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Abstract t time variable

This paper presents an analytical investigation TL transmission loss (dB)

of higher order mode propagation in a nonuniform V  a dimensionless parameter, see Eq.	 (19)
circular duct without mean flow. 	 An approximate
wave equation is derived on the assumptions that the x axial coordinate, see Fig, 1

duct cross section varies slowly and that mode con- u, separation constant or eigenvalue
version is negligible.	 Exact closed form solutions ,
are obtained for a particular class of converging- mn eigenvalue, n-th zero of	 Jm(o}

diverging circular duct which is here referred to p contraction ratio, b /b
as "circular cosh duct.' 	 Numerical results are —
presented in terms of the transmission loss for the r Gamma fwution

various duct shapes and frequencies.	 The results y cutoff ratio of mode referenced to inlet
are applicable to studies of multimodal propagation kb /m
as well as single mode propagation. 	 The results
are also applicable to studies of sound radiation dimensionless frequency parameter,

from certain types of contoured inlet ducts, or of kbo(l - p/y)

sound propagation in a converging-diverging duct of 11 normalized variable, see Eqs.	 (9) and (9a)
somewhat different shape from a cosh duct.

B polar angle in local spherical coordinate
system, see Fig. 3

List of Symbols Bo half-cone angle corresponding to a duct
segment,. Ace Fig. 3

a	 effective length of converging -diverging 2
section of duct

µ asymmetry parameter,	 1/4 In [ (a	
- 1/T

2 )/
(P2 -
	 1) ^

b o	duct radius at throat (x = 0)
v converging -diverging section length parame-

b(x)	 duct radius ter, n/b_

b_	 constant radius of lefthand side uniform dimensionless axial coordinate variable,
duct e l ement see Eq.	 (19)

b*	constant radius of righthand side uniform p radial variable in cylindrical coordinate
duct element system

c	 sound speed a constant parameter, see Eq. 	 (20) and the

F	 hypergeometric function following paragraph

Jm	Bessel function of first kind of order 	 m T ratio between inlet and exit radii, b+/b_

k	 free space wave constant, We function, see Lq.	 (17)

k	 propagation constant of a mode in lefthand CP azimuthal angle around duct axis

side uniform duct element, `Y acoustic velocity potential

k*	propagation constant of a mode in righthand w angular frequency
aide uniform duct element,

m	 circumferential mode number, or separation
constant 1. Introduction

N	 normalization constant, see Eq. 	 (22) One of the unique features of the noise field

n	 integer used as radial mode number
produced by axial flow fans or compressors is the
domins ô. a of spinning modes in the fan duct. 	 An

q	 a dimensionless parameter, see Eq. 	 (19) additional feature in aircraft applications is that

R	 power reflection coefficient
the c'^ yes section of a fan duct varies along the
duct axis.	 Consequently, in order to understand

r	 radial variable in spherical coordinate the overall acoustic characteristics of a fan duct
system system, it is imperative to examine the propagation

T
of spinning modes (or higher order modes) in non-

power transmission coefficient uniform ducts.

*Based on Consulting Reports submitted to Pratt & The higher order mode propagation in non-
Whitney Aircraft (November 25, 1973 and uniform ducts has been previously investigated by a
February 28, 1974). number of authors.	 The widely used methods are

**Aerospace engineer; member AIAA.
^Professor

numerical methods , 1-3 semi-numerical methods, 4 vari-
of Physics and of Aeronautics and ous perturbation methods such as the WKB method or

Astronautics. multiple scale variable methods 5 and the Born ap-
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proximation.A One of the drawtacks of numerical
methods is the failure to provide compact expres-
sions for the various quantities of interest and a
corresponding lack of physical insight into the
problem. Furthermore, in numerical methods the
boundary conditions are satisfied only approximate-
ly and the resultin5 error is not always easy to
assess, perturbation methods have been used to
find approximate solutions, but they still require
extensive computation to yield numerical results
for quantities of practical interest, such as the
transmission coefficients. Furthermore, most ap-
proximations used so farhave been limited to first
order perturbations with related limitations in the
range of validity of the results, such a^ file limi-
tation that the relative constriction b y anall.
Also, it should be mentioned that the firs, cyder
perturbations predict no attenuation above the cut-
off frequency at the throat. Although an extension
to higher order perturbations can be made formally,
it is quite cumbersome to carry out, and it ties
rarely been done.

