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1. INTRODUCTION 

The objective of this study is to find an algorithm which 
accurately and efficiently estimates production and consumption 
patterns in the wheat market when various information con-
ditions are available to the participants. Such an algorithm could be 
used to estimate, given a suitable definition of overall "welfare," 
the net value to society of an improved wheat forecasting program 
such as the NASA LANDSAT system. Of course, the accuracy of the value 
estimates depends on both the information supplied to the program, 
viz.: the economic model, and the definition of "welfare," as well as 
the operation of the algorithm itself. An economic model of the wheat 
sector which is suitable for this problem has been developed by· ECON [1], 
and our work has been limited to 1) precise formulation of the model 
within a stochastic control framework, 2) choice and development of a 
suitable algorithm to solve the model. 

The theoretical foundation on which our work is based is the results 
of stochastic control theory (Witsenhausen [2]) and Markov Decision 
Theory (Howard [3], Schweitzer [4], Odoni [5], and Varaiya [6]), in­
cluding some new theoretical results on discounted Markov Processes 
which will be presented here (and also in Jones [7]). The major 
theoretical steps in our work have been: 

1) Generalization of the ECON model 

2) Definition of stochastic control problem 
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3) Definition of infinite-horizon discounted rewards 

4) Definition of information states 

5) Approximation as finite-state Markov chain, 

and these results will be presented in Section 2. The choice of algorithm 

will be discussed in Section 3. We have applied the algorithm to a sim­

pl ified two-period, one country model, both for debugging purposes, and 

also to get a feel for the behavior of the algorithm in a more tractable 

problem than the many-thousand state Markov chain model based on larger 

EGON model. For a fixed quantization of the state-space, convergence 

is relatively fast and monotonic, and we have every reason to believe 

that this rate of convergence will be nearly achieved by the larger model. 

The memory requirement of the algorithm is a small multiple of the total 

number of states. Then the memory requirement increases with the number 

of discrete states. Our program is written for a generalized EGON model 

which includes multiple crops, countries, and harvest times, so no re­

programming will be necessary for extended models. 

In Section 4, a one-country, two period example is treated in detail 

and problems concerning the use and convergence of algorithms, and a 

comparison with the EGON results for the same example are considered. 

A number of interesting differences between the results are also pre­

sented. 

Three appendices are included at the end of the report to provide 

further details on the Markov programming algorithm. 
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2. THEORETICAL FORMULATION 

2.1 Introduction 

The first step in finding a suitable algorithm is posing the problem 

in the proper theoreti ca 1 framework ,. so that convergence and un i queness 

of the solution can be assured. Ultimately, we will formulate the model 

as a finite-state Markov chain, where the states represent the information 

available to consumers and producers about stocks and crops, namely 

their estimated values. - But before we can logically get to this stage, 

we must start at the foundation, the real-world variables and model. 

We will then show how this is explicitly simplified to the information­

state model, and then to the finite-state model, which lends itself to 

computer solution. 

We begin by reexamining the ECON model in terms of real-world 

quantities and relationships. 

2.2 ECON Model 

In the. ECON model there are two types of grain: grain which is 

growing on a farm and has not yet been harvested, and grain which has 

been harvested, but not yet consumed; e.g., in transit, in storage re­

serves, etc. Let us call these grain types 1 and 2, respectively. 

Grain can exist, within the ECON model IS discrimination, in one of . 

two places: in the US, or in the rest of the world (ROW). The ECON 

model, then, is concerned with four real-world quantities, and although 

the state-space is not the quantities themselves but only estimates of 

them, let us momentarily take the state variables to be the real-world 
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quantities; They are: 

Type 1 grain in US, x2 (unharvested, in the ground) 

Type 2 grain in US, xl (harvested, unconsumed) 

Type 1 grain in ROW, x4 (unharvested, in the ground) 

Type 2 grain in ROW, x3 (harvested, unconsumed) 

Now suppose that the world wheat market is in some state, which is 

a value X(t)E E! of (xl x2 x3 x4)*. Consumers, producers and exporters 

have access to certain limited imperfect public information about x(t), 

which we can call I(t), on which they base their consumptions (Yl in US, 

Y4 in ROW), plantings (Y3' YS), and exports from US to ROW (Y2)' The 

state of the wheat market at t+l is then a function of x(t), y(t), and 

some random disturbances v(t): 

x(t+l) = f(x(t),y(t),v(t),t). 

f is, for any t, a linear function in x, y and v, due to the simple 

additive and subtractive nature of consumption and production. Spe-

cifically, the equations are: 

(US) 

(ROW) 

. {Xl(t) - Yl(t) - Y2(t) + vl(t) 
xl(t+l) = 

. xl(t) - Yl(t) - Y2(t) + vl(t) 

non-harvest period 

+ x2(t) harvest period 

non-harvest period 

{

X3(t) - Y4(t) + Y2(t) + v3(t) 
x3(t+l) = 

x3(t) - Y4(t) + Y2(t) + v3(t) + x4(t) harvest period 

(US) x2(t+l) = x2(t) + v2(t) non-planting, pre harvest 
{

a post harvest and pre-planting 

x2(t) + Y3(t) + v2(t) planting, pre harvest 

*E! denotes the positive quadrant of the 4 dimensional Euclidean space. 
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(ROW) 
post harvest, pre-planting 
non-planting, pre harvest 
planting, pre harvest 

or, for suitable choice of matrices M and N (which will have either 0, 1, -1 

as elements): 

x(t+I) = M(t)x(t) + N(t)y(t) + v(t) 

The following inequalities restrict the choice of y: 

1. y ~ 0 

2. Y3 = 0 during nonplanting periods in US 

3. yS = 0 during nonplanting periods in ROW 

4. YI + Y2 :::; xl 

S. Y4 :::; x3 

Inequality (S) takes into account the transportation lag for exports of 

about one month. It should be noted from the above equations that the ma­

trix N could be eliminated by defining ul = -YI - Y2' u3 = -Y4 + Y2' 

u2 = Y3' and u4 = YS so that 

x(t+I) = M(t)x(t) + u(t) + v(t) 

Let us now determine the constraints on u. From the constraints on Y3' YS 

we evidently have: 

11. 

21 • 

{

[O,OO] during planting period in US 
u2 e: 

[0] during nonplanting period in,ijS 

e: {[O,oo] during planting periods in ROW 

u4 [0] during nonplanting periods in ROW 
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The constraints in ul can be found by rewriting inequality (4) with the 

substitution YI = -u l - Y2: 

so ul ~ -xl" An upper bound on u1 is obtained from the inequalities 

YI ~ 0 and Y2 ~ 0: 

so 

YI = -u l - Y2 ~ 0 + ul ~ -Y2 

Y2 ~ 0 + -Y2 ~ 0 + ul ~ 0 

3 I " ul € [-xl' 0] 

For the constraint on u3 consider the following four inequalities: 

YI ~ 0 

Y4 ~ 0 

Y2 ~ 0 

Rewrite ,them in terms of u and Y2: 

-u l - Y2 ~ 0 

·Y2 - u3 ~ 0 

Y2 ~ 0 

Y2 - u3 ~ x3 
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Since ul ~ -xl' we concl ude from the first inequal ity that Y2 S X 1'- and 

from the other three we then have 

It is easily seen that for the interv_al in 4' to be nonempty, u3 must be - . 

between -x3 and xl: 

The constraints 11 - 5' in u and Y2 are equival ent to the constraints 1- 5 

in y, but the dimension of the control space has been reduced by one, and 

the state transition equation has been simplified. 

The inequality constraints present a major hurdle in solving the 

problem; two other difficult areas are defining the information It(x) 

available to the market, and the statistics of v(t). No reliable es­

timates of the statistics of v(t) are available, and the principal 

ingenuity of the ECON formulation, although not entirely successful, was 

to circumvent the need for such statistics. We will see, upon careful 

derivation of the ECON approach, that there is actually no way around 

this problem. Reasonable assumptions must be made, and stated explicitly 

for scrutiny. 

It(x) presents problems because the information actually available 

to the market, a history of controls and state. observations, has ar­

bitrarily large dimension. From separation [2] we know that this in­

formation can be reduced without loss of optimality to a probability 

distribution px(x(t)II t ), but we still must choose a consumption law which 
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is a function of a probability function. He will follow ECON in defining 

It(x) to be the "best" estimate of x(t) given past observation. Since 

x(t) is governed by time-varying linear equations, we know that the "best" 

estimate is a Kalman filter estimate which we shall denote x(t). Because 

certainty equivalence does not hold (due to the inequality constraints), 

the market cannot act optimally given only x(t). But it is a reasonable 

assumption if we must keep the closed-loop state dimension to a minimum. 

In fact, ECON took only x(t) to be the state, and this is technically 

not a "state", since the statistics of x(t+l) cannot be determined from 

x(t) alone. Actually the state-space must be extended to (x,P) for the 

state quality to remain, where P is the covariance matrix of x. We will 

discuss this issue in more detail a little later. 

To actually turn the ECON r·1odel into a 1 iving and breathing economic 

organism, we must postulate the mechanism by which y(t) is chosen, i.e., how 

the consumer, producer and exporter actually behave. It is at this point 

where economics per se enters, and we must hope that the economic assump­

tions are strong enough to withstand the additional battering of approxi­

mations in solving the stochastic control problem. 

Let us summarize the economic assumptions which directly affect the 

problem formulation. It is assumed that y(t) is a function of x(t) and t 

which optimizes some properly defined overall welfare measure. That is, 

consumers, producers and exporters are "optimal controllers" of overall 

wel fare. 
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Let F(t, x(t), y(t)) be a measure of overall welfare at time t. Then 

participants behave to maximize their overall future welfare, discounted 

by a factor p each period of time. That is, y(x,t) is chosen to 

maximize: 

WP(x(t)) = E[ I p(t'-t)F(t ' , x(t l
), y(t l

))] 

tl=t 

which we call the "discounted future welfare. II This quantity depends on 

the starting state x(t). 

We will defer questions of uniqueness of existence of a solution of 

the above problem to the finite-state formulation, where the results are 

quite clear. First let us define our generalized model, and reexamine 

the state-space representation problem. 

2.3 Generalized Model 

In the interest of future research, we have generalized the ECON model 

to an arbitrary number of countries, with arbitrary planting times, harvest 

times, and fractional harvests. The general program has not been sub­

stantially harder to write, but it has enabled us to observe the behavior 

of the algorithm on smaller and more tractable models. Also, it should 

allow future researchers to examine larger models without any reprogramming. 

A schematic of the physical model is shown below. 
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COUNTRY 2 
rrypelLO~3 -

consumpti on x 
~ 7 

\-e~KX-~-~~-;-~-t-~n-d~J Y.\le 

COUNTRY 3 r - - - J - -I 

co sumption 
I 

I 

-l 

lanting 

We follow the same convention that Type 1 grain is growing but not yet 

harvested, Type 2 grain is harvested but not yet consumed. Notice that the 

definition of x1,x2 is switched around from the ECON model. Circles in 

the above diagram are locations of Type 1 grain; we call them aggregated 

crops. The number of aggregated crops is arbitrary. In the ECON model there 

are only two aggregated crops: in the US and in ROW. Squares in the 

above diagram are locations of Type 2 grain; we call them aggregated bins. 

In this model, there is a state variable x. for each circle and square, 
1 
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representing the amount of Type 1 or Type 2 grain at that location. Or-

ganization into countries is arbitrary. 

The dynamics are analogous to the ECON model, except for harvesting, 

which is more general here. Planting takes place during restricted 

periods of the year, and the amount of planted grain ui is simply added to 

the amount already existing xi' with random variation vi(t) due to weather 

and other uncertainties: 

i E aggregated crop 
t a planting season of i 

x.(t+l) = x.(t) + u.(t) + v.(t) 
1 1 1 1 

At the end of the harvest season we simply put: 

x. (t+1) = 0 
1 

i Eaggregated crop 
t post-harvest season 

Grain is harvested over a sequence of periods, and the fraction of 

the total crop harvested at period t is defined as hfr(t). Let j be an 

aggregated bin, i be an aggregated crop feeding j, and uj be the net 

result during period t of all consumption, imports and exports, analogously 

to our previous definition. Then 

x.(t+l) = x.(t) + u.(t) + hfr.(t) x x.(t) 
J J J 1 1 

During non-harvest season, hfr i = O. The constraints on the controls u 

are somewhat complicated and depend on the import-export assumptions, but 

the inequality constraints will have similar form to constraints I' - 5' 

in Section 2.1 

The state dynamic equation is, with suitable choice of M(t), 
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x(t+1) = M(t)x(t) + u(t) + v(t) 

2.4 Stochastic Aspects of the Model 

Up to this point we have avoided precise formulation of the pro­

babilistic aspect of the model. because there are many problems and it 

is best to bring the discussion of them together in one section. It is 

now time to put the stochastic problem on a firm footing. 

Controls. representing the behavior of consumer. producers. and 

exporters. are chosen according to a noisy state observation. We will 

assume that the information set I(t) = (z(O), u(O), z(l), ... , u(t-1), z(t)) 

is available where 

z(t) = x(t) + w(t) 

and w(t) are zero-mean independent Gaussian random variables. If v(t) is 

Gaussian also, then the optimal estimate of x(t) given I(t) is just the 

Kalman estimate of x(t), which we call x(tlt). 

We make the additional assumption that 

u(t) = g(t, x(tlt)) 

Although x(tlt) is an optimal estimate. x(tlt) may not contain enough 

information about the probability distribution of x(t) given I(t) to 

make an optimal choice of control. Nevertheless the problem quickly 

becomes intractable if we allow higher moments. 

We can now write the stochastic equations of the economic system: 

1. x(t+1) = M(t)x(t) + u(t) + v(t) 
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2. z(t) = x(t) + w(t) 

3. I(t) = (z(O), u(O), z(l), ... , u(t-l), z(t)) 

4. x(tlt) = E(x{t)!I{t)) 

5. u(t) = g(t, x{tlt)) 

6. E{v(t) VT(t)} = Q 

7. E{w(t) wT{t)} = R 

Under the assumption that v and ware independent and Gaussian (3) and (4) 

can be replaced with the appropriate Kalman filter equations: 

31
• v{t+l) = z(t+l) - x(t+llt) = z{t+l) - M{t)x(tlt) + u(t) 

41
• x{t+llt+l) = ~1(t)x(tlt) + u{t) + K{t)v{t) 

where K{t) is the Kalman filter gain which depends on Q, Rand t, but not 

on the observations z(t) or controls u(t). Let us write K{Q,R,t) to be 

more explicit. It turns out that v is independent from x{tlt) and is 

Gaussian with mean 0 and covariance Kvv{Q,R,t). Thus equation 41 can 

be written 

411 • x(t+llt+l) = M{t)x{tlt) + u{t) + cp(t) 

where CP{t) = K{t)v{t), and 411 has the state property. In other words, it 

is not necessary to know the true state x(t) in addition to x{t!t) to 

determine the statistics of x(t+llt+l); x(tlt) alone will do. 

The problem now remains to determine the statistics of the random 

variable cp{t). E{CP(t)} = 0 since E{v(t)} = 0, and E(CP{t1)cpl(t2)) = 0 if 

tl f t 2· Let Kcpcp(t) = E{cp(t)cpl (t)). As we mentioned earlier, Kcpcp(t) 

depends only on Rand Q, but we can obviate the need for Q if the state 
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error covariances are known: 

P(t) ~ cov{x(t) - x(tlt-l)} 

The standard Kalman filter equations then give: 

Kvv(t) = P(t) + R(t) 

K(t) = P(t)[P(t+l) + R]-1 

and thus 

Thus the covariance of ~, K~~(t), can be determined either from the pair 

(Q,R) or from (R,P(t)), but not from P(t) alone, unless some additional 

assumptions are made. For example, if the wheat growing process is as-

sumed to be of "random walk" nature, that is, the uncertainties are rep-

resented as a sequence of random weather influences represented by zero 

means random variable e(T-i) as follows: 

x(TIT-i+l) = x(TIT-i) + eT- i+1, i = 1, ... ,12 

where x(TIT-i+l) is the estimate of x(T) at time T-i+l, eT- i+1 is the 

additional information available at time T-i+l on the final yield x{T). 

eT- i+1 can be seen as innovation sequence. 

