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SUMMARY

A procedure for sizing an airframe for flutter-free performance is demon-

strated on a large, flexible supersonic transport aircraft. The procedure is

based on using a two level reduced basis or modal technique for reducing the

computational cost of performing the repetitive flutter analyses. The supersonic

transport aircraft exhibits complex dynamic behavior, has a well-known flutter

problem and requires a large finite element model to predict the vibratory and

flutter response.

Flutter-free designs are produced with small mass increases relative to

the wing structural weight and aircraft payload. In view of the ability of the

resizing procedure to handle this supersonic transport configuration, it seems

likely that the method could be used for many other aircraft.

INTRODUCTION

The design of aircraft to meet flutter criteria has received more attention

in recent years as larger, more flexible, higher performance aircraft are being

developed. The difficulties of intuitively modifying a given design to alleviate

a flutter problem are widely recognized, and thus considerable research has been

carried out to develop automated design procedures considering flutter con-

straints. A review of the work in this area to 1974 is presented in reference I.

The difficulties in developing efficient techniques for automated design

stem from the complexity of the flutter phenomenon and the computational cost

associated with predicting this behavior. Rs modifications are made to the

structure, the flutter behavior may change in a complex and highly nonlinear way.

Also, if the constraints against flutter are formulated simply as a requirement

that the lowest flutter speed exceed some required value, the values of the con-

straints may be discontinuous functions of the structural changes.

Solutions to the problems of the nonlinear, discontinuous behavior of the

flutter constraints and the high computational cost have been proposed. Refer-

ence 2 formulates the flutter constraints considering all critical points on all



flutter modes. This insures that the flutter constraints will not have discon-

tinuous values during the design process. However, formulating the constraints

in this way may increase the cost of the repetitive flutter calculations. To

alleviate the high cost of repetitive calculations, an approximate analysis

technique utilizing a reduced basis method is proposed in reference 3. This

technique provides a means for rapidly recalculating the flutter constraints

during the design process. The continuous constraint formulation and this

approximate analysis method are coupled in the flutter resizing system described

in reference 3. The performance of the system was demonstrated in reference 3

by application to a relatively simple problem--that of a clipped delta wing.

However, these techniques have not been applied to a problem with complex dynamic

behavior which requires a large mathematical model to predict flutter.

An example of such a complex flutter design problem is a very large and

flexible supersonic cruise transport with an arrow-wing. Reference 4 points to

the design of this class of aircraft to meet flutter requirements as a major

problem.

The purpose of the present study is to apply the flutter redesign techniques

described in reference 3 to this difficult problem of an arrow-wing transport.

Specifically, the objective is to take an airframe sized for strength consider-

ations only and produce a flutter-free design while minimizing the mass added to

the airframe. The geometrical and structural complexities of this airframe

suggest that a method shown successful for this case is likely to be general

enough to apply to many other airframe configurations.

This paper contains a description of the analytical model of the super-

sonic transport airframe. The resizing method is described in detail along with

its performance in the application to the supersonic transport. Finally, the

implementation of this flutter design procedure within a general engineering

analysis package which includes finite element structural analysis, data manage-

ment facilities, and a flexible control language is discussed.



SYMBOLS

[A], [A], [A] matrix of unsteady aerodynamic influence coefficients and

generalized aerodynamic force matrices of orders mI and

m2, respectively

G flutter constraint

g damping

gmax value of the assumed structural damping

gref a reference value of damping

[K], [K], [K] structural stiffness matrix and matrices of generalized

stiffness coefficients of orders mI and m2, respectively

M Mach number

[M], [M], [M] structural mass matrix and matrices of generalized mass

coefficients of orders mI and m2, respectively

m0 number of degrees of freedom in the finite element model

mI number of vibration modes used in reducing the order of the
approximate vibration problem

m2 number of approximate vibration modes used in reducing the
order of the flutter eigenvalue problem

n the number of design variables

q dynamic pressure, equation (9)

[q] mI x m2 matrix of approximate, generalized vibration mode
shapes for the modified structure

r factor in equation (I0)

[u] m2 x m2 matrix of generalized flutter mode shapes

V flutter speed
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V the required flutter speed
req

vi value of the it__hhdesign variable

w mass penalty added to meet the flutter requirements

[A] m0 x m0 matrix of natural vibration modes

[6] mI x mI matrix of generalized vibration mode shapes

_ diagonal matrix of vibration frequencies

diagonal matrix of flutter frequencies

[_] m0 x mI matrix of vibration mode shapes generated at the
beginning of each cycle

BASELINEANALYTICALMODEL

The finite element model of the arrow-wing supersonic transport configura-

tion used in this study is described in reference 5. Its basic characteristics

are given in this section. The flutter resizing procedure is applied to an air-

frame that has already been sized to satisfy static load requirements. The

static loading cases and the procedure for sizing the airframe for strength

criteria are described in references 5 and 6.

The essential information for the baseline configuration, shown in the

table of figure I, includes the take-off gross weight, operational empty weight,

and payload. The wing is built of corrugated web spars and ribs with caps

supporting honeycomb sandwich covers. Conventional stringer-skin-frame construc-

tion is used in the fuselage. Titanium is used throughout the primary structure.

