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Abstract

The time dependent governing scoustic-
difference equations and boundary conditions are
developed and solved for sound propagation in an
axisymmetric (cylindrical) hard wall duct with a
plug mean flow and spinning acoustic modes. The
analysis begins with s harmonic sound rource radi-
ating into a quiescent duct. This explicit iter-
ation method then calculates stepwise in real time
to obtain the transient as well ss the “steady"
state solutfons of the acoustic field, The time
dependent finite difference analysis has two advan-
tages over the steady state finite difference and
finite element techniques: (1) the elimination of
large matrix storage requirements, and (2) shorter
solution times under most conditions.

Nomenclature

A (.\rz/_\x.k)qrﬂ

aq cell coefficient

B 2(/ae)2dwiny,

bq cell coefficient

C: ambient speed of sound, m/s

<q cell coefficient sound

dq cell coefficient

E (/) (1-M2) /2y

“q cell coefficient

£* frequency, Hz

fq cell coefficient

8q cell coefficient

hq cell coefficient

)¢ number of axial grid points

t Vi

iq cell coefficient

J number of transverse grid points

Jn Bessel functiom

L*  length of duct, m

M Mach number

m spinning mode number

time-dependent dimensionless acoustic pressure,

P(x,r,t), P*/ . AcCh

Pm time-dependent dimensionless acoustic pressure
associated with m mode

p! time-dependent dimensionless ;lcoustic pressure
:}:t/\{sggllear variations, P'(x,r,c,t),

P spatially dependent "steady" acoustic pressure,
p(x,r)

pm,n snalytical solution for m spinning mode and

n radial mode

T radial coordinate, r*/r*o

r2  redius of duct, m

Ar  radial grid spacing

™  period, 1/f*, s

t dimensionless time, e/t

At time step

v axial acoustic velocity, u*/c‘;
x axial coordinate, x*/r:

Xx  axial grid spacing
eq. (18)
4Gy g tigenvalue
B eq. (12)
te specific acoustic impedance at exist
M L (14/L )
M, dimensionless frequency, r: f*/C:

A dimensionless axial wavelength
¢ angular coordinate

.-:‘, ambient air density, lq;/m3

¥ eq. (19)

@ angular frequency

Subscripts

¢ exit condition

i axial index (fig. 1)
i) radial index (fig. 1)
k cell index

m spinning mode number

n radial mode number

o ambient condition
Superscripts

* dimensional quantity
k time step

(1) real part
(2) 1imaginary part

Introduction

Both finite difference and finite element
numerical techniques have been developed to study
sound propagation with axial variations in Mach
number, wall impedance, and duct geometry. CGener-
ally, the numerical solutions have been limited to
low frequency sound and short ducts, because many
grid points or e¢lements were required to resolve
the axial wavelength of the sound. For planc wave
nropagatfon, the number of axial grid points or
*lements is directly proportional to the sound fre-
quency and duct length® (eq. (77)), and (n\;vrsoly
proportional to one minus the Mach number.® This
later dependence also severely limits the appli-
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cation of numerical techniques for high Mach num-
ber inlets.

Customarily, the pressure and acoustic veloc-
ities are assumed to be simple harmoni- functions
of time, In this case, the time independent wave
equations can be med.3 The matrices associated
with the numerical solution to the time independe
equations (called steady state solutions herein)
must be solved exactly using such methods as Geuss
elimin ion. As a result, large arrays of matrix
elements muat be stored. In an unpublished word
at NASA Lewis Research Center by the nutgot using
reference 4, as well as in work of Quimn’ (p. 3),
the matrix has been modified to allow iteration
techniques; unfortunately, the convergence is too
slow to be of sny practical value. Other ap-
proaches, such as in reference 6, might still
allow the use of iteration methods.

