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MULTI-LEVEL ADAPTIVE FINITE-ELEMENT METHODS

|. VARIATIONAL PROBLEMS

A. Brandt

Department of Applied Mathematics
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ABSTRACT

The Multi-Level Adaptive Technique (HLAT)'is a general numerical strategf
of solving partial-differential equations and other functional problems by
cycling between coérser and finer levels of discretization. It provides nearly
optimal discretization schemes together with very fast general solvers. It
is described here in terms of finite element discretizations of general non-
linear minimization problems. The basic processes (relaxation sweeps, fine-
grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of
corrections) are directly and naturally determined by the objective functlénal
and the sequence of approximation spaces. _Thé natural processes, however,

.are not always optimél. Concrete examples are gfven and some new techniques
are reviewed, including the local truncation extrapolation and a multi-level
procedure for inexpensively solving chains of many boundary-value problems,

such as those arising in the solution of time-dependent problems.
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1. INTRODUCTION

The Hultl-Levél Adaptive Technique (MLAT) is a éeneral numerical
strategy for solving continuous problems such as differential and integral
equations and functional optimization problems.

In most numerical procedures for solving such problems, the analyst
first discretizes the problem, choosing approximating algebrafc equations
on a finite dimensional approximation space, and then devises a numerical
process to (nearly) solve this huge system of discrete equations.

Osually, no real interplay is allowed between discretization and solution
~processes. This results in enormous waste: the discretization process,
being unable to predict the proper resolution and the proper order of
approximation at each locatfon, uses an approximation space which is too
fine. The algebraic system thus becomes unnecessarily large in size, while
accuracy usually remains rather low, since local smoothness of the solution
is not being properly exploited. On the other hand, the solution process
fails to take advantage of the fact that the algebraic system to be solved
does not stand by itself, but is actually an approximation to cont i nuous
equations, and therefore can itself be approximated by other (much simpler)
algebraic systems.

The basic idea of adaptive processes is that an efficient discretization
of a problem depends on the solution itself: A smooth solution can be
approximated in a coarse approximation space (a space with relatively few
degrees of freedom, such as those produced by coarse triangulations)} The
coarse approximation can in fact be very good, provided its ordef Is

sufficiently high (e.g., provided finite elements are used which contain all
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polynomials up to a sufflciently high degree). A highly-oscillating SAIUt‘ON,
by contrast, can be approximated only in an approkimatfon space which is
f Ine enough to resolve the oscillations. In general the solution may be
smooth in one subdomain, oscillating in another, and may have all kinds of
singularities around some special points or manifolds. In each region
then, the efficient discretization will be different in ﬁature. Thus,
findihg the efficient discretizati§n becomes an integrai part of the
problem. The problem is therefore solved itera;ively, and at certain stages
the discretization is adapted to the evolving solution.

The multi-level techniques go one step further by recognizing that
it is not necessary, at eQery stage, to adapt the discretization to the
solution; it is enough, and much more efficient, to adapt the discretization
to the error in the solution. A smooth error can very efficiently be
liquidated by a coarse-space approximatioh. The fine (and computationally
expensive) approximation spaces are needed only‘for approximating the
highly-oscillating part of the solution; they should be used only to
smooth out oscillating errors. Smoothing the error is much less expensive than
liguidating it, because it can be done locally. For example, the process
of relaxation is a local process which very efficiently smooths the
error, but which, due to its local cﬂaracter, is very slow in liquidating
smooth errors.

Thus, the multi-level adaptive technique is to use not a single
but a sequence of approximation spaces (levels), with geometrically decreasing
mesh-sizes. New levels may be introduced and changed in the brocess, and

they constantly interact with each other. The solution procedure involves



relaxation sweeps over each level, coarse-level-to-fineﬂleQel interpolations
of corrections, and fine-to-coarse transfers of reslduals. This procedure
has two important basic benefits: On the one hand it acts as é very general
fast solver of the discrete system of equatiohs. On the other hand it
provides, in a natural way, a flexlble'and adaptive discretization. The
total number n of discrete variables can thus be kept low, and the
solution of the n algebraic equations is obtained in a low number of
operations. In fact, the number of operations is only 0(n), since a couple of
relaxation sweeps at the finest IeVel are enough to make the error so smooth
that the rest of the work can be done on coarser levels.

MLAT have so far been developed mainly in finite-difference formulations.
A comp}ehensive description of this development, together with historical
notes, can be found in (B3). For a simplified survey of ideas and software,
see [B4). Some further developments are reported in [B5}, (B6)}, {B7],
and [D1}. Throughout that development close agreement has been obtained
between theoretical predictfons and numerical experiments. Both show that
all boundary-value finite-difference problems considered can be solved by
the multi-grid algorithm in 5 to 10 work units, where a work unit is
defined as the computationa] work involved in processing all the difference equatloné

of the finest level one time (i.e., the work in one simple relaxation sweep

over the finest level). Problems ranged from the simplest model problem,
thréugh singular pertubation problems, to fairly complicated nonlinear
Navier-Stokes equations and fransonic flows, with a varlety of domains and
boundary conditions. The more recent developments include methods for
time-dependent problems, very efficient multi-grid embeddlng processes (e.g.,
for bifurcation problems) and methods for local-truncation extrapolations

(cf. respectively Sections 3.9, 3.8, and 3.10 below).



The special capability of the fiﬁlte-difference mul;I-ievel
structure to create non;uniform, fle*lble discretization patterns based
on uniform grids is discussed in Section 3 of [Bé]; This capability Is
obtained by observing that the various uniform grids (1evels) need not
all extend over the entire domain. Finer levels may be confined to
increasingly smaller subdom#ins, so as to provide higher resolution only
where desired. MoreoVer. one may attach to each of these localized finer
grids.its own_local system of éoordinates, to fit cufved boundaries or
to approximate directions of interior interfaces Qnd thin iayérs. Al
thesé patches of local grids interact with each other through the multi-
grid process, which provides faSt solution to their difference equations.
A That structure is very flexible. Since it is based bn uniform gridé,
ii is feasible to employ high-order difference approximétions, and to
change the order whenever desired, with no extra investment in computational
work. The effective (the finest) mesh-size can be locally adjusted in
any desired pattern by changing (extending or contracting) the various
unifofm grids, expending negligible amounts of bookkeeping work and storage.
These flexiBilities.of a finlte difference techniqué posc a challenge to
the finite element method, which tradftionally had the edge in terms of
flexibility, especially in treating curved béundaries.

It has been theoretically shown in (B3] and (BS) that, using this
flexible structure in an adaptive solution process governed bv certain
criteria, one can get exponential rates of convergence. That Is, the

error (in solving the differential problem) decreases exponentially as a

function of the computational work. Such rates are obtainable even for

problems with singular pertubations, algebraic singularities, corners, etc.



Parallel to the above lnvestiga:ions, an interest has been growing
Invapplying multi-level techniques in finite element formulations. Such
applications are mentioned in (B2) and briefly described in various sections’
of [B3]. The purpose of the présent article Is to give a full description
of the multl-level adaptive techniques in terms of finite elements for
general types of problems, and to discuss thenr various algorithmic and
theoretical aspects.

At the same time other workers, starting with Nicolaides [MN1], ([N2]
and then Hackbusch [Hl] - {H3}], Bank and Dupont [BD] and Mansfield (M1)
have established the mathematical foundations of certain multi-grid finite
elements algorithms. For a growing class of problems they have rigorously
proven the basic multi-grid assertion, namely, that the discrete algebraic
problem with n dégrees of freedom (obtained as a finite element approximation
to a continuous problem) can be solved in oniy Cn computer operations; or,
at least, that Cn log %- operations are enough to reduce the L2 norm
of the error by any desired factor ¢ . The constant C is independent of
n , but its numerical_value is usually not specified. In fact, if numerical
values of € were calculated from the rigorous proofs, they would turn out to be
exceedingly large, much larger for example than practical values of n,
so that for practical purposes the CnA estimates would look worse than some
Cn° estimates. (The only exceptions are the rigorous estimates in Appendix
C of [B3] and a similar result in [F1].  But they apply to the model
problem only.)

Such rigorous investigations are of a very different character than

the present work. The price of rigor is that the results are far from

realistic. The proofs give meaningful estimates only for extremely large



n, and, even then, the work estimates are orders of magnitude too large.
The estlimates are therefore too crude to yield any practical information.
e.g., they cannot resolve the difference between more efficient and less
efficient multi-grid processes. (This difference Is crucial in practice;
it may itself cover seQeral orders of magnitude.) For this reason, and
since the quantity we try to estimate here is actually nothing but.the
computer time (which of course we know anyway, at least aposteriori), a
differenf type of theoretical studies are prefgrred byvthe present
author.

| Discarding rigor, our studies are based on the observation
that the important multi-level processes are of a local nature, siﬁce low-frequency
corrections are obtained by coarse-level processes, which cost very little,
One can therefore énalyze the crucial aspects of multi-grid processes by

employing a local mode analysis: Far boundaries and Iow-Frequency changes In

the coefficients of the equations can be ignored, so that the effect of
multi-level processes on individual Fourier componeﬁts can easily be
calculated. General ﬁomputer routines have been developéd to pefform
this analysis automatically for any given problem, yielding precise
quantitative predictions of the multi-level efficiency. Exﬁeriments with
various types of equations (see [D1] and [P!]) show the work predictions
to be precise within a féw percent. This tool (combined wfth related
observations, the most important of which is the '"'coupled nonsmoothness'
mentioned in Section 3.2 below) is therefore useful in selecting efficient
algorithms (see, e.g., Section 6 and Appendix A in [B3]), in understanding
the numerical results, and in debugging multi-level programs (see Section

3.7.9 below). It played an Important role in developing to full efficiency



many multi-grid finite difference codes.

The multi-grid experience wiih finite-difference formulations is
of éourse very relevant to finite element ones,‘sinée usually finite
element methods give a type of finite-difference equations. It Is, in
fact, the only experience we have. MNamely, all numerical experiments so
far, even those based on finite eleﬁent der!vétions (see {N3) and ([P1}]),
were‘based'on uniform grids (e.g., uniform triangulations), so that
finite'diffefence structure of the discréte equations was very explicit.
But there are some special features in finite element formulations which
do not show clearly in general finite difference eqﬁations. (The -converse
is also true.)

The special featuresof the finite element method show themselves most
naturally in variational problems, bf course. We start therefore our
study of multi-level finite element methods with the general minimization
problem, where the entire description is given in terms of the ''total energy"
functional £, the.minimization of which Is our objective. It is not
assumed that E is quadratic, nor that it has any other special form, so that
the described method is applicable to general nonlinear problems. Thé
basic multi-level processes (relaxation sweeps, fine-to-coarse transfers
of residuals and coarse-to-fine interpolations of corrections) turn out to
be completely natural; they are directly determined by the objective
functional E and the approximation spaces. In particular we reproduce, for
the general nonlinear case, the observation (made first by Nicolaides, see
[N1)) that the natural residual transfer is the adjoint of the correction
interpolafion. Convergence Is guaranteed since E decreases monotonically
by each step of relaxation, as well as by .the coarse-level corrections.

