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TWO-PHOTON EXCITATION CROSS-SECTION IN LIGHT AND INTERMEDIATE ATOMS

K. Omidvar
NASA/Goddard Space Flight Center
Laboratory for Planetary Atmospheres
Greenbelt, Maryland 20771

Using the method of explicit summation over the intermediate states and
LS coupling an expression for two-photon absorption cross section in light
and intermediate atoms in terms of integrals over radial wave functions is
derived. Two selection rules, one exact and one approximate, are derived.
In evaluating the radial integrals, for low-lying levels, the Hartree-Fock
wave functions, and for high-lying levels hydrogenic wave functions obtained
by the quantum defect method have been used. A relationship between the
cross section and the oscillator strengths is derived. Cross sections due
to selected transitions in nitrogen, oxygen, and chlorine are given. The
expression for the cross section should find usefulness in calculating the

two-photon absorption in light and intermediate atoms.
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I. INTRODUCTION

Multiphoton absorption of laser beams by atmospheric atoms and molecules
and subsequent flucrescence of these particles provide a sensitive tool for
remote sensing and monitoring of the atmospheric species.1 To determine the
strength of the atomic fluorescence, evaluation of the atomic absorption cross
section is necessary.

Several methods for evaluation of the cross section are available.2 A
suitable method often used is a sum rule or inverse Green's function method
due to Dalgarno and Lewis3 which has been applied by several authors4’5’6 to
two-photon absorption in atoms. The method, except in resonance absorptionss,
provides reliable results for the cross sections.

An alternative method is the method of explicit summation over the
intermediate states. The convergence of the photoabsorption cross section to
its final value with respect to the addition of intermediate states, as will be
shown, is rapid. An advantage of the method is that the angular integration of
the electric dipole matrices appearing in the expression for the cross section
can be carried out in general for atoms, leading to an expression for the cross
section in terms of radial integrals.

Here we use the method of explicit summation over the intermediate
states. A formula for the cross section in terms of integrals over atomic
radial wave functions using LS coupling is given. The method is applied to the
two-photon excitation cross section calculation in nitrogen, oxygen, and chlorine.

We restrict ourself to cases where the interaction potential between the
radiation field and absorbing atoms is small compared to the atomic Hamiltonian.

Then the time dependent perturbation theory can be used to derive the cross

section.




The two commonly used forms of the interacting potential, V(t), are the
electric dipole form, V(t) =-e§(t).¥, with E(t) the electric field vector and

>
r the position vector of the electron undergoing transition, and the velocity

form or the Coulomb gauge form of the potential given by V(t) = (e/mc) 2. ;,

. . *> . . >
where e, m, ¢ have their usual meanings, A is the vector potential, and p

? is the momentum of the transient electron.7
Lamb8 has suggested that the electric dipole form should be used, sinc.
this form agrees with measurements. Bassani et al9 have shown that for the
resonance cases, where the difference in energy of atomic levels is a multiple
of the photon energies and for 1ls*2s transition, the two forms give the same
results, but with respect to the inclusion of the intermediate states the
velocity form converges much slower.
Kobe7 has verified Bassani et al results, but has shown that for the
non-resonance cases the two results are different. However, Grynberg and
Giacobino10 have shown that by taking into account some small terms neglected
, by Kobe the differences between the two forms disappear.

In addition to the two distinct forms of the cross section due to the
two forms of the interacting potentials, the cross section has three forms
depending whether length, velocity, or acceleration forms are used for the
electric dipole matrices. These forms give identical results if exact atomic
wave functions are usad, but in practice where approximate wave functions are
used, they can te employed to test the accuracy of the applied approximate wave
functions. In this way six different forms for the cross section are found.
For reference these cross sections, except the acceleration forms, are de-
rived from the Schoedinger cquation in Appendix I, treating the radiation
field classically and the atomic Tield quantum mechanically. The results are

identical to results by fully guantum mechanical treatment. Since the
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acceleration forms are seldom used they will not be given here. Also in
Appendix 1 an order of magnitude formula is given for atomic N-photon absorption
cross sections.

In evaluating the electric dipole matrices a choice should be made about
the atomic wave functions. It is assumed that LS coupling is valid for light
and intermediate atoms under consideration.

However, for transitions involving the ground or the final state and a
highly excited state the validity of the LS coupling becomes questionable. It
is more appropriate to use jK couplingll, where the total angular momentum
of the core (atom minus the highly excited state electron) is coupled to the
orbital angular momentum of the highly excited electron, and the resultant
combines with the spin of this electron. This approximation is not being used
here.

For evaluation of the radial integrals, iur low-lying levels single con-
figuration Hartree-Fock wave functions, and for highly excited states hydro-
genic wave functions obtained through the quantum defect method have been
used. It has been verified that the result obtained by this method for the
excited states agrees within a few percent with the result obtained by the
Hartree-Fock calculation. Use of the hydrogenic wave functions leads to
considerable savings in the computer's time.

The use of the single configuration wave function is not justified for
a precision calculation. The calculated -ross section using this function
may be off sometimes by factors of two or more from the more accurate multi-
configuration wave functions. The task of a more accurate calculation is left
for the future.

In this paper contribution of the intermediate states that fall in the

9,12 that in

continuum have not been taken into account. It has been shown
the electric dipole gauge approximation which will be used here the contribution

of the continuum intermediate states is small compared to the discrete inter-
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mediate states. While inc¢lusion of this contribution is straightforward,
algebraically is cumbersome. It is believed that this contribution should

be considered only after other approximations which make comparable contributions
to the cross section have been removed.

In Section II that follows angular integration over the electric dipole
matrices is carried out, and the cross section is expressed in terms of the
radial integrals. Two selection rulez ..re also derived, and a crude method
for cross section calculation using :he osciliator strength is given. In
Section III ¢vnss sections for selected transitions in N, O, and Cl are giveu.