In the present paper, we develop a new ap-
proach with less limitation. The basic idea in-
volved is to recognize that higher order mode propa-
gation in a nonuniform duct is analogus to prob-
lems in quantum mecl,onics dealing with matter wave
propagation in a system with spatially varying
potential energy, In the latter case, exact solu-
tions are known for certain barrier types of poten-
tial. 7 These solutions are used here to solve the
acoustic problem for a class of converging-diverging
circular ducts, which are equivalent to the poten-
tial barriers. The duct shapes can be varied by
means of three independent duct parameters, and
cover a wide range of ducts of ^Yactical interest.
The final results include wave functions and trans-
mission and reflection coefficients, all in a
closed form.

2. Circular Cosh Duct

A typical nonuniform circular duct under con-
sideration, which will be referred to as "circular
cosh duct," is composed of two asymptotically uni-
form circular duct elements which are smoothly
coupled through a converging-diverging section, as
illustrated in Fig. 1. The shape is completely
determined in terms of the radius, b(x), which is
given by

(

b 2

b^X)>	 p2 - (p2 
- 1)e µ cosh(21i) + (p2 - 1)e2µ

X Ccosh 2µ sech2 \
	

! ainh(2µ) - tanh (x Ila)^,

(1)

where the parameters are defined in the symbol list.
For a symmetric circular cosh duct (T = 1, µ = 0),
this equation reduces to

(

b_ \2

b (x) 1	 1 + ( p2	 1)sech 2 (a>	 (la)

The duct shape given by Eq. (1) can be adjusted by
means of the three dimensionless parameters P. v,
T, allowing one to vary (i) the contraction ratio,
p, (ii) the effective length of the converging

diverging section, v, and (iii) the ratio between
the inlet and exit radii, T. Equation (1) should
cover a wide range of converging-diverging circular
ducts of practical interest. Various circular cosh
duct shapes with fixed h and v are displayed in
Fig. 2.

It should be mentioned here that the results
of the present investigation can be used to study
the acoustic characteristics of a variety of
converging-diverging ducts with slowly varying
cross section, which may slightly differ in shape
from the circular cosh ducts. The supporting argu-
ment for this statement is as follows: The fre-
quency range where our understanding of acoustic
properties of converging-diverging ducts is lack-
ing, is near the cutoff frequency of a relevant
duct mode, in this frequency range, the axial
variation of wave phase is slow, and the propaga-
tion characteristics are hardly affected by compara-
tively small scale changes of the duct shape, as
long as the cross section varies slowly.

3. Wave Eauation in a Non-uniform Circular Duct

In this section, a horn equation will be de-
rived for higher order mode propagation in a non-
uniform circular duct under the following assump-
tions: (i) The slope, V, of the duct wall remains
small, and (ii) The made conversion (from one mode
to another) is negligible. In addition, modes for
such a non-uniform circular duct will be defined.

The equation is derived first for a small seg-
ment of the duct using locally suitable spherical
coordinates, and is then transformed into a form
which involves the duct parameters and the axial
coordinate x. Let us consider a small segment of
the duct and local spherical coordinates (r, e, to
as illustrated in Fig. 3. The duct segment is so
?short that is may be regarded conical, that is, b'
hardly changes within the duct- segment. The origin
of the spherical coordinate system is chosen some-
where on the axis such that a coordinate surface
B = 90 (cone) tangentially contacts the wall of the
duct segment. The half cone angle 9o, is equal to
b' to second order approximation.

With the assumption of harmonic time depen-
dence a-fit the wave equation for spherical coor-
dinates is

1 a	 2 aT11 	 1
x,2 Cdr Cr arJ +	

a	 8
sin a 39 (sin e ^)

2
+ 1 aY + k 2 = 0,	 (2)

sin2 9 awe

where T is the acoustic velocity potential and
k = w/c. With the substitution

T = H(r)Y(e)Q(1P),	 (3)

Equation (2) is separated as follows:

erg r atr + 
10 

+ (r6;)2] 11 0 ,	 (4)

1 I(T-0)

2	 2

sina d9 (sin a d9/ + 	 - (sin 0) Y O' (5)

2
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x
+ mxQ ' 0 1 	(6)

dap

Aare m and m are the separation constants, and
00 has been inserted for convenience.

We consider Eq. (6) first, the solution to
which is

. aim? . 	(7)

11ere m must be an integer for Q to be a single
valued function, and is known as the circumferential
mode number. It is obvious that this solution is
valid throughout the duct as long as the cylindri-
cal symmetry is maintained.