A clocer examlnation reveals that the natura!l p}ocesses are not always

the best ones. For example, the natural finite-element interpolation Trom
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a coarse approximation space to a fine one (e.g., the identity Interpolation
in'case the fine space contains the coarse one) is sometimes too crude (see
.Sectlon 3.1). In some other cases, lnterbolatloﬁs cruder (i.e., of lower
order) than the natural one could be used without loss of efficiency (see
Section 3.3). The t-extrapolation technique, which can improve very much
the nodal values of the approximatfon (Section 3.10), is better understood
from a finite-difference point of view. In fact, the extrapolation does not
consfderably improve the quality of the approximation when measﬁred in terms
of the usual finite element norm. All these findings are related of course
to the known fact that the point-wise errors>of the finite elements are
quite often much larger than the average error. While this fact has little
effect in usual finite element algorithms, it‘is important in the multi-level
processes, which should take advantage of the relations between coarse and
fine discretizations; Nevertheless, the natural processes are not bad, and
can safely be used, even though they may sometimes require an order of
magnitude more computing time.
A central issue in finite element methods is how important it is to

vse uniform subdivisions. The nonuniform elements are Impoftant on the

boundaries, but it seems that In the interior there Is usually no need for

nonuniformity, while uniformity offers substantial gains In computlné time
and storage. See for example the uniform lnterlér structure In F'gure 2 In
Section 4.2 below. Uniformity becomes even more advantageous when multi-level
solution'methods are used (one reason being that, since the solution of

the discrete equatibns is much faster, it becomes more Important to speed

up other parts of the algorithm, in particular the assembly of the stiffness
equations, which Is very laborious'when nonuniform elements are used).

Moreover, the multi-level technique, as mentioned above, has its own mechanism,.’



and a very efficient one, for creating nonuniform discretizations, based
on a'collection of uniform grids. We will discuss th|§ Issue In a later
part of tﬁis paper.

In the later part of the paper some Qeneralizatlons will be given.
Multi-level solutions to general Galerkin (weak form) finite element
discrctizatibns yill be described. This will fnclude new types of relaxat fon
(e.g.n distributive relaxation, as mentioned in [BS], [B6), and {B71) and
a further study of the relation between interpolations and residual weightings.
More general problems will be included, such as constrained minimization
problems, degenerate problems, indefinite and non-elliptic problems, and
eigenvalue problems. Local mode analysis and adaptation techniques will be

treated in greater detail.
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2. ﬂlNlHlZATlON PROBLEM AND APPROXIMATION SPACES

2.17 The Continuous Problem.

We consider a d-dlmenslonél variational problem of'minimlzing a
functional E(u) over an admissible space S of functions u(x) , where
X = (xl,...,xd) and g ‘may be a vector of functions (u(|),...,u(q)). E
need not be quadratic, but we assume that E and S are such that a unlique

minimum, denoted* U , exists, at least locally. Thus,'our problem is to

find U such that

E(U) = min Eu) . | |
';‘62 v (2.1)

For some standard examples the reader is referred to Chapter L below.

* Generally, we will use capital letters to denote solutions. the corresponding
lower-case letters will denote approximations.
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2.2 Approximation Spaces.

An approx!mation'space s¥ 1s a finite-dimensional space which
contains approximations to U . It is convenient to assume that Sl
Is a subspace of S (although this is not absolutely necessary). The
dimension of S* s n, , and its basis functions are W§(X).
(j=l,...,n2):
2 L,e o1 SR
st oa (] ux) = T ouw(x)), : (2.2)

= J )

J=1 S
where u? are the nodal values of the trial function u2 . Usually, with
each approximation space 52 , we associate a real parameter h2 representing
its typical mesh-size, I;e., the support of each basis function w; is
assumed to have linear dimensions comparable to hz .

We may like sometimes to regard Sg as a tensor product of a, spaces

S R Y- O

U = (ug' uR' up' )
(e Yr21r 0t Ve

Thus, u; denotes the j-th nodal-value, u(i) is the a-th combonent-function

. 2 .

of ul in S, while Uig) is the B-th component-function of ul In st .
. L 4

The functions Yag need not correspond to Ue) - In fact, sometimes

9,9 for example, when ul approximates derivatives of u as well as

point-values of wu itself:

2 3V 2
uj = v‘ Vd U(u)(X). (2-3)
ax] y seoy axd

in such cases, we denote a , x=(x],...,xd), V=Vt Yy and gf(v‘,...,vd)

L L L 2 L2 L 2 L 2
by aj X (xj]""'xjd)’ V] vjl+...+vjd and !J'(vjl""’“jd) .

respectively, A function u[g] is formed by Xui@} , summing over
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u 2
(8]

can be formed by summing u}w} over all ] for which uj represents the

all J with the same a; and the same 33 . More generally,

same llnear combination of expressions llke (2.3), The distinction between

different functlons ulgl is not essential to multi-level processes, and is

not really used below. It can be useful, however, In devising the Interpolation
routines and in theoretical discussions.
When uj satisfy (2.3), the approximation elements are called nodal

finite elements ([SF], p. 101).

Multi-level solution processes typically employ a sequence of increasingly

finer approximation spaces SI, Sz, e SH , with corresponding mesh-sizes

h , and usually hP = 2h . st may be the ''target space'',

> h2 > .¢o > h o+

1 M
i.e., the space in which the final approximation is sought, with coarser spaces
S' . SZ', ceny SM-] serving only -as auxiliary spaces. |In adaptive processes,
however, there is of course no target-space and the relation between spaces

will become more involved.

The simplest case is that of the nested approximation spaces

s'lcs?c...cdtes. (2.4)

ihis case may arise if eéch element of Slf' is a union of Sl-élements.

In most applicationﬁ, however, such a requirement, especially near boundaries,
would pose a severe limitation. Thus, in our general description we do not
assume (2.4), but the reader may like to keep this case in mind a5 a simple

example.



-]3-

2.3 Interpolation Between Approximation Spaces and RelatIVe Smoothness.

In multi-level processing we will need Interpolation operators It

whiéh will be linear transformations from Sk to Sl such that: ltuk Is

Yclose'! to uk . In the nested case Sk C.S2 It Is natural to take lt

as the identity operator | (although this is not always the best chqice).
Generally, the usual polynomial Interpélatlon procedu}es, of suitable order,
can be employed to obtaln nodal values of Ituk which approximate uk as
well as possible (i.e., to the order of‘the best approximation to uk from
Sl ). The qrder of Interpolation may vary by circumstances, and will be
further discussed below (e.g., Section 3.1). At thispoint we only Introduée,

as a general characterization of It , the matrix Ikz deflined by

2k ke 2
I o =§ e . (2.5)

Let Sk be a space coarser than Sl . The smoothness of a function

ul € Sl relative to Sk is measured by the quantity
Lk L
, |k - ot
1 - inf : .o (2.5a)
k Il

uk €S

Thus, the notion of relative smoothness depends on the interpolation operator

Ii . For example, in nodal finite elements (2.3), if polynomial interpolation

is applied independéntly for each function u[zl, relative smoothness is
L
(8]

A function ul may be smooth in this sense, without being smooth in the usual

measured in terms of the smoothness of the individual functions u

sense, e.g., without having smooth component-functions u(i) . Normally,

however, our interpolation operator li will be the natural one, and the

smoothness (2.5a) will be equivalent to the smoothness of u(i) .
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2.4 Derivatives of Functionals.

Let E(u®) be any functional defined on st . e define Its deriv=-

ative with respect to the J-th nodal value by

e‘;(u‘) -nm%{s(uh s oY -EWMY . (2.6)

§-40 J!
!‘ .

Similarly, we may use the notatlion E%j = (Ef)] » and also define derivatives

with respect to nodal values of another space S

Euh) = vim L Bt s @) SEWY) (2.7)
| §+0 ° :
| f u2=uk € Sk c st , then E?(uz) = E?(uk) . From (2.5) and (2.7), it follows
that If Ej afe continuous, then
<ty = xR WY (2.8)
i [ 11 ) .

Orders in h. Note that EY is not fully equivalent to the first

J

variation (Frechet derivative) of E in S. It is proportional to the

"'volume'' wal of the basis function w; . For example, for nodal finite

elements (2.3), if o' is a-smooth function, then Ej(ui) = O(hd).
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2.5 Ritz Discretizations.

As our discrete approximation to (2.1) on Sg, we have the problem of
fln&lng Ul € Sl such that
E(Uz) = min E(ul) . ' - . (2.9)
UIGSI V »
This Implies the "stlffness equations'
. Ej(u ) =0, (j-l,2,...,n2) . (2.10)

This is a system of n, 2 equations for the n, unknowns (the nodal values

L L

of UL ).

The (dlscrete,:as well as the original) problem Is called linear if fhe
system (2.10) Is a lineaé system, that Is, If E s quadratfc. or equlvalently,
if the stiffness coefficients E?J(ul) are éonstants independent of ul . The

system can then be rewritten as

r et
Podi

uy = E;(O) : (2.11)

In multi-level processing, use is made of the residuals of an approx-'
imation ul : the j-th residual is the valpe of -E;(ul) » which expresses
by how much ut falls to satisfy the discrete equatioﬁ (2.10). The discrete
solution Ul has zero residuals.

It is important to notice the different scales of the discrete equations
(2.10) at different levels 2 . In finite difference methods we write the
discrete equations as analogs of the differential eqpations, and as a result,
the equations have the same scale on all levels, By this we mean that the

residuals of any smooth function are all 0(1) .in terms of the mesh-size h. This
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is no longer so in (2.10) where the residuals of smoofh'funttlons are
proportional to |w§| , which Is often O(h:)A.

In the case of nodal finite elements (2.3), equétions (2.10) will
usuélly take the form of difference equations. We then denote by ™(4)
and m g the highest order of differences applied in (2.10) to the
functions u(z) and u[;] , respectiyely. Hence, thg ratio betwgen thg
residuals of smoqth and noﬁsmbqth funéficns u(i) is O(h;n(“)), and for
u[g]. the ratio is O(hlm[B]) .

