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ABSTRACT Some interésting and useful research has

A statistical model of spatial context
is described and procedures for classifying
remote sensing data using a context classi-
fier are outlined. Experimental results
are presented. Because the computational
requirements of the context classifier are
very large, its implementation on parallel/
pipelined multiprocessor systems is being
investigated. Some of the special consider-
ations necessary for such implementations
are described, with particular reference to
implementation on an array of Control Data
Corporation Flexible Processors.

I. INTRODUCTION

For more than a decade, efforts to
extract information from multispectral
remote sensing image data have proved
increasingly successful. To a large extent,
these efforts have focused on the applica-
tion of pattern recognition techniques to
the multispectral measurements made on
individual ground resolution elements; i.e.,
gscenes have been classified pixel-by-pixel
based on the measurement vectors associated
with the individual pixels!. Progress has
been achieved through development of
increasingly sophisticated methods for ex-
tracting information from the spectral do-
main to characterize the classes of inter-
est.

However, there are many applications
for which the classes of interest can be
better characterized if the spatial infor-
mation in the remote sensing data is
utilized in addition to the spectral
measurements. Characteristic spatial
features include, for example, shape,
texture, and structural relationships.

This work was sponsoraed in part by the
National Aeronautics and Space Administra-
tion under Contract NAS9-15466.

1979 Machine Processing of Remoiely Sensed Data Symposium
CH1430-8/79/0000-0343$00.75 © 1979 IEEE

been accomplished in recant years in the
direction of incorporating spatial informa-
tion into the data analysis process?+%,%,

One way to approach spatial information
in image data is to recognize that the e
ground cover associated with a given pixel,
i.e., its "class," is not independent of

the classes of its neighboring pixels.

Stated in terms of a statistical classifica
tion framework, we may have a better chance

of correctly classifying a given pixel if

we take account of not only the spectral
measurements associated with the pixel

itself but of the measurements and/or
classifications of its "neighbors" as well.
Notice that at some point we must make

clear how "neighborhood" is to be defined.

If the objects in the scene tend to be
rather large relative to the resolution of
the sensor, i.e., each object is likely to
consist of many spectrally similar pixels,
this fact can be exploited nicely by apply-
ing a combination of scene segmentation
techniques and sample classification (some~
times called "per-field" classification)®.
More generally, the image can be considered
a two-dimensional random process and the
characteristics of this process incorpora-
ted into the classificatior strateyy. This
is the objective of the approach described
here, in which a form of compound decision
theory is employed to improve scene classi-
fication through use of a statistical
characterization of context. Our work is
an extension of an idea by Welch et. al.®

As increasingly complex forms of data
and data analysis methods are employed,
the computational requirements tend to
become more demanding. Although improve-
ment in the raw speed of digital computer
components can be exploited to some extent
to meet these requirements, it is clear
that evolving computer architectures,
espacially those invelving multiple proc~
essing elements, have much to offer. The
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context classifier described here has com-
putational requirements which are severe and
bacome more 30 as the mize of the contextual
neighborhood is expanded., It is a natural
candidate, thersfore, for multiprocessor
implementation,

II. THE CONTEXT CLASSIFIER

The image data to be classified i
assumed to be a two-dimensional N3 x N§
array of multivariate pixels. Associated
with the pixel at "row i" and “column j* is
the multivariate measurument vector Xiy ¢ RP
and the true state or class of the pixel eij
€ 2= {wy, vess upls The measurements have
class-conditional densities p(X|wy), 4 = 1,
2, s.0, M, and are assumed to be class-
conditionally independent, The objective
is to classify the N = N; X N, observations
in the array.

The action (classification) determined
by the classifier for pixel (i, 3) is
denoted by a;4 £ ., To pursue a Bayesian
(minimum ris ?rltrateqy s let the loss
incurred by taking action aj4 when the true
class is Big be daenoted by ?ei ' nij) for
some fixed fon~hegative functioh L(+; *),
The average loss incurred over the N classi-
fications in the array is defined to be

Loy oy, a0, (1)
N gLy DOsyr 24y

In the most general case, the action aig
may depend on all of the ohservations
the array. Let X denote this "vector of
vectors"; then the expected loss is

R(X) = EI-{% Iy Moy “ij(?-‘-”‘l
13 ’

L

(2)
' = % izj E[L(eij, ﬂij(ﬁ))]

and we would like to have a decision rule
(the rule of choosing a‘g hased on X)

which minimizes R(X). § te that the expec~
tatiqn is with respect to 6i4.

