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MULTI-LEVEL ADAPTIVE FINITE-ELEMENT METHODS

I. VARIATIONAL PROBLEMS

- A. Brandt

Department of Applied Hathematics
The Welzmann Institute of Science

Rehovot, Israel

ABSTRACT

The Multi-Level Adaptive Technique (MLAT) is a general numerical strategy

of solving partial-differential equations and other functional problems by

cycling between coarser and finer levels of discretization. It provides nearly

optimal discretization schemes together with very fast general solvers. It

is described here in terms of finite element discretizations of general non-

linear minimization problems. The basic processes (relaxation sweeps, fine-

grid-to'coarse-grid transfers of residuals, coarse-to-fine interpolations of

corrections) are directly and naturally determined by the objective functional

and the sequence of approximation spaces. The natural processes, however,

are not always optimal. Concrete examples are given and some new techniques

are reviewed, including the local truncation extrapolation and a multi-level

procedure for inexpensively solving chains of many boundary-value problems,

such as those arising in the solution of time-dependent problems.

Part of the work reported here was performed under NASA Contract No.

NASI-14101 while the author was In residence at ICASE, NASA Langley

Research Center, Hampton, Virginia 23665.
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I. IIITRODUCTION

The Multi-Level Adaptive Technique (MLAT) is a general numerical

strategy for solving continuous problems such as differential and integral

equations and functional optimization problems.

In most numerical procedures for solving such problems, the analyst

first dlscretizes the problem, choosing approximating algebraic equations

on a flnite dimensional approximation space, and then devises a numerical

process to (nearly) solve this huge system of discrete equations.

Usually, no real interplay is allowed between discretization and solution

processes. This results in enormous waste: the discretization process,

being unable to predict the proper resolution and the proper order of

approximation at each location, uses an approximation space whichls too

fine. The algebraic system thus becomes unnecessarily large in size, while

accuracy usually remains rather low, since local smoothness of the solution

is not being properly exploited. On the other hand, the solution process

fails to take advantage of the fact that the algebraic system to be solved

does not stand by itself, but is actually an approximation to continuous

equations, and therefore can itself be approximated by other (much simpler)

algebraic systems.

The basic idea of adaptive processes is that an efficient discretization

of a problem depends on the solution itself: A smooth solutlon can be

approximated in a coarse approximation space (a space with relatively few

degrees of freedom, such as those produced by coarse triangulations). The

coarse approximation can in fact be very good, provided its order is

sufficiently high (e.g., provided finite elements are used which contain all
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polynomials up to a sufficiently high degree). A highly-oscillating solution,

by contrastj can be approximated only in an approximation space which is

fine enough to resolve the oscillations. In general the solution may be

smooth In one subdomain, oscillating in another, and may have all klnds of

Singularities around some special points or manifolds. In each region

then, the efficient discretlzation will be different in nature. Thus,

findihg the efficient dlscretization becomes an integral part of the

problem. The problem is therefore solved iteratively, and at certain stages

the discretization is adapted to the evolving solution.

The multi-level techniques go one step further by recognizing that

it is not necessary, at every stage, to adapt the discretizatlon to the

solution; it is enough, and much more efficient, to adapt the discretization

to the error in the solution. A smooth error can very efficiently be

liquidated by a coarse-space approximation. The fine (and computationally

expensive) approximation spaces are needed only for approximating the

hlghly-oscillatlng part of the solution; they should be used only to

smooth out oscillating errors. Smoothing the error is much less expensive than

liquidating it, because it can be done locally. For example, the process

of relaxation is a local process which very efficiently smooths the

error, but which, due to its local character, is very slow in liquidating

smooth errors.

Thus, the multi-level adaptive technique is to use not a single

but a sequence of approximation spaces (levels), with geoH_trically decreasing

mesh-sizes. New levels may be introduced and changed in the process, and

they constantly interact with each other. The solution procedure Involves
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relaxation sweeps over each level, coarse-level-to-fine-level Interpolations

of corrections, and fine-to-coarse transfers of resTduals. This procedure

has two important basic benefits: On the one hand it acts as a very general

- fast solver of the discrete system of equations. On the other hand it

provides, in a natural way, a flexlble and adaptive discretlzation. The

total number n of discrete variables can thus be kept low, and the

solution of the n algebraic equations is obtained in a low number of

operations. In fact, the number of operations is only O(n), since a couple of

relaxation sweeps at the finest level are enough to make the error so smooth

that the rest of the work can be done on coarser levels.

MLAT have so far been developed mainly in finite-difference formulations.

A comprehensive description of this development, together with historical

notes, can be found in [B3]. For a simplified survey of ideas and software,

see [B4]. Some further developments are reported in [B5], [B6], [BT],

and [D1]. Throughout that development close agreement has been obtained

between theoretical predictions and numerical experlments. Both show that

all boundary-value finlte-difference problems considered can be solved by

the multi-grid algorithm in 5 to 10 work units, where a work unit is

defined as the computational work involved in processing all the difference equations

of the finest level one time (i.e., the work in one simple relaxation sweep

over the finest level). Problems ranged from the simplest model problem,

through singular pertubation problems, to fairly complicated nonlinear

Navier-Stokes equations and transonic flows, with a variety of domains and

boundary conditions. The more recent developments Include methods for

time-dependent problems, very efficient multi-grid embeddlng processes (e.g.,

for bifurcation problems) and methods for iocal-truncation extrapolations

(cf. respectively Sections 3.9_ 3.8, and 3.10 below).



The special capability of the finite-difference multi-level

structure to create non-uniform, flexible dlscretization patterns based

on uniform grids is discussed In Section 3 of [BS]. Thls capability is

obtained by observing that the various uniform grids (levels) need not

all extend over the entire domain. Finer levels may be confined to

increasingly smaller subdomains, so as to provide higher resolution only

where desired. Moreover, one may attach to each of these localized finer

grids its own local system of coordinates, to fit curved boundaries or

to approximate directions of interior interfaces and thin layers. All

these patches of local grids interact with each other through the multi-

grid process, which provides fast solution to their difference equations.

That structure is very flexible. Since it is based on uniform grids,

it is feasible to employ high-order difference approximations, and to

change the order whenever desired, with no extra investment in computational

work. The effective (the finest) mesh-size can be locally adjusted in

any desired pattern by changing (extending or contracting) the various

uniform grids, expending negilgibie amounts of bookkeeping work and storage.

These flexibi]ities of a finlte difference technique pose a challenge to

the finite element method, which traditionally had the edge in terms of

flexibility, especially in treating curved hounddries.

It has been theoretically shown In [B31 and [BS] that, using thls

flexible structure in an adaptive solution process governed h,! certain ":

criteria, one can get exponential rates of convergence. That Is, the

error (in solving the differential probl_n) decreases exponentially as a

function of the computatlonal work. Such rates are obtalnable even for

problems with slngular pertubations, algebraic singularitles, corners_ etc.
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Parallel to the above Investigations, an interest has been growing

in applytng multi-level technlques in finite element formulations. Such

applications are mentioned in [B2] and briefly described In various sections

of [B3]. The purpose of the present article is to give a full description

of the multi-level adaptive techniques in terms of finite elements for

general types of problems, and to discuss their various algorithmic and

theoretical aspects.

At the same time other workers, starting with Nicolaldes IN1], IN2]

and then Hackbusch [111| - [H31, Bank and Dupont [BD] and Mansfield [M1]

have established the mathematical foundations of certain multi-grid finite

elements algorithms. For a growing class of problems they have rigorously

proven the basic multi-grid assertion, namely, that the discrete algebraic

problem with n degrees of freedom (obtained as a finite element approximation

to a continuous problem) can be solved in only Cn computer operations; or,

at least that Cn log _ operations are enough to reduce the L2 norm' €

of the error by any desired factor _ The constant C is independent of

n , but its numerical value is usually not specified. In fact, if numerical

values of C were calculated from the rigorous proofs, they would turn out to be

exceedingly large, much larger for example than practical values of n,

so that for practical purposes the Cn estimates would look worse than some

Cn2 estimates. (The only exceptions are the rigorous estimates in Appendix

C of [B3] and a similar result in [F1]. But they apply to the model

problem only.)

Such rigorous investigations are of a very different character than

the present work, The price of rigor is that the results are far from

reallstic. The proofs give meaningful estimates only for extremely large
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n, and, even then, the work estimates are orders of magnitude too large.

The estimates are therefore too crude to yield any practical information.

e,g., they cannot resolve the difference between more efficient and less

efficient multi-grid processes. (This difference Is crucial in practice;

it may itself cover several orders of magnitude.) For this reason, and

since the quantity we try to estimate here is actually nothing but the

computer time (which of course we know anyway, at least aposteriori), a

different type of theoretical studies are preferred by the present

author.

Discarding rigor, our studies are based on the observation

that the important multi-level processes are of a local nature, since low-frequency

corrections are obtained by coarse-level, processes, which cost very little.

One can therefore analyze the crucial aspects of multi-grid processes by

employing a local mode analysis: Far boundaries and Iow-fFequency changes In

the coefficients of the equations carl be ignored, so that the effect of

multi-level processes on individual Fourier components can easily be

calculated. General computer routines have been developed to perform

this analysis automatically for any given problem, yielding precise

quantitative predictions of the multi-level efficiency. Experiments with

various types of equations (see [D1] and [P1]) show the work predictions

to be precise within a few percent. This tool (combined with related

observations, the most important of which is the "coupled nonsmoothness"

mentioned in Section 3.2 below) is therefore useful in selecting efficient

algorithms (see, e.g., Section 6 and Appendix A in [B3]), in understanding

the numerical results, and in debugging multi-level programs (see Section

3.7.9 below). It played an important role in developing to full efficiency
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many multi-grid finite difference codes.

The multi-grid experience with finite-difference formulations is

of course very relevant to fin|te element ones, since usually finite

element methods give a type of finite-difference equations. It Is, in

fact, the only experience we have. Namely, all numerical experiments so

far, even those based on finite element derivations (see [NJ] and [PI]),

were based on uniform grids (e.g., uniform triangulations), so that

finite-difference structure of the discrete equations was very explicit.

But there are some special features in finite element formulations which

do not show clearly in general finite difference equations. (The converse

is also true.)

The special featur_of the finite element method show themselves most

naturally in variational problems, of course. We start therefore our

study of multi-level finite element methods with the general minimization

problem, where the entire description is given in terms of the "total energy"

functional E , the minimization of which is our objective. It is not

assumed that E is quadratic, nor that it has any other special form, so that

the described method k applicable to general nonlinear problems. The

basic multi-level processes (relaxation sweeps, fine-to-coarse transfers

of residuals and coarse-to-fine interpolations of corrections) turn out to

be completely natural; they are directly determined by the objective

functional E and the approximation spaces. In particular we reproduce, for

the general nonlinear case, the observation (made first by Nicolaides, see

[N1]) that the natural residual transfer is the adjolnt of the correction

interpolation. Convergence is guaranteed since E decreases monotonically

by each step of relaxation, as well as by.the coarse-level corrections.

