
desirable for use with tidal, loading
calculations.

Predictions are presented of the loading
effects on Earth-tide gravimeter measurements
using a global M2 ocean tide model developed
by E. W. Schwiderski. Souriau's calculations
for loading effects on tidal gravity data
available for western Europe are confirmed to
an accuracy of t0.2 microgal for most sites.
Other results are available from California,
Australia, and Japan.

INTRODUCTION

For several decades prediction of the response of the Earth to

variable loads has captured the interest of geophysicists, ocean-

ographers, and geodesists. During the past decade, improvements

in Earth modeling enabled researchers to determine realistic
response functions given the elastic properties of the Earth.
It is only natural to use these tools to predict the response of
the Earth to the loading of the ocean tides. In this paper an

alternate form has been developed for the response functions.

This method requires that the ocean tide height be given in

terms of areas of constant amplitude and phase, the way global

f
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tide models are usually computed. When such representations of

the tide height are available over any cell or area, the ampli-
tude times the sine or cosine of phase is constant and can be
taken outside the integral. Then the integral of the impulse

response function (or Green's function) remains to be evaluated.
This integral is stable (by removal of one singularity) and en-
ables one easily to use any set of load deformation coefficients

in the study of Earth gravity or displacement response. Previ-
ously, one had to use published Green's functions (Farrell 1972)

or compute the functions, requiring the evaluation of infinite
series which do not converge when the angular argument is small.

The technique presented here also allows one properly to account

for the distance of the instrument above sea level. of course,
this method is not restricted to global representations. It

also can be used in any region where the tide is represented by
areas of constant amplitude and phase.

The results presented in this paper are based on the global
representation of the M2 tide developed by E. W. Schwiderski of

the Naval Surface Weapons Center, Dahlgren, Va. This model is

constrained to agree with coastal and island tide data, and is

used here to predict the effect of ocean loading on gravity data

taken at several areas of the Earth. The results look promising.

For example, in Australia, the tidal perturbations caused by the

oceans appear to be predicted to the 0.5-microgal level,

slightly better than the 1-microgal level reported by Breteger

and Mather (1978). When the tidal gravimeter stations are more

than 1° from the land-water boundaries, excellent agreement is

demonstrated with Souriau (1979) who used 0.25° grids for nearby

seas when correcting many tidal gravity observations taken in

western Europe.
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Loading Potentia?,

For the special case of the ocean tides, let the mass distri-

bution be represented by a constant density layer with varying

height, h, covering a large sphere of radius, a. The gravita-
tional potential becomes

Ul	 Gpa2	 h( 6 ,a) sin 6 d6 do	 (1^
VP_^'

_. 
r4 - tar cos 6

The quantities 8 and a are the central angle and azimuth, r 1Z,
the distance from the center of the Earth, G is the gravitation-
al constant, and p is the density of se a water. Noting the

presence of the generating function for the Legendre polynomials
Pn (cos 0), the irx,tegral becomes

	

00	 n
Ue = Goat	 h(6,a) Pn (cos 6	 ``n+l sin 6 de do	 (2a)

n=o	 r

for the solution outside the sphere (exterior), and

	

O	 n

	

Ui = Gpa 2 F	 h(e,a )Pn(cos 0) rn+l sin 6 d6 do	 (2b)
n=o	 a

for the interior solution. The solution at the spherically

coated surface is obtained from eq. (1) by letting r = a. How-

ever, measurements with Earth tidal gravimeters normally take

place above sea level, and thus eq. (1) or (2a) must be used.
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Newtonian Tidal Attractior, evaluation

Several numerical solutions of the Laplace tidal equations

have recently become available. Previously, solutions were

given by cotidal charts which showed contours ofconstant ampli-

tude and phase, or low degree spherical harmonic expansions.