Finite Element Model

The finite element model representation of this configuration and the

types of construction are shown in figure 2. In the finite element model, the

covers are simulated by membrane elements, spar and rib webs by shear panels,

and caps by rod elements. Beamelements are used to represent the engines, the

engine mounts, and the supports for leading- and trailing-edge devices. Plate
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elements are used to model the vertical fins and horizontal stabilizers.

Nonstructural components are represented by appropriate lumped and distributed

masses. For computational economy, the fuselage model is simplified to a rectan-

gular cross section thin-walled box with a bending stiffness and mass distribution

. equivalent to the fuselage. This simplification is consistent with the study's

emphasis on the primary wing structure; only elements in the wing structure are

resized. The resulting half airplane finite element model has 746 grid points,

2141 degrees of freedom, and 2369 finite elements.

Sizing for Strength Requirements

From the multitude of loading cases considered in the design of airframes,

three cases were selected for use in the strength sizing. The cruise case defines

the jig shape and accounts approximately for fatigue, the maneuver case generates

the largest wing root bending moment, and the taxi loads expose the wing lower

surface covers to compression. Cross sectional dimensions established in the

process of strength sizing include thicknesses of the face sheets of the wing

cover sandwich panels and thicknesses of the rib and spar webs, while the spar

and rib caps remained constant. A typical distribution of the wing cover thick-

nesses obtained in this manner and which constitute a starting design for the

subsequent flutter resizing are shown in figure 3.

Dynamic Behavior

Because of its large size and flexible wings the airframe exhibits a com-

plex vibratory behavior. This behavior is shown in deformed plots of the wing

planform for the four lowest vibration modes (fig. 4). Although the flexible

wing tip contributes most heavily to the modal deformation, there is considerable

coupling with the inboard delta-like portion of the wing and with the fuselage,

and a pronounced chordwise bending deformation which distinguishes the arrow-

wing's behavior from that of a conventional high-aspect-ratio wing.

Figure 5 shows the results of the flutter analysis for the airframe after

a strength sizing has been performed. It can be seen that the aircraft is

severely flutter deficient relative to the required flutter speeds at both Mach

o6 and .9. Previous studies have shown that these are the critical Mach numbers



for this aircraft and both are considered in the flutter resizing procedure.

The altitudes at which the flutter analyses are performed for these two Mach

numbers were selected to produce the required dynamic pressures to satisfy the

necessary margins on flutter speed relative to the flight envelope. They are

-2499 and 4267 meters, respectively, for the two Mach numbers. The horizontal

axes in the V-g plots of figure 5 are located at g = .02 which is the value of

structural damping assumed for the airframe. It is important to note that three

different flutter modes are close to the required flutter speed at both Mach .6

and .9. Thus, it is important for this application that the flutter resizing

procedure be able to handle multiple modes.

DESCRIPTIONOF THE FLUTTERRESIZINGMETHOD

The resizing method discussed here is essentially that of reference 3 with

several modifications. The principal ingredients of the method are an approxi-

mate flutter analysis using reduced basis techniques, the use of a general purpose

optimizer based on nonlinear mathematical programming, a continuous flutter con-

straint formulation, and a strategy for periodically recalculating the natural

vibration modes by solving the global eigenvalue problem. These topics are

discussed in the following sections. A summary of the steps in the resizing

procedure is also presented.

Reducing the Size of the Flutter Analysis Problem

For an airframe represented by a complex structural model, such as the

supersonic transport, a single flutter analysis can be computationally expensive.

This flutter analysis is often performed using a modal method where the lowest

natural vibration modes for the airframe are used as generalized coordinates to

reduce the dimensionality of the problem. The natural vibration modes are used

since a relatively small number frequently provides an accurate representation

of the structure's dynamic behavior. The two major steps in the modal flutter

analysis are: (I) calculation of a set of natural vibration modes for the

airframe and (2) solution of the complex flutter eigenvalue problem. The first

step is particularly expensive if there is a large number of degrees of freedom

in the structural model. The second step is expensive if the number of modes

used as generalized coordinates is large.

6



The cost of both of these steps must be considered in an automated design

procedure with flutter constraints. Each time the airframe is modified, the

flutter analysis is performed. Thus it is not computationally practical to

either calculate the natural vibration modes from the global eigenvalue problem

or to employ a large number of modes in the flutter eigenvalue problem in each

flutter analysis.

One approach to the problem of reducing the cost is to use natural vibra-

tion modes for the unmodified structure as generalized coordinates in solving

the flutter equations for the modified structure. The drawbacks of this approach

are that either a large number of modes are required in the flutter solution or

the natural modes must be regenerated fairly frequently by solving the global

eigenvalue problem.