Assembling stiffness matrices for multi-level processfng can be

made by the usual procedures. The need for assembly for several approx-
imation spaces adds only a small amount to the programming effort and
costs In computer time and space only a fraction more than the finest-level

assembly. (cf. Sec. 3.7.8.)
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3. MULTi-LEVEL SOLUTION PROCESSES

Qe consider first the usual sltuatiqn where some ''target'' approximation
space SN is given In which the solution of the stiffness gquations (2.10,
2=M) Is sought. In this section we describe pfdce;ses which provfde fast
solution to this algebraic system, whether liﬁegr or'nonlinear,_by the.
iterative usage of some given coarser approximation spaces SI,Sz,...,S"-‘.
The same processes will later be shown to be the main building blocks in

more developed adaptive procedures, when no target approximation spaces are

set in advance.
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3.1 Coarse-Space Aggroxlmatlon.

Let Sk be an aporoximatlion space coarser than Sz : namely, hk Is
considerably larger than hz (typically, hk = 2 hE ) so that n<<ny -
Solving the Sk stiffness eqdatlons, by any method, Is therefore much less
expensive than solving the -Sz equations. The simplést and most~famillar
way of using Sk in the lterative solution of the S2 equaflons is to lntér-
polafe an (approxlmate) solution from Sk to Sl , td serve as a first

approximation ul

) Lk k
ut e hou o, (u

approximates Uk) . - (3.1)

How good this first approximation is depends on the smoothness of thé
solution U2 . In some cases U* 1Is so smooth that, if the lnterpqlatIOn
It is of order high enough to exploit the smoofhness, then the first
approxlhation (3.1) will turn out fo be good enough and will require no
further improvement. In such cases, however, the approximat!én snace Sz
is not really neéded; Sk already yields the solution fo the required
accuracy. Thus, if the Sl anproximation Is at all needed, the first
approximation (3.1) will require a considerable improvement.

Can we compute a correction to u2 agaln by the inexpensive use of
the coarse space Sk ? Namely, can we somehow approximate the error

! a Ug-ul by some Vk € Sk ? Normally", the answer Is no. |If uk in

v
(3.1) is a good enough approximation to _Uk , then V1 will be a rapidly
oscillating function that cannot meaningfully be approximated in the coarse

k
space S . Therefore, before we can reuse coarse spaces, the error Vl

*An exception is the case where Sk does not fully use the smoothness of the
solution U . In that case, if lﬁ in (3.1) is of sufflclently Elgh order,
then V¥ will be smooth enough to be approximated by some v S This
situation is related, however to the inappropriate approximation order being
used, and will therefore not arise in a fully adaptive procedure.
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should be”smootﬁéd out. Smoothing and coarse-space corrections are descrlbed.
in the next sections. Here we add some remarks on the first coarse-space
appro;lmatlon (3.1).

The question arises, of what order and what types should the lnterpolat!oﬁ

(3.1) be? If sk 2

c Slv, a natural choice is the identity u” = uk . Usually
this choice is not the best: uk has an erfor with large rapld osclllatiﬁns
(cf., e.g., [SF] p. 168). Such an error, as we will see below, Is the most
expens}ve to liquidate by.multi-level processes. Hence, a very substantial

gain can be made by producing the nodal values of ut through a hlgher-érder
polynomial interpolation, which will g]ve much smaller rapid error oscillations.
For best résults, the rapid error oscillations generated by interpolatfon should
not be larger than the rapid (i.e., wavelength O(hk)) oscillations expected
anyway in the solution U itself. Hence, for best results, the interpolation
order should be high enough to exploit all the expected smoothness of the
solution U. The most significant part of this gain will already be obtained

if the interpolation order Is such that the order of magnitude of the

residuals which are produced is not larger than that of the local truncation
errors (see Section 3.5 below). In other words, the interpolation should be
exact for every polynomial which minimizes a functional E both in S and

in s* (see the example in Section 4.2). In particular, interpolation of

nodal values of u(i) should be of order m(a)+p (t.e., should use polynomials

of degree m(a)+p-l) , where p 1Is the order of approximation.  For analyses

of interpolation orders see Section A.2 in [B3].
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Another possibility is to use two coarse-space solutions, uk € Sk and

uj € SJ say, with mesh-sizes hJ >l<,k , and to defline ut by h-extrapolation
J k

from u? and u. . This Is a reasonable procedure only when Sk and SJ

have uniform grids. Even then, the accuracy obtained Is at best equlﬁalent to

that obtained by §) , a space with mesh-size h' but with a higher order of
3

approximation. In principle, it is less expensive to solve the problem

than that of sk (since hj >h, ). Thus, in a fully adaptive process, a

situation where h-extrapolation can profitably be used will not arise.
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3.2 Error Smoothing by. Relaxation.

" A basic solution process, used in multi-level algorithms mainly as an
error smoothing process, Is the relaxation sweep. The simplest example (and |
In a sense also the best) Is the following:

- Gauss=-Seidel relaxation éweep: This Is a process in which all the nodal

_ 4 L ’
values of some glven approximate solution u are scanned one by one in some

prescribed order. Each nodal value uj ,in its turn, is replaced by a new value
' ' |
J

possible, other nodal values being held fixed. In other words, 'U? is chosen

, which is the value for which the energy (2.19) will be as small as

so that the corresponding s;lffness equation (2.10) is satisfied.
Actually, if this equation is non-linear in uj , it Is better not to

satisfy it completely, but to make only one Newton step toward its solution.

Namely,

-1 L2, 2,] L, 0,1

u, = u, -E,(u ) /7E, . (u') , .2

] ] J( ) 4 i ) (3.2)
!".j 3 QI —Qc

where u Is the approximate solution just prior to replacing uJ by uJ .
(That is, if in our prescribed order i is scanned before j , then
u%’l - o , otherwise u%’J - .)

i

Having completed a relaxation sweep, the system (2.10) is not yet solved,

of coufse, be;ause its equations are coupled to each other. A well known and
extensively used method for solving sparse algebraic systems like (2.10) is by
a long sequence of relaxatlon sweeps. This is a convergent process, since
.E(uz) is monotonically decreasing. But the rate of convergence is very slow.
Typically, if n, is the dimension of S? , then the number of sweeps:

required for convergences increases as. "2“ (see [Y1]). .

A closer examination, however, reveals that the convergence is not slow

as long as the error V2 = Ul - ul has rapid oscillations (oscillations with wave-
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length comparable to hz }. Such error oscillations are typlcallY reduceq
at least by a factor .5 per sweep. Thus, the convergence slows down only
when V!' becomes smooth.

In other words, relaxation sweeps, inefficient as they are In solving
problems, are vefy efflcfent In smoothing out fhe error. This property, whlch_
will be extenslvelly used below, Is very -general for Gauss-Seidel relaxation
of any non-degenerate discretization of a mlnihlzatlon probIém; Degeneracy
occurs when the stiffness system of equations Is decompbsablé, at least
locally, into several decoupled (or weakly coupled) systems. In such cases
efficient smoothing can still be obtained by more sophisticated Gauss-Seidel
relaxation schemes, which fake the degeneraﬁy into account, e.g., line

relaxation In sultable directions.

.-

Remark: For a system (q2>|),-the relaxation hay be slowly converging
in some, but not all, thé components. For example, in the ''mixed method",
when both u(i) and some of its derivatives are taken as independent unknowns,
relaxing over tﬁe equatiohs related to derivatives (i.e., relaxing
E?(u2)=0 over the j for which v = \% 0in (273)) QIII converge very fast.
This of course does not help, since the lowest-order equations converge Sluuly;.
but it stresses the fact that thgsé lowest-order equations sthld be the
primal concern in the steps below (coarse-grid corrections). These equations
are also the ones which produce the finite difference analog to the differential
equations. |If there are several zero-order unknowns (uj such that .v%=0)
per mesh cube, the finite difference analog may be produced only by
combinations of the corresponding equations. Those special combinations will
then be slow to converge, so it is no heip that some other combinations may

converge rapidly by suitable relaxation sweeps.
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Another remark: There are other relaxation schemes which -are quite
natural to the minimization problem. The most obvious one Is the

steepest descent method, in which all the unknowns are changed simultaneously,

each one in proportion to the decrease in E per its unit change. In terms

of difference equations this method is known as Jacobi (under) relaxatlion.

The Gauss-Seidel relaxation is usually preferable, since it requifes tess
storage and provides better smoothing rates. Jacobi relaxation, howe?er,
is more suitable for parallel computations. |

A final remark about relaxation: the efficient smoothiﬁg process does
not continue indefinitely. Excebt for some ideal cases (e.g., equations with
. constant coefficients in.the Infinlfe domain,_uniformly triangq!ar!zed and
consistently relaxed), a certain level of»rapid error oscillatlons Is always
coupled to the smooth errors. Starting from a completely smooth error function,
rapid error oscillations are generated by the relaxation sweeps because of
boundary interaction and variations in the stiffness coefficients. In partlcular,'
relaxing with highly oscillatory coefficients will produce in U(Z).rapid error
oscillations of magnitude O(hlm(“)) times the magnitude of the smooth error.

This level of "'coupled nonsmoothness' will persist as relaxation slows down.

Further relaxation sweeps will be wasteful. Moreover, If the error Is smoother
than this level (see footnote in Section 3.1), relaxation may even magnify the
rapid error osclillations Instead of reducing them. Hence, in such cases it is

best to avold relaxation altogether (cf. analysis in Section A.2 of [B3]).
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3,3 Measuring Dynamic Resldudls;

In some multi-level algorithms we may wish to measure the current error
Vz - Ul-uz in order to detect elther convergence or slow convergence rates.
v’ cannot be measured directly. Instead, we can measure the residuals -Ej(ul) .
Computing all these regiduals Is quite expensive, however. [t costs rougﬁly as
much as a relaxation sweep, so that measuring them after every sweep (as
required by some élgorithms) would double our éomputatlonal work. Therefore,
instead of computing the ”statfc" residuals -E;(ul), one usually calculates

i T ' '
e ) , which are less expensive since they are

the ''dynamic" reslduals -Ej(u
computed anyway in the course of each relaxation sweep (cf. (3.2)).

It is important that the norms in measuring the residuals on different
spaces s* are comparable. That Is, they must all be discrete approximations

‘to the same continuous norm of the energy first variation. Thus, the L2 norm

of the dynamic residuals is given by
n, 1/2 :
d ¢, -1 }
el S = {End Ul Bt ) (3.3
2 gt ] J
(cf. Section 2.5), while their L_ norm Is

: -1
||res.||i = max lw}l IEi(UE'J)l}. (3.4)

and the weighted L, gorm (perhaps the most useful one) is

n

£ .
Irescll § = X o0 hd oyl e Wt )] (3.5)
J= .

One (or several) of these norms may be calculated along with each relaxation

sweep.
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For algorithmic decisions a dynamic-residuals nqrm'is as good as the static
one, because (i) fast relaxation convergence must exhlbit a fast decrease of the
dynamic norm; and (ii) when the convergence Is slow the dynamic norm Is
equal to approximately twice the static norm (since the equations are approximately

symmetric).
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3.4 Coarse-Space Correction

As soon as the error Vz = Uz- o in Sl has been smoothed out by

relaxation, a good approximation to It can be Inexpenslvely computed In-a
coarser space. This idea was used for finite difference equations by
Southwell [S1] and by others (cf. the historical notes in [B31),

and it has a central role in multi-level solution processes.