Some special techniques have been developed to
overcome the difficulties of high frequency, long
ducts, and high Mach numbers. As shown in refer-
ences 7 and 8, the wave envelope numerical technique
can reduce the required number of grid points by an
order of magnitude. In reference 9, this techanique
wvas used to optimize multielement liners of long
lengths at high frequencies. At the present time,
this technique has been applied only to the simple
cases of no flow and plug flow. A numerical spatial
marching technique was also developed in references
16 and 11. Compsred to the standard finite differ-
ence or finite element boundary value approaches,
the numericzl marching techanique f{s orders of magni-
tude shorter in computationsl cime and required
computer storage. The marching technique is limited
to high frequencies and to cases where reflections
are small,

A comprehensive litersture summary of other time
independent finite difference ﬁnd finiCe element
techniques is given elsewhere.

As .n alternative to the previously developed
steady state theories, time dependent numerical so-
lutions were developed for noise izropnga“ion in &
two dimensional duct without flow'¢ and with par-
allel sheared mean flow.l3 Advantageously, matrix
storage requirements are significantly reduced in
the time dependent snalysis. The analysis began
with a noise source radiating into an initially
quiescent duct. Next, an explicit iteration
method calculated stepwise in real time to ob-
tsin the transient as well as the "steady' state
solution of the acoustic field. This time marck -
ing technique was found to be stable for both ro
flow and plug flow. The time dependent analysis
was found to be superior to the steady state finite
difference and finite element techniques because of
much shorter solution times and the reduction of
matrix storage requirements. Also because matrix
manipulation is not required, the time-dependent
approach is simpler to program and debug.

In the present paper, the time dependent tech-
nique developed in reference 12 will be extended
to an axisymetric (cylindrical) geometry with
spinning acoustic modes and plug flow. First, the
governin~ acoustic equations and boundary conditions
are presented. Next, the governing acoustic-
difference equations are derived. Immediately
following the mathemstical development, numerical
examples are presented and compared with the corre-
sponding steady state snalytical results.

Governing Equstions snd Boundary Conditions

The propagation of sound in an sxisymmetric
cylindricel hard wall duct, as shown in figure 1,
is described by the wavc equation and appropriate
{mpedance boundary conditioms.

Wave uations

The wave equation in a circuler duct with a
mean flow can be expressed in dimensionless form as

2 ¥ Q.ZL' 1%
™ 3e2 @ - 6:2+r3r
1 e Pp
-2 (1)
Tz e

These and other symbols are defined in the nomen-
clature. The dimensionless frequency 71, is de-
fined as

r: o r:£
K i @
2r Cq Co

The asterisks denotes dimensionsl quantities. In
many other references, the characteristic length
used in the definition of n is often the duct
diameter.

Because of the rotationsl nature of the rotor
blades on a typical turbofan jet engine, laxge cir-
cumferential varistions in acoustic pressure will
occur depending on blade number and engine rpm. A
three dimensionsl solution for sound propagation,
however, would be expensive to perform. Customar-
ily, since the equations are linear, the circum-
ferential acoustic pressure variatifons are decom-
posed into spianning modes m:

P'(x,r,6,t) = §Pm(x,r,t)ew 3)

The summation is over those modes that are likely
to occur in a partical applications. Considering
solutions with a single spinning lobe number m,

.\

P'(x,1,6,t) = P(x,r,t)el™ “)

the wave equation (1) reduces to

2 p .. 32? LB 1k
._.(1
e : ) 3:-2 rar
2
-Z p-2y 2p (5)
r2 rHBth

Equation (5) in difference form will be solved to
determine the pressure in the duct.

Hard Wall Boundary Condition

The boundary condition at the surface of a
hard wall duct is

., ©)

dr




Entrance Condition

The boundary condition at the source plane
P(o,r,t) will be assumed to vary as ei™*t* or in s
dimensionless form as el2Rt, Furthermore, the
transverse pressure variation (r-direction) will be
assumed to correspond to the eigen functions
Ju(ay nr) associated with mode propagation in en
infinitely long hard wall duct. The eigenvalues
associated with mode (m,n) are tabulated in ref-
erence 14, p. 511 and reference 15, p. 411. There-
fore, the source boundary condition used herein is

P(0,r,t) = Jg(og nr)el?"® a)

Exit Impedance
The boundary condition at the exit of the duct

can be expregsed in terms of a specific acoustic
impedance defined as

(A L,.]

