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FOREWORD

This document contains descriptions of standard post-ejection maneuver sequences
for the deployment of IUS, SSUS-A, and SSUS-D upper stages from the Space Shut-
tle Orbiter. The sequences were designed to satisfy requirements for limiting
the damage inflicted on the Orbiter by upper-stage exhaust particles, subject to

a further requirement for minimizing the impingement of Orbiter thruster plumes
on the deployed payload. In all cabes it was assumed that the orbital
maneuvering system (OMS) engines would be used to apply the Orbiter's major sepa-
ration velocity increment.

These maneuver sequences represent a "first cut" at the problem of defining a
comprehensive, inte grated set of standard sequences for upper-stage deployment.
As such, they are ,,"bject to future modification and refinement. This is partic-
ularly true of thos: applying to the SSUS-A, since the design of that stage re-
quires the remote manipulator system(RMS) to remove a thermal shield and hold
it while the Orbiter's major separation velocity increment is being applied.
Because of RMS structural limitations, the OMS cannot be used for Orbiter/SSUS-
A separations, which will necessitate redesigning the sequence within the
primary RCS constraints.

The standard sequences are being published in their current form to serve as a
basis for critique by the various disciplines and organizations concerned with
Orbiter/upper-stage separation. Aside from any systematic deficiencies, the
standard sequences may require modification to satisfy specific payload/flight
requirements. However, at the very least they should be useful as points of de-
parture in specific flight design exercises.

PRECEDING PAGE E3LANK NOT FILMED
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SYMBOLS AND ABBREVIATIONS

CG	 center of gravity (center of mass)

HFRMP	 High Fidelity Relative Motion Program

IUS	 inertial upper stage

Ixx) Iyy, Izz	 moments of inertia

Iyz, IzX , Ixy	 products of inertia

LVLH	 local vertical/local horizontal coordinate system

PET	 phase elapsed time (measured from instant of upper-stage
ejection from cargo bay)

PROS	 primary reaction control system

RCS	 reaction control system

SRM	 solid-propellant rocket motor

SSUS	 spinning solid upper stage

STS	 space transportation system

AV	 velocity increment (vector)

AV	 velocity increment (magnitude)
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1 .0 INTRODUCTION

Many satellites to be launched by the Space Transportation System (STS)

will require the use of upper stages to boost them into orbits beyond the

performance envelope of the Orbiter. Three standard stage types (IUS, SSUS-A,

and SSUS-D), all using solid rocket motors (SRMs) as their major propulsion

units, are currently bel.." developed for this purpose. These stages, with

satellites attached (the combination will hereafLur be referred to as "the

payload"), will be deployed from the Orbiter typically in a geocentric circu-

lar orbit at an altitude of about 160 nautical miles.

In the process of deployment, each payload will be irected on a tilt

table in the Orbiter's cargo bay, and then ejected by a spring impulse which will

produce a relative velocity increment on the order of 0.3 to 3.0 feet per sec-

ond along the longitudinal axis of the upper stage. The magnitude of the ejec-

tion velocity increment will vary with stage type (and to a lesser extent, with

payload mass), and the angle it makes with the Orbiter's body-fixed h 3 axis will

vary from one stage type to another, but it will always (nominally, it least, for
or

	
all standard stage types) lie in the Orbiter's plane of symmetry.
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2.0 SEPARATION MANEUVER ANALYSIS

2.1	 POINTING REQUIREMENT AT PAYLOAD EJECTION TIME

4

	

	 Tile SSUS-A and SSUS-D stages are relatively unsophisticated, Each of

these types will be spun up before ejection, and will depend primarily on the

conservation of angular momentum to maintain the proper inertial orientation of

its SRM thrust vector, i.e., its longitudinal axis. Necessarily then, in the

case of any SSUS deployment, the Orbiter's attitude at ejection time will be

constrained by a requirement to point the SRM thrust vector in the proper dir-

ection with respect to an inertial frame. The proper direction in each case

will depend on the characteristics and the objective of the particular satel.,

i •	 lite that the SSUS is transporting, and must be expected to vary from one de-

;	 pl oyment to another.

The IUS, having a more sophisticated attitude control system, does not

have to be ejected in its SRM burn attitude. However, in some cases at least,

the satellite it carries will have to be pointed in some particular direction

at ejection time. For instance, the Gal-ileo spacecraft and the TDRS satellites

need to be pointed away from the sun to avoid thermal problems. Thus it can

be seen that a general deployment technique for any standard upper stage type

must be able to accommodate a requirement to point the longitudinal axis of the

1p	 stage in an arbitrary direction at the time of payload ejection.

'	 2.2	 POINTING REQUIREMENT FOR THE SEPARATION MANEUVER

The upper-stage SRMs expel particles in their exhaust plumes which can

damage the Orbiter's windows and thermal protection tiles. Evaluation of poten-

tial damage from the SRM particles (see Appendix) indicates a need for maneuvering4
the Orbiter to a considerable distance (on the order of tens of miles) from the up-

per stage during the interval of time between payload ejection and SRM ignition.

L

	

	 The standard ler!gth of this time interval is only 45 minutes, which means that a

separation velocity increment (AV) on the order of tens of feet per second must be

applied to the Orbiter soon after ejection of the upper stage. Because of the

directionality of the SRM exhaust flow and gravitational effects on the separation

trajectory of the Orbiter, the separation velocity increment cannot be applied in

,fi r	 2-1
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an arbitrary direction. Assuming that SRM ignition occurs 36 minutes after the

separation maneuver, analysis indicates that the preferred alignment of the sep-

aration velocity increment is approximately 30 degrees above the Orbiter's

local vertical local-horizontal (LU11) X axis at maneuver execution time.

For reasons of propello,ot' ticonomy and also because their use makes it

easier to avoid excessive pluil ,. , iw.pingement on the ejected payload, the Orbiter's
OMS engines (fired in unison) are the preferred means of applying the separa-

tion velocity increment. The effective line of their combined thrust is essen-

tially fixed in the Orbiter's plane of symmetry, canted downward at an angle

of approximately 16 degrees with respect to the X D axis. During the OMS burn,

the Orbiter attitude must be such as to point the body-fixed OMS thrust vector

at least approximately in the preferred direction of alignment for the separa-

tion velocity increment, as defined in the preceding paragraph with respect to

the LULH reference system.

Of	 2.3	 RESOLUTION OF CONFLICT BETWEEN POINTING REQUIREMENTS

It is impossible, in the general case, to define a single fixed attitude

for the Orbiter that will satisfy both of the pointing requirements delineated

in Sections 2.1 and 2.2. This means that an Orbiter rotational maneuver must

be executed dur`^ng the •initial phase of the separation sequence, i.e., between

the time of payload ejection and the time of OMS ignition.

If the time interval between payload ejection and OMS ignition is known

(or fixed arbitrarily), then the preferred direction of the OMS thrust vector

(Section 2.2) can be defined with respect to the same inertial frame in which

44	 the payload pointing requirement (Section 2.1) is defined. Only two of the

Orbiter's three degrees of rotational freedom are used up in satisfying the

payload pointing requirement at ejection time. The remaining degree of free-

dom allows the Orbiter to be rotated arbitrarily about the longitudinal axis

of the erected upper stage. This means that it is always possible to define

an ejection attitude that will (1) satisfy an arbitrary payload pointing require-

ment, and (2) cause the inertially-fixed vector representing the preferred di-

rection of the OMS thrust vector to lie in the Orbiter's plane of synmietry.

or	 2-2
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It follows then that the Orbiter need never have to yaw or roll during the

initial separation phase. Proper planning can always arrange it so that, after

payload ejection, the preferred OMS thrust direction can be attained by ro-

tating the Orbiter about its own body-fixed YB axis, i.e., by performing only

a pitch maneuver. This has very definite advantages with regard to (a) avoid-

ing a collision, (b) maintaining visibility of the payload on the part of the

	

id,	
flight crew, and (c) preventing excessive plume impingement on the ejected

payload.

'd There remains one major difficulty: the angle of rotation between the

ejection attitude and the OMS-burn attitude can be controlled only to a very

limited extent by the flight designer. For a given payload pointing require-

	

}	 ment, there are only two Orbiter attitudes that will satisfy that requirement

	

r	 and also allow the preferred OMS thrust direction be achieved without having

to perform a yaw or a roll maneuver. Once a choice is made between the two

available options, the required angle of rotation between the ejection attitude

and the OMS-burn attitude is uniquely deterinined, and the value of that angle

may lie anywhere between -180 and *180 degrees,

2.4	 FLIGHT DESIGN STRATEGY

At this point we must consider a problem that can be explained as follows.

Because the nominal length of the total interval between ejection and SRM igni-

tion is fixed at 45 minutes, the time that can be spent in the execution of the

post-ejection rotational maneuver is quite limited. The longer the OMS burn

t is delayed, the shorter the remaining interval before SRM ignition, and the

longer the OMS burn itself must be in order to produce the necessary separation

distance at SRM ignition time. The longer the OMS burn, the more propellant is

	

•	
consumed, and the longer is the flight path traversed by the Orbiter during the

burn. The last point is extremely important in relation to plume impingement

on the ejected payload. If excessive impingement is to be avoided, before OMS

ignition it is necessary not only to rotate the Orbiter into the proper burn

attitude, but also to maneuver it in a translational sense so that the payload

position in the Orbiter's body-fixed coordinate system will lie ahead of the

Orbiter at OMS ignition time. The magnitude of the required distance is essen-

tially equal to the length of the path traversed by the Orbiter during the OMS

burn.

¢r 2-3r,^
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In light of the preceding paragraph it is obvious now that there are

important; translational as well as rotational aspects to be considered in re-

lation to maneuvering the Orbiter during the initial phase of separation (i.e.,

From payload ejection to OMS ignition). Furthermore, it is obvious that the

time interval allotted to the initial phase must not be too long. On the other

hand, the time allotment must not be too short, Otherwise the required rota-

tional rate of the Orbiter might be excessive, large translational velocity

increments might be required to attain the necessary separation distance at

OMS ignition, or there might be insufficient time to perform the cockpit pro-

cedures attending the execution of the OMS burn. Taking all of these consid-

erations into account, for the purpose of designing standard Orbiter/upper-stage

separation sequences, a provisional allotment of 9 minutes has been given to

the initial phase. This leaves an interval of 36 minutes (minus the length of

the OMS burn itself, which may range between 10 and 40 seconds depending on the

upper stage type and payload mass) for the Orbiter to coast in its separation

trajectory before the nominal time of SRM ignition.

Now we come to the meat of the problem to which this report is addressed:

given such a short time (9 minutes) to execute the initial phase of separation,

there appears to be no generally-applicable maneuvering technique or algorithm

that will accommodate the full range of possible rotation angles (-180 to +180

degrees) required of the Orbiter and also satisfy all the other necessary re-

quirements for maintaining payload visibility, avoiding collision and excessive
4

plume impingement, etc. That is to say, in the specific cases that have been

studied, it has been found necessary to tailor the initial maneuver sequence

(by trial and error) to fit the value of the angle through which the Orbiter is

required to rotate between payload ejection and OMS ignition. Not only that,
a

but also it has been found that the maneuver sequence which works for a particu-

lar rotation angle and upper stage type generally does not work for another

stage type and the same rotation angle. This is because the ejection impulse

magnitude -- and equally important or perhaps more so, the ejection angle with

respect to the Orbiter's Xg axis -- varies from one stage type to another.

The implications of the preceding paragraph are sobering when applied to
M

flight design and training requirements in the STS operational era, for it would

seem necessary to treat each and every upper stage deployment as a special case

fe	
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requ i ring its own uniquely-designed maneuver sequence. However, the dilemma

is not quite so had as it might seem, for the following two reasons,

First of al I , the initial phase is short enough that the variation of

gravitational effects with ejection attitude can be expected to be small,

Therefore, given the rotation angle required of the Orbiter, in the process of

designing the maneuver sequence it is sufficient to consider only the motion

of the payload 
in 

the Orbiter's body-fixed reference frame, without having to

consider how the Orbiter is oriented relative to the earth. (The design must

Of Course contain adequate tolerances to allow for the small variations due to

gravity, as well as those resulting from unavoidable execution errors.) Sec-
ondly, analysis indicates that the OMS thrust vector can deviate from its pre-

;	 fe rred nominal alignment 
in 

the LVLH frame by as much as 22 1, degrees in any

direction (in or out of the geocentric orbit plane) without seriously degrad-
ing the effectiveness of the OMS burn, with regard of course to placing the
Orbiter 

in 
a safe position at SRM ignition time.4'

It is possible then to design (for each upper stage type) a set of 3600/
45 0 = 8 discrete maneuver sequences, one of which 

in 
any given deploymen ! At-

uation can W, used to align the OMS thrust vector within 22 1, degrees of the

preferred nominal direction. This does not mean that, in preparation for a

given flight, training would be required for all 8 of the possible maneuver

S0qU01lCeS that pertain to a given stage type. Training for a specific deploy-
ment would be limited to one particular maneuver sequence that would be selected,

prior to the flight, on the basis of the payload pointing requirement. Oil the

basis of expected similarities 
in 

the pointing requirements 
of 

many SSUS firings,

and on the presumption that many IUS ejections will not be constrained as to

direction, there is reason to hope that the majority of STS operational deploy-

ments may be limited to a small subset (say 2 or 3) of the 8 possibilities that

apply to a given stage type. Nevertheless, at this stage of the game it is only
prudent to define maneuver sequences to cover all possibilities, which is the

subject of the remainder of this report.