' 2
- Let Sk be an approximation space coarser than S . We wish to write
k k . . Lok e . ‘
equations for V € S so that its interpolant 1V €S" will approximate

Vz as well as possible. Since V2 is the solution of the problem
E(u‘+v1) = min E(u2+vl) ,
vhest
a natural definition of Vk is by the requirement
E(uz+|ivk) = min E(u2+itvk) , ' (3.6)
VkESk'
which yields the equations (cf. Section 2.4)

E?“(u‘+|ivk) -0, (1=1,0000) « (3.7)

This is a system of N equations for the " nodal values of V

For general nonllnear problems, or in the case of non-nested spaces
(52 ? Sk) , equations (3.7) are more complicated than necessary. They
require a special assembly procedure, and the scheme may become complicated

in later stages(when still coarser spaces are used in solving (3.7) ; see

Section 3.5). To simplify the scheme we first rewrite (3.7) in the form
£t (uhh1 2vF) - Bt = BT | (3.8)
Since ‘Vk is smooth, the left-hand side of_(3.8) can be approximated by

E‘;(l:uz'*vk) 'E‘;(I';uz) . (309)

Observe that we cannot similarly approximate the left-hand side of (3.7)
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since ltvk may be small compared to the rapidly oscillating part of ul ,

and therefore the error of‘the coarse approximation may ﬁe large compared.
with Itvk'. In (3.8), by contrast, even if Itvk is smail, the left-hand
side is Still an approximately linear operator in |ivk . Indeed, for linear
préblems and nested spaces (SE D‘Sk) , the left-hand side of (3.8) exactly
coincides with (3.9). |

_Using (2.8) for the right-hand side of (3.8) our new equations become

S (T W o (LT WD A bl N (T I (3.10)
i L 1°2 iy
: J
If the problem is linear ( E quadratic) these equatioﬁs can be rewritten as
a linear system for Vk :
k gk _ _ ¢ kb 2 2 '
: ElaVy ; EACRES (3.11)

Observe that this problem is of the same form as thé usual Sk stiffness
equatfons ((2.10) or (2.11), for 2=k ), except that the original right-hand
side is replaced by linear combinations of residuals from the finer space Sz .
Thus, no special assembly Is needed for these equations.

More generally, for nonlinear problems, we introduce the notation

T l:u£+vk . (3.12)

in terms of which (3.10) is written as

EN@) = EN(k) & 11 EuD) (3.13)

Again these equations are the usual sk stiffness equations ((2.10) for ¢=k ),
only the right-hand side is new, so that no special assembly is needed.

The mode of working directly with the coarse-space correction Vk and

solving (3.11) is called the Correction Scheme (CS). The mode of operating

Tk

with the full approximation (basic approximation plus the correction) U" and
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solving (3.13) Is called the Full-Approxl.matlon Scheme (FAS). Note that Uk ,

2 L
as defined by (3.12), depends on u . If 1" = o' then T colncides

with U* (the solution of (2.10) for k=2 ). At convergence, however,
u" = U" and V! =0 , hence
Ek k 2

- 'lU (at convergence) . | ' (3.14)

Thus ﬁk Is a coarse-space functlion which ln‘terpolates a finer-space solution,
and tHerefore, its nodal values have a finer-space accuracy. This sltuation
can be exploited extensively (cf. Section 2 in [B5]), so that the FAS is not
only more general than CS, but it also offérs other advantages, and Is there-
fore preferable even in many 1inear prohiems.

Let v be an apprﬁxlmate solution to (3.11), or Uk an approximate
solution to (3.13), obtained by a method to be specified below (Sectlon 3.6)
In the first (CS) case, tﬁe computed'correction should simply be interpolated

to Sl and used to correct ul , namely

[A 2 2 k
ugew * YoLp + Ikv . : (3.15)

In the second (FAS) case, it Is Important to realize that T* itself does not

approximate a smooth function that can profitably be interpolated to Sl A
is vk = Gk--ltu2 , approximating the smooth function Vlk, which we should

interpolate. That is, In FAS,

L L | L .
unew * Yoo * 'k 'gYu0! (3.16)
Note that Itlt is not the ldentity operator, hence (3.16) is not equivalent
to simply UEEV -« Ituk . This latter interpolation would destroy the higher-

frequency content of ul

k

The correction (3.15) or (3.16) is called the S correction to o . The

smooth part of the error vvz practically disappears by such a correction. High;
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: . . :
frequency error components are introduced by the Ik interpolation, but
they are easlly llqufdated by subsequent relaxation sweeps. Before turning
to algorithmic details, some remarks should be added concerning the

interpolation symbols above.

Three interpolation processes were used. The correction interpolation

(lt in (3.15) or (3.16)), the residual weighting (right-hand side of (3.11)

and a similar term In (3.13)), and the FAS solution averaging (I: in (3.13)
and (3.16)). We use the term "averaging' for interpolations from a finer
space to a coarser one, where the coarse space values are obtalned as
weighted averages of fine-space values,
The correction Interpolation in terms of the above nogation is given
by
(livk)j = f v'; l:‘? . - (3.17)

It is thus clear from (3.13) that the residual-weighting is determined by

(and actually is the adjoint of) the correction interpolation: For linear problems
this was observed in [N1]. We will see later that in more general formulatlons

the choice of residual welghting is Independent of the correction Interpolation,
but in the present case (minimization prob]ems) the relation between the two Is
natural and need not be violated. Sometimes, if relaxation smooths the residual
function as efficiently as It smooths V2 , slmpler and less work-consuming

residuals weighting can be used wlthout degrading the coarse-space correction

(see Section 4.2 below), but the possible gain Is quite marginal and
should not be attempted without specific knowledge.

The correction interpolation ltself can be made In several ways. In the
“)

nested. case (Sz o §°), it can simply be the identity. Unlike the first coarse-
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tq-flne lntefpolatlon (Section 3.1), higher-ofder Interpolation Is not
normally¥* needed:here, since at this stage the smooth error componenté are
ﬁo ionger as dominant. The natural interpolation (transfer of point-wise
values of Sk ) is of high enéhgh order to get the full benefit of the
coarse-space correction. In fact, if high-ofder elements are used, lower-
order interpolations could somet imes be used, yitﬁ no loss In efficiency.
The interpolation order need only be high ehough so as not to generate
high-frequency residuals larger than the low-frequency residuals of the
interpolated correction. (See more on interpolation orders in Section A.2

of [33] and in the chapter on Galerkin formulations.)

The form of the FAS solution-averaging It is immaterial as long as

uz is smooth. Care, however, should be taken'when uQ has wild oscillations

on the scale of the grid, i.e., when | maT |ul(x)-u2(y)| is comparable

to |‘u£||; To see this we can view the (nonlinear) equatlions (2.10) as
quasi-linear equations whose coefflcients depend on the solution. In the case
of wild oscillations in u2 , the values of Itu2 , and hence also the values
of the coefficients in the coarse-grid eqﬁa:ions (3.13), depend very much

on the form of It . In such a éaée the fine-grid difference operator may have
wildly-oscillating coefficients, and the coarse-grid operator needs to
represent a proper "homogenization' (cf. Babuska (1975) and Spégnolo (1975)).
For the purposes of multi-grid processes, enough homogenization Is obtained

k

if 1, isa "full'" averagling operator, i.e., any local operator such that

/ I:»}dx ~ fw'dx  for any wes' . (3.18)

*An exception Is the case mentioned in footnote in Section 3.1, In which

further gain is cbtained by tsing higher-order irterpclation for the next
roarse-space correction. '



-3]..

3.5 Relatlve Local Truncation Errors.
Let '2 denote an Interpolation (projectlon) from the solution space
S to the approximation space s¥ . The "local truncation errors' of the

approximation space Sz are the values

T - Ej(l“u) | S Ga9)
which are (up to a sign) the residuals of the true solution U . They are
$Oo na%ed because they serve as a measure fbr how well'the cont inuous probiem
is 1oca||y approximated by the discrete system (2.10). Approximate knowledge
of the truncation errors is important for various algorithmic criteria, such
as,discretization adaptation criteria and natural stopping criteria. When
the residuals -E§(u1) are sméll In magnitude compared with the correspbnding
truncation errors, then Ul Is approximated by u2 better than by the exact
solution U . Hence, at that Instance, ul need no further improvement, and
the iterative solution of the stiffness equations may be terminated.
Moreover, If ?§ were known, we could improve the discrete equations.
In fact, replacing the discrete equations (2.10) by

E§(ul) - ?‘J% . | (3.20)

we would get thé solution Ul = IIU , that is, a solution which colncides, up
to the interpolation lE , with the true differential solution U . For
example, if ll is apoint-wise projection, the nodal values of Un would
coincide with those of U .

of course, since U 1s unknown, the truncation errors are not known
either. Consider, howeVer, the situation described above where we had two
approximation spaces, coarser space S.k and finer one SE . Slnce Uﬁ is

usually much closer to U than to Uk , we can approximate the Sk local
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truncation errors ?? by the values
™. k(")

(3.21)

These values are called the local truncation errors of Sk relative to

i .

These values too are not really known until vt is fully calculated.
We may, however; replace U* in (3.21) by its evolving approximation ot .

More precisely, If Ut -ut is a smooth function, then
k,, k2L k, k 2 k.2 k, 2
E‘(ILU ) -El(lzu_) 9 E‘(U ) -E'(u )
- -Et(ul)
and hence
R.N ke

T T
where

A (T I (1)

booe o (3.22)
- ekt - ; e (o)

A . —ke _ ke
At convergence, when u =Lﬁ , we indeed get T
. ke _ . ‘
The approximate relative-truncation-error r? is exactly the right-hand
side of the coarse-space (Sk) correction equations (3.13), which may therefore

be rewritten as
EX ) = 1) | (3.22a)
We may thus view the role of the fine space (Sz) as serving to improve, of-to
correct, the coarse-space equation ((2.10) for t=k ) by adding to It an
approximation of the local truncation error. While adding thevtrue truncation
error ?? to the coarse-space equations would make their solution Uk
k

coincide with the true,soluflon (t.e., U = lkU ), adding the relative

C =k o . :
truncation error T, makes Uk coincide with the fine-space solution
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(lee., ue=thuh) .

ke

i -k
s a satisfactory approximation to T as soon as

=T << 1T (3.23)

It has been observed in the numerical experlments'that,(3;23) s already

easily satisfied at the stage of the first transition from the st ‘relaxatioq

sweeps back to Sk . Heurlistically, thls Is expialhed as follows: uf at that

stage Qas obtained by the interpolation (3.1) followed by relaxation. The

interpolation leaves a residuals function Ez(ul) which Is comparable to T

both in its low-frequency components (this is trivial) and in its high-

frequency components (this is obtalned if a suitable order of interpolation

‘is used, cf. Section 3.15. The relaxation sweeps considerably reduce the hfgh-

frequency residual components. The bulk of the remaining low-frequency (smooth)
—k2 ke

error in T =71 ‘is then reduced by adding to T?l the last term in (3.2

Thus, a relation like (3.23) is satisfied by all components, regardless

of the norm that is used. In fact, at the said stage,

||Tkl ';klll will usually already be comparable to lITlll; further reduction
of llrkz -?k1|| Is not meaningful.