A c!o_er examination reveal_ _hat the natura_ processes are not always

the best ones. For exa,npl_, the natural finit_-ele_f_t interpolation from
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a coarse approximation space to a fine one (e.g., the Identity Interpolation

In case the fine space contains the coarse one) is sometimes too crude (see

Section 3.1). In some other cases, Interpolations cruder (i.e., of lower

order) than the natural one could be used without loss of efficiency (see

Section 3.3). The _-extrapolation tecnnique, which can ImprOve very much

the nodal values of the approximation (Section 3.10), is better understood

from a flnlte-difference point of view. In fact, the extrapolation does not

considerably Improve the quality of the approximation when measured In terms

of the usual finite element norm. All these findings are related of course

to the known fact that the point-wise errors of the finite elements are

quite often much larger than the average error. While thls fact has little

effect in usual finite element algorithms, it is Important in the multi-level

processes, which should take advantage of the relations between coarse and

fine discretizations. Nevertheless, the natural processes are not bad, and

can safely be used, even though they may sometimes require an order of

magnitude more computing time.

A central issue in flnite element methods is how important it is to

!,3e uniform subdivisions. The nonuniform elements are Important on the

boundaries, but it seems that in the interior there is usually no need for

nonuniformlty, while uniformity offers substantial gains in computing tlme

and storage. See for example the uniform interior structure In F!gure 2 In

Section _.2 below. Uniformity becomes even more advantageous when multi-level

solution methods are used (one reason being that, since the solut!on of

the discrete equations is much faster, It becomes more Important to speed

up other parts of the algorithm, in particular the assembly of the stiffness

equations, which Is very laborious when nonuniform elements are used).

Moreover, the multi-level technique, as mentioned above, has its own mech_nism; -°



and a very efficient one, for creating nonuniform discretizations, based

on a collection of uniform grlds. We will discuss this Issue In a later

part of this paper.

. In the later part of the paper some generalizations will be given.

Multi-level solutions to general Galerkln (weak form) flnite element

discretizations will be described. This will include new types of relaxation

(e.g.,. distributive relaxation, as mentioned in [BS], [B6], and [B7]) and

a further study of the relation between Interpolations and resldua| welghtings.

More general problems will be included, such as constrained minimization

problems, degenerate problems, indefinite and non-elliptlc problems, and

elgenvalue problems. Local mode analysis and adaptation techniques will be

treated in greater detail.
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2. HINIHIZATION PROBLEH AND APPROXIHATION SPACES

2.1 The Continuous Problem.

We consider a d-dimensional variational problem of minimizing a

functional E(u) over an admissible space S of functions u(x) , where

x = (Xl,...,Xd) and u may be a vector of functions (u(i) ..... U(q)). E

need not be quadratic, but we assume that E and S are such that a unique

minimum, denoted* U ,exists, at least locally. Thus, our problem is to

flnd U such that

E(U) - rain E(u) .
uCS (2.1)

For some standard examples the reader is referred to Chapter 4 below.

* Generally, we will use capital letters to denote solutions; the corresponding
lower-case letters will denote approximations.
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2.2 _Approxlmatlon Spaces.

An approximation space S£ Is a flnlte-dlmenslonal space whlch

contains approximations to U . It is convenien'tto assume that S£

Is a subspace of S (although thls Is not absolutely necessary). The

S£ is nz , and its basis functions are q_(x),
dlmension of

• (j=! ,... ,n£) :

n

= Z u£ £

S_ ( u_ I u_(x) J=i j _0j(x)} , (2.2)

£
where u._ are the nodal values of the trial function u . 0sually, with

J

each approxlmation space S£ , we associate a real paranmter h£ representing
• £

its typical mesh-size, l.e., the support of each basls function _0j is

assumed to have linear dimensions comparable to h£ .

We may like sometimes to regard S£ as a tensor product of q£ spaces

£ . S£ , i.e.,
S! ," • , q£

E 9. £ £

u = (U[|l, u[2], ..., Uiq£]).
£

Thus, u.Z denotes the j-th nodal-value is the c_-thcomponent-functlonJ , u(_)
£ S£

of u£ ",n S, whl ie u[B]_ is the 8-th component-function of u In .

The functions u[L_] need not correspond to u((_) In fact, sometlmes

q£>q , for example, when u£ approximates derivatives of u as well as

point-values of u itself:

uj ,, _1 Vd u(a)(x). (2.3)
_)x1 , ..., _xd

In such cases, we denote _ ' x=(xl'''''Xd)' v--Vl +'''+_d and _--"(_l"'''_d )

JL £ £ £ £1+" .+v_ d £ £ £by _ , xj=(xj1,...,Xjd) , vj=vj . and __j-(_j1,...,_jd) ,

,s ormorespectively. A function u[13] , summing over
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£ £ £
all J wi th the same _I and the same _i " More general ly,

u[8 ]

rooro on
same linear combination of expressions like (2.3), The distinction between

£
different functions u[8 ] is not essentlal to multi-level processes, and is

not really used below. It can be useful, however, in devising the Interpolation

routines and In theoretical discussions.

u_ satisfy (2.3), the approximation elements are called nodal
When

finite elements ([SF], p. IOl).

Multi-level solution processes typically emp]oy a sequence of increasingly

finer approximation spaces SI, S2, ..,, Sfl , with corresponding mesh-sizes

hH = 2h£+ SHh I • h2 • ... • , and usually h£ I may be the "target space",

i.e., the space in which the final approximation is sought, with coarser spaces

SI S2. .,, SH-1, , . serving onlyas auxiliary spaces. In adaptive processes,

however, there is of course no target-space and the relation between spaces

will become more involved.

The simplest case is that of the nested approximation spaces

SI c S2 c ... c SM c S. (2.4)

Yhis case may arise if each element of S£'i is a union of S£-elements.

In most applications, however, such a requiren_nt, especially near boundaries,

would pose a severe limitation. Thus, in our general description we do not

assume (2.4), but the reader may like to keep this case in mind as a simple

example. -
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2.3 Interpolation Between Approximation Spaces and Relative Smoothness.

In multi-level processing we will need Interpolation operators Ik

k iswhich will be linear transformations from Sk to SE such that. IkU

k sk _ t
='close It to u . In the nested case _.S it is natural to take I k

as the Identity operator I (although this Is notalways the best choice).

Generally, the usual polynomial interpolatlon procedures, of suitable order,

k
can be employed to obtain nodal values of I_u k which approximate u as

well as possible (i.e., to the order of the best approximation to uk from

S_ ). The order of Interpolation may vary by circumstances, and will be

further discussed below (e.g., Section 3.1). At thispolnt we only Introduce,

as a general characterization of I k , the matrix I k_ deflned by

k k_ _
Ik_ i = Z lij J . (2.5)J

Let Sk be a space coarser than S_ . The smoothness of a function

S_u E relative to Sk Is measured by the quantity

I! uk II
1 inf . (2.5a)

k Sk II u IIu €

Thus, the notion of relative smoothness depends on the interpolation operator

I k . For example, in nodal finite elements (2.3), if polynomial interpolatiorl
k

is applied independently for each function u[Bi, relative smoothness is

measured In terms of the smoothness of the individual functions u t .
[81

A function u may be smooth In this sense, without being smooth in the usual

sense, e.g., without having smooth component-functions u(_) . Normally,

however, our interpolation operator Ik will be the natural one, and the

smoothness (2.5a) will be equivalent to the smoothness of u(a) .
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2.4 Derivatives of Functionals.

Let E(u j_) be any functional deflned on SJ¢ . We define its deriv-

ative with respect to the J-th nodal value by

(ut) = l lm_- {E(u_+ 6 _0j) -E(u_')) (2.6)

EIj ti)_t and also deflne derivativesSlmllarly, we may use the notation _ = (E ] ,

with respect to nodal values of another space Sk :

1 _ k
E.k(u_) = lim _ {E(u_'+ 6 I _0i ) -E(u_')} (2.7)

I 6_1_0 k

I f u_=uk E Sk c: S_ , then Ek(u_)i = Ek(uk)i From (2,5) and (2,7), it follows

that if E; are continuous, then

kf,, _ (u_,) (2.8)
Ek.(uj_) = g I ij Ej .

j

Orders in h. Note that Fj is not fully equivalent to the first

variation (Frechet derivative) of E in S. It is proportional to the

_L For example for nodal finite"volume"l of the basis function q_j .

elements (2,3), if u is a-smooth function, then (u = o(hd).
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2,5 Ritz Discretizatlons,

As our discrete approximation to (2,1) on S£, we have the problem of

finding UZ E SE such that

E(U _) - min E(u E) . (2.9)

u£€S£

This Implies the "stiffness equations"

E_(UE) - 0 , (J - 1,2,...,n£) . (2.10)

This is a system of n£ equations for the n£ unknowns (the nodal values

of u ).

The (discrete, as well as the orlginal) problem Is called linear If the

system 42.10) Is a linear system, that Is, If E Is quadratic, or equlvalently,

E_j(u £) are constants independent of u£ . The
if the stiffness coefficients

system can then be rewritten as

z = E(0) . (2 ll)i jI ,

In multi-level processing, use is made of the residuals of an approx-

imatlon u : the j-th resldual ls the value of -E , which expresses

by how much u£ fails to satisfy the discrete equation (2.10). The discrete

solutlon U£ has zero reslduals.

It is important to notice the different scales of the discrete equations

(2.10) at different levels _ In finite difference n_thods we write the

discrete equations as analogs of the differential equations, and as a result,

the equations have the same scale on all levels. By this we mean that the

residuals of any smooth function are all 0(1) in terms of the mesh-size h. This
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is no longer so In (2.10) where the residuals of smooth functions are

proportion,1to which Is often O(h_) .

In the case of nodal finite elements (2.3), equations (2.10) will

usually take the form of difference equations. We then denote by m(_)

and m[8 ] the highest order of differences applied in (2.10) to the

_ , respectively. Hence, the ratio between thefunctions u(_) and u[8 ]

residuals of smooth and nonsmooth functions u(_) is O(h ), and for

u[8]. the ratio is 0(h_ m[8]) .