^*This insensitivity depends on the prior choice of a final separation trajectory
that places the Orbiter, at SRM ignition time in the LVLH frame centered on the
upper stage, above arid behind the upper stage nominally at the maximum distance
attainable with a separation velocity increment of fixed magnitude (see
Appendix A).
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3.0 DEFINITION OF STANDARD ORBITER/IUS SEPARATION SEQUENCES

s	 3.1 ASSUMPTIONS AND DESIGN REQUIREMENTS
:4

1. For trajectory calculation purposes, the mass properties of the

Orbiter were assumed to be as listed in Table 3-1 immediately after

,t ejection of the payload from the cargo bay,

'f
R	 2. The payload (IUS+satellite) was modeled as a right circular cylinder

112 inches in diameter and 428 inches in length.

3. The payload will be ejected by springs from a tilt table in the

cargo bay, with a relative velocity increment of 0.40 feet per

second in the direction of the IUS +X body axis (which is aligned

with the IUS solid rocket inotor thrust vector).

4. At the time of ejection ; the tilt table will be elevated so that

the IUS +X axis makes an angle of 58 degrees (measured in the

Orbiter's plane of symmetry) with the Orbiter +X body axis.

5. The Orbiter attitude is to be inertially stabilized as nearly as

possible with all RCS jets inactive at the time of payload ejection.

Orbiter RCS jets are to remain inactive until the payload has

scleared all Orbiter-fixed structure by at least TBD feet.

6. The line of action of the nominal spring-ejection impulse is as-

'.	 sumed to pass through the payload center of gravity (CG) and

through the Orbiter CG, producing no angular perturbation of either

a	 vehicle.

7. The payload must be continuously visible to the Orbiter flight

crew after ejection until such time as positive separation has

been confirmed during or immediately after the Orbiter's final

separation maneuver (i.e., the OMS burn).

8. Plume impingement on the payload from Orbiter thrusters is to be

minimized.

!fir	 3-1
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PARAMETER ASSUMED VALUE

Gross weight 200 017 lb

I xx 887 302 slug-ft2

Iyy 6 386 877 slug-ft2

I zz 6 694 367 slug-ft2

Iyz -971	 slug-ft2

Izx
247 376 slug-ft2

1 x
5 622 slug-ft2

CG Station (X o ) 1 095.3 in

CG Buttock line (Yo ) 0.3 in

CG Water line (Z o ) 377.4 in

t:

d

E

I

Table 3-1. Orbiter Mass Properties

n .

3.2	 MANEUVER SEQUENCE DESCRIPTIONS

As discussed previously, 8 discrete Orbiter/IUS initial separation phase

Is

	

	 maneuver sequences have been designed. In Sections 3,2.1 through 3.2.8, each

sequence will be described by a table listing the schedule of events and by

figures depicting the motion of the payload relative to the Orbiter. Three

10

	

	
types of relative motion plots are shown to clarify each sequence: (1) over-

all view of the Orbiter/IUS initial separation phase including OMS plume

contours, (2) an enlarged view of the early stage of the sequence, and (3)

the IUS position relative to the RCS plume contours during RCS translational

maneuvers. All of the data presented in this section were obtained by use

of the HP-9825A High Fidelity Relative Motion Program (HFRMP), version 03M

(References 1-3).

a	 3-2
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All rotational and translational maneuvers of the Orbiter were simulated

with finite-thrust models. The Primary Reaction Control System (PROS) was used

for Orbiter attitude control. To minimize plume impingement on the payload,

the +Z PROS jets (i.e. ) those which expel propellant directly upward relative

to the body-fixed frame) were inhibited. Attitude-control deadbands were set

at 0.5 degrees per axis.

"

	

	 Figure 3-1 presents the nominal RCS propellant consumption and range of

applicability for each of the eight standard Orbiter/IUS separation sequences.

Figures 3-2 through 3-9 present an overall view of the Orbiter/IUS initial sep-

aration phase depicting the motion of the payload relative to the Orbiter for

each sequence. In each sequence, a 35-second OMS burn is assumed to begin

F

	

	 9 minutes after ejection (9:00 P.E.T.), The plume contours for the OMS are

overlaid on the relative motion plots, Examination of the figures will show

that OMS plume impingement on the payload should be completely negligible even

allowing for RCS maneuver execution errors that might produce a trajectory dis-

persion of 300 feet or so at the time of OMS ignition.
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3.2.1 Orbiter Rotation Angle = -136 Degrees

Table 3-2 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-10

presents an enlarged view of the early stage (to 6:50 P.E.T.). Examination of

Figure 3-10 will show that the payload is visible through the , pilot's overhead

window almost continuously during the first 4 minutes and 20 seconds of the

sequence,

The Orbiter's motion was uncontrolled from 0:00 P.E.T. until 1:00 P.E.T.,

t

	

	 at which time a 4-second -X RCS burn was initiated to provide a velocity com-

ponent in the Orbiter +Z body-fixed direction without using the inhibited +Z

RCS jets, Examination of Figure 3-10 will show that the payload is clear of the

 Orbiter structure at the time of the RCS burn. Immediately after the burn, a

_-

	

	 pitch rate of -1.0 deg/sec was established. At 2:30 P.E.T. a second -X RCS

burn was performed for 5 seconds while maintaining the pitch rate. This burn

was required to prevent the payload from going too far behind and too close to

the Orbiter (ZB -)- 0 FT). The burn time was selected to minimize plume impinge-
k

	

	
ment. At approximately 3:19 P.E.T., the -135 degree angle of pitch front the

nominal ejection attitude has been reached, an inertial hold initiated, and a

16-second -X RCS burn performed. This final translation places the Orbiter

approximately 1400 feet behind and 650 feet below the payload at 9:00 P.E.T.,

the time of OMS ignition (see Figure 3-2).

Figure 3-11 illustrates the IUS positions relative to the -X RCS plume
I*	

during the 3 translational maneuvers. Because of the high degree of plume

expansion, impingement cannot be avoided entirely. However, the RCS plume
{ ,

dynamic pressure experienced by the payload should be no greater than approx-

imately 410- 4 pounds per square foot during the 25-second total duration of

the 3 RCS translational maneuvers because impingement during the second and

third burns is negligible.

4	 3-13
r^

J



s'

7

Table 3-2. Orbiter/IUS Initial Separation Sequence
(-135 p eg Rotation Between Ejection and
OMS Ignition)

I. Initiate 4-second -X RCS burn at 1:00 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at -1.0 deg/sec
immediately after -X burn.

3. At 2:30 P.E.T., burn - X for 5 seconds while maintaining -1.0
deg/sec pitch rate.

4. Begin inertial hold upon reaching -135 deg angle of pitch from
nominal ejection attitude (at approximately 3:19 P.E.T.).

5. Execute 16-second -X burn iimediately after beginning inertial
hold.

6. Trim to nominal OMS burn attitude, if necessary.

7. Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT C ONSUMPTION (LB)

	

Fwd Tanks	 189

11"t 
I	

Aft Tanks	 13
e•

	

Total	 202
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3,2.2 Orbiter Rotation_.An lre - -90 Dearrees

Table 3-3 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-12

presents an enlarged view of the early stage (to 6:10 P,E.T). Examination of
4

Figure 3-12 will show that the payload is visible through the pilot's overhead

window almost continuously during the first 3 minutes and 10 seconds of the

r1	 sequence.

The initiation of this sequence is similar to the -135 degree rotation

case with a -1.0 deg/sec pitch rate established immediately upon completion of

the 4-second -X RCS burn at 1:00 P.E.T. At approximately 2:34 P.E.T., the -90

degree angle of pitch rotation from the nominal ejection attitude has been reached,

an inertial hold initiated, and a 15-second -X RCS burn performed. This burn is

shorter than the third burn required in the -135 degree rotation case because the

 payload is not as far behind the Orbiter at the completion of the pitch maneuver.

This final RCS translation places the Orbiter approximately 1500 feet behind

k
	 and 450 feet below the payload at 9:00 P.E.T., the time of OMS ignition (see

Figure 3-3).

Figure 3-13 illustrates the IUS positions relative to the -X RCS plume

during the 2 translational maneuvers. The payload should experience plume im-

pingement of not greater than approximately 3x10- 5 pounds per square foot dur-

ing the second (2:34 P.E.T.) translational maneuver. The RCS plume dynamic

pressure experienced by the payload should be no greater than approximately

410-4 pounds per square foot during the 19-second total duration of the 2

RCS translational maneuvers.

r3
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Table 3-3. Orbiter/SUS Initial Separation Sequence
(-90 peg Rotation Between Ejection and
OMS Ignition)

r
1. Initiate 4-second -X RCS burn at 1.00 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at -1,0 deg/sec
immediately after -X burn.

3. Begin inertial hold upon reaching -90 deg angle of pitch from

	

R	 nominal ejection attitude (at 	 approximately 2:34 P.E,T.).

4, Execute 15-second -X burn immediately after beginning inertial
hold.

r	 5, Trim to nominal OMS burn attitude, if 	 necessary.

o, Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 146

	

Aft Tanks	 14

	

Total	 160

II
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3.2.3	 Orbiter Rc.tationAn
g
le o 46jkaM

Table 3-4 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-14

presents an enlarged view of the early stage (to 6:10 P.E.T.). 	 Examination of

Figure 3-14 will show that the payload is visible tirou qh the pilot's overhead

window almost continuously during the first 2 minutes of the sequence.

The initiation of this sequence is similar to the -135 and 4 90 degree

rotation cases with a -1.0 deg/sec pitch rate established immediately upon

completion of the 4-second -X RCS burn at 1:00 P.E.T. 	 At approximately 1:49

P.E.T., the -46 degree angle of pitch rotation from the nominal 	 ejection atti-

tude has been reached, 	 an inertial hold initiated, and 
an 

8-second -X RCS burl]

performed.	 This burn is considerably shorter than the burns required in the

-135 and -90 degree rotation cases because the payload is approximately direct-

ly overhead of the Orbiter at the completion of the pitch maneuver.	 This final
L _'RCS translation places the Orbiter approximately 1250 feet bohind and 400 feet

below the payload at 9:00 P.E.T., the time of OMS ignition (see Figure 3-4).

Figure 3-15 illustrates the IUS positions relative to the -X RCS plume

during the 2 translational maneuvers. 	 Unlike the previous cases, plume im-

pingement of the same magnitude (approximately 5xI0-4 pounds per square foot)

is also experienced during the second 	 (1:49 P.E.T.) translational maneuver.

a )

I

3-21

ot

A
A



s
F

IX

Table 3-4. Orbiter/IUS Initial Separation Sequence

O-45 
Deg Rotation Between Ejection and

MS

1. Initiate 4-second -X RCS burn at 1:00 P.E.T.

2» Null yaw and roll rates and stabilize pitch rate at -1,0 deg/sec
immediately after -X burn,

3. Begin inertial hol y upon reaching -45 deg angle of pitch from
nominal ejection attitude (at approximately 1:49 P.E.T.).

4. Execute 8-second -X burn immediately after beginning inertial
hold.

5. Trim to nominal OMS burn attitude, if necessary.

6. Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

IV	 NOMINAL RCS PROP ELLANT CONSUMPTION (LB)
r

	

Fwd Tanks	 95

	

Aft Tanks	 14

	

Total	 109
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3.2.4 Orbiter Rotation YA!)jle, ^U De ig s

Table 3-5 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-16

presents an enlarged view of the early stage (to 6:20 P.E.T.). Examination of

Figure 3-16 will show that the payload is visible through the pilot's overhead

window almost continuously during the first 3 minutes and 30 seconds of the

sequence.

This, and the remaining sequences (positive Orbiter rotation angles), are

initiated differently than the previous cases (negative Orbiter rotation angles).

The Orbiter's motion was uncontrolled from 0:00 P.E.T. until 1. 1,10 P.E.T. at

which time an inertial hold was initiated and held until 2:00 P.E.T. At this

time the first RCS translational maneuver was performed. Unlike the previous

cases, this burn is performed using the +X RCS jets (5 seconds) which cause

the payload to move aft and slightly upward relative to the Orbiter.

E

At first this would appear to be counter productive because the aft motion

must be stopped by a =X RCS burn of sufficient length to place the payload at

least 1200 feet ahead of the Orbiter at the time of OMS ignition (9:00 P.E.T).

However, the vertical displacement at ignition time must also be considered Lecause,

the Orbiter positive pitch rotation (+0 degrees in this case) will tend to de-

crease the vertical distance between the Orbiter and payload. Since the +Z

RCS jets have been inhibited, the vertical displacement must be accomplished

using the +X RCS jets both of which produce a small +Z velocity component. By

alternating the +X RCS burns, sufficient vertical displacement can be reached

while maintaining the proper horizontal displacement and minimizing the plume

impingement.

n J

v

r

•►

	

	 The second translational maneuver is a 19-second -X RCS burn at 3:00

P.E.T. which places the Orbiter approximately 1400 feet behind and 400 feet

below the payload at 9:00 P.E.T., the time of OMS ignition (see Figure 3-5),

Figures 3-17 and 3-15 illustrate the IUS positions relative to the +X RCS

and -X RCS plume, respectively, during the 2 translational maneuvers. The

maximum plume dynamic pressure experienced by the pay'Joad should be no greater

than approximately 7x10- 5 pounds per square foot dur',ng the 24-second total

duration of the 2 RCS translational maneuvers.

f C	 3-25
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Table 3-5. Orbiter/IUS Initial Separation Sequence
(0 Deg Rotation Between Election and OMS
Ignition)

1. Begin inertial hold at 1:00 P.E.T.

2. Initiate 5-second *X RCS burn at 2:00 P.E.T.

3. Initiate 19-second -X burn at 3:00 P.E.T.

4. Trim to nominal OMS burn attitude, if necessary.

S. Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)
a.