For the specific problem of the two-photon excitation in atomic oxygen, in
Appendix II populdtion of the excited and ionized states of the excited atoms as
functions of the laser pulse duration, the collision time of the atom with the
ambient gas in the atomosphere, and the atmospheric opacity to the probling laser

beam have been calculated. Results are presented graphically and through a
table.
II. FORMULATION

A. Angular Integration of the Amplitude
We carry out the angular integration over the amplitudes given in the
Appendix by Eq. (Al4). Since we are dealing with light and intermediate atoms,

we assume that LS coupling provides a valid coupling scheme. The state la> is
then given by

la> = | (a,S, L n2)SLIM,> (1)

In this expression n& is the principal and angular momentum quantum numbers

of the active electron undergoing transition, SlLl is the spin and orbital

angular momentum quantum numbers of the residual atom, and o) represents all

other quantum numbers of the residual atom. SLJMJ are the spin, orbital, and

total angular amomenta of the atom, and MJ is the projection quantum number of J.
The evaluation of the dipole matrices can easily be accomplished by the

use of the powerful method of Racah. In evaluating the matrices in (Al4) we

make use of (1) to expres. |i>, |m>, and |f>. We also use the notation



A
-> ‘s :
Z e.r = P (10) where r, are the position vectors of the atomic electrons, and

i-"-Hr

->
P (10) is the z~component of P = Zi r (Ref. 13). It should be noted that

i
summation over m stands for a summation over the principal, azimuthal and
magnetic quantum numbers of the intermediate states as well as an average with

respect to the initial, and a sum with respect to the final magnetic quantum

numbers.,
We designate the initial, intermediate, and final states by the unprimed,

double primed, and primed symbols, respectively. Then (Al4) can be written

i (2) 7‘ /W/,,,"/;',’/{,-'l_, sSLISLTSL Y J /1 2
| g, = Y” )/E ,,/ E.-E(~»"P°L'T")+E

where T is defined in the following.

For the case of non-equivalent electrons in a shell T is given by14
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All symbols have their usual meanings and
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where %, is the larger of % and Q', and an and Rﬁ%, are single electron
radial wave functions.

In the above we have assumed that the residual atom designated by the
quantum numbers allel is "frozen", and does not change its state during the
transition. Similarly, the total spin angular momentum S does not change

during the transition.

If there were n equivalent electrons in a shell, the expression for T

becomes14

T = i (PusL [P tas,) IsL) 7

/‘f = yn (44 (4,5,L,) rom-CF O
where Tnon-eq. is given by (3) and the arguments of Teq. and Tnon-eq. are the

same. The bracketed term is the coefficient of fractional parentage in which
2Ma SL are the quantum numbers of the shell that has equivalent electrons,
and 2n-1(allel) LSL are the quantum numbers of a hypothetical shell with n
electrons in which there is an active electron with angular momentum quantum
number £, a residual atom with quantum numbers Qn_l(allel), and the shell
has the total spin and orbital angular momenta quantum numbers S and L.
Tables of numerical values of the coefficients of fractional parentage are
given by Racah15 and Rohrlichlé.

We can combine (3) and (4) with (27 for the case of non-equivalent
electrons, and (3), (4), and (5) with {2} for the case of equivalent
electrons to expwess tiue cross sectioa in terms of radial integrals.

In addition, sincs variation of E(n"ﬁ"L"J';) with respect to J'*' for

light and intermediate atoms is slipght and of the order of the fine
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structure constant, we take the average of E(n & L J ) with respect to

J'', and sum only the numerator in (2) with respect to J''. Then the cross

section can be expressed as

(6)

s 2l AL ROIATIR AT 1
7(SLT>SL'T) =ynYE /3':'/: EEL T oE /

/ * 3
R(‘o}i'n’//:f@’/(ﬂ R@,ﬁ(f) ror (7)

where C(L''L'') are constants expressed in terms of 3-j, 6-j symbols, and
the coefficients uf fractional parentage, and are obtained by comparing {6)
and (7) with (2) through (5). For the case of non-equivalent electrons it

is given by

d(’L) (—.)ﬁ'f‘/-f-l S+L+ /——[(ZL'f")(ZL*‘}(l:THj (J.:T-H}]

L L, Ll/' _23’ v fSTLY(sT L
x(zL”-u) L ,,j, Z__( ) (27+1) ’

WA N A S ) RV i
j_ J_// I J_/ j_lz /
xD_
MJ M:r —MJ. 0 MJ —MI 0 (8)

tt 1 1
where 21 is the larger of £ and & , and Qz is the larger of & and &% .
For the case of equivalent electrons anologous to Eq. (5) the right-hand

side of (8) should be multiplied by the coefficient of the fractional

parentage.

———




B. Selection Rules

1. An exact selection rule. We consider the expression in squared

bracket on the right-hand side of (3) consisting of a summation with respect

| to MJ. Since MJ is a demi-variable, the expression does not chonge in value

if we let MJ*~MJ. Making use of the properties of the 3-j symbnls17 it

follows that
‘., Y VA
T 7 1\[/T T | T T LY/T T |

2 =2

M. My My 0 M -M 0 M, MmO M My o (9)

E ~(r+T+2T+2) 3 77 0 \/7 3

(-)

MJ. M:r _M.‘:’ 0, M:T "M, o

Therefore the expression vanishes unless J+J!'+2J'' is an even integer. For
J, J', and J'' integers this implies that J'-J should be even. Then of all
permissible values of J' only J' = J, J+2 are allowed.
For J, J', and J'' half odd integers, the condition J+J'+2J'' even
: also implies that J'-J must be even. Then again J'=J, J+2. We therefore
have the following selection rule:
Jr-J=0. 42 (10)
This rule is in addition to the usual selection rules for single transitions
in which AL = +1, AL = Q, +1, and AT = ¢, +1, where &, L, and J have their
: usual meanings. |

2. An approximate selection rule. This approximate selection rule

arises when we neglect splitting of a level with a given S and L due to
different J values, i.e., the fine structure splitting, and applies to the
case when J' = J. With the neglect of the J spiitting the denominator inside
the squared bracket on the right hand :zide of (2) La2cemes independent of J'!,

and the sum with respect to J'' in (2) cau (e wone analyihicilly.

Q-
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For J' = J the sum with respect to MJ on the right-hand side of (3)
becomes equal to 1/3 (¥~Z, 17). Then the sum with respect to J'' in (2),

using (3), becomes

> 7" SJL}SJL' 25+l

- } (11)
( 2 -ﬂ) 4 P " ':( )
J—h ( J ) L .]" I L J‘" (lL‘u'] S(L
Eq. (11) was derived using the orthogonalization of the 6-j symbols.l7
Eq. (11) implies that
L' -L=0when J' -J =0 (12)

i.e., when the initial and final total angular momenta are the same, the
initial and final orbital angular momenta should also be the same. Tt will be
shown in the next section that transitions for which J'=J have large cross

sections. When (12) holds, (3) reduces to

7 (m/m" Wt L, SLISUT'sSLT)

"’W—ei‘

¥ () f+ Pk x-['(zz_w) (:.:H'} (1L+')(°-7*')7

LLLyfL s’ "\t 14"
x(2 L% f N S R AR A U2

(13)
Using (2) we see that cross sections due to transitions which are

forbidden according to (12) are of the order (24/Y2)2 times smaller than
allowed transitions, where Z is the effective chargs acting on the transient

electron, and vy is the fine structure constant.

