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1. INTRODUCTION

The objective of this study is to find an algorithm which
accurately and efficiently estimates production and consumption
patterns in the wheat market when various information con-
ditions are available to the participants. Such an algorithm could be
used to estimate, given a suitable definition of overall "welfare,"
the net value to society of an improved wheat forecasting program
such as the NASA LANDSAT system. Of course, the accuracy of the value
estimates depends on both the information supplied to the program,
viz.: the economic model, and the definition of "welfare," as well as
the operation of the algorithm itself. An economic model of the wheat
sector which is suitable for this problem has been developed by. ECON [1],
and our work has been Timited to 1) precise formulation of the model
within a stochastic control framework, 2) choice and development of a
suitable algorithm to solve the model.

The "theoretical foundation on which our work is based is the results
of stochastic control theory (Witsenhausen £2]) and Markov Decision
Theory (Howard [3], Schweitzer [4], Odoni [5], and varaiya [6]), in-
cluding some new theoretical results on discounted Markov Processes
which will be presented here (and also in Jones [7]). The major
theoretical steps in our work have been:

1) Generalization of the ECON model

2) Definition of stochastic control problem



3) Definition of infinite-horizon discounted rewards

4) Definition of information states

5) Approximation as finite-state Markov chain,
and these results will be presented in Section 2. The choice of algorithm
will be disgusséd in Section 3. We have applied the algorithm to a sim-
plified two-period, one country model, .both for debugging purposes, and
also to get a feel for the behavior of the algorithm in a more tractable
problem than the many-thousand state Markov chain model based on larger
ECON model. For a fixed quantization of the state-space, convergence
is relatively fast and monotonic, and we have every reason to believe
that this rate of convergence will be nearly achieved by the larger -model.
The memory requirement of the algorithm is a small multiple of thé total
number of states. Then the memory requirement increases with the number
of discrete states. Our program is written for a generalized ECON model
which includes muitip]e crops, countries, and harvest times, so no re-
_programming will be necessary for extended models.

In Section 4, a one-country, two period example is treated in detail
and.prob1ems concerning the use and convergence of algorithms, and a
comparison with the ECON results for the same example are considered.

A number of interesting differences between the results are also pre-
sented. ‘

Three appendices are included at the end of the report to provide

further details on the Markov programming algorithm.



2. THEORETICAL FORMULATION

2.1 Introduction

The first step in finding a suitable algorithm is pbsing'the problem
in the proper theoretical framework, so that convergence and unidueness
of the solution can be éssured. Ultimately, we will formulate the model
as a finite-state Markov chain, where the states represent the information
available to consumers and producers about stocks and crops, namely
their estimated values. - But before we can logically get to this stage,
we must start dt the foundation, the real-world variables and model.
We will then show how this is explicitly simplified to the information-
state model, and then to the finite-state model, which lends itself to
computer solution.

We begin by reexamining the ECON model in terms of real-world

quantities and re]ationships.

2.2 ECON Model _

In‘the.ECON model there are two‘typesiqf grain: grain which is
growing.on a farm and has not yet been harvested, and grain which has
been harvested, but not yet consumed; e.g., in transit, in storage re-
serves, etc. Let us call these grain types 1 and 2, respectively.

Grain can exist, within the ECON model's discrimination, in one of
two places: in the US, or in the rest of the world (ROW). The ECON
model, then, is concerned with four rea]-wor]d quantities, and although
the state-space is not thé quantities themselves but only estimates of

them, let us momentarily take the state variables to be the real-world



quantities: They are:

Type 1 grain in US, X, (unharvested, in the ground)

Type 2 grain in US, x; (harvested, unconsumed)

Type 1 grain in ROW, X4 (unharvested, in the ground)

Type 2 grain in ROW, x5 (harvested, unconsumed)

Now suppose that the world wheat markef is in some state, which is
a value x(t)e Ei of (x1 xé X3 x4)*. Consumers, producers and exporters
have access to certain limited imperfect public information about x(t),
which we can call I(t), on which they base their consumptions (y1 in US,
Yy in ROW), plantings (y3, ys), and exports from US to ROW (yz). The
state of the wheat market at t+1 is then a function of x(t), y(t), and

some random disturbances v(t):
x(t+1) = f(x(t),y(t),v(t),t).

f is, for any t, a linear function in x, y and v, due to the simple

additive and subtractive nature of consumption and production. Spe-

cifically, the equations are:

xl(t) - yl(t) - yz(t) +"v1(t) non-harvest period
(Us) xq(t+l) = ’ '
xq(t) - y1(t) - yo(t) + Vl(t) + xz(t) harvest period

x3(t) - y4(t) + yz(t) + v3(t) " non-harvest period

(ROW) x3(t+1)=
x3(t) - y4(t) + yz(t) + v3(t) + x4(t) harvest period

0 post -harvest and pre-planting
(Us) x2(t+1) = xz(t) +_v2(t) non-planting, pre harvest
xz(t) + y3(t) + v2(t) planting, pre harvest

*Ei denotes the positive quadrant of the 4 dimensional Euclidean space.



0 post harvest, pre-planting
(ROW) x4(t+1) =1 X+ v4(t) non-planting, pre harvest
x4(t) + y5(t) + v4(t) planting, pre harvest

or, for suitable choice of matrices M and N (which will have either 0, 1, -1

as elements):
x(t+1) = M(t)x(t) + N(t)y(t) + v(t)

The following inequalities restrict the choice of y:
l.y=0

Y3 = 0 during nonplanting periods in US

- Vg = 0 during nonplanting periods in ROW

B w N

NtV s x

5. Y < X3
Inequality (5) takes into account the transportation lag for exports of
about one month. It should be noted from the above equations that the ma-
trix N could be eliminated by defining Uy = =¥ = Yoo Ug = =Yg + Yo,
U, = y3, and u4 = Y5 SO that

x(t+1) = M(t)x(t) + u(t) + v(t)

Let us now determine the constraints on u. From the constraints on Y35 Y&

we evidently have:

[0,»] during planting period in US
1'. U, €
2 [0] during nonplanting period in.US
[0, ] during planting periods in ROW
2'. U, €
4 [0] during nonplanting periods in ROW



The_@pnstraints in uy can be found by rewriting inequality (4) with the

substitution yq = -up - 7%
Yyt ¥y = Uyt Yyt Y, T U s Xy

S0 Uj = =Xp. An- upper bound on u, is obtained from the inequalities

¥y 2 0 and Yy 2 0:

yp= Uyt ¥p 207U E Yy

[\

Yo 0~ =Yy S 0~ uy < 0

SO

3'. uq

m

['X190]

For the constraint on ug consider the following four inequalities:
¥y 2 0

0

<
e
v

0

<
N
%

<
-
IA

X3

Rewrite them in terms of u and Yol

Uy - Yy 2 0
Yo - U3z 0
Yy 2 0



Since Uy 2 -xq, we conclude from the first inequality that yé s'xi;‘énd o

from the other three we then have
4', Yy € [max(O,u3), min(xl,x3+u3)J

It is easily seen that for the interval in 4' to be nonempty, us must be -

between —x3.and Xq
5'- U3 € [-x3’x1]

The constraints 1' -5' in u and Yy, are equivalent to the constraints 1-5
iny, but the dimension of the control space has been reduced by one, and
the state transition equation has been simplified.

The inequality constraints present a major hurdle in solving the
problem; two other difficult areas are defining the information It(x)
available to the market, and the statistics of v(t). No reliable es-
timates of the statistics of v(t) are available, and the principal
ingenuity of the ECON forhu]ation, although not entirely successful, was
to circumvent the need for such statistics. We will see, upon careful
derivation of the ECON approach, that there is actually no way around
this problem. Reasonable assumptions must be made, and stated explicitly
for scrutiny.

It(x) ﬁresents problems because the information actually available
to the market, a history of controls and state observations, has ar-
bitrarily large dimension. From separation [2] we know that this in-
formation can be reduced without loss of optimality to a probability

distribution px(x(t)|It), but we still must choose a consumption law which



is a function of a probability function. We will follow ECON in defining
(x) to be the "best" estimate of x(t) given past observation. Since
x(t) is governed by time- -varying linear equations, we know that the "best"
estimate is a Kalman filter estimate which we shall denote X(t). Because
certainty equivalence does not hold (due to the inequality constraints),
the market cannot act 6ptima11y given only X(t). But itbis a reasonable
assumption if we must keep the closed-loop state dimension to a minimum.
In fact, ECON took only %(t) to be the state, and this is technically
not a “"state", since the statistics of %(t+1) cannot be determined from
%(t) alone. Actually the state-space must be extended to (},P) for the
state quality to remain, where P is the covariance matrix of X. We will
discuss this issue in more detail a little later.

To actually turn the ECON Model into a living and breathing economic
organism, we must postulate the mechanism by which y(t) is chosen, i.e;, how
the consumer, producer and exporter actually behave. It is at this point
where economics per se enters, and we must hope that the economic assump-
tions are strong enough to withstand the additional battering of approxi-
mations in solving the stochastic control problem.

Let us summarize the economic assumptions which directly affect the
problem formulation. It is assumed that y(t) is a function of ®(t) and t
which optimizes some properly defined overall welfare measure. That is,

consumers, producers and exporters are "optimal controlilers" of overall

wel fare.



Let F(t, x(t), y(t)) be a measure of overall welfare at time t. Then
participants behave to maximize their overall fufure welfare, discounted
by a factor p each period of time. That is, y(X,t) is chosen to

maximize:
P = el 3o R, xe), yie))

which we call the "discounted future welfare." This quantity depends on
the starting state x(t).

We will defer questions of uniqueness of existence of a solution of
the above problem to the finite-state formulation, where the results are
quite clear. First Tet us define our generalized model, and reexamine

the state-space representation problem.

2.3 Generalized Model

In the interest of future research, we have generalized the ECON model
to an arbitrary number of countries, with arbitrary planting times, harvest
times, and fractional harvests. The general program has not been sub-
stantially harder to write, but it has enabled us to observe the behavior
of the algorithm on smaller and more tractable models. Also, it should
allow future researchers to examine larger models without any reprogramming.

A schematic of the physical model s shown below.
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COUNTRY 1~ COUNTRY 2
r-T'ypelLocl TypelLocZ—-| nypelLoc3 . TypelLoc4|
X3 Xa I_planting
| [
| I
| |
}
by
consumgtion Xg | consumptiony Xg |-sonsugption
X
L _ _Tyme2tmel_ _——A__Typezloc2_ _Typezlocd|
exports and | '
imports
cowtry 3 © T~ 1
| Typelloc5 |
planting
- Xg |
| |
‘ |
' |
| |
cogsumption xg [
| -

— — Type2locd —

We follow the same convention that Type 1 grain is growing but not yet
harvested, Type 2 grain is harvested but not yet consumed. Notice that the
definition of X1>%p is switched around from the ECON model. Circles in

the aBove diagram are locations of Type 1 grain; we call them aggregated
crops. The number of aggregated crops is arbitrary. In the ECON model there
are only two aggregated crops: in the US and in ROW. Squares in the

above diagram are locations of Type 2 grain; we call themvaggregated'bins.

In this model, there is a state variable X4 for each circle and square,



1

representing the amount of Type 1 or Type 2 grain at that location. Or-
ganization into countries is arbitrary.

The dynamics are analogous to the ECON model, except for harvesting,
which is more general here. Planting takes place during restricted
periods of the year, and the amount of planted grain u; is simply added to
the amount already existing X;» Wwith random variation vi(t) due to weather
and other uncertainties:

xi(t+1) = xi(t) + ui(t) + vi(t) i€ aggregated crop .
t a planting season of i
At the end of the harvest season we simply put:
xi(t+1) =0 - i eaggregated crop
t postfharvest season

Grain is harvested over a sequence of periods, and the fraction of
the total crop harvested at period t is defined as hfr(t). Let J be an
aggregated bin, i be an aggregated crop feeding j, and us be the net
result during period t of all consumption, imports and exports, analogously

to our previous definition. Then

x;(£41) = () + u (t) + hfry(t) x x;(t)

During non-harvest season, hfri = 0. The constraints on the contro]sru
are somewhat cbmp]icated and dépend on the import-export assumptions, but
the inequality constraints will have similar form to constraints 1'-5'
in Section 2.1

The state dynamic equation is,qwith suitable choice of M(t),
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x(t+1) = M(t)x(t) + u(t) + v(t)

2.4 Stochastic Aspects of the Model

Up to this point we have avoided precise formulation of the pro-
babilistic aspect of the model, because there are many problems and if
is best to bring the discuséion of them together in one section. It is
now time to put the stochastic problem on a firm footing.

Controls, representing the behavior of consumer, producers, énd
exporters, are chosen according to a noisy state observation. We will
assume thatlthe information set I(t) = (z(0), u(0), z(1),..., u(t-1), z(t))

is available where
z(t) = x(t) + w(t)

and w(t) are zero-mean independent Gaussian random variables. If v(t) is
Gaussian also, then the optimal estimate of x(t) given I(t) is just the
Kalman estimate of x(t), which we call X(t|t).

We make the additional assumption that

u(t) = g(t, X(t]t))

Although X(t|t) is an optimal eétimate, f(t|t) may not contain enough
information about the probability distribution of x(t) given I(t) to

make an optimal choice of control. Nevertheless the problem quickly

becomes intractable if we allow higher moments. |

We can now write the stochastic equations of the economic system:

1. x(t+1) = M(t)x(t) + u(t) + v(t)
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z(t) = x(t) + w(t)

I1(t) = (z(0), u(0), z(1), ..., u(t-1), z(t))
x(t[t) = E(x(t)]1(t))

u(t) = g(t, X(t]t))

E{v(t) v' ()} = Q

Ew(t) w' (t)} = R

~ (o)} (35} Lo w N
. . . . . .

Under the assumption that v and w are independent and Gaussian (3) and (4)

can be replaced with the appropriate Kalman filter equations:

3'. v(t+l) = z(t+1) - x(t+1]t) = z(t+1) - M(t)R(t|t) + u(t)
4'. R(t+1[t+1) = M(£)R(t]t) + u(t) + K(t)v(t)

where K(t) is thevKa1mah filter gain which depends on Q, R and t, but not
on the Qbservafions z(t) or controls u(t). Let us write K(Q,R,t) to be
moré exp]jcit. It turns out that v is independent from x(t|t) and fs
Gaussian With mean 0 and covariance va(Q,R,t). Thus equation 4VI can

be written
4", %(t+1]t+1) = M(t)X(t|t) + u(t) + o(t)

where ¢(t) = K(t)v(t), and 4" has the state property. In other words, it
is not necessary to know the true state x(t) in addition tori(t[t) to
determine the statistics of X(t+1|t+1); X(t|t) alone will do.

The problem now remains to determine the statistics of. the random
variable ¢(t). E{¢(t)} = 0 since E{v(t)} = 0, and E(¢(t1)¢'(t2)) = 0 if
t, # t,. Let K¢¢(t) = E(¢(t)e'(t)). As we mentioned earlier, K¢¢(t)

depends only on'R and Q, but we can obviate the need for Q if the state
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error covariances are known:
P(t) & covix(t) - X(t|t-1)}
"The standard Kalman filter equations then give:

Kop(t) = P(t) + R(t)

K(t) = P(t)[P(t+1) + R]"}
and thus

- -1
Kys(t) = PIOIP(E) + RIIP(E)

Thus the covariance of ¢, K¢¢(t), can be determined either from the pair

(Q,R) or from (R,P(t)), but not from P(t) alone, unless some additional

assumptions are made. For example, if the wheat growing process is as-
sumed to be of "random walk" nature, that is, the uncertainties are rep-
resented as a sequence of random weather influences represented by zero

means random variable e(T-i) as follows:

X(T|T-i+1) = R(T|T-1) + eq_jpps 171,000,012

where X(T|T-i+1) is the estimate of x(T) at time T-i+1, e;_;,, is the
additional information available at time T-i+1 on the final yield x(T).
er_j41 €an be seen as innovation sequence.