To alleviate these drawbacks a method was proposed in reference 3 which

is based on using an approximate analysis to calculate the set of vibration modes

for use in the flutter calculations. This approximate analysis is based on a

modal approach (similar to that used in the solution of the flutter eigenvalue

problem) where the vibration modes for the modified structure are represented

by a linear combination of the natural modes from a previous solution of the

global, finite element equations. The participation factors in this linear

combination are determined by solving a small vibration problem of the order of

the number modes in the linear combination. This number of modes used as approxi-

mation functions is larger than the number of modes used in reducing the flutter

eigenvalue problem but is much smaller than the number of degrees of freedom in

in the finite element model. A much larger number of generalized degrees of

freedom can be used in the approximate vibration problem compared with the flut-

ter eigenvalue problem because the vibration problem is solved only once for

each modified structure. This approximate technique drastically cuts the cost

of the vibration analysis and provides a good set of approximate modes for the

flutter analysis. Whenthe structure changes significantly from the design

when the global vibration problem was previously solved, the accuracy of the

approximate modes may be unacceptable and a new set of modes must be calculated

from the global problem; however, this is required only a few times for a com-

plete design run.



The first step in the approximate flutter analysis is the solution of the

global vibration problem

[K] [A] = _2[M] [A] (I)

for the set of mI lowest modes and frequencies. The matrices [K], [M], and
[A] are of the order of the total number of degrees of freedom in the finite

element model. The set of lowest mI vibration modes is denoted [_]. Note

that the value of mI is significantly larger than the number of modes to be

used in solving the flutter eigenvalue problem, m2. Employing the trans-
formati on

[Z_] : [_] [6] (2)

the generalized stiffness, mass, and aerodynamic force matrices

[K] = [_]T[K] [_]

[_I]-- [_]T[M] [_] (3)

[A] = [_]T[A] [_]

and derivatives of the stiffness and mass matrices with respect to the design

variables

[Ki] = [_]T[aK/_vi] [_]

i = I, n (4)

[Mi ] = [_]T[_M/_vi] [_]

are formed. By virtue of equation (I), [K] and [M] are diagonal. The matrices

of aerodynamic influence coefficients, [A] in equation (4), can be calculated

for the different Mach numbers and reduced frequencies using any appropriate

unsteady aerodynamics theory. The generalized derivative matrices, [Ki ]linear,

and [Mi] are formed so that generalized stiffness and mass matrices for the
modified structure can be formed exactly and quickly by Taylor expansion. The

generalized matrices can be formed exactly by Taylor expansion because the mem-

brane finite elements used are linear functions of the design variables. For

given values of the design variables representing a modified structure designated

by j, the generalized matrices are



n

[Kj] : [K] + s [Ki]vii=l

(5)
n

" [r,lj] = [_I] + _ [Mi]vii=l

These generalized matrices form the reduced, approximate vibration problem

2 [_j] [_] (6)[Kj] [a] : Qj

Since this eigenvalue problem is only of order mI, the lowest m2 modes

can be calculated with very small cost. This set of m2, lowest, approximate
vibration modes is denoted [q]. Employing the transformation

[a] = [q] [u] (7)

the generalized stiffness mass, and aerodynamic force matrices of order m2

JRj] = [q]T[_j] [q]

[_j] = [q]T[_j] [q] (8)

[Aj] = [q]T[#] [q]

are computed for the modified structure. The complex flutter eigenvalue problem

[[ 2[_j] + (I + ig)(Kj] + q[_j]] [u] = [0] (9)

which is of order m2 can be solved to give values of velocity and damping for

the reduced frequencies and the flutter modes used in calculating the constraints.

In equation (9) m is the flutter frequency, g is a damping parameter, and q is
the dynamic presure.

The operations indicated in equations (5) through (9) are performed for

every modified structure in the design process. However, these operations are

relatively inexpensive. The operations indicated in equations (I) through (4)

are relatively costly but are performed only a few times during a design run.

Additional comments on the approximate vibration analysis are presented in

Appendix A.
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Formulation of the Flutter Constraints

The flutter constraint formulations of references 2 and 3 are designed

to prevent any flutter modes from violating the flutter requirements at any

point in the design process. As the airframe is resized, it is highly possible

that flutter modes which were not initially critical will become critical. These

flutter modes initially may have crossed the g = gmax axis at speeds higher
than the required speed or may not have crossed at all (this is the so-called

"hump" mode). The constraint formulation of references 2 and 3 considers both

cases.

In this study a modification was made to the constraint formulation of

reference 3 because of the different optimization algorithm used. A general pur-

pose optimizer, denoted CONMIN(ref. 7), based on a feasible directions method

was employed rather than the penalty function method of reference 3. In order

to permit deletion of unimportant constraints during the design process and

satisfy the requirements of CONMINregarding the ordering of constraints passed

to it, a cumulative constraint formulation was used.

This cumulative constraint is defined from the sketch of a typical V-g

diagram.

(gmax " g)( Vre_lGi - _ - 1 /gref V /

/ Gi = 0

g

gmax

I Gi = 0

Velocity

Gcum = r _ (Gi)2 (I0)i

I0



The values of Gi in the four regions of the V-g diagram are shown in the

sketch; a value of Gi > 0 indicates violation of the constraint. The parameter

gref is a reference value of damping and r is a constant multiplier discussed

below. The circles indicate typical V-g points at values of the reduced frequency

that contribute to the constraint. Constraints for other Mach numbers or alti-

tudes being considered are also summedin equation (I0). Thus the complete

flutter behavior of the aircraft is represented by the single constraint, equa-

tion (I0).