C. Method of the Oscillator Strength to
Calculate the Cross Section

A method used by McIlrath, Hudson, Aikin and Wilkerson18 employs the

available values of the oscillator strengths to calculate multiphoton

-10-
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excitation in atoms and molecules. The approximation in the method consists

in neglecting all intermediate terms represented by the summation with respect
to m in (Al4) except one term with the largest oscillator strength. In this way
an order of magnitude cross section is calculated. The advantage of the method
is that no elaborate calculation is necessary, and use is made of the most
accurate oscillator strength values available in the literature. However,

when no strong line occurs in the transitions considered, the calculated values
may be fur off from the true values. Examples wiil he given for N and O using
this method of calculation.

The oscillator strength betwoen two levels oy and «., is defined bylg

flAr>%) = AE (o o)

&S Lml)SLTM, /Ze r. ](ar’SLm/jS' ™ p2) )
-’13‘1‘! MM

where AL(@ s U ,) is the enexgy difference vetween the two levels, and
other terms have been defined previously. Eq. {14) can be evaluated from (3)
by letting in this equation the primed quantities to become unprimed, and the

deuble primed quantities to become primed, and neglecting the phase factor:

/{q{pf’(‘,,} :LAE(O( X o)L+ ) (2w 1) (2 T"”)

L L / 1/5 I W' F
o }/@///,P(u va

When equivelent clectrons are in a shell, tie coscillator strength is

(15)

obtained by multiplying the right hand sidz of (15) by the factor
n(QnOSL 1[ Q“'I(QISELJ)QSL)k, all wotations being defined follewing eq. (5).
We now introduce the line “trungfh‘saadgj and the multiplit strength

Lo 10
‘9‘7&%} by the followlig equuations”

Gep o1, BTHA2TY j S TL e
/- -

—~prs &
P \',: "f"'/ rw

¢
il
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, g JL L 2)*
50(644)-:(J.S-H)(J.LH)(J.L+')/;(‘l/;-l) v =7 (17)
A
When equivalent electrons are in a shell, the multiplit strength is obtained

by multiplying the right hand side of (17) by the factor n(knaSL E'Qn—l(allel)RSL)z.

L The absolute line strength is now defined by13

2 o , %
f | S(I"T,} =FL) F (M) [/; (‘!/;-')]('»/// Poyu?2>[ 0®

| The line strength is normalized such that

| R S

2_ L) =1 as)
Jr’

[ It theii follows that the absolute multiplit strength is given by

’ 2 ~/ 70’ 2 9
S(L>L)=X S>T)= Srat)[ 04 8-0] [ luPirni=P3[ 0
Jr’

Through Eqs. (15)-(18) the oscillator strength for transitions between two

} levels could be expressed in terms of the absolute line strength20

, -1
I'd
0( "90( ):_’_ 2 | ! J (21)
/( > 3( J’-r)AE(a(JIa(J,) S(T-»7
An approximate expression could also be obtained for the oscillator strengths
tor transitions between two multiplets. The approximation consists in

neglecting the energy differences of different levels within a multiplet.

Using the definition

-1 -1
/(’(L_"’ «,) =(25+1)(aL+1) 2_ (27+1) /(afj“"’(r) (22)
T —_—

i ' and Eqs. (20)-(22) we find that

E -1 -1 / .
: (23)
E -f(“/l_—’oi_z)?_:}L().S-H)().L-H)AE(’(L,o(L,)S(L""LJ

: .
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where AE (qL,aL') is the average value of AE(aJ,aJ,) with respect to J and J'.

If only one intermediate term is included in the sum in (Al4), this

equation can be written -

(z)?:a')/z___:. [

’ <F/P(Io 10 (24)
ey m,/MZf IS¢ TPoalrS]

JMJ"’ T’
where we have averaged with respect to the initial, and summed with respect t~

! e
the intermediate and final magnetic quantum numbers, and I', ' and I' stand

Ittt
for (allean)bLJMJ, (a,S,L.n %

ty o1t
15151 JSL J MJ" and (ul 1Lln 2 )SL J M

respectively.

Eq. (211 can be expressed in terms of the oscillater strengths by

making use of (3) and (15):

(2) 377)’51-’—' 2J'-rl /("’("’ } /)(J'" 9,
q "N'(E -E, E} 2T+ AE(O('-M() QE(A "’3—,)}

1y 7? |
T:q’[%%(m M o)( (25)

In the above 7 is a number of order unity. Tor J=J', § =1. Eq. (25) is the

desired equation for calculation of the =ross section.

Volues of multiplet strengths have bheen tabulated by Goldberg21’22. It

is interesting to note that the tables given by Goldberg are contained in the

simple c¢xpression due basically to Racah given by (17). In the tables, however,

values of the nmultiplet strengths are mot listed for separate parents for the
case of equivalent electrens in a shell, —athar values corresponding to sum
over the parents are given, while liq. {177 vives vaiwue of the multiplet

strength for individus? parent. Also, tables by Goldberg give the square of

CooAgls i
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the transition amplitudes, while in the present calculation values of the
transition amplitudes are necessary. The use of the Racah's formulas for

multiphoton absorption cross section calculation then is a necessity.

III. RESULTS AND DISCUSSIONS

Formulas derived in the previous sections have been applied to the two-
photon excitations in atomic nitrogen, oxygen, and chlorine. In using the
explicit summation method, for low lying intermediate states use has been made
of the single configuration numerical Hartree-Fock wave functionszs. For
high-lying levels we use hydrogenic wave functions with non-integer principal
quantum numbers fixed by the quantum defect method. This is justified since
for highly excited atomic states hydrogenic description of the states are
valid.

The hydrogenic wave functions with non-integer principal quantum numbers 3
used here is in the form of an asymptotic expansion discovered by Eddington
and Suguira as reported by Bates and Damgaard.20 This function, not being a
hydrogenic eigenfunction, diverges at the origin. However, for exact radial
wave functions the value of the integrand in the integral given by (4) vanishes
at the origin, and for highly excited states has small values for distances
from the origin of the order of the Bohr radius a . Then to circumvent the
problem of divergence, we introduce a lower limit cutoff in the integral (4)
equal to a- It can be shown numerically that the value of the intzgral is
insensitive to the slight variation of this cutoff.