In such a case K¢¢(t) can be inferred from the knowledge of P(t) and

the statistics of e, ;.

We now see that the Kalman filter evolution can be logically separated

from the real system since the noise term ¢(t) is white and independent of
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X. Thus we can restrict our attention to the state equations (for simp]i?

city X(t) denotes R(t|t)):

4", ’)Z(t+1) = M(t)s\((t) + U(t) + ¢(t)
5. u(t) = g(t,x(t))

The control u(t) = g(t,X(t)) is chosen to maximize the discounted future

welfare

oo

WPx(t)) = £ 5 oF R(er, x(th), v(t")
t'=t

Since x(t) is not known to the economy, it is logical to replace x(t)

with X(t):

8. WP(x(t)) =E E

¢ o (e, R(eY), y(t')

t

Equations 4", 5 and 8 constitute a stochastic control model. In
Sections 2.5 and 3 we will discuss several mathematical methods for

solving these problems and finding optimal controls.

2.5 Approximation by Discrete States

For solution on the computer, it is necessary to apﬁroximate the
model by discrete states. The method by which this approximation is made
is very important and affects the results obtained, but discrete models
are very well undérstood,_good algorithms exist for solving them, and the

questions of existence and uniqueness of their solutions answered easily.
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Suppose that the set of possible states X(t) is finite. For the
agricultural model, M(t) is periodic, and g is also periodic in t, so
it is logical to choose the discrete sets {§(}t to be periodic also, since
the steady state solution will be periodic.

Let s be the total number of discrete states through one entire cycle
and Tet a state be uniquely specified by an index j, 1<j<s. We must
choose a matrix {R.l’jg which accurately reflects the probability that
X(t+1) = >“<J.2 if X(t) = %5,

The continuous probability distribution of X(t+l) given X(t) = §j

~
.

is the same as that of M(t)?(j + ¢(t) +g(t,§j1) where M(t)§j1+ g(t,ﬁjl)

is an additive constant and ¢(t) is a zero-mean Gaussian random variable
with covariance matrix K¢¢(t). The problem is to divide the area under the
p.d. curve for Xx(t+1) between the possible sz. Those states Qj which

are defined at a different time period in the cycle receive no probability.

For those defined at t, we might use an integration between midpoints as

illustrated below. We will discuss methods in more detail in the section

on Algorithms.

p(X(t+1,t))

Continuous PDF

-+
-~

Approximate PDF

i
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Whatever the approximation scheme, the resulting probability transition
matrix P depends on the feedback control g.

For any choice of g, P(g) will be a cyclic transition matrix. For

these type of matrices there exist for'any‘Qj a Timiting average state

probability nj(g), defined as

T
| Sy =
M = Tim SES tZO Pr(x(t)-—xj)

In [7], a more general concept is defined which is directly appli-

cable to discounted Markov programming problems:

P o= v cto iy oo 137ay o
.. = 7 pPr(X(t)=x, [x(0)=x, )
P2 t=0 J2 I

for if we define a discrete version of WP to be

W= T ot T Pr(R(t) =xs |R(0) =x. )xF(t, X. » g(t, %: )
200 4,1 J2 )

J1 2 J1 |

then (in matrix notation):
WP = 1Py

where k= (F(1, il’ (1, %;)), F(1, 22,'6(1, §2)),..., F(nper, ?S, g(nper, X))
Thus the problem is to choose g to maximize simultaneously all of the

“elements of the vector:

1P(g)k(g) = WP(g)
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It can be shown that if {P(g)} is compact, which will be assumed in this
study, then such an optimum exists. Thus by formulating the problem as a
discounted Markov program, the question of existence works out automa-

tically. Powerful Markov programming technigques can be applied, and that

is the subject of the next section.
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. 3. ALGORITHMS
Before we explain the details of the computer algorithm implemented,
let us review briefly the constraints of the problem and their relation to

different algorithms in the control literature.

3.1 LQG (Linear-Quadratic-Gaussian) Method

To apply the classical results of LQG theory, a cost function must be
defined. From our previous discussion, this cost function would have the
following form:

o«

L ot Ly(t)' A(E) y(t) + y(t)" B(t)],

The above cost function does not depend on x(t); therefore if the LQG
were applied directly to the probiem, ignoring the inequality constraints,
then the solution would trivially be

max y(t)' A(t) y(t) + y(t)' B(t);
y(t)
the inequality constraints are the essence of the problem.

Penalty and barrier methods can be applied to handle 1hequa1ity con-
straints in general programs, but with the LQG method we are constrained to
use quadratic costs, which cannot approximate inequality constraints. Another
method to handle the inequality constraints is to normalize the controls about

a nominal trajectory; then the question is how to find a "nominal" trajectory.
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3.2 Dynamic Programming

In a dynamic programming algorithm, the basic idea is to find an optimal

value function Vt(x) for each state x, for then the optimal controls satisfy
y(x,t) maximizes F(t,y) + E[oVEI(M(t)x(t) + N(t)y(t) + o(t)}].

The approach taken by ECON was to choose Monte-Carlo outcome of o(t), thus
eliminating the expectation operator and perform a deterministic maximization.
This is completely invalid, as it is equivalent to assuming that consumers and
producers can make their estimates based on a forecast not yet known, one time
step ahead. Alternatively the operations of maximization and expectation are
commuted, which, in general, is invalid. A more valid way to remove the
expectation operator would be to move it inside of V, thus replacing o(t)

with its expected value, O:

F(t.y) + ovErImmMie)x(t) + N(t)y(t)].

The other drawback associated with the dynamic programming approach
is the predetermined quadratic assumption on the optimum welfare Vt(x).
The choice of quadratic, rather than other types of nonlinear functions,
for Vt(x) is dictated by the necessity of keeping the problem computa-
tionally tractable. However, in many cases such a predetermined behavior
leads to wrong result. For instance, if the incremental value function
F(t,y) is independent of the state (which means that no storage cost is
taken into account), then the optimal policy y* will not depend, in general,
on the value of the state (the value of the state may influence y through

constraint, if constraints on y depend on the state). Similarly the cost
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Tim Vt(x) will become independent from the state variable x. This case
{0 .
will be further discussed in Section 4.

3.3 Introduction to Markov Programming*

The biggest drawback to Markov programming is that the function V
must be stored; hence its argument (the state space) must be discretized
(cf; Section 2.5), and for a problem of the dimensionality 6f the wheat
model, this can lead to serious storage problems for even coarse discre-
tizatioh (Bellman's "curse of dimensionality").

A éoarse discretization leads to two fairly serious problems. The
first is knowing where to choose the discrete stafes; a bad initial choice
will give a meaningless answér. In fact, it may eveﬁ give an answer that
would lead one to requantize the state space in the wrong direction. Thus
one must be careful in choosingAthe initial scheme. The second problem is
dealing with the endpoints. Consider approximating the value of x(t+1)
where x(t+1) has Gaussian distribution shown, and Vt(x) is known at the
discrete points. On the basis of the known values of Vt+1(x), it is not
possible to accurately estimate E[Vt+1(x(t+1))]. One would like to rule
out such possibilities, but doing so is in effect adding new inequality con-
straints, In fact, just about any way one would care to define an expected
value for the above problem will lead to strange effects near the endpoints
of the approximation scheme. We‘have found, in our initial tests, that these

effects can be so strong as to force the controls y(t) to be chosen to always

place the distribution on an endpoint! The solution of this probTem is to

carefully choose the discretization scheme so that the optimal solution will

not be close to the endpoints.

*For details of Markov programming, see Appendices A and B.
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Despite these problems, there are many advantages to Markov program-
ming. First, very speedy and efficient methods exist for solving them.
Moreover, any distribution, rather than strictly Gaussian, may be used
for the noise variable. Besides, monotonic bounds on the optimum values
are available at each iteration and it is easy to prove that a solution
to a Markov programming is indeed the current solution. With these
advantages and drawbacks clearly in mind, let us now give a more formal
description of the Markov programming method.

Recall our definition in Section 2.5 of P(g) the probability transition
matrix between discrete states, dependent on the feedback control g, and
k(g) the incremental value function. P(g) is cyclic of the form of [ong Pé(g)].

Define C(g) and Jg(g) to be the unique vector solutions of the following

matrix equation:
o[P(g) - 1] C(g) +k(g) = J° (1)

Existence and uniqueness are guaranteed for p<1 [7], and C(g) rep-

resents the discounted objective value vector, within a constant of Vt(x),

and C(g) is the discounted analogy of Varaiya's [6] "dual variable." It

also turns out that J°=WP(g). The basic idea behind Markov programming

is that the optimal feedback control g* must maximize the following expression:

g* = arg max k(g) + pP(g)C(g) (2)

One simply begins with a "naive" C(g) (any initial given value will
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guarantee convergence), call it Co> finds the 9, which maximizes equation (2),
and then updates CO to Clzrc(gl) in the following way. Rewrite equation (1)
like this:

[oP(g) - 11C(g) + k(g) = J°+ (1- )C(qg)

One of the fundamental results in [7] is that JP+ (1-p)C(g) is a vector

with equal entries, call it J1=01 where 1= (11...1)"'. Thus

oP(g)C(g) + k(g) = al+C(qg).

Since the additive constant ol is irrelevant, set C1= k(gl)i-pP(gl)Coc
al*'C(gl). Notice that the Teft side of equation (3) is the very expres-
sion that was maximized in equation (2), therefore simplifying the compu-
tation further.

Varaiya's '"dual method" is very close to this and is easily explained
with thjs background. Instead of setting C1= k(g)#-pP(g)CO, he sets
€= 8[k+pPC0]-F(1-B)CO. This guarantees convergence under slightly more
general conditions, which are needed for our problem, involving a cyclic
transition matrix. It is easy to see, however, that the convergence of
CO, Cl’ C2, «..5 C* is slower for Varaiya's algorithm.

Nevertheless we can use Variaya's idea to actually speed up the
standard Markov programming algorithm. Recall that C1 is only an approxi-
mation to C(g;). In fact if a better estimate of C(gi) were available,
the following maximization of gz'wou1d be closer to the optimal g*. Since
a simple computation of’k(gl)i-pP(gl)C takes Tittle time compared to the
time required to find a maximizatioh, it might be wise to compute, between

optimizations, a finite sequence
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o = (K)g)) + oP(g;)C))8 + (1-8)C

o
i

3" (k(gl) + OP(QI)CZ)B + (1‘8)62

(qp}
l

= (k(gl)+pp(gl)cn-1)8 + (I-B)Cn-l

Varaiya proved that Cn—+C(gl); thus for a Tittle effort here we can

get the most benefit out of the next maximization operatibn. Exactly

what the tradeoff is we are not sure, that is, how large n should be.

But our results show that more accurately calculating C(gl) speeds up

convergence considerably, especially in the final stages of convergence.
Finally, and most importantly, the sequence wp(gl), wp(gz),...

will converge to the optimal welfare; g;, gps-.. ""converge"* to an

optimal control, and furthermore

WP{g*) = Tim (Cypq - C5) + (1-p)C; = Tim (Cyyg - 0Cy).
7> 70

This constitutes the theoretical basis for Markov programming.

*If the optimum control g* is not unique, oscillation is possible. In
practice, computer algorithms usually "prefer" one optimum over another,
so the sequence converges.
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3.4 Structure of the Program

In oﬁr prbgfam théisuccessive transition probabi]ity.matrices P(gq),
P(gz),... are not stored as they are brohibitive]yrlarge, bur rows are
computed as needed. "Whaf is stored is: |

1. .Details of4the Economié model (number Qf countries,

aggrégated crops, planting times, etc.).

2. Details of the discretization scheme (how many discrete

levels for each variable and what the levels are).

3. Statistics on means, variancés, etc. of state variables

atveéch time period. |

4. Vectors Cis the approximate value function, a dual vairéb]e, 9i»

the suboptimal control, g5, an approximation probability distri-
bution (used to calculate 3) and two vectors the size of c; and
o, which are used as work space. |

5. Algebraic workspace, and the program itself.

The program works as fo]]owsf An initialization program sets up a
file with data 1, 2, 3 and 4, although only 1 and 2 affect the subsequent
operation of the main program.  Changes in Type 1 data require some redimen-
sioning of matrices in the main program, but otherwise no changes in the
main program are necessary. The ﬁain program takes the file with data 1, 2,
3 and 4, iterates, and when it has. converged, writes the new values at 1, 2
3 and 4 onto another fi]e. A third program may be written to examine the
output file, which contains the optimé]lsolution, more closely.

In the iteration Type 5 data changes most rapidly, followed by 4, 3 and

2. Type 1 does not change. After the approximate controls and probability



distribution o, have converged (data Type 4), then 3 is updated. If the
statistics are at too great variance from the discretization scheme (data
Type 2), then data 2 is updated. This is the basic sequence of events.
The names of the various routines are as follows. INITIAL is the
initializing program; it calls only one subroutine, K, which computes the

incremental value function Ft(Q; g(t,x)) for any discrete state ij, time t.

user.

data fN data file

INITIAL MAIN
K
Y
PMODEL OPTIMIZE UPDATE
UBOUND ITERATE
K STACK
Y

PROW
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MAIN is the main program and calls three subroutines PMODEL, OPTIMIZE,
UPDATE. The data file is read into a blank common area shared by all
subroutines, except that scratch space is in a common area called SCR.

PMODEL prints information about the economic model. OPTIMIZE computes

9541 = max arg [k(g;) + oP(g)c,]
| g

by first computing bounds on the admissible control (UBOUND) and then
searching through the controls (ITERATE) with first a coarse approximate
search and then a detailed accurate search. The highest values are stacked
(STACK) for later inspection for multiple peaks. Then UPDATE is called

to updaté P to c(gi+1) = Cin by successive épproximatioﬁs, as we discussed
;bove. MAIN theh iterates OPTIMIZE and UPDATE until the solution converges
and this is fairly fast. Then as we said, if the statistics are off from
the discretization scheme by a significant amount, MAIN will call a program
ORIENT to redefine the discrete—states appropriately. Then MAIN:writes

out the answer to a disk file (see illustration).

The subroutine PROW acts as a "virtual matrix" P(g) and computes, given

a gandt, a specified row of the matrix P,
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4. A SIMPLIFIED MODEL: ONE COUNTRY - TWO PERIODS

In order to get some insight into the Markov progrémming'approach
and in particular into the computational problems which are involved, we
have decided to consider the case of one codntry - two period model. The
model that we are going to study is the one considered by ECON in "Eco-
nomic Benefits of Improved Information on Worldwide Crop Production and
Distribution With Application to Wheat, Corn and Soybeans" (contract No.
NASW-2558 - p. 27-58) [8]. The data which will be used are essentially

the same as in the above ECON model.

4.1 The Model [8]

Based on [8], the model for one country - two periods is the following:

The year is divided into two types of period, type 1 and 2, as depicted
in the following diagram.
planting accomplished
r—“——‘—““k// 1
N N

production appears

1 2

] { S 3
3 time

w
o~
o

[———1: type 1 period

: type 2 period
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The state variables xl(t) and xz(t) are defined as:

8 Mean value of total stock at time t (inventory at time t)

x
—
—
“+
~—
[l

8 Mean value of total quantity of groWing crop (planted,
but unharvested)

x
N
—
=y
~—
[}

Now at times t=1,3,5,..., that is, at the beginning of type 1

periods, we have:

xp(t+1) = x () - y;(t) + vq(t)
Xz(t+1) = yZ(t) + Vz(t)
where yl(t) is the consumption

yz(t) is the planted crop

The second equation states simply that the unharvested period
at period 2 equates to the planting done at period 1.

vl(t) and.vz(t) are stochastic terms translating uncertainties

on inventories and production yields. They are assumed to be
zero mean Gaussian. ‘

At time t=2,4,6,..., that is, at the beginning of type 2 periods,

the state equation is:

K (£11) = xy(8) + x(8) = yg(t) + vy(t)

xz(t+1) = vz(t)

The second equation states simply that at the beginning of type 1 periqd
(time t+1), there are no crops in the ground beside a noise term v2(t).
It is possible, and desirable for computational reasons, to reduce

the order of the system by retaining the mean value of the inventory xl(t),
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as the sole state variable. Then:

t = 1,3,5,...
x(t+1) = x(t) - y (t) + ¢(t)

At time t=2,4,6,...:

x(t41) = x(t) - y;(t) + y,(t) + o(t)

The choice of decision variable yl(t) and yz(t) is constrained to:

o
IA

yl(t)'s.x(t) (consumption < available stock)

o
IA

yl(t) (positive production)

4.2 Quality of Information

In the context of the above model, the quality of information is
directly related to the statistic of ¢(t) (or equivalently vl(t), vz(t)).
¢(t) is assumed to be zero mean Gaussian; however, for the Markov pro-
gramming approach the Gaussian assumption can be relaxed. In fact, any
other distribution for ¢(t) can be considered.

