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TWO-PHOTON EXCITATION CROSS-SECTION IN LIGHT AND INTERMEDIATE ATOMS

K. Omidvar
NASA/Goddard Space Flight Center

Laboratory for Planetary Atmospheres
Greenbelt, Maryland 20771

Using the method of explicit summation over the intermediate states and

LS coupling an expression for two-photon absorption cross section in light

and intermediate atoms in terms of integrals over radial wave functions is

derived. Two selection rules, one exact and one approximate, are derived.

In evaluating the radial integrals, for low-lying levels, the Hartree-Fork

wave functions, and for high-lying levels hydrogenic wave functions obtained

by the quantum defect method have been used. A relationship between the

cross section and the oscillator strengths is derived. Cross sections due

to selected transitions in nitrogen, oxygen, and chlorine are given. The

expression for the cross section should find usefulness in calculating the

two-photon absorption in light and intermediate atoms.
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I. INTRODUCTION

Multiphoton absorption of laser beams by atmospheric atoms and molecules

and subsequent fluorescence of these particles provide a sensitive tool for

remote sensing and monitoring of the atmospheric species. I To determine the

strength of the atomic fluorescence, evaluation of the atomic absorption cross

section is necessary.

Several methods for evaluation of the cross section are available. 2 A

suitable method often used is a sum rule or inverse Green's function method

due to Dalgarno and Lewis 3 which has been applied by several authors 
4,5,6 

to

two-photon absorption in atoms. The method, except in resonance absorptions 5,

provides reliable results for the cross sections.

An alternative method is the method of explicit summation over the

intermediate states. The convergence of the photoabsorption cross section to

its final value with respect to the addition of intermediate states, as will be

shown, is rapid. An advantage of the method is that the angular integration of

the electric dipole matrices appearing in the expression for the cross section

can be carried out in general for atoms, leading to an expression for the cross

section in terms of radial integrals.

Here we use the method of explicit summation over the intermediate

states. A formula for the cross section in terms of integrals over atomic

radial wave functions using LS coupling is given. The method is applied to the

two-photon excitation cross section calculation in nitrogen, oxygen, and chlorine.

We restrict ourself to cases where the interaction potential between the

radiation field and absorbing atoms is small compared to the atomic Hamiltonian.

Then the time dependent perturbation theory can be used to derive the cross

section.

r
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The two commonly used forms of the interacting potential, V(t), are the

electric dipole form, V(t) =-et(t).r, with E(t) the electric field vector and

r the position vector of the electron undergoing transition, and the velocity

form or the Coulomb gauge form of the potential given by V(t) = (e/mc) A . p,

where e, m, e have their usual meanings, A is the vector potential, and p

is the momentum of the transient electron.7

Lamb  has suggested that the electric dipole form should be used, sine-

this form agrees with measurements. Bassani et al  have shown that for the

resonance cases, where the difference in energy of atomic levels is a multiple

of the photon energies and for ls-}2s transition, the two forms give the same

results, but with rospect to the inclusion of the intermediate states the

velocity form converges much _,slower.

Kobel has verified Bassani et al results, but has shown that for the

non-resonance cases the two results are different. However, Grynberg and

Giacobino 10 have shown that by taking into account some small terms neglected

by Kobe the differences between the two forms disappear.

In addition to the two distinct forms of the cross section due to the

two forms of the interacting potentials, the cross section has three forms

depending whether length, velocity, or acceleration forms are used for the

electric dipole matrices. These forms give identical results if exact atomic

wave functions are used, but in practice where approximate wave functions are

used, they can ve employed to test the accu-^-acy of the applied approximate wave

functions. In this way mix different forms for the cross section are found.

For reference these cress sections, except the acceleration forms, are de-

rived from the Sc^hoedinger Jtiva'L ion in Appendix 1, treating the radiation

field classically and the otomir .7ield quantum mechanically. The results are

identical to results by ful,, r gLiantiim mechanical treatment. Since the
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acceleration forms are seldom used they will not be given here. Also in

Appendix 1 an order of magnitude formula is given for atomic N-photon absorption

cross sections.

In evaluating the electric dipole matrices a choice should be made about

the atomic wave functions. It is assumed that LS coupling is valid for light

and intermediate atoms under consideration.

However, for transitions involving the ground or the final state and a

highly excited state the validity of the LS coupling becomes questionable. It

is more appropriate to use jK coupling 
11, 

where the total angular momentum

of the core (atom minus the highly excited state electron) is coupled to the

orbital angular momentum of the highly excited electron, and the resultant

combines with the spin of this electron. This approximation is not being used

here.

For evaluation of the radial integrals, fur low-lying levels single con-

figuration Hartree-Fock wave functions, and for highly excited states hydro-

genic wave functions obtained through the quantum defect method have beer)

used. It has been verified that the result obtained by this method for the

excited states agrees within a few percent with the result obtained by the

Hartree-Fock calculation. Use of the hydrogenic wave functions leads to

considerable savings in the computer's time.

'The use of the single configuration wave function is not justified for

a precision calculation. The calculated ;ross section using this function

may be off sometimes by factors of two or more from the more accurate multi-

configuration wave functions. The task of a more accurate calculation is left

for the future.

In this paper contribution of the intermediate states that fall in the

continuum have not been taken into account. It has been shown 
9,12 

that in

the electric dipole gauge approximation which will be used here the contribution

of the continuum intermediate states is small compared to the discrete inter-

-4-
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mediate states. While inclusion of this contribution is straightforward,

algebraically is cumbersome. It is believed that this contribution should

be considered only after other approximations which make comparable contributions

to the cross section have been removed.

In Section II that follows angular integration over the electric dipole

matrices is carried out, and the cross section is expressed in terms of the

radial integrals. Two selection rule. .,.re also derived, and a crude method

for cross section calculation using -;,ate oscillator strength is given. In

Section III cross sections for selected transitions in N, 0, and C1 are wive,,.

For the specific problem of the two-photon excitation in atomic oxygen, in

Appendix II population of the excited and ionized states of the excited atoms as

functions of the laser pulse duration, the collision time of the atom with the

ambient gas in the atomosphere, and the atmospheric opacity to the probling laser

beam have been calculated. Results are presented graphically and through a

table.