In evaluating the radial integrals, states are divided into two groups,
according to whether the values of their wave functions are given through
Hartree-Fock, or hydrogenic wave functions. It is tested that values of
the integral does not change appreciably by switching some states at the

boundary of the two groups from one group to the other.

-14-
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We choose transitions which lead 1o strong emission lines, since fluore-
scence from these lines are being detected. The initial state as a rule is the
ground state. The final state is chosen depending on the range of the laser
frequencies and allowance of the selection rules. In this way only a few
suitable transitions can be found for each atom.

For the case of atomic nitrogen we consider the two transitions 2p3 4803/2

3/2

second transition could be 1/2, 3/2, 5/2, 7/2. However, J' = 1/2 and 5/2 are

a4 .
- 2D2(3P)3P ASog/q’ and 2p3 's° > 3P2(3P33P4D07/2. Values of J' in the

forbidden by the selection rule (10). Also J' = 3/2 is forbidden by the
approximecte selection rule (12). Then we are left with J' = 7/2 only. The
coefficient C(Q"L") from (8) for the first transition arec C(01) =-0.19245 and
C(21) =-0.33490, and for the second transition are C(01) = 0.14903 and C(20) =
0.029805.

Table 1 gives values of cross sections for the two transitions. For each
case 8 intormediate states have been employed, and contribution of each inter-
mediate state to the total cross section is shown in the teble. Addition of
mwore intermediate states would change the cross section in the third significant
figure. Expressed in cm4, we find thst for 83/2 > 83/2 transition the cross

. . ~3 4 . . y
section is 2.74x1l0 cm , while for h;/

(¥ 4

5 T D7/7 transition the cross section

<~

is 3.97x107°° cm4, almost u factor of 7 smaller thuan the first transition. In
411 cases ¢masidered it seems that the cross section is largest when the
initiel and finai orbital and iotal angular moment2 are the same.

Using the method of the oscillator strenech, cross sections for the two
and 6.9x107°¢ cm?,

. L 4 3 340, .. 3
for the caze of atomee oxygen the transiticns 2po Py 2p7('S) 3p 7P

transitions by Eq. (537 are 5.2x10

0,2

Lave boecn considored. 01 the three valuew of Ji=0, 1, 2, the value J'=1 is

excluded chraugh ¢ serecticon rule (10Y.  Using {#) the coefficients C(2''L''")

Mt Y ‘
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for J'=0 are C(00) =-0.036289 and C(22)=0.1283, and for J'=2 are C(00) =-0.0072578

and C€(22)=0.2566.

Table II gives cross sectional values in oxygen for the final angular
momenta J'=0 and 2. Similar to Table I, eight intermediate states and their
contributions are included. Expressed in cm4, the cross sections 00(0),

7 6.60x10"2%, and 6.77x10"3%cnm®,

0,(2) and 0 _; are given by 1.71x1072
where 9o is the sum of the two cross sections. It is seen that the cross
section for the transition in which the total angular momentum does not change
is 39 times larger than when it changes by 2 units.

Pindzola6 has calculated cross sections for the above transitions in
atomic oxygen, using the inverse Green's function method of Dalgarno and
Lewis.3 Using the electric dipole form of the interacting potential he obtains
a value of 7.62x10'36cm4 for Oo1 Considering the many approximations used in
the present paper, the agreement between the two independent methods, if not
accidental, is striking, and is an indication of the reliability of the cross
section.

These cross sections can also be calculated using the method of oscillator
strength. Using the value of the oscillator strength24 for the single inter-

mediate state 3p3(480)35380 and Eq. (25) we find for GO(O), 00(2), and Oor the

7 36 6

values 1.88x10 > , 2.35x10° 7", and 2.54x10" %0cm? respectively. Therefore the

value cf Oor by this method is by a factor of 2.7 smaller than the value of

ot obtained by the method of explicit summation.

The value of 00
1

using the method of oscillator strength given by

T
8 . -36 4 . .
for ¢ ., 1s 7.13x10 ““cm’ which is by a factor of 2.81 larger

McIlrath et al
oT

than Ot given here. The discrepancy is due to the neglect of some weighting

factors in (25) by these authors.

-16-




In the case of atomic chlorine the transition considered is 3p5 ZPg/Z -+

)
3/2°

series are C(01)=-1/9, C(21) =-1/18, and C(22)=-1/6. Table III lists 1l

3p4(3P)4p2P Using (8) the coefficients C(&''L'') for the 3 intermediate

intermediate states and their contribution to the total cross section. In

terms of cm4 the total cross section is 1.89x10'56cm .

IV. SUMMARY AND CONCLUSIONS

Using Racah's formulas an expression for two-photon absorption cross
section for light and intermediate atoms in terms of integrals over radial wave
functions is derived. An exact and an approximate selection rules, in addition
to known selection rules, are found. The formulation is applied to selected
transitions in atomic nitrogen, oxyvgen, and chlorine.

Wher oscillator strengths calculated using single configuration Hartree-
Fock approximation are tested against more accurate tabulated values, on
occasions they are different by factors as large as 2-3. This suggests that
cross sections calculated here may also be different from their accurate values
by these factors.

In a more accurate calculation in the future multiconfiguration Hartree-
Fock wave functions should be employed, iK coupling scheme should be considered
for the excited states, and continuum intermediate states should be included.
In addition, length and velocity forms of the cross sections as given in
Appendix I should be emploved to test the accuracy of the wave functions
employed.
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APPENDIX I: DEVIATION OF TWO PHOTON ABSORPTION CROSS SECTION

The transition probability for a particle to go from an initial state
1li> to a final state 1f> when the interaction potential is turned on from time
to to time t is given byz7

WGiE) = [<£luce,e ) [i>]? (A1)

where U(t, to) is the evolution operator. The transition amplitude in
different orders of the interaction potential can be sxpanded in the following

27
way ' :

00
<flu(t, t0)|i> = § <f|U(n) (t, t°)|i> (A2)

n=1

The two-photon absorption process corresponds to the second order amplitude

given by27

(//U(?)flfo)/ > —f; Z/U/"/—O/i' [e (1- ¢,)

/’m(t) —4.&.) ('é t)-)l’/” (f;) e-¢a)‘_(f'l-'l‘,,}J

where we have introduced w = Ek/# E, being the eigenvalue of the eigenstate

(A3)

1k>, and Vij(t) are the expectation values of the time dependent interaction
potential V(t).