There are various information gathering schemes both on the level of
inventories and on the future production. The issue is to evaluate the
gain of the community (in terms of its welfare function) vis-a-vis an
improvement in the information gathering scheme. In case of the Gaussian
assumption, an improvement of information translates into a decrease in

the noise variance.
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In the case of the present example, the Gaussian random variable
¢(t) represents the inventory uncertainty at time t=1,3,5 (period of

type 1) (¢(t)==v1(t)) with:
ELA(0)] = o (t=1,3,5,...)
But at time t=2,4,6,..., ¢(t) represents the sum of uncertainties on the

inventory level and on the production. These two latter uncertainties

being independent:

o(t) = vl(t) + vz(t) t=2,4,...
EL6%(t)]= 0% + o t=2,4,...

Hence the variance at period of type 2 is always greater than the variance

at period of type 1.

4.3 Incremental Value Function

The incremental value function i% given by:

_ 2 _
F(yl,yz) =a;y;" + by, att=135,...

2 2

F(yl,yz) = ay + bly1 + asY, +b t =2,4,6,...

22

where the expression alyl2 + blyl is referred to as consumer welfare and

{-(azyz2 + bzyz)} is the production cost.

The purpose of the optimal stationary control is to maximize:

W= :Irlg T_}-l_ 'E{ptF(yl(X) ,.Yz(x))}

0

Il t~1 —f

i
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where p is a given discount rate.

Note that the incremental value function is independent from the
state x(t) of the system, and hence from the noise term ¢(t), since this
latter enters the system through the state x(t). If there were no state
dependent constraints on the input y(t), one would clearly deduce that
the optimum stationary control is independent from both the state and the
noise characteristics. However, since the constraints on the control y(t)
are state dependent (y(t)<x(t)), theoretically the state of the system
may affect the optimum control y(t) and the optimum welfare through the
constraints. But since we are considering stationary optimum control,
for the state to affect the optimum welfare function, it is necessary for
the stationary optimum control y(t) to hit the constraints; that is, for
stationary consumption to equate the available stock in at least one of
the two periods. But in general this is not the case, or at Teast not a
desirable case. If the consumption equates the available stock, one has
to alter the incremental We]fare function so that the corfesponding opti-
mum consumption/production policy would not deplete the available stock
at any period. And in this latter case, the optimum control and welfare
will be independent from the state and the noise.

Notwithstanding the abové discussion, it is apparent that a state
independent incremental value function, such as the one used by ECON in
the one country - two period example [8], is not appropriate to measure
the benefit of improved information on the noise statistic, because of its
general lack of sensitivity. To overcome this problem one has to make the

incremental value function state dependent. A natural way of doing so is
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to add a term representing the cost of storage, and hence depending on
the state x(t). There are several possible choices for such a cost func-

tion. We have chosen to represent the term referring to the storage by:

-.!' a3(X - .8M_i)(X- 1.2M.i), 1 = 1,2

where M{ is the desired mean at périods of typé lnand of type 2 and ag
is a positive constant. The intuitive meaning of the above term is that
the community wou]d favor an-inventory Withih 20% of a mean Mi, for
which the storagercapacities are prebéred. Any inventory values out-

side the desired 20% range is disfavored. To be more precise, the in-

cremental value function F is defined as:

t = 1,3,5,...
FIy (£), x(8)] = ayf(t) + by (v) + Efaglx(te1) - .8M,I[x(t+1) - 1.2M,]}

Note that the last term refers to the estimate of the storage cost at time

t+1, that is at period of type 2. M2 is the desired mean at period of
type 2.. (Note that M2 may be state dependent, that»is, M2 at time t+1
may depend on the.value of the state x(t).)
Carrying on the expectation operation, we deduce:
' F(yl(t), X(t)) = alyl(t) * blyl(t) + aglx(t) - yl(t) - .am,]
Ix(6) - vy (1) - 1.2] + 201

t = 1,3,5,...

Similarly for type 2 period we have:
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Fyy(£)s vp(t)s x(£)) = aph(t) + by (8) + a,y5(t) + byy,(t)
+ aglx(t) + yp(t)IIx(t) + v,(t) = y1(8)] + agELe?(t)]
| t = 2,4,6,...
Before ending this section let us note that the numerical evaluation
of the optimum policy y* and the corresponding welfare value under the
assumpfion that F has no state dependency, i.é., ag= 0, confirms the
previous theoretical claim, that is, both theloptimum policy andAthe op-
timum welfare remain insensitive to changes of noise variance. But, sur-
prisingly, the numerica] results of the ECON tfeatment'of this example [8]
infer that both the optimum policy y* and the optimum welfare change when
the noise variances vary. We can explain this apparent paradox in the
following way. In the dynamic programming used by ECON, at each itera-

tion one maximizes:

Fly (), ¥,(t)) + oE{V** (x(t+1)))

where Vt+1(x(t+1)) is tHe optimum value of the welfare function from

time (t+1) to infinity. F is independent from the state x(t), but for
computational tractability E{Vt+1[x(t+1)]} is made to be a quadratic
functional in x(t) (see Section 3). This computational necessity changes
the nature of the optipization problem and forces the optimal control y*
and the optimal welfare to depend on the state x and hence on the process
noise variance. Hence the numerical results of ECON concerning the pre-
sent example do not correspond to any benéfit, im terms of the specific

welfare function involved. In fact, there is simply no benefit in
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information - improvement if there is no dependency between the incre-

mental value function and the state.

4.4 Discretization - Probability Matrix P(y)

We haye used 5 to 13 discretg values to represent the state at
period of type 1 énd type 2. For the sake of representat1on ~assume that
we have on]y 5 discrete values for each type of period. v
Let us call S1 the mean value of the total inventory at period 1 and
vy its variance. S1 and v, are provided by past statistics (either by Kalman

filtering or other time series analysis).

There/are various criteria for discretizing the state value around
Sl“ One may use "equal area" criterion, that is, the area uridér the p.d
curve between two consecutive discrete values is the same. Or we can
use a simpler "midpoint" scheme which consists of‘tgking the sequence of
-3v1 | ‘vl | | A
Sl-2v1, Sl'_E_’ S1 Vqs 51-7?3 Sl""’ Sl+2v1
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as discrete value. For the present example this last discretization
scheme has been retained. Note that there is no restriction as to the
type of discretization to be used. Similarly for the second type of
period, the state is discretized around S, with variance v,. |

Let us call 511 the discrete value of the state at period of type 1

and S... the discrete value of period of type 2. Then the probability

2i
distribution matrix, corresponding to the case of i=5, is cyclic and

given by:
Pi6 P17 --- P11o
. P56 ces P510
P(yq:Yp) =
61 65 <:>
Pro1 Paos _
with
P1J = pr(t) = SZJIx(t-l) = 511,y1sy2]; 1579 jz8
P'IJ = p[X(t) = 51J|X(t'1) = 521,)’1,)/2], 128, j<7

Note that for is<7, corresponding to the first period, the production Yy

equals zero, hence:

Pis = PLx(t) - Szj]x(t-i) = Sy5eyy] for is7
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To evaluate Pij’ assume that at time t-1, the state is in 31_1., the con-
sumption being yl(t-l), the probability distribution for the state x(t)

is given by:

. 2
t)-(S,.-
f{x(t)lx(t_]_) - Sl]’ yl(t'l)} = 1 exp_{[X( ) ( 14 .yl)] }

EEGTETY | 2E[e°(t-1)]

where E[¢(t-1)]=variance of the first period. This probability distribu-

tion 1is shown in Fig.

am

S;1 S S157y1(t-1) 595 S2j+1

The probability p[x(t) = Szj[x(t—l) = Sh-,yl(t-l)] is then computed as
S23-1"523 S23t5235+1
2 2
f(x(t)|x(t-1) = Sli’yl(t'l))’ That is,

the area between and under the probability distribution

S 45, q- '
. A (a5, (t-1)))
Pi'(yl(t'l) = : exp - 5 dt
2 N
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The probability corresponding to the endpoints, say to 521 and 525,

S21*522
are computed as the area between - and — for Pii and between

325524

> and +« for Pi5'

Similarly the probability Pij for 128 is cpmputed; the only difference
is that the mean is replaced byi(SZi'yl(t'1)+y2(t'1)) and: the variance
corresponds to the second typé period noise.

At this point the essential elements of the Markov programming al- .
gorithm of Section 3, that is, the value function F and the transition

matrix P(yl,yz) have been determined.

4.5 Data

Incremental value function:

a; = -2.
b, = 840
a, = -.4
by = 140.
ag = .5
p = .971

Mean and variance of inventories at period 1 and.2, used for discretization:

M1 = 391.3 (millions v, = 38.8
of mitric
: = tons ' -
| M2 = 217.1 v, 43.



4.6 Numerical Results

39

Tables la - 1c contain optimal production/consumption policy under

three different information schemes for the case of 5 discrete values per

period.

Period 1, E[¢°(t)] =784 Period 2, E[6%(t)]= 1764
State | Consumption Production State Consumption» Production
313.7 | 152.7 0 131, 131 372.1
352.5 163.2 0 174.1 174.1 372.1
391.3 175.7 0 217.1 176. 345.2
430.1 186.7 0 260.2 |  181.2 319.
468.9 198.5 0 303.2 186.6. 292.1

Table 1la

Period 1, E[¢“(t)] =196 Period 2, E[¢°(t)]=1764
State | Consumption | Production State | Consumption ,Produétibn
313.7 148.2 0 131. 131. 372.1
352.5 160. 0 174.1 174.1 372.1
391.3 179.9 0 217.1 176.1 345.2
430.1 183.8 0 260.2 181.2 319.
468.9 197.4 0 303.2 186.7 292.1

Table 1b
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The transition

. 3805E+00
. 9464E-01
.1211E-01
.5877E-03
.1278E-04
.1766E+00
. 1766E+00
. 1024E+00
.6135E-01
.3588E-01

O O O O O O O O o o

.1769E+00
.2134E-02
.1305E-04
.1058E-10
.9613E-17
. 1815E+00
. 1815E+00
. 1049E+00
.6290E-01
0.3695E-01

O O O O O o O o o

O O O O O O o o o o

O O O O O O 0O o o o

Period 1, E[¢°(t)]=441 Period 2, E[6°(t)] =784
State | Consumption | Production State | Consumption.| Production
313.7 148.4 0 131. 131. 378.1
352.5 163.2 0 174.1 170. 375.2
391.3 176.1 0 217.1 175.4 348.
430.1 186. 0 260.2 180.9 320.6
468.9 197.5 0 303.2 186.4 293.2

Table 1c

probability matrices corresponding to la through 1lc are:

.5108E+00

.4943E+00
. 2248E+00

.4330E-01

.3755E-02
.3215E+00

.3215E+00

. 2630E+00
. 2064E+00
. 1544E+00

.8072E+00
. 5839E+00
. 1292E+00
. 1457E-03

. 2924E-07
.3241E+00

.3241E+00
. 2656E+00
. 2090E+00
.1570E+00

. 1059€+00

.5573E+00
. 3887E+00
. 1245E+00
.3229E+00
.3229E+00
. 3536E+00
.3518E+00
. 3284E+00

la

O 0O 0 o000 oo oo

.1586E-01
.4134E+00
.8449E+00
.2918E+00
. 9428E-02
. 3202E+00

.3530E+00
. 3524E+00
.3301E+00

1b

O O O O O O O o o o

.3721E+00

. 3202E+00

O O O OO0 O O O o ©

o

O O O O O o O o o

. 2788E-02
.3853E-01
. 1966E+00
.4817E+00
.5282E+00
. 1464E+00
. 1464E+00
.2147E+00
.2708E+00
.3154E+00

.8811E-07
.4966E-03
.2589E-01
.7023E+00
. 7568E+00
. 1428E+00
. 1428E+00
.2119E+00
. 2683E+00
.3134E+00

0.8225E-05
0.4838E-03
0.9167E-02
0.8570E-01
. 3436E+00
.3267E-01
.3267E-01
.6636E-01
. 1097E+00
. 1658E+00

O O O O O O

.5551E-16
.9612E-10
. 2585E-06
.5748E-02
.2337E+00
.3133E-01
.3133E-01
. 6426E-01
.1074E+00
. 1625E+00

O O O O O O o o o o

1

J
\

> P

i3 i>8

js7

J
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.1497E-07 )

0.2715E+00 ~ 0.6538E+00  0.7443E-01 0.2398E-03 O

0.3993E-01 0.5774E+00 0.3723E+00 0.9420E-02  0.5450E-05

0.1420E-02 0.1736E+00 0.6927E+00  0.1316E+00  0.7744E-03 ¢ pij,_iS7
0.6470E-05 0.1041E-01 0.3866E+00 0.5662E+00  0.3682E-01 j=3
0.7435E-08  0.1513E-03  0.5887E-01  0.6278E+00  0.3131E+00 |
0.5385E-01  0.3579E+00  0.4657E+00 0.1171E+00 0.5410E-02 )
0.4951E-01  0.3464E+00 0.4731E+00 0.1249E+00 0.6079E-02

0.2171E-01  0.2413E+00 0.5108E+00 0.2098E+00 0.1628E-01 } Pijo i28
0.8536E-02  0.1503E+00 0.4916E+00 0.3114E+00 0.3820E-01 J<7
0.2982E-02  0.8329E-01  0.4224E+00 0.4117E+00 0.7966E-01 |

1c

Finally, if we take the case la as the base, the gain of welfare due
to the improvement of information (decrease in noise variances) corres-
ponding to cases 1b and 1lc are:

1b 65 ($ miilion)
1c 104 ($ million) 7
Note that the improvement in case 1b pertains only to the variance
of the inventory (decrease of noise variance in the first period from 784
to 196). In case lc both'variances of period 1 and period 2 decrease.'
The above figures are obtained under a father coarse discretization
(5 discrete values per period). For more accurate values one must cdn—
sider a finer grid and also rediscfetize the state space around the optimal
value obtained with the coarse discretization. In this example, takingA
9 discrete values per period leads to the following optimal consumption/

production scheme:
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Period 1, E[6%(t)]=784

Period 2, E[6°(t)]= 1764

.State | Consumption | Production State | Consumption.} Production
313.7 154.5 0 131. 131. -370.3
333.1 158.5 0 152.5 152.5 | 370.3 |
352.5 164.2 0 174.1 174.1 370.3
371.9 170.2 0 195.6 173.7 356.6
391.3 | 176. 0’ 217.17] 176.2 344.1
410.7 181.5 0 238.6 178.8 331.2
430.1 187. 0 260.2 181.4 318.1
449.5 192.7 0 . 281.7 184. 304.8
468.9 198.9 0 303.2 186.7 291.4
la

Period 1, E[¢°(t)] = 441

Period 2, E[6°(t)]= 784

State | Consumption | Production State | Consumption | Production
313.7 150.7 0 131. 131 377.2
333.1 157.2 0 152.5 152.5 377.2

~ 352.5 164. 0 7a.1 | 170.1 374.4
371.9 | 0.2 0 195.6 172.8 361.
391.3 175.8 0 217.1 175.5 347.5
410.7 181.1 0 238.6 178.2 333.9
430.1 186.4 0 260.2 180.9 320.3
449.5 191.8 0 281.7 183.7 306.6
468.9 197.8 0 303.2 186.4 293.