Nw the solutions are almost always provided in gridded form

where the tidal amplitude and phase are given as constants over

small areas (e.g., 1 0 geographic squares). Let A i and a i be the

amplitude and Greenwich phase, respectively, over the i-th

region. Then the tide height, h i (t), at time t is given by

hi (t) = Ai cos (n • F + a 1 )	 (3)

where n is the coefficient vector for a given constituent and )3

is a hector of six astronomical angles (Cartwright and Tayler

1971). Decomposing eq. (3) with multiple angle identities

yields the sinusoidal and cosinusoidal terms

hi (t)	 hi cos (n	 ^3) - hi sin (n	 ).	 (4)

Substituting eq. (4) into eq. (1), and assuming that the hi and

hi are constant over the i-th sector bounded by azimuthal angles

ali and a 2 i and central angles Oli and 9 21 , yields a rather

simple representation of the direct loading potential

U' _
Ei C	 ( a 2i - a 11 ) 1hcos(fil 	 ) - hl sin(n
	 JJ

(5)

• Va + r - 2ar cos 9 e2i
1[

	

61i

Differentiation of eq. (5), or either 2a or 2b, with respect to

r yields gravity above or below the tidal layer. The
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mathematical model of an infinitesimally thin layer covering the
surface of a sphere exhibits a discontinuity in gravity as one

crosses the boundary of the tidal sheet. Thus gravity readings

made very close to coasts or on :1.slands can be significantly per-
turbed. (See Pekeris (1978) for a further discussion of the
problem.)

Load Deformation Coefficients hn , kn, and In

Because the Earth is not a perfectly rigid body, a deformation

will occur due to the application of the tidal load. The re-
sponse of the Earth to the load is described by the load defor-
mation coefficients h Ir kn, 1n (Munk and MacDonald 1960). Let
Un represent the n-th degree contribution to the loading poten-

tial in eq. (2). Then the change in the distance from the

center of the Earth (or height) is given by hnUI/g. The change

in the n-th degree potential caused by the redistribution of
mass is represented by the coefficients kn. The actual . poten-

tial after deformation is given by (1+kn )Un . Similarly to hn,

the 1 1n  horizontal displacements of degree n.

Numerical values of load deformation coefficients used in this

study have been taken from Farrell (1972) and Zschau (1978).

Gravity Change Caused by Deformation

Since the direct or Newtonian contribution to gravity has been

given, one must now determine the contribution to gravity result-

ing from deformation. For the external problem differentiation

of ZknUA with respect to r gives

r E kn ( n+l ) Un .
n=o
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The change in gravity resulting from height changes is given by

00

E hn Un/g .
n=o

The combination of these two terms along with the Newtonian con-

tribution gives the total change in gravity caused by the tidal
mass layer

,gtide " r E I(n+1)(1+k)-2hnn]Un(6)
n o 

where the sign is reversed so a downward attraction is positive

(as is measured by a gravimeter). The term for the attraction

inside the brace should be used rather than the corresponding

term for attraction under the tidal sheet given by Fair*rell

(1972) and Longman ( 1963).

Summation of Series

As previously discussed, the Newtonian contribution is best
evaluated by using eq. (5) which avoids the evaluation of an in

finite sum. The important difference between this approach and

that given by other investigators is that the integrals of

Green's functions are completed rather than Green's functions

themselves. Again noting that the amplitude and phase of the

ocean tide are constant over lilted areas ( as was done for the

Newtonian attraction), the tide height term can be taken outside

the integral to simplify the process. This technique then re-

duces to an evaluation of the expression fPn (cos 6) sin 6 d6

which can be obtained by using recursive expressions. Let

Tn (6)= fPn (cos e) sin a d6. Then the T's are given by

Tn(e)	 n(n+l) Pnl (coc 8)	 (7)



where Pnl (cos 0) is the associated Legendre function of degree n
and order one. The recursive expressions for P nl (cos e) are

used to obtain

Tn(e)	 n+11 cos 8 Tn-1 (8)	 n+1 Tn-2(6).	 (8)