	

Fwd Tanks	 141

	

Aft Tanks	 35

K
	Total	 176

1$
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3.2.5 Orbiter Rotation AnQle m +45 Deg rees

Table 3-6 presents the schedule of events and the nominal RCS propel-

lant consumption for this Orbiter/TUS initial separation sequence and Figure
3-19 presents an enlarged view of the early stage (to 7:00 P.E.T.). Exam-

ination of Figure 3-19 will show that the payload Is visible through the
pilot's overhead window almost continuously during the first 4 minutes and
20 seconds of the sequence.

The initiation of this sequence is similar to the 0 degree rotation
case but with an 8-second +X RCS burn at 2:00 P.E.T. followed at 3:00 P.E.T.

by initiating a +1.0 deg/sec pitch rate. At approximately 3:47 P.E.T., the
+45 degree angle of pitch rotation from the nominal ejection attitude has
been reached and a 20-second -X RCS burn performed. This final RCS transla-
tion places the Orbiter approximately 1350 feet behind and 600 feet below
the payload at 9:00 P.E.T., the time of OMS ignition (see Fi gure 3-6).

Figures 3-20 and 3-21 illustrate the IUS positions relative to the +X
RCS and -X RCS plume, respectively, during the 2 translational maneuvers.
The maximum plume dynamic pressure experienced by the payload should be no
greater than approximately 7x10" 5 pounds per square foot during the 28-
second total duration of the 2 RCS translational maneuvers.

0,-
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Table 3-6. Orbiter/IUS Initial Separation Sequence
(+45 peg Rotation Between Ejection and
OMS Ignition)

1. Begin inertial hold at 1:00 P.E.T.

2. Initiate 8-second +X RCS burn at 2:00 P.B.T.

3. Start +1.0 deg/sec pitch

4. Resume inertial hold upon
nominal ejection attitude

S. Execute 20-second -X burn
hold.

naneuver at 3:00 P.B.T.

reaching +45 deg angle of pitch from
(at approximately 3:47 P.E.T.).

immediately after resuming inertial

G. Trim to nominal OMS burn attitude, if necessary.

7. Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 158

	

Aft Tanks	 71

	

Total	 229

I t
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•^	 3.2.6 Orbiter Rotation Angle L; +90

Table 3»7 presents the schedule of events and the nominal RCS propel-

,

	

	 lint consumption for this Orbiter/IUS initial separation sequence and Figure

3-22 presents art enlarged view of the early stage (to 6:40 P.E.T.), Examin-

ation of Figure 3-22 will show that the payload is visible through the pilot's

overhead window almost continuously during the first 4 minutes and 15 seconds

of the sequence. For approximately +40 seconds (from F.E.T. n 2;40 to P.ET,

3:20) the payload is outside of the pilot's nominal field of view. However,

the payload can probably be seen directly through the window if the pilot

moves his head to an appropriate position. Also, the payload should be visi-

ble to the CCTV camera mounted on the forward bulkhead.

The initiation of this sequence is similar to the 0 and *45 degree ro-

tation cases but with a 12-second *X RCS burn (see Figure 3-23) at 2:00 P.E.T.,
k

followed at 3.00 P.E.T. by initiating a *1.0 deg/sec pitch rate. At 4.00

P.E.T. a 14-second 4 RCS burn is performed while maintaining the pitch rate.

{ The burn occurs at this time because less plume impingement would be experi-

enced by the payload than if the burn were performed at the end of the pitch

maneuver at 4:32 P.E.T. (see Figure 3-24). This final RCS translation places

'

	

	 the Orbiter approximately 1400 feet behind and 550 feet below the payload at

5:00 P.E,T., the time of OMS ignition (see Figure 3-7).

i	 Figures 3-23 and 3 . 24 illustrate the IUS position relative to the +X

RCS End -X RCS plume, respectively, during the 2 translational maneuvers. The

maximum plume dynamic pressure experienced by the payload should be no greater

than approximately 9x10_ 5 pounds per square foot during the 26-second total

duration of the 2 RCS translational maneuvers.

N
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Table 3-7,	 Orbiter/IUS Initial Separation Sequence
(+90 de!i Rotation Between Ejection and
OMS Ignition)

,f

r

1. Begin inertial	 hold at 1:00 P.E.T.

2. Initiate 12-second +X RCS burn at 2:00 P.E,T.

3. Start +1.0 dog/sec pitch manuever at 3:00 P.E.T.

4. At 4:00 P.E.T., burn -X for 14 seconds while maintaining +1.0
deg/sec pitch rate.

5. Resume inertial hold upon reaching +90 deg angle of pitch from
nominal	 ejection attitude (at approximately 4:32 P.E.T,),

6. Trim to nominal OMS burn attitude, if necessary.

7. Begin 35-second OMS burn 	 (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)y

r
Fwd Tanks	 116

Aft Tanks	 96

e Total	 212
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3.2.7 Orbiter Rotation Anqje	 +13a UeC rqs

Table 3-8 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-25

presents an enlarged view of the early stage (to 6:00 P-E,T.). Examination

of Figure 3-25 will show that the payload is visible through the pilot's overhead

window almost continuously during the first 3 minutes and 40 seconds of the

sequence.

The initiation of this sequence is similar^ to the other positive rota-

tion cases but with a single 16-second +X RCS burn at 2:00 P.E.T. This burn

is sufficient to place the Orbiter approximately 1350 feet behind and 225 feet

below the payload at 9:00 P.E.T., the time of OMS ignition (see Figure 3-8),

Figure 3-26 ,illustrates the IUS positions relative to the +X RCS plume

during the translational maneuver. The maximum plume dynamic pressure exper-

ienced by the payload should be no greater than approximately 2x10 -4 pounds

per square foot.

Mr

I,

3-40



,

i
^r	 {
r

Table 3-8, Orbiter/IUS Initial Separation Sequence
(+135 Deg Rotation Between Ejection and
OMS Ignition)

1. Begin inertial hold at 1.00 P.E.T.

2. Initiate 16-second +X RCS burn at 2:00 P.E.T.

3, Start +10 deg/sec pitch manuever immediately after completion

a of +X burn.

4. Resume inertial hold upon reaching +135 deg angle ofpitch from
nominal ejection attitude (at approximately 4:33 P.E.T.),

5. 'trim to nominal OMS burn attitude, if necessary.

6. Begin 35-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL`RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 15

	

Aft Tanks	 121

	Total	 136
i^
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3.2.8 Orbiter Rotation Angle - +180 Dq rees

Table 3-9 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/IUS initial separation sequence and Figure 3-27

presents an enlarged view of the early stage (to 6:00 P.E.T.). Examination

of Figure 3-27 will show that the payload is visible through the pilot's over-

head window almost continuously during the first 3 minutes and 30 seconds of

the sequence.

^ Of the positive rotation sequences, this one is unique because two +X

RCS translation maneuvers are required to place the Orbiter approximately

1400 feet behind and 475 feet below the payload at 9:00 P.E.T., the time of

OMS ignition (see Figure 3-9).	 As in the other positive rotation cases, the

first +X RCS burn , (12-second) occurs at 2:00 P.E.T. 	 Immediately upon comple-

tion of the burn,	 the +1.0 deg/sec pitch rate is 	 initiated.	 At 3:30 P.E.T.,

the second +X RCS burn is performed for 10 seconds.	 This burn is required to

control	 the vertical	 displacement as well	 as the horizontal displacement at

OMS ignition by preventing the payload from looping below (Za 	 )- +) the Orbiter

at the completion of the 180-degree pitch maneuver. 	 The burn is performed

at this time to minimize plume impingement on the payload 	 (see Figure 3-28).

Figure 3-28 illustrates the IUS positions relative to the +X RCS plume

during the translational maneuvers. The ;maximum plume dynamic pressure exper-

ienced by the payload should be no greator than approximately Sx10- 5 pounds

per square foot during the 22-second total duration of the 2 RCS translation

, t 	maneuvers.
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Table 3-3. Orbiter/IUS Initial Separation Sequence
(+180 peg Rotation Between Ejection and
OMS Ignition)

1. Begin inertial hold at 1:00 P.E.T.

2. Initiate 12-second +X RCS burn at 2:00 P.E.T.

• j	 3. Start +1.0 deg/sec pitch maneuver immediately after completion
of +X burn.

4. At 3:30 P.E.T., burn +X for 10 seconds while maintaining +1,0
deg/sec pitch rate.

5, Resume inertial hold upon reaching +180 deg angle of pitch from
nominal ejection attitude (at approximately 5:14 P.E.T.),

6. Trim to nominal OMS burn attitude, if necessary.

7. Begin 35-second OMS burn (2 -engines) at 5:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 14

	

Aft Tanks	 157

	Total	 171

I ?

iw

r

k
^i

f

r,r	 3-45
.r

IN



.*I
r

%r
1^'

M

k

m {

I

146

r
,r

\

\\	 \\	 OOc,- ;iri r..

\\	 A	 u ti.^u

\\	 \	 n,

\\	 001-
. \	 ,^

'1 \

0
R$	

;.
4	 67fq can ^ ^	 ^,	

m	
,;; ` ^	 ^	 .y2^^	 ^

i	 1	
(^Q 

WIJ	 L ^ r̂ Alw'w „	 ^i1

//^^(̂^] {^
OO 4

V
f.}

^i

7 OOP,

Y

OOE

47

00 i, y

0

C 11!

1u

1f"'	 Y}

009 M

Tr

N u
^^\

I

YI
V

z W

u'

^ OOQ

(L
v

cff^/^j 
eV

(3
V W

n.' (ld)
ui
((1)

In ^XC)

n

f1

00G cn
\YI ry

1, /
J

3-46



i'

0'r	 Ae1'
6
^0

a

b

^^	 3

n . i`

1 1r ""

n r

I 1

IF*



1J

I

=1

4,0 DEFINITION OF STANDARD ORBITER/SSUS-A SEPARATION SEQUENCES

4.1 ASSUMPTIONS AND DESIGN REQUIREMENTS

1. For trajectory calculation purposes, the mass properties of the Orbiter
were assumed to be as listed in Table 3»1 immediately after ejection of

the payload from the cargo bay.

	

r-41	

2. Thepayload (SSUS-A*satellite) was modeled as a right circular cylinder

 106 inches in diameter and 346 inches in length.

3. The payload will be ejected by springs from a tilt table in the cargo

bay, with a relative velocity increment of 1.25 feet per second in the

direction of the SSUS-A +X body axis (which is aligned with the SSUS-A

SRM thrust vector).

4. At the time of ejection, the tilt table will be elevated so that the

SSUS-A +X axis makes an angle of 45 degrees (measur=ed in the Orbiter's

plane of symmetry) with the Orbiter +X body axis.

5. The Orbiter attitude is to be inertially stabilized as nearly as possible

with all RCS jets inactive at the time of payload ejection. Orbiter RCS

,jets are to remain inactive until the payload has cleared all Orbiter-

.,,	 fixed structure by at least TBD feet.

6. The line of action of the nominal spring-ejection impulse is assumed to

pass through the payload center of gravity (CG), producing no angular per-

	

x'	 turbation of that vehicle. For the nominal pre-ejection location of the

SSUS-A that is represented in the figures that follow, the line of action

	

40	 has a moment arm of some 91 inches about the Orbiter CG and would produce

a small positive Orbiter pitch rate. However, since the actual location

of the SSUS-A in the cargo bay may deviate considerably from that shown,

the Orbiter's reactive angular rate impulse was modeled as if it were zero.

7. The payload must be continuously visible to the Orbiter flight crew after

ejection until such time as positive separation has been confirmed during

or immediately after the Orbiter's final separation maneuver (i.e., the

OMS burn).

	

-	 8. Plume impingement on the payload from Orbiter thrusters is to be minimized.

4-1
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4.2 MANEUVER SEQUENCE DESCRIPTIONS

Eight discrete Orbiter/S,SUS«A initial separation phase maneuver sequence!; have

	
1

been designed. In Section 4,2.1 - 4,2,8 each se quence will be described by a table	 i

listing the schedule of events and by figures depicting the motion of the payload
	

i

relative to the Orbiter. Three types of relative motion plots are shown to clarify
	i

t

	

	 each sequence; (1) an overall view of the Orbiter/SSUS-A initial separation phase

including OMS plume contours, (2) an enlarged view of the early stage of the sequence,

and (3) the SSUS-A position relative to the RCS plume contours during RCS transla-

tional maneuvers. All of the data presented in this section were obtained by use

of the HP-9825A HFRMP, Version 03M (References 1-3).

All rotational and translational maneuvers of the Orbiter were simulated with

finite-thrust models. The FRCS was used for Orbiter attitude control, To minimize

plume impingement on the payload, the +Z FRCS jets (i.e., those which expel propel-

lant directly upward relative to the body-fixed frame) were inhibited. Attitude-

control deadbands were set at 0,5 degrees per axis.

Figure 4-1 presents the nominal RCS propellant consumption and range of ap-

plicability for each of the eight standard Orbiter/SSUS-A separation sequences.

	

"	 Figures 4-2 through 4-9 present an overall view of the Orbiter/SSUS-A initial Sep-

aration phase depicting the motion of the payload relative to the Orbiter for each

	

K	 sequence. In each sequence, a 218-second OMS maneuver is assumed to begin 9 minutes

after ejection (P.E.T, :-- 9;00), The plume contours for the OMS are overlaid on the

	

ti
	 relative motion plots. Examination of the figures will show that OMS plume impinge-

ment on the payload should be completely negligible even allowing for RCS maneuver

s	 execution errors that aright produce a trajectory dispersion of 300 feet or so at

the time of OMS ignition,
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4.2.1 Orbiter Rotation Angle - -135 Degrees

Table 4-1 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-A initial separation sequence and Figure 4-10 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of Figure

4-10 will show that the payload is visible through the pilot's overhead window

almost continuously during the first 5 minutes of the sequence,

The Orbiter's motion was uncontrolled from 0:00 P.E.T. until 0:25 P.E.T., at

which time a 4-second -X RCS burn was initiated to provide a velocity component in

the Orbiter +Z body-fixed direction without using the inhibited +Z RCS jets.