When context is ignored, the action
(classification) depends only on the
measurement vector Xj4 of the pixel to be
classified, in which gase aj(X) = agy(Xy4).
For our present purposes, however, we wan
to incorporate some neighborhood information
in the decision process, so we define a
neighborhood, the "context," consisting of
an arrangement of p pixels such as shown in
Figure 1, The arrangement actually used
will be based on physical and other practi-
cal considerations related to the environ=-

ment and application., Let gii be a p-vector
of measuremant vectors associlited with

pixel (i, J) to be classified and let 844

bs the corresponding p-vector of actual
classes. The function aij(gga) maps
p-vactors of cbservations™ intd single
classes (i.e,, classifies pixel (i, 3J)

based on Xj4). The expected loss over the
full array is

Furthermore, if L(+, *) is taken to ba the
0-1 loss function (no loss for a correct
classification, unit loss for an error) and
the measurements in a neighborhood are
assumsd to he class-conditionally independ-
ent, it can be shown that Eq. (3) will be
minimized if every pixel is classified
(action a is selected) so as to maximize

| 4
) I n :cxle;] cPrg, ) )
sy € | gmy TS 13

where 0j and Xy are the class and measure-
ment of the itﬁ pixel in the p-array (in
any convenient order), £(X|6) is the class~
conditional density of X, and GP(8;4) =
GP(81, 82+ +s0es Op), which ideally fhust be
known for the type of scene to be classi~
fied, but in practice must usually bhe
estimated from an accurately classified
sample of the scene or from an analogous
scene of known classification.

An experiment was formulated to
investigate the extent to which this
classifier model can utilize contextual
information in satellite-gathered remote
sensing data. In order to avoid confounding
other effects with the impact of context,
it was decided to use a simulated data set
generated as follows. A classification of
multispectral remote sensing data was
selected which had been judged to be vaery
accurate (typically, produced by careful
analysis and refinement of multitemporal
data)., Such a classification could be
expacted to embody the contextual content
of an actual yground scene. Based on the
classification map and using the associated
statistics of the classes (developed in
producing the classification) data vectors
were produced by a Gaussian random number
generator and composed into a new data set.
Thi:: the new data set had the following
chayacteristics:

1, Each pixel in the simulated
data set represented the
same class as in the "template"”
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classification. The tonglneo
oould be considered the “ground
trutk* for the new data set.

2. All classes in the data set
ware known and represented,

3., All classes had multivariate
Gaussian distributions with
statistios ioal of those
found in real data,

4. All pixels were class-condi-
tionally indogcndont of
adjacent pixels.

5., Thara wers no mixture pixels,

Although the simulated data ‘.. somevhat
of an idealization of “real® remo-u sensing,
its spatial organization is conals‘ant with
a real world scene and its overall character-
istics are consistent with the context model
set out above. In essence, then, what the
sxperimental results based on the simulated
dats show is the effectiveness of the con-
text classifier given that the underlying
assuwptions are reasonable, PFurther experi-
ments are rejuired to generalize the conclu=-
sions of thesa results £o real data.

Three data sets were selacted to repre~
sent a variety of ground cover typas and
textures. Data set 1 is agricultural
{(Williston, North Dakota), with ground
resolution and spectral bands appro:imating
those of the projected Landsat D Thematic
Mappsy, Data set 2a is Landsat 1 data from
an urban area (Grand Ripids, Michigan).,

Data met 2b is from the same Landsat frame
as 2a, but from a locale having signifi-
cantly different spatial organization. Each
data set is square, 50 pixels on a side.

Pigure 2 shows the achieved classifi-
cation results., The "no context" classifi-
cation accuracy is plotted coincident with
the vertical axis of each graph. Data set
1 was classified using successively 2, 4, 6
and 8 neighboring pixels; data sets 2a and
2b were classified using 2, 4, and 8
neighboring pixels. The results speak for
themsalves. The accuracy improvement
resulting from the use of contextual infor~
mation is quite significant.