Equation (I0) is similar in form to an external penalty function formu-

lation where the penalty is zero in the feasible domain. When the external

penalty function is used in conjunction with unconstrained minimization techn-

iques, care must be taken in selection of r to avoid numerical difficulties.

Whenequation (I0) is used with the feasible directions algorithm, however, there

appears to be no problem selecting a very large value of r to force the values

of Gi toward zero. A typical value of r is I000 which is used throughout the
constrained minimization.

Strategy for Updating the Vibration Modes

As the design changes significantly from that when the global vibration

problem was previously solved, the approximate vibration analysis may become

unacceptably inaccurate. The global problem is then re-solved for this new,

modified structure. The difficulty is selecting the appropriate criterion

for returning to the global problem.

In reference 3, changes in the lowest natural vibration frequency are used

in a criterion to determine when to recalculate the complete set of vibration

modes. When the approximate frequency for the modified structure differs from

the previously calculated "exact" frequency, a new set of exact vibration modes

and frequencies are calculated. An advantage of this criterion is that it

attempts to directly measure differences in the vibration behavior between the

structure for which exact modes were calculated and the modified structure. A

disadvantage is that the first vibration mode and frequency may not be one of

the dominant ones in the flutter analysis; this is the case for certain flutter

conditions of the supersonic transport model. Other, more rigorous strategies

II



involving all frequencies and/or modes are possible but these have not been

investigated and would be more costly computationally.

In this application, the indirect approach of controlling the accuracy

of the approximate analysis by specifying "move limits" on the design variables

is used. This approach was used successfully in reference 8 and has the advan-

tage of being easy to implement. Since a single design variable controls a

number of individual elements and since the design variables are panel thickness

additions, the move limits are related to the thickest panel in each design

variable region. The upper and lower values for a particular design variable

are a certain percentage above and below the thickness of this specified panel.

A minimum gage requirement of zero is also placed on the lower value which

specifies that no reductions of the thicknesses in the strength-sized design

are allowed. These values are supplied to the optimizer which performs a com-

plete minimization based on these bounds. The process of solving the global

vibration problem, prescribing move limits, and performing a complete minimiza-

tion of the mass is called a cycle.

As the design procedure moves from cycle to cycle, the move limit percen-

tage is reduced by a prescribed factor. The approach is to start with relatively

liberal move limits and then tighten the range of the approximate analysis near

the final design. Both the initial percentage and the reduction factor are

determined by experimentation with a particular problem.

Summaryof Steps in the Flutter Resizing Procedure

The resizing procedure is outlined in the flow chart in figure 6. The

operations in each of the steps of tile flow chart are as follows:

I. Select the group of structural parameters controlled by each

design variable. In the application reported here, the design

procedure is being applied to a structure already sized for

strength considerations and the design variables are thickness

additions to cover panels on the upper and lower surfaces of the

wing. To reduce the number of the design variables considered,

the thickness additions to a number of adjacent finite elements

are controlled by a single design variable.
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2. Compute the derivatives of the mass with respect to the design

variables

wi = _w/_v i , i = I, n

Since the design variables are thicknesses, the wi are indepen-
dent of the values of the design variables and are computed only

once.

3. Form the mode independent aerodynamic force coefficients at the

different Mach numbers being considered for a specific set of

reduced frequencies for the important lifting surfaces (both the

wing and tail are considered in this study). These coefficients

depend only on Mach number, reduced frequency, and surface geometry

which is not changed during redesign. Thus, these coefficients are

calculated only once. The aerodynamic calculations are based on

the kernel function method for subsonic flow and the computer

implementation described in reference 8. These aerodynamic coef-

ficients are denoted [A].

4. Form the global finite element stiffness and mass matrices based

on the current values of the design variables.

5. From the global equations, calculate a set of mI natural vibration

modes and frequencies. The number of modes, mI, should be signifi-
cantly larger than the number of modes finally used in the flutter

calculations. This set of mI modes is denoted [@].

6. Form the generalized stiffness and mass matrices of order m1
(eq. 3) and their derivatives with respect to the design variables

(eq. 4).

7. Form the matrix of generalized aerodynamic forces using the set of

mI natural vibration modes. The modal deflections at the
structural node points are interpolated using spline functions to

the aerodynamic collocation points. This matrix is denoted [A]

(eq. 3).
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8. Based on the current values of the design variables and the move

limit factor, determine the upper and lower move limits for each

design variable.

9. For given values of the design variables, vi, compute the mass
penalty and the generalized stiffness and mass matrices by Taylor

expansion (eq. 5). The mass penalty is

n

• = z wi viwj i =1

I0. Solve the reduced eigenvalue problem of order mI (eq. 6)

for a set of m2 vibration modes and frequencies (m2< ml).