The functions Tn are very desirable in that the infinite sum

n%o T  exhibits no singularities as does Jo P  when the central

angles are small. These are essentially the disk factors that

Farrell (1972, 193) used to improve the convergence character-

istics of Green's functions. Although not required, Kummer's

method (Farrell 1972) can also be used to facilitate the evalu-

ation of the infinite series because hn and nkn approa& -on-

stants as n gets large. The terms involving height above

sea-level, (a/r) n , remain in the infinite sums. These can be

important especially if the gravimeter is placed in rather high

locations. Pekeris (1978) has shown that as one approaches the

surface from above or below the tidal sheet, the infinite sum

becomes a composition of two terms. One term represents the

solution in the center of the surface or boundary, and the other

is a delta function accounting for the attraction of the mass
directly above or below.

The technique of using the integral of Green's functions
rather than Green's functions themselves does not limit itself

to gravity calculations only. The same technique can be used

for all effects such as displacement, tilt, and strain calcula-

tions to remove one singularity. It is not only limited to

global tide models, but can be used regionally if the regional

representations are given as areas of constant amplitude and

phase.

All ocean tidal contributions calculated in this study omitted
the degree zero term (n=0) in order to impose mass conservation.
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Because some of the observations were taken near the ocean, a

small nonzero initial central angle was used.

M2 OCEAN TIDE

The global 1° square representation of the M2 constituent was

obtained from E. W. Scbwiderski, of the Naval Surface Weapons

Center, Dahlgren. This M2 model was generated by "hydrodynami-

cal interpolation" (Schwiderski 1978). That is, in solving the

Laplace tidal equations, more than 2,000 empirical tide gage ob-

servations from continental and island stations were used to

constrain the solution height amplitude and phase inside the

grid compartments where tide gage observations were available.

This feature is very important for studying ocean loading. Fre-

quently, modification of global tide models is undertaken using

more realistic local models because gravity measurements taken

near coasts are sensitive to the local tide. However, for the

results quoted here, no modifications of the Schwiderski M2

model were made. The fine mesh size (1°xl°) was also an impor-

tant consideration in choosing this particular model for this

study.

RESULTS

Tidal Observations

Normally, analyses of tidal gravity series are given in terms

of amplitude factor S and phase ^. The amplitude factor is the

ratio of actual tidal response amplitude to the theoretical

gravity value for a rigid Earth. Solutions of Earth modeling

yield an amplitude factor of 5=1.16 and phase ^=0 0 . The M2
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signal in microgals at any time, t, can be generated from the

expression

Og	 (	 , t ) 	
6x108 5/ ,.= 6n g C	 cos 2 (0 )	 (9)M2 

• cos ( n	 S + 2N + ^, )

where F was defined earlier, X is east longitude, n=(2,0,0,0,0,0),

g is magnitude of gravity in m/sec 2 , a is the Earth semimajor

axis in meters, and 0 is latitude. The numerical value for CM2

is taken from Cartwright and Edden (1973). CM2 is equal to
0.63192. Differing sign conventions for the local phase angle,

^, are found in the literature. For this reason (9) is expli-

citly shown. When the phase angle, ^, takes on negative values,
it is regarded as a lag.

The most precise tidal gravimeter results available are from

the superconducting gravimeter studies of Warburton et al.

(1975). These results are reported to have an accuracy of t0.2%

Tidal series with this gravimeter are available for La Jolla and

Pinon Flat, Calif.

Tidal gravimeter results for the Australian stations Alice

Springs and Canberra were taken from Melchior (1978). Results

for Bruxelles were taken from Melchior et al. (1976). observa-

tion results for Walferdange (Torge and Wenzel 1977), Potsdam

(Altmann et al. 1977), and Mizusawa (Hosoyama 1977) were presen-

ted at the Eighth International Symposium on Earth Tides, Bonn,

September, 1977.

The results of this study are given in table 1. The observa-

tions in terms of amplitude factor and local phase are given in

columns A. The observed values are reduced by the theoretical

solid Earth values 5=1.16 and ^=0° and are given in columns B.