In such a case K~~(t) can be inferred from the knowledge of P{t) and 

the statistics of eT- i . 

We now see that the Kalman filter evolution can be logically separated 

from the real system since the noise term ~(t) is white and independent of 
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'" x. Thus we can restrict our attention to the state equations (for simpli-

city x(t) denotes x(tlt)): 

411
• x(t+l) = ~1(t)x(t) + u(t) + <j>(t) 

5. u(t) = g(t,x(t)) 

The control' u(t) = g(t,x(t)) is chosen to maximize the discounted future 

wel fare 

WP(x(t)) = E i p(t'-t)F(t ' , x(t l), y(t l)) 
tl=t 

Since x(t) is not known to the economy, it is logical to replace x(t) 

with x(t): 

00 

8. WP(x(t)) = E I p(t'-t)F(t ' , x(t l ), y(t l)) 
tl=t 

Equations 4 11
, 5 and 8 constitute a stochastic control model. In 

Sections 2.5 and 3 we will discuss several mathematical methods for 

solving these problems and finding optimal controls. 

2.5 Approximation by Discrete States 

For solution on the computer, it is necessary to approximate the 

model by discrete states. The method by which this approximation is made 

is very important and affects the results obtained, but discrete models 

are very well understood, good al gorithms exist for solving them, and the 

questions of existence and uniqueness of their solutions answered easily. 
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Suppose that the set of possible states x(t) is· finite. For the 

agricultural model, M(t) is periodic, and g is also periodic in t, so 

it is logical to choose the discrete sets {x}t to be periodic also, since 

the steady state solution will be periodic. 

Let s be the total number of discrete states through one entire cycle 

and let a state be uniquely specified by an index j, 1:5: j:5: s. We must 

choose a matrix {Po .} which accurately reflects the probabil ity that 
.1l,J 2 

x (t+ 1) = x. if x (t) = x. . 
J2 J1 

The continuous probability distribution of x(t+1) given x(t) = x. 
J 1 

is the same as that of M(t)x. + ~(t) +g(t,x. ) where M(t)x. + g(t,x. ) 
J1 J 1 J1 J1 

is an additive constant and ~(t) is a zero-mean Gaussian random variable 

with covariance matrix K~~(t). The problem is to divide the area under the 

p.d. curve for x(t+1) between the possible x.. Those states x
J
. which 

J2 
are defined at a different time period in the cycle receive no probability. 

For those defined at t, \'Ie might use an integration between midpoints as 

illustrated below. We will discuss methods in more detail in the section 

on Algorithms. 

Continuous PDF 

Approximate PDF 

r 
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Whatever the approximation scheme, the resulting probability transition 

matrix P depends on the feedback " control g. 

For any choice of g, P(g) will be a cyclic transition matrix. For 

these type of matrices there exist for any x' a 1 imiting average state 
J 

probability n,(g), defined as 
J 

T "-
n

J
, = 1 i m T! 1 I P r ( x ( t) = x

J
' ) 

t=o 

In [7], a more general concept is defined which is directly appli­

cable to discounted Markov programming problems: 

CX) 

II~. = I ptpr(x(t) = x, Ix(O) = x' ) 
J 1J 2 t=O J 2 J 1 

for if we define a discrete version of wP to be 

p CX) t s 
W , = I p I Pr (x ( t) = x' 1 x (0) = x. ) x F ( t, X. , 9 ( t, x' )) 

- J 1 t=O j = 1 J 2 J 1 J 2 J 1 
2 

then (in matrix notation): 

where k=(F(I, xl' g(1, xl))' F(1, )(2' G(l, )(2))'"'' F(nper, xs ' g(nper, XS))I 

Thus the problem is to choose 9 to maximize simultaneously all of the 

elements of the vector: 
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It can be shown that if {P(g)} is compact, which will be assumed in this 

study, then such an optimum exists. Thus by formulating the problem as a 

discounted Markov program, the question of existence works out automa­

tically. Powerful Markov programming techniques can be applied, and that 

is the subject of the next section. 
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3. ALGORITHMS 

Before we explain the details of the computer algorithm implemented, 

let us review briefly the constraints of the problem and their relation to 

different algorithms in the control literature. 

3.1 LQG (Linear-Quadratic-Gaussian) Method 

To apply the classical results of LQG theory, a cost function must be 

defined. From our previous discussion, this cost function would have the 

foll owing form: 

OJ 

L pt [y(t)' A(t) y(t) + y(t)' B(t)]. 
t=O 

The above cost function does not depend on x(t); therefore if the LQG 

were applied directly to the problem, ignoring the inequality constraints, 

then the solution would trivially be 

max y(t)1 A(t) y(t) + y(t)1 B(t); 
y(t) 

the inequality constraints are the essence of the problem. 

Penalty and barrier methods can be applied to handle inequality con­

straints in general programs, but with the LQG method we are constrained to 

use quadratic costs, which cannot approximate inequality constraints. Another 

method to handle the inequality constraints is to normalize the controls about 

a nominal trajectory; then the question is how to find a "nominal" trajectory. 
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3.2 Dynamic Programming 

In a dynamic programming algorithm, the basic idea is to find an optimal 

value function Vt(x) for each state x, for then the optimal controls satisfy 

y(x,t) maximizes F(t,y) + E[pVt +1{M(t)x(t) + N(t)y(t) + ~(t)}J. 

The approach taken by ECON was to choose Monte-Carlo outcome of ~(t), thus 

eliminating the expectation operator and perform a deterministic maximization. 

This is completely invalid, as it is equivalent to assuming that consumers and 

producers can make their estimates based on a forecast not yet known, one time 

step ahead. Alternatively the operations of maximization and expectation are 

commuted, which, in general, is invalid. A more valid way to remove the 

expectation operator would be to move it inside of V, thus replacing ~(t) 

with its expected value, 0: 

F(t,y) + pV t +1[M(t)x(t) + N(t)y(t)J. 

The other drawback associated with the dynamic programming approach 

is the predetermined quadratic assumption on the optimum welfare Vt(x). 

The choice of quadratic, rather than other types of nonlinear functions, 

for Vt(x) is dictated by the necessity of keeping the problem computa­

tionally tractable. However, in many cases such a predetermined behavior 

leads to wrong result. For instance, if the incremental value function 

F(t,y) is independent of the state (which means that no storage cost is 

taken into account), then the optimal policyy* will not depend, in general, 

on the value of the state (the value of the 'state may influence y through 

constraint, if constraints on y depend on the state). Similarly the cost 
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lim Vt(x} will become independent from the state variable x. This case 
t~ 

will be further discussed in Section 4. 

3.3 Introduction to Markov Programming* 

The biggest drawback to Markov programming is that the function V 

must be stored; hence its argument (the state space) must be discretized 

(cf. Section 2.5), and for a problem of the dimensionality of the wheat 

model, this can lead to serious storage problems for even coarse discre­

tization (Bellman's "curse of dimensional ity"). 

A coarse discretization leads to two fairly serious problems. The 

first is knowing where to choose the discrete states; a bad initial choice 

will give a meaningless answer. In fact, it may even give an answer that 

would lead one to requantize the state space in the wrong direction. Thus 

one must be careful in choosing the initial scheme. The second problem is 

dealing with the endpoints. Consider approximating the value of x(t+1} 

where x(t+1} has Gaussian distribution shown, and Vt(x} is known at the 

discrete points. On the basis of the known values of Vt +1(x}, it is not 

possible to accurately estimate E[Vt +1(x(t+1}}]. One would like to rule 

out such possibilities, but doing so is in effect adding new inequality con-

straints, In fact, just about any way one would care to define an expected 

value for the above problem will lead to strange effects near the endpoints 

of the approximation scheme. We have found, in our initial tests, that these 

effects can be so strong as to force the controls y(t) to be chosen to always 

place the distribution on an endpoint! The solution of this problem is to 

carefully choose the discretization scheme so that the ootimal solution will 

not be close to the endpoints. 

*For details of Markov programming, see Appendices A and B. 
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Despite these problems, there are many advantages to Markov program­

ming. First, very speedy and efficient methods exist for solving them. 

Moreover, any distribution, rather than strictly Gaussian, may be used 

for the noise variable. Besides, monotonic bounds on the optimum values 

are available at each iteration and it is easy to prove that a solution 

to a Markov programming is indeed the current solution. With these 

advantages and drawbacks clearly in mind, let us now give a more formal 

description of the Markov programming method. 

Recall our definition in Section 2.5 of P(g) the probability transition 

matrix between discrete states, dependent on the feedback control g, and 

[ 
0 P (g)] 

k(g) the incremental value function. P(g) is cycl ic of the form of P
2 

9 6 . 
Define C(g) and JP(g) to be the unique vector solutions of the following 

matrix equation: 

p[P(g) - 1] C(g) + k(g) = JP (1) 

Ex i stence and un i queness are guaranteed for P < 1 [7], and C( g) rep­

resents the discounted objective value vector, within a constant of Vt(x), 

and C(g) is the discounted analogy of Varaiya's [6] "dual variable." It 

also turns out that JP=WP(g). The basic idea behind Markov programming 

is that the optimal feedback control.g* must maximize the following expression: 

g* = arg max k(g) + pP(g)C(g) (2) 

One simply begins with a "naive" C( g) (any initi al given val ue will 
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guarantee convergence), call it CO' finds the gl which maximizes equation (2), 

and then updates Co to C1 '" C(gl) in the following way. Rewrite equation (1) 

1 ike this: 

[pP(g) - I]C(g) + k(g) = JP + (1- )C(g) 

One of the fundamental results in [7J is that JP+ (l-p)C(g) is a vector 

with equal entries, call it Jl=o.l where 1=(11 ••. 1)'. Thus 

pP(g)C(g)+k(g) = o.l+C(g). 

Since the additive constant 0.1 is irrelevant, set C1 = k(gl) + PP(gl)CO '" 

0.1 + C(gl). Notice that the left side of equation (3) is the very expres­

sion that was maximized in equation (2), therefore simplifying the compu­

tation further. 

Varaiya's "dual method" is very close to this and is easily explained 

with this background. Instead of· setting C1 = k(g) + pP(g)CO' he sets 

C1 = S[k+pPCOJ + (1-S)CO. This guarantees convergence under sl ightly more 

general conditions, which are needed for our problem, involving a cyclic 

transition matrix. It is easy to see, however, that the convergence of 

CO' C1' C2' ... , C* is slower for Varaiya's algorithm. 

Nevertheless we can use Variaya's idea to actually speed up the 

standard Markov programming algorithm. Recall that C1 is only an approxi­

mation to C(gl). In fact if a better estimate of C(gi) were available, 

the following maximization of g2 would be closer to the optimal g*. Since 

a simple computation of k(gl) + PP(gl)C takes 1 ittle time compared to the 

time required to find a maximization, it might be wise to compute, between 

optimizations, a finite sequence 
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C1 

C2 = (k)gl) + PP(gl)C1)6 + (1-6)C1 

C3 = (k(gl) + PP(gl)C2)S + (1-6)C2 

Vara iya proved that Cn ~ C( gl); thus for a 1 ittl e effort here we can 

get the most benefit out of the next maximization operation. Exactly 

what the tradeoff is we are not sure, that is, how large n should be. 

But our results show that more accurately calculating C(gl) speeds up 

convergence considerably, especially in the final stages of convergence. 

Finally, and most importantly, the sequence WP(gl)' WP(g2)' ... 

will converge to the optimal welfare; g1' g2' ... "converge"* to an 

optimal control, and furthermore 

WP'(g*) :: lim (C·+1 - C.) + (l-p)C. = lim (C'·+I- pC,.). 
i~" , i~ 

This constitutes the theoretical basis for Markov programming. 

*If the optimum control g* is not unique, oscillation is possible. In 
practice, computer algorithms usually "prefer" one optimum over another, 
so the sequence converges. 
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3.4 Structure of the Program 

In our program the successive transition probability matrices P(g~), 

P(g2)' ... are not stored as they are prohibitively large, bur rows are 

computed as needed. What is stored is: 

1. Details of the Economic model (number of countries, 

aggregated crops, planting times, etc.). 

2. Details of the discretization scheme (how many discrete 

levels for each variable and what the levels are). 

3. Statistics on means, varia~ces, etc. of state variables 

at each time period. 

4. Vectors ci ' the approximate value function, a dual vairable, gi' 

the suboptimal control, ai' an approximation probability distri­

bution (used to calculate 3) and two vectors the size of ci and 

ai which are used as work space. 

5. Algebraic works~ace. and the program itself. 

The program works as follows. An initialization program sets up a 

file with data 1, 2, 3 and 4, although only 1 and 2 affect the subsequent 

operation of the main program .. Changes in Type 1 data require some redimen­

sioning of matrices in the main program~ but otherwise no cha~ges in the 

main program are necessary. The main program takes the file with data 1, 2, 

3 and 4, iterates, and when it has converged, writes the new values at 1,2 

3 and 4 onto another file. A third program may be written to examine the 

output file, which contains the optimal solution, more closely. 

In the iteration Type 5 data changes most rapidly. followed by 4, 3 and 

2. Type 1 does not change. After the approximate controls and probability 
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distribution 0i have converged (data Type 4), then 3 is updated. If the 

statistics are at too great variance frbm the discretization scheme (data 

Type 2), then data 2 is updated. This is the basic sequence of events. 

The names of the various routines are as follows. INITIAL is the 

initializing program; it calls only one subroutine, K, which computes the 

incremental value function Ft(x; g(t,x)) for any discrete state xj ' time t. 

data file 

INITIAL 

OPTIMIZE 

UBOUND ITERATE 
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MAIN is the main program and calls three subroutines PMODEL, OPTIMIZE, 

UPDATE. The data file is read into a blank common area shared by all 

subroutines, except that scratch space is in a common area called SCR. 

PMODEL prints information about the economic model. OPTIMIZE computes 

g1+1 = max arg [k(gi) + PP(gi)c i ] 
g 

by first computing bounds on the admissible control (UBOUND) and then 

searching through the controls (ITERATE) with first a coarse approximate 

search and then a detailed accurate search. The highest values are stacked 

(STACK) for later inspection for multiple peaks. Then UPDATE is called 

~o update ci to c(gi+l) = ci+l by successive approximations, as we discussed 

above. MAIN then iterates OPTIMIZE and UPDATE until the solution converges 

and this is fairly fast. Then as we said, if the statistics are off from 

the discretization scheme by a significant amount, MAIN will call a program 
-

ORIENT to redefine the discrete states appropriately. Then r~AINwrites 

out the anS\'ier to a disk file (see illustration). 

The subroutine PROW acts as a "virtual matrix" P(g) and computes, given 

a g and t, a specified row of the matrix P. 
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4. A SIMPLIFIED MODEL: ONE COUNTRY - TWO PERIODS 

In order to get some insight into the Markov programming-approach 

and in particular into the computational problems which are involved, we 

have decided to consider the case of one country - two period model. The 

model that we are going to study is the one considered by ECON in "Eco­

nomic Benefits of Improved Information on Worldwide Crop Production and 

Distribution with Application to Wheat, Corn and Soybeans" (contract No. 

NASW-2558 - p. 27-58) [8J. The data which will be used are essentially 

the same as in the above ECON model. 

4.1 The Model [8J 

Based on [8J, the model for one country - two periods is the following: 

The year is divided into two types of period, type 1 and 2, as depicted 

in the following diagram. 

planting accomplished 
,--__ ~A'-__ ---.. 

Ir------{( r j 
~~ ____ ~v~ ____ ~J 

production appears 

----~I~------~I~------~I~------~I~------~I
~------~I~> time 

1 2 345 6 

1-______ ---1' : type 1 peri od 

type 2 peri od 
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The state variables x1(t) and x2(t) are defined as: 

x1(t) ~ Mean value of total stock at time t (inventory at time t) 

x2(t) ~ Mean value of total quantity of growing crop (planted, 
but unharvested) 

Now at times t= 1,3,5, ... , that is, at the beginning of type 1 

periods, we have: 

where 

{ 

x1(t+1) = x1(t) - Yl(t) + v1(t) 

x2(t+1) = Y2(t) + v2(t) 

Y1(t) is the consumption 

Y2(t) is the planted crop 

The second equation states simply that the unharvested period 
at period 2 equates to the planting done at period 1. 

v1(t) andv2(t) are stochastic terms translating uncertainties 
on inventories and production yields. They are assumed to be 
zero mean Gaussian. 