In empty space the vector potential of the radiation field is given by

/’ /4 [eﬁ(t { r-an‘)]-;- ezf,[ (‘ﬂ wi'/]
£ 75 [enp (it s onp (200 ]

where X is the propagation vector, and w is the frequency of the field. The
approximate equality in (A4) results from the fact that in the visible range

of the spectrum KeFecl.

-18-



The first term on the right hand side of (A4) corresponds to the absorption
of photons from the field, and the second to the emission of photons into the
field.

Since we are dealing with absorption cnly, the first term will be used in

i the calculation. The interaction potential in the length form is then given by

b d -3 -> - ' t-
| e - W
V) =-eZ E(¢)r. =578 =l e (
| < c 4" Af J

- >
— -
\{ = —<e Kk ZA" ¢, (A5)

l where ;i is the position vector of the ith atomic electron. Substituting

the potential given by (AS5) in (A3) and making the plausible assumption that

t - we find that

A1)e> =5 Z €Il dm 1515

t £,
X_J/’;/f)-}r;/fi £2€L7h liﬁ(éjp-h))1ﬁ'+'€'f,-¢'&%”(1%-“f1)..Af(aigfhi}{l,,éEt: ]
= S

- <//l/$/m><m/l/;/4> €z, (léf"‘.‘%f—z"wt‘j

B ;’;2'('&)4.—&3"+w+c'éj(_a>‘.~&3,+2-0 -+ 2¢'e)

Y (A6)

where we have introduced the converging factor €. At the end we let 0.
i The choice T e while convenient is not valid when the perturhative time is
comparable to the periods of atomic orbitals (Of the order 10"17/22 sec, where
Z is the effective charge acting on the transient electron).
Let us assume that the first order transition is zero. Then by letting
2er¢ we obtain from (Al) and (A6)

)_ |
. e U/v;/mxwm/z)/ &€
W(L—a/jz '7";';; /%__ 5’@"“%"“‘*."’: R '('w‘.-af/-n.wjl_,éz (A7)

R e
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Using the definition of the transition rate and by letting €0 we obtain

R - dw tq/z—<{/l//~><~»/w» 2 €

i; w» W= @ € (l«)"-a?-r).uj‘.,. et (o)
! \ LAY
| R— /Z =W 0 reE /5( “omWpt2a) )

[

We now substitute the value of V0 from (A5), but first we relate Ao to the

e

average field intensity T which is an observable quantity, while AO is not.

From the definition of the Poynting vector we have that

—_— c = > wr 2
I=’-"‘/—; Exn =2.wc'40 (A10)

Making use of (AS) and (A10) in (A9) leads to

1y/z: /'m)('»;/ze )< / Stagn)

A . - - - . - - +
e being a unit vector in the direction of the polarization vector A .
The transition rate is related to the two-photon absorption generalized

i cross section 0(2) by

i (ZJ —_— 2 ;
R: ad (I/;';w) (A12)

% Combination of (All) and (Al2) leads to

| "

: (l}

E

.= —_ W.—-W, +2W0 (A13)

:
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g = S’rz)’E

—— -

@ /Z f/?:ed-;/~>(-/§é‘-3/i)/z (AL4)
E,-E +E

where v is the fine structure constant and E =% w is the energy of the photons.
We notice that 00(2) has the dimension of 4th power of length while 0(2)
has the dimension of 4th power of length multiplied by time, and R has the
dimension of inverse of time.

The converging factor ¢ introduced in (A6) has a physical meaning. It is
proportional to the width of the final state. The §-function in (Al13) can then
be shown to be approximately equal to th/w, where Te is the lifetime of the

final state.Zb

Equations (Al13) and (Al4) are identical to similar equations derived by

fully quantum mechanical methods.26

Making use of the commutator relationship

<H ¢ 3"“//“> = Cl; 2(5;5 /AZ‘/j(L’ [<.7la) (A15)

where Eab = Ea - Eb is the encrgy difference between states la> and 1b>
in rydberg units, end a, is the Bohr's radius, (Al4) can be written in the

alternative form

/{/Z-Q‘ /M}(m—: Ze V/4>/(A16)
E”"f (E.M+E)

Energies in (Al6) are expressad Zu rydberg. While for exact atomic wave

() .4
O = §rlatnd) Y E" Z

L'

functions the twc expressions (A14] and (Al6) are equivalent, they differ for
approximate wave functicus. The degreec of the difference is usually taken as

a measure of the accureccy of the approximate wave functions used.




If we had to use the velocity form or Coulomb gauge form of the potential
given by
V(t) = (e/mc) Rp (A17)

we would obtain the following value for 9, (2):

(z.) 4 o - <{/Z V/on)(o» Ze AN
ﬂ?a "ao' )/ E /Z ._ E 4 E (A18)
Making use of the commutator relationship (A:.), (A18) can be written
&Y 2 -2 E/,,, <//Z-_e /")(’"/Ze r/>/ (
G =977 /Z 9

L.-—E-f'E

We therefore have four equivalent forms for the cross section. These
forms can be used to test the accuracy of the wave functions used.

According to the principle of microreversibility if the total Hamiltonian
remain invariant under the time reversal, the transition probability in the
reverse direction is the same as the direct transition.

H(-t) = H(t) :? R(f,1) = R(i,f) (A20)
% It is seen from (A4) that the time dependent part of the Hamiltonian is
invariant under the time reversal. The reverse transition corresponds to
the emission into the field, and the creation operator Ko exp(iwt) should be
used. The cross section for the reverse process is obtained by letting in (Al4)

i i%f and w>w. Then (Al4) is transformed into

/Ze [ 4.,2_‘
g =57 )’E/Z<//-E-E)</ eru/““"”
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Eq. (A21) is however not an independent equation, since by the conservation of
energy Ef-Em-E = Ei-Em+E, and (A21) is the same as (Al4).
Making use cof the closure relationship, an upper bound and an order of

magnitude value can be found for 00(2). According to this relationship

A4 -y A - . i 2, .
(//e-r/”?’ "”/eor < :-—({ r A224
Z@ 22 /<> L1 71<> (A224)
where |i> represents the tctal wave function of all electrons in the atom or

the moiecule. However, when one electron wave functions are used, as usually

is the case, (22A) should be replaced by
Z Y1 1my il 8713 = ({1 ¥l
_ﬁtq/g.:’m)w/é.?/;; ,

where M stands for occopied atomic or molecular shells inaccessible to the

(A22B)

transient electron. Eq. (Al4) can then be written

(2)