For this experiment, the context dis-
tribution GP(6;4) was simply tabulated from
the "template™ classification. But in a
real data situation, such a template is not
available (else there would be no need to
perform any further classification). One
can eanvision a number of ways in which the
p=vector distribution might be estimated for
a remote sensing application. For example,
it could be extracted from a classification
of the same area obtainrd previously. This

would require that the area not have
changed too greatly in its class make=up
since the earlier data were collected and
that the earlier classification was reason-
ably accurate. Or, the distribution might
be obtained from a classification of an
similarly constituted area. 8Still another
posaibil t{ would be to estimate the
p-vector distribution for the context clas-
sification from a “conventional" classifica-
tion with "reasonably good" acouracy., All
of these methods produce an a!eiungi of the
pevector distribution, and a"erucial ques~
tion on whioh hingss the utility of this
approach is how sensitive the contextual
algorithm is likely to be to the "goodness"
of the estimate. This question is the
subject of ongoing research,

An experiment was formulated to obtain
some avidence concerning the feasibility of
applying the context classifier to a real
data situation. The data set used covered
a somewhat larger area of Grand Rapids,
Michigan, containing both data sets 2a and
2b. Data from small areas of known ground
cover were used to estimate the trainin
class statistios, and data from a disjoint
set of areas of known ground cover ware
usad as "test samples” to evaluate the
classifier accuracy (unfortunately, the set
used for this test was rather small,
consisting of only 136 pixels distributed
among 4 urban classes).

A non~contextual classification was
performed and found, based on the test set,
to be 8).6 pesrcent accurate. The p-vector
distributions were estimated from this
classification and used to perform contex-
tual classifications using four and eight
nearest neighbors. The four=neighbor
classification was 83.1 percent accurate;
the eight-neighbor classification was 84.6
percent accurate, For this case, then,
some improvement in classification accuracy
was achieved by incorporating context in
the decision process, although the improve~
ment was not as dramatic as for the simu-
lated data sets. Whether this is due to
poor estimation of the p~vector distribu~
tions or aimply to less contextual informa-
tion in the overall data set will bas
established by further investigation.

III. MULTIPROCESSOR IMPLEMENTATION
OF CLASSIFICATION ALGORITHMS

Classification algorithms such as the
context classifier (and even much simplexr
algorithms used for remote sensing data
analysis) typically require large amounts
of memory and computation. These are said
to be processor bound. 8incc many avail-
able systems, such as the IBM 360/370 VM or
the PDP 11/70 UNIX, are used on a time-
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sharing basis, a large processor-bound
program forces the operating system to
oparate with less overall memory, forecing
the memory management to swap large amounts
of information in and out of main memory.
This reduces the efficiency of piacessing,
foreing the processor to take longer on all
jobs involved, PFor example, when UNIX is
under heavy loads (typicnxlg three to five
processor-bound jobs with 35 to 40 on-line
users), the CPU spends up to 604 of its
time on cperating system tasks such as
memory management. One way to speed up the
processes would i» to add a dedicated
special=-purpose processor., Through the use
of parallel processors, the system through-
put could be increased sven more. Various
dedicated systems have been proposed, such
as pipelined processors’, multimicrocomputer
systems’+*, and special purpose systems’,

To demonstrate the use of a such a
system on a task less complex than the
contextual classifier, consider the analysis
of Landsat data usir v a Bayes maximum likeli-
hood classifier (MLC). Landsat measurements
are taken from four spectral bands and
received as a data vector. Based on deci-
sion theory akin to that developed in the
previous section the vector is classified by
determining the probability that it belongs
to each information class and assigning it
to the class for which this probability is
maximum. In this case, one approach would
be to have one processor compute the prob~
ahility for esach of the classes, Such a
method of processing would yield a substan~
tial increase in throughput over a dedicated
single=processor system,

Consider, for example, the Control Data
Corporation (CDC) multiprocessing system
consisting of an array of dynamically micro~-
programmable procersors called Flexible
Processors (FPe)*:!%+»1!, frhe CDC FP cur=-
rently has no hardware facilities for
floating=-point operations, a disadvantage of
the system, But the parallelism of the
system more than outweighs this fault, The
basic clock cycle time is 125 nsec, but
since the FP is designed to be connected to
as many as 15 other FPs in a parallel and/or
pipelined fashion, the effective throughput
can be drastically increased, resulting in a
potential effective cycle time of less than
10 nsec. The CDC FP has been considered for
its use in a large~scmle image processing
system'?, Its use in Implementing a Bayes
maximum likelihood classifier is demon~
strated below. The techniques described are
to be extended to the contextual classifica-
tion algorithm,

A configurational diagram of the FP is
shown in Figure 3. (This is a preliminary
FP design, but the final version should be
very similar.) One of the features of the