)

e =

The ejuation governing the acoustic velocity U is
th: usual linearized momentum equation:

é! = - _l.ég .- § éﬂ ®)
At e x L dx

Substituting equation (8) into equation (9) vields:

Xt ®»_ wmd

- (10)
I L 1+ ML) 3 Ty Ot

In equation (10), L, has been assumed to be the
impedance associated with mode propagation down an
infinite duct. For transmission ot a single acous-
tic mode without reflection, the exit impedance
is

Finally, the term 32P/3xdt 1in the wave
equation will also be eveluated at the duct exit.
Differentisting equation (10) with time yields:

dp e e

el

(13)
dedx

I

Centerline Condition

The difference equation will be developed for
modes with m equal or greater than 1. In these
cases, the pressure at the centerline is equal to
zero:

P(x,0,t) = 0 m>1 (14)

Initial Condition

For times equal to or less than zero, the duct
is assumed quiescent, that is, the acoustic pressure
is taken to be zero. For times greater than zero,
the application of the noise source (eq. (7)) will
drive the pressures in the duct.

Complex Notation

Because of the introduction of complex notas-
tion for the noise source, the acoustic pressure P
is complex. The superscript (1) will represent the
real term while (2) will represent the imaginary
term.

p = p(l) + 1pQ2) (15)

Difference Equations

Instead of a continuous solutfon in space and
time, the finite-difference approximations will
determine the pressur: at isolated grid points in
space as shown in figure 1, and at discrete time

. Jl-M 1 steps At. Starting from the known initial condi-
e 5 - M (11)  tions at t = 0 and the boundary conditions, the
finite-difference algorithm will march-out the solu-
tion to later times.
where
2 Central Region (Cell No. 1)
s~ Y1- (- (12)
2nn, Away from the duct boundaries, in Cell no. |
r of figure 1, the second and first derivatives in the
wave equation (eq. (5)) can be represented bg the
usual central differences in time and nplcel
(p. 884)
k+1 k k-1 k k Kk k
Y AW WIMLIWY DR N LTS Y Tl WY IS VY DA LT 15 Bl WY I WS\ I
i
* Atz sz A'_.Z Ty
k k k+1 k k k-1 k k+l k-1
P - P 2 P + P +P +P - 2P - P - P
Al 1,5-10 m_,,:j - 2, M 1,4~ 4-1,1 i+l 3 1,4 1,4 4-1,]  “i+1,4
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where i and J denote the space indices, k the
time index, and Ix, O, end Ot arve the space and
time mesh spacing, respectively. The tll‘knlo‘
cla{od with equation (16) is defined as

+ At = (k + 1)At. Equation (1€) can be
written {n the form

r:':; - zp:'j + "t:; - a¥q Q=1 an

where

o~ 35 8)

In this case, ¥, represents all the remaining diif-
ference terms 08 the right hand side of the equa-
tion. The subscript q stands for the cells shown
in figure 1. In this case, q equals one for the
central cell.

For ease in bookkeeping, 'q is broken down as
follows

- o p¥ k k
¥ " 0P1-1,3 gy g1 * SPLLy Y 4Pf, 401
k e+l
+ ePe1, 3 * fF1,)
k-1 k+1 k-1
+ sqpilj + th"-llj + tqpl'n'vj (19)

Substituting equation (19) into equation (17) and
solving for the pressure ?‘f"j, ylelds
»

b+l

2
Pil.’ " = [.qpt‘l-’j + b‘lp}u"l + (cq + ;)
[l - u.fq.l

k k k
x Pt,j + dqpl,jﬂ + ’qplﬂ,j]

. Pl |_e
1 - af ol P
x [ngeftly + 1 Ji, 20)

The coefficients are listed in table I.

Equation (20) is an algorithm which permits
marching out solutions from known values of pressure
af times sssociated with k and k-l. The term
P _; is ullo a known quantity. At { = 2, the
valud'of P¥*l 15 known from the source Ydtuon,
equation (7* At i = 3, the value of P
known from the previous calculstion st { ‘

Thus, the solution starts at the spatial poultlon
i = 2 and proceeds outward to 1 = I, The proce-
dure is explicit since all the past values of P
are known as the new values of k + 1 are computed.
For the special case at t = 0, the values of the
pressure associated with the k-1 value are zero
from the assumed initial condition.