At time t= 2,4,6, ... , that is, at the beginning of type 2 periods, 

the state equation is: 

{

X1(t+1) = x1(t) + x2(t) - Yl(t) + v1(t) 

x2(t+l) = v2(t) 

The second equation states simply that at the beginning of type 1 period 

(time t+l), there are no crops in the ground beside a noise term v2(t). 

It is possible, and desirable for computational reasons, to reduce 

the order of the system by retaining the mean value of the inventory x1(t), 
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as the sole state variable. Then: 

t = 1,3,5, ... 

x(t+1) = x(t) - Y1(t) + ~(t) 

At time t=2,4,(;, ... : 

The choice of decision variable Y1(t) and Y2(t) is constrained to: 

{

o ::; Y1 (t) ::;. x(t) 

0::;Y1(t) 

4.2 Quality of Information 

(consumption::; available stock) 

(positive production) 

In the context of the above model, the quality of information is 

directly related to the statistic of ~(t) (or equivalently v1(t), v2(t}). 

~(t) is assumed to be zero mean Gaussian; however, for the Markov pro­

gramming approach the Gaussian assumption can be relaxed. In fact, any 

other distribution for ~(t) can be considered. 

There are various information gathering schemes both on the level of 

inventories and on the future production. The issue is to evaluate the 

gain of the community (in terms of its welfare function) vis-a-vis an 

improvement in the information gathering scheme. In case of the Gaussian 

assumption, an improvement of information translates into a decrease in 

the noise variance. 
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In the case of the present example, the Gaussian random variable 

</>(t) represents the inventory uncertainty at time t = 1,3,5 (period of 

type 1) ( <t>( t) = v 1 ( t)) with: 

E[</>2(t)] = ai (t= 1,3,5, ..• ) 

But at time t=2,4,6, ... , </>(t) represents the sum of uncertainties on the 

inventory level and on the production. These two latter uncertainties 

being independent: 

</>(t) = v1(t) + v2(t) 

E[</>2(t)] = ai + a~ 

t = 2,4, ..• 

t = 2,4, .•. 

Hence the variance at period of type 2 is always greater than the variance 

at period of type 1. 

4.3 Incremental Value Function 

The incremental value function it given by: 

where the expression a1Y12 + b1Y1 is referred to as consumer welfare and 

{-( a2y22 + b2Y2)} is the production cost. 

The purpose of the opti~al stationary control is to maximize: 

W=lim_1_ 
T-" T+1 

T 
IE{p t F(Y1 (x) 'Y2(x))} 

i=O 
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where p is a given discount rate. 

Note that the incremental value function is independent from the 

state x(t} of the system, and hence from the noise term ~(t), since this 

latter enters the system through the state x(t}. If there were no state 

dependent constraints on the input y(t}, one would clearly deduce that 

the optimum stationary control is independent from both the state and the 

noise characteristics. However, since the constraints on the control y(t} 

are state dependent (y(t) sx(t}}, theoretically the state of the system 

may affect the optimum control y(t} and the optimum welfare through the 

constraints. But since we are considering stationary optimum control, 

for the state to affect the optimum welfare function, it is necessary for 

the stationary optimum control y(t) to hit the constraints; that is, for 

stationary consumption to equate the available stock in at least one of 

the two periods. But in general this is not the case, or at least not a 

desirable case. If the consumption equates the available stock, one has 

to alter the incremental welfare function so that the corresponding opti­

mum consumption/production policy would not deplete the available stock 

at any period. And in this latter case, the optimum control and welfare 

will be independent from the state and the noise. 

Notwithstanding the above discussion, it is apparent that a state 

independent incremental value function, such as the one used by ECON in 

the one country - two period example [8J, is not appropriate to measure 

the benefit of improved information on the noise statistic, because of its 

general lack of sensitivity. To overcome this problem one has to make the 

incremental value function state dependent. A natural way of doing so is 
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to add a term representing the cost of storage, and hence depending on 

the state x(t). There are several possible choices for such a cost func­

tion. We have chosen to represent the term referring to the storage by: 

i = 1,2 

where Mi is the desired mean at periods of type 1 and of type 2 and a3 
is a positive constant. The intuitive meaning of the above term is that 

the community would favor an inventory within 20% of a mean M. for 
1 

which the storage capacities are prepared. Any inventory values out-

side the desired 20% range is disfavored. To be more precise, the .in­

cremental value function F is defined as: 

t = 1,3,5, ... 

F[Y1(t), x(t)] = a1yi(t) + b1Y1(y) + E{a3[x(t+1) - .8M2][x(t+1) -1.2M2]} 

Note that the last term refers to the estimate of the storage cost at time 

t+1, that is at period of type 2. M2 is the desired mean at period of 

type 2. (Note that M2 may be state dependent, that is, M2 at time t+1 

may depend on the value of the state x(t).) 

Carrying on the expectation operation, we deduce: 

F(Yl(t), x(t)) = a1yi(t) + blYl(t) + a3[x(t) - Yl(t) - .8M2] 

2 ·[x(t) - Yl(t) - 1.2M2] + a3E[~ (t)] 

t = 1,3,5, ... 

Similarly for type 2 period we have: 
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2 2 F(Yl(t). Y2(t). x(t)) = a1Yl(t) + b1Yl(t) + a2Y2(t) + b2y2(t) 

+ a3[x(t) + Y2(t)J[x(t) + Y2(t) - Yl(t)J + a3E[¢2(t)J 

t = 2.4.6 •... 

Before ending this section let us note that the numerical evaluation 

of the optimum policy y* and the corresponding welfare value under the 

assumption that F has no state dependency. i.e •• a3 = O. confirms the 

previous theoretical claim. that is. both the optimum policy and the op-

timum welfare remain insensitive to changes of noise variance. But, sur­

prisingly. the numerical results of the ECON treatment of this example [8J 

infer that both the optimum policy y* and the optimum welfare change when 

the noise variances vary. We can explain this apparent paradox in the 

following way. In the dynamic programming used by ECON. at each itera-

tion one maximizes: 

where vt+1(x(t+l)) is the optimum value of the welfare function from 

time (t+l) to infinity. F is independent from the state x(t). but for 

computational tractability E{Vt+1[x(t+l)J} is made to be a quadratic 

functional in x(t) (see Section 3). This computational necessity changes 

the nature of the optimization problem and forces the optimal control y* 

and the optimal welfare to depend on the state x and hence on the process 

noise variance. Hence the numerical results of ECON concerning the pre­

sent example do not correspond to any benefit, i~ terms of the specific 

welfare function involved. In fact. there is simply no benefit in 
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information - improvement if there isno dependency between the incre­

mental value function and thestate~ 

4.4 Discretization - Probability Matrix P(y) 

We have used 5 to 13 discrete values to represent the state at 

period of type 1 and type 2. For the sake of representation,. assume that 

we have only 5 discrete values for each type of period. 

Let us call $1 the mean value of the total inventory at period 1 and 

vI its variance. $1 and vI are provided by past statistics (either by Kalman 

filtering or other time series analysis). 

There are various criteria for discretizing the state value around 

$1' One may use lIequal areal! criterion, that- is, the area urider the p.d 

curve between two consecutive discrete values is the same. Or we can 

use a simpler "midpointll scheme which consists of taking the sequence of 
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as discrete value. For the present example this last discretization 

scheme has been retained. Note that there is no restriction as to the 

type of discretization to be used. Similarly for the second type of 

period, the state is discretized around S2 with variance v2. 

Let us call Sli the discrete value of the state at period of type 1 

and S2i the discrete value of period of type 2. Then the probability 

distribution matrix, corresponding to the case of i = 5, is cycl ic and 

given by: 

Note that for i ~ 7, corresponding to the first period, the production Y2 

equals zero, hence: 
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To evaluate Pij , assume that at time t-1,the state is in SU' the con­

sumption being Y1(t-1), the probability distribution for the state x(t) 

is given by: 

{ 

2 [x(t)-(S .-y )] 
f{x(t) I x(t-1) - S1 i' Y1 (t-1)} = 1 exp _ ~ 1 1 } 

12TI'E(¢2(f-l) l 2E[¢ (t-1)] 

where E[¢(t-1)] = variance of the first period. This probability distribu-

tion is shown in Fig. 

The probability p[x(t) = S2jlx(t-1) = S1i'Y1(t-1)] is then computed as 

S2' 1+S2' S2,+S2'+1 
the area between J-

2 
J and J 2 J under the probability distribution 

f(x(t)lx(t-1)=S1i'Yl(t-l)). That is, 

i ~ 7 
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The probability corresponding to the endpoints, say to S21 and $25' 
S +S 

are computed as the area .between _00 and 212 22 for P i·1 and between 
S25+S24 

2 and +00 for Pi5 . 

Similarly the probabil ity Pij for i ~ 8 is computed; the only difference 

is that the mean is replaced by· (S2i-Y1(t-1)+Y2(t-1)) and the variance 

corresponds to the second type period noise. 

At this point the essential elements of the Markov programming al­

gorithm of Section 3, that is, the value function F and the transition 

matrix P(Y1'Y2) have been determined. 

4.5 Data 

Incremental value function: 

b1 = 840. 

a = -.4 2 

p = .971 

Mean and variance of inventories at period 1· and 2, used for discretization: 

M1 = 391. 3 

M2 = 217.1 

(millions 
of metric 
tons) 
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4.6 Numerical Results 

Tables 1a - 1c contain optimal production/consumption pol icy under 

three different information schemes for the case of 5 discrete values per 

period. 

Period 1, E[cpZ(t)] = 784 Period 2, E[cpZ(t)] = 1764 

State Consumption Production State Consumption Production 

313.7 152.7 0 131. 131. 372.1 

352.5 163.2 0 174.1 174.1 372.1 

391.3 175.7 0 217.1 176. 345.2 

430.1 186.7 0 260.2 181.2 319. 

468.9 198.5 0 303.2 186.6 292.1 

Table 1a 

Period 1, E[q/(t)] = 196 Period 2, E[cpL(t)l=1764 

State Consumption Production State Consumption Production 

313.7 148.2 0 131. 131. 372.1 

352.5 160. 0 174.1 174.1 372.1 

391.3 179.9 0 217.1 176.1 345.2 

430.1 183.8 0 260.2 181.2 319. 

468.9 197.4 a 303.2 186.7 292.1 

Table 1b 
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Period 1, E[cp2(t)] = 441 Period 2, E[cp2(t)] = 784 

State Consumption Production State Consumption. Production 

313.7 148.4 0 131. 131. 378.1 

352.5 163.2 0 174.1 170. 375.2 

391.3 176.1 0 217.1 175.4 348. 

430.1 186. 0 260.2 180.9 320.6 

468.9 197.5 0 303.2 186.4 293.2 

Table 1c 

The transition probability matrices corresponding to 1a through 1c are: 

0.3805E+00 0.5108E+00 0.1059E+00 0.2788E-02 0.8225E-05 
0.9464E-01 0.4943E+00 0.3721E+00 0.3853E-01 0.4838E-03 
0.1211E-0l 0.2248E+00 0.5573E+00 0.1966E+OO O.9167E-02 p .. , i::;7 

lJ 
O.5877E-03 O.4330E-01 O.3887E+OO O.4817E+OO O.8570E-01 j~8 

O.1278E-04 0.3755E-02 0.1245E+OO O.5282E+OO O.3436E+OO 
O.1766E+OO O.3215E+OO O.3229E+OO O.1464E+OO O.3267E-Ol 
0.1766E+OO O.3215E+OO O.3229E+OO 0.1464E+OO O.3267E-Ol 
0.1024E+OO 0.2630E+OO O.3536E+OO 0.2147E+OO O.6636E-01 p .. , i~8 

lJ 
0.6135E":01 0.2064E+OO O.3518E+OO 0.2708E+OO O.1097E+OO j::;7 

O.3588E-Ol O.1544E+OO O.3284E+OO O.3154E+OO O.1658E+OO 

la 

0.1769E+OO 0.8072E+OO O.1586E-01 O.88llE-07 0.5551E-16 
O.2134E-02 O.5839E+OO 0.4134E+OO 0.4966E-03 O.9612E-10 
O.1305E-04 0.1292E+OO 0.8449E+OO O.2589E-01 O.2585E-06 p .. , i::;7 

lJ 
O.1058E-I0 O.1457E-03 O.2918E+OO 0.7023E+OO O.5748E-02 j~8 

O.9613E-17 O.2924E-07 O.9428E-02 O.7568E+OO O.2337E+OO 
O.1815E+OO O.3241E+OO O.3202E+OO O.1428E+OO O.3133E-01 
0.1815E+OO O.3241E+OO O.3202E+OO 0.1428E+OO O.3133E-01 
O.1049E+OO O.2656E+OO O.3530E+OO O.2ll9E+OO O.6426E-01 p .. , h8 

lJ 
O.6290E-Ol O.2090E+OO O.3524E+OO O.2683E+OO O.1074E+OO j::;7 
O.3695E-01 0.1570E+OO 0.3301E+OO 0.3134E+OO O.1625E+OO 

1b 
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0.2715E+00 0.6538E+00 0.7443E-01 0.2398E-03 0.1497E-07 
0.3993E-01 0.5774E+00 0.3723E+00 0.9420E-02 0.5450E-05 
0.1420E-02 0.1736E+00 0.6927E+00 0.1316E+00 0.7744E-03 p .. , 

lJ 
i~7 

0.6470E-05 0.1041E-01 0.3866E+00 0.5662E+00 0.3682E-01 j~8 

0.7435E-08 0.1513E-03 0.5887E-01 0.6278E+00 0.3131E+00 
0.5385E-01 0.3579E+00 0.4657E+00 O.l171E+OO 0.5410E-02 
0.4951E-01 0.3464E+00 0.4731E+00 0.1249E+00 0.6079E-02 
0.2171E-01 0.2413E+00 0.5108E+00 0.2098E+00 0.1628E-01 Pij' i~8 

0.8536E-02 0.1503E+00 0.4916E+00 0.3114E+00 0.3820E-01 j~7 

0.2982E-02 0.8329E-Ol 0.4224E+00 0.4117E+00 0.7966E-Ol 

1c 

Finally, if we take the case la as the base, the gain of welfare due 

to the improvement of information (decrease in noise variances) corres-

ponding to cases Ib and 1c are: 

1b 65 ($ million) 

lc 104 ($ million) 

Note that the improvement in case 1b pertains only to the variance 

of the inventory (decrease of noise variance in the first period from 784 

to 196). In case 1c both variances of period 1 and period 2 decrease. 

The above figures are obtained under a rather coarse discretization 

(5 discrete values per period). For more accurate values one must con­

sider a finer grid and also rediscretize the state space around the optimal 

value obtained with the coarse discretization. In this example, taking 

9 discrete values per period leads to the following optimal consumption/ 

production scheme: 
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Period 1. E[cp2(t)] =,784 Period 2. E[cp2(t)] = 1764 

-State Consumption Production State Consumption_ Production 

313.7 154.5 0 131. 131. 370.3 

333.1 158.5 0 152.5 152.5 370.3 

352.5 164.2 0 174.1 174.1 370.3 

371.9 170.2 0 195.6 173.7 356.6 

391.3 176. 0- 217.1 176.2 344.1 

410.7 181.5 0 238.6 178.8 331.2 

430.1 187. 0 260.2 181.4 318.1 

449.5 192.7 0 281. 7 184. 304.8 

468.9 198.9 0 303.2 186.7 291.4 

1a 

Period 1. E[cp~(t)] = 441 Period 2. E[<p~(t)] = 784 

State Consumption Production State Consumption Production 

313.7 150.7 0 131. - 131. 377 .2 

333.1 157.2 0 152.5 152.5 377.2 

352.5 164. 0 174.1 170.1 374.4 

371.9 170.2 0 195.6 172.8 361. 