These are approximations to the lowest m2 vibration modes for the
modified structure.

II. Compute generalized stiffness, mass, and aerodynamic matrices of

order m2 (eq. 8). Note that [K] and [M] are always diagonal
and this fact can be exploited in the flutter eigensolution method.

12. Solve the complex flutter eigenvalue problem (eq. 9) at the Mach

numbers and altitudes being considered. Constraints and possibly

derivatives of the constraints with respect to the design variables

(depending on the request by the optimizer) are calculated for any

critical points on the V-g diagram.

13. Execute the optimizer which determines a new set of design variables

and requests an analysis for this design or indicates that a minimum

mass has been found. If a minimum has not been found, go back to

step 9 and continue; otherwise, go to Step 14.

14. If the maximumnumber of cycles has not been reached, go to step 4

to update the mI vibration mode set by solving the global equations.

At this time the factor specifying the move limits on the design

variables is reduced by the specified percentage. The maximum

number of cycles is predetermined based on the character of the

problem and the cost of solving the global eigenvalue problem. The

maximumnumber of cycles is typically from 3 to I0.
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15. Perform a calculation of vibration modes and flutter speeds for the

final design to insure that the flutter requirements are met.

The implementation of the above procedure in a general purpose engineering

analysis system is discussed in Appendix B.

APPLICATIONAND RESULTS

A number of numerical studies have been performed to demonstrate the

application of the previously described flutter resizing method to a supersonic

transport configuration. Mass penalties, values of the design variables, and

V-g diagrams for the final designs are presented to characterize the flutter-

free aircraft. Design iteration histories for both the mass penalty and key

design variables are presented to show the behavior of the method.

Determination of the Numbers of Modes

The two key parameters of the resizing method which must be selected are:

(I) m2, the number of modes used in the V-g flutter analysis and (2) mI, the
number of modes used in the approximate vibration analysis. A convergence study

was performed using the strength-sized aircraft to determine how the number of

modes used affects the calculated flutter speeds. The results of this study for

both Mach .6 and .9 are shown in figure 7. After considering the computational

cost of calculating the flutter constraints during the design process, the value

of m2 = 12 was selected. As can be seen from figure 7, flutter analysis with
12 modes results in a flutter speed that is approximately 5% high at both Mach

numbers. To counteract this unconservative analysis a modification factor, fv'

is used to increase the required flutter speed, Vreq, used in calculating the
flutter constraints. Even though the error between the 12 mode flutter solution

and the converged solution is not constant during the design process, the initial

error provides a guideline for selecting fv"

The constant mI should be considerably larger than m2 but small enough

so that the calculation of mI vibration modes from the global equations is

computationally practical. Another factor which limits the size of mI is the

cost of computing the generalized matrices (operations indicated in equations 3
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and 4). Although mI is also the order of the reduced free vibration problem
(equation 6), the cost of solving this eigenproblem is negligible relative to the

above operations. Based on these considerations mI was selected to be 24. This
number of modes is also used in the flutter analysis of the final design which

is performed only once. For this application, the computational cost reductions

are achieved specifically by reducing the dimensionality of the problem from 2141

degrees of freedom in the global equations, to 24 degrees of freedom in the

reduced vibration problem, to 12 degrees of freedom in the flutter eigenvalue

problem.

Definition of the Design Variables

The flutter resizing procedure begins from a design sized for strength

considerations. This strength-sized design was produced with the thickness of

each individual finite element (both membranewing skins and shear panel spar

and rib webs) controlled by a design variable. This large number of design vari-

ables is not practical in the flutter resizing procedure. Only the wing cover

skin thicknesses are changed during flutter resizing and a number of finite ele-

ments are controlled by a single design variable.

Each design variable represents a thickness addition to all elements in

that particular region. Thus the material added to the strength-sized wing can

be considered as a series of "patches" made to prevent flutter.

Two different sets of design variable regions were considered in this

study; both sets are shown in figure 8. In set I, each design variable controls

skin thicknesses on both the upper and lower wing surfaces. In set II, the

skins on the lower wing surface are controlled by design variables different

from those on the upper surfaces; the layouts of the regions on upper and lower

surfaces, as can be seen in figure 8, are identical. In design variable set I

there are 12 variables or regions, in set II there are 24 variables. The purpose

of the two sets of design variables originated from a consideration of the

initial, strength-sized design. The upper and lower wing cover panels tend to

be designed by different load cases; for the upper panels, the maneuver case is

the most important and for the lower panels, the taxi load case is the most

severe. The result is that after sizing for strength considerations, the upper
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and lower skin thickness distributions are asymmetric. If the optimizer had the

freedom to increase the skin thicknesses of upper and lower panels independently,

a more symmetric design might be achieved. The intuition that a more efficient

design for meeting the flutter requirements would result from making the wing

- skins more symmetric is based on the higher overall bending stiffness achieved.