Examination of Figure 4-10 will show that the payload is clear of the Orbiter struc-

ture at the time of the RCS burn. Immediately after the burn, a pitch rate of

-1.0 deg/sec was established, At 1:40 P.E.T. a second -X RCS burn was performed

for 5 seconds while maintaining the pitch rate. This burn was required to prevent

the payload from going too far behind and too close to the Orbiter (Z Q ^ 0 FT),

blocking the view of the payload behind the OMS pods. The burn time was sotocted

to minimize plume impingement. At approximately 2:44 P.E.T., the -135 degree angle

of pitch from the nominal ejection attitude has been reached, an inertial hold

initiated, and a 15-second -X RCS burn performed. This final translation places

the Orbiter z^pproximately 925 feet behind and 800 feet below the payload at 9:00

P.E.T., the time of OMS ignition (see Figure 4-2).

t
Figure 4-11 illustrates the SSUS-A positions relative to the -X RCS plume during

the 3 translational maneuvers, Qec^use of the high degree of plume expansion, im-

pingement cannot be avoided entirely, However, RCS plume dynamic pressure experienced

by the payload should be no greater than approximately 5X10 -4 pounds per square foot

1	 during the 24-second total duration of the 3 RCS translational maneuvers.

la
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lablo 4-1. Orbito,15 11-, PS-A Initial Separation Sequence
H35 P-..o!; RoVition Between Ejection and
OMS Irani tion)

1. Initiate 4-second -X RCS burn at 0:26 P.L.T.

2. Null Yaw and roll rates and stabilize pftch rate at -1.0 dog/sac
invilediately after -X burn,

3, At 1:40 P,f'.T., burn -X for S seconds while maintaining -1.0 dog/sac
Pitch raise.

4. Begin inertial hold upon reaching -136 dog angle of pitch from nominal
ejection attitude (at approximately 2:44 P.E.f.).

5^ Execute 15-second -X burn immediately after beginning inertial hold,

C. Trim to nominal OMS burn attitude, if necessary.

7. Begin k8-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION

	

Fwd Tanks	 181

	

Aft Tanks	 13

	

Total	 194

1:
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4.2.2 Orbiter Rotation Angle ;; -90 Degrees

J

	

	 Table 4-2 presents the schedule of events and the nominal RCS propellant con-

sumptior, for this Orbiter/SSUS-A initial separation sequence and Figure 4-12 pre-
stints an enlarged view of the early stage (to 6:00 P.E.T.), Examination of

Figure 4-12 will show that the payload is visible through the pilot's overhead

window almost continuously during the first 3 minutes and 30 seconds of the sequence.

The initiation of this sequence is similar to the -135 degree rotation case

with a -1.0 deg/sec pitch rate established immediately upon completion of the 4-

second -X RCS burn at 0:25 P.E.T. At approximately 1:59 P.C.T., the -90 degree
angle of pitch rotation from the nominal ejection attitude has been reached, an
Inertial hold Initiated, and a 12-second -X RCS burn begun. This burn is less

than the final translational maneuver required in the -135 degree rotation caso

	

4

4	 because the payload is not as far behind the Orbiter at the completion of the pitch

maneuver. This burn places the Orbiter approximately 976 feet behind and 800 feet

	

.0,	 ignition (see Figure 4-3).

	

10	 below the payload at 9:00 P.E.T. ) the time of OMS i -

Figure 4-13 illustrates the SSUS-A positions relative to the -X RCS plume dur-

ing the 2 translational maneuvers. The payload should experience plume impingement

not greater than approximately 5X10_ 4
 pounds per square foot during the 16-second

total duration of the 2 RCS translational maneuvers.

C
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Table 4-2. Orbiter/SSUS-A Initial Separation Sequence
(-90 Deg Rotation Between Ejection and
OMS Ignition)

f	
1. Initiate 4-second -X RCS burn at 0:25 P.E.T.

2,, Null yaw and roll rates and stabilize pitch rate at -1.0 deg/sec
immediately after -X burn.

a

	

	
3. Begin inertial hold upon reaching -90 deg 	 angle of pitch from ejection

attitude (at approximately 1:59 P.E.T.).

4. Execute 12-second -X burn immediately after beginning inertial hold.

5. Trim to nominal OMS burn attitude, if necessary.

6. Begin 28-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION LB

	

Fwd Tanks	 125

	

Aft Tanks	 14

	

Total	 139

S

140
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4.2.3 Orbiter Rotation Angle = -45 Degrees

Table 4-3 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSLIS-A initial separation sequence and Figure 4-14 presents

an enlarged view of the early stage (to 5:00 P.E.T,). Examination of Figure 4-14 will

show that the payload is visible through the pilot's overh^.-ad window almost con-

tinuously during the first minute and a half of the sequence.

The initiation of this sequence is similar to 
the 

-135 and -90 degree rota-

tion cases with a -1.0 deg/sec pitch rate established immediately upon completion

of the 4-second -X RCS burn at 0:2 1E P.E.T. At approximately 1 :14 P.E.T., the -45

degree angle of pitch rotation from the nominal ejection attitude has been reached,

an inertial hold initiated, and a 6-second -X RCS burn begun. This burn is con-

siderably -,'jiorter than the burns required 
in 

the -135 and -90 degree rotation cases

because the payload is approximately directly overWad of the Orbiter at the com-

pletion of the pitch maneuver. This final RCS translation places the Orbiter ap-

proximately 1100 feet behind and 900 feet below the payload at 9:00 P.E.T., the

time of OMS ignition (see Figure 4-4).

Figure 4-15 illustrates the SSUS-A positions relative to the -X RCS plume during

the 2 translational maneuvers. The payload should experience plume impingement not

greater than approximately 5XIO_ 4 pounds per square foot during the 10-second total

duration of the 2 RCS translational maneuvers,
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Table 4-3. Orbiter/SSUS-A Initial Separation Sequence
(45 Deg Rotation Between Ejection and
OMS Ignition)

1. Initiate 4-second -X RCS burn at 0:25 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at -1.0 deg/sec

U	 immediately after -X burn.

3. Begin inertial hold upon reaching -45 deg angle of pitch from nominal
ejection attitude (at approximately 1:14 P.E.T.).

°	 4. Execute 6-second -X RCS burn immediately after beginning inertial hold.

Trim to nominal OMS burn attitude, if necessary.

6. Begin 28-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINA',. RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 81

	

Aft Tanks	 14

	Total	 95
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4.2.4 Orbiter Rotation Angle - 0 Dames

Table 4-4 presents the schedule of events and the nominal RGS propellant

consumption for this Orbitar/SSUS-A initial separation sequence and Figure 4-16
presents an enlarged view of the early stage (to 6:00 P.E,T.),

This sequence is unique in that the initial 4-second -X RCS burn at 0:25

P,E,T. provides sufficient translation to place the Orbiter approximately 975

01	 feet behind and 550 feet below the payload at 9:00 P.E.T., the time of OMS igni-
tion (see Figure 4-5).

Figure 4-17 illustrates the SSUS-A positions relative to the -X RCS plume
during the translational maneuver. The maximum plume dynamic pressure experienced

by the paylout' Jin ► fld be no grea,., r than approximately 5XIO-4 pounds per square

foot.
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Table 4-4. Orbiter/SSUS-A Initial Separation Sequence
(0 Aeq Rotation Between Ejection and OMS
Ignition)

1. Initiate 4-second -X RCS burn at 0:25 P.E.T.

2. Begin inertial hold immediately after -X burn.

F^	
3. Trim to nominal OMS burn attitude, if necessary.

4. Begin 28-second OMS burn (2 engines) at 9.00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 32

	

Aft Tanks	 4

	

Total	 36
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4.2A Orbiter Rotation An le = +45 De reel

Table 4-5 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/SSUS-A initial separation sequence and Figure 4-18

presents an enlarged view of the early stage (to 7,00 P.E.T.), Examination of

Figure 4-18 will show that the payload is visible through the pilot's overhead

window almost continuously for the first 3 minutes of the sequence.

This, and the remaining sNquences (positive Orbiter rotation angles), are

initiated differently than the previous cases. The Orbiter's motion was uncon-

trolled from 0;00 P.E.T. until 0;40 P.E.T. at which time a 9-second +X RCS burn

was performed, An inertial hold was established immediately after the burn. A

1.0 deg/sec pitch rate was initiated at 2;00 P.E.T. At approximately 2;47 P.E.T.,

the +45 degree angle of pitch rotation from the nominal ejection attitude has

been reached, an inertial hold resumed, and a 10-second -X RCS burn begun.

This final RCS translational maneuver places the Orbiter approximately 950 feet

behind and 700 feet below the payload at 9;00 P.E.T., the time of OMS ignition

(see Figure 4-6).

Figures 4-19 and 4-20 illustrate the SSUS-A positions relative to the +X RCS

and -X RCS plume, respectively, during the 2 translational maneuvers. The maxi-

mum plume dynamic pressure experienced by the payload should be no greater than

approximately 8X10 -5 pounds per square foot during the 19-second total duration

of the 2 RCS translational maneuvers.
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Table 4-6, Orbiter/SSUS-A Initial Separation Sequence
(+45 Deg Rotation Between Ejection and
OMS Ignition)

Initiate 9-second +X RCS burn at 0:40 P.E.T.

Begin inertial hold immediately after +X burn.

S tart +1.0 deg/soc pitch maneuver at 2:00 P.E.T.

Resume inertial hold upon reaching +45 dog angle of rotation from
nominal ejection attitude (at approximately 2:47 P.E.T.).

Execute 10-second -X burn immediately after resuming inertial hold,

6. Trim to nominal OMS burn attitude, if necessary.

7. Begin 28-second OMS burn (2 engines) at 9:00 P.C.T.

NOMINAL RCS PROPELLANT CQNSUMPTIQNL(^aj

	

Fwd Tanks	 85

	

Aft Tanks	 77

	

Total	 162
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4.2.6 Orbiter Rotation Angle = +90 Degrees

Table 4-6 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-A initial separation sequence and Figure 4-21 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of

Figure 4-21 will show that the payload is visible through the pilot's overhead win-

r dow almost continuously during the first 3 minutes and 5 seconds of the sequence.

The initiation of this sequence is similar to the +45 degree rotation case.

The Orbiter's motion was uncontrolled from 0:00 P.E.T. to 0:40 P.E.T. at which

time a 12-second +X RCS burn was performed. An inertial hold was established

	

4
	 immediately after the burn. A 1.0 deg/sec pitch rate was initiated at 2:00 P.E.T.

At 3:00 P.E.T. a 5-second -X RCS burn is performed while maintaining the pitch

rate. The burn occurs at this time because less plume impingement would be ex-

perienced by the payload than if the burn were performed at the end of the pitch

maneuver at approximately 3:32 P.E.T. This final RCS translation places the

	

f	
Orbiter approximately 1100 feet behind and 625 feet below the payload at 9:00

r,
P.E.T., the time of OMS ignition (see Figur 4-7).

Figures 4-22 and 4-23 illustrate the SSUS-A positions relative to the +X RCS

and -X RCS plume, respectively, during the 2 translational maneuvers. The maximum
r

plume dynamic pressure experienced by the payload should be no greater than approxi-

mately 9X10-5 pounds per square foot during the 17-second total duration of the 2

RCS translational maneuvers.
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Table 4-6. Orbiter/SSUS-A Initial Separation Sequence
(+90 Deg Rotation Between Ejection and OMS
Ignition)

1. Initiate 12-second +X RCS burn at 0:40 P.E.T.

2. Begin inertial hold immediately after +X burn.

3. Start +1.0 deg/sec pitch maneuver at 2:00 P.E.T.

4. At 3:00 P.E.T. burn -X for 5 seconds while maintaining +1.0 deg/sec
pitch rate.

5. Resume inertial hold upon reaching +90 deg angle of pitch from nominal
ejection attitude (at approximately 3:32 P.E.T.).

+f	6. Trim to nominal OMS burn attitude, if necessary.

7. Begin 28-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT_ CONSUMPTION (LB_)

	Fwd Tanks	 50

	

Aft Tanks	 96

	

Total	 146
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4.2.7 Orbiter Rotation Angle = +135 Degrees

Table 4-7 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/SSUS-A initial separation sequence and Figure 4-24

presents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of

Figure 4-24 will show that the payload is visible through the pilot's overhead

window almost continuously for the first 2 minutes of the sequence.

The initiation of this sequence is different than the previous positive

pitch (+45 and +90 degree) rotation eases in that the pitch rate is	 initiated

immediately after the first +X RCS translation of 12 seconds at 0:40 P.L.T. 	 At

2:00 P.E.T., a 6-second +X RCS burn was performed to prevent the payload from

being below the Orbiter (Z B -} +) at the completion of the 135-degree pitch ro-

tation	 (approxima:4ely 3:09 P.E.T.). This burn places the Orbiter approximately

900 feet behind and 850 feet below the payload at 9:00 P.E.T., the time of OMS

ignition	 (see Figure 4-8).

i

	

	 Figure 4-25 illustrates the SSUS-A positions relative to the +X RCS plume

during the 2 translational maneuvers. The maximum plume dynamic pressure ex-

r
perienced by the payload should be no greater than approximately 5X10 -5 pounds

per square foot during the 18-second total duration of the 2 RCS translational

maneuvers.
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Table 4-7. Orbiter/SSUS-A Initial Separation Sequence
(+135 De Rotation Between Ejection and OMS
Ignition

1. Initiate 12-second +X RCS burn at 0:40 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at +1.0 deg/sec
immediately after +X burn.