Assembling stiffness matrices for multi-level processing can be

made by the usual procedures. The need for assembly for several approx-

imation spaces adds only a small amoun to the programming effort and

costs in computer time and space only a fraction more than the finest-level

assembly. (cf. Sec. 3.7.8,)
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3. HULTI-LEVEL SOLUTION PROCESSES

We consider first the usual situation where some _'target" approximation

" space SH is given in which the solution of the stiffness equations (2.10,

_H) is sought• In this section we describe processes whlch provide fast

solution to this algebraic system, whether linear or nonlinear, by the

iterativ_ usage of some given coarser approximation spaces S1,S 2 ,SH'I,•o• •

The same processes will later be shown to be the main building blocks In

more developed adaptive procedures, when no target approximation spaces are

set in advance.
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3,1 Coarse_Space Approximation.

Let Sk be an approximation space coarser than S_ ; namely, hk Is

considerably larger than ht (typically, hk = 2 h_ ) so that n_<n_ •

Solvlng the Sk stiffness equations, by any method, Is therefore much less

expensive than solving the S_ equations. The simplest and most familiar -

way of using Sk in the iterative solution of the S_ equations is to inter-

polate an (approxlmate) solution from Sk to S_ , to serve as a first

approximation u£ :

_ k
u . I k u , (u k approximates Uk) . (3.1)

How good this first approximation is depends on the smoothness of the

solution U_ . In some cases U_ is so smooth that, If the Interpolation

I_ is of order high enough to exploit the smoothness then the firstk

approximation (3.1) will turn out to be good enough and will require no

. S_further Improvement. In such cases_ however t the approximation soace

is not really needed: Sk already yields the solution to the required

accuracy. Thus, if the S_ approxlmatlon Is at a]l needed, the first

approximation (3.1) will require a considerable improvement.

Can we compute a correction to u_ again by the inexpensive use of

the coarse space Sk ? Namely, can we somehow approximate the error

V_ = U_-u _ by some Vk E Sk ? tlormally , the answer is no. If uk in ._

(3.1) is a good enough approximation to U k then V_, will be a rapidly

oscl|lating function that cannot meaningfully be approxlmated in the coarse

space Sk Therefore, before we can reuse coarse spaces, the error V_

MAn exception is the case where Sk does not fully use the smoothness of the
solution U . In that case, If I_ in (3.1) Is of sufficiently _lgh order,
then V£ will be smooth enough to be approximated by some V_ E S_ . This
situation Is related, however to the inappropriate approxlmatlon order being
used_ and will therefore not arise in a fully adaptive procedure•
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should be smoothed out. Smoothing and coarse-space corrections are described

in the next sections. Here we add some remarks on the first coarse-space

approximation (3.1).

The question arises, of what order and what types should the Interpolation

(3.1) be? If Sk c S_ , a natural choice is the Identity u£ = uk . Usually

thls choice is not the best: uk has an error with large rapid oscillations

(cf., e.g., [SF] p. 168). Such an error, as we will see below, Is the most

expensive to liquidate by multi-level processes. Hence, a very substantial

gain can be made by producing the nodal values of u£ through a higher-order

polynomial interpolation, which will give much smaller rapid error oscillations.

For best results, the rapid error oscillatlons generated by interpolation should

not be larger than the rapid (i.e., wavelength O(hk)) oscillations expected

anyway In the solution U ltself. Hence, for best results, the interpolation

order should be high enough to exploit all the expected smoothness of the

solutlon U. The most slgnificant part of this gain will already be obtained

if the interpolation order is such that the order of magnitude of the

residuals which are produced Is not larger than that of the local truncation

errors (see Section 3.5 below). In other words, the interpolatlon should be

exact for every polynomial which minimizes a functional E both in S and

in S£ (see the example in Section 4.2). In particular, Interpolation of

£
nodal values of u(_) should be of order m(_)+p (i.e., should use polynomials

of degree m(a)+p-I) , where p Is the order of approximation. For analyses

of interpolation orders see Section A.2 In [B3].



s
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k SkAnother possibility is to use two coarse-space solutions, u E and

uJ E SJ say, wlth mesh-sizes hj _k k _ and to define u_ by h-extrapolatlon
k

from uj and u . This Is a reasonable procedure only when Sk and Sj

have uniform grids. Even then, the accuracy obtained is at best equivalent to

that obtained by sJ , a space with mesh-size hj but with a higher order of

apprqxlmatlon. In principle, it is less expensive to solve the _J problem

than that of Sk (since hj )h k ). Thus, in a fully adaptive process, a

situation where h-extrapolation can profitably be used will not arise.
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3.2 Error Smoothing byRelaxation.

A basic solution process, used In multi-level algorithms malnly as an

error smoothing process, iS the relaxation sweep. The simplest example (and

in a sense also the best) Is the following:

Gauss-Seidel relaxation sweep: This is a process In which all the nodal

values of some given approximate soiution u are scanned one by one In some

prescribed order. Each nodal value u_ ,In Its turn, is replaced by a new value
o J

uj , which is the value for whlch the energy (2.19) will be as small as

possible, other nodal values being held fixed. In other words, u l Is chosen

so that the corresponding stiffness equation (2.10) is satisfied.

Actually, if this equation is non-linear in uj , it Is better not to

satisfy it completely, but to make only one Newton step toward Its solution.

Namely,

--_ _-E_(u _'J) /E_ (u _'i) (3.2)uj = uj J jj ,

_,j
where u Is the approximate solution Just prior to replacing uj by uj .

(That is, if in our prescribed order i is scanned before i| , then

,J -_
= U., otherwise uI'J-U_ )Ui I

Having completed a relaxation sweep, the system (2.10) is not yet solved,

of course, because its equations are coupled to each other. A well known and

extensively used method for solving sparse algebraic systems like (2.10) is by

a long sequence of relaxatlon sweeps. This is a convergent process, slnce

E(u _) is monotonically decreasing. But the rate of convergence Is very slow.

Typically, if n£ is the dlmension of S_ , then the number of sweeps

required for convergences increases as n£_ (see [Y1]).

A closer examination, however, reveals that the convergence Is not slow

V_ U_as long as the error = - u has rapid oscillations (oscillations with wave-
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length comparable to h£ ). Such error oscillations are typically reduced

at least by a factor .5 per sweep. Thus, the convergence slows down only

_en V_ becomes smooth.

In other words, relaxation sweeps, inefficlent as they are In solving

problems, are very efficient In smoothing out the error. This property, which

will be extenslvely used below, is very.general for Gauss-Seidel relaxation

of any non-degenerate d|scretlzatlon of a mlnlmlzation prob|em. Degeneracy

occurs when the stiffness system of equatlons Is decomposable, at least

locally, into several decoupled (or weakly coupled) systems. In such cases

efficient smoothing can still be obtained by more sophisticated Gauss-Seidel

relaxation schemes, which take the degeneracy into account, e.g., line

relaxation in suitable dlrectlons.
%

Remark: For a system (o_>1), the relaxation may be slowly converging

in son_, but not all, the components. For example, in the "mixed method",
£

when both u(_) and some of its derivatives are taken as Independent unknowns,

relaxing over the equations related to derivatives (i.e_, relaxing

E!(u£)=O over the j For whlch v = v. 0 in (2.3)) w111 converge very fast! J "

This of course does not help, since the lowest-order equations converge slt_.:ly;

but it stresses the fact that these lc_vest-order equations should be the

primal concern in the steps below (coarse-grid corrections). These equations

are also the ones which produce the finite difference analog to the differential

equations. If there are several zero-order unknowns (u_ such that v_=O)J

per mesh cube, the finite difference analog may be produced only by

combinations of the corresponding equations. Those special combinations will

then be slow to converge, so it is no help that some other combinations may

converge rapidly by suitable relaxation sweeps.
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Another remark: There are other relaxation schemes whl=h are quite

natural to the minlmlzatlon problem. The most obvious one ls the

steepest descent method, in which all the unknowns are changed simultaneously,

each one in proportion to the decrease in E per its unit change. In terms

of difference equations this method is known as Jacobi (under) relaxation.

The Gauss-Seidel relaxation is usually preferable, since it requires less

storage an<l provides better smoothing rates, Jacobi relaxation, however,

is more suitable for parallel computations.

A final renlark about relaxation: tile efficient smoothing process does

not continue indefinitely. Except for some ideal cases (e.g., equations with

constant coefficients in the Infinite domain, uniformly trlangularlzed and

consistently relaxed), a certain level of rapid error osclllatlons Is always

coupled to the smooth errors. Starting from a completely smooth error function,

rapid error oscillations are generated by the relaxatlon sweeps because of

boundary interaction and variations In the stiffness coefficients. In partlcular,

relaxing with highly oscillatory coefficients will produce _n U(_) rapid error

oscillations of magnitude O(h_ m(_)) tlmt._ the n_gnitude of the smooth error.

Thls level of '_coupled nonsmoothness_ will persist as relaxation slows down.

Further relaxation sweeps wlll be wasteful. Horeover, if the error Is smoother

than this level (see footnotein Section 3.1), relaxation may even magnify the

rapid error oscillations Instead of reducing them. Itence, in such cases it Is

best to avold relaxation altogether (cf. analysis in Section A.2 of [B]]).



3.3 Measurln.gDynamic Residuals.

In some mu|tl-level algorithms we may wlsh.to measure the current error

V_"- Ujr-uL In order to detect either convergence or slow convergence rates.

V_
cannot be measured dlrectly. Instead, we can measure the residuals -E_(u_t) .

Computing all these residuals Is quite expensive, however. It costs roughly as .

much as a relaxation sweep, so that measuring them after every sweep (as

requLred by some algorithms) would double our computational work. Therefore,

Instead of computing the "static" residuals -E_(u{), one usually calculates

the "dynamic" residuals -E;(u_''I) , which are less expensive since they
aFe

computed anyway In the course of each relaxation sweep (cf. (3.2)).

It is Important that the norms in measuring the residuals on different

spaces S_ are comparable. That Is, they must all be discrete approximations

to the same continuous norm of the energy first variation. Thus, the L2 norm

of the dynamic residuals is given by

n_. 1/2

_" { Z hR,d [ ,tP_, -1 _(u_,J) ]2 }IIres.II 2 = j=l F.j (3.3)

(cf. Section 2.5), while their L norm Is
-1

_ _(u_'J)l , (3.4)II res.II_ "maxl_jI IFJ

and the weighted LI I_grm (perhaps the nw_stuseful one) Is

n£ ..

J_ _, hi.d _-I ._(u_.,jIIres'l] G = z G ) l_pI I_ )I. (3.5)
j=l (xj J .