Boundary Condition (Cells No. 2 to 6)

The expressions for the difference equations
at the boundaries are complicated by the impedance
condition and the chauge in area of celle no. 2 to
6 in figure 1. The governing difference equations
can be developed by an integration process in which
the wave equation (eq. (5)) is integratad over the
area of the cells and time:

t+oe /2
f f -—; dxdrde
-ar/2 +/Cell

area
t+ot/2
3? dp, Pp, 1k
- ! - Hz)
( x? ,arz T or
t=-At/2 Cell
area
2 2
- p-2qm ZE lixdrde 21)
2 T e

The procedure for the temporal ond spatial integra-
tion over the cell srea is documented in refer-
ence 12, and therefore will not be presented herein.
However, some extra steps that weTe not presented
in reference 12 are listed in the Appendix of this
paper.

The tinite-difference approximstion for the
various cells shown in figure 1 are identical to
equation (20) with the verious cell coeificients
listed in table I. Cells 3 and 6 have not been
evaluated since the pressure at the centerline is
equal to zero for spinning modes.

Spatial Mesh Size

The mesh spacing Ax and Ar must be re-
stricted to small values to reduce the truncation
error. To resolve the oscillatory nature of the
pressure, the required number of grid points in the
axial direction suggested in reference 1 was

12 1¥/r}
1> — (22)

where A {s the axial wavelength of the sound. For
spinning mode propagation in a semi-infinite hard
cylindrical duct, A equals

1 - M

A — (23)
“t(ﬁ - M)
therefore
1> 12 ¥/ LB @24)
(a-w)
Similarly, the number of points used in the

r direction 1312

J = 120, 25)
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Stabilit

In the explicit time marching spproach used
here, round-off errors can grow in an unbounded
fashion and degtroy the solution Lf the time incre-
ment A is too large or the iteration scheme is
improperly posed. In the present paper, numerical
experimentation was used to determine the time in-
crement At for whiclh the explicit solution re-
mained stable. The initial guess for the time in-
crement wes based on the following equation devel-
oped in reference 13 for plane wave propagation in
straight ducts:

o< g Al - iy -

Vi or/on?

(26)

Steady State Pressures

In the sample problems to be presented in the
next section, the tima dependent results will be
compared iz the results of the steady harmonic
solutions ™ (p. 509). The pulpusd of this section
is to show tue rational for construting a steady
state solution from the time-dependent results.

Steady Harmonic Solution

The steady acoustic pressure p(x,r) {s defined
as the solution to equation (5) when the pressure
is assumed to be a simple harmonic function of time.
For a semi-infinite hard wall circular duct with
transmission of a single spinning mode, the analyti-
cal solution for Pn n(x,r) is

~12rn, (3-M)x
1-M2 (x > 0)

@7

Pm n(x:r) = Jm(“m nr)e

where ; is given by equation (12). 1In the next
section of the present paper, the transient solution
to the semi-infinite hard wall duct will be com-
. pared to equation (27).

ansient Solution

Although multiple values of gressure are
calculated at each time step, only the latest value
values (k, k-1) need to be storea, After the ini-
tial transient has died out (checked numerically),
the time dependent results can be compared to the
"steady" state results (eq. (27)) simply by divid-
ing by eilnt  thst is,

pix,r) = P(x,r,t)

(28)
ei!nt

The bookkeeping and graphical output is held to a
minimum by the use of equation (28).

Sample Celculations

In two sample yroblems to follow, the time-
dependent results will be compared to the results

of the steady harmonic solution given by equa-
tion (27).

Zero Mach Number

Numerical and analytical values of the "steady"
pressure p(x,r) are computed for the case of a
hard wall infinite duct with an m = 3 spioning
mode. The calculation was made with 2 length to
radius ratio of 1 and dimen-ionless frequencics of
fr = 2, 1, and 0.7. The analytical and numerical
values of the acoustic pressure profiles along the
duct wall (r ~ 1) are shown in figures 2(a), (b),
and (c). As seen in figuve 2, the steady and time-
dependent analyses are in good agreement.