1c
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In this latter case the gain of the information:improvement amounts

to. $91 million instead of the $105 million computed previously. Since we

are ué{ng a finer gfid (9 discrete values instead of 5), the $91 million

‘figure is more accurate than the $105 million one. Moreover, taking a

‘grid 6f 11 and 13 discrete'valﬁes for each period results in a gain cor-

respdnding to an improvement.ofAinformation from 1la to 1lc equal in both

cases to $91 million. Therefore, the grid of 9 discrete values is a

sufficient approximation. In the following tables the optimal consumption/

production policies corresponding to a grid of 11 discrete values are

shown.

“Period 1, E[¢%(t)] =784 Period 2, E[6%(t)]= 1764
State Cdnsumptipn Production State Consumption Prodﬁction.
313.7 154.7 0 131. 131. 370.1
329.2 157.6 0 148.2 148.2 370.1
344.7 | 162, 0 165.4 165.4 370.1
360.3 | 166.7 0 182.7 | 172.3 © 363.7

375.8 | 171.5 0 199.9 174.2 354.0
3013 176, 0 2171 176.2 343.9
406.8 180.4 0 234.3 178.3 333.7
422.3 184.8 0 2515 | 180.4 323.2
437.9 189.2 0 268.8 | 182.5 312.7
453.4 193.9 0 206.0 184.6 302.0
468.9 199.0 0 303.2 | 186.7 ©291.3

la
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Period 1, E[62(t)]= 441 | Period 2, E[6°(t)]= 784
State | Consumption | Production State | Consumption | Production
313.7 151. 0 131. 131. 377.1
329.2 156. 0 148.2 148.2 377.1
344.7 161.5 0 165.4 165.4 377.1
360.3 166.7 0 182.7 171.2 369.
375.8 171.4 0 199.9 173.4 358.2
391.3 175.8 0 217.2 175.5 347.4
406.8 180.1 0 234.3 177.7 336.6
422.3 184.3 0 251.5 179.9 325.7
437.9 188.6 0 268.8 182.0 314.8
453.4 193: 0 286.0 184.2 303.9
468.9 197.8 0 303.2 186.4 - 292.9

1c
4.7 Remarks

Some experience has been gained in solving the example of one country -
two period models. We feel that some of the practical problems encountered
in this simple case Wi]] be present in the more complex setting of multi-
country.- multi-period problems. These are the following:

a) In applying the Markov'programming algorithm of Séction 3, at
each step one has to find the optimum y* such that: |

y* = arg max {F(y,x) + pP(y)C}
y
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It is important that the subroutine finding the maximand at each period
be as accurate as possible (Extended Precision). This will speed the

~ convergence and allow more flexibility for the choice of initial "dual
vector" C.

b) -Theoretically, any initial choice C0 of the vector C insures the
convergence. But from a practical point of view a bad initial choice
will cause the convergence to be very slow. Notwithstanding the order of
the vector and matrices involved, which increase rapidly with finer‘dis-
cretization grid; it i1s important to keep the number of iterations small.
Hence there are advantages to choosing the initiai vector CO close to the
optimum C.

c) As noted in Section 3, to speed up the convergence we calculate,

. . i
as intermediate values, a sequence of n vector S, C as:

¢! = glF(y.x) + oP(y)c'] + (1-g)C

The right choice of the parameter 8 and the number of iterations can
speed up the convergence significantly. Experience shows that a cho{ce
of B in the range [.5,.9] and an n between 5 énd 20 speeds the conver-
gence sufficiently.

d) The convergence is relatively fast. The number of iterations
varies between 10 and 40; it rarely increases above 50. Héwever, as
noted before, the initial choice of Co together with the parameter 8 and
the intermediate number of iterations n can strongly influence the speed
of convergence. With appropriate choice of CO’ B anq n the convergence

is attaihed with less than 10 iterations.
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5. CONCLUSION

The problem df "Wheat Forecast Economic Effect" has been formulated. .
and solved within the framework of stochastic control and Markov pro-
gramming. A general approachrﬁas been developed for the multi-country -
multi-period model.and the simple case of one country - two period model
has been solved in detail.

It has been shown that:

(i) The states of the ECON model are state estimates rather than
true states.

(i1)  The number. of states in the ECON model may be effectively re-
duced by one-half.

(iii) The Markov programming approach avoids simulation and is ap-
plicable to nonquadratic welfare functions and non-Gaussian efrérs.

(iv) Upper and lower bqunds are obtained in therMarkpv programming
approach'so that if iterations are stopped prior to convergence, an
estimate of thé nearness to the optimal solution is known.

(v) -Tn general, thére is no value of infbrmation in the infiﬁite hori-
zon stationary case if the incremental value function does not depend upon
a state. The ECON a]gdrithm produces a va]ue<of infdrmation in sqch cases
by forcing the dynamic programming value function to be quadratically
dependent on the state and by considering finite hofizons in simu]ations.v

(vi) The main advanfages_of the dual variab]e Markdv programmjng

applied to "Wheat Forecast Economic Effects" can be summarized as follows.
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First, speedy and efficient algorithms are available for solving Markov
prdgramming problems. .Second, no solution to a large set of simultaneous
equations is required. Third, unlike the dynamic programming approach,
there is no need for ah ed hoc assumbtion onrthe functional dependency
of the welfare with respect to the state x.

The mein drawbacks of the above Markov prograﬁming is the memory
requirement,-since the velue of the welfare functioh at eech'iteration
must be stored. However, it was found in the one country - two period
model that e grid size of 9bis adequate and even with a grid eize of 5,
‘the results are fairly close.: Therefore, it appears feasible to solve
mu]ti-cohntry - multi-period prpblems with fhfs'approach. .

Based.on the results of this report, it is recommended that the Mar-
kov programming approach be applied to the complete ECON model and to

other value of information problems faeed by NASA researchers.
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APPENDIX A

DOCUMENTATION FOR THE
CROP INFORMATION VALUE PROGRAM
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DOCUMENTATION FOR THE CROP INFORMATION VALUE PROGRAM

0. Introduction

This document provides the necessary background to understand, use
or modify the Crop Information Value Program (CIVP) developed at SZI.
The following topics will be covered:

1. Mathematical Preliminaries

2. Notation for Input-Output

3. Using the Programs

4. Detailed Study of the Program
The object of 1-3 is to provide the user with quickest access to the
purpose and use of the program, from a basic mathematical sketch of the
problem, to notation for the basic parameters necessary to run the program,
and provide detailed instructions for actually running CIVP. Examples of
runs are provided in the computer output (pp.

Section 4, on the other hand, is aimed at the user who needs a more
detailed understanding of the program subroutines, internal variables,
approximation and search methods, for the purpose of program verification

or modification.

1. Mathematical Preliminaries

In this section the details of the ECON model and formulation of the
finite-state model will be assumed familiar from our Progress Report.
We will review briefly the results which are essential to an overall under-

standing of CIVP.

1.1 Discrete Markov Chains

In CIVP, the economy is approximated by a finite-state Markov chain
with state space X= {1,2,.;.,ns}, ns being the number of states. Recall
that a state X; e X is a multidimensional estimate of the states of crops,
grain in storage and transit. Due to the independence of the innovation
sequence of the Kalman Filter from the state estimates X; themselves (see
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Progress Report), the statistics, or probability distribution of x(t+1)
depends only on the present state estimate x(t) = x, and the behavior of
consumers, producers, and exporters in the time interval (t,t+1]. The
behavior results in an overall control v(t). Symbolically,

Prob (x(t+1) |x(t) X;) = Pij(V(t))

The matrix {Pij} is called the transition probability matrix at t. If
we assume v(t) = v when x(t) = X;» then the matrix P depends only on the
vector (vl,...,vns)= v; we write P(v).

A discrete (control]ab]e) Markov Chain is then defined by the set V
of possible controls, X, the state space, and the set {P( )},v'§V of pos-

sible transition probab111ty matrices.

1.2 Welfare in a Discounted Economy
If k(t, Vi xi) is a measure of the overall welfare of the economy
between t and t+1 when in state X; and exercising contro]bvi, then it is

reasonable to assume that the economy acts S0 as to maximize 1ong term
"discounted" we]fare def1ned by ' ”

T T of Provix(t) = x,

|
t=0 Xj eX J

w°

; x(O)'='xi}-k(t, Viy X:)

J°J

where p is the per-period discount factor and i is the starting state.
In CIVP we define

= (1-p)W°
so that as p +1, J° will reach a definite limit (called 41).- J! is a
constant vector, i.e., all elements are equal, and represent the average
welfare per step. When the economy maximizes J®, i.e., the welfare dis-
counted into the future, instead of Jl, then the overall average welfare
per _step (Jl) will not be as high as possible. This is what is lost by
some short-sightedness on the economy's part.
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1.3 Markov Programm1ng
The purpose of the program is to find a v*eV so that Jp(v ) £ 9P (v*)

for all v'e V. To do this it SImu1taneous1y finds c*, a relative state
value vector, and v*, by the method of successive approximations. c* has

the properties

1. v* = argmax pP(v)c* + k(v)
veV
2. c¢* = max pP(v)c* + k(v) + Jl*.

ve V

(Tt is implicit in this notation that some v*e V will maximize all elements
of the vectors simultaneously. This is in fact the case.) By using the
equations, we can generate successive approximations YgsYyoe e to ¢*, and

VysVps... to V¥ The need to know JM* §s eliminated by defining
- 1'cl
[e] =c- 57

. v _ _
where 1 =(111..1). Then since J1==al for some a, [Jl*]= 0 and we can

write

2'. [c*] = [max pP(v)[c*] + k(v)]
veV

also, since pl=1,

1'. v* = argmax pP(v)[c*] + k(v)
ve V

The method of Markov Programming is then as follows: set Vor Yo to
arbitrary values. Then simply take

1. v = argmax pP(v)[yn] + k(v)
: ve V

[max DP(V)[Y ]+ k(v)]
veV
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It is guaranteed that Yn-*c* and vn-»v* for most conditions. Unfortunately,
convergence is not guaranteed for the case of cyclic transition matrices.
However, this problem can easily be fixed by Varaiya's "Dual Method" as
explained in the next section.

1.4 1Incorporation of Varaiya's "Dual Method"
The essential difference between Varaiya's "Dual Method" and the
Markov Programming method as described above isthat Varaiya takes

dv,
rral [$gc pP(v)[yt] + k(v) - [Yt]]

instead of

Yo+l = [326 pP(v) [y, ] + k(v)]

In practical terms this amounts to taking

Yp+1 “Lvgd + 6[326 PV + k(v) - Iy, 1]

Fetting Vo+l be as defined by 1", and assuming [yn]='yn,

2™ Yo =Y, teeP(v gy, toeklv ) - ey,

= eloP(v 1 )v, * K(vpe)] + (1-€)y,

For small enough €, Varaiya's theorem guarantees that Yn-+c* for cyclical
transition matrices (as well as others). Notice that if e=1, 2"' is equi-
valent to 2"; Varaiya's method is the same as Markov Programming. Our
tests on small models indicated that convergence was fastest when e=1,
and this value of € was used in CIVP.

The actual algorithm implemented is now just a synthesis of the Varaiya
Algorithm, and Markov Programming. The reason for not using Varaiya's
. method directly is that the time required to compute 1 is much, much greater
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~than the time to compute 2. Notice that if V0 were to consist of only
a single possible control, let us say {v0}= VO’ then Varaiya's equation

would yield

1. vm+1 = v0

2 ey T e(pP(vQ)me k(vg)) + (1-e)v,

and Ym will converge to a c(vo), the dual variable at v, at very Tittle
expense, since only 2 is involved. Let us now take our arbitrary Vo to

be Vil in Equation 2"'. Then the more closely y approximates the dual

variable c(vn+1) (by successive application of 1,2 above) then the

closer will Vpep = argmax oP(v)y + k(v) be to v* in 1',2"". 1In effect,
veV
we can speed up convergence to v* and c* at very little additional compu-

tational expense, by more accurately calculating the dual variable c(vn)
between maximizations.
The equations are as follows (VO’ Y are arbitrary):

1", v argmax DP(V)[Yn] + k(v)

n+l veV

2.1 vy o= [oPlv ) DT + klvpyy)]

2.2 vy

nyml 12|:pp(vn+1)Yn,m ¥ k(Vn+1):| * 1ﬂn,m

2.3 Yn+1 © Yn,m

]
We have inserted the [ ] at somewhat arbitrary places to assure 1 Yo.m
and 1 Y, are zero. The actual implementation may be somewhat different

for efficiency.

1.5 Tracking Convergence - Monotonic Bounds

From equation 2 (Section 1.3) we can write '

a* = op(v*)e* + k(v*) - c*
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Suppose that Vi1 and c, are suboptimal but

3. Vo4 T arsmgélpP(v')cn + k(v')
Then
4. Jl* < ma*imum element of (pP(vn+1)cn + k(v) -c) .
and

.. 1*
4.5 minimum element of (pP(er_l)cn + k(vn+1) - cn) < J

Since, after 1" (Sectién’1.4); 3 will hold, 4 and 4.5 provide simple bounds
on Jl* at each step. In fact these bounds should be monotonic as n
increases. These bounds are printed out after each optimiiatibn.

Another bound computed by the program are maximum and minimum average
return on the present control Vi "This can be done, once again, by con-

sidering V = {vn}. In this case, evidently

Vo = argmax pP(v') + ¢_ + k(v')
i n :
vieVy
so 4 and 4.5 will hold with gl
are computed at the intermediate steps yn n

* being replaced with Jl(vn). These bounds

2.  Input-Output Conventions

In this section we describe the conventions and data structure used
in specifying an economic model to CfVP,;qnd the names of the quantities
computed and displayed by CIVP. We begin withxihg\input.

2.1 Scalar Constants
In parentheses we show the values. used in the present CIVP.
- NPER -~ Number of periods in year (2)
NAGG - Number of aggregated crops (1)
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NBIN - Number of aggregated storage locations (1)
DIM = NAGG + NBIN
NS - Number of discrete states (for all periods) (14)

2.2 State Vector Convention

DIM is obviously the state dimension. The convention used for number-
ing the state variables (different from ECON) is: Xq---XypGG 3T€ the ag-
gregated crop estimates and XNAGGHL "+ - XpImM are the storage estimates
(there are NBIN of them).

2.3 Matrix Data
Dimensions of each matrix are in brackets [ J]; number of rows is first,
number of columns 1is second.

2.3.1 PLN [NAGG, NPER]
This matrix contains entries indicating -the planting periods, growing

periods, and non-growing periods for each crop. Specifically let ie {1,...,NAGG} — -

be an aggregated crop. Then in row i, a 1 will appear in column t where
t is the period in which the first planting is done (see il]ustration)t,-
If there is a second planting period, a 2 appears, etc. We now divide

ER
NAGG -1|-1]1{0j0|2 PLN

the remaining periods into two groups: --A) periods in which the crop is
growing and the final harvesting will not begin during that period; B)
periods in which the crop's final harvesting is taking place, or periods
after the final hakVésting has taken place and before the first planting
occurs. Ue'ﬂefine the final harvest to be the period in which all re-
maining érop is added to storage, so that the crop is 100% harvested by
@pe/ﬁéxt period. In A periods, 0 (zero) is to appear in PLN; in B periods,

—

_//,,f’ a -1.

\
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One slight restriction of this convention is that the final hérvesting
cannot take place in the same period as the Tast planting: it must occur
at least one period later. In the illustration, for example, last p]ahting
occurs in Period 6, final harvesting in Period 1. It is not possible for
final harvesting to occur in Period 6.

2.3.2 HFR [NAGG, NPER]

For each aggregated crop i, time period t, HFR(i,t) is the fraction
of crop harvested during that period. The final harvest period is there-
fore the first period since the initial planting for which the total
fraction harvested is one.