Equation (5) is an equation for the associated
Legendre functions. These are not, however, con-
venient for the present problem. The main diffi-
culty ariexa ir, drnermining eigenvaluea and in
transforming l,hum from the local coordinates to the
duct coordinat^a. Therefore, a simplified form of
Eq. (5) will be used here. In the region of inter-
est 0 $ 0 < 00 , one can replace sin B by B to
the second order approximation in V. Equation (5)
con then be written as

2	 r	 221

dB2 * 8 dB + [(eo) - (8) 
J 

Y 0.	 (8)

This is the Bessel equation.

It is convenient to introduce a normalized
variable n defined as

q 7P	 (9)
0

where 0 R 11 5 1. Note that, in the limit 00 -+ 0,
the duct segment becomes cylindrical, and Eq. (9)
is replaced by

n	 b'	 (9a)

where p is e4e radial coordinate in the cylindri-
cal coordinate system.

With the substitution of Eq. (9), Eq. (8) is
transformed into

dq2 + q dt) [a2 - (q)2] 
Y = 0.	 (10)

Note that q is not a local coordinate variable,
and unlike Eq. (8), Eq. (10) is valid throughout
the duct as long as the assumrUons (i) and (ii) re-
main valid. The physically acceptable solution to
Eq. (10) is the Bessel function of the first kind.
Thus we have

Y = Jm (a.1) •	 (11)

From the boundary condition at the duct wall, eigen-
values are determined as follows

M = anm, n = 0,1,2 . . .	 (12)

amn being the n-th zero of Jm(o.).

Corresponding to each combination of m and
amn, the solution is uniquely defined in terms of
the product

ai*Jm('69)

This eigenfunction is defined throughout the duct,
h being given by Eq. (9) for a conical orgmant or
by Eq. (9a) for a cylindrical segment. Consequent-
ly, a mode, which is in one-to-one correspondence
with an eigenfunction, has been defined for a non-
uniform duct.

We now return to Eq. (4). This equation, when
transformed to the duct coordinates, is the one
which governs propagation of a mode in the duct.
The necessary transformation is accomplished by re-
placing the local coordinate r with the duct
parameters and the axial coordinate x. To this
end, we use the following relations;

Bo n: b',	 (13)

dr x'	 (l4)

r G! .	 (15)

These equations are valid for a point within the
duct segment, and are accurate to the order of

(b')2•

On inserting Eqs. (13) to (15) into Eq. (4),
we obtain

2	 ,	 2

T.,+ 2b dx k Ik2 - (b) H . 0.	 {l6)

This is the equation for higher order mode propaga-
tion in a nonuniform circular duct. Its solutions
will be sought in the following section.

4. Higher Order Mode Propagation in a

Circular Cosh Duct

In this section, we seek solutions to Eq. (16)
for the circular cosh ducts described in Section 2.

It is convenient to introduce a new function
O(x), which is defined by

H (x) - o.	 (17',

On inserting this into Eq. (16), we obtain

dx2 + [k2 - ( b )2 ] @ 0 ,	 (18)

where bb'7a has been discarded on the assumption
that it is negligible compared with unity. It can
be readily shown that this equation is also valid
for the fundamental mode propagation (m = 0).

Equation (18) is similar, in form, to the one
dimensional Schroedinger equation, with 1,2 and
(a/b)2 corresponding to the total energy and the
potential energy respectively. 7 With the substitu-
tion of Eq. (1), Eq. (18) is written as

3
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+ Cq2 - Vo (coati 214 . sech29

	

- sinh(2µ) • tanh 9 ) 1 
0 - 0,	 (19)

whore

E . 
x - u a

a

F	 q2 « (ka) 2 + V  cosh(2g) - (mOv)2,

Vo ' a2µ (02 z 1) ' (^v)2.

Equation (19) can be solved exactly in accor-
dance with the procedure given in Section 12.3 of
Raf. 7. With the incident wa'/e coming from
x - --, the solution is given by

or Poon Q'JAI IIY
The solution in F,q. (20), Eq. (17) and the

corresponding C'Sanfunction will give no complete
solution in the circular cosh duct; For the inci-
dent wave given by

	

TI r aim ,jm( mnq) a ik x, at x - -w>	 (23)

the resultant wava in the duct is

i (
t`	 k-) (x - Ila)

N aimTJ.( .n) ' b 0
2 +

2 (k+ - k )a9	 Z (k+ + k )a

	

N e	 (2 cosh ;)

XF(2-2 (k+a+ka-o), Z-2 (k+a+ka+0),

1 - ik+a; 2 ^ 1	(20)

e + 1).

