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HIGHER ORDER MODE PROPAGATION IN NONUNIFORM CIRCULAR DUCTS*

Y, C. Cho*x
NASA Lewls Research Center
Clevgland, Ohio 44135

K. U, Ingard+
Massachusetts Institute of Technology
Cambridge; Massachusetts 02139

Abstract

This paper presents an analytical investigation
of higher order mode propagatien in a nonuniform
circular duct without mean flow. An approximate
wave equation is derived on the assumptions that the
duct cross section vardes slowly and that mode con-
version is negligible. Exact closed form solutions
are obtained for a particular clnss of converging~
diverging circular duct which 1s here referred to
#s "circular cosh duct." Numerical results are
presented in terms of the transmission loss for the
various duct shapes and frequencies. The results
are applicable to studies of multimodal propagation
as well as single mode propagation. The results
are also applicable to studies of sound radiation
from certain types of contoured inlet ducts, or of
sound propagation in a converging-diverging duct of
somewhat different shape from a cosh duct.

List of Symbols

a effective lensth of converging-diverging
section of duct

bo duct radius at throat (x = 0)

b{x) duct radius

b_ constant radius of lefthand side uniform
duct element

b+ constant radius of righthand side uniform

duct element

sound speed

F hypergeometric Function

Jm Bessel function of first kind of order m

k free space wave constant, /¢

k. propagation constant of a mode in lefthand
side uniform duct element,

K+ propagation constant of a mode in righthand
side uniform duct element,

m circumferential mode number, or separation
constant

N normalization constant; see Eq. (22)

n integer used as radial mode number

q a dimensionless parameter, see Eq. (19)

R power reflection coefficient

r radial variable in spherical coordinate

system

=]

power transmission coefficient

*Based on Consulting Reports submitted to Pratt &

Whitney Aircraft {November 25, 1973 and
February 28, 1974).
**Aerospace engineer; member ATAA.
Professor of Physics and of Aeronautics and
Astronautics.

t time variable

L transmission loss (dB)

v, a dimensionless parameter, sec Eq. (19)
X axial coordinate, see Fig, 1

% separation constant or eigenvalue

T eigenvalue, n-th zero of JA(a)

B contraction ratio, b_/bo

r Gamma fuaction

Y cutoff ratio of mode referenced to inlet
kb_/a

4 dimensionless frequency parameter,
kb (1 - B/y)

1 normalized variable, sce Eqs. (9) and (9a)

2] polar angle in local spherical coordinate
system, see Fig. 3

BD half-cone angle corresponding to a duct
segment, see Fig. 3

n asymmetry parameter, 1/4 1n [(ﬁ2 - 1/72)/
(% - 1))

v converging-diverging section length parame-
ter, a/b_

3 dimensionless axial coordinate variable,
see Eq. (19)

n radial variable in cylindrical coordinate
system

o constant parameter, see Eq. (20) and the

following paragraph
ratlo between inlet and exit radii, b+/h_
function, see Eq. (17)
azimuthal angle around duct axis

acoustic velocity potential

E w8 o g

angular frequency

1. Introduction

One of the unique features of the noise field
produced by axlial flow fans or compressors is the
dominunce of spinning modes in the fan duct, An
additional feature in aircraft applications is that
the ¢r.as section of a fan duct varies along the
duct axis. Consequently, in order to understand
the overall acoustic characteristics of a fan duct
system, it is imperative to examine the propagation
of spinning modes (or higher order modes) in non-
uniform ducts,

The higher order mode propagation in non-
uniform ducts has been previously investigated by a
number of authors. The widely used methods are
numerical methods,4"3 semi-numerical methods,* vari-
ous perturbation methods such as the WKB method or
multiple scale variable methods” and the Born ap-
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proximation.® One of the drawhkacks of numerical
methods is the failure to provide compact expres-
sions for the various quantities of interest and a
corresponding lack of physical insight into the
problem, Furthermore, in numerical mathods the
boundary conditions are satisfied only approximate-
ly and the resulting erxor is not always easy to
sssess, Perturbation methods have been used to
find approximate solutions, but they still require
extensive computation to yjeld numerical results
for quantities of practical interest, such as the
transmission coefficients, Furthermore, most ap-
proximations used so far have been limited to Eirst
order perturbations with related limitations in the
range of validity of the results, such & the limi-
tation that the relative constriction be s:all,
Also, it should be mentioned that the firs% crder
perturbations predict no attenuation above the cut~
off frequency at the thvost., Although an extension
to higher order perturbations can be made formally,
it is quite cumbersome to carry out, and it has
rarely been done.