II. FORMULATION

A. Angular Integration of the Amplitude

!Ve carry out the angular integration over the amplitudes given in the

Appendix by Eq. (A14). Since we are dealing with light and intermediate atoms,

we assume that LS coupling provides a valid coupling scheme. The state la> is

then given by

la> = I(a I S I L l nk)SLJMJ>	 (1)

In this expression nk is the principal and angular momentum quantum numbers

of the active electron undergoing transition, S 
I 
L 
I 

is the spin and orbital

angular momentum quantum numbers of the residual atom, and a l represents all

other quantum numbers of the residual atom. SLJMJ are the spin, orbital, and

total angular auomenta of the atom, and 
N1  

is the projection quantum number of J.

The evaluation of the dipole matrices can easily be accomplished by the

use of the powerful method of Racah. In evaluating the matrices in (A14) we

,Hake use of (1) to expres. 'i. >, Im` and 'f>. We also use the notation

k	 -5-
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R	 A -► -Y
Eie.r = P (10) where ri are the position vectors of the atomic electrons, and

i
P (10) is the z-component of P = E  r (Ref. 13). It should be noted that

i
summation over m stands for a summation over the principal, azimuthal and

magnetic quantum numbers of the intermediate states as well as an average with

respect to the initial, and a sum with respect to the final magnetic quantum

numbers.

We designate the initial, intermediate, and final states by the unprz-ned,

double primed, and primed symbols, respectively. Then (A14) can be written

4.

Z 2

	

	 7_41n	 (2)L,; SLJSL TSL'JJ
3	

(2)

o- - YW YE 
W

xY L J •,

where T is defined in the following.

For the case of non-equivalent electrons in a shell T is given by 14

SLT S L' J ~5 L^ J ^l

1 Jt 1 JM7^^T^	
<	 <	

r.

^ S I T MT's ?'
x <(a(, S, L, ^': f^^ S L' J ^i+'^ ^l P( ► o^ C^', ^, L,m '^' j S L J _T J°

[(2 L + 1)(2 L"t 1)(2 y 1) (2 1

L,	 .®	 ^^ `'1'^	 s 7 L S J^

I	 'L	 i	 L	 ► L 1''	 L T

M s J	 M ' MJ 0	 /Y^
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'	 All symbols have their usual meanings and

00

R (r) g ( r) r oar
Vo

0

where i^ is the larger of i and i + , and Rni and Rrii , are single electron

radial wave functions.

In the above we have assumed that the residual atom designated by the

quantum numbers a 1S I L 1 is "frozen", and does not change its state during thr

transition. Similarly, the total spin angular momentum S does not change

during the transition.

If there were n equivalent electrons in a shell, the expression for T

becomes 14i „̂ 	sL ^^-^^ S L ,ESL
, ,	 !) 	(5)

where T	 is given by (3) and the arguments of T 	 and T	 are the
non-eq.	 eq.	 non-eq.

same. The bracketed term is the coefficient of fractional parentage in which

ina SL are the quantum numbers of the shell that has equivalent electrons,

and in-1 (a1 S I L I ) iSL are the quantum numbers of a hypothetical shell with n

electrons in which there is an active electron with angular momentum quantum

number i, a residual, atom with quantum numbers i n-1 (aIS 1 L1 ), and the sh,.Al

has the total spin and orbital angular momenta quantum numbers S and L.

Tables of numerical values of the coefficients of fractional parentage are

given by Racah ls and Rohrlich16.

We can combine (3) and (4) with (2.1 for the case of non-equivalent

electrons, and (3), (4), and (5) with (2) for the case of equivalent

electrons tC, e:cp ess 44e cross sectio.z in terms of rac g al integrals.

In add-i tion, sinc.- variation of I(n Q L J ) with respect to J 11 for

light and intermediate atoms is slight and of the order of the fine

(4)
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structure constant, we take the average of E(n FI k L I I J I ') with respect to

J o ', and sum only the numerator in (2) with respect to J o '. Then the cross

section can be expressed as

3 Z 2	 (^L"^^	 ^R ('MYj

t

o

where C(k " L ") are constants expressed in terms of 3-j, 6-j symbols, and

the coefficients of fractional parentage, and are obtained by comparing (6)

and (7) with (2) through (5). For the case of non-equivalent electrons it

is given by

x 
(z 

L t	 „	 L J% 	 L•. J.,

7
7 .7'' 	 1' T ', I

X

M? -MT d (IM J T o
/11-T

t 
	

I I
	

I
where 

X  
is the larger of k and k, and k2 is the larger of k and k.

For the case of equivalent electrons anologous to Eq. (5) the right-hand

side of (8) should be multiplied by the coefficient of the fractional

parentage.

(8)

-8-f
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B. Selection Rules

1. An exact selection rule. We consider the expre:^sa-)r in squared

bracket on the right-hand side of (3) consisting of a summation with respect

to MJ . Since M  is a demi-variable, the expression does not ch^.nge in value

if we let MJr-MJ . Making use of the properties of the 3-j symbi-ls 17 it

follows that

J J!	 J J 1	 J? I	 J? I

- U ^ ^ -M M 0 - M o
7

-- (^ ^ J t ^- J^-r y^	 ^ J ^' !	 J J	 I
M MT -M, O ^

	

	 OM^ -M^ 

J

Therefore the expression vanishes uoless J+J s +2J" is an even integer. For

J, J', and J 11 integers this implies that J'-J should be even. Then of all

permissible values of J' only J' = J, J+2 are allowed.

For J, J', and J 11 halt odd integers, the condition J+J'+2J " even

also implies that J'-J must be even. Then again J'=J, J+2. We therefore

have the following selection rule:

J' -J=0. +	 (10)

This rifle is in addition to the usual selection rules for single transitions

in which Ak = +1, LL = 0, +1, and A.7 = 0, -4- 1,  whcrE Q, L, and J have their

usual meanings.

2. An approximate se lection rule. TfAs at7pruximate selection rule

arises when we neglect splitting of a. 'eve! with a given S and L due to

different J valocc, i.e., the fine strLICturt sp.itting, and applies to the

case when J' = J. With the negl;.(_t (r the J sjolir:ing the denominator inside

the squared bracket on tthc right hand ride of (2) bncemes independent of

and the sum with rt-spect to a) ' ' in (2) caii be (,one ana i)' `Ic'il ly .