A sequence of refinements. Assume we have a sequence of increasingly flner
approximations u‘ € S‘ , u2 € 52 yeie uz € Sl . The corrected cbarse—grid

equations (3.22a) would take the form*

E';(uk) = r‘; | (3.2ha)

k
where L rTl if k=g-1. For k<g-1 , however, the correction r?

k
should correct the S equation not by the original Sk+] equation, but by

*Wﬁ+frop the bar from Uk . Herelnafter, wherever a finer-space approximation
u exists, UK will denote the solutjon of the correction equation (3.24).
The original equation (2.10) is the special case 1%==0 .
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Its own corrected form. Hence, generally (cf. (3.22))

k k+1
u

k _ gk )

k,k+1 {Ek+1(uk+_1) -k
y !

] ] } (1skge-1) (3.24b)

where

T =0. o : (3:2k¢)

At convergence, the solutions of (3.24) on all levels coincide with each other,

namely,

ko k ko ko kL -1, : |
U = U = Hqleg oo 1 Y (at convergence) .

Thus, each 1? represents the local truncation error on Sk relative to

the finest level S2 .

Orders in h . By-usua! Taylor expansions it is easy to find that the

local truncation error satisfies

: YE ;9.

by L J J : : _

T = b0 Do, ), (3.25a)
where the coefficient b depends on the local properties of the exact solution
U but not on the mesh-size hy , and ;? > Y} (usually ;? = Y;+I or

—f ] £
=y 42 ). Y.
Yy ) Y

is the local order of the truncation errof. Forrexample, in
the simple nodal case ((2.3), with v} =0 and q, = | ) one finds that

y} f d+p , where d , the diménsion, enters as the.scale of Fhe'stiffness
equatioﬁ (cf. Sec. 2.5) and p is the order of approximation (which usually:

means that the elements contain all polynomials of degree less than p ,'but

not all those of degree »p ).
. When there are more discrete functions (q2 > 1) then y} _becomes more

complicated, and may actuallyvdepend on J . |If Sl .and Sk have the same

L L

structure, and if 1 in Sk corresponds to J in S (i.e., x? = xj and

v? = v? ), then they share the same constant In (3.25a), and hence
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- he \Y
= - (;f) T o), haviea (3.25b)

~ Simllarly, we can get a relation of the form
—k4 ke —k
T C' T

where C;z

(1 +0(1) , - (3.25¢)
is a known.quantjty (independgnt of U). For example;'lﬁ the

simple nodal case we have

e« (M
i T'»' Tj

~{1- (;ﬁ)p}?‘} . (3.254)
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3.6 vHultl-Levei Algorlthm.

By combining relaxation sweeps that smooth 'out the error In ul with
coarse-space corrections that liquidate smooth errors, all error components
can be efficlently reduced. The question remains of how to solve the
coarse-grid'problem.(3.13). This is done by a similar process of relaxation
sweeps (over uk‘) combined with still-coarser-space corrections.

*Thus, in multl¥ievel solution processes, a sequence of approximation
2

1 M ’
spaces S ,S ,...,S is used, starting with a very coarse space S1 , and ending

with the target fine space SM . The typical mesh-size of the space Sk

is hkk12_kh0 . Often, the triangulation for Sk is based on vertical and
horizontal grid lines, and the grid lines of Sk are every other line of

+ ‘ : -
Sk ! .

Multi-grid algorithms work themselves up from the coarsest level S‘
to the finest SM . We will denote by ¢ the current finest level, ;hat
is, the largest k fof which an_approxlmate solution uk has already been
computed. For each £ ,a first approximation ul is obtained by inter-
polating from ul-l , and then it Is improved by relaxation sweeps and coarse-
space corrections, using equations (3.24) throughout. One type of multi-level
algorithm flows as follows (see Figure 1).

A. Solving on the coarsest grid. Set 1=1. Compute an approximate

solution ul to the stiffness equations (3.24) on the coarsest grid
(k=2=1) , either by relaxation or by some direct method. (The term direct
method here means a non-iterative solution of linear systems. |f

the stiffness equations are nonlinear, the direct method will Include a few

Newton iterations, where the linear system at each iteration is solved
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[l xp —
! : .
{7 2 ' Solve: E{(u')=0
B L |
! Relox £ (u")s’q
€x =" llresiduals | k_ h]

—— =2+ [®

L v
Kokl k - k-1
Y \ 4

Kk k k - -
——u -—u I, (uk '-I:'uk) Ik‘,u H

I

‘<t % - Ek(uk)+1k"(rkvl —E Rkt ))
=t )
) el A

€, <+ 8ey,,

€)= ATy 4

Figure 1. FAS Multi-Level Alg_orithm

The notation {8 generally expfained in the text. IO i‘, denotes highen-onden

(see Section 3.1) intexpolation, white 1X_ * {s the "natural” interpolation.
| T denotes || r'; [| . In this §Cowchant the coansest-Level (k=1) cotrection
equations are »olved by nefaxation.
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directly.) Whatever the-method, u" should be easy to obtaln, since s!

|s very coarse.

B. Setting a new flnest level. If £ =M the algorithm Is terminated.

If not, Increase & by 1. Introduce, as the first approximation for the

new finest level, the function

where® the interpolation is the higher-order one (see Section 3.1). ﬂaving
assembled the stiffness equations (2.10) for this new level, set k=g
Generally, k will dénote the current ogerétion level, (thus, for example,

when the algorithm later switches to coarser-space corrections, we will have

k k

k<f ) and u € S° will denote the current approximation on that level.

Also set ¢ sufficiently small. €y will generally be used as the

2
tolerance for solving the k-level equations (3.24). For €, » 3 realistic
value is introduced in Step G below, so the cur?ent "sufficiently small"

value is only temporary.

C. Starting a new,ogeratlon'lével. When we start working on any level

k , we put Ek==+m , for reasons to become clear in Step E below. .
. k .
D. Relaxation sweeps. Improve u by one relaxation sweep (see

Section 3.2). Concurrently with the sweep,compute some norm e, of the

dynamic residuals (see Section 3.3).

E. Testing the convergence and its rate. |f convergence at the current
operation level has been obtained (ek sck) , go to Step |I. If not, and If
the relaxation convergence rate Is still satisfactory (i.e., if eksidgk .

where n is a prescribed factor which will be discussed below), set

Ek<-ek and go back to Step D (continue relaxation). |f the convergence rate

is slow (ek >re, ) , go to Step F (thus obtain coarser-space correction to uk ).



F. Transfer to coarser level. Decrease k by 1 . Introduce, as’

the first approximation for the new (the coarser) level k, the function

k kK k+1 '
u = lk+]u (3-?6)

(see discussion of the FAS solution averaging, Section 3.4). Define the
sK problem by computing Tk as In (3.24b), where the first term Is easily

calculated using (3.26). As the tolerance for this new problem, set

ekasek” , where & 1s a prescribed factor to be discussed below.
G. Finest level stopping parameter. Concurrently with the computation
of Tk , calculate also fts norm l|1k|| , using the same norm as used for

the dynamic residuals (see Step D and Section 3.3). If k=2-1 set

e, = all 7]

(3.27a)

Usually we want €, , the stopping tolerance on the currently finest level,

2 .
to be comparable to | t°|l , so we choose o = (hl/hg_])f (see (3.25b));

or, even more precisely,

(hy/hy )Y |
a = o (3.27b)
1 —(hﬂhw

(cf. (3.25b) and (3.25d)).

H. Coarse level solution. If k=1, solve equation (3.24) by

relaxation or directly (see Step A above) and go to Step t. If k>1, go

to Step C.

1. Employing a converged solution to correct a finer level. If k=2,

go to Step B. If k<%, make the correction (cf. (3.16))
K+l k+l o kel ko ko ke - : 8
vew = Yootk N+ 1YL0’ (3.28)

and theh Increase k by 1 and go to Step C.
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3.7 Comments

3.7.1 Flixed algorithms, The internal chegks In the above algorithm

can }n many cases be replaced by pre-assigned flows. (See for example the
fixed algorithm in Figure 3 in Section 4,2.) In particular, instead of

checking for slow convergence ( e > nék , In Step E), one can sjmply

switch to the coarser level k-1 after a pre-assigned number e of

relaxation sweeps on level k . The parameter re o like n , depends on

may

the smoothing rate (see below). Hence, If that rate Is known, fc

be fixed in advancef. Simllarly, instead.of checking for convergence
(eks:ek) , the swi tch tq a finer level k+1 may be made after a tqtal of
re relaxation sweeps has been hade on level k since thé last 'visit" to
the finer level. (Thus, if Qrcs re< (v+l)rc , then v switches from k
" to the coarser level k-1 are performed before switching to k+! .) In

some cases re= rt depends on k , and-ln particular it may have special
values for k=12 . |

The main advantage of fixed algorithms is in saving the work of
computing the dynamic residuals at each relaxation sweep. This is a significant
saving when the problem Is very simple. For example, In the case of the
Dirichlet problem (Pofsson equation) with lincar elements on a uniform square
grid (Sec. 4.2), a relaxation sweep costs 5 operations (only additions) per node.
A sweep that also compﬁteg (3.3) costs 8 operations (7 additions and 1 multi-
plication) per mode. In more complicated problems, ho@ever, the saving is
marginal, since a sweep involves many more operations, and computing the norm
still adds only 3 operations per nodal value.

In simple problems, where the fixed algorithms are needed, they are as

efficient as the '‘accomodative'' ones. In. fact, the latter behave like flixed.
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3.7.2. Accumulated work units. For comparison purposes, it Is common

to record the amount of work performed by a multi-grid algorithm In termsIOf
work-units. The w§rk-unlt Is the computational work of expressing the stiff-
ness (finlte'dlfference) equations on the finest level M . A relaxation
sweep on level k wusually costs Zd(M—k) work units, and so does the
calculation of the residuals in tﬁé'transfer from level k  to level
k-1 (except when injection Is used). All other>computatlona!~work (mostly 
interpolations) is quite small and not éasy'to express in work units, and s
therefore usually neglected. We thus get a measure of the expended wérk
which is independent of the hardware and software bélng Qsed. Thfs measure
is very convenient in comparing various aljorithms and in comparing numerical
results with theoretical predictions.
We have examined, both experimentally and theoretically, various types
- of probleﬁs (mostly in terms of finite differences), Including systems suﬁh
as the incompressible Navier-Stokes equations. In all cases, the amount of
‘work required to solve the problem to the level of truncation errors (3.27)
was between § and 10 work-units. In any case, the number of work-units

required depends only on the properties of the local operator, and not on

the specific data (forcing terms, boundary shape and boundary gonditions).