One (or several) of these norms may be calculated along with each relaxation

sweep.
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For algorithmic decisions a dynamic-residuals norm Is as good as the statlc

one, because (i) fast relaxation convergence must exhlbit a fast decrease of the

dynamic norm; and (ii) when the convergence is slow the dynamic norm Is

equal to approximately twice the statlc norm (since the equations are approximately

symmetric).
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3.4 Coarse-Space Correction

• = - S_As soon as the error V£ U_ u_ In has been smoothed out by

relaxation, a good approxlmatlon to It can be Inexpensively computed In a

coarser space. This Idea was used for finite difference equations by

Southwell [Sl] and by others (cf, the historical notes in [B3]), ",

and It has a central role in multi-level solution processes.

Let Sk be an approximation space coarser than S_ We wish to write

k_
equations for Vk € Sk so that its interpolant IkV "£ S will approximate

• V£V_ as well as possible Since is the solution of the problem

E(u_+V _) = min E(u_+V _) ,

v_s_
a natural definition of Vk Is by the requirement

E(u_+I_ k _ kkv ) = min E(u_+ik v ) , (3.6)
vk€s k

which yields the equations (cf. Section 2.4)

_Vk) = , ..E_(u{+llk 0 , (I = 1 . ,nk) (3.7)

This is a system of nk equations for the nk nodal values of Vk

For general nonlinear problems, or in the case of non-nested spaces

(S_ _ Sk) , equations (3.7) are more complicated than necessary. They

require a special assembly procedure, and the scheme may become complicated =

In later stages(when still coarser spaces are used in solving _3.7); see

Section 3.5). To simplify the scheme we first rewrite (3.7) in the form

k_(u_+l_ k k_ k_EI kv ) - El(u_)--El (u) (3,8)

Since V k Is smooth, the left-hand side of (3.8) can be approximated by

k k _ J_. k k _ (3 9)
Ei(l_u +v ) - Ei(l_u )

Obgerve that we Car,not sim!larly approximate the left-hand side of 13.7)
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since i_vk9 may be small comoared to the raoidly oscillating part of uE ,

and therefore the error of the coarse approximation may be large compared

k Is small the left-hand
with I_V k In (3.8) by contrast even If IkV• ! I •

_Vk Indeed, for llnearslde is still an approximately linear operator in I k .

problems and nested spaces (SE _ Sk) , the left-hand side of (3.8) exactly

coincides with (3.9).

Using (2.8) for the rlght-hand side of (3.8) our new equations become

k iku_) = _k) - • z ii (3.1o)
J J -

If the problem ls linear ( E quadratic) these equations can be rewritten as

a I lnear system for Vk :

= k_ E_(Z Ek Vk - _ I u_) (3.11)
ia a " Ija j

Observe that thls problem Is of the same form as the usual Sk stiffness

equations ((2.10) or (2.11), for E=k ), except that the original right-hand

side Is replaced by linear comblnations of residuals from the flner space SE

Thus, no special assembly is needed for these equations.

More generally, for nonlinear problems, we introduce the notation

k E Vk
U-k = I_u + , (3.12)

in terms of which (3.10) Is written as

k _ k_ _

J

Again these equations are the usual Sk stiffness equations ((2.10) for _-k ),

only the right-hand slde is new, so that no special assembly is needed.

The mode of worklng directly with the coarse-space correctlon Vk and

solving (3.11) is called the Correctlon Scheme (CS). The mode of operating

with the full approximation (basic approximation nlus the correction) _k and



solving (3.13) Is called the Full-Approximatlon Scheme (FAS). Note that _k ,
k_

as defined by (3.12),depends on u . If I_u - u ,then U-'k colncldes

wit_ Uk (the solutlon of (2.10) for k-£ ). At convergence, however,

uE=U _ and V_=O , hence

U--k = I_U_ (at convergence) • (3.14) ..

Thus _k Is a coarse-space function which Interpolates a finer-space solution,

and t_erefore, its nodal values have a finer-space accuracy. Thls situation

can be exploited extensively (cf. Section 2 in [B5]), so that the FAS is not

only more general than CS, but it also offers other advantages, and Is there-

fore preferable even in many linear problems.

-k
Let vk be an approxlmate solution to (3.11), or u an approximate

solution to (3.13), obtained by a method to be specified below (Section 3.6)

In the first (CS) case, the computed correction should simply be interpolated

to S_ and used to correct u_ , namely

_ _k+ I (3.15)UNEW _ uOLD kv •

In the second (FAS) case, it is Important to realize that u-k itself does not

approximate a smooth function that can profitably be interpolated to Sg It

is v k = u--k- I_u _ , approximating the smooth function V_ , which we should

interpolate. That is, In FAS,

kUNEW + uOLo ,l_UoLD) . (3;16)

Note that I_1 k Is not the identity operator hence (3.16) Is not equivalent

to slmply UNEW . I u . This latter interpolation would destroy the higher-

frequency content of u E .

The correction (3.15) or (3.16) is called the Sk correction to u_ . The

smooth part of the error V_ practically disappears by such a correction. High-
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frequency error components are introduced by the Ik Interpolation, but

they are easily Iiquldated by subsequent relaxation sweeps. Before turning

to algorithmic details, some remarks should be added concerning the

interpolation symbols above.

Three interpolation processes were used. The correction interpolation

(I k_ in (3.15) or (3.16)), the residual weighting (right-hand side of (3.II)

k In (3.13)
and a similar term in (3.13)), and the FAS Solution averaging (1_

and (3.16)). Weuse the term "averaglng" for interpolations from a finer

space to a coarser one, where the coarse space values are obtained as

weighted averages of fine-space values.

The correction Interpolation in terms of the above notation is given

by

- (3.17)
It Is thus clear from (3.13) that the resldual-wei_htin_ is determined by

(and actually is the adjoint of) the correction interpolation; For linear problems

this was observed in IN1]. We will see later that in more general formulations

the choice of residual weighting is Independent of the correction Interpolation,

but In the present case (minimization problems_ the relation between the two Is

natural and need not be violated. Sometimes, If relaxation smooths the resldual

function as efficiently as it smooths V_ , simpler and less work-consumlng

residuals weighting can be used wlthout degrading the coarse-space correction

(see Section 4.2 below), but the posslble gain Is quite marginal and

should not be attempted without specific knowledge.

The correction interpolation Itself can be made In several ways. in the

sk)nested case (S£ _ , it can simply be the Identity. Unlike the first coarse-



to-fine Interpolatlon (Section 3.1), higher-order Interpolatlon Is not

normally _ neededhere, since at this stage the smooth error components are

no longer as dominant. The natural interpolation (transfer of point-wise

values of Sk ) Is of high enough order to get the full heneflt of the

coarse-.space correction. In Fact If high-order elements are used, lower-, J'

order interpolations could sometim_s be used, with no loss In efficiency,

The interpolation order need only be high enough so as not to generate

hlgh-frequency residuals larger than the low-frequency residuals of the

interpolated correction. (See more on interpolation orders in Section A.2

of [33] and in the chapter on Galerkin formulations,)

k
The form of the FAS solution-averaging I_ is immaterial as long as

9. t
u is smooth. Care, however, should be taken when u has wild oscillations

on the scale of the grid, i.e., when max lug(x) u£(y) l ls comparable
Ix-yl--h

to IIu ll. Toseethiswecanviewthe(nonli,ear)e uations(2.10)as
quasi-llnear equations whose coefficients depend on the solution. In the case

of wild oscillations in u , the values of I_u _ , and hence also the values
k

of the coefficients in tl_e coarse-grid equations (3.!3), depend very much

on the form of I_ . In such a case the fine-grid difference operator may have

wildly-oscillating coefflcients, and the coarse-grid operator needs to

represent a proper "homogenlzatlon" (cf. Babuska (1975) and Spagnolo (1975)).

For the purposes of multl-grid processes, enough homogenization Is obtained

if I k is a "full" averaglng operator, i.e. any local operator such _that

S_f Ikw_dx _ ! w_'dx for any w E (3 18)

*An exception Is the case mentioned in footnote in Sectlon 3.1, In which
further _aln is obtained by using hlgher-order interpGlation for the next
_oarse-space correction.
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3.5 Relative Local Truncation Errors.

Let 16 denote an Interpolation (projection) from the Solution space

-. S to the approximation space S_ . The "local truncation errors 'j of the

approximation space S_ are the values

-6 E(lu) (3.19)Tj =

which are (up to a sign) the residuals of the true solution U . They are

so named because they serve as a measure for how well the continuous problem

is locally approximated by the discrete system (2.10). Approximate knowledge

of the truncation errors is important for various algorithmic criteria, such

as, discretlzation adaptation criteria and natural stopping criteria. When

the residuals -E_(u E) are small in magnitude compared with the corresponding

truncation errors, then UQ' Is approximated by u£ better than by the exact

solution U Hence, at that instance, u need no further improvement, and

the iterative solution of the stiffness equations may be terminated.

Moreover, If _ were known, we could improvethe discrete equations.
J

In fact, replacing the discrete equations (2.10) by

E(u = , (3.20)
J J

U£ _Uwe would get the solution = 1 , that is, a solution which coincides, up

to the interpolation I_ , with the true differential solutlon U . For

example, If I { is a point-wise projection, the nodal values of U{ would

coincide with those of U .

Of course, since U Is unknown, the truncation errors are not known

either. Consider, however, the situation described above where we had two

, S_ U_ isapproximation spaces coarser space Sk and flner.one Since

usually much closer to U than to Uk , we can approximate the Sk local
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-.k
truncation errors T I by the values

--k_. E_(Iktut) . (3.21)

These values are called the local truncation errors of Sk relative to

S{ .

These values too are not really known until U& is fully calculated.

We may, however, replace U_" In (3.21) by Its evolvlng approximation u_ .

More j)reclsely, If Ut- u_ is a smooth function, then

k _ _ E_(U_) kEk kut ) k(itu. ) - (u _')i(1_ - -E i E i

k(u_)- -E l

and hence

-k_ kt
Tj R_ i ,

whe re

kt k(iku_)_E_(u _)_i = El (3.22)

k 9. k_Fl_(u _)
= EIk(l_u)- Zj llj_.l

_. U_ --k_ k ,_At convergence, when u = , we indeed get T. =_.I I

kt
The approximate relative-truncation-error z. is exactly the right-handI

side of the coarse-space (Sk) correction equations (:].13), which may therefore

be rewritten as

k(-_k) = kv (3.22a)
El i

We may thus vlew the role of the flne space (St) as serving to improve, or.to

correct, the coarse-space equatlon ((2.10) for _ =k ) by addlng to It an

approxlmatlon of the local truncatlon error. Whlle addlng the true truncatlon

--k
error 3 1 to the coarse-space equatlons would make thelr solutlon Uk

, Ukcoincide with the true solution (i.e. - Iku ), adding the relative

--k_ Uk coincide with the fine-space solutiontruncation er.ror 3! makes
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(l.e., Uk't[u_) •

kJL as soon asT iS a satisfactory approximation to --kJ_Ti

•II=k=" =II << II =II • (3.z3)
-'..