Here F is the hypergeometric function, N s con-
staFit to be determined, and

k +^	
k2 `bf)2,

o =	 4Vo cosh2p - 1.

This solution, 9 being replaced by x, can be
written asymptotically at x - t- as follows

x_} N e-ik Nla aikpx^	
(21a)

X	 N'P(1-ilc+a) • P(-ik a) . e ik_.4a aikx

P(2 - 2 (k+a+tt a+o)) ' P^2 - 2 (k+a+k a ' a))

N P (1 - ik+a) - P (ik a) • eikia e-ik x

	

+	
h

	

P(Z- 2( k+a - k a+o)) -P(2-2	 (k+ a - k a -a)/

(21b)

where P is the gamma function. The asymptotic
solution in Eq. (21a) corresponds to the trans-
mitted wave, and the first and the second terms of
Eq. (21b) correspond to the incident and the re-
flected waves respectively. Requiring the incident
wave to have unit amplitude, we Nava

b P(2 - 2 (k+.+1, .+a)) P(2 2 (k+a+k a -o))
N=

P(1 - ik+a) - P(-ik	
_

a) a ik_p a

(22)

X lea _ µ+ a- (a
 - 

µ)^ 2 (k
+ +k. )a

X F, 2- 
2 

(k+a+k a v), - 2 (k+a+k a+a),

1 - ik+a;rx 1 
l	

(24)

e2 \ a µ/+ 1) ,

The reflection and transmission coefficients
for the wave amplitude can be readily computed from
Eqs. (21a and b). In the case of no mean flow, the
reflection and transmission coefficients for the
acoustic power are obtained as the absolute squares
of the respective amplitude coefficients. In the
following diacuasions, we will use the acoustic
power reflection and transmission coefficients,
which are given by

cosh [Ira (k+ - k ) ] + cosh (Tro)
R - nosh Tra(k+ + k ) + cosh(Tra)'	 (2S)

2 sinh(vk+a) + sinh(Trk a)
T - cosh Tra(k+ + k ) + cosh (fra)'	 (26)

In deriving these equations, we have used the
following properties of the P function.

s inh (Trz)'

IP( 1	 22 + iz)1	 cosh(
Tr

Trz)"

Note that the results given in Eqs. (25) and (26)
satisfy energy conservation, that is

R + T = 1	 (27)

S. Numerical Results and Discussions

Some numerical results are presented in
Figs. 4 to 7. Displayed in the figures is the
acoustic power transmission loss (TL) for various
values of the duct parameters and a frequency
parameter (y or t). The TL is defined as

TL(dB)	 -10 108 10 (T).	 (28)

In Fig. 4, the TL of the (1,0) mode is
plotted as a function of y, the cutoff ratio of
the mode at this duct inlet-, defined as

4



(29)

kb_
Y n _

o:

p

Note that the value of y is not less than unity
for propagating incident wave mode. The duct
parameters included in the figure are various val-
ues of p and v . r - 1. As expected, the TL de-
creases with increasing frequency, in a similar way
for different values of 0. The rate of the TL
change (dTL/dy) is the greatest in the vicinity of
y P 0, which corresponds to the cutoff frequency of
the mode at the throat. Note that, at y - 0, the
TL is nonzero with a value of about 2.5 to 3 dA.
This easult is in contrast to that of the first
order perturbation solutions, which predict no
attenuation for y > 0• +

'in Figs. 5 and 6, the TL of various modes is
plotted as a function of k, for various values of
the duct parameters. Here t, is a frequency
parameter which is defined as

5 . kb  (1 - ^Yl).	 (30)

Note that 0/q is the inverse of the cutoff ratio
at the throat, and that t, - 0 corresponds to the
cutoff frequency at the throat.

Each curve (narrow stripe) in these figures
includes the TL of ten randomly selected modes rang-
ing from the (2,0) mode to the (8,5) mode. This
shows that the t,- dependence of the TL is almost
the same for all the higher order modes. This re-
sult is remarkable, and is useful especially for
studies of multimodal propagation in a converging-
diverging duct, in some cases, one may not need to
identify individual modes. An example of such
cases can be found in conjunction with a study of
multimodal radiation from a uniform duct. 8 The
acoustic power distribution vs. y in the duct can
often be inferred from the measured radiation pat-
tern. For a known y-distribution of the acoustic
power, the present result can be immediately ap-
plied to determine the effect of the converging-
diverging section on the multimodal propagation.
Recall that the parameter t, contains y explicit-
ly, not the e.igenvaluea of modes.