-9-



For J' = J the sum with respect to M  on the right -hand side of (3)

	

becomes equal to 1/3	 17). 'Then the sum with respect to J-' in (2),

using (3), becomes

f,.	 I L J	 L J

Eq. (11) was derived using the orthogonalization of the 6-j symbols.17

Eq. (11) implies that

	

L' -L=0 when J' -J=0	 (12)

i.e., when the initial and final total angular momenta are the same, the

initial and final orbital angular momenta should also be the same. It will be

shown in the next section that transitions for which J'=J have large cross

sections. When (12) holds, (3) reduces to

x' [(7 2Lt^1 C27t^^ (zL-t	 2-7-f 1)7
•.	 L, L .^	 L L .^

X (z L *d) ° ^.,	 ^^.^1/ ^°c^^ir^ p̂ SCVy.Al1
L	 .^ L

Using (2) we see that cross sections due to transitions which are

forbidden according to (12) are of the order (Z4/y2 ) 2 times smaller than

allowed transitions, where Z is the effective chargz acting on the transient

electron, and 'y is the fine structure constant.

C. Method of the Oscillator Strength to
Calculate the Cross Section

A method used by McIlrath, Hudson, Aikin and Wilkerson 
18 

employs the

available values of the oscillator strengths to calculate multiphoton

(13)
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excitation in atoms and molecules. The approximation in the method consists

in neglecting all intermediate terms represented by the summation with respect

to m in (A14) except one term with the largest oscillator strength In this way

an order of magnitude cross section is calculated. The advantage of the method

is that no elaborate calculation is necessary, and use is made of the most

accurate oscillator strength values available in the literature. Howev'-r,

when no stxong line occurs in the transitions considered, the calculated values

may be for o££ from the true values. Examples will bt.^ given for N and 0 using

this method of calculation.

The oscillator strength between two levels 01i and aj , is defined by 19

p0(- 
Or,..,)

 
_ A 1r ( err oeT,)

M^. 1 ^ e r. ! l ^i ^i ^-, ',^1 s c ,̂.' -TA1J,> J' (14)

	

41	 ot

	

where AI;(o^j , c4 	 is the energy difference between the two levels, and

other teens .rave been defined previously. Eq. (14) can be evaluated from (3)

by letting in this equation the primed quantities to become unprimed, and the

double primed quantities to become: primed, and neglecting the phase factor:

1. L	 .. r S 
T L M `^"	 /	 (1S)

if r	 t ^.	 ^-
t	 LJ,	 1
lVhen c gtll vaa le?lf .A(-c..t rot;$ are in a shell, t;,c .scillator strength is

obtained by molt i_p; y .-tg the right hand s;Aa of (15) by the factor

n( aSL E Z'"-](aISiI.1)kSL)`, all rtotati.ons being defined following eq. (5)„

'	 the molt" lit strengthWe now ::ntror;:uce t'"i, li.r_c ::trengTth	 ,,,^,) and	 :p	 g

^^/^/,^'^ by t.;:f, t'c ► l.lsw^.^:	 ^c^".tt:t:io,^s
10

A

i-

L



Z	 (17)

When equivalent electrons are in a shell, the multiplit strength is obtained

by multiplying the right hand side of (17) by the factor n(ea,SL Q Rn-l(,1S1L1)RSL)2.

The absolute line strength is now defined by 13
Z _/	 2

	

S(T^ TJ =	 (18)^'.L^ (^l^ C^fy. ,̂-i)^^ ^/l f'C^JI/^'.^j/ 

The line strength is normalized such that

TT'
It the;L follows that the absolute multiplit strength is given by

S(L^ -'^- 	 s CT-^J
"
l= .I°(^lJI^C^.^, ^)J ^^^^1/Pt>> 'P^l 

(20)

TT'

Through Eqs. (15)-(18) the oscillator strength for transitions between two

levels could be expressed in terms of the absolute line strength 20

-r

	

3	 T T

An approximate expression could also be obtained for the oscillator strengths

i;r transitions between two multiplets. The approximation consists in

neglecting the energy differences of different levels within a multiplet.

Using the definition

^-^ 0(, i =(2	 ^t+)	 (^Jtr^ ^^°^ IT
	 71)	 (22)

	

L J	 T 3. .

and Eqs. (20)-(22) we find that

	

L 1! = 7	 L, L

I

-12-
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where AE (a L ,aL ') is the average value of AE(txJ ,aJ ,) with respect to J and J'.

If only one intermediate term is included in the sum in (AN), this

equation can be written -

=
77 Cr

	•'	 L \ F /P(/C,) /r xr /^ ^^ 1 OJ^ r^ l (24)

	

+ E) 
IL 

z'
	

MTA, T.

where we have averaged with respect to the initial, and summed with respect t^

the intermediate and final magnetic quantum numbers, and r, r and r stand

for (aI S I L I nk)SLJMj , (aI S I L In X )SL J MJ " and (alS l Lln k )SL J MJ,,

respectively.

Eq. (2.4 1 can be expressed in terms of the oscillator strengths by

making use of (5) and (15);

2
z^	 77 ay .^ 2 21 t / ^ a,T OT ^̂ )	 ^pr1 •, i °rJ 1/

c	 7y

	

l	 T	 T111)

rz^ 
A

Al h,
'T
 
^'^J v
	 M^

In the above r is a number of orGer unity.

—	 (25)

T
For J=J', r =1. Eq. (25) is the

desired equation for calculation of the cross section.

Values of -multiplet strengths have beep tabulated by Goldberg21 ' 22 . It

is iiaterestii,g to note that the tables given by Goldberg are contained in the

simple expression due basinally to Racah given by (17). In the tables, however,

values of the multi.nlet st rrengths ore not listed for separate parents for the

case of equivalent electrcns in a shell, rath ._,r values corresponding to sum

over the par-^rits -.re given, while i.q. 1'17) , ive , ,allle of they multiplet

strongt'i for indiv.,qua l ir.:,,.rent. Also, tz:blcs by Goldberg give the square of

1



the transition amplitudes, while in the present calculation values of the

transition amplitudes are necessary. The use of the Racah's formulas for

multiphoton absorption cross section calculation then is a necessity.

III. RESULTS AND DISCUSSIONS

Formulas derived in the previous sections have been applied to the two-

photon excitations in atomic nitrogen, oxygen, and chlorine. In using the

explicit summation method, for low lying intermediate states use has been made

of the single configuration numerical Hartree-Fock wave functions 	 ForFor

high-lying levels we use hydrogenic wave functions with non-integer principal

quantum numbers fixed by the quantum defect method. This is justified since

for highly excited atomic states hydrogenic description of the states are

valid.