It has been observed in the numerical experiments that (3 23) is already

easily satisfied at the stage of the First transition from the S_ relaxation

sweeps back to Sk . Heuristlcally, thls Is expiained as follows: u_" at that

stage was obtained by the interpolation (3.1) followed by relaxation. The
-k_

Interpolation leaves a residuals function EQ'(u_') which Is comparable to 3

both In its low-frequency components (this Is trivlal) and in Its high-

frequency components (this is obtalned If a suitable order of Interpolation

Is used, of. Section 3.1). The relaxation sweeps considerably reduce the high-

frequency residual components. The bulk of the remaining low-frequency (smooth)

-k_ k_ k¢
error In 3 -3 is then reduced by adding to 31 the last term In (3.2

Thus, a relation like (3.23) is satisfied by all components, regardless

of the norm that is used. In fact, at the said stage,

k_..-k_. R.
II3 -3 IIw,llusually already be comparable tO II II,further reduction

of II Tk_",T--kJEii is not meaningful

A sequence of refinements. Assume we have a sequence of increasingly finer

1 S1 2 S2 _ S9.approximations u € , u E ,.., u E The corrected coarse-grld

equations (3.22a) would take the form*

k
Elk(uk) = _I (3.24a)

k
k k_ if k=_.-1 For k<_-I , however, the correction 3 iwhere _ i = 3i

should correct the Sk equation not by the original Sk+l equation, but by

*We drop the bar from Uk . Hereinafter, wherever a finer-space approximation
Uk+/ exists, Uk will denote the solut!on of the correction equation (3.24).
The original equation (2.10) is the special case 3._-=0

I
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Its own corrected form. Hence, generally (cf. (3.22))

k k k k+l) k,k+l_ k+l uk+l)_ k+l tZl = Ei(Ik+lU - £ l lj _ J-E ( • Tj , (l_k_Z-1) (3.24b)
• J

where

t (3.24c)
T i = 0 •

At convergence, the solutionsof (3.24) on all levels coincide with each other,

namely,

k+l t-lu¢= k k k I . (at convergence) .
uk Ik+! u = Ik+l k+2 "" I_

k Sk
Thus, each _i represents the local truncati_ error on relative to

t
the finest le_! S

Orders in h Byusual Taylor expansions it is easy to find that the

local truncation error satisfies

T_ = b(x_,U)htYJJ + O(h_ Yj) , (3.25a)

where the coefficient b depends on the local properties of the exact solution

U but not on the mesh-size hk , and yj > yj (usually _j = yj+l or

= +2 ). y_ is the local order of the truncation error. For example, in

nodal case ((2.3), with v_ = 0 and q_ = 1 ) one finds that
f.he simple

yj = d+p , where d , the dimension, enters as the scale of the stlffness

equatlon (cf. Sec. 2.5) and p is the order of approximation (which usually

means that the elements contain all polynomials Of degree less than p , but

not all those of degree p ).

discrete functlons (qt > i) then y_ becomes moreWhen there are more

complicated, and may actually depend on J If St and Sk have the same

structure, and If I in Sk corresponds to J In St (l.e_, x_ = x_
and

k v_ ) then they share the same constant In (3.25a) and henceV i = ,



"tj " _hk) _l (1 + o(1)) ' (Y " Yi " YJ) " (3.25b)

Simllarly, we can get a relation of the form

--k_ k_-.-k .
_ T i = C I 3 i (1 + o(I)) , (3.25c)

where C_% Is a known quantity (independent of U ). For example, in the

simple nodal case we have

-ri m -rl.- zj

h_ )p,+.{,-(_ }__I (3.25d)
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3.6 Hul t i-Level Algorithm.

By combining relaxation sweeps that smooth 'out the error in ut with

coarse-space corrections that liquidate smooth errors, all error components

can be efflclently reduced. The question remains of how to solve the

coarse-grid problem (3.13). Thls is done by a similar process of relaxation

k
sweeps (over u ) combined with still-coarser-space corrections.

"Thus, in multl level solution processes, a sequence of approximation

spaces S1 ,S2 .. ,SM S1,. is used, starting with a very coarse space , and ending

wlth the target flne space SH The typlcal mesh-slze of the space Sk

hk_2-kho . Often, the triangulatlon for Sk is based on vertlcal and
is

horizontal grid lines, and the grld lines of Sk are every other 11ne of

Sk+l .

Multi-grid algorithms work themselves up from the coarsest level S I

to the finest SH We will denote by 9. the current finest level, that

k
is, the largest k for which an approxlmate solutlon u has already been

9.
computed. For each _. , a flrst approxlmatlon u is obtained by inter-

0olating from u , and then it Is improved by relaxatlon sweeps and coarse-

space corrections, using equations (3.24) throughout. One type of multi-level

algorithm flows as follows (see Flgure I).

A. Solvln_ on the coarsest Slrld. Set _= I Compute an approxlmate
I

solution u to the stiffness equations (3.24) on the coarsest grld

(k-_.-1) , either by relaxatlon or by some direct method. (The term dlrect

method here means a non-iteratlve solution of llnear systems. If

the stiffness equations are nonlinear, the direct method will Include a few

Newton Iteratlons, where the linear system at each iteratlon Is solved



Figure 1, FAS Multi-Level Algorithm
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__quations are _olv_d by._elaxat_on.



directly.) Whatever the method, uI should be easy to obtain, since SI

Is very coarse.

B. Setting a new finest level. If _, -M the algorithm is terminated.

If not, Increase _ by 1 Introduce, as the first approximation for the

new finest level, the function

JL _ _L-I
•u = I _lU

where'the Interpolation is the higher-order one (see Section 3 I). Having

assembled the stlffness equatlons (2.10} for this new level, set k=_

Generally, k will denote the current operation level, (thus, for example,

when the algorithm later swltches to coarser-space corrections, we wlll have

k<_ ) and uk € Sk wlll denote the current approximation on that level.

Also set Eg. sufficiently small, ck will generally be used as the

tolerance for solving the k-!evel equations (3.24). For _ , a realistic

value is introduced in Step G below, so the current "sufficiently small"

value is only temporary.

C. Startlng a new operatlon level. When we start working on any level

k,we put _k=_ , for reasons to become clear in Step E below.
k

D. Relaxation sweeps. Improve u by one relaxation sweep (see

Section 3.2). Concurrently wlth the sweep,compute some norm ek of the

dynamic reslduals (see Section 3.3}.

E. Testin_l the conver_lence and its rate. If convergence at the current

operation level has been obtained (ek.<€ k) , go to Step I. If not, and If

the relaxation convergence rate Is still satisfactory (i.e., If ek.<rw_k ,

where n is a prescribed factor wtlich will be discussed below), set

_k.ek and go back to Step D (contlnue relaxation}. If the convergence rate
k

is slow (ek>r_ k) , go to Step F (thus obtain coarser-space correction to u ).
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F. Transfer to coarser level. Decrease k by 1 Introduce, as

the first approximation for the new (the Coarser) level k, the function

k k k+l
u - Ik+lU (3.26)

(see discussion of the FAS solutlon averaging, Section 3.4). Deflne the

k
Sk problem by computing T as in (3.24b), where the first term Is easily

calculated using (3.26). As the tolerance for this new problem, set

Ck-6ek+ 1 , where 6 Is a prescribed factor to be discussed below.

G. Finest level stopp!ng parameter. Concurrently with the computation
k

of T. , calculate also Its norm IITkll , using the same norm as used for

the dynamic residuals (see Step D and Section 3.3). If k = K-I set

_ = _II_-III (3.27a)

Usually we want E£ , the stopping tolerance on the currently finest level,

to becomparableto II_"II sowechoose= (h_/h,_I, = )f (see (3.25b));

or, even more precisely,

(hl_/hk)Y
o = (3.27b)

1 - (h_/hk)P

(of. (3.25b) and (3.25d)).

H. Coarse level solutlon. If k=l , solve equatlon (3.24) by

relaxatlon or dlrectly (see Step A above) and go to Step I. If k > ! , go

to Step C.

I. Emp!oyln 9 a converged solution to correct a flner level. If k=_. ,

go to Step B. If k<_, make the correction (of. (3.16))

k+l (u k ,k k+l,k+l k+l +1 - (3.28)
UNEW= UOLD k k+lUOLD j

and then Increase k by 1 and go to Step C.
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3.7 Comments

;t.7.1 Fixed algorithms. The Internal checks In the above algorithm

can in many cases be replaced by pre-asslgned flows. (See for example the

fixed algorithm in Figure 3 in Section 4.2.) In particular, instead of

checking for slow convergence ( e k > nek in Step E), one can simply _:' ...

switch to the coarser level k-1 after a pre-assigned number r of "C

rela>_ation sweeps on level k The parameter rc , like n , depends on

the smoothing rate (see below). Hence, if that rate is known, r c may

be fixed in advance.• Slmllarly, instead of checking for convergence

(ek.<¢k) , the switch to a flner level k+l may be made after a total of

rf relaxation sweeps has been made on level k since the last J'vlsit" to

the finer level. (Thus, if Vrc.<rf< (v+l)r c , then v switches from k

to the coarser level k-1 are performed before switching to k+l .) In

k
some cases rf = rf depends on k , and In particular it may have special

values for k= _ .

The main advantage of fixed algorithms is in saving the work of

computing the dynamic residuals at each relaxation sweep. This is a significant

saving when the problem Is very simple. For example, In the case of the

Dlrlchlet problem (Poisson equatlon) with linear element_ on a uniform square

grid (Sec. 4.2), a relaxation sweep costs 5 operations (only additions) per node.

A sweep that also computes (3.3)costs8 operations (7 additions and I multi-

plication) per mode. In more complicated problems, however, the saving Is

marginal, since a sweep Involves many more operations, and computing the norm

still adds only 3 operations per nodal value.

In simple problems, where the fixed algorithms are needed, they are as

efficient as the "accomodatlve" ones. In fact, the latter behave like fixed.
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_.7.2. Accumulated work units. F'or comparison purposes, it is con_non

to record the amount of work performed by a multi-grid algorithm in terms of

world-units. The work-unit is the computational work of expressing the stiff-

ness (finite difference) equations on the finest level M . A relaxation
-. o

sweep on level k usually costs 2d(M'k) work units, and so does the

calculation of the residuals in the transfer from level k to level

k-1 (except when injection is used) All other computational work (mostly

Interpolations) Is quite small and not easy to express In work units, and is

therefore usually neglected. We thus get a measure of the expended work

which is independent of the hardware and software being used. This measure

is very convenient in co.mparlng various algorithms and in comparing numerical

results wlth theoretical predictions.