Columns C show the predicted ocean tide contribution to the
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gravity measurements using the Schwiderski M2 ocean tide model,

the loading deformation coefficients of Farrell (1972) and

Zschau (1978), and the integral Green's function technique pre-

sented in this paper. By comparing columns B and C, one can see

that the predicted ocean contribution to the gravity signal a-
grees with the theoretical values (1.16,0°) to the 0.5-microgal

level. These results are slightly better than the Australian

results obtained by Bretreger and Mather (1978) using global

ocean tide models of Hendershott and Zahel.

Columns D represent corrected amplitude factors and phases

under the assumption that the predicted ocean tide contributions

do indeed properly model the ocean load. Except for Pinon Flat

and Walferdange, the phases seem to show a negative trend. The

magnitude of these phases is contrary to that predicted by

Zschau (1978) for an imperfectly elastic Earth. His modeling

shows that the lag in gravity measurements should be very small

(order of 1/1,000°). These corrected results should not be

taken too seriously, however. These phases represent measure-

ment accuracies of 0.5 microgal or less, which is not the case.

They may also be subject to common calibration errors. Further

improvement is also possible in modeling the ocean tide in the

open oceans where direct measurements of the ocean tidal ampli-

tude and phase are sparse.

Differences in Tidal Gravity

Because of the quality of the observations at La Jolla and

Pinon Flat, further investigation is indicated as a result of
the disagreement between the observed tidal values at these lo-

cations after correcting for the ocean contribution. The ocean

predictions here seem to be slightly worse than those calculated

by Warburton et al. (1975). Elimination of ocean tide effects

from far afield is accomplished by subtracting the ocean effects

between the two sets of observations. (La Jolla and Pinon Flat
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are only 1 1 apart.) Table 2 shows the results of such differen-

cing. One immediately notices that the differential predictions

between Warburton et al. (1975) and the technique used here,

along with the Schwiderski M2 model, are almost identical.

Table 2.--M2 ocean tidal differences in gravity between

La Jolla and Pinon Flat

Amplitude	 Phase
(pgal)	 (degree)

Observed
	

2.25	 39.0

Goad (this study)	 1.65	 38.3

Warburton et al. (1975)	 1.61	 39.6

Western European Gravity Comparisons

Many tidal observations have been taken in western Europe

during the past several years. Many of these observations were

published by Melchior et al. (1976). Since then, Souriau (1979)

published a set of corrections to the Melchior, Kuo, Ducarme ob-

servation set for the effects of the ocean tidal loading. His

procedure was to use the Green's functions of Farrell (1972) in

conjunction with, ocean tidal information obtained from digitized

cotidal charts at 0.25 0 spacing for the neighboring seas. Co-

tidal charts of several investigators were used to model the

large water bodies. Table 3 gives these comparisons for western

Europe. Notice that the predictions by Souriau and those

computed using the Schwiderski M2 model with the load deforma-

tion coefficients of Zschau are very similar. The major dif-

ferences occur at Bordeaux and Cambridge where the effects of

the oceans are rather large. Obviously the 0.25° resolution of

nearby seas was an important ingredient in the tidal corrections

)
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at these two sites. Nevertheless, predictions of this quality

using a global M2 model without any modifications are very good.

CONCLUSIONS

Integrals of Green's functions are more suitable for the

special case of tidal loading where the tide is represented by

areas or cells of constant amplitude and phase. Their use

allows for the inclusion of the height of the instrument above

sea level. This method also directly uses sequences of load de-

formation coefficients which is advantageous for making compari-

sons. The 1 0 square Schwiderski. M2 ocean tide model predicts

accurately ocean load perturbations of Earth tidal gravity obser-

vations. Global calculations in this paper seem to be good to

the 0.5-microgal level. Hopefully, with improvements in surface

and space techniques, we are approaching a period when accurate

checks between strain, tilt, gravity, and displacement observa-

tions will be possible for the prediction of effects of ocean
tide models.
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