; 2
Uo' <1ﬂ(27.77Q:}1[(€_ _,Ei-rE)”/”]

xlfil&:,‘{//rz/“}”% —é—’-<//’£"?//’7)<ﬂ1/é';’/&')/ (A23)

where in (Ef-Em—E)min, Em corresponds to an intermediate eigenvalue which is
closest to 1/2 (hi-Ef).
Since the energy ratio and terms insjide the bars in (A23) are of the
order unity, the two-photon absorption cross sections in atoms and molecules
n, -2
are expected to be of the order of 2ﬂ(2ﬂyaoz)2ﬁ»1.035x10 Scm4. For the

threec atoms N, O, and Cl1 considered hers, indeed the calculated cross sections

differ from the ahove number within a factor of 5. The znergy denominator



]

L e

in (Al4) as a rule does not vanish, since Em for any m can only accidentally

fall halfway between Ei and Ef.
The above order of magnitude calculation can be generalized to N-photon

absorption cross section calculation. Using the formula for this cross section2

the order of magnitude expression will be given by

O(UW) 2w(2nya,) /t/ra//

~2n(l2a¥xis 7) (4.54 x10 /Q” N2 )

Thus for the three and four photon absorption cross sections we get respectively

-70 6 -104 8

6.41x10"'“cm  sec and 3.97x10 " cm sec? (Compare Table I of Ref. 2). On the

other hand the single photoabsorption cross section is of the order cf

4ﬂ2ya02 —18cm2.

= 8,04x10
Since the derivation in this section was based on perturbation theory,

it is in order to find the validity of the theory in dealing with intensities

of short pulsed laser beams. The validity criterion is that eE <r> <<V, where

Eo is amplitude of the electric field of the laser beam, <r> is the average

atomic radius, and Va is the atomic potential. From (A5) and (Al0) we find

that [E | =f27T/c. We also assume that <r> is of the order of the Bohr

radius a,: If we then express the energy of the lazer beam € in mJ, its

cross sectional area A in cmz, and its pulse duration 1y in n sec, the value

of [Eo[<r>a in volt will be given by

| “9 65‘( A25
E I<Y>0L(V) X p. 725 X10 //A(c,,,*;”’;j(n/u;) (A25)
L

Since the atomic potential is of the order of electron-volt, for the perturbation

theory to be valid we must have ]E0I<r>a<<1. As an example, for a typical
case of € = 1 mJ, A =10 4cm2, and T, = 10 n sec, we find the laser interacting

potential to be 0.00229 eV, indicating the validity of the perturbatiion theory.
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APPENDIX II: POPULATION DYNAMICS

A. Rate Equations. With the knowledge of cross sections for different

processes, we can calculate population of different states at the end of

a laser pulse. TFor simplicity we assume a three level atom consisting of
the ground, excited, and ionized states. The processes that should be taken
into account in the rate equations are the following: (a) Resonance two-
photon absorption by the ground state, (b) Resonance two-photon emission by
the excited state, (c) Spontancous emission of the excited state, (d)} Photo-
innization of the excited state, (¢) Triple and higher multiphoton coherent
ionization of the ground state, (f) Radiative recombination of electrons and
jons which follows ionizations, and finally (g) Population and depopulation
of atomic states through collisions with the ambient gas.

Tt will be shown in Section B that for laser duration of interest (e)
can be neglected. Similarly, radiative recombination lifetimes are too long
compared to the short-pulsed laser beams, and (f) can be neglected. In
dealing with more complex atoms than those dealt with here a fast recombination
process, namely dielectronic recombination, occurs which should be taken into
account. In this case autoionizing processes should also be accounted for.
Here we neglect these processes.

Finally it will be shown in Section € that for gas densities less than
1017/cm3 corresponding te the atmospheric conditions atove 30 Km the collision
effects can ce nezlected,

Additicnal assumptions are that the two-phcton excitation is the only
mode >f excitation ¢f the ground statc, and ail electrons that cascade by
the sponteneous emissions end up in the ground state, i.e., no metastable

states exist.

v
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We are then left with four processes (a) through (d). Let Nl’ NZ’ N3

represent the instantaneous population of the ground, excited, and ionized
states, and No the initial population of the ground state. Then N1+N2+N3 = Nj.
The rate equations for these states are given by

OIN/OI*—-Q(.. + A, M g A = oy =K,

12

I )= ANy, Aaa= Ry + R T Alf ), 4= R

Tn these equations Ryy = GO(Z)TSINZ is the rate for two-photon absorption

or emissioii. TS is the smaller of the inverse of the laser's band width or

IMafit = dy W, = Aus Wy, &, =R, +ZAlfm] @

the atomic Doppler widthls, and IN is the number intensity of the laser's
beam in units of cm'zsec-l. R1 =0y IN is the rate of single photoionization
of the upper state with o the photoionization cross section, and finally
A(f,m) are the Einstein's transition probabilities for going from the upper
state f to the intermediate states m, where Em<Ef.

The initial conditions at t=0 are that N1=No, 2-N3-O Strictly speaking

the values of N2 and N3 at t=0 are determined by the Boltzman factors. How-
ever, for conditions of interest in the laboratcry and stratosphere the error
due to the neglect of these factors is extremely small.

Subject to the above initial conditions (A26) can be solved by the

standard methods leading to

- [ ) ]

iz
o
7, e (A27)
:!3; o [l_éz-/4 ’17_1_ €1'4 ’Z';] !
N, AT-A"
M
Mo
A

it

T )

/2
2
i:",lj' o(n .,.o('“- z I(a(u”a(u} * 1/0(,20(2,] })
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T being the duration of the laser's pulse. From the above it is easily

verified that N1+N2+N3 = No'

Since the validity of (A27) is based on the validity of the perturbation
theory, T or the duration of the laser's beam must be much larger than the
orbital period of the running atomic electron (Cf. Appendix I).

The above equations are applied to find the state population of atomic
oxygen due to interaction with a laser beam of energy 1 Joule, a radius of
the cross sectional area at the position of interaction of 18 cm, and a
variable pulse length.

The parameters needed to evaluate (A27) are 00(2), 9y and Zé(f,m). Values
of 00(2) are given in Table II. Since oy is the photoionization cross section
of the excited state, the quantum defect method25 employing hydrogenic wave
functions can be used to find its values.