The hydrogenic wave functions with non-integer principal quantum numbers

used here is in the form of an asymptotic expansion discovered by Eddington

and Suguira as reported by Bates and Damgaard. 20 This function, not being a

hydrogenic eigenfunction, diverges at the origin. However, for exact radial

wave functions the value of the integrand in the integral given by (4) vanishes

at the origin, and for highly excited states has small values for distances

from the origin of the order of the Bohr radius a o . Then to circumvent the

problem of divergence, we introduce a lower limit cutoff in the integral (4)

equal to ao . It can be shown numerically that the value of the integral is

insensitive to the slight variation of this cutoff.

In evaluating the radial integrals, states are divided into two groups,

according to whether the values of their wave functions are given through

Hartree-Fock, or hydrogenic wave functions. It is tested that values of

the integral does not change appreciably by switching some states at the

boundary of the two groups from one group to the other.

k

R

r^

C._	
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We choose transitions which lead Lo strong emission lines, since £luore-

sconce from these lines are being de',.ected. The initial state as a rule is the

ground state. The final state is chosen depending on the range of the laser

frequencies and allowance of the selection rules. In this way only a few

suitable transitions can be found for each atom.

For the case of atomic nitrogen we consider the two transitions 2p3 
4S03/2

-^ "? p ry ( 3 P)3p 4 S0
, 	 and 2p 3 4 So3/2 - 2p2 (3 P)3p4 11o 7/2 , Values of J' in the

second transition could be 1/2, 3/2, 5/2, 7/2, However, J' = 1/2 and 5/2 are

forbidden b; r the selection rule ('10). Also J = 3/2 is forbidden by the

approximvte selection rule (12). Then we are left with J' = 7/2 only . The

r r	 r s

coofficient C(£ I, ] from (S) for the first transition are C(01) =-0.19245 and

C(21) =-U.38490, and for the second transition are C(01) = 0.14903 and C(20)

0.029805.

Table 1 gilts values of cross sections for the two transitions. For each

case b int--rmediate sta.tos have been employed, and contribution of each inter-

mediate state to the total cross section is shown in the table. Addition of

moro Intermediate sates would than cy the cross section in the third significant

figure. r.xpresseJ in en 4, wt- find that for Sy/2 _, S 3/2 transition the cross
_ r

section is 2.?4x1e 1 "' cm4 , wl.i1F_^ for S3/.) 	 1)7/2 transition the cross section

is 3.^1 :tiIO ''^' .,a4 , almost a lactor of ?smaller t}l:.Ln the first transition. In

111 cases t:.n'l ;.i.de:^ ef^ it seems that Ov , cross sec.t.ion is largest when the

init .41 -111d fi.r.a.i nrb.ital and total ai,gulao momenta are the same.

rising the meth-d o -' the oscil iator trenf7e'h, cross sections for the two

transitions by Eq. (;a 1 are 5.2xlJ 36 
3Uld 6. Px10 -36 cm4.

';
^'c, ,, t.}tl' .:'L	 c`r. a! 3IPa.0 o.'y;"011 the -, ran '-;.it:Lt 10 7. 5 .'p	 P., - 2p ( 1 So ) Sp 3Po,.

}7i±1(	 W ;he ti'.r , ,e	 of P-0, 1, 2, the value J' = 1 is

exclllJcd ih r,' i q;}1	 :'ule (10 )1	 Z%'.:.1;? (t') the coefficients C(^'rLr')

y^

'1-4



for J'=0 are C(00) =-0.036289 and C(22)=0.1283, and for J'=2 are C(00) =-0.0072578

and C(22)=0.2566.

Table II gives cross sectional values in oxygen for the final angular

momenta J'=0 and 2. Similar to Table I. eight intermediate states and their

contributions are included. Expressed in cm4 , the cross sections a0(0),

cr0 (2) and 
aoT 

are given by 1.71x10 -37 , 6.60x10-36 , and 6.77x10-36cm4,

where 
aoT 

is the sum of the two cross sections. It is seen that the cross

section for the transition in which the total angular momentum does not change

is 39 times larger than when it changes by 2 units.

Pindzola6 has calculated cross sections for the above transitions in

atomic oxygen, using the inverse Green's function method of Dalgarno and

Lewis. 3 Using the electric dipole form of the interacting potential he obtains

a value of 7.62x10 -36cm4 for 
6oT. 

Considering the many approximations used in

the present paper, the agreement between the two independent methods, if not

accidental, is striking, and is an indication of the reliability of the cross

section.

These cross sections can also be calculated using the ,method of oscillator

strength. Using the value of the oscillator strength 
24 

for the single inter-

mediate state 3p3 (4S0)3s 3 S0 and Eq. (25) we find for a
0
(0), 

00
(2), and 

ooT 
the

values 1.88x10 -37 , 2.35x10 -36 , and 2.54x10 -36cm4 respectively. Therefore the

value of 
aoT 

by this method is by a factor of 2.7 smaller than the value of

0oT obtained by the method of explicit summation.

The value of aoT using the method of oscillator strength given by

McIlrath et al 18 for 
aoT 

is 7.13x10 -36cm4 which is by a factor of 2.81 larger

than 
aoT 

given here. The discrepancy is due to the neglect of some weighting

factors in (25) by these authors.

t

/p
7
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In the case of atomic chlorine the transition considered is 3p5 2P3/2

3p 4 ( 3 P)4p 2 P 0
	

Using (8) the coefficients C(Q '' L ") for the 3 intermediate
3/2'

series are C(01)=-1/9, C(21) =-1/18, and C(22)=-1/6. Table III lists 11

intermediate states and their contribution to the total cross section. In

terms of cm  the total cross section is 1.89x10-36cm4.

IV. SUMMARY AND CONCLUSIONS

Using Racah's formulas an expression for two-photon absorption cross

section for light and intermediate atoms in terms of integrals over radial wave

functions is derived. An exact and an approximate selection rules, in addition

to known selection rules, are found. The formulation is applied to selected

transitions in atomic nitrogen, oxygen, and chlorine.

When oscillator strengths calculated using single configuration Hartree-

Fock approximation are tested against snore accurate tabulated values, on

occasions they are different by factors as large as 2-3. This suggests that

cross sections calculated here may also be different from their accurate values

by these factors.

In a more accurate calculation in the future multiconfiguration Hartree-

Fock wave functions should be employed, jK coupling scheme should be considered

for the excited states, and continuum intermediate states should be included.