NPER
- A -~
NAGG y L HFR

\\~fina1 harvest (since initial planting is
Period 3 from PLN)

2.3.3 NFC [DIM, NAGG]

This matrix shows which aggregated crops i feed which aggfegated
storage location j. Specifically NFG(j,i) =1 if crop i's harvest goes to
j; otherwise NFC(j,i)=0. By the state variable convention (Section 2.2),
j > NAGG; hence the first NAGG rows of NFC are unused.

2.4 Data for the Discretization Scheme

2.4.1 N [DIM, NPER]

N(i,t) is the number of discrete levels for state variable X; at period
t. Restrictions:

1) Totally harvested crops. Let us call a crop i totally harvested
if it is 100% harvested and the first planting is not completed. Crop i
will be totally harvested at t if and only if PLN(i,t-1) =-1. In the ex-
ample given (Section 2.3.1), crop 2 is totally harvested in Periods 2 and 3.
We require N(i,t)=1 if i is a crop, and i is totally harvested during t.
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2) N(i,t) is odd
3) 3<N(i,t)<9.

2.4.2 IND1 [NPER+1]
IND1 is a time-saving look-up array. Definition:

t-1 DIM
INDI(t) := )} @ N(i,t); INDI(1) =
T=1 2=1

Note NS = IND1(NPER+1).

2.4.3 Discrete Levels

Discrete levels are defined by two matrices:

M: [DIM, NPER]--the center point of the discrete levels for each state
variable X; and period t is M(i,t).

STDE : [DIM, NPER]--an archaic name and convention as well. STDE(i,t)
is the distance between discrete levels of X; at t divided by 2.4.

Example: X; at t has levels 0,10,20. Then M(i,t) =10, STDE(i,t) = 10/2.4.

2.4.4 Information Model

The information variance, var(¢i(t)) is carried in a matrix called
STD1.

STD1: [DIM, NPER]--STD1(i,t) := /Wf)‘)‘ where ¢ is defined in the
Progress Report.

2.5 Numbering of Discrete States
Let X (t) denote the Jth Tevel (1<j<N(i,t)) of state x; at t.
Then a typ1ca] 'state vector at period t will be some (x1 J (t), Xo J (t)senens

X (t)). There are NS of these discrete state vectors a]together,
DIMs3pry

and they are ordered as follows: first the set of discrete vectors for
t=1, then t=2, etc. In the sample runs there are 9 discrete vectors
for t=1, 5 for t=2. The set of 9 discrete vectors for t=1 is ordered
by increasing levels with the most frequent changes in Tlevel occurring in
the last state variable. Thus the ordering of the discrete states in the
sample run is:
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(xp 1(1)5 %5 4(1))
(x,1(1)s %, 5(1))
(x1,1(1)s %5 3(1))
(x1,2(1)s %5 (1))
(x1,2(1)5 %, 5(1))
(x1,2(1)s %5 5(1))
(x5 3(1)s %, 4(1))
(x1,3(1)s %5 5(1))
(x1,3(1)5 %, 3(1))
(x,1(2)5 %, 4(2))
(x1,1(2)s x5 5(2))
(x1,1(2)s %, 3(2))
(x1,1(2)5 %5 4(2))
(x1,1(2)5 %, £(2))

2.6 Qutput Names , . v

A typical run of CIVP will print out values for various items. The
naming conventions are: _

XINT : [DIM, NPER]--a time-saving look-up table defined below.

FACT : [DIN, - NPER]--for all x;,t, the §™" Tlevel (1sjsN(i,t)) of the
quantization for x; at t is

XINT(i,t) + j*FACT(i,t)

KM : [NS]--a vector of incremental welfare values for each of the dis-
crete states, arrayed in the order described in 2.5. (Same as vector k in
1.2.) KM reflects the incremental welfare for the present suboptimal control
Vi : ,
V: [NS, DIM]--each column of 'V displays the control vector applied
for a particular discrete state vector. That is, if x(t)= (lejl(t)""’
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x(t+1) = x(t) + v(t) + ¢(t)
The sequence of suboptimal controls computed are the i of Section 1.3.
GAMMA : [NS]--same as y in 1.3.
Jl--same as 1.3. :
SIGMA : [NS]--an approximation to the steady state probability dis-

tribution 7 vector which satisfies
m(v)P{v) = w(v)

as v, converges, so does w(v).

3. Running the Programs
Two steps are required to run the program. The.first is to create
a data file with the necessary economic data. The second is to apply CIVP

to the data file.

3.1 Running INITIAL

A sample run of INITIAL appears of Page 10 of the computer output.
INITIAL will ask for various scalars, vectors and arrays; all of these
are defined in Section 2 except for STD, which is not used by CIVP and
should be set to zero. - The initial control matrix V should also be initial-
ized to zero as this initial value is not actually used by the program,
but instead a new value is recomputed immediately. Hence the entry for
V is irrelevant to CIVP.

After the data entry, INITIAL will make some computations and write
the results out into a file with logical name INIT (the actual name is
specified previous to running the program via ASSIGN statement).

CAVEAT: Arrays must be dimensioned properly before running INITIAL.
See Section 3.3.

3.2 Running CIVP (MAIN)
CIVP assumes two files exist: INIT and COMP are the Togical names.

INIT must have been initialized as described above. COMP should be a
carbon copy of INIT. In the present program, no results are actually
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written out to COMP.

After creating COMP, INIT, and making the logical assignments,
CIVP can be run. (See page 11.) CIVP will ask for the following:

Annual Discount factor

nd - determines the search time. The number of divisions of each
dimension of the control space when searching for the optimal control.

A subsequent fine search will then redivide the optimal segment into nd
parts. The resulting search takes time approximately 2*ndDIM
effective grid of nd?" 0™ points.

nt - the M in Equation 2.3, Section 1.4.

Then CIVP will display the model data if the user so requests. Then the
optimization routine begins. (Page 12.)

Each $$OPTIMIZE$S represents a large iteration, an application of
Equation 1", Section 1.4. After application of 2.1, the results
(Yn’vn+1’ and k(vn+1)) are displayed. Next, after 2. 2 2.3 have been applied,
the bounds on Jl* are shown, followed by bounds on J (V 1), and then

with an

YoM and o (approximation to m(v n+1))" The program w111 then request to
begin the next iteration. : )

For the examples solved, we achieved convergence in 4-8 iterations.
Two examples are shown on pp. 12-15. The second example represents dan
“improved information" model over the first, and as a result the optimal
average return came up from -2.136 to -1.930. The incremental welfare
function was defined simply as (v2+5)2 (square deviation from consumption
of 5 units).

3.3 Program Preparation
Some aspects of INITIAL and MAIN are model dependent, and must be

modified for each model. Spec1f1ca11y

3.3.1 Matrix Dimension

The common block matrix dimensions must agree with those given in
Section 2 with the following exceptions:

a) mean and std are not used by the program.

b) any matrix with dimension NS (e.g., V, KM, Gamma, Sigma) in
Section 2 must have at least NS for its dimension in the program. For
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example, if NS=14, KM may be dimensional 14, 100, or 1000, but not 10.
The inequality constraint enables the user to change the discretization
scheme (and thus NS) without redimensioning any matrices.

In INITIAL:

vi : [DIM]
Jjp : [DIM]
In MAIN:

oldgam, pl, p2, p3 : [at least NS]
In OPTIMIZE:
~vr, vlow, vhigh, vinc, j ; [DIM]
In UPDATE: :
sigg, pi, gamg : [at least NS]
vl, j & [DIM]
In UBOUND:
vr, vliow, vhigh, vinc, j : [DIM]
In ITERATE:
Pi, gamma : [at Teast NS]
vlow, vhigh, vinc, j, vt : [DIM]
In PROW:
pi : [at least NS]
v, 3, jp : [DIM]

3.3.2 Qutput Formats
Output formats must be modified suitably in MAIN, PMODEL.

3.3.3 Loops

Some loops in the program are nested DIM deep, so they must be changed
when DIM changes. Specifically, in the routines INITIAL, lines 4500:4900,
OPTIMIZE, 1ines 2100:2400, UPDATE, lines 2800:3500, ITERATE, lines 1900:2100,

3100:3500, PROW, 1ines 3400:3700, a loop similar to this appears:

do - jl1 = 1, n(1,3) 1

3(1) = 51 il
do - j2 = 1, n(2,j) } .
3(2) = 32 -

- continue
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This pattern should be repeated DIM times.

3.4 Program Compilation ,

To create an executing file for INITIAL you must 1ink an object
module for INITIAL and an object module for K. (See file directory,
p. 11.) o o |
To create an executing file for MAIN (CIVP), you must link object
modules for MAIN, PMODEL, OPTIMIZE, UPDATE, UBOUND, ITERATE, PROW, APPROX,
STACK, and K.

4.  Program Details -

4.1 Program Subroutines ’
The structure of the program is illustrated in the following diagram,

where each box represents a subroutine, and arrows represent possible calls:

INITIAL

.

OPTIMIZE

[UBOUND]  [ITERATE]

: STACK

[CEIL]  [FLOOR]
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Briefly, the purpose of each subroutine is as follows. INITIAL asks for
user input for the economic model, initial values, etc., and sets up a
disk file containing a common block with this information for use by the
main program. K is the subroutine used to calculate rewards associated
with the discrete states.

MAIN reads in the common block from the disk file and then calls other
routines. The first, PMODEL, prints out the economic model data. MAIN
then calls OPTIMIZE and UPDATE in alternation to find the optimal control
vector, and associated optimal values.

OPTIMIZE is passed the approximate value vector Yy and finds (see
Section 1.4):

1", v argmax pP(v)[y 1 + k(v)

n+l veV

2.1 vy o = [oP(vp ) Dy + klvp,y)]

by searching the control space V, first using a coarse grid, then a fine
grid centered on the best cause value. The bounds on the possible control
values are found by UBOUND, and ITERATE is called first for the coarse
search, then the fine search. The five highest values found are stacked
by STACK, and then the values of Vil and y' and k(v) are passed back to
MAIN. ’

UPDATE improves the approximation to the state value vector by itera-
tion of the following equation (see Section 1.4):

2.2 Yy e T ’/z[pP(vml)Yn,m + k(vn+1)] i

for M iterations, passes Yn,M back to MAIN, and MAIN Yn+1 = YoM so that
the OPTIMIZE cycle can begin again.

In the above equations it is clear that the value of the transition
matrix P must be recalculated with each new control Vol In fact, if
the state space is so large, it is not practical to store more than one
row of P at a time. The subroutine which calculates a row of P for given
control u is PROW. PROW uses APPROX to approximate the Gaussian distribution
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by a finite number of points. G is the Gaussian probability distribution
function; CEIL is the ceiling function; FLOOR is the floor function.
Let us now take a closer look at each subroutine.

4.2 INITIAL
Inputs: Accepts model data at teletype.

Purpose: To initialize a disk file (named 'INIT') with the economic
and initial data.

Operation: The common block defined in lines 100-800 is equivalanced
with an array called 'data' in Tines 1500-1600, so that the entire common
block can be written on the disk as a unit in l1ine 6000. The disk fill
is opened in lines 2000-2100. Then, several parameters and matrices are
read in (see Section 2 for a description and definition of these arrays)

with Tines 2200-4200.
o Yime 1
‘IIIH}
.. 1

/ divide WPE—R

2 ' , j probability between
. 0 . 0 all states in each

Time 2 ;;gg Oooo period

Time

From the data that has been read in, several additional dependent
arrays can now be initialized. 1In lines 4400-5500 the arrays GAMMA, SIGMA,
and KM are initialized. Recall inducing scheme for the discrete states
described in 2.5. The outermost index, line 4500, is the time period, j.
The next most significant index 1is jl and represents the amount growing
in the first aggregated crop (in this case there is only one aggregated
crop). The least significant index, j2, is the level of grain in the
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aggregated bin. The time period j, and Tevels jl and j2 completely
determine the discrete state. If there were more than one crop in a
bin, then there would need to be more indices to specify a state.

The variable i is simply used to count the discrete states, for in-
formation about the ith discrete state is stored in the ith location of
each array. Thus the incremental welfare of state i, is stored in km(i)
(1ine 5200). It is calculated by calling the incremental welfare value
function K (see details of K, Section 4.3). The initial probability
of state i is stored in sigma(i) (1ine 5300). It is taken to be

1/(# of discrete states in period j * number of periods) so that J sigma(i)=1.
' i=1

Finally, gamma(i) (the initial discounted welfare estimate yo)_is set to
zero.

Then XINT and FACT are initialized in ldnes 5600-5900 by the formula
given in Section 2.6. All the data is written out onto disk and this

concludes the operation of INITIAL.

4.3 K (Page 9 of the computer output)
Inputs: A control v = (Vl""’VDIM) which is usually some row of

the feedback control matrix. A time period index t.
Result: A real number, the incremental welfare when control v is

applied to state x at time t, k(v,x,t) of Section 1.2. Since this does

not actually depend on x, x is not passed{

Operation: For the simplified model we simply took k= -(target con-
sumption - actual consumption)z. Since consumption = -v(2), this is
accomplished by Tine 400.

4.4 MAIN
In MAIN and in subsequent subroutines, arrays and type declaration

will appear in the following order: first common block definition, or
whatever part is needed; second, the scratch common block SCR, if needed;
and finally, local variables to the subroutine. In MAIN, all three types

of declaration appear.
Input: Reals in disk file
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OQutput: See Section 3.2 e

Operation: (Refer also to 3.2): First the disk file is read. to
initialize the common block (1ine 2500). The fill 'comp' is not used in
this version of the program. The program then asks for discount factor,
number of divisions nd for the coarse and fine search, and the number of
update time nt, (Min Equation 2.3, Section 1.4). The annual discount
factor is recomputed into a per-period discount factor p in Tine 3300.
In Tine 3700 the economic data is printed out by a subroutine PMODEL.
Then OPTIMIZE is called to find Vp+1 @ in Equation 1", Section 1.4. The
results are printed out with lines 3900-4100. The next step is to update
the value approximation and probability approx1mat1on Y and ¢ per Equa-
tions 2.1-2.3, Section 1.4, and also find bounds on the optimal return Jl
as described in Section 1.5. A1l of these functions are performed by
the routine UPDATE. The updated values are returned to MAIN and printed

“The calling conventions and detailed work1ngs of PMODEL, OPTIMIZE
and UPDATE fo]]ow - - o

4.5 PMODEL
Arguments: None.
: Returns: None. v
Operation: Data is acquired via the common block, and the data is
printed out in lines 1500-2900 if the user so desires. ’

4.6 OPTIMIZE _
Arguments: ND - number of divisions in coarse and fine search
RHO - per-period discount factor
GAMMA - the Y, as described prev1ous1y (vector)
Returns: GAMMA - Yn+1
- OLDGAM =~ the original value of GAMMA, name]y-yn

V - the best control matrix found by searching the control
space; the Ve 35 previously described.

KM - incremented welfare vector for the discrete states at
this control vn+1.
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Operation:
1. Lines 1300-1400. GAMMA - OLDGAM
2. Lines 1700-4800. Find Voe1? v', km such that

(1) V4l = argmaC P(v)yn + k{v)
Ve

(2) ' =max P(v)y, + k(v)
ve V

(3) kn = k(v )

Set V to Vi1 GAMMA to v', KM to km and return. Task 2 can be broken up
as follows:

2a. Index through the discrete states. i is the state number, t
is the time period, jl is the first index, j2 is the second index (see
Section 2.5 for more details of the state indexing scheme). Either i or
(t, jl’ j2) completely specify the discrete state. 1 is used for some
cases, namely looking up positions in km, gamma, etc., whereas (t, jl, jz)
is used when the acutal levels associated with the state are needed, i.e.,
the values of Xqse+«sXpry @€ needed. Thus we will refer to a discrete
state as either X; or xt’jl’jz.
Within 1inés 2600-4700 we are now concerned only with a single state
Letting P, be the ith row of P(v), we are thus only con-
th

X.i or Xt,jl,jz.

cerned with maximizing the i~ component of y' and v:

v (i) = max Piy + ki
viEVi

v(i) = argmax Py + ki
VieVi

where Vi is the set of possible controls which can be applied to state i.