In the present paper, we develcp a new ap-
proach with less limitation, The basic ides in~
volved is to recognize that higher order mode propa-
gation in a nonuniform duct is analogus to prob-
lems in quantum meclhinnics dealing with matter wave
propagation in a system with spatielly varying
potential energy, In the latter case, exact solu-
tions_are known for certain barrier types of poten~
tial.” These solutions are used here to solve the
acoustic probiem for a class of converging-diverging
circular ducts, which are equivalent to the poten-
tial barriers. The duct shapes can be varied by
means of three independent duct parameters, and
cover a wide range of ducts of practical interest.
The final results include wave functions and trans-
mission and reflection coefficients, all in a
closed form.

2, Circular Cosh Duct

A typical nonuniform circular duct under con-
sideration, which will be referred to as "eircular
cosh duct," is composed of two asymptotically uni=-
form civcular duct elements which are smoothly
coupled through a converging-diverging section, as
illustrated in Fig. 1. The shape is completely
determined in terms of the radius, b(x), which is
given by

2
b—
(W) = @ - (- e - coshap) + (B - 1)

X [costh . rsech2 (X_’al&) » sinh(2y) + tanh (x_-aLa):l'

)

where the parameters are defined in the symbol list.
For a symmetric circular cosh duct (T =1, p = 0),
this equation reduces to

2
b-
('175?)') =1+ (% - 1)sech? (%) (1a)

The duct shape given by Eq. (1) can be adjusted by
means of the three dimensionless parameters B, v,
T, allowing one to vary (i) the contraction ratio,
B, (ii) the effective length of the converging-
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diverging section, vy, and (iii) the ratio between
the inlet and exit vadii, 7. Equation (1) should
cover a wide range of converging~-diverging circular
ducts of practical interest, Various clircular cosh
duct shapes with fixed g and v are displayed in
Fig., 2.

Tt should be mentioned here that the results
of the present investigation can be used to study
the acoustic characteristics of a variety of
converging-diverging ducts with slowly varying
cross saction, which may slightly differ in shape
from the circular cosh ducts. The pupporting argu-
ment for this statement is as follows: Tha fre-
quency range where our understanding of acoustic
properties of converging-diverging ducts is lack-
Ing, is ncar the cutoff frequency of a relevant
duct mode, 1In this frequency raenge, the axial
vaxiation of wave phase is slow, and the propaga-
tion chavacteristies are hardly affected by compara-
tively small scale changes of the duct shape, as
long as the cross section varies slowly.

3. Wave Equation in a Non-~uniform Circular Duct

In this section, a horn equation will be de-
rived for higher order mode propagation in a non-
uniform circular duct under the following assump-
tions: (i) The slope, b’, of the duct wall remains
small, and (i1) The mude conversion (from one mode
to another) is negligible, 1In addition, modes for
such a non-uniform circular duct will be defined,

The equation is derived first for a small seg-
ment of the duct using locally suitable spherical
coordinates, oand is then transformed into a form
which involves the duct parameters and the axial
coordinate x, ZLet us consider a small sepgment of
the duct and local spherical coordinates (r, 6, @)
as illustrated in Fig. 3, The duct segment is so
short that is may be vegarded conical, that is, b’
hardly changes within the duct segment. The origin
of the spherical coordinate system is chosen some-
where on the axis such that a coordinate surface
f = 8, (cone) tangentially contacts the wall of the
duct segment, The half cone angle 84, is equal to
b' to second order approximation.

With the assumption of harmonic time depen-
dence e~ the wave equation for spherical coor-
dinates is

1.9 2 Q¥ 1 3 ¥ v
:2'[3—5 r —a?>+sin8ﬁ<51ne'a—6) ;

2
L _a_g] +KY =0, ()
sin“0 ¢

where ¥ is the acoustic velocity potential and
k = w/c. With the substitution

¥ o= H(r)Y(B)Q(P), 3
Equation (2) is separated as follows; )
2 ) 2
dH 2 di 2 =7 =
ST+ [k + (;g-) ] H=0, %)
dr [

2 2
1 4 4y &Y (- =
sin 6 a6 \°in @ d6>+ [(eo) (sin e) ] ¥=10, (3

S R "




ORIGINAL PAGE IS
OF POOR QUALITY

{; dz 2 Corresponding to each combination of m and
: -g + m°Q = 0, (6) oy, the solution is uniquely defined In terms of :
= dg the product

-

Here o« and m are the separation constants, and
6o has been inserted for convenience.

We consider Eq. (6) first, the solutlion to
which is

g = oi™, )

Here m must be an integer for Q to be a single
valued functivon, apd is known as the circumferential
mode number, It is obvious that this solution is
valid throughout the duct as long as the cylindri-
cal symmetry is maintained.