We have examined, both experimentally and theoretically, various types

of problems (mostly in terms of finite differences), including systems such

as the incompressible Navier-Stokes equations. In all cases, the amount of

work required to solve the problem to the level of truncation errors (3.27)

was between 5 and 10 work-units. In any case, the number of work-units

required depends only on the properties of the local operator, and not on

the specific data (forcing terms, boundary shape and boundary conditions).

3.7'3 Storage re_clulrements. At any given time, the algorithm has at

k 2M-k
most one approximatlon u on each level k A._suming hk/h R _ ,

and denoting by n'k the amount of storage needed for level k (which Is

usually a fixed multipleof nk , the dimension of Sk ), It is clear that

-- 2d(k'M _'Mnk _ ) , so that the total storaqe is less than

- I q

(I+2 -d+2 2d+...)-nM = -2d nM
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Thls Is only a fraction more than n'H ' the storage required for the "target

space" SH .

Horeover, a different variant of the multi-level process requires even

far less storage. To see this, note that the finer level k+l is really

k
needed only to provide the _i correction to the coarser-level equation

(3.24a). This correction depends only on the local behavior of the solution.

Hence, we never need the entlre finer level, neither in core nor in external

k
storage. A segment of it Is sufficient for computing T i (at all points

k
x i which are a few mesh-sizes inside that segment).

3.7.4 Optimizations. The effectiveness of any prescribed multi-grid

algorithm depends only on local properties (since long error components are

reduced, very Inexpensively, by coarse-level processes), and can therefore be

calculated, once and for all,for any type of functional E , either by local mode

analysis or by numerical experiments. In fact, the numerical experiments

confirm the mode analysls predictions. We can thus predict which of several

possible alternatives will give better performance. We can therefore optimize

our algorithm, including the relaxation method (point-wise or line-wise, marching

directions, relaxation factors, etc.), the order of interpolations, mesh-slze

ratios (hk/hk+ 1) , and switching parameters ( _ and 6 or r c and rf ).

The relaxation methods and interpolation orders are discussed in Sections

3.1, 3.2 and 3.4 above. The mesh-size ratio hk/hk+l--2 is close enough to

optimum to warrant its general use (at least in two and three dimensional problems).

3.7.5 The Switching parameters. The overall efficiency Is not sensltive

to the precise choice of 6 and q (Steps E and F above). Quite general, good

values are 6=0.2 and q=max "_(x) , where IJ is the smoothing factor of
X

relaxation, I.e., the largest amplification factor (per relaxation sweep) of

high-frequency error modes. The high-frequency modes are those which are not
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visible in the coarser space; i.e., their projections on the coarser space

alias wlth lower modes. Their ampliflcatlon factors are easily computed

by a local Fourler analysis of the relaxation process (assuming constant

-'" triangulation, constant coefficients and infinite domain). _ is a function

of x since the triangulation and/or the coefficients may vary over the

domain. In well-deslgned relaxation schemes _O.5 , if not smaller.

Uslng the switching parameter rl =max _ means that relaxation is

discontinued and coarse-space correction is sought as soon as the amplitudes

of hlgh-frequency residual components are reduced to the level of the lower-

frequency amplitudes. Indeed, at this level the smoothing process becomes

less efficient (see the comments at the end of Section 3.1),but the error

uk-U k is already sufflclently smooth.

If coarse space corrections are not efficient enough, u may always

1/2
be increased and 6 decreased a little, e.g., 1J may be replaced by p

and _i by _i/2 . Theoretically optimal values for q and _ are discussed

In Appendix A of [B3].

3.7.6 The FAS solution weiqhtinq has been discussed above (see Section

3.4) It Is important to emphasize that Ik in (3.28)• k+1 '

(3.26) and (3.24b) should all be identical. A common programming

error is to have them different, at least at some special points. In such

programs,the coarse-space corrections will deteriorate as soon as their

magnitude becomes comparable to the dlfference between the different values

k k+ I
of Ik+lU .

• 3.7.7. A case of avoiding relaxation. If u is known to be so

smooth that an interpolation of order higher than m(_)+p in Step B gives

a much better first approximation, then that Interpolation should not be

followed by relaxation (see footnotes in Sections 3.1 and 3.2). Go from
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Step B to Step F. A better procedure, of course, would be to employ a higher

approximation order p . If the smoothness is not known In advance and a hlgher

p I_oses programmlng difficulties, a better procedure would be to use r-extra-

polations (see below).

3.7.8 Programmlng. The stiffness equations have the same form (3.24)

on all levels. Hence, with a suitable data structure, only one relaxation

routine should be written in which the level number (k) Is a parameter.

k
The same is true for all other basic operations, such as assembling, T

calculations, and Interpolations. An example of such a data structure is

exhibited in Appendix B of [B3], in Section 4 of [B4] and in the programs of

k
[M78]. The routine for calculating T can be produced easily as a combination

of 3 routlnell: a residual calculation routine (RESCAL), a fine-to-coarse

transfer routine (CTF) and a routine (CORSRES) to compute the coarse-space

additional term (the first term on the right-hand side of (3.24b)). Both

RESCAL and CORSRESare trivlal modificatlonsof the relaxation routine (RELAX).

The interpolation routines, Including CTF, can be writtenonce and for all:

they depend on the data structure and the types of elements, but not on the

particular functlonal E . Thus, the prografl_nlng for each new problem is

reduced to the programming of a relaxation routine. A considerable expertise

is needed, however, to construct a fully efficient relaxation routine (see

Section 3 in [B2], Section 6 in [B5], Lectures 5, 6, 7, 8 in [B67 and [B7]).

3-7-9 Debugging. By printing out every calculated e k and II II ,

one gets a nice short summary of each run (cf. Appendix B in [B3]). A typical

behavior should be exhibited, a deviation from which easily detects most bugs.

Detailed debugging techniques (for finite difference formulations) are listed

In Lecture 18 in [B6]. Here we should emphasize only one fundamental

principle: never settle for any convergence rate slower than (or any work-count
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larger than) the prediction of the interior local mode analysis• Due to

the iterative character of the method, programming (as well as conceptual)

errors often do not manifest themselves In catastrophic results, but rather

_'" In considerably slower convergence rates.
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3.8 Nonllnear Problems and Continuation (Embedding).

A basic feature of the above algorithm Is that it has basically the same

effl¢iency for nonlinear problems as for linear problems. No llnearizatlon is

required. A difficulty may arise, however, In problems which have more than

one local minimum. In such cases, if S_-l is too coarse, the first

approximation (3.25) may lead to solutions u_ converging to a wrong local

t
mlnimum in S .

"A comn_n way to obtain a first approximation u close enough to the

desired minimum Is by a continuation (or "embedding") process: the problem,

including its discretization and its approximate solutions, are driven by some

parameter y from an easily solvable (e.g. linear) problem toward the desired

problem, in steps 6y small enough to ensure that the solution to the y-problem

can serve as a good first approximation In solving the (y+_y)-problem (cf.

Section 8.2 in [B3]).

Sometimes the intermedlate problems are themselves of Interest, i.e.,

they all correspond to Interestlng posslble states of the physlcal system belng

studied. For example, _ may be the total load in a structural mechanics

problem, or the Reynolds number in a flow problem, or a parameter in terms of

which the boundary conditions, or the shape of the boundary, are expressed, etc.

It may then be required to solve the Intermediate-y problems as accurately as

the final-_ problem. When the Intermediate problems are not of interest, they

can be solved to a lower accuracy, using coarser grids. In any case,

the grids for the intermediate problems cannot be too coarse, lest the first

approximation obtained from them will not lead to the deslred mlnlmum. In other

words, the intermediate problems should use a sufficlently flne space S_ ,

either because this is thelr deslred accuracy, or because solutlon components

of wavelengths comparable to h_ are needed to separate between '!attractlon

regions" of different minlma.
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Even though the S£ high-frequency components are needed in the

continuation process, in each 6y step they do not usually change much.

We can therefore employ the "frozen-_" technique described below, and

_ perform most of the 6y steps on very coarse spaces, with only a few

"visits" to S£ Obtaining a fast approximation by such a continuation

process will normally require less computational work than the work in

solving (to a better accuracy) the final problem once its first approximation

is given.
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3.9 Evolution Problems t Optimal-Design Problemst and Frozen-_ Techniques.

We often need to solve not Just one isolated problem but a sequence

of similar problems depending on some parameter. For example, we may be

studying the effect of changlng some physical parameters on the "performance"

of a system, where the performance is measured in terms of the solution U

of the differential problem. We may want to find for what physical parameters

the performance is optimal. Or, we may need to solve a sequence of problems

in a continuation process (Section 3.8). Or, as the most familiar case,

the parameter may be the time t , and the sequence of solutions describe

the evolution in time of a physical system. The problem in each time-step,

more generally, will be to solve some "implicit" part of the evolution

equations.

Such a sequence of problems can be handled very efficiently by

multi-level processes. First, we can use tile previous solution (or

extrapolation from several previous solutions) to obtain a good first approx-

imation for solving the next problem in the sequence. We will then need

only one multi-level improvement cycle (involving only a couple of relaxation

sweeps on each level) to get a satisfactory solution for each problem in

the sequence.

Moreover, by a •full use of the multi-l_vel _tructure, ofle can usually

do much better. One can exploit the very different rates of change of high-

frequency and low-frequency components. In parabolic evolution problems, for

example, high-frequency components converge to a steady state much Sooner than

low-frequency ones do. Hence, after the first few steps, the chan_es in

the solution are smooth and can be accurately calculated In increasingly
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coarser approximation spaces. (This, Incldentally, allows the use of

large time-steps without employing Impllclt equatlons at all!) Only once

In a long time should a step be made in the finest approximation space to

readjust the high-frequency components.

_'" Thus, generally, we may like to efficiently solve the next problem in

our sequence by neglecting the changes in the high-frequency components

(without neglecting the components themselves). The way to freeze the

frequencies with wavelengths smaller than O(h k) is to freeze Tk in

(3.24a), i.e., to solve the next problem with the local-truncation function

k
that was previously obtained, thereby limiting the current multl level

calculations to the k coarsest spaces S1 k,...,S . This freezes the

high-frequency part of the solution but retains its influence on the

coarse-grid equations.

Denote by kj the level of calculation (k) in the j-th step;•

that is, kj is frozen when solving the j-th problem in the sequence.

The sequence of levels k| can be selected by monitoring the .changes in

the local-truncation functions k One method is essentially as follows.

Let k,j be the function k at the conclusion of the current step J.