391.3 175.8 0 217 .1 175.5 347.5 

410.7 181.1 0 238.6 178.2 333.9 

430.1 186.4 0 260.2 180.9 320.3 

449.5 191.8 0 281.7 183.7 306.6 

468.9 197.8 0 303.2 186.4 293. 

lc 
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In this latter case the gain of the information improvement amounts 

to $91 million instead of the $105 million computed previously. Since we 

are using a finer grid (9 discrete values instead of 5), the $91 million 

figure is more accurate than the $105 million one. Moreover, taking a 

grid of 11 and 13 discrete values for each period results in a gain cor­

responding to an improvement of information from la to lc equal in both 

cases to $91 million. Therefore, the grid of 9 discrete values is a 

sufficient approximation. In the following tables the optimal consumption/ 

production policies corresponding to a grid of 11 discrete values are 

shown. 

-Period 1, E[<j>2(t)] = 784 Peri od 2, E[<j>7( t)] = 1764 

State Consumption Production State Consumption Production 
- , 

313.7 154.7 0 131. 131. 370.1 

329.2 157.6 0 148.2 148.2 370.1 

344.7 162. 0 165.4 165.4 370.1 
., 

360.3 166.7 0 182.7 172.3 363.7 

375.8 171. 5 0 199.9 174.2 354.0 

391.3 176. 0 217.1 176.2 343.9 
I 

406.8 180.4 0 234.3 178.3 333.7 
" 

422.3 184.8 0 251. 5 180.4 323.2 

437.9 189.2 0 268.8 182.5 312.7 

453.4 193.9 0 206.0 184.6 302.0 

468.9 199.0 0 303.2 186.7 291.3 

la 
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Period 1, E[<j>2(t)] = 441 Period 2, E[<j>2(t)] = 784 

State Consumption Production State Consumption Production 

313.7 151. 0 131. 131. 377 .1 

329.2 156. 0 148.2 148.2 377 .1 

344.7 161.5 0 165.4 165.4 377 .1 

360.3 166.7 0 182.7 171.2 369. 

375.8 171.4 0 199.9 173.4 358.2 

391.3 175.8 0 217.2 175.5 347.4 

406.8 180.1 0 234.3 177.7 336.6 

422.3 184.3 0 251. 5 179.9 325.7 

437.9 188.6 0 268.8 182.0 314.8 

453.4 193~ 0 286.0 184.2 303.9 

468.9 197.8 0 303.2 186.4 292.9 

1c 

4.7 Remarks 

Some experience has been gained in solving the example of one country -

two period models. We feel that some of the practical problems encountered 

in this simple case will be present in the more complex setting of multi­

country - multi-period problems. These are the following: 

a) In applying the Markov programming algorithm of Section 3, at 

each step one has to find the optimum y* such that: 

y* = arg max {F(y,x) + pP(y)c} 
y 



45 

It is important that the subroutine finding the maximand at each period 

be as accurate as possible (Extended Precision). This will speed the 

convergence and allow more flexibility for the choice of initial "dual 

vector" C. 

b) ·Theoretically, any initial choice Co of the vector C insures the 

convergence. But from a practical point of view a bad initial choice 

~lill cause the convergence to be very slow. Notwithstanding the order of 

the vector and matrices involved, which increase rapidly with finer dis­

cretization grid, it is important to keep the number of iterations small. 

Hence there are advantages to choosing the initial vector Co close to the 

optimum C. 

c) As noted in Section 3, to speed up the convergence we calculate, 

as intermediate values, a sequence of n vector S, Ci as: 

Ci+1 = S[F(y,x) + pP(y)Ci ] + (l-S)Ci 

The right choice of the parameter S and the number of iterations can 

speed up the convergence significantly. Experience shows that a choice 

of S in the range [.5,.9] and an n between 5 and 20 speeds the conver­

gence sufficiently. 

d) The convergence is relatively fast. The number of iterations 

varies between 10 and 40; it rarely increases above 50. However, as 

noted before, the initial choice of Co together with the parameter Sand 

the intermediate number of iterations n can strongly influence the speed 

of convergence. With appropriate choice of CO' Sand n the convergence 

is attained with less than 10 iterations. 
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5. CONCLUSION 

The problem of "Hheat Forecast Economic Effect" has been formulated, 

and solved within the, framework of stochastic control and Markov pro­

gramming. A general approach has been developed for the multi-country -

multi-period model and the simple case of one country - two period model 

has been solved in detail. 

It has been shown that: 

(i)The s-tates of the ECON model are state estimates rather than 

true states. 

(ii) The number of states in the ECON model may be effectively re­

duced by one-half. 

(iii) The Markov programming approach avoids simulation and is ap­

plicable to nonquadratic welfare functions and non-Gaussian errors. 

(iv) Upper and lower bounds are obtained in the Markov programming 

approach so that if iterations are stopped prior to convergence, an 

estimate of the nearness to the optimal solution is known. 

(v) In general, there is no value of information in the infinite hori­

zon stationary case if the incremental value function does not depend upon 

a state. The ECON algorithm produces a value of information in such cases 

by forcing the dynamic programming value function to be quadratically 

dependent on the state and by considering finite horizons in simulations. 

(vi) The main advantages of the dual variable Markov programming 

applied to "Hheat Forecast Economic Effectsll can be summarized as follows. 
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First, speedy and efficient algorithms are available for solving Markov 

progranming problems. ,Second, no solution to a large set of simultaneous 

equations is required. Third, unlike the dynamic programming approach, 

there is no need for an ad hoc assumption on the functional dependency 

of the' wel fare wi th respect to the state x. ' 

The main drawbacks of the above Markov progranming is the memory 

requirement, since the value of the welfare function at each iteration 

must be stored. However, it was found in the one country - two period 

model that a grid size of 9 is adequate and even with a grid size of 5, 

the results are fairly close. Therefore, it appears feasible to solve 

multi-country - multi-period problems with this approach. 

Based on the results of this report, it is recommended that the ~lar­

kov programming approach be applied to the complete ECON model and to 

other value of information problems faced by NASA researchers. 
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DOCUMENTATION FOR THE CROP INFORMATION VALUE PROGRAM 

O. Introduction 
This document provides the necessary background to understand, use 

- 2 
or modify the Crop Information Value Program (CIVP), developed at S I. 
The following topics will be covered: 

1. Mathematical Preliminaries 
2. Notation for Input-Output 
3. Using the Programs 
4. Detailed Study of the Program 

The object of 1-3 is to provide the user with quickest access to the 
purpose and use of the program, from a basic mathematical sketch of the 
problem, to notation for the basic parameters necessary to run the program, 
and provide detailed instructions for actually running CIVP. Examples of 
runs are provided in the computer output (pp. 

Section 4, on the other hand, is aimed at the user who needs a more 
detailed understanding of the program subroutines, internal variables, 
approximation and search methods, for the purpose of program verification 
or modification. 

1. Mathematical Preliminaries 
In this section the details of the ECON model and formulation of the 

finite-state model will be assumed familiar from our Progress Report. 
We will review briefly the results which are essential to an overall under­
standing of CIVP. 

1.1 Discrete Markov Chains 
In CIVP, the economy is approximated by a finite-state Markov chain 

with state sjllce X={1,2, ... ,ns}, ns being the number of states. Recall 
that a state xi eX is a multidimensional estimate of the states of crops, 
grain in storage and transit. Due to the independence of the innovation 
sequence of the Kalman Filter from the state estimates xi themselves (see 
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Progress Report), the statistics, or probability distribution of x(t+l) 
depends only on the present state estimate x(t) = x. and the behavior of 

J 
consumers, producers, and exporters in the time interval (t,t+l]. The 
behavior results in an overall control v( t). Symbol ically, 

The matrix {Pij } is called the transition probability matrix at t. If 
we assume v(t) = vi when x(t) = xi' then the matrix P depends only on the 
vector (vI' ... ,vns ) = v; we write P(v). 

A discrete (controllable) Markov Chain is then defined by the set V 
of possible controls, X, the state space, and the set {P(v)},v EV of pos­
sible transition probabil ity matrices. 

1.2 Welfare in a Discounted Economy 
If k(t, vi' xi) is a measure of the overall welfare of the economy 

between t and t+l when in state x. and exercising control v., then it is 
1 1 

reasonable to assume that th~ economy acts so as to maximize long-term 
"discounted" welfare defined by: 

00 

W~ = 
1 I 

t=O 
I pt Prob{x(t) = 

X.EX 
J 

where p is the per-period discount factor and i is the starting state. 
In CIVP we define 

so that aSp-+l, JP will reach a definite limit (called Jl) .. Jl is a 
constant vector, i.e., all elements are equal, and represent the average 
welfare per step. When the economy maximizes J P, i.e.,the welfare dis­
counted into the future, instead of Jl, then the overall average wel fare 
per step (Jl) will not be as high as possible. This is what is lost by 
some short-sightedness on the economy·s part. 
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1.3 Markov Programming 
The purpose of the program is to find a V.*eV so that JP(v l

) 5: JP(v*) 
for all Vi e V. To do this it simultaneously finds c*, a relative state 
value vector, and v*, by the method of successive approximations. c* has 
the properti es 

1. v* = argmax pp(v)c* + key) 
. veV 

2. c* = max pP(v)c* + key) + J1*. 
'lEV 

(Tt is implicit in this notation that some v*e V will maximize all elements 
of ·the vectors simultaneously. This is in fact the case.) By using the 
equations, we can generate successive approximations YO'YI' ... to c*, and 
v1,v2' •.. to v*. The need to know J1* is eliminated by defining 

I'cl ---[c] = c ns 

where l' = (1 1 1 .. 1). Then since J1 = al for some a, [J1*] = 0 and we can 
write 

21. [c*] = [max pP(v)[c*] + key)] 
VeV 

also, since pl=l, 

11. v* = argmax pP(v)[c*] + key) 
Ve V 

The method of Markov Programming is then as follows: set YO' YO to 
arbitrary values. Then simply take 

1". 

2". 

vn+1 = argmax pP(v)[yn] + key) 
Ve V 

Yn+1 = [max pP(v)[y] + key)] 
VeV n 
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It is guaranteed that Yn +c* and vn +v* for most conditions. Unfortunately, 
convergence is not guaranteed for the case of cyclic transition matrices. 
However, this problem can easily be fixed by Varaiya's "Dual Method" as 
explained in the next section. 

1.4 Incorporation of Varaiya's "Dual Method" 
The essential difference between Varaiya's "Dual Method" and the 

Markov Programming method as descri bed above is that Vara iya takes 

[max pP(v)[yt ] + k(v) - [YtJ] 
v€V . 

instead of 

Yn+1 = [max pP(v)[y ] + k(v)] 
v€V n 

In practical terms this amounts to taking 

Letting vn+1 be as defined by I", and assuming [y ]=y, , n n 

For small enough 8, Varaiya's theorem guarantees that Yn+c* for cyclical 
transition matrices (as well as others). Notice that if 8 = 1, 2'" is equi­
valent to 2"; Varaiya's method is the same as Markov Programming. Our 
tests on small models indicated that convergence was fastest when 8=~, 
and this value of 8 was used in CIVP. 

The actual algorithm implemented is now just a synthesis of the Varaiya 
Algorithm, and Markov Programming. The reason for not using Varaiya's 
method directly is that the time required to compute 1 is much, much greater 
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than the time to compute 2. Notice that if Va were to consist of only 
a single possible control ,let us say {Va} = Va' then Varaiya1s equation 
would yield 

1. 

and Ym will converge to a c(va), the dual variable at va' at very little 
expense, since only 2 is involved. Let us now take our arbitrary va to 
be vn+l in Equation 2111. Then the more closely Y approximates the dual 
variable c(vn+1) (by successive application of 1,2 above) then the 
closer will vn+2 = argmax pP(v)y + k(v) be to v* in 11,2 111 • In effect, 

VEV 
we can speed up convergence to v* and c~ at very little additional compu-
tational expense, by more accurately calculating the dual variable c(vn) 
between maximizations. 

The equations are as follows (va' yaare arbitrary): 

1". vn+l = argmax pP(v)[yn] + k(v) 
VEV 

2.1 Yn,a = [pP(vn+1)[yn] + k(vn+1)] 

2.2 Yn,m+l = ~[PP(vn+1)Yn,m + k(vn+1)] + ~n,m 

2.3 Yn+l = Yn,m 

We have inserted the [ ] at somewhat arbitrary places 
I 

1 

to assure 1 Y n,m 
and 1 Yn are zero. The actual implementation may be somewhat different 
for efficiency. 

1.5 Tracking Convergence - Monotonic Bounds 

From equation 2 (Section 1.3) we can write 

Jl* = pP(v*)c* + k(v*) - c* 
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Suppose that vn+l and cn are suboptimal but 

Then 

and 

3. vn+l = argmax,pP(v')cn + k(v') 
V'EV 

,4. Jl* ~ maximum element of (pP(vn+1)cn + k(v) - c), 

Since, after 1" (Section 1.4), 3 will hold, 4 and 4.5 provide simple bounds 
on Jl* at each step. In fact these bounds should be monotonic as n 
increases. These bounds are printed out after each optimization. 

Another bound computed by the program are maximum and minimum average 
return on the present control vn.This can be done, once again, by con~ 
sidering V = {v}. In this case, evidently o n 

v = argmaxpP(v') + c + k(v') 
n v'~VO n 

so 4 and 4.5 will hold with Jl* being replaced with J1(vn). These bounds 
are computed at the intermediate steps y . . n,m 

2. Input-Output Conventions 
In this section we describe the conventions and data structure used 

in specifying an economic model to CIVP, '.,and the names of the quantities 
computed and displayed by CIVP. We begin witn~~ input. ---. , 

2.1 Scalar Constants 
In parentheses ,we show the values. used in the present CIVP. 
NPER - Number of periods in year (2) 
NAGG - Number of aggregated crops (1) 
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NBIN - Number of aggregated storage locations (1) 
DIM = NAGG + NBIN 
NS - Number of discrete states (for all periods) (14) 

2.2 State Vector Convention 
DIM is obviously the state dimension. The convention used for number­

ing the state variables (different from ECON) is: xl ••. xNAGG are the ag­
gregated crop estimates and xNAGG+1 ... xDIM are the storage estimates 
(there are NBIN of them). 

2.3 Matrix Data 
Dimensions of each matrix are in brackets [ ]; number of rows is first, 

number of columns is second. 

2.3.1 PLN [NAGG, NPER] 
This matrix contains entries indicating the planting periods, growing 

periods, and non-growing periods for each crop. Specifically let i E: {l, ... ,NAGG} ,- --'- -
be an aggregated crop. Then in row i, a 1 will appear in column t where 
t is the period in which the first planting is done (see illustration).~_ 
If there is a second planting period, a 2 appears,' etc. We now divide 

NPER r---...... -------, 
NAGG { -1 -1 1 0 0 2 PLN 

the remaining periods into two groups: A) periods in which the crop is 
growing and the final harvesting wili not begin during that period; B) 
periods in which the crop's final harvesting is taking place, or periods 
after the fi~al 'narvesting has taken pl ace and before the first pl anting 
occurs. We~efine the final harvest to be the period in which all re-

/' 

maining crop is added to storage, so that the crop is 100% harvested by 
the/ii'ext period. In A pe.riods, 0 (zero) is to appear in PLN; in B periods, 

~r'/'; -1. 



57 

One slight restriction of this convention is that the final harvesting 
cannot take place in the same period as the last planting: it must occur 
at least one period later. In the illustration, for example, last planting 
occurs in Period 6, final harvesting in Period 1. It is not possible for 
final harvesting to occur in Period 6. 

2.3.2 HFR [NAGG, NPER] 
For each aggregated crop i, time period t, HFR(i,t) is the fraction 

of crop harvested during that period. The final harvest period is there­
fore the first period since the initial planting for which the total 
fraction harvested is one. 

NAGG { 

2.3.3 NFC [DIM, NAGG] 

NPER 
,r"-~' ----. 

1. 2 1. 2 HFR 

k 
\.. .. flnal harvest (since initial planting is 

Period 3 from PLN) 

This matrix shows which aggregated crops i feed which aggregated 
storage location j. Specifically NFGI(j,i) = 1 if crop ils harvest goes to 
j; otherwise NFC(j,i) =0. By the state variable convention (Section 2.2), 
j > NAGG; hence the first NAGG rows of NFC are unused. 