- Number of Design Cycles

Since each cycle requires re-solving the global eigenvalue problem, it is

important to keep the number of cycles small. It is possible for a very large

and complex model, that calculation of vibration modes and frequencies more than

once might be impractical. To assess the potential of the method for handling

this case, two of the four design studies were performed using only a single

cycle. The modification factor, fv' was used to account for any discrepancies
between the approximate analysis in the design process and the final analysis.

Somenumerical experimentation was required to select fv but after the appropriate
value was determined, correlation between the approximate flutter speeds and

those from the final analysis was excellent.

Design studies using a total of five resizing cycles and controlled move

limits were also carried out. Results from these studies are compared with

results from a single cycle in subsequent sections.

Final Resized, Flutter-Free Designs

The results of four design cases are presented in this section. The

four cases are:

A - resizing with the 12 design variable set (I) and only a single

cycle.

B - resizing with the 24 design variable set (II) and only a single

° cycle.

C - resizing with the 12 design variable set and five cycles.

D - resizing with the 24 design variable set and five cycles.
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The values of the design variables and the mass penalties for each of the

four designs are shown in figure 9. The mass penalty represents the amount of

material added to the total airframe to prevent flutter. In all four designs

the upper and lower skins in the tip portion of the wing have been thickened

considerably. Material added in this area can act both as a "balancing mass"

and to stiffen this flexible tip. Since this portion of the wing is nearly

symmetric after strength-sizing, nearly equal additions were made to upper and

lower skins. Large thickness additions have also been made between the tip

and delta portions of the wing, the region controlled by design variables 5 and

17. In this region the upper and lower wing skins are highly asymmetric after

strength-sizing. For design cases B and D, considerably more material is added

to the lower skin to produce a more symmetric design. The wing region controlled

by design variables I0 and 22 is consistently thickened in all flutter-resized

designs even though it is a considerable distance from the more flexible area of

the wing. However, the wing carry-through structure is located near this region.

A structural modification of this type might easily be overlooked using intuitive

techniques for resizing the wing to prevent flutter.

The mass penalties associated with the four designs are as expected.

Design case A has by far the largest mass penalty but it was produced with the

crudest analysis (a single design cycle) and considered only 12 design variables.

Improving the design procedure by including more refined analyses (cases C and D)

or additional design variables (cases B and D) lowers the mass penalty. The

lightest flutter-free design, case D, has a mass penalty which is only 7% of the

wing structural mass and 6.4% of the aircraft's payload. This illustrates the

modest size of the mass penalties added by the design procedure.

Figure I0 shows a set of skin thickness contours for the upper and lower

wing skins for the final flutter-resized design (case D). Comparison with figure

3 shows the relatively subtle changes made to the skin thickness distribution.

Table I compares the values of the lowest natural vibration frequencies of

the strenth-sized airframe with those of the flutter-resized airframe. Even

though 20% increases in the flutter speeds have resulted from resizing, the

changes in the vibration frequencies are fairly small. The change in the first

natural frequency, which is used as a mode update criteria in reference 3, is

only I%.
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Figure II shows the V-g diagrams for the flutter-resized design (case D)

at Mach .6 and .9. As mentioned previously, two flutter modes are important at

both F1achnumbers for the strength-sized design, The resizing procedure has

driven the design in a direction such that at both Mach numbers, both modes are

. nearly critical. This is perfectly consistent with the engineer's intuitive

philosophy that simultaneous failure in multiple modes often accompanies a

minimum mass design. It also clearly demonstrates that the resizing procedure

can effectively account for multiple critical flutter modes.

To gain additional insight into the behavior of the flutter-resizing pro-

cess, design histories of the mass penalty and selected design variables are

shown in figure 12. The mass penalty and the design variables are plotted versus

the iteration number where an iteration is defined in the feasible directions

algorithm as a single linear minimization in a specified direction in the design

space. Histories of the mass penalties are presented for all four design cases;

histories of selected design variables are presented for design case D. The flat

portions of the design variable histories indicate where a particular design

variable reaches a move limit (upper bound) in a particular cycle. With only

one design cycle, the design variables have no move limits and the optimizer

drives the design quickly to a high mass in order to produce an acceptable

(flutter-free) design. It then quickly reduces the mass to achieve the minimum

mass design for this case. With five design cycles and move limits on the design

variables, the optimizer is not allowed to make these very large changes in the

structure early in the design process. For these designs (cases C and D) the

mass penalty is increased to only a moderate value and then slowly decreased to

the minimum value.
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CONCLUDINGREMARKS

A procedure for sizing an airframe for flutter-free performance has been

demonstrated on a large, flexible supersonic transport aircraft. The procedure

is substantially that of reference 3 and is based on using reduced basis or modal

techniques for reducing the computational cost of performing flutter analyses.

This supersonic transport aircraft exhibits complex dynamic behavior, has a well-

known flutter problem and requires a large finite element model to predict vibra-

tory and flutter response; thus, resizing this airframe to alleviate flutter

is a very difficult problem.

From the numerical design studies made it is possible to draw the following

conclusions:

I. Flutter-free designs of the aircraft with small mass penalties have

been produced. For case D, the mass penalty is only 7% of the wing

structural mass and 6%of the aircraft's payload.