Diagrammatically,
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Y3 p L K.

i //// i
()| = Genni) U (i)
<;;: v
y' = max P, Y + k,i
" The ith element of vy is the oid value of state i; the jth element of y'

is the new value is state i; the ith

state i. We now proceed to task 2b.
2b. Initializing the stack. USTACK is a stack of the five best
controls and the associated values which are found during the search.

row is v is the control applied to

They are arranged as follows:

new val ue\(\" ‘fvl ﬁ}vz |

Best

Second best

Fifth best

In each row is the new value, followed by the control applied (a 2 vector).
The highest values are on top. But before the search begins, is is necessary
to initialize the values to a low number, so that the real values later
computed will fill the stock.
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value ’ - .__control
Y 4

-100

-100

-100

2c. Calculating the bounds on admissible control. In Tine 2800,
UBOUND s called to calculate the bounds on admissible controls. for
state j,t. These bounds are returned in the vector vlow, vhigh, so that

viow(l) < v, < vhigh(1)

Y]ow(dinbs Vdim S vhigh(dim)

nd is the number of divisions that will be searched in each dimension, and
vinc is a vector of the increments that should be made in each dimension
as the search proceeds. For dim=2, say, UBOUND would return information
defining the following grid:

vine()  gag

=~
7

vhigh(2) N
vinccz)l

:;:::::::::l controls which will
:iifffzzzzz; be searched

AN

|

viow(2) >

N

viow(1) Ihigh(l)




71

2d. . Searching the coarse grid. Now having the bounds on the admis-
sible controls for the state under question, we search through the possible
controls to find a highest value. Namely, we find the Vs which maximizes

] = -
Y; = max Pi(vi)Y + ks
v_iEV_i

The actual search for thechighest value is done by the subroutine
ITERATE (1ine 3000), and the highest values and associated controls are
returned on VSTACK as described above.

2e. Defining the fine grid. Around the optimal coarse point we now
define a much finer grid. This is done by again calling UBOUND and speci-
fying ur, the optimal coarse control, as the center of the fine gearch,

o * [} (] L
coarse X X 4 4R A L KX
grid XX A X X xy y £AX
points IX X XXX oy oA K
X X X XY X X X x
y XX X X A X )Xo X
fine o 3 x X X optimal X ’
grid X x ycoarse X
X A s
points ~ 7> . . point X
x x ¥ ¥ xxk
C X X ¥
< x X X XXX X
w X X A XXX X X
X X X X XX X x XX
® [ ] L

and width of the fine search to be twice the distance between the coarse
points. Then in lines 3400-3500 ur is read off the top of the stack.
In Tines 3600-3700 the stack is again set to low values. Then in line 3800
UBOUND is called to find viow, vhigh,_and vinc for the fine grid.

2f. Searching thé fine grid. Once the bounds on the fine grid are
known, we call ITERATE once more to search the fine grid (1ine 4000). After
this call, the maximum control and value are known and we can set Y to
be the highest value on the stack (1ine 4200), set the i th row of v (the
control matrix) to the best control of this state i (lines 4400-4600), and
set km(i) to the incremental welfare for this control (line 4700). This
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concludes the subroutine OPTIMIZE, as we now have solved Equations (1),
(2), (3) given above.

4.7 UBOUND (Page 5 of computer printout) .
Note: For the ECON model, UBOUND must be reprogrammed. We give a
description here of the simplified version.
Arguments: Jj,t - indices of a discrete state.
tl - the time period subsequent to t
ur - a control vector, the center of the grid

prop - proportion of available control space which is to
be searched. If prop=0, all available control
space is searched and ur is ignored.

nd - number of divisions in each dimension
Returns: vlow, vhigh, vinc - vectors of the low, high and increments
in each control dimension.
Operation: 1. We look successively at each dimension i (line 1100);
that is,_the discrete state X5t given as an argument is a vector

Xj,t = (Xj,t,lgo ) ’xj,t’DIM)

where xj £.1 is the amount of grain growing in the first aggregated crop,
X5.t,2 in the second aggregated crop, and so forth, with X3 t,DIM being
the amount of grain stored in the last aggregated bin. We consider each
dimension separately and first calculate
ml = X5,t,1

(1ine 1200), the amount of grain in that state variable. Then according
to whether i is an aggregated crop or bin, t is a planting time or not,
we branch to different parts of the program. -

2. i is an aggregated crop. (True at line 20).

Case 2a. Preplanting or nonplanting season. (True at line 40). The
only possib]e control is zero; obviously the amount planted must be zero

in a nonplanting period.



73

Case 2b. Planting season. (True at line 50). We restrict the
maximum sowing to the highest level representable in period tl. The
highest level at tl is n(i,t1) - fact(i,tl) + xint(i,t1); hence the amount
sown must be less than vhigh as given in Tine 2000.

Diagram for planting season:

he« fact+ xint T ]

A 4

(n-1)fact + xint 1 control must put level at
. tl in this range

A J ‘—J
gzeient leve] —— ::] negative planting not allowed
fact+ xint 4 ‘

discrete values of variable i at tl

For a Tower bound on the control, notice that the amount sown must
cause a level at Teast as large as the Towest grid point, which is xint+ fact.
Thus the control must be at least xint+ fact -m]. Also, the control must
be positive; hence line 1900.

3. 1 an aggregated bin (True at line 30).

3a. First we calculate the amount of grain in storage assuming that
no consumption, exports, or imports are made. This is done by summing the
amaunt harvested from each‘feeding crop ij into the aggregated bin (1ines
2300-2500). This amount available at tl with no consumption, imports or
exports is called ml and is different from "stock" which is the amount of
stock at time t. '

3b. The 1owést stock level representable at t1 is xint+ fact, so
the lowest control is that which leaves us at that level at time t1,
namely fact+ xint-ml (1ine 2700).

n-+ fact + xint

ml

—_—
harvesti 2+ fact + xint
stock

fact + xint (lowest value)
discrete values available at t1
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3c. The highest possible control is somewhat hard to calculate. In
the ECON model, too, this calculation will be done somewhat differently.

Certainly if

ml > ne fact+ xint

then
v < ne fact+xint-ml
However,
v+stock 2 0
so that
v = -stock
Hence,

v < min(-stock, n- fact+ xint -ml)

If it so happens, however, that this minimum is less than viow, we must

therefore take

vhigh = max(vlow, min(-stock, n* fact + xint - ml))

(1ines 2800-2900). '
4, 1If prop = 0, we are done, SO calculate vinc and return (1ine 3700).

5. If prop > 0, then we must recalculate the control bounds around
the central control ur as shown below. This is carried out in lines 3300-

3500. -

P arm

7
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4.8 ITERATE

Arguments: v]ow, vh1gh -vinc - lowest, h1ghest and increments. for
contro] space

gamma - y as descr1bed above.

J, t - 1nd1ces of the state whose contro] 1s to be
" optimized .

‘tl = time period subsequent to t.
rho - per-period discount factor.
: Rétu?nS' ‘vstack - a stack of the five controls with highest values.
Operation: pi is used to store a row of the probability trans1t1on
matrix P, ( ). Lines 1900-2300 and 3100-3500 are "written out" loops for
speed. These Toop through the possible controls. (The i=1 statement -
at i=1 is superfluous and should be removed. )
The inner lines, 2400- 2800, find the value of each control by the
equation

value = J Pi(VE, 1)+, (11) + k;(vt,t)

where vt is the control under examination, Yq is the old value vector, and
P. (vt *) is the row of the probability- trans1t1on matrix for state i under
contro] vt. Once the value has been calculated, STACK is called in line
2900 to stack the value of the control and control itself should the value
be one of the f1ve best d1scovered SO far in the search

4.9 UPDATE
Arguments: rho - discount factor
E v - feedback control matrix
" km - imcremental welfare vector
'gamma " Yp,m 35 described in Section 1.4.
o]dgam  Yn.m-1
sigma - approximation to probability distribution

Returns: gamma - Yn,m+1 @S described in Section 1.4.

oldgam - Yn,m

sigma - updated approximation to probahility distribution
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bl, b2 - Tower and upper bounds on welfare
(The function of UPDATE is also overviewed in Sections 4.1 and 4.4.) Note:
when UPDATE is past  gamma =Yy, g then b1 and b2 will bound the optimal
welfare, but when UPDATE is called thereafter with gamma = Yy s m>0,
b1 and b2 will bound only the welfare of this particular feedback control
matrix v. Thus the first call to update in MAIN is separated from the re-

maining calls. o
Operation: Following Equation 2.2, Section 1.4, UPDATE calculates:

Yn,m+l © 40P (Ve )Y m * k(v +II/Z-Yn m

b

and also

o = cmP(vn+1)

mtl
What would thus be a straightforward matrix multiplication and addition
is complicated by the fact that P is too large to be stored; one row is
calculated at a time.

Indices: Let us begin by sorting out the indices. The row of P
which we are calculating, and then the element of y which can be calculated
(notice, though, that an element of o requires all the rows of P) is the
index 1. _

Of course, a row of P corresponds to the outward transition proba-
bility from some discrete state, and this discrete state is indexed by
t, Jp» j2, etc., as described in Section 2.5.

t1 is the time period after t. _

nlow and nhigh are bounds on the indices (that is, the positions in
v or o) of discrete states at time period tl. These are the states for
which there is nonzero probability of going to it in the state i. Thus,
these are the first and last elements in the it row of P which must be

multiplied by y (see diagram):
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Partitioning of P:

Per 2 1 0
Per NPER :nonzero

i ! ! \:
Per 1 | 9 _ ! nonzero ! 0 L
0 ]
—
[}

!
t

-~ <l -
!
|

I _
0 ] 0 /
- - - - - _.T__

Per NPER

Per 1
Per 2

| I
—_ ._| _ = - -
(0 1o i’////////7 :
- = - - Lo ——[&—nTow

| | %g_.. nhigh
p T y ,

nlow nhigh
In other words:
nhigh
Poy = ] Pi(ii)y(ii)
ii=nlow

Step 1. Initialize sigg, the updated sigma, to zero. Later sigg~sigma
as required. (Lines 1600-1700, line 5600).

Step 2. Index a row of P, call it i or (i,t) (1ines 2200-3500). Let
vl be the control applied to state Xis the ith row of v (1ine 3700). Let
pi be the ith row of P(v) (1ine 3800).

Step 3. Calculate PiYn,n1= sum and P.y. = sum2 by above equation. .

in,m-1"
(1ines 3900-4400). Also calculate cmP(vn+1) by

ns
Im+1 © Gmp(vn+l) = Z Gm(i)Pi(vn+l) |

(1ine 4400).
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Step 4. Set

gamg = 3P (V1 )¥p.m + Ki(Vpaer) * g ()

(Notice a dcval still remains in this expression ) Calculate dcvalue in
l1ine 4600, and calculate bound (cf. Section 1. 5) in Tines 4700-4900.
Here Svm2 is a calcu]ated~e1ement_of (pP(vn+1)cn + k(v n+1) - )

Step 5. (lines 5300-5600). Return the computed values in the

proper arrays.

4.10 PROW
Function: Calculates a row of P(v).
Arguments: J,t - discrete state index.
v - control (to be applied to this particular state).

Returns: pi - row of P(v) corresponding to probab111t1es leaving
state Jst.

Note: S1nce the probability transition matrix is cyclic, certain elements
of pi are constrained to be zero, but these elements are not actually
zeroed by PROW. This must be remembered when using pi.

Operation: 1) Consider the discrete states at tl1, arranged in a
dim-dimensional grid. (See jllustration, dim=2.) We must somehow approxi-
mate the continuous probability distribution on this space, by a discrete

probability distribution.

discrete states
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approximation to probability distribution

To simplify the problem a bit, we can assume that our discrete probability
distribution is the product of dim independent probability distributions:

%j= %Pj I<i<h(l,t) 1s<j<h(2,t)

and thus reduce our problem to finding an approx1mat1on to a one-dimensional
continuous distribution:

_a

A matrix P, dimensioned dimx 9, holds each of the dim independent -
probability distributions in successive rows. Lines 1400-2200 compute the
discrete probabilities for the first NAGG state variables, lines 2400-3100
computé'the probability distributions for the remaining NBIN state variables,
and then lines 3300-4500 multiply the independent distributions together
appropmiately to calculate the discrete probability at each point on the
dim-dimensional grid. ,

Step 1. For each crop, calculate the mean of the expected amount
planted at the next time period under control v. This is done in 1lines
1500-1800. If tl1 is a pre-p1anting period, then there is only one level
for the discretization (namely 0), hence the probability of going to that
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state is one (line 2100). Otherwise APPROX is called to the PDF and stored
in the ith Tine of P (line 1900).

Step 2. For each bin, calculate the expected amount of grain stored
at the next step. This is simply the present amount plus all harvest
(1ines 2600-2900). Again, APPROX calculates the PDF and stores it in the

it Yine of P.

Step 3. Recall that a discrete state is ordered by t, jl, jZ’ etc.

Line 4400 calculates

DIM

I p(1ine ii, point jii)

pi(i) =
_ ii=1

the product distribution as above.

4.11 APPROX

/
A

7 r§ ‘\\

xint + fact

Ve

ml ne fact+ xint
Arguments: ml - mean of probability distribution
sigl - standard deviation of probability distribution

xint, fact - define the first discrete level (xint + fact)
and distance between discrete levels (fact)

n - number of discrete levels

line - line of matrix a in which to place probability
approximations

‘Returns: a - matrix for discrete probability distribution (only one
row will be affected, namely "line")
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Operation: 1) The subroutine first checks to see that ml is between
xint + fact (the Towest discrete point) and n+ fact+ xint (the highest dis-
crete point). If ml is outside this range (it shouldn't be if UBOUND works
properly), then APPROX prints an error méssage and aborts. Error detected
is Tines 1000-1500.

2) Just to make sure, set ml in range if it is outside range (line
1900). | |

3) Zero out probability distribution a(line,+) (lines 2000-2100).

4) Each probability point will be computed by numerical integration
of the continuous curve. The number of points for each point in the dis-
crete approximation is nd and is computed in Tine 2200.

5) nbl - the first index for which there is any significant proba-
bility (see figure)

3 } I 3
T T T T

i
I
|
o S ]
/A/ ntl,/ nb2  nt2
nbl m/J
nt2 - the last index for which there is any significant probability.
ntl - the index just to the left of the mean.
nb2 - the index just to the right of the mean.
Note: ntl=nb2 if mean of distribution lies exactly on a discrete point.
This speéia] case is taken into account in the program.
arm - 2.4 + sigl, i.e., the distance to which there is any significant
probability, or the distance to the first or last discrete point from the
mean, whichever is smallest.
6) Numerical integration (1line 2900). This is a first approximation
to a discrete PDF.
7) Probability refinement (1lines 3200-6100) coaxes the mean of the
discrete PDF to be the same as the mean of the continuous PDF. Let fi be
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the mean of the crude discrete PDF from numerical integration. Then

nt2 _
fi= ] (i-fact+xint)epi
i=nbl .