Thus, k,j = Tk,j-1 for, and only for, k_kj. At each step j we update

the quantitles

= IiTk'j " Tk'i(k'J)II = n,ax{i I i<j ki>k*2}
j , , _ '

(3.zs)
k

using the same norm as in Section 3.3 above, That is, Gj measures the

total change in k (owing to calculatlons at level k+l) since the last

calculation at level k+2 . Since the last•vlsit to Sk+2 Tk+l has
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remained unchanged. Had we allowed it to change, its changes would roughly

be

k 2-y k (3.30)
(hk+l/hk)Y 6j = 6j ,

where _ Is defined In (3.25). When (3.30) exceeds a certain

tolerance, a new calculatlon at level k+2 is needed, so kj+ 1 - k+2 Is

chosSn.

In the case of evolution problems, the contrlbutions of local errors

like (3.29) accumulate over time. Instead of 6_ , we should then use
J

"k J Tk,_ Tk i(k,J)ll.a. - At II - ' , (3.31)
J a=l (k,j)

mwhere At e = t ° ta. 1 Is the time interval related to the e-th step. Hence,
?k k+l

2"Y 6_ is the estimate of the error contributed by the free zing of _. .
J J

Updating _+1 costs roughly 2 (2+k'H)d work units, and therefore, the

conditlon when to activate such an update should be

2-l'+d(M-k'2)6_ > ), , (3.32)

where _. Is the marginal rate of exchange between accuracy and work-unlts.

That is, X Is a preassigned constant which represents the smallest profit

rate (the smallest added accuracy per work unit) at which we are still

willing to invest addltional work (see Sectlon 8.1 in [B3]).

Let Mj " max k be the flnest level used up to time tj In an
OK<_.J O,

evolution problem. When (3.32) is satisfied for k=Mj-1, it implies the

refinement of our system, i.e., the Introduction of a new finest level

Mj+ 1 -- Mj +1. Thus, (3.32) serves actually as a. dlscretizatlon-adaptatlon

test. Taking norms like' (3.]1) not over the entire domain but in small
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subdomalnsD we can in fact apply this test In subdonlaitl_, thus deciding n_t

only when to use a finer level but also where to do it.

A more extensive description of adaptation techn;*lUeS and their

_. discretization patterns is discussed in later chnpters.
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3. IO T-Ext rapolat Ion

When SJr-1 and SJt are "similar" spaces we can use Taylor expansions

and express the true local truncation function T as a known multiple of

the computed relative truncation function TJL'I Namely,

_-1 = CiTI_ JL-1 (1 . o(1.)) (3.33) "

_-1 _ _-1
(see (3.25c) - (3.25d) above). Replacing t i by its multiple CiT I

e

is a trivial and practically cost-free modification to the above algorithm,

which can be convenlent]y appended to Step G. Such a replacement is called

local-truncation extrapolation, or briefly, T-extrapolation. It makes U£'1

closer to U (instead of. close to U_ ), and as a result U_ will (when

_-1
corrected by u at the next Step I) also be closer to U . In fact, the

new truncation error agrees with the true truncation error up to hlgher-order

terms in h , and therefore the solution with _-extrapolation is equivalent

to a higher-order approximation. This can of course be true only in the

sense of approximating the nodal values of I£U by those of U; in the

normof S , IIULUII is asgoodasany IIu_-U!1 can be,

Experiments Indeed show that if U is sn_)oth enough, then the T-extrapolated

solution u is much closer to the true solution U than is the full solution

U£ of the difference equation, namely,

IIu[ - ,_uII << llu_ ,_uII (3.34)

In fact, if ItU is smooth, (3.34) holds already after the first multi-level

cycle to level t (first Step I). See the heurlstlc explanation In Section 3.5

above and the numerical example in (B5). If, on the other hand, I[U has no

smoothness, then the T-extrapolation will not considerably Improve u_ . But,

exactly In this case_ the one multi-level cycle i_ enough to red_v:e I! u_ - U_ ]I

well b¢;o_ Ii ,_u- u_II ,, slne+,exactly In this case, .;_ Is not consid_rably
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-_-1 (The size of the residuals after Step B s roughlysmaller than T •

_%-1 t and the one cycle easily reduces them well below t .) So the

point of t-extrapolation is that, after one cycle (bringlng the total

"" computational cost typically to 5 to 7 work units)j it producesan approx-

mation u_ which is guaranteed to be no worse than U_ , the full solution

of the difference equations, with the nlce added feature that any available

smoothness Is automatically exploited to improve uE even further.

Observe that T-extrapolation Is made at level _-1 , the finest level

at which a non-zero approximation to T is available. The correction is

automatically carried over to coarser levels via (3.24b). More precisely,

(3.24) is replaced by

_k
(uk) = , (3.35a)

'_,k E.k(ik k+1 k,k+1 Ek+1(uk+1 _k+1
Ti = I k+l u ) -£ lij { . ) - "_. }

j J J ,

(1 <_.k<___-2) (3.35b)

_-lt ,, C_ [ Eit.-1 (19.-1_.u_) . _r. I_-l'ttj E; (u_)] {3 35c)t. ..
J

T. = 0 (3.35d)I

Richardson extrapolation is the classical form of extrapolating in

terms of the mesh-size h. It uses the approximate solutions themselves

t-1
( u and u , for example), to produce the extrapolated approximation

(h_ut'l - ht_lUt)/{h t - h__l). It should be pointed out that the T-extrapolation

can be used in many cases where the Richards_ extrapolation cannot. The

t-extrapolation employs Taylor expansions of the local,truncatlon error T ,

while the Richardson extrapolation requires such an expansion for the

discretlzation error U _ - U , which is more difficult to get.
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4. CONCRETEEXAMPLES

.1 General Linear Elliptic Minimlzatlon Problem

Let n be any open set in Rd . If v = (Vl,...,v d) is a
v I vd

multi-index, Dv will denote the differential operator Dv = D1 ,...,D d ,

whereDj - a/axj,and I_1 will denoteitsOrderI_1" _l +'"+_d"
The space of real functions deflned on n whose Square is lntegrable will

be denoted by L2(n) . Thls is a Hllbert space with the scalar product

(u,v) = [ u(x) v(x) dx

= (u,u) ½ The Sobolev space /_(_) is the space bfand the norm IIullo
functions in L2(O) whose derivatives of order less than or equal to

L2are also in (_) , with the scalar product

(u,v)_ = Z (DVu, DVv) ,I_1_

and norm IIuII_ - (u,u)m* . For functions u,v € H_n(_) , we define _a continuous

symmetric bilinear functional a(u,v) which is called the strain energy. The

elliptlcity condition is that a(u,v) is positive definite; namely, there

exists an "elliptlclty constant" _>O such that

2 (4,1)a(u,u) _ _ Ilull_ •

Our space of admissible functions will be the space S = HE
of functions

u € H_(_) which satisfy the homogeneous essential boundary condition Bu-O,

where B Is a bounded linear operator. (The inhomogeneous condition Bu-g

can also be used, with obvious changes in the formalism below.) The general

Ilnear d-dlmenslonal elllptlc mlnimlzation problem of order* E is to find

* See footnote on page 5_



U such that

E(U) ," mln E(u) , (4,'2)

,. uC/_E

where

I
E(u)= -a(u,u)- (f,u) (4.3)

2

It is easy to show that the problem (4.2) - (4.3) has a unique

solution U , which must satisfy

a(U,v) = .(f,v) for every v E S . (4.4)

When integrated by parts, this equation usually yields an equation of the

form

(LU,v) = (f,v) for every v E S . (4.5)

so that U satisfies the differential equation LU = f , at least in a

weak sense.

Consider now a sequence of approximation spaces S l,...,SH of

the form (2.2) and typical mesh-slzes h1,...,hM . As In S , it is easy

to see In St that E(ut) has a unique minimum U & , which satlslfles

BOrder here coincides with its definition in [SF], where it is denoted by m.
The o'-----rderof the associated differential operator L (see (4.5)) is 2_.
In finite difference formulations, Including [B2] - [BT], the order m=2_
of the differential equation is taken as the ordel; of the problem.
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SJ_
a(UJ_,v _) . (f,v _') for every v E • (4,6)

The stiffness equations (2.10) here take the form

a(Ut q)))=, (f,q)_), (j,.l,...,nt,) (4.7)

% IL Equation (4.7) Is clearly
KOl,...,q)nj & are the basis functions of S_

where

equivalent to (4.6). Thls linear case can also be written as the linear

system of equatlons

n_
}" ajy_" Uy% = f_ , (j=l,,...,n£) (4.8a)

y=l

where (cf. (2.11))

= E_ = (_01,_0_1 (4.8b)
ajy jy a .Y J

J _) (4,8c)f] " E (o) = (f,_0j .

Hence, the multl-grld system of equations (3.24) takes the form

k k -k
}"alB UB = fl ' (l<_k<___) (4.9a)
B

. Ik'k+l(f_+l- Z a_+lu_ +1)Z k+,), ij y '
' 8 k+1 u 8 j y

( I<k<_t- I) (4.9b)

ik ,. fkl' (k=_) (4.9c)

k k
where _k denotes the corrected right-hand side fl + TI' and where theI

ranges of the subscripts are 1(_l,B_n k, l_J,y(__nk+I . The summations range
k

of course over small subsets, since most of the coefficients aiB vanish.
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The Gauss-Seide! relaxatlon at _evel k (see (3.2)) is:given here by

uj = uj - (I: ajy Y - fj )/ajj (8.10)
,f

• If T-extrapolation (3.35) Is to be used, equation (h.lOb) for k=_-I should

be replaced by

_-I I.-I I. I.-I £-Iu_ f.9-" fl + ci { z (I ) -
B alB _ B ,

+ JZtij (fj - Zyaj_ uy) } (4.11)

The equations above are those of the Full Approximatlon Scheme (FAS).

In the linear case, we can also use the Correction Scheme (CS), In whlch the

coarser-space functions are correction functions. Equation (h.gb) is then

replaced by

-_ k,k+1_(_k+lj £ k+1 k+1f = Z. If! aIy, ux ) , (I<k<_-I)__ (4.12)J

while (h.ga) and (4.9c) remaln the same. Instead of the FAS correction (3.28)

one should of course use the CS correction

k+1 k+1 k+1 k
UNEW = uOLD + Ik u . (h.13)
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4.2 The Dirichlet Problem with Linear Elements

The standard example of a linear elliptic mlnimlzation problem is

the problem (4.2) - (4.3) with the strain energy given by the Dirichlet

Integral

a!u,u) = S (_u 2 + ... + ( ) dXl. " ,
n

and w_th the homogeneous Dirlchlet boundary condition u(x)=O for x € _n .