In calculating o, we notice that initially the electron is in the state

2p3(*s°)3p3P. The final states then should be 2p°(*s%)es’s® and 2p°(*5%)ed’p®,

where € 1s the energy of ejected electrons. Using tables of energy levels24
we find by extrapolation that the quantum defects of €s and €d arc approximately

1 and 0. Then the photoionization cross sections for these two states and

19 9

their sum can be calculated and are given by 0.972x10 7, 0.119x1071 , and

0.109x10" 8cm?.

(2)

Using the valves of o and ¢, we find that R, = 8.45x10"6TS/T2, and

1 2r

Ry = 3.16x10‘4/r.

In calculating EmA(f,m), with good approximation we can replace this sum

3

by the transition probability for the strong line 2p33p3P - 2p335 S with an

oscillator strength of 0.898 (Ref. 24), leading to a transiticn probability

of 8.42le7/sec.

With Rqr, R, and ZmA(f,m) so determined, (A27) can be evaluated for the

us

cases Ty =T, and Tg=Tys T being the inversc of the Doppler width. Results
J

are presented in Figures 1 and 2.

Cieans §



e A » ) S S ‘““"—""'—~w—"ww'-“ﬂlll

In Figure 1 the form R2r=0°(2)TIN2 has been used for the two-photon rate.

As is seen both N2/No and NS/N0 have constant values for very short pulses up

to t=10"10

i
E

sec, then they fall off exponentially. In the regions that these
ratios are constants, (A27) take a simple form. For T<<10-7, it can be

shown that Air<<1, and (A27) reduces to

NI, 2 1= R, T[1-L (A%a-R)T]

Moy, = Ry TLI-5 (4A"™+47) T ]
| No [Ny 22 ‘éf an.r Fz' (

- TETETEVTREEREE e

(A28)

showing that NZ/No and NS/No appruach constant values for short pulses.

The expression for N2/N0 given by (A28) is in full agreement with a

18

similar expression given by McIlrath et al™", since their expression is the

limiting value of N2/No given by (AZ7).

f In Figure 2 the alternative form R2r=co(2)TDNN2 has been used. In this
1

figure three distinct regions are noted. For 1<10~
4

5 both ratios are constants.

For 10 1%<1<10™? the ratios fall as the inverse of T, and for 151077 the ratios

decrease as 1/T2. These behaviors can be seen from (A27) as follows:

When T r=1.o7x10'15/rz, while R, and I_A(f,m) have the same

S=TD’ R2
values as before. The following cases follow:

(i) 1<10"%, Eq. (A27) shows that A"T>>1 and A1<<1, leading to the

I A (i

following limiting forms:

M//Va x,l/).J /\(,_//Vv/,:; l/z_J M,/A/,Q’,—z':- RT (I.. I/Q_Rz;t) (A29)

e

Then to first order the three ratios have constant values in agreement with

R

Figure 2.
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- o+
(i1) 10 "7<1<10 7. In this case A"1<<1l, leading to the following

limiting forms:

<
)
NN, 2l MM 2R, T Mo LR BT wo
Then N2/N0 and NS/No fall as 1/t in agreement with Figure 2.

=7
(iii) T>10 '. In this case %A(f,m)>>R1>>R leading to the following

2r’

limiting forms:
NNyl | M, N 2 Roy [ Z AlE,m),

(A31)

N IV, Rz.rR:T/;A(f;”}

Then N2/N0 and NS/No fall as 1/T2 in agreement with Figure 2.

Case (ii) for NZ/No is in agreement with the result of McIlrath et 31.18

4<1:<10‘9

Therefore their result is valid for 1071 , which is the important
range of T in application.

The results for Nz/N0 and NS/No given in Figures 1 and 2 are combined
in Figures 3 and 4. It is seen that the ratios N2/No and NS/No have almost
constant values for T<1.266x10'10 sec. Then they fall off rapidly. The

constant values are 0.845x10™° for N2/N0 and 1.335x107° for NS/No'

B. Effect of Three-Photon Ionizations

The energy of the laser beam is sufficient to ionize the ground state -
through three~photon ionization. This process is different from the two-
photon excitation of the greund state and the phntoionization of the excited
state in two respects. The former is a coherent, while the latter is a
non-coherent process. In addition the former vprocess depends on the
population of the ground state, while the latter devends on population of

both the ground and the excited states.
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When the three-photon ionization of the ground state is included, the
last equation in (A26) should read

st/dt = R1N2 + RSNl (A32)

where R; is the rate of three-photon ionization. We substitute Ny and N,

from (A27) into (A32) and carry out an integration with respect to t. The

following result follows:

Moo LS d R[4 (- 7)-2 (- 770)]
N, A'-A -
_+'1e qﬂ. '-/4 (} '/411 - °6I /4 (? ’74‘t-]

For short pulses, 51m11ar to the derivation of (A28), A 1<<1, and (A33)

(A33)

reduces to
~lod RT+RT
Aé//\/ 2 T B TRy (A34)

Realizing that R3=0 (3) N ,

the right-hand side of (A34) is given by 200(3)/00(2)0

the ratio of the second term to the first on

T. Making use of (A24)

1
is of the order of 4ﬂyaozg2.56x10_18cm2, the value of

-17/T.

and the fact that 01

this ratio is given by 4.84x10

-17

We therefore conclude that for T>>10 sec, the three-photon ionization

can be neglected. Similarly, higher order processes can be neglected.

C. Collision Time. Collisions or molecules under study with the ambient

gas have dual effects. They broaden the absorption and emission lines,
and have quenching effects on the excited states.

To obtain a rough estimate of the collision time we use the classical
picture that molecules are made up of hard spheres. Then the collision rate

is given by28

L2 a2 /2
E-virmnm (nen) (7 +7) (a35)
-30-
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where ry and Vi are the radius and average velocity of the molecule under
study, and n,, T, and Vé are the density, radius and the average velocity
of the ambient gas.

We use (A35) to calculate the collision rate of the excited state

2p3(4S°)3p3P of oxygen with the ambient gas. The average value of the radius

of the excited state of oxygen according to the Hartree-Fock calculation is

given by 3.67x10—8cm. For simplicity we assume that the ambient gas is made
up of 80 percent of N2 and 20 percent of 02. Based on the hard sphere model
and the viscosity data, and neglecting a slow varying temperature factor,

the radii of N, and 0, are given respectively by 1.88x10 %cm and 1.81x10 Scm

o TTERRSEEETETE

(Ref. 28). Using (A35), the rate coefficient k, and the collision time T,

arc given by

-/0
’.&:_-@/f»l 2 0.437 %10 Y -
7:."“’/@ =~ 2,29 x/0 'o/szT

29

Using the atmospheric data for densities and temperatures™ , (A36) have

been evaluated. Results for T. as functions of altitude are given in Table IV

Rt e

and Figure 5. It is seen that in the range of 20-120 Km the cellision time

: . . Y . - . .