In addition, length and velocity forms of the cross sections as given in

Appendix I should be employed to test the accuracy of the wave functions

employed.
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: DEVIATION OF TWO PHOTON ABSORPTION CROSS SECTION

ransition probability for a particle to go from an initial state

li> to a final state lf> when the interaction potential is turned on from time

to to time t is given by 27

W(i-^-f) = l <fIU(t,t0) l L >l 2 	 (Al)

where U(t, to) is the evolution operator. The transition amplitude in

different orders of the interaction potential can be expanded in the following

way
27

00

<f l u(t, t0) l i> _ Z <f l u (n) (t, t0 ) l i>	 (A2)
n=1

The two-photon absorption process corresponds to the second order amplitude

given by 
27
	 t

oliap	 ^^^	 2	 - ^ GJj ^ f — f

^ v

^ll7	
L

Sri i' (M)

where we have introduced wk = Ek/t , E  being the eigenvalue of the eigenstate

lk>, and V
ij

(t) are the expectation values of the time dependent interaction

potential V(t).

In empty space the vector potential of the radiation field is given by

J
^o ^ ex^ (- ^ w t^ f ex^ (t' w f^'

(A4)
where k is the propagation vector, and w is the frequency of the field. 	 The

approximate equality in (A4) results from the fact that in the visible range

of the spectrum r-•r«1.



The first term on the right hand side of (M) corresponds to the absorption

of photons from the field, and the second to the emission of photons into the

field.

Since we are dealing with absorption only, the first term will be used in

the calculation. The interaction potential in the length form is then given by

	

^. r	 oG	 a^

	

Vo = -- ^ a A 1:/90 - C.	 -10(A5)
A.

where r  is the position vector of the ith atomic electron. Substituting

the potcntial given by (A5) in (A3) and making the plausible assumption that

t o-) « we find that

Lj /0	
z— e-	 0

2 _ _

x ^4 dt e	
[^(W,—c^)f t6fr—i	 (f^-2—^^W.tc`^ 4 CZ t- .l

-oo	 -00

2:-,
^IV^/,.>Q^ ( Z^f-,-w.t_2'•wf)

(A6)

z(w^ - -0-^-f c^^JCi4. —w	 E^

where we have introduced the converging factor e. At the end we let e-}0.

The choice 't 	 while convenient: is not valid when the perturbative time is

comparable to the periods of atomic orbitals (Of the order 10
-17

/Z sec, where

Z is the effective charge acting on the transient electron).

Let us assume that the first order transition is zero. Then by letting

2c-}s we obtain from (Al) and (0)

2 E t

_tP -.

L_	 .



Using the definition of the transition rate and by letting e--^o we obtain

g	 Q/q/	 1 l	 <  V ^, ^^•,	 /^'^ 2	 2. 6
Olt '-
	 y

	

/	 (A$)

or,

2
27rI	 (^^^°	 V ^^^

We now substitute the value of V  from (AS), but first we relate A  to the

average field intensity I which is an observable quantity, while A  is not.

From the definition of the Poynting vector we have that

W A. 2
._. 

yn 	 L n C

Making use of (AS) and (A10) in (A9) leads to

2

Z7e r. /,h,^	 2: e . r,e r	 <	 96^ .-W t2.0)	 (A11)

^y c2	 l,4L.-

e being a unit vector in the direction of the polarization vector Ao.

The transition rate is related to the two-photon absorption generalized

cross section 
6(2) 

by

R_ a- ( f/t  W)	 (Al2)

Combination of (All) and (Al2) leads to

C ^,	 C 
1,	

(A13)

6

E t
	 -20-



-V	 4 -i	 2

(2', ^' i	 ^l e , r. ^^.,^> ^^+, I e • r. 1 ^,	 (A14)
U g,^ Y F	 c

where y is the fine structure constant and E =t w is the energy of the photons.

We notice that 50 (2) has the dimension of 4th power of length while a(2)

has the dimension of 4th power of length multiplied by time, and R has the

dimension of inverse of time.

The converging factor E introduced in (A6) has a physical meaning. It is

Proportional to the width of the final state. The 6-function in (A13) can then

be shown to be approximately equal to 2T f/fr, where T  is the lifetime of the

final state. 26

Equations (A13) and (A14) are identical to similar equations derived by

fully quantum mechanical methods. 26

Making use of the commutator relationship

^^ I	 zu p^^G^ ^- (^ 
Z

<	 ^/ r̂^ v/ ^b 
I Q A. r / Q}	 (A15)l Q,^

where Eab = E a - E  is the energy difference between states la> and lb>

in rydberg units, and au is the Bohr's radius, (A14) can be written in the

alternative form

c L^	 3	 y z	 ^,^=	 l S^ l ^' pl^^ 
z

 77 ( 19
(A16)

Y	

ti	 (A16)

E. E ^F' + E

Energies in (A16) are express:-,d :.ii rydberg. While for exact atomic wave

functions the twc expressions (AV! and (A16) are equivalent, they differ for

approximate wave functions. The degree of the difference is usually taken as

a measure of the accurc.cy of the approximate wave functions used.



t

If we had to use the velocity form or Coulomb gauge form of the potential

given by

V(t) = (e/mc) X1-p	 (Al 7)

e would obtain the following value for a( 2)we

3	 q / 274e V,

= 0 n (a. r d	 G	 —	 -f•	
(A18)

Making use of the commutator relationship (A!:), (A18) can be written

V 0 n 3 ^E ^ 

U/ A

 (A19)
= o	 ^

We therefore have four equivalent forms for the cross section. These

forms can be used to test the accuracy of the wave functions used.

According to the principle of microreversibility if the total Hamiltonian

remain invariant under the time reversal, the transition probability in the

reverse direction is the same as the direct transition.

H(-t) = H(t)	 R(f,i) = R(i,f)	 (A20)

It is seen from (A4) that the time dependent part of the Hamiltonian is

invariant under the time reversal. The reverse transition corresponds to

the emission into the field, and the creation operator 10 exp (iwt) should be

used. The cross section for the reverse process is obtained by letting in (A14)
r

iff and w+-w. Then (AN) is transformed into

c2^	 s Z 2	 <^	 t^ ^ ^	 . r. j^•^,
a 	 y ^ ^	 ^ 	 (A21)J77 

^r

s
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Eq. (A21) is however not an independent equation, since by the conservation of

energy ECEm-E = E CEm+E, and (A21) is the same as (A14).