3. At 2:00 P.E.T., burn +X for 6 seconds while maintaining +1.0 deg/sec
pitch rate.

4. Begin inertial hold upon reaching +135 deg angle of pitch from nominal
ejection attitude (at approximately 3:09 P.E.T.).

5. Trim to nominal OMS burn attitude, is necessary.

6. Begin 28-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

r,	 Fwd Tanks	 15

	

Aft Tanks	 134

`	 Total	 149
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4.2.8 Orbiter RoV.1tion Angle = +180 Degrees

Table 4-8 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/SSUS-A initial separation sequence and Figure 4-26

presents an enlarged view of the early stage (to 5:00 P.E.T.). Examination of

Figure 4-26 will show that payload is visible through the pilot's overhead win-

dow almost continuously for the first 1 minute and 50 seconds of the sequence.

The initiation of this sequence is similar to the +135 degree rotation case.

The Orbiter's motion was uncontrolled from 0:00 P.E.T.	 to 0:40 P.E.T.	 at which

time a 10-second +X RCS burn was performed. 	 Immediately after the burn, a pitch

rate of 1.0 deg/sec was established.	 At 2:00 P.E.T., a 12-second +X RCS burn

was performed to prevent the payload from being below the Orbiter (Z g + +) at the

completion of the 180-degree pitch rotation (approximately 3:52 P.E.T.).	 This

^• burn places the Orbiter approximately 1350 feet behind and 600 feet below the pay-

{ load at 9:00 P.E.T.,	 the time of OMS ignition	 (see Figure 4-9). 	 At 9:28 P.E.T.,

the end of the OMS burn, the Orbiter is still approximately 650 feet behind the

payload instead of approximately 300 feet as in the other cases. 	 This added dis-

placement is caused by the large magnitude (12-seconds) of the second +X RCS burn

required to prevent the payload from going below the Orbiter.

Figure 4-27 illustrates the SSUS-A positions relative to the +X RCS plume

during the 2 translational maneuvers. The maximum plume dynamic pressure ex-

perienced by the payload should be no greater than approximately 3X10
-5
 pounds per

square foot during the 22-second total duration of the 2 RCS translational maneuvers.
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Table 4-8. Orbiter/SSUS-A Initial Separation Sequence
!	

(+180 Deg Rotation Between Ejection and
OMS Ignition)

1. Initiate 10-second +X RCS burn at 0:40 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at +1.0 deg/sec
immediately after +X burn.

3. At 2:00 P.E.T., burn +X for 12 seconds while maintaining +1.0 deg/sec
pitch rate.

4. Begin inertial hold upon reaching +180 deg angle of pitch from nominal
ejection attitude (at approximately 3:52 P.E.T.).

' `4	 5. Trim to nominal OMS burn attitude, if necessary.

6. Begin 28-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 15

	

Aft Tanks	 158

	

Total	 173
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' 5.0	 DEFINITION OF STANDARD ORBITER/SSUS-D SEPARATION SEQUENCES

5.1	 ASSUMPTIONS AND DESIGN REQUIREMENTS

1.	 For trajectory claculation purposes, the mass properties of the Orbiter
were assumed to be as listed in Table 3-1	 immediately after ejection of
the payload from the cargo bay.

2.	 The payload (SSUS-D+satellite) was modeled as a right circular cylinder
80 inches in diameter and 120 inches in length.

3.	 The payload will be ejected by springs from a cradle in the cargo bay,
with a relative velocity increment of 2.90 feet per second in the

• direction of the SSUS-D +X body axis (which is aligned with the SSUS-D
SRM thrust vector).

^. 4.	 At the time of ejection, the payload will	 be positioned in the cradle
so that the SSUS-D +X axis makes an angle of 90 degrees (measured in the
Orbiter's plane of symmetry) with the Orbiter +X body axis.

r 5.	 The Orbiter attitude is to be inertially stabilized as nearly as possible
with all RCS jets inactive at the time of payload ejection. 	 Orbiter RCS
jets are to remain inactive until the payload has cleared all Orbiter-
fixed structure by at least TBD feet.

6.	 The line of action of the nominal spring-ejection impulse is assumed to
pass through the payload CG and through a point approximately 147 inches
behind the Orbiter CG, producing no angular perturbations o4i	 the payload,
and an Orbiter pitch rate of +0.0611 degrees per second.

y7. The payload must be continuously visible to the Orbiter flight crew after
ejection until such time as positive separation has been confirmed during
or immediately after the Orbiter's final	 separation maneuver (i.e., the
OMS burn).

8.	 Plume impingement on the payload from Orbiter thrusters is to be mini-
mized.

P
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5.2 MANEUVER SEQUENCE DESCRIPTIONS

Eight discrete Orbiter/SSUS-D initial separation phase maneuver sequences

have been designed. In Section 5.2.1 - 5.2.3 each sequence will be described by

a table listing the schedule of events and by -'igures depicting the motion of the

payload relative to the Orbiter. Three types of relative motion plots are shown

to clarify each sequence: (1) an overall view of the Orbiter/SSUS-D initial sep-

aration phase including OMS plume contours, (2) an enlarged view of the early stage

of the sequence, and (3) the SSUS-D position relative to the RCS plume contours

during RCS translational maneuvers. All of the data presented in this section were

obtained by use of the HP-9825A HFRMP, Version 03M (References 1-3).

All rotational and translational maneuvers of the Orbiter were simulated with

finite-thrust models. The PRCS was used for Orbiter attitude control. To minimize

,.;
	 plume impingement on the payload, the +Z PRCS jets (i.e., those which expel pro-

pellant directly upward relative to the body-fixed frame) were inhibited. Attitude-

control deadbands were set at 0.5 degrees per axis.

Figure 5-1 presents the nominal RCS propellant consumption and range of ap-

plicability for each of the eight standard Orbiter/SSUS-D separation sequences.

Figures 5-2 through 5-9 present an overall view of the Orbiter/SSUS-D initial Sep-

aration phase depicting the motion of the payload relative to the Orbiter for each

sequence. In each sequence, a 15-second OMS maneuver is assumed to begin 9 minutes

after ejection (P.E.T. = 9:00). The plume contours for the OMS are overlaid on

the relative motion plots. Examination of the figures will show that OMS plume

impingement on the payload should be completely negligible even allowing for RCS

maneuver execution errors that might produce a trajectory dispersion of 300 feet

or so at the time of OMS ignition.
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5.2.1 Orbiter Rotation Angle = -135 Degrees

Table 5-1 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-10 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of Figure

5-10 will show that the payload is visible through the pilot's overhead window

until 1:10 P.E.T., is visible through the aft window from 2:00 P.E.T. to 3:10

' t	 P.E.T., and again through the overhead window 3:30 P.E.T. to 6:00 P.E.T.

j

	

	 The Orbiter's motion was uncontrolled from 0:00 P.E.T. until 0:20 P.E.T., at

which time a 3-second -X RCS burn was initiated. Examination of Figure 5-10 will

show that the payload is clear of the Orbiter structure at the time of the RCS

burn. Immediately after the burn, a pitch rate of -1.0 deg/sec was established.

At 1:10 P.E.T. a second -X RCS burn was performed for 14 seconds while maintaining

the pitch rate. This burn was required to prevent the payload from going too far

behind and too close to the Orbiter (Z B > 0 Fi), blocking the view of the payload

behind the OMS pods, At approximately 2:41 P.E.T., the -135 degree angle of pitch

from the nominal ejection attitude has been reached, an inertial hold initiated,

r

	

	 and a 14-second -X RCS burn begun. This find) translation places the Orbiter

approximately 550 feet behind and 950 feet below the payload at 9:00 P.E.T., the

time of OMS ignition (see Figure 5-2).

Figure 5-11 illustrates the SSUS-D positions relative to the -X RCS plume

during the 3 translational maneuvers. Because of the high degree of plume expan-

sion, impingement cannot be avoided entirely. However, only the first -X RCS burn

will cause plume impingement. The RCS dynamic pressure experienced by the payload

`

	

	 should be no greater than approximately 2X10
-5
 pounds per square foot during the

31-second total duration of the 3 RCS translational maneuvers.

lo."

5-12
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Table 5-1. Orbiter/SSUS-D Initial Separation Sequence
(-135 Deg Rotation Between Ejection and
OMS Ignition)

1. Initiate ^-second -X RCS burn at 0:20 P.E.T.
t.

2. Null yaw and roll	 rates and stabilize pitch rate at -1.0 deg/sec
immediately after -X burn.

3. At 1:10 P.E.T., burn -X for 14 seconds while maintaining -1.0 deg/sec
pitch rate.

. 4. Begin inertial	 hold upon reaching -135 degangle of pitch from nominal
ejection attitude	 (at approximately 2:41	 P.E.T.).

5. Execute 14-second -X burn immediately after beginning inertial 	 hold.

+Y:

,' 6. Trim to nominal OMS burn attitude, if necessary.
x, t
r

7. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

r
Fwd Tanks	 236

Aft Tanks	 23

Total	 259

i'
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{	 5.2.2 Orbiter Rotation Angle = -90 Degrees

Table 5-2 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-12 pre-

sents an enlarged view of the early stage (to 5:00 P.E.T.). Examination of

Figure 5-12 will show that the payload is visible through the pilot's overhead

window until 1:10 P.E.T., and again from 2:10 P.E.T. until 5:00 P.E.T.

The initiation of this sequence is similar to the -135 degree rotation case

^i

	

	 with a -1.0 deg/sec pitch rate established immediately upon completion of the 3-

second -X RCS burn at 0:20 P.E.T. At 1:10 P.E.T. a second -X RCS burn was per-

formed for 10 seconds while maintaining the pitch rate. At approximately 1:56

P.E.T., the -90 degree angle of pitch rotation from the nominal ejection attitude

has been reached, an inertial hold initiated, and an 8-second -X RCS burn begun

This burn is less than the final translation maneuver required in the

-135 degree rotation case because the payload is not as far behind the Orbiter at

r

	

	 the completion of the pitch maneuver. This burn places the Orbiter approximately

600 feet behind and 1000 feet below the payload at 9:00 P.E.T., the time of OMS

ignition (see Figure 5-3).

Figure 5-13 illustrates the SSUS-D positions relative to the - X RCS plume

during the 3 translational maneuvers. The impingement situation is the same as

in the -135 degree rotation case. The payload should experience plume dynamic

,

	

	 pressure not greater than approximately 2X10-5 pounds per square foot during the

21-second total duration of the 3 RCS translational maneuvers.

F,	 5-16
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Table 5-2. Orbiter/SSUS-D Initial Separation Sequence
(-90 Deg Rotation Between Ejection and OMS
Ignition)

1. Initiate 3-second -X RCS burn at 0:20 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at -1.0 deg/sec
immediately after -X burn.

3. At 1:10 P.E.T., burn -X for 10 seconds while maintaining -1.0 deg/sec
pitch rate.

4. Begin inertial hold upon reaching -90 deg angle of pitch from nominal
ejection attitude (at approximately 1:56 P.E.T.).

5. Execute 8-second -X burn immediately after beginning inertial hold.

f	 6. Trim to nominal OMS burn attitude, if necessary.

t'	 7. Begin 15-second OMS burn (2 engines) at 	 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 165

	

Aft Tanks	 24

	

Total	 189

it
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5.2.3 Orbiter Rotation Angle = -45 Degrees

Table 5-3 presents the schedule of events and the nominal RCS propellant

consumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-14

presents an enlarged view of the early stage (to 5:00 P.E.T.). Examination of

Figure 5-14 will show that the payload is visible through the pilot's overhead

window almost continuously for the first 4 minutes of the sequence.

The initiation of this sequence is similar to the -135 and -90 degree rota-

tion cases with a -1.0 deg/sec pitch rate established immediately upon completion

of the 3-second -X RCS burn at 0:20 P.E.T. At approximately 1:11 P.E.T., the -45

degree angle of pitch rotation from the nominal ejection attitude has been reached,

an inertial hold initiated, and an 11-second -X RCS burn begun. This final

RCS translation places the Orbiter approximately 500 feet behind and 1100 feet

below the payload at 9:00 P.E.T., the time, of OMS ignition (see Figure 5-4).

Figure 5-15 illustrates the SSUS-D positions relative to the -X RCS plume

during the 2 translational maneuvers. The impingement situation is the same as in

the -135 and -90 degree rotation cases. The payload should experience plume dynam-

r
ic pressure not greater than approximately 2X10

-5
 pounds per square foot during the

14-second total duration of the 2 RCS translational maneuvers.

0.
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Table 5-3. Orbiter/SSUS-D Initial Separation Sequence
(-45 Deg Rotation Between Ejection and OMS
Ignition)

1. Initiate 3-second -X RCS burn at 0:20 P.E.T.

2. Null yaw and roll rates and stabilize pitch rate at -1.0 deg/sec
immediately after -X burn.

3. Begin inertial hold upon reaching -45 deg angle of pitch from nominal
ejection attitude (at approximately 1:11 P.E.T.).