_echnically, this boundary condition is introduced by taking S = HE = closure

in H of C_(_) , where C_(_) are the Infinitely dJfferentlable functions

which vanish outside a compact subset of _ .) In this case the differential

operator L in (4.5) turns out to be the Laplace operator

_2 _2
2 2 '

_x 1 _x d

so that the minimizing function U satisfies the Poisson equation with Dirlchlet

boundary conditions:

-_U = f in _ , (4.20a)

U = 0 on the boundary a:_ (4.20b)

We descrlbe the finite element approximations to the problem in

two dimensions (d=2). Let the approximation spaces S1,...,S H be spaces

of continuous plecewlse ilnear functions based on triangulations as In

Figure 2. The triangles touching the boundary may have special forms.

Such special triangles are called irregular triangles. A grld point serving

as a vertex of one or more Irregular triangles is called an irregular point.

All other grld points are called regular, tlotice that S is usually
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i///A
s, //// ,,_}h,

h! :

FIGURE2 Uniform Triangulations

The _ansu,g.a._or_ are. based on u_fo_mly-spaeed horizontal and v_e.z_

grid lin_. The grid lines of S_ are €.vgry oth_ 9._d g_ne of S_'-I
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SLnot contained in , slnce its irregular triangles are not unions of

S6 triangles. Generally, the nesting condition S_-1 € S_ would pose

a severe limitation on the boundary elements of S .

The basis function _ is the continuous plecewise linear function

_(x_)-I It is easywhich vanishes at all grid points, except for _j

to calculate that, if x_ Is a regular grid point, then

fl if .!
" a(_y,_j) " 1 if ¥ € (4 21)aj_ . j

otherwise ,

where E is the set of neighbors of j i.e., _ E N_ if the distance
Nj , j

between and
" E Lx_ x_Y is Hence, at a regular point x _J we obtain

the difference equation

4U_ Z U_ = f_ (4.22)
Y J

J yENj

h2
The "volume" of a regular basis function _ is (its base area is 3h2

f_ - (f,_)is h2 times a weighted average ofand its height Is I), hence
J

f(x) around x_ . Thus (4.22)is h2 times the usual 5-point approximation

to the Poisson equation (4.20a).

Smoothing rate. To calculate the smoothing rate of a Gauss-Seidel

relaxation sweep applied to (4.22), we change the notation slightly: If

U_ by U andx. = (_h,Bh), where _ and B are Integers, then we denote a _,6'J

f_ by fQ so that (4.22) takes the formj" ,B '

4U - - U U = (4.23)_,B U_-I,B ,8-I ,B+I - U_+I,B f_,B

Let u denote the value of the approximation u_ before the relaxation
J
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sweep, and _,B Its value after the sweep. If the points (_h,Bh) are

scanned In a lexicographic order, we can write the relaxation equation (3.2)

In tSe form

+. 4?., - uo,- - .. (4.24)m,B 1,B - uo,B-1 " uc=,8+l Um+l,8 fcL,B "

Let us denote the errors before and after the relaxation sweep by

v 6.= U 6 - ua, B and va,B = U_,B - u ,B , respectively. Subtracting

(4.24) from (4.23) we get

4v - " " ;a - V - 0 (4'25)a,8 Va-l,6 ,8-I ,8+I - va+1,8 "

We now apply the local mode analysis. Ignoring boundaries, we

can expand the error v in a Fourier Series
_B

i(Ola + 028)
= Z v(O) e , (4.26)

where e= (01 , 82 ) and where we can take 1el= max [1%1,1021]_. , since

a and 6 are Integers. Similarly,

_ . i(ela . 023)

va6 = 10_<_._ v(O) e . (4.27)

Substituting (4.26) and (4.27) into (4.25) we get the amplification factor

for the 0 component

I ll °u(o) - e + e .
= -le I -iB2 (4.28)

v(o)I 4 - e - e

The hlgh-frequency components are those wlth JOJ _ 7/2 , hence
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(e) = max _(e)- .5 (4.29)

iS the smoothing factor of the Gauss-Seldel relaxation. That is, each

relaxation sweep reduces all high-frequency error components by at worst

the factor .5 • _ " "
;b '

It is possible to ignore boundaries in this analysis, since we

only state results concerning high-frequency components. The amplification

factors for Io_w frequencies do depend on the boundaries; (4.28) for Iow-

frequencies holds only in some special cases. We can nevertheless deduce

from (4.28) that for the lowest frequencies, where !Ol=O(h), we get

u(O)=|-O(h2). It means that we would need O(h"2) sweeps if we wanted to

use rel_ixation to reduce smooth errors by some factor (e.g., by .5) b

Interpolations. If j Is a regu]ar point, the natural interpolation

(2.5) given by the linear elements of Figure 2 is

1 if x_ = x i I

9. Z-1+hp. _.-II If x. ,,(x xI )2 j II -- ' 2

I _ _-I _.-1+h_)&-l,_. _ if xj = (Xil , x12_

"J " ' _ [-'+h e x_'' (_.30)_- if xj = (x 1 ' 2 +he)

x%1--iI- _"1.hl) -,.! if x. = ( h_ XI22 j '

0 otherwise

This l lnear Interpolatlon s not good enough for the first Interpolatlon

(3.1) (Step B in the algorithm). For example, if the solution U Is

cubic polynomial, it is easy to see that the nodal values of a11 the dlscrete

solutlons U{ coincide with U . Hence, the first-approximation error
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Utu - is very large compared with the (vanishing) discretization error

'" U_ - ILU . Moreover, the error u_ - U_ Is highly oscillatory, and hence

more expensive to liquidate by multi-level processes. These• difflcultles

do not arise if we replace (4.30) by cubic Interpolation, i.e., an

interpolation which reproduces every cublc polynomial. Note also that tf

we measure the error U_ - U in L2 norm, then it does not vanish even

if U IS a cubic polynomial; IIu -ullL2=0(h2)notwithstanding the
"superconvergence" of the nodal values. Hence, from the point of view of

the L2 error norm, the natural interpolation (4.30) is acceptable.

At later steps in the algorithm (Step I), where corrections are

interpolated, the natural interpolation is good enough. Its adjolnt can

therefore be used as the residual-weighting in Step F (i.e. as I k'k+l' iJ

in (3.24b)). It is interesting to note, however, that a small gain in

efficiency Is obtainable by using "injectlon m', i.e., residual weighting

as in (3.24b) with

f k+l k

4 if x. = x.

ik,k+1 J i.. = (4.31)
ij

0 otherwise

Indeed, Injection is less expensive, because it requires in Step F the

calculatlon of only one out of four residuals. At the same time the

convergence-rate per relaxation work-unit (where the work of Step F is

not taken into account) happens to be slightly better with injection

than with the resldual weighting (4.30).

Local mode analysis. In a manner slmllar to (but more

involved than) the above analys!s of relaxation, one can make a Fourier
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analysis of the full multi-level cycle, including a fixed number of

relaxation sweeps and one coarse-grid correction c_cle (see [D1]). Such

an analysis shows that wlth the residual welghtlng (4.30), and with three

relaxation sweeps (per cycle) on each level, the multi-_rld convergence

factor (i.e;, the factor by which at worst errors are reduced) per relaxation

o

work unit Is _ is .59_.02. With injection the factor is
o

= .547 _ .015, which happens to be sIlghtiy better. The asymptotic convergence

factors observed in the numerical experiments are precisely In these ranges.

If we also Include in the work-units count the work _of residual

weighting (see Section 3.7.2) we get the multi-grid convergence factor per
_ • 12113

work unit p. With injectlon _ = p _ .57, with the residual weighting

_ .67,(4.30) _ = _3/4

Incidentally, a good estimate of the convergence factors can be

obtalned from the smoothing factor u derived above, whose value is always

easier to calculate. The estimate (explained in Section 6.3 of [B3]) is

o 1- (h£/h£.l)d

which, ln the present case yields

o 50.75_ o. - .595

This estimate of course Is independent of the residual weighting (and will

be approximately realized only when the residual weighting Is good enough),

The above convergence factors Imply that in one multi-

grid cycle the errors are reduced by a factor smaller than

.14 (.10 in case of injection). This means that one cycle is actually

sufficient, since all we have to reduce the error IIuL - u II by is from the



magnitude of IIu_-1- u II (which is Its approximate magnltude after Step B)

to the magnitude of IIu - u II ,-which is a reduction by a factor not smaller
. ,

than .25 •

The one cycle costs less •than

(3 + (1 + + * ) = 1_

work units (cf. Section 3.7.2) in the case of injection (which its•elf costs

1
_- work-units). Denoting by WM the total number of work units needed to

solve the SM problem, we get WM = WM_ ] +_ • Since WM_ I = ¼ WM ,

we get WM = 52/9.

Thus, the multi-level algorithm solves this problem in 5.8 work units.

This estimate is confirmed in many numerical experiments. See for

example [B5], where results of further improvements by T-extrapolation

are also exhibited. With careful programming, using the correction scheme

and residual injection, this algorithm requires less than 41 nM additions

and no multiplications, where this count includes all operations (unlike the

work unit count, which excluded Interpolations) and where nM is the number

of degrees of freedom in the finest space SM (see Section 6.3 in [B3I).

The flow of the algorithm is shown in Figure 3. The time measurements of

this algorithm which were made by Craig Poling at ICASE in 1977 are su_narized

in Table I.
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r

ICompute_ _ 17 x 17 33 x 33 65 × 65 129 x 129 Algorithm -'
•. - ,, _ L ,_

6600 .028 .O83 .303 - FMG

.O!I .O48 .164 - I Cycle

Cyber 175 .0117 .0326 .1085 - FMG

.0046 .0161 .0628 - I Cycle

STAR I00 .0046 .0109 0347 ! Cycle

TABLE 1 Time Measurements of the Multi-Level Algorithms.

FMGia tile Fu£_ Mu_tl-Grld aegorXJthm menXtioned in the text, and d_agcammed in

F_gure 3. Tl_e I Cyc_'_ a_go_£thm _ the s_ne aego_thm, but 5rafFling when

the first approxLmalt_on ls a_eady given in SM . The cycle G_eeudes a

total of 3 Gau_6-Se_de£ _eIax_i_lon sweep6 on each _evel, except on ,tlze STAR

I00 computer,where 2 _wce_ of WeightedS_mue,taneou_Pi_p_ae_nent {ace

{B3I) w_',_e used dn._tead. ResLdua_ weighting l_t_ made by (_lject('.O_l.



Mesh
Level size

! hj

2 hi/2

t
• I

3 hi 14 o ;

• •
II IB I=

. .M-I 2hM

M PM,

• END

_f - Cubic interpolation

= Linear interpolation of corrections

= Residual transfer

= Residual transfer where t'-extrapolotioncon be made

(_ • r relaxation sweeps

O • The in the where thestage algorithm error

iS smaller thon the discretizotion error of thor level

Figure 3. Full Multi-Grid Algorithm.
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