Figure 5 includes calculations for 0 = 1.05,
1.25, 1.5 with v - T - 1. The result shows that,
for ^ G 0, the TL is more sensitive to the fre-
quency for the smaller 1+alue of 0. We also notice
that the calculations for different modes collapse
better as 0 increases.

Figure 6 includes calculations for different
values of v and T, with 0 = 1.25. We first com-
pare the curves (narrow stripes) for (v = 1, T = 1)
and for (v = 1 1 T = 1.5) in order to see the effect
of T. For S < -0.15, the TL for T = 1.5 is
smaller than that for T = 1. This result is due
to the fact that the duct segment in which the modes
are cutoff, is shorter for T = 1.5 than that for
T = 1. (See Fig. 2). However, the two curves do
not show much difference for t, > -0.15. This
point will be further discussed later.

We now compare the curves for (v = 1, T = 1.5)
and for (v = 1.5, T = 1.5) in Fig, 6 in order to
see the effect of v. For t 6 0, the TL is larger
for v = 1.5 than that for v = 1. This result is
the direct consequence of the fact that the larger
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values of v represents the longer converging-
diverging section. The length of the duct segment
in which the movies are cutoff, increases with in-
creasing value of v.

In Fig. 7, the TL of the (1,0) mode is plotted
as a function of T for the various values of y,
v, and 0, For y > 0, the TL hardly depends on T,
For y < 0, the TL slightly decreases first with
increasing values of T, and asymptotically reaches
a constant value near T M 1.5. It remains un-
changed for further increase of the value of T.
This finding suggests that the results of the pre-
sent investigation can be used for studies of high-
er order mode transmission from a contoured inlet
duct.

To account for the lost statement, we consider
a contoured inlet duct as illustrated in Fig. 9.
The inlet duct is produced from a circular cosh
duct with a large value of T. The circular cosh
duct is terminated at a distance where the duct
radius is 1.4b . The cutoff frequency at the
termination, is smaller than that of the lefthand
side uniform duct e!.ement by the factor of 1.4.
Thus, for a propagating incident wave mode (y > 1),
the reflection due to the duct termination is neg-
iigible, 9 It follows then that the TL for the con-
toured inlet duct is expected to be the some as
that for the full circular cosh duct.

It should probably be mentioned that the slope
b ` can be fairly large for a large value of T in
a portion of the diverging section. Although it
seems to violate the assumptions used in the analy-
sis, the numerical results remain valid. The sup-
porting argument is that, in the first place, the
slope remains small within some distance downstream
from the turning point where the mode changes from
cutoff to cuton. In the second place, the sound
attenuation takes place mostly in the duct segment
, here the mode is cutoff, whereas the diverging
section, like a loud-speaker horn, 10 helps the un-
attenuated portion of the sound to be radiated,
The radiation efficiency is not sensitive to the
slope as long as the duct divergence is smooth and
the frequency is not close to the cutoff frequency
at the termination. 9 Lastly, even a fairly large
slope, e.g., b' = 1, is not so large as to invali-
date the approximations made in the analysis. For
instance, for b" = 1, B o = 7r/4 and sin eo = 0.707,
thus, the error involved in replacing sin ge by
Ao is about 11{.

6. Concluding Remarks

In an attempt to improve the understanding of
the acoustic characteristics of a fan duct system,
we have investigated higher order mode propagation
in a particular class of converging-diverging cir-
cular duct, called "the circular cosh duct." The
duct shape can be adjusted by means of three duct
parameters, covering a wide range of converging-
diverging ducts of practical interest.

An approximate wave equation has been derived
and exact closed form solutions have been obtained.
No mean flow effects have been included, The ex-
pressions for the reflection and transmission coef-
ficients of a mode are simple, With an appropriate
choice (t) of frequency parameter, the results have
been shown to be nearly independent of individual
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modes, and can, therefore, be immediately used for
studios of multimodai propagation. Tito results are
also applicable to studies of sound radiation from
certain types of contourad inlet ducts, or of sound
propagation in a converging-diverging duct which
differs somewhat from a cosh duct in shape.
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cludes 10 modes ranging from (2,0) mode to (8,5) mode,.
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v=1, T=1.5; v=1.5, T = 1.5 with 0=1.25, Each
curve (stripe) includes 10 modes ranging (2, 0) mode to
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