Equation (5) is an equation for the associated
Legendre functions. These are not, however, con-
venient for the present problem, The main diffi-

1
e mWJm(ahnn).

‘This eigenfunction is defined throughout the duct,
1 being given by Eq, (9) for a conical sagment or
by Eq. (9a) for a cylindrical segment, Consequent-
ly, a mode, which is in one-to-one cerrespondence
with an eigenfunction, has been defined for a non-
uniform duct,

We now return to Eq., (4). This equction, when
transformed to the duct ¢oordinates, is the one
which governs propagation of 4 mode in the duct,
The necessary transformation is accomplished by re-
placing the local coordinate r with the duct
parameters and the axial coordinate x. To this
end, we use the following relations:

! culty ariszs in determining elgenvalues and in 6 mb’ (13)
transforming thym from the local coordinates to the o ' ’
duct coordinates. Therefore, a simplified form of d d
Eq. (5) will be used here. In the region of inter- Friate el (14)
est 0 S 6 S 6y, one can replace sin 6 by 8 to
the second oxder approximation in b’, Equation (5) ol (15)
can then be written as p

o

2 2 2
d 1 dy o m
g o =) (= Y =0, (8)
de ¢d [(90) (9) ]

This is the Bessel equation,

nN

It is convenient to introduce a normalized

These equations are valid for a point within the
duct segment, and are accurate to the order of
)4,

On inserting Eqs. (13) to (15) into Eq. (4),
we obtain

: variable 1 defined as d2H 2b° di 2 o 2

P St a T -\§) i~ 0 (16)
' =g €} dx

0

L«
;
i
3
|
s
-
!
4
F

{

H

=i

-

where 0 £ 7§ 1. Note that, in the limit 8, ~ 0,
the duct segment becomes cylindrical, and Eq. (9)
is replaced by

n= %: (9a)

where p 1is t'ie radial coordinate in the cylindri-
cal coordinate system.

with the substitution of Eq. (9), Eq. (8) is
transformed into

This is the equation for higher order mode propaga-
tion in a nonuniform circular duct, Its solutions
will be sought in the following section.

4. Higher Order Mode Propagation in a
Circular Cosh Duct

In this section, we seek solutions to Eq. (16)
for the circular cosh ducts described in Section 2.

It is convenient to introduce a new function
®(x), which is defined by

2 2
a4y, 14y 2 _(m -
dnz + T an + [m (“) ]Y 0. (10) H(x) = 3%1' arn

Note that 1  is not a local coordinate variable,
and unlike Eq., (8), Eq. (10) is valid throughout

On inserting this into Eq. (16), we obtain

the duct as long as the assumpt.ions (i) and (ii) re- a%0 2 2
main valid. The physically acceptable solution to -5 + kS - (%) ] ¢ =0, (18)
Eq. (10) is the Bessel function of the first kind. ax’

Thus we have
Y = J (an). (11)

From the boundary condition at the duct wall, eigen-
values are determined as follows

a=aq ,n= 0,1,2 ., . . (12)

opn, being the n-th zero of Jy(a).

where bb’/a has been discarded on the assumption
that it is negligible compared with unity, It can
be readily shown that this equation is also valid

for the fundamental mode propagation (a = 0).

Equation (18) is similax, in form, to the one
dimensional Schroedinger equation, with k2 and
(a./b)2 corresponding to the total energy and the
potential energy respeccively.7 With the substitu-
tion of Eq. (1), Eq. (18) is written as




ﬁ‘ng’rﬁ"‘r‘“v"t"r\'"f’r"mw“r“—"Tyl"":“" A

2
e r2 2 .2
d£2 + [q V, (cosh®y ¢ sech®™f
- sinh(2u) + tanmh ;)] o =0, (19)
where
e - X = j1a
a *

o = (a)? + v, cosh(zn) - (upn)?,

v, - el 1) - @i

Equation (19) can be solved exactly in accor-
dance with the procedure given in Section 12,3 of
Ref, 7, With the incident wave coming from
x = -, the snlution is given by

i i
5 (k, - k)at 3 (, + k)a
=N 2 7t (2 cosh 5)2 +
1 i 1 i
XF(-Z--'Z'(k+a+k_a-D),-2--§(k+a+k__a+a),

1
l-ika;-———— . (20)
+ ez§ + 1)

Here F is the hypergeometric function, N a con-
staat to be determined, and

2
2 ,
ARG
2
g = 4Vo cosh™u - 1.