4. Execute 11-second -X burn immediately after beginning inertial hold.

5. Trim to nominal OMS burn attitude, if necessary.

6. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

` 	 NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 114

	

Aft Tanks	 23
r
	Total	 137
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5.2.4 Orbiter Rotation Angle = 0 Degrees

Table 5-4 presents the schedule of events and the nominal RCS propellant con- 	 y

sumption for this Orbiter/SSUS-D Initial separation sequence and Figure 5-16 pre-

sents an enlarged view of the early stage (to 3:00 P.E.T.). Examination of Figure

5-16 will show that the payload is visible through the pilot's overhead window

almost continuously for the first 3 minutes of the sequence.
1

This sequence is unique in that the initial 3-second -X RCS burn at 0:20 P.E.T.

provides sufficient translation to place the Orbiter approximately 550 feet behind
•I

^	 and 1700 feet below the payload at 9:00 P.E.T., the time of OMS ignition (see
. 1

Figure 5-5).

Figure 5-17 illustrates the SSUS-D positions relative to the -X RCS plume dur-

ing the translational maneuver. The impingement situation is the same as for all

three negative rotation angle cases. The payload should experience plume dynamic

pressure not greater than approximately 2X10
-5
 pounds per square foot during the

3-second total duration of the RCS translation maneuver.

n r
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1

'z	Table 5-4. Orbiter/SSUS-D Initial Separation Sequence
(0 Deg Rotation Between Ejection and OMS
Ignition)

1. Initiate 3-second -X RCS burn at 0:20 P.E.T.

2. Begin inertial hold immediately after -X burn.

3. Trim to nominal OMS burn attitude, if necessary.

4. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 24

r ,	 Aft Tanks	 5

!	 Total	 29

P
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Mr
5.2.5 Orbiter Rotation Angle = +45 Degrees

Table 5-5 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-18 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of

Figure 5-18 will show that the payload is visible through the pilot's overhead

window for only 50 seconds of the sequence.

This, and the remaining sequences (positive Orbiter rotation angles), are

initiated differently than the previous cases. The Orbiter's motion was uncon-

trolled from 0:00 P.E.T. until 0:20 P.E.T., at which time a 1.0 deg/sec pitch rate

was initiated. At approximately 1:06 P.E.T., the +45 degree angle of pitch ro-

tation from the nominal ejection attitude has been reached and an inertial hold

initiated. No RCS translational maneuver is required for this case. The initial

ejection impulse is sufficient to place the Orbiter approximately 1050 feet behind

and 750 feet below the payload at 9:00 P.E.T., the time of OMS ignition; which

prov'des at least 850 feet of clearance between the payload and the OMS plume dur-

ing the 15-second OMS burn (sae Figure 5-6).
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Table 5-5. Orbiter/SSUS-D Initial Separation Sequence
(+45 Deg Rotation Between Ejection and OMS
Ignition)	 a

1. Start +1.0 deg/sec pitch maneuver at 0:20 P.E.T.

2. Begin inertial hold upon reaching +45 deg angle of pitch from nominal
ejection attitude (at approximately 1:06 P.E.T.).

3. Trim to nominal OMS burn attitude, if necessary.

4. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	Fwd Tanks	 11

	

Aft Tanks	 22

	

Total	 33
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E5.2.6 Orbiter Rotation Angle = +90 Degrees

Table 5-6 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-19 pre-

sents an enlarged view of the early stage (to 8:00 P.E.T.). Examination of

Figure 5-19 will show that the payload is visible through the pilot's overhead

window for only 50 seconds of the sequence.

i

	

	 The initiation of this sequence is similar to the +45 degree rotation case

with a 1.0 deg/sec pitch rate established at 0:20 P.E.T. At 1:05 P.E.T., a 6-

second +X RCS burn was performed while maintaining the pitch rate. This burn was

performed to prevent the payload from being below the Orbiter (Z B -> +) at the com-

pletion of the pitch rotation and out of the line-of-sight of the crew through the

forward windows. At approximately 1:51 P.E.T., the +90 degree angle of pitch from
l	

the nominal ejection attitude has been reached and an inertial hold initiated. No
y

additional RCS translational maneuvers are required to insure OMS plume clearance.

The Orbiter is approximately 900 feet behind and 300 feet below the payload at

9:00 P.E.T., the time of OMS ignition, which provides at least 700 feet of clearance

between the payload and the OMS plume during the 15-second OMS burn (see Figure 5-7).

Figure 5-20 illustrates the SSUS-D positions relative to the +X RCS plume during

the 6-second translational maneuver. Nominally, no plume dynamic pressure should be

experienced by the payload.

t

r

5-31



Table 5-6. Orbiter/SSUS-D Initial Separation Sequence
(+90 Deg Rotation Between Ejection and OMS
Ignition)

1. Start +1.0 deg/sec pitch maneuver at 0:20 P.E.T.

2. At 1:05 P.E.T., burn +X RCS for 6 seconds while maintaining +1.0 deg/sec
pitch rate.

3. Begin inertial hold upon reaching +90 deg angle of pitch from nominal
ejection attitude (at approximately 1:51 P.E.T.).

4. Trim to nominal OMS burn attitude, if necessary.

5. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 13

	

Aft Tanks	 60

	

Total	 73
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5.2.7 Orbiter Rotation Angle = +135 Degrees

Table 5-7 presents the schedule of events and the nominal RCS propellant con-

sumption for this Orbiter/SSUS-D initial	 separation sequence and Figure 5-21	 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). 	 Examination of

Figure 5-21 will	 show that the payload is visible through the pilot's overhead

window for only 50 seconds of the sequence.

The initiation of this sequence is similar to the +45 and +90 degree rotation

cases with a 1.0 deg/sec pitch rate established at 0:20 P.E.T.	 At 1:05 P.E.T., a

17-second +X RCS burn is performed while maintaining the pitch rate.	 This burn

was performed to prevent the payload from being below the Orbiter (Z g + +) at the

completion of the pitch rotation and out of the line-of-sight of the crew through

^. the forward windows.	 At approximately 2:36 P.E.T., the +135 degree angle of pitch

from the nominal ejection attitude is reached and an inertial 	 hold initiated.	 No

additional	 RCS translational	 maneuvers are required to insure OMS plume clearance.
r

The Orbiter is approximately 850 feet behind and 950 feet below the payload at

9:00 P.E.T.,	 the time of OMS ignition, which provides at least 650 feet of clear-

ance between the payload and the OMS plume during the 15-second OMS burn (see

Figure 5-8).
F

Figure 5-22 illustrates the SSUS-D positions relative to the +X RCS plume dur-

ing the 17-second translational 	 maneuver.	 Nominally, no plume dY namic pressure

should be experienced by the payload.

r	
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Table 5-7. Orbiter/SSUSH) Initial Separation Sequence
(+135 De Rota J on Between Ejection and OMS
Ignition

1. Start +1.0 deg/sec pitch maneuver at 0:20 P.E.T.

2. At 1:05 P.E.T., burn +X RCS for 17 seconds while maintaining +1.0
deg/sec pitch rate.

3. Begin inertial hold upon reaching +135 deg angle of pitch from nominal
A	 ejection attitude (at approximately 2:36 	 P.E.T.).

4. Trim to nominal OMS burn attitude, if necessary.

5. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

	

Fwd Tanks	 15

	

Aft Tanks	 129

	

Total	 144
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5.2.8 Orbiter Rotation Angle =_+180 Degrees

Table 5-8 presents the schedule of events and the r Final RCS propellant con-

sumption for this Orbiter/SSUS-D initial separation sequence and Figure 5-23 pre-

sents an enlarged view of the early stage (to 6:00 P.E.T.). Examination of

Figure 5-23 will show that the payload is visible through the pilot's overhead

window for only 50 seconds of the sequence.

The initiation of this sequence is similar to the other positive pitch rota-

tion cases with a 1.0 deg/sec pitch rate established at 0:20 P.E.T. At 1:05 P.E.T.,

a 10-second +X RCS burn is performed while maintaining the pitch rate. Another +X

burn occurs at 1:50 P.E.T. for 16 seconds while maintaining the pitch rate. These

burns were performed to prevent the payload from being below the Orbiter (Z 8 -^- +)

at the completion of the pitch rotation and to insure OMS plume clearance. The

Orbiter is approximately 900 feet behind and 1250 feet below the payload at 9:00

P.E.T., the time of OMS ignition, which provides at least 800 feet of clearance

between the payload and the OMS plume during the 15-second OMS burn (see Figure

5=9).

Figure 5-24 illustrates the SSUS-D positions relative to the +X RCS plume

during the two translational maneuvers. Nominally, no plume dynamics pressure

{	 should be experienced by the payload.
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Table 5-8, Orbiter/SSUS-D Initial Separation Sequence
(+180 Deg Rotation Between Ejection and OMS
Ignition)

1. Start +1.0 deg/sec pitch maneuver at 0:20 P.E.T.

2. At 1:05 P.E.T., burn +X RCS for 10 seconds while maintaining +1.0
deg/sec pitch rate.

3. At 1:50 P.E.T., burn +X for 16 seconds while maintaining +1.0 deg/sec
pitch rate.

4. Begin inertial hold upon reaching +180 degree angle of itch from
nominal ejection attitude (at approximately 3:21 P.E.T..

5. Trim to nominal OMS burn attitude, if necessary.

6. Begin 15-second OMS burn (2 engines) at 9:00 P.E.T.

NOMINAL RCS PROPELLANT CONSUMPTION (LB)

,•	 Fwd Tanks	 15

r	 Aft Tanks	 184

	

Total	 199

n t
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APPENDIX

LIMITATION OF SRM EXHAUST PARTICLE DAMAGE

TO ORBITER SURFACES

The STS standard upper-stage types (IUS, SSUS-A, SSUS-D) utilize solid-

propellant rocket motors (SRMs) as their major propulsion units. The SRM ef-

fluent contains solid particles which are capable of inflicting damage on the

Orbiter's windows and thermal protection tiles. In the interest of flight

safety and avoiding excessive maintenance between flights, Orbiter/upper-stage

t

	

	 separation sequences must be designed in such a manner as to limit the damage

from SRM exhaust particles. Separation sequences currently are being designed

n	 on the basis of the SRM plume models, surface damage models, and damage-
,

limitation criteria which are described in Reference A-1. These models and

criteria will be discussed in following sections of this appendix.
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M. SOURCE AND DISTRIBUTION OF PARTICLES

Aluminum is a major component of the solid propellant used in the IUS and

SSUS stages, and aluminum oxide particles account for approximately 34".; of the

total mass expelled by these stages. According to the SRM exhaust plume models

currently being used for damage analysis, the aluminum oxide particle diameters

range between 0.018 and 10 um. Their velocity magnitudes with respect to the

upper stage at ejection time range from approximately 2.5 km/s for the largest

particles to 3.5 km/s for the smallest ones.

Particles are ejected from the SRM in an axially symmetric pattern, with

the mass flux being represented as a function of particle diameter and ejection

angle. The ejection angle is measured with respect to the centerline of the

exhaust plume (i.e., the SRM thrust line). The range of ejection angles for the

largest aluminum oxide particles is from 0 to approximately 11 degrees. For the

smallest particles, the ejection angles range from 0 to approximately 49 degrees.

In addition to the aluminum oxide particles just described, current models

of the SRM exhaust plu;,,^, include larger particles with diameters ranging between

18 and 1000 Um. These are rather loosely characterized as "carbon". The relative

velocity vectors of these particles (with respect to the upper stage at ejection

time) have an annular distribution about the plume centerline, and their magni-

tudes vary from approximately 0.5 km/s for the 1000 um particles to approximately

2.4 km/s for the 18 um particles. The ejection angles range between the ap p rox-

imate limits of 15 and 25 degrees with respect to the plume centerline.

The particle size/velocity distribution for the IUS first-stage SRM plume

model is shown in Figure A-1. The shaded regions represent the loci of particle

velocity vector coordinates relative to a stationary IUS, in a plane section

through the centerline of the plume.

The larger particles (18 - 1000 }am) were included in the plume models orig-

inally to account for carbon erosion from the SRM nozzle (see Figure A-2), and

that is the basis for the annular distribution of their relative velocity vectors.

The original estimates of the mass which would be ejected in the form of (rela-

tively) large particles was later increased to account for erosion of the pres-

sure chamber lining. There now seems to be reason to suspect also that some of

the aluminum oxide may agglomerate on the nozzle walls, and then enter the ex-

haust stream in the form of particles much larger than the nominal 10 ^tm maximum

diameter (Reference A-2).
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In any event, there is considerable uncertainty about the actual abundance

and size distribution of "carbon" particles (i.e., those having diameters greater

than 10 um) in the SRM exhaust plumes. Experiments are planned which should

remove some of this uncertainty. Meanwhile, until the test results become avail-

able, separation sequences are being designed on the basis of the aluminum oxide

and "carbon" particle models of the SRM exhaust plume which are defined in

Reference A-1. According to those models, the carbon (large particle) content

of the exhaust amounts to somewhere between 0.6;; and 1.0'10' of the total propellant

mass (depending on stage type). As indicated in Figure A-3, this amount of mass

is distributed into each of eight distinct particle families, every family being

composed of particles having a certain diameter in the range of 18 to 1000 um.