3.7.3 Stdrage requi rements. At any given time, the algorithm tias at

most one approximation uk on each level k . Acsuming hk/hM ~ ZM_k ,

and denoting by ﬁk the amount of storage nceded for level k (which is

usually a fixed multiple of N o the dimension of Sk ), it Is clear that

7! ~ Zd(k-M)F

K N so that the total storage is less than

d, -2d - 1 =
+2 +...)nM = ;ﬁjftig ny -

(1+2°
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This Is only a fraction more than the storage required for the ''target

Eﬁ ,
Qpace" sM

Moreover, a different variant of the multi-level process requires even
far lesg storage. To see this, note that the finer level k+1 - is really
needed only to provide the 1? correction to the cqarser-level equation
(3.24a). This correction depends only on the local behavior of the solution.
Hence, we never need the entire finer level, nelther in core nor in external
storage. A segment of It Is sufflcnent for computing r? (at all points

ko C o
2.3) which are a few mesh-sizes inside that segment) .

3.7.4 Optimizations. The effectiveness of any preséribed multi-grid

algorfthm depends only on local properties (since long error components are
reduced, very inexpensively, by coarse-level proce;ses). and can therefore be
calculated, once and for all,for any type of functional E'; either by local mode
analysis or by numerical experiments; In fact, the numerical experiments
confirm the mode analysis predictions. We can thus predict'whlch of several
possible alternatives will give better performance. We can theréfore optimlze
our algorithm, including the relaxation method (point-wise or line-wise, marchiﬁgi
directions, relaxation factors, etc.), the order of interpolations, mesh-size
ratios (hk/hk+l) , and swftchlng parameters.( n and & or r_ and rg ).
vThe relaxation methods and interbolation orders are discussed in Sections
3.1, 3.2 and 3.4 above. The mesh-size ratio hk/hk+l 2 is close enough to

optimum to warrant its general use (at least in two and three dimensional problems).

3.7.5 The Switching parameters. The overall efficiency Is not sensitive

to the precise choice of & and n (Steps E and F above). Quite general, good
values are §=0.2 and n=max u(x) , where W Is the smoothing factor of
' X

relaxation, l.e., the largest amplification factor (per relaxation sweep) of

high-frequency error modes. The high-frequehcy modes are those which are not
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visible In the coarser space; i.e., their projections on thc coarser space
alias with lower modes. Their amplification fac;ors are easily computed

by a local Fourier analysis of the relaxation process (aSsﬁmlng constant
triangulation, constant coefficients and infinite domain) . ¥ is a function
of x since the triangulation and/or the coefficients may vary over the
domain. In wellfdesigned relaxation‘schenes u~0.5 , If not smaller.

Using the switching parameter n =max n means that rélaxation is
discontinued and coarse-space correction is sought as soon as the amplitudes
of high-frequency residual components are reduced to the level of the lower-
frequency amplitudes. Indeed, at this level fhe smoothing process becomes
less efficient (see the comments at the end of Section 3.1),but the error
uk--Uk is already sufficiently smooth.

if coarse Space corrections are not effiéient enough, u may>a|ways
be increased and & decreased a little, e.g., u may be replaced by ul/2
and & by &/2 . Theoretically optimal values for n and 8§ are discussed

in Appendix A of [B3].

3.7.6 The FAS solution welghting has been discussed above (see Section

k .
N1 in (3728)r

(3.26) and (3.24b) should all be identical. A common programming

3.4). It Is important to emphasize that

error is to have them different, at least at some special points. In such
programs, the coarse-space corrections will deteriorate as soon as thelr

magni tude becomes comparable to the difference between the different values

k k+l

of Ik+‘u .

3.7.7. A case of avoiding relaxation. |If ug_ is known to be so
smooth that an interpolation of order higher than m(a)+p in Step B gives
a much better first approximation, then that interpolation should not be

followed by relaxation (see footnotes in Sections 3.1 and 3.2). Go from
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Step B to Step F. A befter proéedure, of course, wogld be to eﬁploy a higher
approximation order p . [|f the smoothness is not khown In advance and a hfgher
p poses programming difficulties, a better procédure would be to use tT-extra-
polations (see beiow)..

3.7.8 Programming. The stiffness equations have the same form (3.24)

on all levels. Hence, with a sultable data structure, only one relaxation
routine should be written In which the feve] number (k) 1s a parameter.

The ;ame is true for all.bther basic operations, such as assembling, Tk
calqulét!ons,and interpolations. ‘An example of such a data structure Is_
exhibited in Appendix B of [B3], in Section 4 of [B4] and in the programs of

~ [M78). The routine for éalculating % can be produced easily as a comﬁ!nathn
.of 3 routines: a resfdual calculation routine (RESCAL), a fine-to-coarse
transfer routine (CTF) and a routine (CORSRES) to compute the coarse-space
addi tional term.(the first term on the right-hand side of (3.2hb)). Both
RESCAL and CORSRES are trivial modi ficatlons of the relaxation routine (RELAX) .
The interpolation routines, Including @TF, can be wrltteﬁ'énce and for all:
they depend on the data structure and the types of elements, but not.on the
particular functional E . Thus, the programning for each new problem is
reduced to the progradming of a relaxatlonAroutine. A considerable expertise
is ﬁeeded, however, to construct a fully efficientvrelaxatlon routine (see °
Section 3 in [B2], Section 6 in [B5), Lectures 5, 6, 7, 8 in [B6! and [B7]).

3.7.9 Debugging. By printing out every calculated e, and Ilrt I,

one gets a nice short summary of each run (cf. Appenélx B in [B3]). A typical
behavior should be exhibited, a deviation from which easily detects most bugs.
Detailed debugging technlqbes (for finite difference formulations) are listed
in Lecture 18 in [B6]. Here we should emphasize only one fundamental

principle: never settle for any convergence .rate slower than (or any work-count
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Iarger'than) the’predlctlon'of the interlor local mode analysis. Due to

the iterative character of the method, programming (as well as conceptual)

errors often do not manifest themselves in catastrophic results, but rather

in considerably slower convergence rates.
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3.8 Nonllneaf Problems and Continuation (Embedding).

A baslic feature of fhe above algorithm is that it has baslcally the same

efficliency for nonlinear problems as for linear problems. No linearization is

required. A difficulty may arise, however, in problems which have more than

21 45 too coarse, the first

one local minimum. In such cases, if S
approximation (3.25) may lead to solutions u* converging to a.wrong local
minimum in st .

*A common way to obtain a first approximation ul close enough to the
desired minimum is by a continuation (6r “"embedding'') process: the probleh.
including its discretization and its appfoximate solutions, are driven by some
parameter vy from an easily solvable (e.g. linear) problém toward the desired
problem; in steps 6y s&all enough to ensure that the solution to the y-problem
can serve as a good first approximation in solving the (y+67)-problém (cf.
section 8.2 in [B3]).

Sometimes the intermediate problems are themselves of interest, i.e.,
they all correspond to interesting possible states of the physical system being
studied. For example, Y may be the total load in a structural mechanics
broblem, or the Reynolds number in a flow problem, or a parameter in terms of
which the boundary conditions, or the shape of the boundary, are expressed, etc.
It may then be required to solve the intermediate-y problems as accurately as
the final-y problem. When the intermediate problems are not of interest, they
can be solved to a lower accuracy, using coarser grids. In any case,
the grids for the intermediate problems cannot be too coarse, lest the first
approximation obtained from them will not lead to the desired minimum. In other
words, the intermediate problems should use a sufficiently fine space Sl .,
either because this is their desired accuracy, or because solution components
of wavelengths comparable to hll-are needed to separate between l!at:tractl‘on’

regions" of different minima.
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Even though the Sl high-frequency compdnents are heéded in the
.contInUatlon process, in each 8§y step they do not usually change much.

We c;n therefore employ the ''frozen-t'' technique described below, and

perform most of the &y steps on very coarse spaces, with only a few
v”visits” to Sl .‘ Obtaining a fast approximation by such a continuation
process will normally require less computational work than the work in
solviyg (to a better accuracy) the final problem once its first abprbximation

is given.
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3.9 Evolutlon Problems, Optimal-Design Problems, and Frozen-t Techniques.

We often need to solve not just one isolated problem bQ; a sequence
of similar problems depending on some parameter. For example, we may be
studying the effect of changing some physical parameters on the ''performance'
of a system, whgre the performance is measured in terms. of the solutioﬁ U
of the differential problem. We may want to find for what physical parameters
the performance ig optimal. Or, we may need to solve a sequence of problems
in a continuation process (Section 3.8). Or, as the most fam!liar case,
the parameter may be the time t , and the sequence of sélutions describe
the evolution in time of a physiéal system. The problem in each time-step,
‘more generally, will be &o solve some "'implicit" EESﬁ.Of the evolution
equations.

Such a gequence of problems can be handled very efficiently by
multi-level processes. First, we can use the previous solution (or
extrapolation from several previous solutions) to obtain a good flrst_approx-
imation for solving the next problem in the sequence. We will then need
only one multi-level improvement cycle (involving oniy a couple of felaxationl
sweeps on each level) to get a satisfactory sélution for each problem in
the sequence.

Horeovér, by a full use of the multi-level structure, one can usuélly
do much better. One can exploit the very different rates of change of high-
frequency and low-frequency components. In parabolic evélution prdblems, for
example, high-frequency components converge to a steady state much sooner than
low-frequency ones do. Hence, after the first few steps, the changes in

the solution are smooth and can be accurately calculated In increasingly



_49_

coarser apprbxlmatlon spaces. (This, incidentally, allows the use of

"~ large tlme-s(eps without employlng implicit equations at alll) Only once
fn a long time should a step be made in the finest approxlmatl&n-space to
readjust the high-frequency components.

Thus, generally, we may like to efficiently solve the next problem in
ou; sequence by neglectfng the changes in thg high-frequency componenfs
(without neglecting the components themselves)..‘The way to freeze the
frequencies with wavelengths smaller than O(hk) is to freeze . iﬁ
(3.2ha), i.e., to solve the next problem with the local-truncation functfon
rk that was previously obtained, thereby limiting the current multi-level
calculations to the k coarsest spaces Sl,...,Sk. This freezeS the
high-frequency part of tﬁe solution but retains its influence on the

coarse-grid equations.