" To coax fi to m, we define oy and a, such that

ntl nt2
m= ) (i-fact+xint)ea,-pi + }  (i-fact+xint)eo,-pi
i=nbl i=nb2
and also
nEl n§2
1= Q.°a, + pica
jembl 1 1 qemb2 - °
Tetting
ntl : nt2
. A .
pl 8 L p2 = ) pi
_ i=nbl i=nb2
ntl : nt2
s12 F  ipi s28 7 iwpi
i=nbl i=nb2
we then have
1= apy +aypp
m = al-fact-sl + az-fact-SZ + xint

pl, sl, p2, s2 are calculated in lines 3200-4100, with lines 4300-4700
taking care of the exceptional case ntl = nb2.
We now rewrite the equations for ays Gy S follows:

1= oypy +agp,

m = al(fact-sl + xint-pl) + az(fact-sz + xint~p1)
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Redefine sy = factesi + xint-pl, S, =factes2 + xint-pl, (1ines 4800, 4900),

so that
Pr P2\ [ & 1
<51 52)'(0‘2)=(m)
Lines 5100-5300 solve this equation for ays Q. Lines 5400-6100 then mul-

tiply Pnb1 through Pnt1 by Qs and Pnb2 through Pnt2 by Oy adjusting if
necessary for ntl = nb2.
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APPENDIX B

OPTIMAL AND SUBOPTIMAL STATIONARY
CONTROLS FOR MARKOV CHAINS

by

Pravin Varaiya

in IEEE Transactions on Automatic Control, Vol. AC-23, No. 3,
pp. 388-394, 1978.
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APPENDIX C
A DIFFERENTIAL THEORY OF MARKOV CONTROL

Steven N. Jones

Abstract

We consider the problem of controlling a Markov Process so as
to minimize the long-run discounted (or undiscounted) cost. A new
approach is taken, based on a matrix M which represents the difference
in future state occupation caused by different starting states. Simple
expressions result for the derivatives of the limiting state probability
vector m(u) and cost J(u) with respect to changes in the applied control
u. Using these derivatives, explicit formulas are derived for m(u')
and J(u') where u' differs from u in the control of a single state, and
for this case it is shown that the sign of J(u') - J(u) depends on a very
simply calculated discriminant. This leads to several new necessary
and sufficient conditions for an optimal u*, which hold for both the
discounted and undiscounted cases: optimality, first-order necessary
conditions on the derivative are shown to be sufficient, Varaiya's
necessary and sufficient condition for an optimal dual variable is ex-
tended to the discounted case, as is his bound B(u) > J(u) - J*, and several
previous results are reproven from the differential perspective.
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1. Introduction

The Markov control problem is defined in Section 2, previous workv
on the problem is reviewed briefly and the approach to be taken in this
paper is outlined and‘the major resu]ts summarized. Section 3 gives a
more mathematical formu]ation of the problem, and derives a succinct
algebraic formulation of the problem which is proved equivalent in Sec-
tion 4.

Section 4 comprises the differential theory: the differential state
occupation matrix M is defined, derivatives are defined of w(u) and J(u),
and simple expressions are derived for them in terms of M. An explicit
formula for changes in m and J under statewise control policy changes is
found, énd the Monotonicity Theorem is proved. This theorem states that

if u' differs from u in the control of a single state, then the sign of

J(u') - J(u) depends on the sign of the discriminant &;+4;c(u), where
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c(u) is a dual variable at u, e%ﬁi= k(u') - k(u) (k is the vector of
incrgmenta] costs associated with each state, e; is the jth row of the
identity matrix) and e%Ai= P(u') =P(u). In fact, J(a(u'-u) +u) is mono-
tonic in a.

New optimality conditions are given in Section 5, whose proofs rely
on the Monotonicity Theorem. It is proved that state-wise optimality
is equivalent to global optima]ity, that global optimality is guaranteed
by non-negative derivétive, and the necessity and sufficiency of a dual
variable is proven for the discounted case. Varaiya's bound B(u) > J(u) - g*
is also extended to the discounted case, and some previous results are

reproven from the differential perspective.

2. The Markov Control Problem

Consider a perfectly observable Markov process Xis t=0,1,..., with
finite state space X= {1,...,s}, and a set of available controls U(i) for
each ie X. We assﬁme that by choosing the controls Uy according to a
stationary.confrol policy u=(u(l) ... u(s))e U(1) xU(s) =U, so that

U = u(x t)e U(xt), then the Markov process wil have a stat1onary state
transition matrix P(u). At each t1me t there is an incremental cost Q>
or reward qt, from the Markov process which depends on the state Xy and
on the applied control ut=|1(xt) Pqy= ki(u(i)) under control policy u if
Xy = i. Thus the statistics of Gy 5 t= 0,1,..., depend on the control policy
not only through the functions ki(u), ieX, but also through the statis-
tics of Xgs t=0,1,... whiﬁh are determined by Xg and P(u).

The problem considered here, which we call the Markov Control Probliem,
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is to find stationary controls which minimize the Tong-run discounted
or average cost. The Tong-run average cost starting in state j under

control policy uel is defined as:

(2.1) Jl(u) = 1im E{—l—- %
. Tro UL g

by (0l 5o i} Gex

which wé call the "undiscounted" cost. It is well known that this

1imit converges for stationary control policies (Doob, [1]), and to
guarantee that the long-run average cost is independent from the starting
state, we make the following assumption:

Strict Ergodicity Assumption. For any uel, there is a m(u) such that

(2.2)  Tim P(u)® = 1n(u)

10

where 1=(1 ... 1)". 2

Although most all of our results hold under the more general "single
ergodic class" assumption (Varaiya [2]), which also guarantees that J%
will not depend on j, we will restrict ourselves to the above condition
for simplicity in the presentation.

Another type of cost frequently encountered is "discounted" cost;

for a discount factor 0gp<1:

e B = e T otk wxinga} (e

t=0

(9%(u) ... Jgu)’

(2.3.5)  J°(u)
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In general J?;EJ§ even under the strict ergodic assumption, but there
is a close relationship between the discounted and undiscounted costs:
there exists a "dual variable" c(u), which is defined in Section 4 for

any ue U, such that m(u)c(u)=0 and
P _ 1 .1
(2.4) J"(u) = T:E'J (u) 1+ c(u)

Thus m(u)JP(u) = 3 (u)/(1-p).

The Markov Control Problem, as considered in this paper, is to mini-

mize Jp(u) subject to ueU for a particular 0<pgl. Since J° is in
genera] a vector, it is not immediately clear that all elements of J° can
be m%nimized simultaneously. However, by assuming perfect state obser-
vation (i.e., assuming that the controls Uy méy depend on xt), and by
assuming that U is compact and P,k are continuously dependent on u, it
can be proved that the elements of J° can be minimized simu]taneously
and an optimum stationary control u*eU exists Which achieves this global
minimum (Kushner, [3]). In fact, u* will be optimal over all feedback
controls (Kushner, [3]). _

Many researchers have addres;ed the Markov control problem, finding
necessary and sufficient conditions for.the optimality of u*, methods for
finding bounds on Jp(u*), and algorithms for computing successive stra-
tegies whose cost approach the minimum. Most of this work has centered

around some form of the following equation:

(2.5) c* = min (pP(u)c* + k(u) - Jl(u);)
uel
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Any solution c* to this equation is called an optimal_dual variable, and

there is no confusion in notation as the c(u) mentioned above equals c*
when u is an optimal control. It is known for p=1 (Varaiya, [2]), and
has been assumed for general p (and will be proved in this paper), that
if c* is an optimal dual variable, then the minimizer of the right side
is an optimal control policy. Furthermore, if u* is optimal, then there

exists a c* (which we will show equals c(u*)) which satisfies:

(2.5.5) c* = pP(u¥)c* + k(u¥) - o)1

Equations (2.5) and (2.5.5) thus constitute a necessary and sufficient
condition for u* to be optimal, and it is interesting to review the
previous results on the Markov control problem from this viewpoint.

Howard Algorithm. Consider (2.5) for p=1 in the following form:

(2.6)  c* + JL(ur)L = min (P(u)e* + k(u))
ueU

Any solution c* of the above equation 1is an optimal dual variable
(since it satisfies Eq. (2.5)), and it can be checked that c*i-Jl(u*)L
is also an optimal dual variable. Howard [4] and Schweitzer [5] showed
under certain conditions that optimal dual variables are in a sense
nstable fixed points" of the above equation, so that for the sequence
beginning with an arbitrary Vg, and

- (2.7) Vig = min (P(u)v; + k(u))» i=0,1,...
uel

the vi's approach optimal dual variables, Visl -vi-+J1(u*);, as we would
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expect from (2.6), and thus the minimizing ui's approach minimum cost.

Odoni then showed [6] that for each i=0,1,..., the largest element of

41~ V4 upper bounds J(u*), and the smallest element lower bounds J(u*).
One slight problem with this algorithm is that the conditions for

v

convergence are not fully general, but in most cases it is the most
practical algorithm to use. An analogous algorithm for the discounted
case is:
(2.8) Vigp = min (pP(u)vi + k(u))

uel-
and vy is assured to converge to a definite dual variable since p<1;
however, to the author's knowledge, no analogy to the Odoni bound has

been formulated.

Varaiya Algorithm (p=1 only). For the undiscounted case, Varaiya

[2] defined Q(u) =P(u) -1, and a "Hamiltonian" H(u,c) =Q(u)c+k(u). Then

Eq. (2.5) can be written as

(2.9)  JY(u*)1 = min (Q(u)c* + k(u)) = min H{u,c*)
uel ’ uel

Varaiya proved the necessary and sufficient properties of (2.5) in this

form. He then showed that for any c, min H(u,c)=H(u',c):
ueU

L 1 o _ 4l

(2.10) min min H;(u,c) < 37 (u*) g J°(

; u') g max min H;(u,c)
~ieX uel

ieX uel

and gives a scheme for modifying ¢ to bring the left and right sides of

(2.3) closer together, so that c-+c*, and H+H(u*,c*). This algorithm
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converges under the most general conditiohs (a single chain with transient
states) but is formulated as a differential equation for c, rather than
an algorithm whfch recursively computes a discrete series of c's.

Earlier work, and most of the results we have not reviewed here,
have also relied on some form of Eq. (2.5), and we refer the reader to
Ross [1], Kushner [3], Howard [4], or Bertsekas [8].

The Differential Approach. Our work takes a different approach to

the problem, based on the concept of differential state occupation. We

define mij(u) to be the difference in total expected future occupation

of state j in units of time if Xg has probability one of being i rather

h

than probability distribution w(u). Take e as the jt row of the sxs

identity matrix. Then

—_ ] ] 2 ]
(2.11) mis = (e].---rr)ej + (ei-n)Pej + (ei-n)P e + ...

Under the strict ergodicity assumption, this sum will be shown to converge

for all i,j, and be continuous in u. The m, s can be arranged into a

J
differential state occupation M and

(2.12)  M(u) = § (I-1n(u))P*(u)
t=0
In this paper we will show that M is a useful theoretical tool in
Markov control. It is, for example, related to derivatives of w(u) and
J(u), has important algebraic properties useful in Eq. (2.5), leads to

new and stronger optimality conditions, and relates the discounted to the
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~ undiscounted costs, for c(u)=M(u)k(u). Let us review these applications
in more depth.
Take u, u'eU and let A=P(u') -P(u). We can define a derivative

of w(u) in the direction of A as:

dm _ ..
(2.13) T Tim

>0

(P+eA) - w(P)
€

We will show that this limit always exists and that

dr _
(2.14) - TAM

In addition, since M is a function of u, we can define a derivative

for M and

(2.15) WMo iy WPred) = MP) - pypy
€
>0
Eq.‘(2.14) and (2.15) can be considered differential equations for
(m(P+A), M(P+A)) in the independent variable A. When A consists of
only one nonzero row, these equations can be solved analytically for
(m(P+a), M(P+A)) in terms of (w(P), M(P)), and if'Ai is the nonzero row

th

of A, Mi is the i~ column of M, then

(2.16) [N(U')] ] [ﬂ(P+A)] ) [ﬁ(u)) .1 [ 1. (u) ]
' mwny) ey ey AT M. (u)AsM(u)

Notice for an arbitrary A, the sequence (mw,M)(P), (n,M)(P+e1A1),

(w,M)(P+e1A1+e2A2), leading to (m,M)(P+A) can be recursively computed
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from (2.16). Another application of Eq. (2.16) is our

Monotonicity Theorem. For P(u') - P(u) having a single nonzero

row i,
(2.17)  AM(uk(u) +5(§}o iff Jl(u')[z]dl(u)

where e%6= k(u') - k(u), CH P(u') - P(u). o
A1l of these results extend to the discounted case, as a discounted

MP is defined as:

(o]

(2.18)  MP(u) = J o%(I-1mP(u)
t=0

the differential equations (2.14) and (2.15) are supplemented by one for
MP, adding an additional row for MP(u') in Eq. (2.16), and the Monotonicity
Theorem holds with slight modification.

Consider next the algebraic properties of M. Let Q=pP-1. Then for

Ospsl,

(2.19) Q°MP = MPQ° = 1m-1

so by taking c(u) = MP(u)k(u), we see that c(u) solves (2.5.5):
(2.20) ch+k-Jﬁ;=Qc+c+k-;yk=(;p-I)k+c+k—ym =c
and thus the optima] dual variable c* in (2.5) can be taken to be

(2.21) c* = M{u*)k(u*)
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The proofs of optimality conditions in Section 5 will be facilitated

by the following algebraic properties, which are interesting in their

own right:
(2.22) oM =M1 =0 0spsl
(2.23) Q' =-(Prgoam) 0ge<1

(2.24)  3P-(1-p) = a1+ (1-p)-MPk Ogpg1l

Eq. (2.24) exhibits the relationship between discounted and undiscounted
cost, and we see that by "normalizing" the discounted cost by a factor .
of (1-p), Jp-*J1 as p+1. This normalization will be assumed hereafter
in the paper.

The differential theory described above leads to new and strengthened
necessary and sufficient conditions on u*. First, it is proved that if
a control u is 6ptima1 with respect to changes in the controls of single
states, (i.e., u' differs from u in only one u(i)), then u fs (globally)
optimum. 0bvious1y the converse holds so this is a necessary and suf-
ficient condition.

Second, let ue U, and
(2.25) o(u) = {P(u') -P(u), k(u') -k(u))|ueU}
Then it is shown that

(2.26) g%—k— >0 for all (A,k) e &(u)

is a necessary and sufficient condition for u to be optimal.
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A third result is an extension of Varaiya's necessary and sufficient
condition:

(2.27) Jl(u);_= min (Ql(u')c + k(u')) = min H(c,u')
u'el u'el

to the discounted case. In addition, Varaiya's bound B(u) > Jd* - J(u) is
extended to the discounted case.

We are presently working on improved algorithms based on this result

and the new optimality conditions.

3. Problem Formulation

The state space of the Markov process is X= {1,...,s}, the stationary
control space U is a compact cartesian product U=U(1)x...xU(s), ki : U(i)~+R
are continuous functions for each ieX, and P : U>R%*S is continuous
with the strict ergodic property (Eq. (2.2)) holding for each P(u), ueU.
Take Jl : U>R according to Eq. (2.1), and for 0<p<1 take P . U-R
according to (2.3.5) times a normalization factor (1-p). As we said ear-

lier, this normalization factor insures that:

(3.1)  Tim 0°(u) = dt(u)1
p>1
which we shall prove in Section 4. For any 0gps1, uP* is called p-optimal
iff every element of J°(u*) < JdP(u) for all ueU.
To arrive at a more succinct mathematical statement of the Markov
control problem, considér an alternate expression for Jp, O<p<1. Let

H?j(u) be the expected total discounted future occupation of state j under
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policy u (in units of time), given that Xg = 1 That is, including a

normalization factor (1-p) for consistency:

[o]

)

(3.2) 1) = (1) T

t ot 1
0 eiP (u)ej

th

where e; is the i*" row of the sx s identity matrix. By arranging the

(u) into an sxs matrix I°(u) we have:

p
HiJ

[e o]

(3.3) W) = (1) T oPF = (1-a)(1-pR)

and it follows that

(3.4) 3P(u) = 1P(u)k(u)

We will show that 1im Hp(u)=_lﬁ(u)= 1im Pt(u), so that (3.4) holds for
1 fogd! to0
p=1 also if I (u) is defined to be 1m(u).
We can now formulate the Markov control problem more succinctly. For

o<1, T° is uniquely specified by the equation:

(3.5) Q°mP = -(1-p)I

where Q°=pP - 1. Although (3.5) holds for p=1, one additional constraint
is needed to uniquely specify Hl. In Section 4 we will see that H91=_l
for all 0<ps1, so this constraint with (3.5) uniquely specifies I° and

the Markov control problem can then be written:

(3.6)  JP(uP*) = "“{‘J {IP(u)k(u) |Q°n = -(1-p) I, TPL= 1}
ue



100

We take Eq. (3.6) as the formal definition of the problem, 0<p< 1.