{ is larger than the Doppler time T v 1.266x10 10sec. However, for altitudes
less than 30 Km, the collision time becomes comparable to the average lifetime
of the excited states. For these altitudes the rate equations in Section A

should be medified.

D. Opacity Calculation

It is of interest to estimate the absorption of the probing laser beawr
before it reaches its target. The main absorbing processes are the resonant
two phcton absorption by atomic oxygen, and the single photo-absorption by

02 and 03. The effect of these three processes will be calculated below.

rwv\;—,-rnr AP it i At et
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The intensity at any height h is given by :

I, =1 e (A37)

=
o]

where Io is the initial intensity and A is the optical depth. For single

photo-absorption A is given by

E _ A =f’£[}:420"]6/*— (A38)

where n, are the densities of different constituents in the atmosphere and

o, are the corresponding photo-absorption cross sections.

We consider laser radiation of wavelength 2256R. The single photo-

i absorption cross sections for O, and O, are given by30

2 3
24 2 -18

0(0,) = 4x10 “"cm™, ¢(0,) = 2.75x10 cm2

2) 3)

Using the density profile for O, and O3 (Ref. 29) and the above cross sections

2
the ratio Ih/I0 can be calculated. This ratio is plotted versus the altitude
in Figure 6. It is seen that below 50 Km the laser beam in substantially
absorbed by the ozone.

B In calculating the two photon absorption by O, it should be kept in |

mind that part of the radiation absorbed are given back to the ficld through

the two-photon stimulated emission. Stimulated emission should also be

taken into account for single photo-absorption, but due to the weakness of

the intensity the effect can be neglected. It can then be shown that

N
where P = N2/No is a small number (Cf. Fig. 3), and has been neglected. n

is the density of atomic oxygen.
Using values for column density of atomic oxygenzg, the ratio Ih/IO

t . . . . R .
E for absorption of atomic oxygen is plotted in Figure 6. It is seen that

-32-
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in the range 120-20 Km this absorption is less than 2 percent and is
negligible compared to absorption by 03 and 02.
In Table IV distances in horizontal directions equivalent to unit

optical depth for various altitudes due to absorption of A=22567 radiation

S T T T

by ozone are given.
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TABLE IY. Temperature, column densities for O, 0., and O,, the total column
density, the collision time Tos and distances equivalent %o unit optical depth
for absorption of A=2256A radiation by ozone, Xo, as functions of the altitude.

N(cm”z)
h(km)  T(°K) 0 0, 0, Total T (sec) X, (Km)
120 360 1.68+17 3.92+16 1.18+8 6.01+17
115 300 2.25+17 7.26+16 4,93+8 1.23+18 1.06-3 4.85+9
110 240 3.21+17 1.56+17 2,06+9 2.50+18 5.75-4 1.16+9
105 209 4.64+17 3.90+17 8.58+9 5.11+18 3.03-4 2.79+8
100 195 6.45+17 1.06+18 3.58+10 1,04+19 1.55-4 6.69+7
? 95 188 8.73+17 2.91+18 1.49+11 2.12+19 7.76-5 1.60+7
90 187 1.04+18 7.72+18 6.23+11 4.32+19 3.79-5 3.84+6
85 189 1.12+18 1.96+19 2.60+12 9.35+19 1.66~5 9.20+5
80 199 1.15+18 4.72+19 1.09+13 2.25+20 6.17-6 2.20+5
73 208 1.16+18 1.08+20 4.52+13 5.14+20 2,74-6 5.29+4
70 220 1.17+18 2.36+20 1.89+14 1.13+21 1.26-6 1.27+4
: 65 233 1.17+18 4.94+20 7.96+14 2.36+21 6.09-7 2.99+3
| 60 247 1.18+18 9.92+20 2.97+15 4.73+21 3.07-7 8.37+2
: 55 261 1.18+18 1.92+21 9.29+15 9.16+21 1.60-7 2,.88+2
| 50 271 1.18+18 3.61+21 2.86+16 1.72+22 8.64-8 9.41+1
45 264 1.19+18 6.76+21 8.94+16 3,22+22 4,69-8 2.99+1
E 40 250 1.19+18 1.30+22 2.74+17 6.20+22 2.44-8 9.87+1
} 35 237 1.19+18 2.60+22Z 7.41+17 1.24+23 1.20-8 3.88
; 30 227 1.19+16 5.38+422 1.68+18 2.57+23 5.72-9 1.94
- 25 222 1.10+18 1.15+23 3.34+18 5.46+2%3 2.66-9 1.10
% 20 217 1.19+18 2.48+23 5.61+18 1.18+23 1.22-0 8.00-1
&
i
i
;
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FIGURE CAPTIONS

Figure 1. Fraction of atomic oxygen in the excited 2p3(4S°)3p3P and ionized

states, Nz/No and NS/No’ as functions of the laser pulse duration T using

(2 ; 2
TIN .

e/A=9.82 joule/mz, where € is the laser's energy, and A is its cross sectional

the relationship R2r =0, The laser pulse has the characteristic

area. The calculated values are valid for T<T, shown by the solid curves.

D
L) is the inverse of the Doppler broadening Vp and is taken to be 1.27x10_105ec,

corresponding to 300°K. The position of T is shown by the vertical solid line.

(2) 2

Figure 2. Similar to Figure 1, but for RZr =0, TDIN . The calculated

values are valid for T>TD.

Figure 3. Combination of Figures 1 and 2 for N2/No values. N2/No is also
the fraction of atoms at the end of each pulse that undergo spontaneous

emission.

Figure 4. Combination of Figures 1 and 2 for NS/No values. NS/No is also

the fraction of atoms that are ionized.

Figure 5. Collision time of the excited state (3p3P) of oxygen with the

atmospheric gas as functions of altitude using gas kinetic cross sections.

Figure 6. Atmospheric absorption for A=2256A& radiation due to 03, 02, and O
as functions of the altitude for rays that propagate vertically downward. I0

and I, are intensities at 120 and at the height h, respectively. Absorption

h

by O is due to two-photon processes.
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