Making use of the closure relationship, an upper bound and an order of

magnitude value can be found for c1o (2) . Aecording to this relationship

^^/^ • Y l^°''> C 1 e • r f ^' = i C ! ! c 	 (A22A)

where Ij> represents the ft tal wave function of all electrons in the atom or

the molecule. However, when one electron wave functions are used, as usually

is the case, (22A) should be replaced by

A . --JV -

	 -',, — I <fi e 2. /4 
*><	 V7 >	 e,

12"	 (A22B)

<	 A .	 /.e" . r

M
where M stands for occopied atomic or molecular shells inaccessible to the

transient electron. Eq. (AN) can then be written

( i)	 2 t	 E	 2

C 2 n (Z ^7 YQ
o 	 (F . _ ^ ,r E

*fop"

t	 2	 ^	 A -i	 z
X 

3
^^^^^ r /^ ...	 a,, ^^ pA. 

r ^ /Yfs (M ! e . r /A,	 (A23)
0	 Al	 0

where in 
(Ef-Em-E)min' 

Em corresponds to an intermediate eigenvalue which is

closest to 1/2 (E i -E f).

Since the energy ratio and terms inside the bars in (A23) are of the

order unity, the two-photon absorption cross sections in atoms and molecules

are expected to be of the order of 27(27ya0 )2 n, 1.035x10 5 cm4 . For the

three atoms N, 0, and C1 considered here indeed the calculated cross sections

differ frohi the above ,lumber within a factor of" S. The energy denominator

k

Y

N
F'

-23-
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in (A14) as a rule does not vanish, since Em for any m can only accidentally

fall halfway between E  and Ef.

The above order of magnitude calculation can be generalized to N-photon

absorption cross section calculation. Using the formula for this cross section 

the order of magnitude expression will be given by

0(
	

Z N	 N- z
 /r^	 N- 2

	

2 17 (1. 2 7 X o 	
N 

y. ^y X 0 I j C"' io%
c ^^- 2 (A24)

Thus for the three and four photon absorption cross sections we get respectively

6.41x10-70cm6 sec and 3.97x10
-104

cm8 sec 2 (Compare Table I of Ref. 2). On the

other hand the single photoabsorption cross section is of the order cf

47r
2,ya

0
2
 = 8.04x10-18cm2.

Since the derivation in this section was based on perturbation theory,

it is in order to find the validity of the theory in dealing with intensities

of short pulsed laser beams. The validity criterion is that eEo<r>a<<Va , where

E  is amplitude of the electric field of the laser beam, <r> a is the average

atomic radius, and V  is the atomic potential. From (A5) and (A10) we find

that JE0 1 = 2^rI/c. We also assume that <r>a is of the order of the Bohr

radius ao . If we then express the energy of the laser beam e in mJ, its

cross sectional area A in cm 2 , and its pulse duration 2 L in n sec, the value

of JEo 1<r>a in volt will be given by

J r	 X	 y	 E ( TJ	 (A25)

a	 A(^ )T( )
Since the atomic potential is of the order of electron-volt, for the perturbation

theory to be valid we must have (Eo+<r>a«1. As an example, for a typical

case of e = 1 mJ, A = 10 4cm2 , and TL = 10 n sec, we find the laser interacting

potential to be 0.00229 eV, indicating the validity of the perturbation theory.

x
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APPENDIX II: POPULATION DYNMIICS

A. Rate Equations. With the knowledge of cross sections for different

processes, we can calculate population of different states at the end of

a laser pulse. For simplicity we assume a three level atom consisting of

the ground, excited, and ionized states. The processes that should be taken

into account in the rate equations are the following: (a) Resonance two-

photon absorption by the ground state, (b) Resonance twi-photon emission by

the excited state, (c) Spontaneous emission of the excited state, (d) Photo-

t.onization of the excited state, (e) Triple and higher multiphoton coherent

ionization of the ground state, (f) Radiative recombination of electrons and

ions which follows ionizations, and finally (g) Population and depopulation

of atomic states through collisions with the ambient gas.

It will be shown in Section B that for laser duration of interest (e)

can be neglected. Similarly, radiative recombination lifetimes are too long

compared to the short-pulsed laser beams, and (f) can be neglected. In

dealing with more complex atoms than those dealt with here a fast recombination

process, namely dielectronic recombination, occurs which should be taken into

account. In this case autoionizing processes should also be accounted for.

Here we neglect these: processes.

Finally it will be sl,o. n in Section t; that for gas densities less than

17	 310 /C111 ` corresp nding to ri p e atmospheric conditions o cive 30 Km the collision

effects can be. neglected.

Additional assurmtion3 are that the two -photon excita-^ion is the only

mode )f excitation of the ground state, alt,? ;:01 electrons that cascade by

the spontaneous emissions One up in the ground .tate, i..c;., no metastable

states exist.



We are then left with four processes (a) through (d). Let N l , N2 , N3

represent the instantaneous population of the ground, eXcited, and ionized

states, and No the initial population of the ground state. Then Nl+N2+N3 No.

The rate equations for these states are given by

2.

..loq	 6(, ^V
1	

0("
	 sr

dN/°(t —°'('32Nd, °`Z2 = R2 r^" ? fL,,^/^ < . J 3s^ R,

Tn these equations 
R 
2 = O'o (2) TS IN2 is the rate for two-photon absorption

i

or emission. TS is the smaller of the inverse of the laser's band width or

the atomic Doppler width 18 , and IN is the number intensity of the laser's

beam in units of cm -"sec - 	R1 = al IN is the rate of single photoionization

of the upper state with o' 1 the photoionization cross section, and finally

A(f,m) are the Einstein's transition probabilities for going from the upper

state f to the intermediate states m, where Hm<Ef'

The initial conditions at t=0 are that N 1 =N
0
, N 2=N3=0. Strictly speaking

the values of N2 and N 3 at t=0 are determined by the Boltzman factors. How-

ever, for conditions of interest in the laboratory and stratosphere the error

due to the neglect of these factors is extremely small.

Subject to the above initial conditions (A26) can be solved by the
l

standard methods leading to

No 	 1

A^. — 0e,	 _ CA+,r 
e A- ,t	 (A27)

Np	 At - ^9

1113 _ 	 (, 4e

I/L

A fi ! °^^ I t ,̂a z 
t 

{0(	
f 

y ^i2 ^i 1
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T being the duration of the laser's pulse. From the above it is easily

verified that N 1+N2+N3 = No.

Since the validity of (A27) is based on the validity of the perturbation

theory, T or the duration of the laser's beam must be much larger than the

orbital period of the running atomic electron (Cf. Appendix I).

The above equations are applied to find the state population of atomic

oxygen due to interaction with a laser beam of energy 1 Joule, a radius of

the cross sectional area at the position of interaction of 18 em, and a

variable pulse length.