2.4 Data for the Discretization Scheme 

2.4.1 li [DIM, NPER] 
N(i,t) is the number of discrete levels for state-variable Xi at period 

t. Restrictions: 
1) Totally harvested crops. Let us call a crop i totally harvested 

if it is 100% harvested and the first planting is not completed. Crop i 
will be totally harvested at t if and only if PLN( i, t-l) = -1. In the ex­
ample given (Section 2.3.1), crop 2 is totally harvested in Periods 2 and 3. 
We require N(i,t) = 1 if i is a crop, and i is totally harvested during t. 
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2) N(i,t) is odd 
3) 3::;N(i,t)::;9. 

2.4.2 IND1 [NPER+1] 
IND1 is a time-saving look-up array. Definition: 

t-1 DIM 
IND1(t) :::: I II N(i,t); IND1(1)::: 0 

T:::1 .Q,:::1 

Note NS ::: IND1(NPER+1). 

2.4.3 Discrete Levels 
Discrete levels are defined by two matrices: 
M: [DIM, NPER]--the center point of the discrete levels for each state 

variable xi and period t is M(i,t). 
STDE: [DIM, NPER]--an archaic name and convention as well. STDE(i,t) 

is the distance between discrete levels of xi at t divided by 2.4. 
Example: xi at t has levels 0,10,20. Then M(i ,t)::: 10, STDE(i ,t)::: 10/2.4. 

2.4.4 Information Model 
The information variance, var(~i(t)) is carried in a matrix called 

STD!. 
STD1: [DIM, NPER]--STD1(i,t) := Ivar(~i(t)) where ct> is defined in the 

Progress Report. 

2.5 Numbering of Discrete States 
Let x. J.(t) denote the jth level (1::;j::;N(i,t)) of state x. at t. 

1 , 1 

Then a typical state vector at period t will be some (xl· (t), x2 J. (t), ... , 
,J 1 ' 2 

xOIM j (t)). There are NS of these discrete state vectors altogether, 
, DH1 

and they are ordered as follows: first the set of discrete vectors for 
t=l, then t=2~ etc. 
for t=l, 5 for t=2. 

In the sample runs there are 9 discrete vectors 
The set of 9 discrete vectors for t = 1 is ordered 

by increasing levels with the most frequent changes in level occurring in 
the last state variable. Thus the ordering of the discrete states in the 
sample run is: 



(XI,I(I), x2,1(1)) 

(XI,I(I), X2,2(1)) 

(XI,I(I), X2,3(1)) 

(Xl, 2 (1), x2, 1(1)) . 

(XI ,2(1), X2,2(1)) 

(X1,2(1), X2,3(1)) 

(XI ,3(1), X2,1(1)) 

(XI ,3(1), X2,2(1)) 

(XI ,3(1), X2,3(1)) 

(XI ,I(2), X2,I(2)) 

(X1,l(2), X2,2(2)) 

(X1,l(2), X2,3(2)) 

(X1,1(2), X2,4(2)) 

(X1,l(2), X2,5(2)) 

2.6 Output Names 
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A typical run of CIVP will print out values for various items. The 
naming conventions are: 

XINT: [DIM, NPER]--a time-saving look-up table defined below. 
FACT: [DIM, NPER]--.for all xi' t, the }h 1 evel (1:s; j :s; N( i , t)) of the 

quantization for x. at t is 
1 . 

XINT( i, t) + j*FACT( i , t) 
KM: [NSJ--a vector of incremental welfare values for each of the dis­

crete states, arrayed in the order described in 2.5. (Same as vector k in 
1.2.) KM reflects the incremental welfare for the present suboptimal control 

vm' 
V: [NS, DIM]--each column of V displays the control vector applied 

for a particular discrete state vector. That is, if x(t)= (Xl,jl(t), ... , 

XDIM,jDIM(t)), then 
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x(t+1) = x(t) + v(t) + ~(t) 
The sequence of suboptimal controls computed are the vn of Section 1.3. 

GAM~1A: [NS]--same as y in 1.3. 
J1--same as 1. 3. 
SIGMA: [NS]--an approximation to the steady state probability dis­

tribution n vector which satisfies 

n(v)P(v) = n(v) 

as vn converges, so does n(v). 

3. Running the Programs 
Two steps are required to run the program. The first is to create 

a data file with the necessary economic data. The second is to apply CIVP 
to the data file. 

3.1 Running INITIAL 
A sample run of INITIAL appears of Page 10 of the computer output. 

INITIAL will ask for various scalars, vectors and arrays; all of these 
are defined in Section 2 except for STD, which is not used by CIVP and 
should be set to zero. The initial control matrix V should also be initial­
ized to zero as this initial value is not actually used by the program, 
but instead a new value is recomputed immediately. Hence the entry for 
V is irrelevant to CIVP. 

After the data entry, INITIAL will make some computations and write 
the results out into a file with logical name INIT (the actual name is 
specified previous to running the program via ASSIGN statement). 

CAVEAT: Arrays must be dimensioned properly before running INITIAL. 
See Section 3.3. 

3.2 Running CIVP (MAIN) 
CIVP assumes two files exist: INIT and COMP are the logical names. 

INIT must have been initialized as described above. COMP should be a 
carbon copy of INIT. In the present program, no results are actually 
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wri tten out to COt1P. 
After creating CaMP, INIT, and making the logical assignments, 

CIVP can be run. (See page 11.) CIVP will ask for the following: 
Annual Discount factor 
nd - determines the search time. The number of divisions of each 

dimension of the control space when searching for the optimal control. 
A subsequent fine search will then redivide the optimal segment into nd 
parts. The resulting search takes time approximately 2*ndDIM with an 
effective grid of nd20DIM points. 

nt - the M in Equation 2.3, Section 1.4. 
Then CIVP will display the model data it the user so requests. Then the 
optimization routine begins. (Page 12.) 

Each $$OPTIMIZE$$ represents a large iteration, an application of 
Equation 1", Section 1.4. After aWl ication of 2.1, the results 
(yn,vn+1, and k(~n+1)) are displayed. Next, after 2.2 - 2.3 have been applied, 
the bounds on J1 are shown, followed by bounds on J1(Vn+1), and then 
Yn,M and a (approximation to 1T(vn+1)). The program will then request to 
begin the next iteration. 

For the examples solved, we achieved convergence in 4-8 iterations. 
Two examples are shown on pp. 12-15. The second example represents an 
"improved information" model over the first, and as a result the optimal 
average return came up from -2.136 to -1.930. The incremental welfare 
function was defined simply as (v2 + 5)2 (square deviation from consumption 
of 5 units). 

3.3 Program Preparation 
Some aspects of INITIAL and r~IN are model dependent, and must be 

modified for each model. Specifically: 

3.3.1 Matrix Dimension 
The common block matrix dimensions must agree with those given in 

Section 2 with the following exceptions: 
a) mean and std are not used by the program. 
b) any matrix with dimension NS (e.g., V, KM, Gamma, Sigma) in 

Section 2 must have at least NS for its dimension in the program. For 
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example, if NS = 14, KM may be dimensional 14, 100, or 1000, but not 10. 
The inequality constraint enables the user to change the discretization 
scheme (and thus NS) without redimensioning any matrices. 

In INITIAL: 
vi : [DI~l] 

jp : [DI~1] 

In MAIN: 
oldgam, pI, p2, p3 : [at least NS] 

In OPTIMIZE: 
vr, vlow, vhigh, vinc, j ; [DIM] 

In UPDATE: 
sigg, pi, gamg [at least NS] 
vI, j: [Dm] 

In UBOUND: 
vr, vlow, vhigh, vinc, j [DIM] 

In ITERATE: 
Pi, gamma [at least NS] 
vlow, vhigh, vinc, j, vt : [DIM] 

In PROW: 
pi : [at least NS] 
v, j, jp : [Dm] 

3.3.2 Output Formats 
Output formats must be modified suitably in MAIN, PMODEL. 

3.3.3 Loops 
Some loops in the program are nested DIM deep, so they must be changed 

when DIM changes. Specifically, in the routines INITIAL, lines 4500:4900, 
OPTIMIZE, lines 2100:2400, UPDATE, lines 2800:3500, ITERATE, lines 1900:2100, 
3100:3500, PROW, lines 3400:3700, a loop similar to this appears: 

do - j1 =1, n(l,j) 1 
j(1) = j1 J ~ 
do - j2 = 1, n(2,j) } : 
j(2) = j2 DIM 

- continue 
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This pattern should be repeated DIM times. 

3.4 Program Compilation 
To create an executing file for INITIAL you must link an object 

module for INITIAL and an object module for K. (See file directory, 
p. 11.) 

To create an executing file for. t1AIN (CIVP), you must 1 ink object 
modules for ~1AIN, PMODEL, OPTUlIZE, UPDATE, UBOUND, ITERATE, PROW, APPROX, 
STACK, and K. 

4. Program Details 

4.1 Program Subroutines 
The structure of the program is illustrated in the following diagram, 

where each box represents a subroutine, and arrows represent possible calls: 
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Briefly, the purpose of each subroutine is as follows. INITIAL asks for 
user input for the economic model, initial values, etc., and sets up a 
disk file containing a common block with this information for use by the 
main program. K is the subroutine used to calculate rewards associated 
with the discrete states. 

MAIN reads in the common block from the disk file and then calls other 
routines. The first, PMODEL, prints out the economic ,model data. MAIN 
then calls OPTIMIZE and UPDATE in alternation to find the optimal control 
vector, and associated optimal values. 

OPTIMIZE is passed the approximate value vector Yn and finds (see 
Section 1.4): 

1". vn+1 = argmax pP(v)[yn] + k(v) 
VEV 

by searching the control space V, first using a coarse grid, then a fine 
grid centered on the best cause value. The bounds on the possible control 
values are found by UBOUND, and ITERATE is called first for the coarse 
search, then the fine search. The five highest values found are stacked 
by STACK, and then the values of vn+1 and Y' and k(v) are passed back to 
MAIN. 

UPDATE improves the approximation to the state value vector by itera­
tion of the following equation (see Section 1.4): 

for M iterations, passes Yn,M back to MAIN, and MAIN Yn+1 = Yn,M so that 
the OPTIMIZE cycle can begin again. 

In the above equations it is clear that the value of the transition 
matrix P must be recalculated with each new control vn+1' In fact, if 
the state space is so large, it is not practical to store more than one 
row of P at a time. The subroutine which calculates a row of P for given 
control] is PROW. PROW uses APPROX to approximate the Gaussian distribution 
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by a finite number of points. G is the Gaussian probability distribution 
function; CEIL is the ceiling function; FLOOR is the floor function. 

Let us now take a closer look at each subroutine. 

4.2 INITIAL 
Inputs: Accepts model data at teletype. 
Purpose: To initialize a disk file (named 'INIT') with the economic 

and initial data. 
Operation: The common block defined in lines 100-800 is equivalanced 

with an array called 'data' in lines 1500-1600, so that the entire common 
block can be written on the disk as a unit in line 6000. The disk fill 
is opened in lines 2000-2100. Then, several parameters and matrices are 
read in (see Section 2 for a description and definition of these arrays) 
with lines 2200-4200. 

Time 

QTime 1 

~ 
/ ~ d .. d 1 

,/ lVl e NPER 

@
I? .. L. probabil ity between 

2 0 8 T· @~ all states in each 
. lme 0 • d 

00 NPER 000 perl 0 

~ 
~

o 
000 

Time
o 

From the data that has been read in, several additional dependent 
arrays can now be initialized. In lines 4400-5500 the arrays GAM~~, SIGMA, 
and KM are initialized. Recall inducing scheme for the discrete states 
described in 2.5. The outermost index, line 4500, is the time period, j. 

The next most significant index is j1 and represents the amount growing 
in the first aggregated crop (in this case there is only one aggregated 
crop). The least significant index, j2' is the level of grain in the 
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aggregated bin. The time period j, and levels jl and j2 completely 
determine the discrete state. If there were more than one crop in a 
bin, then there would need to be more indices to specify a state. 

The variable i is simply used to count the discrete states, for in­
formation about the ith discrete state is stored in the ith location of 
each array. Thus the incremental welfare of state i, is stored in km(i) 
(line 5200). It is calculated by calling the incremental welfare value 
function K (see details of K, Section 4.3). The initial probability 
of state i is stored in sigma(i) (line 5300). It is taken to be ns 
1/(# of discrete states in period j * number of periods) so that 2 sigma(i) = 1. 

i=1 
Finally,gamma(i) (the initial discounted welfare estimate YO) is set to , 
zero. 

Then XINT and FACT are initialized in lnnes 5600-5900 by the formula 
given in Section 2.6. All the data is written out onto disk and this 
concludes the operation of INITIAL. 

4.3 K (Page 9 of the computer output) 
Inputs: A control v = (v1, ... ,vDIM) which is usually some row of 

the feedback control matrix. A time period index t. 
Result: A real number, the incremental welfare when control v is 

applied to state x at time t, k(v,x,t) of Section 1.2. Since this does 
not actually depend on x, x is not passed. 

Operation: For the simplified model we simply took k= -(target con­
sumption - actual consumption)2. Since consumption = -v(2), this is 
accomplished by line 400. 

4.4 MAIN 
In MAIN and in subsequent subroutines, arrays and type declaration 

will appear in the following order: first common block definition, or 
whatever part is needed; second, the scratch common block SCR, if needed; 
and finally, local variables to the subroutine. In MAIN, all three types 
of declaration appear. 

Input: Reals in disk file 
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Output: See Section 3.2 
O~ration: (Refer also to 3.2): First the disk ,file is read to 

initialize the common block (line 2500). ,The fill 'comp' is not used in " 
this version of the program. The program then asks for discount factor, 
number of divisions nd for the coarse" and "fine search, and the number of 
update time nt, (Min Equation 2.3, Section 1.4). The annual discount 
factor is recomputed into a per-period discount factor p in line 3300. 
In line 3700 the economic data is printed out by a subroutine PMODEL. 

, 
Then OPTIMIZE is called to find vn+l as in Equation 1", Section 1.4. The 
results are printed out with lines 3900-4100. The next step is to update 
the val ue' approximation and probabil ity approximation y and crper Equa­
tions 2.1- 2.3, Section 1.4, and also find bounds on the optimal returnJ1 

as described in Section 1.5. All of" these functions "are performed by 
the routine UPDATE. The u'pdated values are returned to MAIN and 'printed 
out. 

" The call ing coiwentions and detail ed workings of PMODEL, OPTIMIZE, " 
and UPDATE follow. 

4.5 PMODEL 
Arguments: None. 
Returns: None. 
Operation: Data is acquired via the common block, and the data is 

printed out in lines 1500-2900 if the user so desires. 

4.6 OPTIMIZE 
Arguments: NO - number of divisions in coarse and fine search 

RHO - per-period discount factor 
GAMMA - the Yn as described previously (vector). 

Returns: GAM~1A - Yn+1 
OLDGAM - the original value of GAMMA, namely Yn 
V - the best control matrix found by searching the control 

space; the vn+l as previously described. 
Kf1 - incremented welfare vector for the discrete states at 

this control vri+1. 
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Operation: 
1. Lines 1300-1400. GAt·1MA -+ OLDGAM 
2. Lines 1700-4800. Find vn+1' y', km such that 

(1) vn+1 = argmax P(v)y + k(v) 
\lEV n 

(2) y' = max P(v)y + k(v) 
VE V n 

Set V to vn+1' GM1MA to y', Kf~ to km and return. Task 2 can be broken up 
as follows: 

2a. Index through the discrete states. i is the state number, t 
is the time period, j1 is the first index, j2 is the second index (see 
Section 2.5 for more details of the state indexing scheme). Either i or 
(t, j1' j2) completely specify the discrete state. i is used for some 
cases, namely looking up positions in km, gamma, etc., whereas (t, j1' j2) 
is used when the acutal levels associated with the state are needed, i.e., 
the values of x!' ... ,xDUl are needed. Thus we will refer to a discrete 
state as either xi or xt J' J'. 