4, A Differential Theory

Let (u(l) u(2) ... u(i) ... u(s))=ueU be given and suppose
u'=(u(1) u(2) ... u'(i) ... u(s)) differs from u only in the control
applied to i. The major results of this section are explicit expressions
for m(u'), J°(u'), and M(u') in terms of w(u) and M(u), and the Mono-
tonicity Theorem (Eq. (2.17)). These results lead to new optimality
conditions in Section 5.

The development begins with discussion of the new matrix M and its
properties. The derivatives of w(P), J(P) and M(P)_with respect to
changes in P can then be expressed in terms of M. We will write a dif-
ferential equation in P(u) +a(P(u')-P(u)) where a is the scalar parameter
to be varied between 0 and 1, and by noting that P(u') differs from P(u)
in only one row, we can solve the differential equation for w(a), M(a)
and JP(a). Letting a=1 we have the result mentioned above. Note that
this result applies to both the discounted and undiscounted cases.

For any ueU, 0<pg1, define A(u)=1-1 (u). Notice that AM=A, and

that AP=PA. Define:

(4.1) M) = ¥ otApt(u)  for O0<psl
£=0 |
and Mo(u) = A,

Since the magnitudes of all eigenvalues of P are no greater than one,

this sum must converge for p<1 (and uniformly). To see that it must



101

converge for p=1 also, recall that 112 Pn=_£n by the Strong Ergodicity
n
Assumption, and since (P-_l_n)n= (AP)"=APn=Pn-_]_._'IT, Tim (P-_l_'lT)n=0.

Thus the geometric series:

(p-1m" = cf A" = Ml (u)
=0 - n=0

(4.2)

S8

must converge (and uniformly also). In fact, since m is continuous in
u (Varaiya, [2]), and P is continuous in u by definition, MP must also be
continuous in u. Also MP can be defined in closed form by evaluating

the left side of Eq. (4.2) and

4.3) M= (I-p(P-1m))t  for0gpsl

M has many interesting propertieé, some of which are given in the

following theorem. Recall that Q(u) = pP(u) - I.

Theorem 1. a. Ql = -(1-p)1
b. mQ = -(1-p)
c. mM=ML=0
d. QA=AQ=A ifp=1

e. AM=MA=-A

Proof: (a) through (c)

due to Q1=7Q=0 when p=1.

©

(4.4) oMP =

t=0

Tttt

follow easily from the definitions.

For (e), we see that

7 otapt = M-A
t=1

(d) is
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so MQ=-A. Also

8

ot lpapt = 7 ottt - g

(4.5) pPM =
0 t=0

t

Il o~

since PA=AP, thus QM= -A. | |

For p<1, Q is invertible and it can be checked from the above .re-

lations that

-1

= M-l
(4.6) Q=Moo 1n

It is this "inverse" property which makes M particularly useful 1in

derivations.

M relates TP to 1! and J° to Jl: for p<1,

co

)
t=0

(4.7) m° = (1-p) 'tZO otpt = (1-p) (ptAPt+pt11rPt)

(1-p)M°+ 1m = (1-p)M°+ 1!

Since M is continuous in u, we see that 1im Hp=IH1, so equality of the
o1
first and last matrices in Eq. (4.7) holds for p=1 also.

Using (4.7), we can express J° in terms of J1 and MP:

(4.8) 9P = 1Pk = (1-p)Mk +J1(u)

The quantity M(u)k(u) appears so often we define it to be c(u), and
we will later see that this vector represents the relative costs of the

states under k, or in effect is a "dual variable" of u.
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We now turn to the application of M in the calculation of deriva-

tives. The notion of a feasible direction is a preliminary concept.

Definition. Let L={(P(u), k(u))|ueU} and for any ueU call

o(u) =L = (P(u), k(u)) the set of all feasible directions from u. The

convex hull of L is denoted L. n
Lemma. L satisfies the Strict Ergodicity Assumption iff L does. B

If (4,8) e ¥(u), define the one-sided derivatives

(4.9) 4.y, mP(Pred) - NO(P)

(4.10) Tx - limg

€

if the 1imits exist.

Theorem 2. Let ueU be given and let (A,8) e ®(u). Then ﬁ @-p—
S g , . da * 44,8’
and %exist for all 0gpgl and
o
(4.11) g = onPa®
do® _ o '
(4.12) a5 7 (8 + pAMK)
ap (o o=1
(4.13) — =
A pMpAMQ+1_}-6 (M -M)  0gp<l

If €(4,8) satisfies the Strong Ergodicity Property for small enough €, then
the above derivatives are two-sided.

Before turning to the proof, we will show that Eq. (4.11) can be
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derived from simple intuitive reasoning. Consider first a change

A==ee%(ej - ey ), a small perturbation in P which adds probability €
2

to p;. and subtracts probability € from p.. For small €, what is

ij ijJ,”

1 2
m, (P+eei(e; -e; ))-m,(P)? In changing only one row in P we expect the
k LA PN P k
Markov process to run, intuitively speaking, as it normally would except
when leaving state i. When the process is in state i, however, there is
an added probability of € of going to jl and € Tess probability of going
to j2' We can explore the change in overall behavior by analyzing the
effect of each occupation of i.
Recall that mj K is the difference in occupation of state k by

1

starting in j1 rather than w, and mj K is the difference in occupation

2
of k by starting in j2 rather than w. Thus

(4.14) m. , - m.

Jiko ok
represents the difference in future occupation of state k when starting
in jl rather than jz, and € times (4.14) must be the difference in total
occupation of k each time the Markov process is in state i. Since state i
occurs with frequency Tis We expect an average difference in occupation

of state k to be:

(4.15) m.e(m, ,-m,: )
i Jlk Jzk

Now any A can be expressed as:

4.16 gete. A, = ge1A -
(4.16) L ; 1 ijl(eJl e32)

g, 71 1,3
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[eo]

since § A;. e. =0, and so -

‘]1 131 J2
(4.17) 7, (P) -1, (P+en) = §  miedis (my ,-ms )
k k S R R TR P
= ¥ emd;, (m; ) = enaM
i’jl 13, Jlk k

and therefore:
(4.18) m(P+A) - w(P) = emraM

Let us now prove Theorem 2 formally. _
Proof: For €20 let H2=HO(P+EA), Q2=pP+p€A-I, and for >0 take

- (P _ P s
D€ (H€ HO)/e. Since

P (1. - p
(4.19) HEQO .(1 p)I peHEA

(4.20) ngoo -(1-p)1I

we can get an equation for D, by subtracting (4.20) from (4.19) and dividing
by e:

(4.21) DEQS = -pHEA

For p<1, €>0, Eq. (4.21) has a unique solution for D_ since Q is
invertible. For p=1, however, (4.21) yields only s-1 linearly independent

equations, but the one additional'independent condition

(4.22) D1=0
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specifies D8 uniquely for all p. It can be checked that D€= pHgAMp is

a solution to the above equations:
PAmP = _amiP = -
(4.23) (pHeAM ) )Q0 pHEAA pIA

and Eq. (4.22) is satisfied since M?l= 0. Thus

dr® _ .. - O = PP

(4.24) 5— = lim, D_ = Tim_ pI"AM™ = pIl"AM
dA e +O+ e . +0+ €

Eq. (4.12) follows from (4.24) and the chain rule..

Eq. (4.13) can be derived for p<1 using (4.7) rewritten in this form:

(4.25) M = 1L (mP-n!) (0<p<1)

1
For the case p=1, g%—-can be calculated by defining a M€ in complete

analogy to He. _ | |
Consider again the situation u= (u(1) ... u(i) ... u(s)) and
u'=(u(l) ... u'(i) ... u(s)). The above derivatives can be used to
solve for mP(u'), J°(u'), and M°(u') in terms of mP(u) and M°(u). Let
A=P(u') -P(u); A has only a single non-zero row and there exists a Ai
such that A==e%Ai. Also 6= k(u') - k(u)==e%61 for some scalar §;. Let a

be a scalar parameter, and define
(4.26) (P(a),k(a)) = (P(u) +a(P(u')-P(u)),k(u) +a(k(u')-k(u)))
Then for any value of a between zero and one inclusive,

(4.27) (P(a),k(a)) e o(u)
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where the overbar indicates the convex hull. The derivatives of all
quantities exist and are two-sided for O0<a<1, and are one-sided for
a=0and a=1, by Eq. (4.27). We will find m°(u') and MP(u') by writing

a differential equation for m(a) and M°(a), so]Ving the differential equa-

h

tion, and then taking a=1. To begin, let M? be the jt, column of M°,

vg(a)=A1.MJ‘?(a) for j=1,...,s. Then

dvP(a) dm2(a)
J - J = PrmP

(4.28) i da

but this expression is a function of v? and v? since

PamP - P Pyt P _ o,p
(4.29) AiM AMF = p(v1 ves Vs)eiAiMj PV4V3

Thus we can solve first for v?(a) and then all of the other vg and get:

(0)
(4.30) v?(a) = ']
1- pav?(o)

Since M?(a) exists and is finite for a=1, and vg(a) is continuous, we

must have also:
(4.31) 1-pv§?(0) = 1-o0Ms 20 (0spsl, i,jef{l,...,s})

an ancillary fact we will use in proving the Monotonicity Theorem.
To continue, we can next solve for I°(a), since the derivative of

the jth column of Hg,
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di’(a)

P 0 i MO = ArPyP
(4.32) & pll eiAiMj pHivj

Again solving first for H?, and then Hg, we get

(0
(4.33) ng(a) = 1°(0) + 19(0) avJ( )

J ! l-pav?(o)

Letting a=1, and writing (4.33) in matrix form, we arrive at an expression

for P(u'):

(4.38) TP(u') = I°(u) + T—‘E}W-H?A"MD

h

where M? is the it column of M? and H? is the 1th column of H?.

Once we have the v?'s, it is easy to solve for Ml, since

To get M° for p<1, use Eq. (4.7):
Of1y = 1L Pr. 1, ,
(4.37) M(u)—ﬁ(ﬂ(u)-ﬂ(u))

We now have analytical expressions for m°P(u') and MP(u') in terms of



109

m°(u), MP(u), H;(u) and Ml(u). Since TP is a function of M° and 1!, we
see that the triple (Hl(u'), Ml(u'), MP(u')) can be explicitly calculated
from the triple (Hl(u), Ml(u), MP(u)), when u' is different from u in the
control 6f a single state.

Let us now turn to a calculation of Jp(u') in terms of the last

triple; this is certainly possible since
(4.38)  3P(u') = TP(u')k(u")
We spare the reader the necessary algebra which reduces Eq. (4.38) to

the following:

P
61 + pAiP1 k

P (u)

(4.39)  JP(u') = oP(u) + 1

1- pAiMT

where all of the quantities on the right side are taken at u.

With this expression we can now prove the following theorem.

Theorem 3. (Monotonicity Theorem). Let u' differ from u in the

control of a single state, e%Ai= P(u') - P(u), CHP k(u') - k(u). Then

|o

where c®(u) =MP(u)k(u). The inequality must be strict for at least one

dPu") - 3°P(u)

7]
ALV

if 8 +pA1.cp(u) {

A 11 v
o

element of J°(u') - J°(u); hence the "if" is an "if and only if" for p=1.

b. .~ J(P+aeA;, k-Fae%Ai) is monotonic in a for 0<pg 1.
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Proof: (a) Recall from Eq. (4.31) that 1-pAsM; must be greater
than zero. Since the elements of H?(u) are non-negative, and I{?(u)
has at least one strictly positive element (namely H?i(u)), (a) follows.

(b) Follows from Lemma, Eqs. (4.39) and (4.31). ]

5. Optimality Conditions and Bounds

In this section several new necessary and sufﬁcient'conditions for
a global optimum u* are proved. In addition, several previous results are
reproved or extended, as the differential viewpoint offers a new perspec?
tive, and in most cases, a simpler proof.

Consider the following conditions for a fixed ueU:

Cl. JP(u') > J°(u) all u' e U

c2. Ju) = min (QP(u')cP+k(u'))  where cP=MP(u)k(u)
u'el

3. 3°(u) = min (0Q%(u')cP+k(u'))  where ¢ =M (u)k(u)
u'et

C4. &+ pMM(u)k(u) >0 all (A,68) € o(u)

¢5. JP(u") - Jp(u) for all u'eU s.t. for some ieX,

u'(j)=u(j) unless j=1 all jeX
p
6. gg,gp(”)’k(“)) >0 all (4,6) € o(u)

Cl is of course a statement of global optimality. C5 and C4 are new;
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C2 is known to be equivalent to Cl whgn p=1 (Varaiya, [2]); C3 and C6 are

new.

Theorem 4. All of the above conditions afe equivalent. Thus, any
condition implies u is a global optim_um and the solution to the Markov
control problem.

We will need this preliminary lemma:

Lemma 2. Let uelU, Ogpsgl, cP(u) = MP(u)k(u). Then

(5.1) w1 = QPu)cP(u) + k(u)

Proof: QP(u)cP(u) = QP(u)MP(u)k(u) = -A(u)k(u) = (1m-I)k(u) = Jl(u)l— k(u) B
Proof of Theorem 4: (Cl<»C2). Obviously C1+C2. For any u',

J1(u')=Q°(u')cP(u') +k(u') by Lemma 2. If C2 holds, then J;(u) 5 Q°(u*)cP(u) +

k(u'). Since T°(u) has only non-negative elements

(5.2)  1°(u')9;(u) = 1P(u")1m = J;(u)

mP(u')Q°(u")cP +1P(u' ) k(u')

[PaN

(1m(u') + (1-p)M°(u)Q°(u")cP + 0P(u")

~(1-p)c+J°(u")

Thus J°(u) =J1(u) + (1-p)c§Jp(U') which is condition Cl. (This proof is
in direct analogy to Varaiya [2]). |

(C2<=C3). These two equations differ only by a constant factor
(1-p)cP.

© (C2«>C4). By Lemma 2, C2 is equivalent to the statement:
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(5.3)  (p(P+A4) -1)cP+k+8 3 (oP-T)cP+k

which is equivalent to
(5.4)  paMk + 8, 20

which is C4.
(C4<>C5). Follows directly from the Monotonicity Theorem.

(C5++C6). C6~C5 by the Monotonicity Theorem. Suppose then that
condition ~-C6 holds, so that for some A,S,

. |
(5.5) gg 6P’k = P(5+ pAMPK) £ O

Since all of the elements of II° are non-negative, there must be an ie X
such that '

(5.6) 61.+pA1.Mpk <0

Again, by the monotonicity theorem, J?(P4-e%Ai, k+~e%6i)< Ji(P,k) which
is -C2. | x
We now extend Varaiya's bound B(u)g.Jl(u)- Jl(u*) to the dis-

counted case. Recall the Hamiltonian

(5.7) H(u,Y) - Q(u)y + k(u)

Extending this to the discounted case, so that HP(u,y) = QP(u)y + k(u),

we get an analogous result.
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Theorem 5. Let y be an arbitrary column vector, let 0<pg1, and

choose ue U such that

(5.8) H(u,y) = min» H(u',y)
u'el :

Let h=min H?(u,y), h=max Hf'.)(u,y). Then
ieX _ ieX

(5.9) hl + (1-p)y g 3°* < 3P(u) <hL + (1-p)y

Furthermore, if h=h, then y= cp*+al where a is a scalar, Jp(u) = JP*,
and HP(u,y) = J1(u*). If also my=0, then y=cP*.

Proof: Recall that 1°Q°=-(1-p)I. Thus

(5.10)  TP(u)HP(u) = PPy + 1Pk = P(u) - (1-p)v

and

(5.11)  1P*(u*)HP(u*) = J°* - (1-p)

Since all of the elements of T° are non-negative and Hp_1_=l, Eq. (5.9)
follows.

Now suppose h=H. Since then h1=h1=H, JP*=J3P{u), u=u*, and

(5.12)  H+ (1-p)y = 3°(u) = a}(u) - (1-p)MPcP
SO

1

=1 gt- Y
(5.13) vy =g (3" -H)+c
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and if 0=my then o=ny=1—}5(al-m and H=J%. »
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