2. The two level modal analysis drastically reduces the cost of the

repetitive flutter calculations and makes resizing using the complex
finite element model feasible.

3. Execution of the resizing procedure with only a single solution of the

finite element vibration problem and using a modification factor on the

required flutter speed produced a design with a moderately small mass

penalty. For case B, the mass penalty is only 9% of the wing structural

mass and 8%of the payload.

4. The procedure can effectively handle multiple flutter modes as evi-

denced by the final designs having two modes simultaneously critical.

5. In view of the ability of the resizing procedure to consider the com-

plex dynamic behavior of this airframe and produce a flutter free design

with only a small mass penalty, it seems likely that the method could be

used for many other aircraft.
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APPENDIXA

COMMENTSONTHEMETHODSFORAPPROXIMATE

AND REFINEDVIBRATIONANALYSIS

In this appendix the approximate vibration reanalysis technique used in the

procedure described herein is shown to be a subset of the technique used for

solving the global finite element eigenvalue problem. Features of the global

finite element eigensolution technique which are important when the method is

used for reanalysis are described.

The technique used for solving the global eigenvalue problem is known as

simultaneous inverse iteration or the subspace iteration method (ref. I0). In

this method the desired eigenvectors are represented as a linear combination of

shapes

[X] = [r] [x] (AI)

where [X] is the matrix of eigenvectors, [F] is the matrix of shape vectors and

[x] is the matrix of generaized eigenvectors. This approximation for [X] is sub-

stituted for [A] in the global eigenvalue problem, equation (I), to form a reduced

eigenvalue problem

[K] [x] = _2[_] [x] (A2)

which can be solved inexpensively for the generalized eigenvectors [x]. The

eigenvectors, [X], which are an approximate solution to the global eigenproblem

can be computed from equation (AI). To refine this approximate solution, simul-

taneous inverse iteration is performed on the global eigenvalue problem using

[X], and a new matrix [r] is produced. Equation (A2) can then be solved for a

new, more accurate set of generalized eigenvectors [x]. The process is repeated

until the required accuracy is attained; this constitutes the refined analysis.

It can be seen that the operations indicated by equations (AI) and (A2)

are identical to the operations in the approximate vibration analysis (equations

2 and 6). Thus, the approximate vibration analysis is equivalent to one step in

the subspace iteration method without the operation of simultaneous inverse
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iteration (i.e., calculating a new matrix [F]).

In both the approximate vibration analysis and the refined, global vibra-

tion analysis, the eigenvectors, [X], can be calculated accurately from equation

(AI) when [F] is a close approximation to [X]. This is the case when the

structure is modified only slightly from the point where the previous refined

vibration analysis was performed. At the beginning of a cycle (other than the

first) in the design process, the global finite element vibration problem for

the modified structure is solved by the subspace iteration method previously

described. However, an excellent matrix of shape vectors [F] is available from

the previously calculated eigenvectors. Using the old eigenvectors as initial

approximations, it typically requires only 2 or 3 iterations of the subspace

technique to calculate the new modes to the required accuracy compared with I0

to 15 iterations initially. Thus, each new solution of the global vibration

problem is performed for significantly less cost than the initial solution.
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APPENDIXB

COMPUTERIMPLEMENTATIONOF THE RESIZING PROCEDURE

- The resizing procedure is implemented within the EAL (Engineering Analysis

Language) system (ref. II) which is a derivative of the SPARstructural analysis

system (ref. 12). In addition, computational modules from the PARSflutter

resizing procedure (refs. 3 and 13) and the general purpose optimizer, CONMIN,

(ref. 7) were added to the EAL system. The flexible design of EAL, which

includes extensive facilities for data management and procedure control, allows

implementation of general engineering computational tasks. This can be done by

using available computational modules within EAL or by adding additional modules

to be executed under EAL control. Both features were utilized in designing the

flutter resizing procedure used in this study.

The EAL system and its predecessor, SPAR, are composed of a number of

essentially independent computational modules (called processors) which communi-

cate with each other through a global data base. Any block of data can be

accessed by name from any processor in the system. Someprocessors perform

fairly specific tasks such as factoring a global stiffness matrix; however, other

processors are designed to perform such general tasks as adding two matrices or

printing a particular block of data. The user has a considerable amount of con-

trol over both classes of processors by determining the order of their execution

and the particular data operated on by them. This allows sequences of EAL com-

mands to be written to perform complicated engineering tasks.

PARSprocessors for design variabledefinition, calculation of unsteady

aerodynamic loads, solution of the reduced vibration problem, and calculation of

the continuous flutter constraints and their derivatives were added to EAL. The

addition of the PARScomputational modules to EALwas fairly straight forward

since the PARSmodules were originally designed as SPARcompatible processors.

That is, they were designed to retrieve and store data in the SPARdata base.

All data transfer between original EAL processors and the new processors from

PARSis through the data base. Any incompatibilities between the data require-

ments of the different processors were solved with simple utilities provided in
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EAL for reformatting of data blocks.