, l' 2 
Within lines 2600-4700 we are now concerned only with a single state 

xi or xt · '. Letting Pl' be the ith row of P(v), we are thus only con­
,J 1,J2 

cerned with maximizing the ith component of y' and v: 

y' (i) = max P.y + k. 
V. EV. 

, , , ., 
v( i) = argmax P iY + ki v. EV. , , 

where Vi is the set of possible controls which can be applied to state i. 
Diagrammatically, 
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+ 

y + 

. The ith element of y is the. old value of state i; the ith element of y' 

is the new value is state i; the ith row is v is the control applied to 
state i. We now proceed to task 2b. 

2b. Initial izing the stack. USTACK is a stack of the fi~e best 
controls and the associated values which are found during the search. 
They are arranged as follows: 

Best 

Second bes:t 

Fifth best 

In each row is the new value, followed by the control applied (a 2 vector). 
The highest val ues are on top. But before the search begins., is is necessary 
to initialize the values to a low number, so that the real values later 
computed will fill the stock. 
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. value ~ (control 

-100 

-100 

· · · 
-100 

2c. Calculating the bounds on admissible control. In line 2800, 
UBOUND is called to calculate the bounds on admissible controls for 
state j,t. These bounds are returned in the vector vlow, vhigh, so that 

vlow(l) S v1 S vhigh(l) 

vlow(di~ S vdim S vhigh(dim) 

nd is the number of divisions that will be searched in each dimension, and 
vinc is a vector of the increments that should be made in each dimension 
as the search proceeds. For dim= 2, say, UBOUND would return information 
defining the following grid: 

vhigh(2) IIK

r 
") 

vinc(2) 

vlow(2) 

t 
vlow(1) 

vinc( 1) 
( ~ 

Jhi gh(!) 

nd =4 

cont~ots which will 
be searched 
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2d. Searching the coarse grid. Now having the bounds on the admis­
sible controls for the state under question, we search through the possible 
controls to find a highest value. Namely, we find the vi which maximizes 

Y ~ = max p. (v.)y + k. 
1 v.€V. 1 1 1 

1 1 

The actual search for therhighest value is done by the subroutine 
ITERATE (line 3000), and the highest values and associated controls are 
returned on VSTACK as described above. 

2e~ Defining the fine grid. Around the optimal coarse point we now 
define a much finer grid. This is done by again calling UBOUND and speci­
fying ur, the optimal coarse control, as the center of the fine search, 

• 
coarse A 1 
grid IV 
points 

• 
'J,X:l.1.A.;J,.,(>t 

xY-><'i.y.)(Y X 
j.Y:XXXY.~;I Xx 
~Xf.x)('J;I.;(XX 

• 

'j'XxY:'i.Y.\j:!.x 

fine .) )( l( l( G optimal l .• 
gri d y. J. X. )( j, coarse x 
points~; x ':i y,.)< x point x 

I. x )( xxiX x' 
y: )\ >( 
)<)(xxXl(>(XX 

)(XX'XXXXXXX 

• • • 

• • 

• 

and width of the fine search to be twice the distance between the coarse 
points. Then in lines 3400-3500 ur is read off the top' of the stack. 
In lines 3600-3700 the stack is again set to low values. Then in line 3800 
UBOUND is called to find vlow, vhigh, and vinc for the fine grid. 

2f. Searching the fine grid. Once the bounds on the fine grid are 
known, we call ITERATE once more to search the fine grid (line 4000). After 
this call, the maximum control and value are known and \'/e can set Yi to 
be the highest value on the stack (line 4200), set the ith row of v (the 
control matrix) to the best control of this state i (lines 4400-4600), and 
set km(i) to the incremental welfare for this control (line 4700). This 
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concludes the subroutine OPTIMIZE. as we now have solved Equations (1). 
(2), (3) given above. 

4.7 UBOUND (Page 5 of computer printout) 
Note: For the ECON model, UBOUND must be reprogrammed. We give a 

description here of the simplified version. 
Arguments: j,t - indices of a discrete state. 

t1 - the time period subsequent to t 
ur - a control vector, the center of the grid 
prop - proportion of available control space which is to 

be searched. If prop = 0, all available control 
space is searched and ut is ignored. 

nd - number of divisions in each dimension 
Returns: vlow, vhigh, vine - vectors of the low, high and increments 

in each control dimension. 
Operation: 1. We look successively at each dimension i (line 1100); 

that is, the discrete state Xj,t given as an argument is a vector 

Xj,t = (xj ,t,l,···,xj ,t,DIM) 

where x. t 1 is the amount of grain growing in the first aggregated crop, 
J, • 

Xj ,t,2 in the second aggregated crop, and so forth, with Xj,t,DIM being 
the amount of grain stored in the last aggregated bin. VJe consider each 
dimension separately and first calculate 

m1 = x j,t,l 

(line 1200), the amount of grain in that state variable. Then according 
to whether i is an aggregated crop or bin, t is a planting time or not, 
we branch to different parts of the program. 

2. i is an aggregated crop. (True at line 20). 
Case 2a. Preplanting or nonplanting season. (True at line 40). The 

only possible control is zero; obviously the amount planted must be zero 
in a nonplanting period. 
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Case 2b. Planting season. (True at line 50). We restrict the 
maximum sowing to the highest level representable in period tl. The 
highest level at tl is n(i,tl)· fact(i,tl) +xint(i,tl); hence the amount 
sown must be less than vhigh as given in line 2000. 
Diagram for planting season: 

h· fact + xint 

(n-l)fact + xint 

present 1 eve 1 
at t fact + xint 

control must put level at 
tl in this range 

~ negative planting not allowed 

discrete values of variable i at tl 

For a lower bound on the control, notice that the amount sown must 
cause a level at least as large as the lowest grid point, which is xint+fact. 
Thus the control must be at 1 east xint + fact - m1. A1 so, the control must 
be positive; hence line 1900. 

3. i an aggregated bin (True at 1 ine 30). 
3a. First we calculate the amount of grain in storage assu,ming that 

no consumption, exports, or imports are made. This is done by summing the 
amount harvested from eachlfeeding crop ij into the aggregated bin (lines 
2300-2500). This amount available at tl with no consumption, imports or 
exports is called m1 and is different from "stock" which is the amount of 
stock at time t. 

3b. The lowest stock level representable at tl is xint+ fact, so 
the lowest control is that which leaves us at that level at time tl, 
namely fact + xint - ml (1 ine 2700). 

n· fact + xint 

2· fact + xint 
> 

m 1 -----,,----~') 
harvest! 

stocK fact + xint (lowest val ue) 
discrete values available at tl 
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3c. The highest possible control is somewhat hard to calculate. In 

the ECON model, too, this calculation will be done somewhat differently. 

Certainly if 

ml > no fact+ xint 

then 

v ~ no fact+xint-ml 

However, 

v + stock 2! 0 

so that 

V 2! -stock 

Hence, 

v ~ min( -stock, no fact + xint - ml) 

If it so happens, however, that this minimum is less than vlow, we must 

therefore take 

vhi gh = max(vlow, min( -stock, n ° fact + xint - ml» 

(lines 2800-2900). 

4. If prop = 0, we are done, so calculate vinc and return (line 3700). 

5. If prop> 0, then we must recalculate the control bounds around 

the central control ur as shown below. This is carried out in lines 3300-

3500. 

I arm 

%(/~ 
~i' 
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4.8 ITERATE 
Arguments: vlow, vhigh,vinc - lowest, highest and increments for 

control space 
gamma - Yn as described above. 
j,t - indices of the state whose control is to be 

optimized 
t1 .:.,' time period subsequent to f. 
rho - per-period discount factor. 

'R~tufns: vstack - a stack of the five controls 'with highest values. 
Operation: pi is used to store a row of the probability transition 

matrix Pi(v). Lines 1900-2300 and 3100-3500 are "written out" loops for 
speed. These loop through the possible controls. (The i = 1 statement' 
at i = 1 is superfl uous and shoul d be removed.) 

The inner lines, 2400-2800, find the value of each control by the 
equation 

where vt' is the control under examination, Yn is the old value'vector, and 
Pi(vt;o) is the row of the probability transition matrix for state i under 
control vt. Once the value has been calculated, STACK is called in line 
2900 to stack the value of the control and control itself should the value 
be one of the five best discovered so far in the search. 

4.9 UPDATE 
Arguments: rho - discount factor 

v - feedback control matrix 
km - imcrementa 1 welfare vector 
gamma - Y as described in'Section 1.4. , n,m 
oldgam - Yn,m-l 
sigma - approximation to probability distribution 

Returns: gamma - Y +1 as described in Section 1.4. n,m 
oldgam - Yn,m 
sigma - updated approximation to probability distribution 
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b1, b2 - lower and upper bounds on welfare 

(The function of UPDATE is also overviewed in Sections 4.1 and 4.4.) Note: 

when UPDATE is past gamma=yn,o' then b1 and b2 will bound the optimal 

welfare, but when UPDATE is called thereafter with gamma=y m' m>O, n, 
b1 and b2 will bound only the welfare of this particular feedback control 

matrix v. Thus the first call to update in MAIN is separated from the re­

maining calls. 

Operation: Following Equation 2.2, Section 1.4, UPDATE calculates: 

and also 

What would thus be a straightforward matrix multiplication and addition 

is complicated by the fact that P is too large to be stored; one row is 

calculated at a time. 

Indices: Let us begin by sorting out the indices. The row of P 

which we are calculating, and then the element of y which can be calculated 

(notice, though, that an element of a requires all the rows of P) is the 

index i. 

Of course, a row of P corresponds to the oub-/ard transition proba­

bility from some discrete state, and this discrete state is indexed by 

t, j1' j2' etc., as described in Section 2.5. 

t1 is the time period after t. 

nlow and nhigh are bounds on the indices (that is, the positions in 

y or a) of discrete states at time period, tl. These are the states for 

which there is nonzero probabil ity of going to it in the state i. Thus, 

these are the first and last elements in the ith row of P which must be 

multiplied by y (see diagram): 
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1 

o 1 nonzero 1 0 
---1----1- --

1 0 0 1 nonzero 
1- - -I - - - - - - -
nonzero 1 0 1 0 

1 - - -1- - f 
~ 
l..I.J 
c.. 

..-I N Z 

s... s... s... 
0) 0) 0) 
c.. c.. c.. . 

Thus a typical row of P, Pi' can be ignored except for nlow through nhigh: 

In other words: 

P.y = 
1 

I 

-I -l 

o 0 

nhigh 

I 
P t 

nlow 

I Pi(ii)Y(ii) 
i i=nlow 

Step 1. Initialize sigg, the updated sigma, to zero. Later sigg+sigma 
as required. (Lines 1600-1700, line 5600). 

Step 2. Index a row of P, call it i or (j,t) (lines 2200-3500). Let 
vI b~ the control applied to state xi' the ith row of v (line 3700). Let 
pi be the ith row of P(v) (line 3800). 

Step 3. Calculate P.y = sum and P·Yn 'm 1 = sum2 by above equation 
1 n,m 1 ,-

(lines 3900-4400). Also calculate crmP(vn+1) by 

(line 4400). 
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Step 4. Set 

(Notice a dcval still remains in this expression.) Calculate dcvalue in 

line 4600, and calculate bound (cf. Section 1.5) in lines 4700-4900. 

Here ovm2 is a calculated ,element of (pP(vn+1)cn + k(vn+1) - cn). 

Step 5. (lines 5300-5600). Return the computed values in the 

pro ~r arrays. 

4.10 PROH 
Function: Calculates a row of P(v). 

Arguments: j,t - discrete state index. 

v - control (to be applied to this particular state). 

Returns! pi - row of P(v) corresponding to probabilities leaving 
state j, t. . 

Note: !Since the probability transition matrix is cyclic, certain elements 

of pi are constrained to be zero, but these elements are not actually 

zeroed by PROW. This must be remembered when using pi. 

Operation: 1) Consider the discrete states at t1, arranged in a 

dim-dimensional grid. (See ill ustration, dim = 2.) We must somehow approxi­

mate the continuous probability distribution on this space, by a discrete 

probability distribution . 

. : .. ~ 
discrete states 
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approximation to probability distribution 

To simplify the problem a bit, we can assume that our discrete probability 
distribution is the product of dim independent probability distributions: 

p .. = P.P. 
lJ 1 J 

1 s; i s; h(1,t) 1 s; j s; h(2,t) 

and thus reduce our problem to finding an approximation to a one-dimensional 
continuous distribution: 

A matrix P, dimensioned dimx 9, holds each of the dim independent 
probability distributions in successive rows. Lines 1400-2200 compute the 
discrete probabilities for the first NAGG state variables, lines 2400-3100 
compute the probability distributions for the remaining NBIN state variables, 
and then lines 3300-4500 multiply the independent distributions together 
awro)l"iately to calculate the discrete probabil ity at each point on the 
dim-dimensional grid. 

Ste2' 1. For each crop, calculate the mean of the expected amount 
planted at the next time period under control v. This is done in lines 
1500-1800. If t1 is a pre-planting period, then there is only one level 
for the discretization (namely 0), hence the probability of going to that 
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state is one (line 2100). Otherwise APPROX is called to the ~Df and stored 
in the ith line of P (line 1900). 

Step 2. For each bin, calculate the expected amount of grain store~ 
at the next step. This is simply the present amount plus all harvest 
(lines 2600-2900). Again, APPROX calculates the PDF and stores it in the 

" i th 1 i ne of P. 

Step 3. Recall that a discrete state is ordered by t, jl' j2' etc. 
Line 4400 calculates 

DIM 
pi(i) = IT p(line ii, point jii) 

ii=l 

the product distribution as above. 

4.11 APPROX 

,..,,/" 
/' ~ 

m1 
~ 

n' fact + xint xint + fact 

Arguments: m1 - mean of probability distribution 
sig1 - standard deviation of probabil ity distribution 
xint, fact - define the first di screte 1 evel (xint + fact) 

and distance between discrete" levels (fact) 
n - number of ~iscrete levels 
line -line of matrix a in which to plac~ probability 

ap prox i rna ti ons 
Returns: a - matrix for discrete probability distribution (only one 

row will be affected, namely "l ine") 
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xint + fact (the 
crete point). 
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1) The subroutine first checks to see that ml is between 
lowest discrete pJint) and n· fact+xint (the highest dis­

If ml is outside this range (it shouldn ' t be if UBOUND works 
properly), then APPROX prints an error message and aborts. Error detected 
is lines 1000-1500. 

2) Just to make sure, set ml in range if it is outside range (line 
1900). 

3) Zero out probability distribution a(line,·) (lines 2000-2100). 
4) Each probability point will be computed by numerical integration 

of the continuous curve. The number of points for each point in the dis­
crete approximation is nd and is computed in line 2200. 

5) nbl - the first index for which there is any significant proba­
bility (see figure) 

I n , 
! nUl'" nb2 nt2 

nbl m 

nt2 - the last index for which there is any significant Jr0bability .. 

ntl - the index just to the left of the mean. 
nb2 - the index just to the right of the mean. 
Note: ntl= nb2 if mean of distribution lies exactly on a discrete point. 
This special case is taken into account in the program. 

arm - 2.4 + sigl, i.e., the distance to which there is any significant 
probability, or the distance to the first or last discrete point from the 
mean, whichever is smallest. 

6) Numerical integration (line 2900). This is a first approximation 

to a discrete PDF. 
7) Probability refinement (lines 3200-6100) coaxes the mean of the 

discrete PDF to be the same as the mean of the continuous PDF. Let ~ be 
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the mean of the crude discrete PDF from numerical integration. Then 

nt2 
m = L (i-fact+xint)-pi 

i=nb1 

To coax m to m, we define a1 and a2 such that 

and also 

1 etting 

nt1 nt2 
m = L (i-fact+xint)-a1-pi + L {i-fact+xint)-a2-pi 

i=nb1 i=nb2 

nt1 nt2 
1 = L Q. -a + L p. i -a2 i=nb1 1 1 i=nb2 . 

ntl 
p1 ~ L pi 

i=nb1 

nt1 
sl ~ I i*pi 

i=nb1 

1'1 nt2 
p2 = L pi 

i=nb2 

t:. nt2 
s2 - I i*pi 

i=nb2 

we then have 

p1, sl, p2, s2 are calculated in lines 3200-4100, with lines 4300-4700 
taking care of the exceptional case nt1 = nb2. 