Denote by kj the level of calculation (k) 1in the j-th step;.
k
that is, =t J is frozen when solving the j-th problem in the sequence.

The sequence of levels k., can be selected by monitoring the changes in

J

the local-truncation functlions Tk . One method is essentially as follows.

Let Tk'J ‘be the function 1k at the conclusion of the current step J.

KoJ o kei-l

Thus, T for, and only for, kzkj. At each step j we update

the quantities

6? = ” Tk.j - Tk’i(k'J) ”' i(k’j) = max{il i(j' k'_>_k+2} .

(3.29)
using the same norm as in Section 3.3 above. That is, 6? measures the

total change In Tk (owing to calculations at level k+1) since the last

calculation at level k+2 . Since the last visit to SK'2 & has
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remained unchanged. Had we allowed it to change, its changes would roughly
be

/hk)Y sk = 27Y sk, . (3.30)

(h ]

k+1

where y Is defined In (3.255. when (3.30) exceeds aicertéin
tolerance, a new calcul#tlon at level k+2 s needed, ép kJH = k+2 Is
chosén. ‘

In the case of evolution problems, the contributions of local errors

k

like (3.29) accumulate over time. Instead of 5] , we should then use

- J ;
N SR e L (3.31)
a=1(k,j) ‘

where Ata = ta - tu_‘ is the time interval related to the a-th step. Hence,
k+1

J

work units, and therefore, the

27Y 6? is the estimate of the error contributed by the freeéing of 1

k+1 (2+k-M) d

Updatlng T costs roughly 2

condition when to activate such an update should be

2-y+d(M-k-2) Sk

j Ao, . ' (3.32)

where A is the marginal rate of exchange between accuracy and work-units.
That is, X Is a preassigned constant which represents the smallest profit
rate (the smallest added accuraty per work unit) at which we are still
willing to invest additional work (see Section 8.1 in (831).
Let M, = max k be the finest level used up to time t, In an
I | *t

evolution problem. When (3.32) is satisfied for krﬂj-‘, It implies the
refinement of our system, i.e., the introduction of a new finest level

MJ*‘ - "j +1. Thus, (3.32) serves actually as a dlscretization-adaptation

test. Taking norms 1ike (3.31) not over the entire domain but in small
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subdomains, we can in fact apply this test in subdomains, thus deciding not .

only when to use a finer level but also where to do it.

A more extensive description of adaptation techniques and their

discretization patterns is discussed in later chapters.



3.10 t-Extrapolation

* When S"-l and Sl are "similar" spaces we can use Taylor expansions
and express the true local truncation function ;1-1 as a known multiple of

. 1
the computed relative truncation function Tz . Namely,

;?-'. = C?If-j (1 +0(1)) T o (3.33)

(see (3.25c) ~‘(3.25d)_above). Replacing 1:'] by its multiple C%T%-!

is a trivial énd-practlcally cost-free modification to . the above algorithm,

which can be convenlently'appendedbto Step G. Such a replacement is called

2_
local-truncation extrapolation, or briefly, t-extrapolation. It makes U !
’ g
closer to U (instead of. close to u* ), and as a result U~ will (when
corrected by u"-l at the next Step |) also be closer to U . In fact, the

new truncation error agrees with the true truncation error up to higher-order

terms in h , and therefore the solution with t-extrapolation is equivalent

to a higher-order approximation. This can of course be true only in the

sense of approximating the nodal values of Ilu by those of U; In the

norm of S , ||U1~U | is as good as any ]Iul-u | can be.

Experiments indeed show that if U 1Is smooth enoUgh; then the r-éxtrapolated
solution u2 is much closer to the true solution U than Is the full solution

Ul of the difference equation, namely,

hot - 1t << JJut - R (3.34)

In fact, if s smooth, (3.34) holds already after the first muliti-level
cycle to level 1t v(first Step 1). See the heurlistic explahatlon In Section 3.5
above and the numerical example in [B5]. |If, 6n the other hand, .ILU has no
smoothness, then the t-extrapolation wlll'not'codslderably lmp}ove ul . But,
exactly In this case, the one multi-level cycle ic enough to reduce I!uz - Ulll

well telow iiilu - ot | » since, exactly In this case, ™ is not consideraply
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smaller than ;l-‘ . (The size of the residuals after Step B Is roughly,

-z ! ’ and the one cycle easily reduces them well below ;l .) So the

po!nt of 1- extrapolation is that, after one cycle “(bringling the total

computatlonal cost typically to § to 7 work units), it produces an approx-

mation ul which is guaranteed to be no worse than . U2 ’ the full solution

of the difference equations, with the nice added feature that any avallable

smoothness is automatically exploited to improve ul even further.
Observe that T-extrapolation Is made at level -1 , the finest level
at which a non-zero approximation to T is available. The correction is

automatically carried over to coarser levels via (3.24b). More precisely,

(3.24) is replaced by

!i"i (k) = '?‘i‘ , (1<k<t) (3.35a)

wk oL gk kbl g okl gkl ey ke

T, Ei('k+l u ) ? Iij { Ej (v ") T } o,
(1<k<2-2) (3.35b)

S S A 1t ) (3.35¢)
J

R

T = 0. _ (3.35d)

Richardson extrapolation is the classical form of extrapolating in

terms of the mesh-size h. It uses the approximate solutions themselves

- ] .
( ul and ul , for example), to produce the extrapolated approximation

(h ul" - h ul)/(hz - hz-l)' It should be pointed out that the t1-extrapolation

L -1
can be used in many cases where the Richardsan extrapolation cannot. The

t-extrapolation employs Taylor expansions of the local, truncation error ;z,
while the Richardson extrapolation requires such an expansion for the globai

discretization error vt -, which is more difficult to get.
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L, CONCRETE EXAMPLES

. General Linear Elliptic Minimization Problem

Let Q@ be any open set In Rd,.' If v = (Vl""’vd)- is a

multi-index, D’ will denote thevdifferen;lat'opera;or 0¥ = D:l,...,D:d,
~where .Dj - 3/3x,, and |v|. will denote its order |v| = 91 ooty .
The space of real functfons,deflnéd on Q whose square Is lntégfable will
be denoted by Lz(n) ; This Is a Hilbert spahe with the scalar product

(u,v) = [ ulx) vix) dx.

Q ~ .

and the norm |lu||§ = (u,y)& . The Sobolev sbace VHm(Q) is the-spacelbf
functions in Lz(n) whose derivatives of order less than or edual to
m are also in Lz(n) , with the scalar product

(u,v)m = X (0"u, D) . | e

vl -

and norm ||'u_||'h = (U,u)mi . For functions wu,v € Hm(Q) , we aeflﬁe:a cont inuous
symmetric bilinear functional a(u,Q) which is called the strain enefgy. The
ellipticity condition is that af(u,v) is positive definite; namely, there

exists an ""ellipticity constant'" a>0 such that
a(u,u) > allull 5 (4.1)

Our space of admissible functions will be the space S = H? of functions
u € Hm(a) which satisfy the homogeneous essential boundary condition Bu=0,
where B 1is a bounded linear operator. (The Inhomogeneous condition Bu=g

can also be used, with obvious changes in the formalism below.) The general

inear d-dimensional elliptic minimization problem of order*  Is to find

* See footnote on page 6565,
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U such that

E(u) = min E(u) , - (4.2)
u € H?
where
E(u) = i‘a(u,u) - (f,u) . . (4.3)

It is easy to show that the problem (4.2) - (4.3) has a unique

solution U , which must satisfy
a(u,v) = .(f,v) for every v €S . (4.h)

When integrated by parts, this equation usually yields an equation of the

form
(Lu,v) = (f,v) for every v €S . (4.5)

so that U satisfies the differential equation LU = f , at least in a

weak sense.
Consider now a sequence of approximation spaces S',...,SM of

the form (2.2) and typical mesh-sizes h‘,...,h As in S , it is easy

M

to see in Sl that E(ul) has a unique minimum UE , which satisifles

*0rder here coincides with Its definition in [SF], where It is denoted by m.
The order of the assoclated differential operator L (see (4.5)) is 2h.

in finite difference formulations, including [B2] - [B7], the order m=2dh
of the differential equation Is taken as the order of the problem.



a(Uz,vl) - (f.vl) for every vioest. (4.6)

The stiffness equations (2.10) here take the form
[ Y TP | '
a(U u(pj) - (fo(pj)by (Jf1'.'.."n9.) » ("-7)

where tD:'. oo .‘Pﬁ
equivalent to (4.6). This linear case can also be written as the linear

system of equations

vf-: .a;'Y uy = f1 L Umteny)  (4.82)
where (cf. (2.11))

al, = Ejy = a(«pi.«o;)’ o |  (4.8b)

fl = Ejlo) = (f,Q;’) : - | (4.8¢)

Hence, the multi-grid system of equations (3.24) takes the form

}éa"(e ok - i, (1<k<d) (4.92)
-k k , k  k+l K ktt zk+1_ o _k+l k+
f I a18(|k+l u )B + I Iij (fj 3 aj, Uy ),
B ] Y
(1<k<2-1) - (4.9b)
o, (k=2) (4.9¢)

where F? denotes the corrected right-hand side f ;

,'ahd where the

are the basis functions of‘_Sl . Equation (4.7) Is clearly

ranges of the subscripts are 1<i,85n,, RS IS SR The summations range

of course over small subsets, since most of the coefficients a?s vanish,
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The Gauss-Seidel relaxation at devel k (see (3.2)) ls:glven here by

-t b Lo%,) _ byt
uj u; ( § aJY uy fj )/ajJ . (4.10)

If t-extrapolation (3.35) is to be used, equation (4.10b) for k=2-1 should

be replaced by

21 2ol 2 B-1,,0-1 2, 8-
fl f' + C' {_§ a'B (ll u )B fi
21,0 (8 ¢ b2 |
+ § 'ij (fJ | 5 aJY UY) } (4.11)

The equations above are those of .the Full Approximation Scheme (FAS).
In the linear case, we can also use the Correction Scheme (CS), in which the

coarser-space functions are correction functions. Equation (4.9b) is then

replaced by

ij iy Yy

?§ = gkl ket g K KL (eker-1)  (8012)
j Y _

while (4.9a) and (4.9c) remain the same. Instead of the FAS correction (3.28)

one should of course use the CS correction

k+1 k+1 k+1 k :
UNEW UoLD e U (4.13)



4.2 The Dirichlet Problem with Linear Elements

The standard example of a linear elliptic minimization problem is
the problem (4.2) - (4.3) with the strain energy given by the Dirichlet

Integral

o ) - | _
atvi) = (%31-) T (%:—d) dx, ... dX, (.19)

and with the homogeneous Dirichlet boundary condition u(x)=0 for x € 3Q .
]

Gechnically, this boundary,éondition is introduced by taking S = HE = closure
in H of C:(Q) , where C:(Q) are the infinitely differentiable functions
which vanish outside a compact subset of 0 .) |In this case the differential
operator L in (4.5) turns out to be the Laplace operator

32 82

X

A =-

e s
1 axy

so that the minimizing function U satisfies the Poisson equation with Dirichlet

boundary conditions:
-AU=f in Q@ , (4.20a)
U=20 on the boundary 3. . ’ (4.20b)

We describe the finite element approximaiions to the problem in

‘two dimensions (d=2). Let the approximation spaces S‘,...,SM be spaces

of continuous plecewise linear functions based on triangulations as in _
Figure 2. The triangles touching the boundary may have special forms.