PP is the double~bus architecture which
allows the user to manipulate data in 1lé-bit
units, Use of 16-bit integer formats
doubles the effective storage capacity o:
the machine, but 32-bit lengths also are
sasily handled, which makes it possible to
work with the IBM 360/370 floating=-point
numbars as well as the PDP 11/70 formats.
Purthen, it is possible to implement
lloating-poinc operations in software, so
the machine is capable of doing floating-
point arithmetic as is required by the clas~
sification algorithms,

In each FP there are two register files,
one called the temporary register file and
the other the large register file. Both are
divided into 16~bit subunits. If the needed
path width is 16 bits, the two files can
act like four files, thus creating more
addrassable user space., A special feature

of the temporary file is its separate read
and write address registers, which can save
much CPU time in many types of matrix
operations, It is possible to do either a
read or a write to either file and simulta~-
neously increment (or decrement) the address,
further increasing throughput. The tempo-
rary file is 16 words by 32 bitn wide, while
the large file is 4096 words by 32 bits wide.
All of the register files consist of 60 naec
random access memory (RAM),

There are three general purpose regis~-
ters (GPRs) called the E, F and G registers,
Ail of these registers are connected to the
arithmetic logie unit (ALU), The E and @
registers are readable only through the ALU.
It is possible to shift the GPRs separately
as well as combining the £ and F registers
to do a double=-length shif!., The output of
the ALU is treated as a ragister which ims
accessible in aight=-bit units., Separate
from the ALU is a hardware integer multi-
plier, which takes two eight=-bit numbers and
multiplies them to produce a l6=hit product,
The input registers are the P and Q regis~
ters, which are each 16 bits wide, The
user can choose which of the two grovps of
aight bits are to be multiplied,

The FP is equipped with four index
registers and four corresponding index-
compare registers. There are four general
compare registers called maintenance compare
registers., All of the above are used for
looping and can be incremented or decremen-
ted during any statement not accessing
those royisters.

The FP is equipped with a jump stack,
80 it is capable of handling standard types
of program calls such as subroutine jumps,
This stack is only 10 bits wide, and is,
gonaaquently. not suitable for storing
ata.
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Input/output (1/0) for the FP depends
on the overall aystem (i.e., the FP array
and its host machine), Direct I/0 among
FPs and/or the host is done via the AlO,
AXI1l, ARO and ARl registers. There are
interlinked memory units on the ®p
which are accessed via the 24, and %,
registers. Interrupts are handled tggguqh
the Intr (Interrupt) registers, so 1/0 is
fairly easy and very fast (about 32 mega-
bytes per seoond).

The busses are connacted to a vegister
pair called the BRG pair. These are linked
to the panel lights on the machine and can
be used for breakpointing or as a GPR
during execution.

rigure 4 shows now the FPs are linked
to the host and to sach other. The shift
network is one means of inter~rp commun'e~
cation, the other being through interlinked
memories. Each FP can address certain
memory banks, which car be accessed by
certain other FPs. The shared mumor{ (160
naeec cycle time) is especially useful when
it iz necessary to transfer large amounts
of data between FPs.

Figure 5 shows a coding form for the Fp

which shows, for example, that it is possible
to conditionally increment an index register,

do a program jump, multiply two eight=bit
integers, and do a logical operation on the
E and G registers, all simultaneously, This
type of operational overlap in conjunction
with the use of many processors executing
concurrently greatly increases the effective
speed of the FP array,

The ability to do a fast matrix multi-
ple is at the heart of efficiently implemen-

ting the Bayes maximum likelihood classifier.

The form for the matrix multiplications is!:
t -1

where X is the data vector, U; is the mean
vactor for the ith class, and ¢y ias the
covariance matrix for the ith class,

Consider the use of the FP array to
perform these classifications. Assume

there are m distinct classes and the computer

system contains p FPs, Each FP is assigned
to process m/p classes. The large file in
each FP is initialized with the inverse of
the covariance matrices and mean vectors for
each class it was assigned., The current
data vector is stored in esach FP in the
temporary file, When a new data vector is
loaded into an FP it overwrites the previous
one, For simplicity, but without loss of
generality, in the following assume that
m=p, If mis greater than p, then in each
~ FP instead of applying just one inverse

covariance matrix to the data set several
would be applied. This will, of course,
increase the execution time by a factor of
approximately wp,