This solution, £ being replaced by x, can be
written asymptotically at x = *ew as follows
X - -ik4ja oLkex
H]

) - N e

(21a)

X =0

N (L - tk,a) *T(-ik_a) » " THE oLl

i F(%-%(k+a+k_a+u))'P(%-%(k+a+k_n-u'))

N T (L - ik,a) + T (ik_a) . elkpa -1k x

+

(21b)

where T' 4is the gamma function, The asymptotic
solution in Eq. (2la) corresponds to the trans-
mitted wave, and the first and the second terms of
Eq. (21b) correspond to the incident and the re-
flected waves respectively. Requiring the incident
wave to have unit amplitude, we bave

1 1 pfl .t
N=b_1‘(2 2(k+a+k_a+u)) r(z-z(k+a+k_a-a))

P(L- ik a) «T'(-ik_a) "tk pa

.

(22)

r'(%-% (k,a-k_a +o)) -P(—%- 5 (ka-ka-o)
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The solutirn in Eq. (20), Eq. (i7) and the
corresponding elgenfunction will give .ne complete
solution in the circular cosh duct: For the inci-
dent wave given by

¥, = o™y @ n) oMK, et xm e, (29)

the resultant wave in the duct is

i
7 (k= k_)(x - pa)
Y u N eimfPJm(“mn“) L2

b

X X 1

= - -{==~u _.(k +k_)0
X [ea + e (n )] 2 +

L
xE(tetatka-0,%-%katkato),
L 1
- ik+a; (24)

QZ(E"“)+1 '

The reflestion and transmission coefficients
for the wave giplitude can be readily computed from
Eqs. (2la and b), In the case of no mean flow, the
reflection and transmission coefficients for the
acoustic power are obtained as the absolute squares
of the respective amplitude coefficients. In the
following discussions, we will use the acoustic
power reflection and tvansmission coefficlents,
which are given by

costha(k* - k )] + cosh(ro)
cosh[na(k+ + k_)J + cosh(yo)’

2 sinh (7rk+a) + sinh(rk_a)
coshfnu(k+ + k_)] + cosh(ro)’

T = (26)

In deriving these equations, we have used the
following properties of the I’ function.

[P+ 2)]% = ﬁh%)-.
IP(% + iz)lz = ESE&%%;?'

Note that the results given in Eqs. (25) and (26)
satisfy energy conserwation, that is

R+T=1 (27)

5. Numerical Results and Discussions

Some numerical results are presented in
Figs. 4 to 7. Displayed in the figures is the
acoustic power transmission loss (TL) for various
values of the duct parameters and a frequency
parameter (y or ¢). The TL is defined as

TL(dB) = -10 log, (). (28)

In Fig. 4, the TL of the (1,0) mode is
plotted as a function of vy, the cutoff ratio of
the mode at the duct inlet, defined as
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Note that the value of y 48 not less than unity
for propagating incident wave mode, The duct
parameters included in the figure are various val-

ues of B and y = 1 = 1, As expected, the TIL de~

creases with increasing frequency, in a similar way
for different values of [, The rate of the TL
change (dTL/dy) is the greatest in the vieinity of
y = 8, which corresponds to the cutoff frequency of
the mode at the throat, Note that, at y = g, the
TL is nonzero with a value of about 2.5 to 3 dB,
This “esult is in contrast to that of the first
order perturbation solugigns, which predict no
attenuation for vy > g,

In Figs, 5 and 6, the TL of varlous modes ls
plotted as a function of { for various values of
the duct parameters, Here ¢t 1is s frequency
parameter which is defined as

{ = kb, (1 - 5) (30)

Note that @/v is the inverse of the cutoff ratio
at the throat, and that ¢ = 0 corresponds to the
cutoff frequency at the throat.

Each curve (narrow stripe) in these figures
includes the TL of ten randomly selected modes rang-
ing from the (2,0) mode to the (8,5) mode. This
shows that the ¢- dependence of the TL is almost
the same for all the higher order modes., This ve=
sult is remarkable, and is useful especially for
studiecs of multimodal propagation in a converging-
diverging duct., 1In some cases, one may not need to
identify individual modes, An example of such
cages can be found in conjunction with a study of
multimodal radiation from a uniform duckt.8 The
acoustic power distribution vs. y in the duct can
often be inferred from the measured radiation pat-
tern. For a known y-distribution of the acoustic
power, the present result can be immediately ap-
plied to determine the effect of the converging-
diverging section on the multimodal propagation.
Recall that the parameter f contains vy explicit-
ly, not the eigenvalues of modes,

Figure 5 includes calculations for @ = 1.05,
1,25, 1.5 with v = v = 1, Thz result shows that,
for ¢ < 0, the TL is more sensitive to the fre-
quency for the smaller walue of {. We also notice
that the calculations for different modes collapse
better as f incrcases.