The parameters needed to evaluate (A27) are 60 (2) , al and ZA(f,m). Values

of a0(2) are given in Table II. Since a l is the photoionization cross section

of the excited state, the quantum defect method 
25 

employing hydrogenic wave

functions can be used to find its values.

In calculating a l we notice that initially the electron is in the state

2p 3 ( 4S0)3p 3P. The final States then should be 2p 3 (4S0)es 3S0
 and 2p3(4S0)cd3D0,

where a is the energy of ejected electrons. Using tables of energy levels 24

we find by extrapolation that the quantum defects of es and ed arc approximately

1 and 0. Then the photoionization cross sections for these two states and

their sum can be calculated and are given by 0.972x10 -19 , 0.119x10 -19 , and

0.109x10-18cm2.

Using the valves of a0(2) and 
al 

we find that R 2 = 8.45xlO "6 TS/T2 , and

R1 = 3.16x10-4 /T,

In calculating It MA(f,m), with good approximation we can replace this sum

by the transition probability for the strong lane 2p 33p3P -} 2p 3 3s 3S with an

oscillator strength of 0.898 (Ref. 24), leading to a transition probability

of 8.42x107/sec.

With R,,r , 1' 1 and EmAif',m) so determined, (A27) can be evaluated for the

cases TS =T, and TS = 'L D , 'cn being the inverse of the Doppler width. Results

are preseDted in Figures 1 and 2.

r
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In Figure 1 the form R2r` (2)TIN2 has been used for the two-photon rate.

As is seen both N 2/No and N 3/No have constant values for very short pulses up

to T=10 -10 sec, then they fall off exponentially. In the regions that these

ratios are constants, (A27) take a simple form. For T«10 -7 , it can be

shown that A`T«1, and (A27) reduces to

^V IA A ti ! -- R Z rT j! - i 64 to

t

(A28)Ni IN Rir

^/, INV	 2

7 L 1 - 

R 2.r

R , 
IT 

showing that N 2/No and N3/NC, approach constant values for short pulses.

The expression for N 2/No given by (A28) is in full agreement with a

similar expression given by McIlrath et a1 18 , since their expression is the

limiting value of N 2/No given by (A27).

In Figure 2 the alternative form R2r=oo(2)TDNN2 has been used. In this

figure three distinct regions are noted. For T<10
-is

 both ratios are constants.

For 10 -14<T<10-9 the ratios fall as the inverse of T, and for T>10 -7 the ratios

decrease as 1/T2 . These behaviors can be seen from (A27) as follows:

When TS=TD , R2r=1.07x10 -15/T2 , while R 1 and EmA(f,m) have the same

values as before. The following cases follow:

(i) T<10 -15 . Eq. (A27) shows that A+T»1 and A T«1, leading to the

following limiting forms:

N/ No " J/2. Ẑ /Ne ;: VL 3̂ A,, Z i R 'T (i_ ^.R 	 (A29)
J

Then to first order the three ratios have constant values in agreement with

Figure 2.
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(ii) 10 14<T<10-9.

limiting forms:

In this case A*T«1, leading to the following

t

/V, ^/►/^ ,^ Nz I/1/0	 Ra. rT , Al' /No ti i R Z rR 2	 (A3o)
Then N2/No and N3/Ne fall as 1/T in agreement with Figure 2.

(iii) T>10 7 . In this case mA(f,m) »R1 >>R2r , leading to the following

limiting forms:

(A31)

o	 r

Then N2/No and N3/Ne fall as l/T 2 in agreement with Figure 2.

Case (ii) for N 2/No is in agreement with the result of Mcllrath et al. 18
Therefore their result is valid f•jr 10

-14
<T<10 -9 , which is the important

range of T in application.

The results for N2 /No and N3/Ne given in Figures 1 and 2 are combined

in Figures 3 and 4. It is seen that the ratios N 2/No and N3/No have almost

can stant values for T<1.266x10 -10 sec. Then they fall off rapidly. The

constant values are 0.845x10 -5 for N 2/No and 1,335x10
-9
 for N3/Ne.

B. Effect of Three-Photon Ionizations

The energy of the laser beam is sufficient to i.onizE the ground state

through three--photon ionization. This process is different from the two-

photon excitation of the ground state and the pliotoionization of the excited

state in two respects. The former is a coherent, while the latter is a

non--coherent process. In addition the former process cepends on the

population of the grouzid state, while the latter depends on population of

both the ground and the excited states.

-'9-•
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(A32)dN3/dt = R I N 
2 + R 3 

N 1

the three-photon ionization of the ground state is included, the

tion in (A26) should read

r
i

where R3 is the rate of three-photon ionization. We substitute N 1 and N2

from (A27) into (A32) and carry out an integration with respect to t. The

following result follows:

NO	 /^ r	
—/9	 _A*^•	 ^il —^ t — —A T 

(A33)

-f' 
3 L	

t	 1_
For short pulses, similar to the derivation of (A28), A -T«1, and (A33)

reduces to	 2

11V&
 N ' 1i ^1 ,, j	 'Q

Realizing that R3=6o (3) TIN 3 , the ratio of the second term to the first on

the right--hand side of (A34) is given by 2a 0 (3) /cr0 (2) a1 T. Making use of (A24)

and the fact that of is of the order of 47rya0 %2.56x10 -18cm2 , the value of

this ratio is given by 4.84x10-17/T.

We therefore conclude that for T»10 -17 sec, the three-photon ionization

can be neglected. Similarly, higher order processes can be neglected.

C.	 Collision Time. Collisions o)F molecules under study with the ambient

gas have dual effects. They broaden the absorption and emission lines,

and have quenching effects on the excited states.

To obtain a rough estimate of the collision time we use the classical

picture that molecules are made up of hard spheres. Then the collision rate

is given by 28

L	 Z	 Z 1^1

t" - t/T 77 ,V  ( r + rte ) (^i" -r- V̂  /
(A35)
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where r  and v  are the radius and average velocity of the molecule under

study, and n2 , r2 , and v 2 are the density, radius and the average velocity

of the ambient gas.