1In l?lnﬁlf nrgtgu!tlc, c:: uoul:.sttlt
multiply (X=-U an ¢+ Creating a
vootog.y rhi-‘vcoeor,uéuld then be multi-
plied b{ (X~U3) resulting in a scalar, In
our implementation, the ogdo: has beean
somewhat altered. (x-ui) is multiplied by
a column of , accumulating the results
in a variable called "sgm.“ After this is
Aone for columnh 3 of CI1, "sum” is multi-
plied by (x-ué%2 (the jth element of (X-Uy)),
accumulating result in a variable
*hold" and re-initializing “sum® to
The following is a “pidgeon ALGOL"
description of the process for one pixel:
total=(
for =] to n do

beging

sum=0;

for k=1 to n do -1

sumesumtDLk1*Cy [k, 3]s
hogd-hold+lumﬁn[j];
and;

catjyd

n = dimension of covariance
matrix
D[k] = kth element of (X=Uy),
-1 computed when X is loaded
€ *[{k,j] = elament in the kih row and
jth column of CI

At the end of the routine, the valve con-
tained in the "hold" variable is the desired
scalar. This algorithm requires fewer
mtores and fetches than the atandard algo~
rithm, mso it shortens the run time of the
process. All pointers are kept in the
index register, further simplifying the
process. Finally, because only two
accumulators arc used, the three GPRs can
be kept free for the floating=point opera-
tions, while the accumulators are stored
elsevhere.

One way to perform this algorithm ims
to have the host initially send C7* and Uj
to FP i. The host then mends the current
data vector X to FP 0, then to FP 1, FP 2,
etc. As soon as the FP receives the data
vector, it begins the calculation of the
value of the discriminant function. After
the host gives all FPs the data for pixel
(1, 3), it waits until ¥P 0 has calculated
the value for its discrininant function.
The host then retrieves the value of the
discriminant function and loads FP 0 with
the data vector for the next pixel, The
host executes this process for all the FPa,
When the last FP has transmitted the result,
the host does a compare and stores the class
index corresponding to the maximum of the
disecriminant values computed for this pixel.
Thus, the compares are done by the host
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while the rPs are computing the discriminant
iugctiono for the next pixel, mininizing
telay.,

Allowing 40 FP machine c¢ycles for ecach
floating point addition and 9 rp mnchin?
cycles for each floating point multiply'?,
the number of machine cycles is as follows;

wvhere j = number of pixels and
n = pumber of maasurements
(size of data vector):

setup and clear registers: 9
load mean: an
load covariance matrix: 4n?
1noad and normalize data vector: 423n+?
innar loop of algorithm: 563n
outer loop of algorithm: 61jn

563n? + 1034n + 4n? + 2n + 3 + 9,

This assumes that m, the number of classes,
equais p, the number of processors. If m
is greater than p, the runtime may be
approximated by multipiying by Im/pl.

Exact comparisons of the I'P arvay with
other systems are difficult without detailed
information about factors such as pre-or
posteprocessing done by the host machine
and the data precision used. However, to
give a general idea of tha affactiveness
of this approach, consider a 256 x 256
classification of Landsat data (nw4) using
16 classes and a complete array of 16 FPs,
The total processing time is approximately
10.7 sec. ESL'“ states that their array
processor gives up to an increase of 25
times over the IBM 370/158. On the classi-
fication of four channels into eight
classes, their time is 6,3 smec.

Due to the organization of the FP
and the fact the user can microprogram it,
accurate mathematical analyses of FpP
algorithms are complex. In order to study
these timing questions, a simulator for a
single FP was developed!®, It has now been
expanded to handle multiple FPs., The
maximum likelihood classifiizy is currently
being implemented on the simulator to
confirm the analytical timing results and
to provide a working classifier program
written in FP assembly language which
could be run on the actual FP hardware.
This will allow an accurate cost-effective~
ness study.

IV, CONCLUSIONS

The preliminary results from the use
of context in classification are promising.
By studying ways of estimating the p-vector,
choosing the size and shape of neighborhood,

etc., it may be possible to develop a
highly accurate classifier fov context-
rich sosnes,

The discussion of performing of the
maximum likelihood classifier demonstrates
one way in which & multiple processor
system can be used to speed up the
processing of image datd., The implementa-
tion of the classifier on the simulator
and ovontunllx on the actual FP system :
will provide hard data to verify thes
effectiveness of this approach.

Through the use of parallel, pipelined,
and/or special purpose computer systems,
such as the CDC Flexible Processor system,
the types of computatioas required for the
context classifier and other computation=

ally demanding processes can be implemented
efficiently, This will not only reduce i
the computation time required to do contex~ i
tual classification but will as well allow

the investigation of techniques which may

otherwise be considered infeasible.
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