The advantage of imbedding the PARSprocessors and the CONMINoptimizer

in EAL is that it allows use of all EAL capabilities for control of the procedure

flow. EAL commandsare provided for looping through sequences of commands,

controlled branching in the commandstream and the execution of independent

blocks of commandswhich are similar to FORTRANsubroutines. The approximate

analysis loop and the strategy for vibration mode updating are easily implemented

using EAL control commands.

Having the control commandsand the data management facilities available

to the user makes it an easy task not just to design and implement a particular

engineering analysis but to quickly modify it. This allowed considerable experi-

mentation in the flutter resizing procedure without making any changes to the

lower-level FORTRANcode in the processors themselves.

24



REFERENCES

I. Stroud, W. Jefferson: Automated Structural Design with Aeroelastic

Constraints: A Review and Assessment of the State of the Art. Presented

at the ASMESymposium on Structural Optimization, L. A. Schmit, Jr., ed.

AMD, Vol. 7, ASME, 1974, pp. 77-118.

2. McCullers, L. A. and Lynch, R. W.: Dynamic Characteristics of Advanced

Filamentary Composite Structures, Volume II - Aeroelastic Synthesis

Procedure Development. AFFDL-TR-73-111, Volume II, September 1974.

3. Haftka, R. T. and Prasad, B.: Programs for Analysis and Resizing of

Complex Structures. Presented at Symposium on Future Trends in Compu-

terized Structural Analysis and Synthesis, Washington, DC, October 30-

November I, 1978. Proceedings entitled "Trends in Computerized

Structural Analysis and Synthesis," PergamonPress, New York, 1978,

pp. 323-330.

4. Cooper, Paul A. and Heldenfels, Richard R.: The NASAStructures and

Materials Research Program for Supersonic CruiseAircraft. Astronautics

and Aeronautics, May 1976, pp. 26-37.

5. Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.;

and Greene, W.: Supersonic Cruise Research Aircraft Structural Studies:

Methods and Results. 1979 Supersonic Cruise Research Conference,

NASALaRC, Hampton, Virginia, November 1979, NASACP-2108, pp. 617-656.

6. Sobieszczanski, J.: Sizing of Complex Structures by the Integration of

Several Optimal Design Algorithms. AGARDLecture Series No. 70 on

Structural Optimization, AGARD-LS-70, September 1974.

7. Vanderplaats, G. N.: CONMIN- A Fortran Program for Constrained

Function Minimization, Users Manual. NASATMX-62282, 1973.

25



8. Stroud, W. Jefferson; Agranoff, Nancy; and Anderson, Melvin S.: Minimum-

Mass Design of Filamentary Composite Panels Under Combined Loads:

Design Procedure Based on a Rigorous Buckling Analysis. NASATN D-8417,

July 1977.

9. Desmarais, Robert N.; and Bennett, Robert M.: User's Guide for a Modular

Flutter Analysis Software System (FAST Version 1.0); NASATM-78720,

May 1978.

I0. Bathe, J. and Wilson, E. L.: Numerical Methods in Finite Element

Analysis. Prentice Hall, 1976.

II. Whetstone, W. D.: Engineering Data Management and Structure of Program

Functions in NewTechniques in Structural Analysis by Compute (Compiled

by R. J. Melosh and M. Salana) ASCEPreprint 3601, ASCEConvention and

Exposition, Boston, Mass., 1979.

12. Whetstone, W. Do: SPARStructural Analysis System Reference Manual -

System Level 13A, Volume I - Program Execution, NASACR-158970-I, 1978.

13. Haftka, R. T.; Prasad, B.; and Tsach, LI.: PARS- Programs for Analysis

and Resizing of Structures - User Manual. NASACR-159007, April 1979.

26



TABLE I. - COMPARISONBETWEENTHE LOWESTELASTIC
NATURALFREQUENCIES(Hz) OF THE STRENGTH-SIZEDAND FLUTTER-RESIZED

(CASE D) AIRCRAFT

Strength Sized Case D %Change

1.136 1.148 1.0

1.372 1.378 .4

2.146 2.269 5.4

2.723 2.780 2.1

3,272 3.460 5.4

3.813 4.973 4.0

4.453 4.997 10.9

5.248 5.276 .5

5.624 5.652 .5
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TAKE-OFFGROSSWEIGHT 311163kg (686000 Ib)
OPERATIONEMPTYWEIGHT 130618kg (287965Ib)
PAYLOAD 25880kg (57057Ib)
LENGTH 93 m (305ft)
SPAN 39 m (127ft)
CRUISESPEED tvl= 2.7

Figure I.- Basic characteristics of the arrow wing supersonic cruise vehicle.



Figure 2.- Finite-element model with details of the wing construction.
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Figure 3.- Skin thickness contours of the wing cover panels for the strength-sized airframe.



= I. 14 Hz w = I. 37Hz

w = 2.15 Hz w = 2.72 Hz

Figure 4.- The lowest elastic natural vibration modes for the strength-sized airframe.
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Figure I0.- Skin thickness contours of the wing cover panels for the airframe resized to
meet flutter requirements (case D).
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