We now rewrite the equations for a1, a2 as follows: 
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Redefine sl =fact-si + xint- Pl' s2=fact-s2 + xint- Pl' (lines 4800, 4900), 
so that 

Lines 5100-5300 solve this equation for aI' a2. Lines 5400-6100 then mul­

tiply Pnbl through Pnt l by aI' and Pnb2 through Pnt2 by a2' adjusting if 
necessary for ntl = nb2. 
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APPENDIX B 

OPTIMAL AND SUBOPTIMAL STATIONARY 
CONTROLS FOR MARKOV CHAINS 

by 

Pravin Varaiya 

in IEEE Transactions on Automatic Control, Vol. AC-23, No.3, 
pp. 388-394, 1978. 
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APPENDIX C 

A DI FFERENTIAL THEORY OF MARKOV CONTROL 

Steven N. Jones 

Abstract 

We consider the problem of controlling a Markov Process so as 
to minimize the long-run discounted (or undiscounted) cost. A new 
approach is taken, based on a matrix M which represents the difference 
in future state occupation caused by different starting states. Simple 
expressions result for the derivatives of the limiting state probability 
vector n(u) and cost J(u) with respect to changes in the applied control 
u. Using these derivatives, explicit formulas are derived for n(u ' ) 
and J(u l

) where u l differs from u in the control of a single state, and 
for this case it is shown that the sign of J(u l

) - J(u) depends on a very 
simply calculated discriminant. This leads to several new necessary 
and sufficient conditions for an optimal u*, which hold for both the 
discounted and undiscounted cases: optimality, first-order necessary 
conditions on the derivative are shown to be sufficient, Varaiya's 
necessary and sufficient condition for an optimal dual variable is ex­
tended to the discounted case, as is his bound B(u)? J(u) - J*, and several 
previous results are reproven from the differential perspective. 



88 

A DIFFERENTIAL THEORY OF MARKOV CONTROL 

Steven N. Jones 
Scientific Systems, Inc. 

Cambridge, t-lA 02138 

CONTENTS 

1. Introduction 
2. The Markov Control Problem 
3. Problem Formulation 
4. A Differential Theory 
5. Optimality Conditions and Bounds 
6~ References 

1. Introduction 

The Markov control problem is defined in Section 2, previous work 

on the problem is reviewed briefly and the approach to be taken in this 

paper is outlined and the major results summarized. Section 3 gives a 

more mathematical formulation of the problem, and derives a succinct 

algebraic formulation of the problem which is proved equivalent in Sec-

tion 4. 

Section 4 comprises the differential theory: the differential state 

occupation matrix M is defined, derivatives are defined of n(u) and J(u), 

and simple expressions are derived for them in terms of M. An explicit 

formula for changes in nand J under statewise control policy changes is 

found, and the Monotonicity Theorem is proved. This theorem states that 

if u' differs from u in the control of a single state, then the sign of 

J(u') - J(u) depends on the sign of the discriminant 0i + Llic(u), where 
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c(u) is a dual variable at u, eioi=k(u')-k(u) (k is the vector of 

incremental costs associated with each state, e. is the ith row of the . 1 

identity matrix) and ei6i = P(u') - P(u). In fact, J(a(u'-u) + u) is mono-
tonic in a. 

New optimal ity conditions are given in Section 5, \'/hose proofs rely 

on the Monotonicity Theorem. It is proved that state-wise optimality 

is equivalent to global optimality, that global optimality is guaranteed 

by non-negative derivative, and the necessity and sufficiency of a dual 

variable is proven for the discounted case. Varaiya's bound B(u) ~J(u) -J* 
is also extended to the discounted case, and some previous results are 

reproven from the differential perspective. 

2. The Markov Control Problem 

Consider a perfectly observable Markov process xt ' t= 0,1, ... , with 

finite state space X= {I, ... ,s}, and a set of available controls U(i) for 

each i e X. We assume that by choosing the controls ut according to a 

stationary control policy u= (u(1) ... u(s)) eU(1)x ... xU(s) =U, so that 

u
t = u(x t ) e U(x t ), then the Markov process wil have a stationary state 

transition matrix P(u). At each time t there is an incremental cost qt' 

or re~"ard -qt' from the Markov process which depends on the state xt and 
on the appl ied control ut = u(xt ) : qt = ki (u( i)) under control pol icy u if 
x

t 
= i. Thus the statistics of qt' t = 0,1, ... , depend on the control pol icy 

not only through the functions ki{u), i e X, but al so through the statis­
tics of xt ' t=O,I, ... which are determined by Xo and P(u). 

The problem considered here, which we call the Markov Control Problem, 
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is to find stationary controls which minimize the long-run discounted 

or average cost. The long-run average cost starting in state j under 

control policy ueU is defined as: 

(2.1) (j e X) 

which we call the "undiscounted" cost. It is well known that this 

limit converges for stationary control policies (Doob, [lJ), and to 

guarantee that the long-run average cost is independent from the starting 

state, we make the following assumption: 

Strict Ergodicity Assumption. For any u € U, there is a 1T(U) such that 

(2.2) lim P(u)t = 11T(u) 
t~ -

where 1 = (1 ... 1) I • • 
Although most all of our results hold under the more general "single 

ergodic class" assumption (Varaiya [2J), which also guarantees that J3 
will not depend on j, we will restrict ourselves to the above condition 

for simplicity in the presentation. 

Another type of cost frequently encountered is "discounted" cost; 

for a di scount factor 0 ~ P < 1: 

(2.3) (j e X) 

(2.3.5) JP(u) = (Ji(u) ... J~{u)) I 
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In general J~ r Jj even under the strict ergodic assumption, but there 
is a close relationship between the discounted and undiscounted costs: 
there exists a "dual variable" c(u), which is defined in Section 4 for 
any u e U, such that 7T(U)C(U) = 0 and 

The Markov Control Problem, as considered in this paper, is to mini­
mize JP(u) subject to u e U for a particular 0 ~ P ~ 1. Since JP is in 
general a vector, it is not immediately clear that all elements of .JP can 
be minimized simultaneously. However, by assuming perfect state obser­
vation (i.e., assuming that the controls ut may depend on xt ), and by 
assuming that U is compact and P,k are continuously dependent on u, it 
can be proved that the elements of JP can be minimized simultaneously 
and an optimum stationary control u* e U exists which achieves this global 
minimum (Kushner, [3J). In fact, u* will be optimal over all feedback 
controls (Kushner, [3J). 

Many researchers have addressed the Markov control problem, finding 
necessary and sufficient conditions for the optimality of u*, methods for 
finding bounds on JP(u*), and algorithms for computing successive stra­
tegies whose cost approach the minimum. Most of this work has centered 
around some form of the following equation: 

(2.5) c* = min (pP{u)c* + k(u) - J1(u)1) 
ueU 
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Any solution c* to this equation is called an optimal dual variable, and 

there is no confusion in notation as the c(u) mentioned above equals c* 

when u is an optimal control. It is known for p=l (Varaiya, [2J), and 

has been assumed for general p (and will be proved in this paper), that 

if c* is an optimal dual variable, then the minimizer of the right side 

is an optimal control pol icy. Furthermore, if u* is optimal, then there 

exists a c* (which we will show equals c(u*)} which satisfies: 

(2.5.5) c* = pP(u*}c* + k(u*} - J1(u*)1 

Equations (2.5) and (2.5.5) thus constitute a necessary and sufficient 

condition for u* to be optimal, and it is interesting to review the 

previous results on the Markov control problem from this viewpoint. 

Howard Algorithm. Consider (2.5) for p = 1 in the following form: 

(2.6) c* + J1(U*)1 = min (P(u)c* + k(u)) 
- ueU 

Any solution c* of the above equation is an optimal dual variable 

(since it satisfies Eq. (2.5)), and it can be checked that c*+J1(U*)1 

is also an optimal dual variable. Howard [4J and Schweitzer [5J showed 

under certain conditions that optimal dual variables are in a sense 

"stable fixed points" of the above equation, so that for the sequence 

beginning with an arbitrary vo' and 

(2.7) v·+1 = min (P(u)v i + k(u)), 
1 ueU 

i=O,1, ... 

the viis approach optimal dual variables, vi+1-vi-+}(u*n, as we would 
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expect from (2.6), and thus the minimizing ui's approach minimum cost. 

Odoni then showed [6J that for each i = 0,1, ... , the 1 argest el ement of 

vi+1 - vi upper bounds J(u*), and the smallest element lower bounds J(u*). 

One slight problem with this algorithm is that the conditions for 

convergence are not fully general, but in most cases it is the most 

practical algorithm to use. An analogous algorithm for the discounted 

case is: 

(2.8) vi +1 = min (pP(u)v i + k(u)) 
ueU-

and vii s assured to converge to a definite dual variabl e since p < 1; 

however, to the author's knowledge, no analogy to the Odoni bound has 

been formulated. 

Varaiya Al gorithm (p = 1 only). For the undi scounted case, Varaiya 

[2J defined Q(u) = P(u) - I, and a "Hamiltonian" H(u,c) = Q(u)c+ k(u). Then 

Eq. (2.5) can be written as 

(2.9) J1(U*)1 = min (Q(u)c* + k(u)) = min H(u,c*) 
- ueU ueU 

Varaiya proved the necessary and sufficient properties of (2.5) in this 

form. He then showed that for any c, min H(u,c) = H(u ' ,c): 
ueU 

(2.10) min min Hi(u,c) ~ J1(u*) ~ J1(u l
) ~ max min Hi(u,c) 

. ieX ueU ieX ueU 

and gives a scheme for modifying c to bring the left and right sides of 

(2.3) closer together, so that c+c*, and H+H(u*,c*). This algorithm 
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converges under the most general conditions (a single chain with transient 

states) but is formulated as a differential equation for c, rather than 

an algorithm which recursively computes a discrete series of CiS. 

Earlier work, and most of the results "'Ie have not reviewed here, 

have also relied on some form of Eq. (2.5), and we refer the reader to 

Ross [1J, Kushner [3J, Howard [4J, or Bertsekas [8J. 

The Differential Approach. Our work takes a different approach to 

the problem, based on the concept of differential state occupation. We 

define mij(u) to be the difference in total expected future occupation 

of state j in units of time if Xo has probability one of being i rather 

than probability distribution TI(u). Take ej as the }h row of the s x s 

identity matrix. Then 

(2.11) m .. = (e. -TI)e l
• + (e. - TI)Pe l

• + (e. - TI)p2e~ + .•. 
lJ 1 J 1 J 1 J 

Under the strict ergodicity assumption, this sum will be shown to converge 

for all i,j, and be continuous in u. The mij can be arranged into a 

differential state occupation M and 

(2.12) 
00 

M(u) = I (I - l TI (u))pt (u) 
t=O 

In this paper we will show that M is a useful theoretical tool in 

Markov control. It is, for example, related to derivatives of TI(u) and 

J(u), has important algebraic properties useful in Eq. (2.5), leads to 

new and stronger optimality conditions, and relates the discounted to the 
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undiscounted costs, for c(u) =M(u)k(u). Let us review these applications 

in more depth. 

Take u, u leU and 1 et !J. = P(u I) - P(u). We can define a derivative 

of TI(u) in the direction of !J. as: 

(2.13) dTI = 1 im (P+E!J.) - TI(P} 
d!J. E+O E 

We will show that this limit alway? exists and that 

(2.14 ) dTI - = TI!J.M d!J. 

In addition, since M is a function of u, we can define a derivative 

for M and 

(2.15) dM = 1 im M( P+E!J.) - M( P) = MlIt1 
d!J. E+O E 

Eq. (2.14) and (2.15) can be considered differential equations for 

(TI(P+!J.), M(P+!J.)) in the independent variable!J.. Hhen!J. consists of 

only one nonzero row, these equations can be solved analytically for 

(TI(P+!J.), M(P+!J.)) in terms of (TI(P), M(P)), and if !J.. is the nonzero row 
1 

of !J., Mi is the ith column of M, then 

(2.16) 

Notice for an arbitrary !J., the sequence (TI,~l)(P), (TI,M)(P+e1!J.1), 

(TI,~1)(P+e1!J.l+e2!J.2), leading to (TI,M)(P+!J.) can be recursively computed 
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from (2.16). Another application of Eq. (2.16) is our 

Monotonicity Theorem. For P(u ') - P(u) having a singl e nonzero 

rm'l i, 

(2.17) iff 

v/here ei8 = k(u ') - k(u), eil1i = P(u ') - P(u). [] 

All of these results extend to the discounted case, as a discounted 

MP is defined as: 

(2.18) 
00 t t 

= L P (I - .l7T)P (u) 
t=Q 

the differential equations (2.14) and (2.15) are supplemented by one for 

f'lP, adding an additional row for r~p(u') in Eq. (2.16), and the Monotonicity 

Theorem holds with slight modification. 

Cons ider next the algebra i c properties of M. Let Q = pP - I. Then for 

Q~p~l, 

(2.19) 

so by taking c(u) = MP(u)k(u), we see that c(u) solves (2.5.5): 

(2.20) 

and thus the optimal dual variable c* in (2.5) can be taken to be 

(2.21) c* = M(u*)k(u*) 
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The proofs of optimality conditions in Section 5 will be facilitated 

by the following algebraic properties, which are interesting in their 

0\<Jn right: 

(2.22) 

(2.23) 

(2.24) 

Q -1 = _ ( MP + _1_ l7r) 
1-p -

O~p~l 

JP.(l-p) = J1+ (l-p)·MPk O~ P~ 1 

Eq. (2.24) exhibits the relationship between discounted and undiscounted 

cost, and we see that by "normalizing" the discounted cost by a factor. 

of (l-p), JP + J1 as P + 1. Thi s normal ization will be assumed hereafter 

in the paper. 

The differential theory described above leads to new and strengthened 

necessary and sufficient conditions on u*. First, it is proved that if 

a control u is optimal with respect to changes in the controls of single 

states, (i.e., u' differs from u in only one u(i)), then u is (globally) 

optimum. Obviously the converse holds so this is a necessary and suf­

ficient condition. 

Second, 1 et u e U, and 

(2.25) q,(u) = {P(u')-P(u), k(u')-k(u))lueU} 

Then it is shown that 

(2.26) dJ 
-- ~ 0 d~,k 

for all (~,k) € q,(u) 

is a necessary and sufficient condition for u to be optimal. 
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A third result is an extension of Varaiya's necessary and sufficient 

condition: 

(2.27) J1(U)1 = min (Q1(u ' )c + k(u ' )) 
uleU 

= min H(c,u ' ) 
uleU 

to the discounted case. In addition, Varaiya I s bound B(u) ~ J* - J(u) is 

extended to the discounted case. 

We are presently working on improved algorithms based on this result 

and the new optimality conditions. 

3. Problem Formulation 

The state space of the Markov process is X= {l, .•. ,s}, the stationary 

control space U is a compact cartesian product U=U(1)x ... xU(s), ki : U(i)~R 

are continuous functions for each i e X, and P : U~ RSxs is continuous 

with the strict ergodic property (Eg. (2.2)) holding for each P(u), u e U. 

Take J1 : U~R according to Eq. (2.1), and for O;;p<l take JP : U~R 

according to (2.3.5) times a normalization factor (l-p). As we said ear-

lier, this normalization factor insures that: 

(3.1) lim JP(u) = J1(U)1 
~1 

which we shall prove in Section 4. For any 0 ~ P ~ 1, uP* is called p-optimal 

iff every element of JP(u*) ~ JP(u) for all u e U. 

To arrive at a more succinct mathematical statement of the Markov 

control problem, consider an alternate expression for JP, 0;; P< 1. Let 

n~j(u) be the expected total discounted future occupation of state j under 



99 

policy u (in units of time), given that xO= i. That is, including a 

normalization factor (l-p) for consistency: 

00 

(3.2) rr~.(u) = (l-p) I pte.pt(u)e~ 
lJ t=O 1 J 

where ei is the ith row of the s x s identity matrix. By arranging the 

rr~j(u) into an s x s matrix rrP(u) we have: 

(3.3) 00 t t 
rrP(u) = (l-p) I P P = (l-p)( I _ pp)-l 

t=O 

and it follows that 

We will show that 1 im rrP(u) = 17T(u) = 1 im pt(u), so that (3.4) hol ds for 
p+1 - t~ 

p= 1 also if rr1(u) is defined to be 17T(u). 