We use (A35) to calculate the collision rate of the excited state

2p3 ( 4S0)3p 3P of oxygen with the ambient gas. The average value of the radius

of the excited state of oxygen according to the Hartree-Fock calculation is

given by 3.67xlO -8cm. For simplicity we assume that the ambient gas is mPAP

up of 80 percent of N2 and 20 percent of 02 . Based on the hard sphere model

and the viscosity data, and neglecting a slow varying temperature factor,

the radii of N2 and 02 are given respectively by 1.88x10 -8 cm and 1.81x10 -8 cm

(Ref. 28). Using (A35), the rate coefficient k, and the collision time T 

are given by

-/D
^Of	 o.y37 X/0

(A36)

G

Using the atmospheric data for densities and temperatures 29 , (A36) have

been evaluated. Results for T  as functions of altitude are given in Table IV

and figure S. It is seen that in the range of 20-120 Km the collision time

is larger than the Doppler time T D % 1.266x10 lOsec. However, for altitudes

less than 30 Km, the collision time becomes comparable to the average lifetime

of the excited states. For these altitudes the rate equations in Section A

should be modified.

D.	 Opacity Calculatiop

It is of interest -to estimate the absorption of the probing laser beam

before it reaches its target. The main absorbing processes are the resonant

two photon absorption by atomic oxygen, and the single photo-absorption by

02 and 0 3 . The effect or- these three processes will be calculated below.

./
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intensity at any height h is given by

I  = Ioe-A

is the initial intensity and A is the optical depth. For single

sorption A is given by

A 	 (T. ] ^ x	 (A38)
O

where n  are the densities of different constituents in the atmosphere and

cfi are the corresponding photo-absorption cross sections.
We consider laser radiation of wavelength 2256A. The single photo-

absorption cross sections for 0 2 and 0 3 are given by 30
Q(02) = 4x10 -24cm2 , 0(03) = 2.75x10-18cm2

Using the density profile for 0 2 and 0 3 (Ref. 29) and the above cross sections
the ratio I h/I o can be calculated. This ratio is plotted versus the altitude
in Figure 6. It is seen that below 50 Km the laser beam in substantially

absorbed by the ozone.

In calculating the two photon absorption by 0, it should be kept in

mind that part of the radiation absorbed are given back to the field through

the two-photon stimulated emission. Stimulated emission should also be

taken into account for single photo-absorption, but due to the weakness of

the intensity the effect can be neglected. It can then be shown that

A = 2."zr ^ I _2r)n7 V^ N 2 l/n ^ N f '!7 0 z (A39)

fo	 ZN	 S o

where P = N 2/Ne is a small number (Cf. Fig. 3), and has been neglected. n
is the density of atomic oxygen.

Using values for column density of atomic oxygen 29 , the ratio Ikl/Io

for absorption of atomic oxygen is plotted in Figure 6. It is seen that

(A37)

-32-
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in the range 120-20 Km this absorption is less than 2 percent and is

negligible compared to absorption by 0 3 and 02.

In Table IV distances in horizontal directions equivalent to unit

optical depth for various altitudes due to absorption of a=2256A radiation

by ozone are given.
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TABLE I:r . Temperature, column densities for 0, 0 2 , and 0the total column
density, the collision time T , and distances equivalent io unit optical depth
for absorption of X=2256A radiation by ozone, Xo , as functions of the altitude.

N(cm-2)

h(Km) T(°K) 0 02 03 Total Tc(sec) X0(Km)

120 360 1.68+17 3.92+16 1.18+8 6.01+17

115 300 2.25+17 7.26+16 4.93+8 1.23+18 1.06-3 4.85+9

110 240 3.21+17 1.56+37 2.06+9 2.50+18 5.79-4 1.16+9

105 209 4.64+17 3.90+17 8.58+9 5.11+18 3.03-4 2.79+8

100 195 6:45+17 1.06+18 3.58+10 1.04+19 1.55-q 6.69+7

95 188 8.73+17 2.91+38 1.49+11 2.12+19 7.76-5 1.60+7

90 187 1.04+18 7.72+18 6.23+11 4.32.1-19 3.79-5 3.84+6

85 189 1.12+18 1.96+19 2.60+12 9.35+19 1.66-5 9.20+5

80 199 1.15+18 4.72+19 1.09+13 2.25+20 6.17-6 2.20+5

73 208 1.16+18 1.08+20 4.52+13 5.14+20 2,74-6 5.29+4

70 220 1.17+18 2.36+20 1.89+14 1.13+21 1.26-6 1.27+4

65 233 1.17+•18 4.94+20 7.96+14 2.36+21 6.09-7 2.99+3

60 247 1.18+18 9.92+20 2.97+15 4.73+21 3.07•-7 8.37+2

55 261 1.18+18 1.92+21 9.29+15 9.16+21 1.60-7 2.88+2

SO 271 1.18+18 3.61+21 2.86+16 1.72+22 8.64-8 9.41+1

45 264 1.19+18 6.76+21 8.94+16 3.22+22 4.69-8 2.99+1

40 250 1.19+18 1.30422 2.74+17 6.20+22 2.44-8 9.87+1

35 237 1.19+18 2.60+22 7.41+17 1.24+23 1.20-8 3.88

30 227 1.19+15 5.38+22 1.68+18 2.:47+23 5.72-9 1.94

2S 222 1.19+18 1.15+23 3.34+18 5.46+23 2.66-9 1.10

20 217 1.19+18 2.48+23 5.61+18 y.18+23 1.22-9 8.00-1
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FIGURE CAPTIONS

Figure 1. Fraction of atomic oxygen in the excited 2p 3 (4S0)3p3p and ionized

states, N2/No and N3/No , as functions of the laser pulse duration T using

the relationship R 2 _ 00 2 ^TIN2 . The laser pulse has the characteristic

e/A=9.82 joule/m2 , where c is the laser's energy, and A is its cross sectional

area. The calculated values are valid for T<TD shown by the solid curves.

TD is the inverse of the Doppler broadening 
V  

and is taken to be 1.27x10-10see,

corresponding to 300°K. The position of T D is shown by the vertical solid line.

Figure 2. Similar to Figure 1, but for R 2 = 60 (2) TD IN 2 . The calculated

values are valid for T>Tp.

Figure 3. Combination of Figures 1 and 2 for N2/N0 values. N2/N0 is also

the fraction of atoms at the end of each pulse that undergo spontaneous

emission.

Figure 4. Combination of Figures 1 and 2 for N 3/No values. N3/No is also

the fraction of atoms that are ionized.

Figure 5. Collision time of the excited state (3p 3P) of oxygen with the

atmospheric gas as functions of altitude using gas kinetic cross sections.

Figure 6. Atmospheric absorption for a=2256A radiation due to 0 3 , 02 , and 0

as functions of the altitude for rays that propagate vertically downward. to

and I  are intensities at 120 and at the height h, respectively. Absorption

by 0 is due to two-photon processes.
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