Figure 6 includes calculations for different
values of y and T, with f = 1.25, We first com-
pare the curves (narrow stripes) for (v =1, 7= 1)
and for (v = 1, 7= 1.5) in ordexr to see the effect
of 7. For t < -0.15, the TL for T = 1.5 is
smaller than that for 1 = 1. This result is due
to the fact that the duct segment in which the modes
are cutoff, is shorter for T = 1.5 than that for
T=1, (See Fig. 2). However, the two curves do
not show much difference for ¢ > -0.15. This
point will be further discussed later.

We now compare the curves for (v = 1, T = 1.5)
and for (v = 1.5, v = 1.5) in Fig, 6 in order to
see the effect of v. For { <0, the TL is laxger
for v = 1.5 than that for v = 1, 7This result is
the direct consequence of the fact that the larger
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values of v vrepresents the longer converginge
diverging section, The length of the duct segment
in which the modes are cutoff, Increases with in-
creasing value of v,

In Fig., 7, the TL of the (1,0) mode is plotted
a8 a function of 7 for the various values of v,
vy, and B, For vy > f, the TL hardly depends on 7.
For y < B, the TL slightly decreases first with
increasing values of 7, and asymptotically reaches
a constant value near T~ 1,5, It remaing un~
changed for further increase of the value of T.
This finding suggests that the results of the pre~
gsent investigation can be used for studies of high-
er order mode transmission from a contoured inlet
duct,

To account for the last statement, we consider
a contoured inlet duct as {llustrated in Fig, 9.
The inlet duct is produced from a circular cosh
duct with a large value of 7T, The circular cosh
duct is terminated at a distance where the duct
radius is 1.4b_. The cutoff frequency at the
termination, is smaller than that of the lefthand
side uniform duct element by the factor of 1.4,
Thus, for a propagating incident wave mode (y > 1),
the reflection due to the duct termination is neg-
1igib1e.9 It follows then that the TL for the con-
toured inlet duct is expected to be the same as
that for the full eircular cosh duct.

It should probably be mentioned that the slope
b’ can be fairly large for a large value of 7 1in
a portion of the diverging section, Although it
seems to violate the assumptions used in the analy-
sis, the numerical results remain valid., The sup-
porting argument is that, in the first place, the
slope remains small within some distance downstream
from the turning point where the mode changes from
cutoff to cuton. In the second place, the sound
attenuation takes place mostly in the duct segment
vhere the mode is cutoff, whereas the diverging
section, like a loud-speaker horn,l® helps the un~
attenuated portion of the sound to be radiated,
The radiation efficiency 1s not sensitive to the
glope as long as the duct divergence is smooth and
the frequeney is not close to the cutoff frequency
at the termination.? Lastly, even a fairly large
slope, e.g., b” = 1, is not so large as to inyali-
date the approximations made in the analysis. TFor
instance, for b’ = 1, 8, = w/4 and sin 85 = 0,707;
thus, the crrox involved in replacing sin 95 by
6o 1s ubout 11%.

6. Concluding Remarks

In an attempt to improve the undexstanding of
the acoustic characteristics of a fan duct system,
we have investigated higher order mode propagation
in a particular class of converging-diverging cir-
cular duct, called '"the circular cosh duct." The
duct shape can be adjusted by means of three duct
parameters, covering a wide range of converging-
diverging ducts of practical interest.

An approximate wave equation has been derived
and exact closed form solutions have been cbtained.
No mean flow effects have been included. The ex-
pressions for the reflectiou and transmission coef-
ficients of a mode are simple, With an appropriate
choice (f) of frequency parameter, the results have
been shown to be nearly independent of individual
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Figure 1, - Circular cosh duct, (B=v =1 =1,5),
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Figure 2. - Various shapes of circular cosh duct.
DUCT SEGMENT ~
T o
oy

Figure 3. - Duct segment and local spherical coordinale system.
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Figure 4, - Power transmission loss of (1,0) mode versus frequency
parameter for various values of B, with v=1=1,

Figure 5, - Transmission loss versus g, for B = 1,05,
1.25, and 1,5, for v =t =1. Each curve (stripe) in-
cludes 10 modes ranging from (2, 0) mode to (8, 5) mode.
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Figure 6. - Transmission loss versus , for v=1, T=1;
v=1 1=15 v=L5 1=15 with p=1.25 Each
curve (stripe) includes 10 modes ranging (2, 0) mode to
(8,5) mode.
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Figure 8, - Inlet duct, produced by terminating circular cosh duct with
v=p=15 T=30
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