The cut-off frequency for the (3,0) mode is
0.66854. For vy = 0.5, the numerical solution as
formulated did not converge to the analytical solu-
tion. The numerical solution oscillated about the
analytical solution. Therefore, at the present
time, the numerical procedure can only be applicd
to propagating acoustic modes.

Finite Mach Number

As another example of the time-dependent anal-
ysis, numerical and analytical values of the
“steady" pressure p(x,r) are computed at v, = 1
but with vniform Mach numbos of +0.5 and -0.5.

The analytical and numerical values o. the acoustic
pressure are shown in figures 3(a) and (b). As
secen in figure 3, agreement between the analytical
and numericat theory is good.

Conclusions

A time dependent numerical procedure was de-
velouped for no flow and plug flow in a cylindrical
duct, This explicit time marching techuique was
found to be stable for propagating acoustic modes
with or without fiow. For nonpropagating (cut-off)
acoustic modes, however, the time dependent solu-
tion oscillates about the correct solution. This
will ultimately have to be resolved since cut-off
modes «vill be encountered in real problems. In the
mean time, the steady state numerical techniques
can be conveniently employed near cut-off. Be-
cause of the relatively long axial wave length near
cut-off (see fig. 2(c)), the required number of
grid points (or elements) is relatively small.

By eliminating large matrix storage require-
ments, numerical calculations of high sound fre-
quencios in turbojet inlets are now possible, Be-
cause manipulation of matrices is omitted, the time
dependent approach is relatively easy to program
and debug.

Appendix

Finite-Difference Equations at Boundary

The derivation of the difference equations for
the boundary cells was presented in reference 12.
However, some additional terms appear in this paper
which were not covered in reference 12, The treat-
ment of these new terms are now considered.



Mixed Derivative

t+Ae/2
“2neM f ff % dxdrdt
-At/2 Cell

ares
t+At/2
- gt = aZP dxdrdt (AL
t-At/2 Cell
area
= -2n M -—— At .‘t’” dxdr (A2)
Cell
area

wvhere from reference 15, p. 884, formula 25.3.27

Rp_
3xdt
Pt k x Kl .k K k-l
Bt Py, 3 P,y PP T 2Py T Py, " P g
20mAt
(A3)

The area integral in equation (A2) will be AxAr/2
for Cells 2, 3, and 4, and AxAr/4 for Cells 5 and 6,

Spinning Term
t+ae/2
2
- Z_ pdxdrdt
2
t-At/2 Cell
ares
t+AL/2
2
- "'; ‘:’J ff dxdrde (A4)
J t-ar/2 Cell
area
- -“?2;1"& dxdr (AS5)
i Cell
ares
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Figure 1. - Grid-point representation of cylindrical flow duct,



DIMENSIONLESS ACOUSTIC PRESSURE, p

EXACT ANALYSIS, Eq. (27)
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(b) FREQUENCY my. = 1.0, At = 0,00444, 1 = 3, 005,
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DIMENSIONLESS AXIAL COORDINATE, x
{c) FREQUENCY 7, = 0.7, At = 0, 003108, t = 10,70,

Figure 2, - Analytical and numerical pressure pvofiles
for spinning wave propagation in an infinite hard wall
duct(me=3,n-0 037420119, J=20,r~ 1.



DIMENSIONLESS ACOUSTIC PRESSURE, p

0g

EXACT ANALYSIS, Eq. 27)

REAL PART, p)
== === [MAGINARY PART, p'?

TIME DEPENDENT SOLUTION
o p(l)
a 2

o
™

0 ] Lo
DIMENSIONLESS AXIAL COORDINATE, x

(b) MACH NUMBER M = -0.5, At =0, 001631, t = 4,002,

Figure 3. - Analytical and numerical pressure profiles
for spinning wave propagation in an infinite hard wall
duct with flow (m =3, n = 0, a3 =4.20119, J - 20,
r=1 and np =1
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