Since this results in an eight-fold overabundance of carbon mass in the exhaust

model, it might seem that it would produce an eight-fold increase in the calcu-

lated damage to Orbiter surfaces and therefore be unrealistic. However, this is

not the case. Computer simulations indicate that almost all of the damage in-

flicted by "carbon" particles ejected during any particular SRM firing is caused

by only one particle size, all other sizes being relatively ineffectual for the

Orbiter/upper-stage trajectory under consideration. Modeling the large-particle

mass distribution in the manner described has the effect of assumin q that all of

the "carbon' mass is ejected in particles of the one size (which is unknown, a

priori) that inflicts maximum damage. Such a degree of conservatism seems reason-

able in view of the uncertainties that currently exist with regard to the actual

abundance and size-distribution of the larger particles.
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A.2 DAMAGE DEFINITIONS

SRM exhaust particle damage to Orbiter surfaces is classified either as

erosion or as breakage. Breakage is measured in terms of "breaks" per unit of

surface area. With reference to a window, a break represents the formulation

of an impact crater of sufficient depth (46 um or more) to possibly result in

crack propagation under the stress of atmospheric entry and/or ascent of the

Orbiter on a subsequent flight. With reference to a tile, a break represents

a penetration of its fused silica coating. The thickness of the coating on a

low-temperature tile is 305 ism, while for a high-temperature tile it is 381 Wn.

•^

	

	 Thus it can be seen that, of the three surface types under consideration, high-

temperature tiles are the least susceptible to breakage and windows are the most

susceptible.

Erosion refers to the formation of craters too shallow to be classified as

k 	 breaks. It is measured i, terms of the percentage of the total surface area (not

depth) that is chipped off by the aggregate of particle impacts.

The "carbon" particles are the primary agents of breakage, the individual

masses of aluminum oxide particles generally being too small to Form deep craters.

On the other hand, the aluminum oxide particles are the primary agents of ero-

sion, simply because they are so very much more numerous than the larger "carbon"

particles.
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A.3. DAMAGE-LIMITATION CRITERIA

Table A-1 -ontains a summary of the damage-limitation criteria currently

being used for flight design. With regard to window and tile breakage, the

basic criterion is that the lifetime accumulation of breakage due to SRM par-

ticle impingement should not exceed that which is expected to result from

meteoroid impacts. Assuming the Orbiter surfaces experience 135 SRM firings and

421 days on orbit during a design lifetime of 100 flights, it follows that the

breakage due to a single SRM firing should not exceed the meteoroid breakage

that is expected to accumulate during 3.1 days on orbit.

The lifetime limit on window erosion is currently set at 2". Any greater

amount might require window replacement because of degraded visibility. The

per-firing limit comes to 0.015 	 based on 135 SRM firings during the design

, r	 lifetime.

t Thermal tests indicate that the Orbiter tiles can sustain iOSS erosion with-

f `

	

	 out a measurable degradation of their thermal radiation properties, and this

value is currently being used as a lifetime limit for tile erosion. Based on

135 SRM firings during the design lifetime, the per-firing limit on tile erosion

is 0.074".
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,`W	A.4. ON-ORBIT DAMAGE POTENTIALS

For a given particle type and size, the instantaneous rates of erosion and

breakage on an element of the Orbiter's surface can be expressed in terms of the

local	 flowfield mass density of the particles, their speed relative to the sur-

face under consideration, and their incidence angle tp	 (i.e.,	 the	 angle between

the surface normal	 and the relative velocity vector of the particles).

With regard to incidence angle, the breakage rate varies as cos q, and the

^ erosion rate varies as cos 3 ^ (see Table 6-1 of Reference A-1). 	 Obviously, at

any instant the value of ^ will 	 be different at different points on the Orbiter's

surface, and the value at a given point is a function of the Orbiter's attitude.

It simplifies the problem of estimating surface damage to consider, instead of

Y + the whole surface of the Orbiter or any particular point on it, a hypothetical

surface element which is always normal	 to the relative velocity vectors of the

impinging particles	 (of whatever size and at whatever time). 	 When the breakage

or erosion rate for such a hypothetical surface is integrated with respect to

time and with respect to particle size, the result can be thought of as a "poten-

tial" for the type of damage and the type of surface under consideration. 	 The

potential	 represents the maximum real damage that a surface of the given type

would incur if the Orbiter attitude were such as to expose it continuously to

y, particle impingement during the period (sometimes lasting several 	 minutes beyond

i SRM burnout) when the local 	 flux of exhaust particles is significant.

Even with the simplification that results from assuming cos ^=1, the problem

,. of calculating and integrating the damage rates is not an easy one. 	 Basically,

the difficulty arises because (1) the damage rate equations are necessarily ref-

erenced to a coordinate system in which the Orbiter is stationary,	 (2)	 the equa-

1 tions which define the exhaustlumep	 (particle velocity and flowfield mass density)

are necessarily referenced to a coordinate system in which the SRM is instantan-

eously stationary, and (3) the two systems are in a state of accelerated motion

relative to each other during the SRM burn.	 The problem is further complicated

by the facts that (a) the particle damage rates must be integrated with respect

to impact time,	 (b)	 the SRM exhaust flow rate is a function of ejection time, and
r

(c)	 the time interval 	 between ejection and impact is significant and variable. 	 A

detailed discussion of this problem,	 and	 its	 resolution,	 is given in Reference A-3.

1.	 .

a
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In the computer programs that are used to calculate damage potentials, the

trajectories of the Orbiter and the upper stage are obtained by integrating equa-

tions of motion which include the effects of gravity as well as SRM thrust.

However, the motions of individual exhaust particles (from ejection to impact

time) are assumed to be linear at constant velocity in a coordinate system where-

'	 in the Orbiter is stationary. Such a simplification is practically necessary

1
because of the great number of particle trajectories that have to be considered.

If the frame of reference is not rotating with respect to inertial space, it is

reasonably accurate for particle flight times up to 5 or 10 minutes between

ejection and impact, provided aerodynamic drag can be ignored (see Table A-2).*

Particle velocities relative to the Orbiter are obtained by adding, vec-

torially at the time of ejection, their SRM-relative velocities (see Figure A-1)

to that of the SRM itself. As illustrated in Figure A-4, the effect of SRM thrust

acceleration is to continuously modify the directions and magnitudes of the Orbiter-

relative particle velocity vectors as the burn progresses. The Orbiter is to be

considered stationary in Figure A-4, conceivably at any position in the frame of
r

reference. It is obvious that only those particles whose velocity vectors point

toward the Orbiter can damage it, and therefore that the integrated damage po-

tential is highly dependent on the Orbiter's position relative to the SRM line

t.

	

	 of flight. The diagram shown in Figure A-4 applies specifically to 0.18 um

aluminum oxide particles, which are particularly effective in producing erosion.

Considering the fact that the number flux for these particles is greatest on the

plume centerline and falls off significantly as the ejection angle (relative to

'	 the SRM) approaches its limit, it is easy to predict that the erosion potential
t
`

	

	 should be greater if the Orbiter were behind the SRM at ignition time than if it

were ahead and off to one side of the powered flight path.

*The accelerations shown in Table A-2 indicate that the trajectories of
the smallest particles can be affected significantly by drag. However, the net
effect on the damage potentials is not very great because (1) as shown in
Figure A-3, the mass fraction of particles smaller than 0.1 um is essentially
negligible, (2) most of the smaller particles have airspeeds considerably lower
than orbital velocity; and, (3) the ejection-to-impact flight time for the
smaller particles is generally less than two minutes. In addition, the at-
mospheric density assumed for the construction of Table A-2 is near the upper
limit for the indicated altitude. Depending on solar activity and the position
of the SRM burn with respect to the subsolar point, the actual density could
be smaller by as much as an order of magnitude.

A-11
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Table A-2. Particle Acceleration Due to Aerodynamic Drag

n'
y;

f

PARTICLE
DIAMETER
(um)

AERODYNAMIC
DRAG

ACCELERATION*

(m/s2)

.0178 49.1

.0316 27.7

.0562 15.6

o .100 8.74
.178 4.91X

C) .316 2.77
.562 1.56

1.00 .874
1.78 .491
3.16 .277
5.62 .156

10.0 .0874

17.8 .0928
31.8 .0523
56.2 .0294

0 100 .0165
Q-1 178 .00928

316 .00523
562 .00294

1000 .00165

*ASSUMPTIONS:

CD = 2.0

particle airspeed = 7732 m/s
(circular orbit velocity at 296 km

atmospheric density = 3.87 x 10- 14 g/cm
(1962 standard atmosphere)

^.r
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It

Figure A-5 is analogous to A-4, except that it applies to the "carbon"

particles, whose SRM-relative velocities (again, see Figure A-1) are smaller

and distributed annularly about the plume centerline. As can be seen by com-

paring Figures A-4 and A-5, the effect of SRM thrust acceleration is quite

different in this case. Long before SRM burnout, the upper stage has gained

enough velocity to give significant forward components to the Orbiter-relative

velocity vectors of the larger particles, and velocity magnitudes far exceeding

what they were at ignition time. As previously pointed out, these particles

are the primary agents of breakage. Therefore it is easy to predict that (in

contrast to erosion) the breakage potential would be rather severe if the Orbiter

were ahead and off to one side of the SRM powered flight path.

The qualitative inferences drawn from Figures A-4 and A-5 are borne out by

the quantitative results of damage-potential surveys in the upper stage deploy-
.$

	

	
ment orbit plane, which are contained in Reference A-1. The results of the

survey, as they apply to the erosion potential of a SSUS-D firing, are depicted

graphically in Figure A-6.

r

	

	It should be noted that the coordinate axes shown in Figure A-6 are dif-

ferent from those shown in Figures A-4 and A-5. The origin of the local vertical/

local horizontal ;LVLH) axes depicted in Figure A-6 (and other illustrations to

follow) is centered on a phantom satellite in circular earth orbit, whose position

coincides with the upper stage prior to SRM ignition, but which does not experi-

ence SRM thrust acceleration. The Z axis of the LVLH system points continuously

at the center of the earth (which means that the system is rotating), the Y axis

3	 (not shown) is normal to the geocentric orbit plane. and the X axis completes a

right-handed orthogonal triad. Following SRM ignition, the upper stage acceler-

,0	 ates away from the origin. Assuming a posigrade burn (i.e., with the thrust

vector pointed in the direction of orbital motion) the SRM powered flight path

coincides initially with the LVLH X axis, curving upward as the burn progresses.

`	 Exhaust particle trajectories in the LVLH system are also curved. However, over

the time intervals of interest here, the curvature is small enough to permit a

mental superposition of the velocity diagrams of Figures A-4 and A-5 onto the

LVLH frame without introducing gross qualitative errors.

Conceivably, the Orbiter could be located anywhere in the LVLH coordinate

_

	

	 system of Fi.;ure A-6 at SRM ignition time. The laws of orbital mechanics forbid

its being stationary anywhere except possibly on the X axis. Again, however, for

A-14
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f

the purpose of transferring the qualitative inferences drawn from Figures A-4

and A-5 to the rotating coordinate system, it is not grossly erroneous to think

of the Orbiter as being stationary in the LVLH frame.

According to the survey results contained in Reference A-1, the surface

erosion potential would exceed the flight design limit for thermal protection

tiles (see Table A-1) if the Orbiter were to be located anywhere inside the shaded

region of Figure A-6 at SSUS-D SRM ignition time. Similarly, the breakage poten-

tial for high-temperature tiles would exceed flight design limits if the Orbiter

were located anywhere inside the shaded region of Figure A-7 at ignition time.

The shapes of these two excessive-damage regions are consistent with the vector

diagrams shown in Figures A-4 and A-5.

Figure A-8 contains the same type of information as that shown in Figures

A-6 and A-7, except that the upper stage under consideration here is the SSUS-A,

and the regions of excessive tile erosion and excessive high-temperature tile

breakage are superimposed on each other in a single display. Figure A-9 is

similar to A-8, except that it applies to the IUS first-stage (large) SRM.

r	 Comparing Figures A-6 through A-9, the progressive increase in the sizes of

the excessive-damage regions is due mainly to the increase in mass of propellant

expelled by the different SRMs.

The damage potentials represented in Figures A-6 through A-9 were obtained

by systematically varying the Orbiter's position relative to the upper stage at

SRM ignition time. For each initial position, damage potentials were obtained

by integrating the appropriate damage rates with respect to time and with respect

to particle size. The results were then mapped as functions of the Orbiter's

initial position.

The reason for showing only the breakage potentials that apply to the Or-

biter's high-temperature tiles can be explained as follows. According to the

survey results given in Reference A-1, the potentials for window breakage are so

great that it seems clear there is only one practicable way to satisfy the damag -

limitation criteria given in Section A.3: the Orbiter must be orientad such that

its windows will be shielded from SRM exhaust particles. Any orientation that

shields the windows effectively shields the low-temperature tiles as well. It

follows then that the basic trajectory design requirement, insofar as the limita-

tion of damage to the Orbiter is concerned, is to maneuver the Orbiter to a

r
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}

n i

position (relative to the upper stage) where the high-temperature tile damage

potentials are acceptable.

It needs to be pointed out that the quantitative results shown in Figures

A-6 through A-9 do not involve an assumption that the Orbiter is stationary in

the LVLH frame. On the contrary, in the process of integrating the damage rates,

the real motion of the Orbiter was calculated in accordance with the laws of

orbital methanics and the assumed state of the Orbiter's motion at SRM ignition

time. However, for the purposes of the survey, the Orbiter's state of motion

was arbitrarily assumed to be that corresponding to a geocenctric circular orbit

at the appropriate altitude (i.e., at 160-Z nautical miles). The point is that

for any real in-flight situation, the Orbiter almost certainly will not be in a

circular orbit at SRM ignition time, and therefore the results shown in Figures

A-6 through A-9 should not be expected to apply precisely to real Orbiter/upper-

stage separation sequences. That is to say, the damage potentials depend not

only on the Orbiter's position at SRM ignition time, but also on its velocity.

In addit4on to the Orbiter's velocity at SRM ignition time, other parameters

that can have a significant effect on the damage-potential contours include the

SRM propellant load, the upper-stage payload weight, and of course the SRM thrust

direction with respect to the LVLH frame. Reverting again to qualitative infer-

ences, it seems reasonable that ( in 3-dimensional space) the regions of excessive

damage should look something like bodies of revolution about the SRM thrust axis.