Such special triangles are called irregular triangles. A grid point serving
as a vertex of one or more lrregular triangles is cailed an irregular point.

-1

All other grid points are called regular. HNotice that S is usually



hpy=2hy
st |

FIGURE 2 Uniform Triangulations

The thiangulations are based on uniformly-spaced horizontal and vertical

gnid Lines. The gnid Lines of s' are every other grid Line of Sl-'.



';60-

not contained in Sl ;'slnce its irregular triangles are not unfons of

-1 € Sl would pose

Sz triangles. Generaily, the nesting condition S
a severe limitation on the boundary elements of st .

The baslis function w} is the contlinuous plecewise lipear function

which vanishes at all grid points, except for w}(xj)-l . It 1s easy
to calculate that, if x; is a regdiar grid point, then

| boooif =) -

L L 2 ' L : Ty

. = X =9 - if € N, L. 21

ajy a(wY.¢U) =q-1 i v €N ( A )
0 otherwise ,

where N; is the set of neighborsAof j, i.e., yE N; if the distance
between xf and x: s .h2 . Hence, at a regular pojnt x? we obtain

the difference equation

_uu? -r v o= b C(4.22)

YEN% T J
The ''volume' of a regular basis function w} is h2 (its base area iIs 3h2
and its height Is 1), hence f; = (f.w}) is h2 times a weighted average of
f(x) around 'x} . Thus (4.22) is hz times the usual 5-point approximation

to the Poisson equation (4.20a).

Smoothing rate. To calculate the smoothing rate of a Gauss-Seidel

relaxation sweep applied to (4.22), we change the notation slightly: If

x; = (dh,sh), where a and B are Integers, then we denote U} by Ua g’ and
. '

f;- by fu g+ S° that (4.22) takes the form

“Ua,s " Uiy T Uy g1 Ua,8+l - Ua+l,8 =fap (4.23)

Let Us. B denote the value of the approximation u? before the relaxation
»
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sweep, and ﬁa 8 its value aftervthe sweep. |f the points (ah,Bh) are
. Ry
v scanned In a lexicographic order, we can write the relaxation equa;lon (3.2)

in the form

hua.B " Up-1,p " Ya,8-1 Uy g+t " Yatl,B = fu,B . (b.2h)

Let us denote the errors before and after the relaxation sweep by

and v =\ - Ga g respectively. Subtracting N

v a,B a,B

VG’B" a,B B uaoB

(4.24) from (4.23) we get
e - v .-V - 0.  (b.25)

0,8 Va-1,8 " Vo,8-1 " Va,B+1 T Vo+1,B =

We now apply the local mode analysis. lgnoring boundaries, we

can expand the error vaB in a Fourier Series
i(9,a + 0,8) : : '
Vag T £ vie) e , ' (4.26)
lol<m
where 0=(0,, &) and where we can take |0] = max [|9]|,|92|] <m, since

a and B are Integers. Similarly,

- i(8ya + 0,8)

v = I wv(o)e

a (4.27)
B Jelen

Substituting (4.26) and (4.27) into (4.25) we get the amplification factor

for the © component:

. 19, 19, | ,
wlo) = |¥ioll . \ e _|9+ sl - ' (k.28)
v(e) h-e '-e 2| v :

The high-frequency components are those with |0| > n/2 , hence



v b
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u(e) = max_ u(e) = .5 | (4.29)

is tHe smoothing factor of the Gauss-Selidel relaxation. That Is, each
relaxation sweep reduces all high-frequency error components by at worst
the factor .5 . L
It is possible to ignore boundaries in this analysis, since we

only state results concerning high-frequency components. The amplfflcation.
factors for low frequen;ies do depend on the boundaries;'(h.ZB) for low- |
frequencies holds only in some special cases. ‘We can nevertheless deduce
from (4.28) that for the lowest frequencies, where |O|=0(h). we get

u(O)-l-O(hz). it means that we would need O(h-z) sweeps if we wanted to

use relaxation to reduce -smooth errors by some factor {e.g., by .5).

Interpolations. If j s a regular point, the natural interpolatnon

(2.5) given by the linear elements of Figure 2 is

o 1 if xl = x%"
] i
1 if b = (x +h Xt ]
2 i Il 2’ 2
1 . 2 21
el TR T h,)
1 9 (4.30)
1 . L- 1-1
3 xj = (xjyithys xpp +hy)
1 e L -1 2-1
7 f xy = 0 he, xpp-hy)
0 otherwise
.

This linear interpolation Is not good enough for the first interpolation
(3.1) (Step B in the algorithm). For example, if the solution U 1Is any
cubic polynomial, it is easy to see that the nodal values of all the discrete

solutions .Uz coincide with U . Hence, the first—apprdximatiOn error



uz -'UL Is very large compared with the (vanishing) discretization error
Uz - ILU . Moreover, the error ul - U% is highly oscillatory, and hence
more expensive to liquidate by multi-level processes. -Thgse'difficultles
do not arise if we replace (h.30)'by‘cubtc interpolation, i.e., an
interpolation which reproduces every cubic pqunomlal. Note also that if
we measure the erfor Ul -U In L2 norm, then it does not vanish even
if U Is a cubic polynomial; IIOE-Ull ) " 0(h?) notwithstanding the
"superconvergencé" of the nodal values.L Hence, from the point of view of
the L2 error norm, the natural interpolation (4.30) is acceptable.

At later steps in ;he a1gbrithm (Step 1), where corrections are
interpolated, the natural interpolation is good enough. Its adjoint can

therefore be used as the residual-weighting in Step F (i.e., as |?3k+]

in (3.24b)). It is interesting to note, however, that a small gain in
efficiency is obtainable by using "injection'", i.e., residual weighting

as in (3.24b) with

k,k+1 - .
IU (4.31)
0 otherwise

Indeed, Injection is less expensive, because it requires in Step F tﬁe
calculation of only one out of four residuals. At the same time the
convergence-rate per relaxation work-unit (where the work of Step F is
not taken into account) happens to be slightly better with injection
than with the residual weighting (h.30).. |

Local mode analysis. In a manner similar to (but more

involved than) the above analysis of relaxation, onc can make a Fourier
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analysis of the full multi-level cycle, including a fixed number of
relaxation sweeps and one coarse-grid correction cycle (see [D1])). Such
an analysis shows that with the residual weighting (4.30), and with three

relaxatlon sweeps (per cycle) on each lcvel,,the multi-grid convergence

factor (i. e., the factor by which at worst errors are reduced) per relaxation
work unit is u is .591.02. With injection the factor is
u = .547 + .015, which happens to be slightly better. The asymptotic convergence

factors observed in the numerical experiments are precisely In these ranges.

If we also Include in the work-units count fhe work' of - residual
weighting (see Section 3.7.2) we get the moltl-grid convergeoce factor per
work unit M. With injection ¥ =y 213~ 57, with the residual weighting
.30) Y= nM e 6. | |

|ncidenta|ly, a good estimate of the convergence factors can be

obtained from the smoothing factor 4 derived above, whose value is a\ways

easier to calculate. The estimate (exp!afned in Section 6.3 of [B3]) is
; . A
)

. 1-(h,/h,
v | (4.32)

Y

- which.in the present case yields

§r0.59°7% o 5gs

This estimate of course Is fndependent of the residuél weightfng (and will
be abproxlmately_realized only when the residual weighting is ooodvenough),
The above convergence factors imply that in one multi-

grid cycle the errors are reducéo by'a factor smaller than
b4 (.10 in case of inJectlon) This means that one cycle Is actually

sufficient, since all we have to reduce the error llul -VU11| by is from the
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vmagbltude of ||Ul-‘

- vl (which is its approximate magnitude after Step B)
to the magnitude of IIUE - U|| , which is a reduction by a factor not smaller
than .25 .

The one cycle costs less than
1 1, _ 13
(3 + K)(‘ tyrtigt o) 3

work units (cf. Section 3.7.2) in the case of injection (which itself costs
% work-units). Denoting by W, the total number of work units needed to
solve the S problem, we get wM = WH_] +3 . Since wM-l = E'wM .

we get W, = 52/9.

Thus, the multi-level algorithm solves this problem in 5.8 work units.

This estimate is confirmed in many numerical experiments. See for
example (B5], where results of further improvements by t-extrapolation
are also exhibited. With careful programm?ng, using the correction scheme

and residual injection, this algorithm requires less than L1 Ny additions

and no multiplications, where this count includes all operations (unlike the

work unit count, which excluded interpolations) and where My is the number
of degrees of freedom in the finest space SM (see Section 6.3 in [B3]).
The flow of the algorithm is shown in Figure 3. The time measurements of

this algorithm which were made by Craig Poling at ICASE in 1977 are summarized

in Table 1.
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Grid :
Compute 17 x 17 33 x 33 65 x 65 129 x 129 Algorithm
6600 .028 .083 .303 - FMG
01 .048 164 - 1 Cycle
Cyber 175 L0117 0326 .1085 - FMG
. 0046 .0161 .0628 - 1 Cycle
STAR 100 - ,0046 .0109 0347 1 Cycle

TABLE 1 Time Measurements of the Multi-Level Algorithms.

FMG 4s the Full Multi-Gnid algorithm mentioned in the text, and d{aghammed in

Figure 3. The 1 Cycte algonithm (s the same afgonithm, but stanting when

the §inst approximation (4 already giuen st

The cycle. {ncludes a

total of 3 Gauss-Seidcl nefaxation sweeps on each fevel, except on the STAR

100 computer, whene 2 sweeps of We.ighted Simultaneous Displacement (see

(B31) were used instead.

Res idual weighting wus made by injection.




START
_ Mesh
Level size
{ hy
2 |ns2
3 | h/4
M-1 | 2hpm
M | hu

END

Cubic interpolation

Linear interpolation of corrections

Residual transfer

Residual transfer where T -extrapolation
con be made |

r reloxation sweeps

The stage in the algorithm where the error
is smaller than the discretization error of that level

’l
¢
/.
/!
®
O

Figure 3. Full” Mul»fi»- Grid Algorithm .
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