We can now formulate the Markov control problem more succinctly. For 

p<l, rrP is uniquely specified by the equation: 

where QP = pP - 1. Although (3.5) holds for P = 1, one additional constraint 

is needed to uniquely specify rr1. In Section 4 we will see that rrP1= 1 

for all 0 ~ P ~ 1, so this constraint with (3.5) uniquely specifies TIP and 

the r~arkov control probl em can then be written: 

(3.6) JP(u P*) = min {rrP(u) k(u) I QPrrP = -(l-p) I, rrP1=!} 
ueU 
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We take Eq. (3.6) as the formal definition of the problem, 0 ~ p ~ 1. 

4. A Differential Theory 

Let (u(l) u(2) ... u(i) ... u(s))=ueU be given and suppose 

ul = (u(1) u(2) ... u l (i) ... u{s)) differs from u only in the control 

applied to i. The major results of this section are explicit expressions 

for 7f(u I), JP{u I), and M(u I) in terms of 7f(u) and r·l(u), and the Mono­

tonicity Theorem (Eq. (2.17)). These results lead to ne\'1 optimality 

conditions in Section 5. 

The development begins with discussion of the new matrix M and its 

properties. The derivatives of 7f(P), J{P) and M(P) with respect to 

changes in P can then be expressed in terms of M. We will write a dif­

ferential equation in P(u) +a{P{u ' ) - P(u)) where a is the scalar parameter 

to be varied between 0 and 1, and by noting that P(u l
) differs from P(u) 

in only one row, we can solve the differential equation for 7f(a), M(a) 

and JP(a). Letting a = 1 we have the resul t mentioned above. Note that 

this result applies to both the discounted and undiscounted cases. 

For any u e U, 0 ~ P ~ 1, define A(u) = I -1 (u). Notice that An = A, and 

that AP = PA. Define: 

(4.1 ) 
00 

MP(u) = I ptAPt(u) 
t=O 

for 0 < p ~ 1 

Since the magnitudes of all eigenvalues of P are no greater than one, 

thi s sum must converge for p < 1 (and uniformly). To see that it must 
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converge for p=1 also, recall that lim pn= 1Tf by the Strong Ergodicity 
n-+oo -

Assumption, and since (p_lrr)n=(AP)n=Apn=pn_ 1Tf , lim (p-1Tf)n=0. 
n-+oo 

Thus the geometric series: 

co 

(4.2) I (P -lTf)n = I Apn = M1(u) 
co 

n=O n=O 

must converge (and uniformly also). In fact, since Tf is continuous in 

u (Varaiya, [2]), and P is continuous in u by definition, MP must also be 

continuous in u. Also MP can be defined in closed form by evaluating 

the left side of Eq. (4.2) and 

(4.3) P -1 M = (I-p(P-1Tf)) for 0 ~ P ~ 1 

M has many interesting properties, some of which are given in the 

following theorem. Recall that Q(u) = pP(u) - 1. 

Theorem 1. a. Ql =-( 1-p)l 

b. TfQ = -(1-p) 

c. TfM = ~11 = 0 

d. QA = AQ = A if p = 1 

e. AM = MA = -A 

Proof: (a) through (c) follow easily from the definitions. (d) is 

due to Ql=TfQ=O when p=1. For (e), we see that 
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so r~Q= -A. Also 

since PA=AP, thus QM= -A. • 
For P< 1, Q is invertible and it can be checked from the above ,re­

lations that 

-1 = 1 (4.6) Q. -r~ - 1-p l7f 

It is this "inverse" property which makes M particularly useful in 

derivations. 

(4.7) 

MP relates nP to n1 and JP to J 1 : for P < 1, 

,<X> tt 
nP = (l-p) I P P = 

t=O 

Since M is continuous in u, we see that 1 im nP = n1, so equal ity of the 
p+1 

first and last matrices in Eq. (4.7) holds for p= 1 also. 

Using (4.7), we can express JP in terms of J1 and MP: 

The quantity M(u)k(u) appears so often we define it to be c(u), and 

we will later see that this vector represents the relative costs of the 

states under k, or in effect is a "dual variable" of u. 
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We now turn to the application of M in the calculation of deriva­

tives. The notion of a feasible direction is a preliminary concept. 

Definition. Let L = {(P(u), k(u)) I u e U} and for any u e U call 

<r>(u) = L - (P(u), k(u)) the set of all feasible directions from u. The 

convex hull of L is denoted I. • 
Lemma. I satisfies the Strict Ergodicity Assumption iff L does. • 

If (ll,O) e <l!(u), define the one-sided derivatives 

(4.9) dn
P 

= lim nP{ P + 8ll} - nP( p) 
dll 0+ 8 

8"+ 

(4.10) dJP . JP{P+8ll, k + o} - JP{P,k} 
dll ° = llm+ 8 , 8-+0 

if the limits exist. 

Theorem 2. Let u e U be given and let (ll,O) e <r>(u). 

and ~~P exist for all O~ P;; 1 and 

(4.11) 

(4.12) 

(4.13) 
0~p<1 

If 8(ll,O) satisfies the Strong Ergodicity Property for small enough 8, then 

the above derivatives are two-sided. 

Before turning to the proof~ we \'lill show that Eq. (4.11) can be 
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derived from simple intuitive reasoning. Consider first a change 

/::'=Ee~(e. -e. ), a small perturbation in P which adds probability E 
, J 1 J2 

to p,.J. and subtracts probability E from p ... For small E, what is 
1 'J2 

7fk(P+Eei(ej - ej )) -7fk(P)? In changing only one row in P we expect the 
1 2 

Markov process to run, intuitively speaking, as it normally would except 

when leaving state i. When the process is in state i, however, there is 

an added probability of E of going to jl and E less probability of going 

to j2. We can explore the change in overall behavior by analyzing the 

effect of each occupation of i. 

Recall that mj k is the difference in occupation of state k by 
1 

starting in jl rather than 7f, and mj k is the difference in occupation 
2 

of k by starting in j2 rather than 7f. Thus 

(4.14 ) 

represents the difference in future occupation of state k when starting 

in jl rather than j2' and E times (4.14) must be the difference in total 

occupation of k each time the Markov process is in state i. Since state i 

occurs with frequency 7fi' we expect an average difference in occupation 

of state k to be: 

(4. 15) 

Now any E/::' can be expressed as: 

(4.16) 
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since L 11 •• e. = 0, and so 
j1 lJ 1 J 2 

(4.17) 

and therefore: 
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L 7T • sl1.. (m. k - m. k ) .. 1 lJ 1 J 1 J 2 1 ,J 1 

(4.18) 7T( P + 11} - 7T( P} ~ s7TI1M 

Let us now prove Theorem 2 formally. 

Proof: For s ~ a 1 et rrP = rrP(p + sl1), Q~ = pP + ps[.-I, and for s > a take - s c;. 

Os = (rr~ - rrb}/E:. Since 

(4.19) 

(4.20) 

we can get an equation for Os by subtracting (4.20) from (4.19) and dividing 

by s: 

(4.21) 

For p < 1, s> 0, Eq. (4.21) has a unique sol ution for Os since QP is 

invertible. For P = 1, however, (4.21) yields only s-l 1 inearly independent 

equations, but the one additional independent condition 

(4.22) ° 1 = a s-
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specifies D uniquely for all p. It can be checked that D = pIIPllMP is E E E 

a solution to the above equations: 

(4.23) 

and Eq. (4.22) is satisfied since MPI = O. Thus 

(4.24) 

Eq. (4.12) follows from (4.24) and the chain rule. 

Eq. (4.13) can be derived for p<1 using (4.7) rewritten in this form: 

(4.25) (O~p<l) 

1 
For the case p= 1, ~~ can be calculated by defining a ME in complete 

analogy to IIE• • 
Consider again the situation u= (u(l) ••. u(i) ... u(s)) and 

u l = (u(1) .•• u'(i) .•. u(s)). The above derivatives can be used to 

solve for IIP(u ' ), JP(u l
), and MP(u ' ) in terms of IIP(u) and MP(u). Let 

ll=P(u')-P(u); II has only a single non-zero row and there exists a lli 

such that ll=eilli. Also o=k(u')-k(u)=eioi for some scalar 0;. Let a 

be a scalar parameter, and define 

(4.26) (P(a),k(a)) = (P(u) +a(P(u')-P(u)),k(u) +a(k(u')-k(u))) 

Then for any value of a between zero and one inclusive, 

(4.27) (P(a),k(a)) € ~(u) 
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where the overbar indicates the convex hull. The derivatives of all 

quantities exist and are two-sided for 0 < a < 1, and are one-sided for 

a=O and a= 1, by Eq. (4.27). We will find rrP(u·) and MP(u·) by writing 

a differential equation for rr(a) and ~lP(a), solving the differential equa­

tion, and then taking a= 1. To begin, let Mj be the jth column of MP, 

v~(a) = fl.~1~(a) for j = 1, ... ,so Then 
J 1 J 

(4.28) 
dv~(a) _ dM~(a) 
d - fl. d J = fl.MPflM~ a 1 a 1 J 

but this expression is a function of vf and vj since 

(4.29) 

Thus we can solve first for vf(a) and then all of the other v~ and get: 

(4.30) 
v~(O) 

1 - pav~( 0) 
J 

Since M~(a) exists and is finite for a= 1, and v~(a) is continuous, we 

must have also: 

(4.31) (O~p~1, i,je{1, ... ,s}) 

an ancillary fact we will use in proving the Monotonicity Theorem. 

To continue, we can next solve for rrP(a), since the derivative of 

the jth column of rr~, 
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(4.32) 
drr~(a) 

J = prrPe!~.M~ = prr~v~ da 1 1 J 1 J 

Again solving first for rr~, and then rrj, we get 

(4.33) 
aVJ~(O) 

rr~(a) = rr~(O) + rr~(O) 
J J 1 1-pav~(0) 

Letting a = 1, and writing (4.33) in matrix form, we arrive at an expression 

for rrP(u l
): 

(4.34 ) 

where Mf is the ith column of M~ and rrf is the ith column of rrf. 

Once we have the vj1s, it is easy to solve for MI , since 

(4.35) 
dr1J~(a) 
..,...--"-- = M~v~ da 1 J 

and (4.35) must have a solution in the same form as the solution to Eq. (4.32): 

(4.36) 

To get MP for P< 1, use Eq. (4.7): 

(4.37) 

He now have analytical expressions for rrP(u I) and ~1P(u I) in terms of 
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nP(u), MP(u), nl(u) and Ml(u). Since nP is a function of MP and nl, we 

see that the triple (nl(u'), Ml(u'), MP(u')) can be explicitly calculated 

from the triple (nl(u), Ml(u), MP(u)), when u' is different from u in the 

control of a single state. 

Let us now turn to a calculation of JP(u') in terms of the last 

triple; this is certainly possible since 

(4.38) 

We spare the reader the necessary algebra which reduces Eq. (4.38) to 

the following: 

(4.39) 

where all of the quantities on the right side are taken at u. 

With this expression we can now prove the following theorem. 

Theorem 3. (Monotonicity Theorem). Let u' differ from u in the 

control of a single state, ei6i=P(U')-P(u), eioi=k(u')-k(u). Then 

if 

where cP(u) = MP(u)k(u). The inequality must be strict for at least one 

element of JP(u') - JP(u); hence the "if" is an "if and only if" for p= 1. 

b. J(P+ae~6., k+ae~6.) is monotonic in a for O~ P~ 1. 
1 1 1 1 
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Proof: (a) Recall from Eq. (4.31) that 1-p6i Mi must be greater 

than zero. Since the elements of rr~(u) are non-negative, and rr~(u) 

has at least one strictly positive element (namely rr~i(u)), (a) follO\'Js. 

(b) Follows from Lemma, Eqs. (4.39) and (4.31). • 

5. Optimality Conditions and Bounds 

In this section several new necessary and sufficient conditions for 

a global optimum u* are proved. In addition, several previous results are 

reproved or extended, as the differential viewpoint offers a new perspec-

tive, and in most cases, a simpler proof. 

Consider the following conditions for a fixed u e U: 

all u' e U 

C2. J1(u) = min (QP(u')cP+k(u')) 
u'eU 

C3. JP(u) = min (pQO(u' )cp + k(u')) 
u'eU 

where c = ~1 (u)k(u) 

C4. 0+p6M(u)k(u) ~O 

C6. dJP(P(u),k(U))? 0 
dll,o 

all (6,0) e cI>(u) 

for all u' e U s.t. for some i eX, 

u' (j) = u(j) unless j = i all j e X 

all (6,0) e cI>(u) 

C1 is of course a statement of global optimality. C5 and C4 are new; 
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C2 is known to be equivalent to Cl when P = 1 (Varaiya, [2]); C3 and C6 are 

new. 

Theorem 4. All of the above conditions are equivalent. Thus, any 

condition implies u is a global optimum and the solution to the Markov 

control probl em. 

We will need this preliminary lemma: 

Lemma 2. Let u e U, 0 ~ P ~ 1, cP(u) = MP(u) k(u). Then 

Proof: QP(u)cP(u) = QP(u)MP(u)k(u) = -A(u)k(u) = (l1T-I)k(u) = J1(u)1- k(u) • 

Proof of Theorem 4: (Cl+-+-C2). Obviously Cl~C2. For any u l
, 

Jl(u')=QP(u')cP(u')+k(u') by Lemma 2. If C2 holds, then Jl(u)~QP(u')cP(u)+ 

k(u ' ). Since rrP(u) has only non-negative elements 

(5.2) rrP(u')J1(u) = rrP(u ' )l1T = J1 (u) 

~ rrP(u')QP(u')cP+rrP(u')k(u') 

= (l1T(u ' ) + (l-p)MP(U')QP(U')CP+JP(U') 

= -(l-p)c + JP(u I) 

Thus JP(u) = J
1 

(u) + (l-p)c ~ JP(u l
) which is condition Cl. (This proof is 

in direct analogy to Varaiya [2]). 

(C2+-+-C3). These two equations differ only by a constant factor 

(l-p)cp • 

. (C2+-+-C4). By Lemma 2, C2 is equivalent to the statement: 
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which is equivalent to 

which is C4. 

(C4+-TC5). Follows directly from the fvbnotonicity Theorem. 

(C5+-TC6). C6+C5 by the Monotonicity Theorem. Suppose then that 

condition -C6 holds, so that for some ~,o, 

(5.5) 

Since all of the elements of rrP are non-negative, there must be an i eX 

such that 

(5.6) 

Again, by the monotonicity theorem, J~(P+e!~., k+e!o.) <J.(P,k) which 
1 1 1 1 1 1 

is -C2. 

We now extend Varaiya's bound B(u) ~ J 1(u) - Jl(u*) to the dis­

counted case. Recall the Hamiltonian 

(5.7) H(u,y) = Q(u)y + k(u) 

• 

Extending this to the discounted case, so that HP(u,y) = QP(u)y+ k(u), 

we get an analogous result. 
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Theorem 5. Let y be an arbitrary col umn vector, 1 et 0 ~ P ~ 1, and 

choose u e U such that 

(5.8) HP(u,y) = min HP(u',y) 
uleU 

Let h=min H~(u,y), h=max H~(u,y). Then 
- ieX 1 ieX 1 

Furthermore, if h=h, then y= cP*+a1. where a is a scalar, JP(u)=JP*, 

and HP(u,y) = J1(u*). If also ny= 0, then y= cP*. 

Proof:. Recall that rrPQP = -(1-p) I. Thus 

(5.10) 

and 

(5.11) 

Since all of the elements of rrP are non-negative and rrP1. = 1., Eq. (5.9) 

foll ows. 

Now suppose h = h. Since then .b.!. = h1. = H, J P* = JP(u), u = uP*, and 

(5.12) 

so 

(5.13) 
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and if O=7TY then 0=7Ty=_1- (J1_ h) and H=J 1. 1-p - • 
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