The shaded regions shown in Figures A-6 through A-9 can then be thought of as

plane sections through these bodies of revolution. The gross effects of varia-

tions in thrust direction can be visualized by rotating the appropriate contours

bodily about the origin of coordinates.

It must be emphasized that the supposed axial symmetries referred to in

the preceding paragraph can be only qualitative at best, and that the accuracy

of the attendant approximations has not been established. It is also emphasized

that significant portions of the damage-potential contours (all of the dashed-

line segments) shown in Figures A-6 through A-9 are based on the symmetry assump-

tion and on the extrapolation of available data, in some cases far beyond the

limits of the quantitative survey. In particular, the accuracy of the extrapolated

tile breakage potential in the right-hand quadrants of Figure A-9 is very questionable.

r
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n 1 A.5. REGIONS OF LVLH SPACE ACCESSIBLE TO ORBITER

To attain a position where the high-temperature tile damage potentials are

acceptable, it is necessary to apply a major velocity increment to the Orbiter

soon after the upper stage is ejected from the cargo bay. For reasons which are

t	 discussed in Section 2.4 of the main body of this report,, it is generally not

feasible to execute the Orbiter's main separation maneuver earlier than about 9

minutes after ejection. Distances traversed by the Orbiter prior to the major

separation maneuver are insignificant on the scale of Figures A-6 through A-9.

'}1

	

	
Therefore, for the purpose of preliminary damage-limitation analysis, the Or-

biter's motion relative to the upper stage can be ignored during the first 9 min-

utes following stage ejection. Given a fixed interval of 45 minutes between

ejection and SRM ignition, the available coast time in the large-scale separation

trajectory is approximately 36 minutes.

The position reached by the Orbiter at the end of any particular coast in-

terval depends on the orientation and magnitude of the main separation velocity

^ 	 increment (EV). For a given velocity increment magnitude, maximum separation is

J achieved when the EV vector (hence also the resulting separation trajectory) lies

in the plane of the geocentric deployment orbit.

Figu

positions

magnitude

I	 indicates

gained by

re A-10 shows, as a function of coast time, the locus of all in-plane

the Orbiter can reach by varying the direction of a OV vector whose

is fixed arbitrarily at a value of 60 feet per second. This figure

that nothing significant in the way of separation distance can be

coasting less than 36 minutes.

When the coast time and the direction of the EV vector are held fixed, the

.i	 orientation of the Orbiter's relative position vector at SRM ignition time re-

,r	 mains constant and its magnitude is directly proportional to AV (the magnitude

of the EV vector). Therefore, variatio,i of AV has the effect of expanding or

contracting the outermost ellipse shown in Figure A-10, without changing its 'shape

or its orientation. This effect is illustrated in Figure A-11. The radial lines

emanating from the origin in Figure A-11 do not represent trajectories. Instead,

they represent the loci of trajectory end points (at the end of a 36-minute coast)

which can be attained by holding the direction of the velocity increment fixed
M

and varying its magnitude.

There are two characteristics of the Orbiter accessibility contours that

need to be emphasized. The first is that two distinct maxima exist when separation

0'r
A-22
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' 	 distance is considered as a function of the direction of the AV vector. One

maximum is achieved with an optimum AV application angle (measured as shown in

Figure A-11) of approximately 30 degrees, and the other at another optimum appli-

cation angle of approximately 210 degrees. The second characteristic, which is

particularly important with respect to the trajectory design problem, is that the

final position of the Orbiter (at SRM ignition time, of course) is relatively

insensitive to deviations on the order of 20 degrees or so away from either of

the two optimum directions.
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A.6. SELECTION OF NOMINAL LVLH SEPARATION TRAJECTORY

We have seen in the previous section that the overall trajectory design

problem divides itself naturally into two distinct chronological phases. During

the first phase (which is the subject of the main bode of this report), signifi-

cant distances are measured in feet and the Orbiter's body-fixed axes represent

the most pertinent system of reference. During the second phase, significant

j

	

	 distances are measured in miles and the LVLH axes originating at the position of

the upper stage represent the most pertinent system of reference. The velocity

increment {OV) produced by the Orbiter's main separation maneuver is the one

and only trajectory parameter that is of major significance in both phases*.

As so often is the case in trajectory design, the overall problem is most

easily solved by working backward through the chronological sequence of events.

Specifically, the question to be resolved now is: Where should the Orbiter be

located at the time of SR.M ignition? The answer will define the large-scale

LVLH trajectory, which will define the direction and magnitude of the main sep-

aration velocity increment, which then will become a major input to the detailed

design of the first (9-minute) phase of the separation sequence.

The magnitude of the separation velocity increment is roughly proportional

to the eaount of Orbiter propellant required to execute the separation sequence.

S

	

	 Therefore, minimization of AV is the primary criterion for selecting a nominal

LVLH trajectory, subject of course to the requirement for maneuvering the Orbiter

to a position outside the excessive-damage region for the stage type under con-

sideration, as defined approximately in Figures A-6 through A-9.

.40

	

	 Figure A-12 is presented as a graphical aid for discussing the factors which

relate to the selection of a nominal separation AV vector. It represents a super-

position of the Orbiter accessibility contours (previously shown in Figure A-11)

onto an extended region (the shaded area in Figure A-12) which is swept out when

*In this respect the current problem is similar to that of designing an inter-
planetary trajectory, where the hyperbol i c excess velocity vector v", (analogous to
OV) is the major interface parameter between the planetocentric and heliocentric
phases of flight.
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the appropriate excessive-damage contours* for the IUS are rotated bodily through

angles of 1 30 degrees about the origin of coordinates.

	

r	 There are two reasons that a range of possible upper-stage thrust directions

need to be considered. First of all, there is always the possibility that the

upper-stage guidance and control system could malfunction. Of course, in such

a case there is no reason to think that the error in thrust direction would be

limited to the 	 degree range represented in Figure A-12. However, in the event

of a malfunction it is reasonable to assume that small errors are more likely than

large ones. By mentally picturing the result of extending the range of variation

in thrust direction (beyond that shown in Figure A-12), it is readily apparent

that, for a given AV magnitude, the Orbiter will achieve the safest possible po-

sition if the AV is applied at an angle of approximately 30 degrees above the

	

'	 LVLH axis. This places the Orbiter near the vertex of the accessibility ellipse,

	

•	 in the upper right quadrant of figure A-1'. Assuming the nominal SRM thrust di-

rection is posigrade, and that the magnitude of the separation AV is approximately

75 feet per second, at this position the Orbiter would be safe from any IUS

orientation error of lesser magnitude than. about 130 degrees.

The second reason for considering a range of SRM thrust directions (as op-

posed to one single direction) has to do with SRM energy management and flight

ph a se standardization. Depending oil 	 weight of the payload and its destination,

si gnificant variations in the nominal thrust direction may be required from one

flight to another. Such variations are necessary in order to match upper stage

trajectory requirements with the fixed total impulse of the SRM. According to

Reference A-4, DOD payloads may require a flight-to-flight variation of '30 degrees

in the nominal pitch angle of the IIIS first-stage burn. Although for many specific

flights it might be acceptable (if the possibility of 
all

	 malfunction

could be ignored) to maneuver the Orbiter into the lower left quadrant of Figure

A-12, each case would have to be analyzed individually. In 'line with the concept

of standardization, it is deemed preferable to adopt a policy of always maneuvering

the Orbiter into the right hand quadrant (i.e., to a position above and behind the

Upper stage), thereby tending to minimize the requirement for flight-specific

analysis and training.

*Including window erosion (not shown in fi g ure A-9) in the forward quadrants
only. The reason for this is that, in the forward quadrants, the differences in
the Orbiter-relative velocity vector directions of aluminum oxide and carbon par-
ticles (see Figures A-4 and A-5) would make it difficult or impossible to shield

Orbiter windows from both erosion and breakage.
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As a nominal position for the Orbiter at SRM ignition time, the upper right

vertex of the accessibility ellipse offers not only the advantage of minimum

Orbiter propellant requirement with minimum sensitivity to SRM thrust direction,

but also minimum sensitivity to the direction of the separation velocity incre-

ment supplied by the Orbiter.	 This is extremely important because it affords a

significant relaxation of the Orbiter's attitude constraints during the initial

(9-minute) phase of the separation sequence. 	 By examining Figure A-12, it can

be seen that if the cited vertex is the Orbiter's target point, a deviation of
1

.4 20 degrees or so from the optimum EV direction (which is 30 degrees above the 	 a

LVLH X axis) does not produce a very great change in the Orbiter's position at

SRM ignition time.	 It can also be seen that, given precise execution of the

separation maneuver (and assuming again that an upper stage malfunction does not

; have to be allowed for), there is an acceptable -'3rget region in the lower left

quadrant which conceivably could be achieved with less propellant consumption

on the part of the Orbiter. 	 However, the accessibility ellipse is rather flat

Ar in this latter region, and a deviation of 20 degrees in the aV direction would

be intolerable.	 Aside from other implications, targeting to this region would

require the design of (and crew training for) probably at least twice as many

standard separation sequences as are defined in the main body of this report.

When the damage-potential contours for the SSUS-D and SSUS-A stage types

are subjected to the kind of analysis described in the preceding paragraphs, the

jconclusion is essentially the same as it was 	 in the case of the IUS, 	 viz:	 given

a 36-minute coast period, the optimum direction for the AV produced by the Orbiter's

major separation,.maneuver is approximately 30 degrees above the LVLH X axis. 	 The

' magnitude of the required separation velocity increment is on the order of 25

feet per second in the case of SSUS-D, 65 feet per second in the case of SSUS-A,

.^ and 75 feet per second in the case of IUS. 	 These figures are only approximate,

being subject to certain assumptions and possible extrapolation errors which are

discused in Section A.4. 	 Although the AV magnitudes may change as a result of
4

(1) more extensive surveys of the type reported in Reference A-1, 	 (2) more ac-

curate SRM exhaust models, or (3) 	 relaxation of the basic damage limitation criteria

in Table A-1, only a change in the available coast time (from the assumed value of

36 minutes)	 is likely to alter the conclusion regarding the optimum EVV direction.
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A.7. POSSIBLE RECONVERGENCE OF SRM EXHAUST PARTICLES

To date,	 in all	 of the numerical	 analyses of potential 	 damage to the Orbiter

from SRM exhaust particles, 	 it has been tacitly assumed that the particles would

continue to diverge indefinitely along linear trajectories after being expelled

from their source (the rocket motor). 	 This is a reasonable assumption in the

case of the smaller (aluminum oxide)	 particles ejected during a posigrade burn

' when the inertial	 velocity of the upper stage never exceeds that which is required

for a	 transfer to geosynchronous orbit altitude, because virtually all	 of the

particles are given inertial 	 velocities so small	 (see Figure A-4)	 that they are

bound	 to enter the atmosphere before completing a full 	 revolution in orbit.

However, some of the heavier particles will	 be given inertial	 velocities suf-

ficient to sustain them in orbit for several 	 revolutions	 (see Figure A-5), and

the same may be true of some aluminum oxide particles ejected during an inter-
,
x, planetary injection burn, or during a burn which 	 is directed at right angles to

the orbit plane.

The laws of orbital	 mechanics forbid the indefinite divergence of those par-

ticles which remain in orbit. 	 In the absence of perturbations due to aerodynam-

ics,	 gravitational	 harmonics, etc.,	 it is easily deduced	 that those particles

which remain in orbit must reconverge periodically whence they were ejected; 	 i.e.,

on the geocentric inertial 	 track which was traversed by the upper stage during

the SRM burn.	 Conceivably then,	 if on a subsequent orbital	 revolution the Orbiter

should happen to pass close enough to the inertial	 track of the SRM burn,	 it

y could be subjected to a significant flux of particles. 	 Recognizing the facts

that	 (1)	 perturbations will	 modify the particle orbits,	 (2) most of the particles

will	 not surv i ve	 their	 first perigee passage,	 and	 (3)	 not. all	 of the surviving
k

particles can reconverge simultaneously 	 (i.e.,	 that there musi be a continuous

variation of particle orbit periods), 	 it	 is	 clear that the flux at 	 a	 given

position relative to the SRM powered flight track would have to be much weaker

in such	 a case than	 it was	 during the primary period of concern 	 (i.e., during

and	 immediately after the time of the burn).	 However,	 it is also clear that in

such	 a	 case the flux would	 be bi-directional 	 (convergent/divergent), making 	 it

almost certain that the Orbiter windows would be subjected to it, no matter what

' the orientation of the Orbiter at the time.	 Given the tremendous potential	 of

the original	 flux for causing window breakage 	 (orders of magnitude g reater than

can be tolerated even at distances on the order of tens of miles from the SRM

,- powered flight path),	 the	 problem is	 not obviously negligible.
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There is one more aspect of the reconvergence problem that does seem to be

clear: aerodynamic drag will cause the particle orbits to decay. Therefore, in

the long term at least, the surviving particles should be expected to reconverge

at altitudes progressively lower than the track of the SRM burn. This is con-
y,

sidered to be another point in favor of maneuvering the Orbiter to a position

above (and behind) the upper stage at SRM ignition instead of below (and ahead

of) it. However, the most that can be said at the present is that this is be-

`	 lieved to be a relative advantage, and even if it does tend to minimize the

problem, it does not necessarily avoid it entirely.
s

It is not immediately obvious how a reliable numerical estimate of the delayed-

action potential for window breakage can be obtained, but is is a problem that

should be resolved.
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