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ABSTRACT

A statistical model of spatial context
is described and procedures for classifying
remote sensing data using a context classi-
fier are outlined. Experimental results
are presented. Because the computational
requirements of the context classifier are
very large, its implementation on parallel/
pipelined multiprocessor systems is being
investigated. Some of the special consider-
ations necessary for such implementations
are described, with particular reference'to
implementation on an array of Control Data
Corporation Flexible Processors.

I. INTRODUCTION

For more than a decade, efforts to
extract information from multispectral
remote sensing image data have proved
increasingly successful. To a large extent,
these efforts have focused on the applica-
tion of pattern recognition techniques to
the multispectral measurements made on
individual ground resolution elements; i.e.,
scenes have been classified pixel-by-pixel
based on the measurement vectors associated
with the individual pixels . Progress has
been achieved through development of
increasingly sophisticated methods for ex-
tracting information from the spectral do-
main to characterize the classes of inter-
est.

However, there are many applications
for which the classes of interest can be
better characterized if the spatial infor-
mation in the remote sensing data is
utilized in addition to the spectral
measurements. Characteristic spatial
features include, for example, shape,
texture, and structural relationships.

This work was sponsored in part by the
National Aeronautics and Space Administra-
tion under Contract NAS9-13466.

Some interbating and useful research has
been accomplished in recent years in the
direction of incorporating spatial informa-
tion into the data analysis process 2,3,4.

As increasingly complex forms of data
and data analysis methods are employed,
the computational requirements tend to
become more demanding. Although improve-
ment in the raw speed of digital computer
components can be exploited to some extent
to meet these requirements, it is clear
that evolving computer architectures,
especially those involving multiple proc-
essing elements, have much to offer. The
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One way to approach spatial information
in image data is to recognise that the -	 -
ground cover associated with a given pixel, n
i.e., its "class," is not independent of O VS
the classes of its neighboring pixels. MStated in terms of a statistical classifica ^^y
tion framework, we may have a better chance M .^
of correctly classifying a given pixel if

owe take account of not only the spectral A O
measurements associated with the pixel
itself but of the measurements and/or O e1"
classifications of its "neighbors" as well. f1 ^'
Notice that at some point we must make O 

r s„
clear how "neighborhood" is to be defined. !wa ae

If the objects in the scene tend to be G
rather large relative to the resolution of 11	 mM
the sensor, i.e., each object is likely to 0 to O
consist of many spectrally similar pixels, •C
this fact can be exploited nicely by apply-

... tn

ing a combination of scene segmentation O
techniques and sample classification (some- -^ N
times called "per-field" classification)': "' ^ AMore generally, the image can be considered to el !+
a two-dimensional random process and the	 .

ycharacteristics of this process incorpora- d
A
Im
 op cated into the classification strategy. 	 This y N

is the objective of the approach described NIP 00"d
here, in which a form of compound decision O	 04
theory is employed to improve scene classi- N a H
fication through use of a statistical A H a
characterization of context. 	 Our work is

extension of an idea by Welch et. al. an Nr 0O
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context classifier described here has com-
putational requirements which are severe and
become more so as the size of the contextual
neighborhood is expanded. It is a natural
candidate, therefore, for multiprocessor
implementation.

ZI. THE CONTEXT CLASSIFIER

The image data to be classified In
assumed to be a two-dimensional N 1 x N
array of multivariate pixels. Associated
with the pixel at "row i" and "column j" is
the multivariate measuroment vector Xii r Rn
and the true state or class of the pixel Oij
C g • (wl, ..., wm). The measurements hava
class-conditional densities p(Xlwi), i - 1,
2, ..., m, and are assumed to be class-
conditionally independent. The objective
is to classify the N • N1 x N2 observations
in the array.

The action (classification) determined
by the classifier for pixel (i, j) is
denoted by a c no To pursue a Bayesian
(minimum riski strategy , let the loss
incurred by taking action a when the true
class is Oij be denoted by 	 ^aij) for
some fixed hon-negative functio L( • , •).
The average loss incurred over the N classi-
fications in the array is defined to be

N 
i0j L(e

ij , a ij ).	 (1)

In the most general case, the action ai
may depend on all of the observations i9
the array. Let X denote this " vector of
vectors " i then the expected loss is

R(X)	 E	 L(eij, aij(X))

`	 -	 (2)

-E[L(8ij , sij(X))]
i,j

and we would like to have a decision rule
(the rule of choosing ag ii based on X)
which minimiseu R(X).	 Ste that the expec-
tation is with respect to Oij.

When context is ignored, the action
(classification) depends only on the
measurement vector Xi of the pixel to be
classified, in which ease 	 aij(X) - aij(Xi-)•
For our present purposes, however, we wanit
to incorporate some neighborhood information
in the decision process, so we define a
neighborhood, the "context-," consisting of
an arrangement of p pixels such as shown in
Figure 1. The arrangement actually used
will be based on physical and other practi-
cal considerations related to the environs

ment and application. Let ..X^ ,ii be a p-vector
of measurement vectors associated with
pixel (i, ^) to be classified and let 8ij
be th e corresponding p-vector of actual
classes, The function aij(X ) maps
p^-vectors of observations into single
classes (i.e., classifies pixel (i, j)
based on Xi^y). The expected lose over the
full array is

R(X) . 
N iIj 

EEL(e ij r aij (Xij ))'	 (3)

Furthermore, if L( • , •) is taken to be the
0-1 loss function (no loss for a correct
classification, unit loss for an error) and
the measurements in a neighborhood are
assumed to be class-conditionally independ-
ent# it can be shown that Eq. (3) will be
minimised if every pixel is classified
(action a is selected) so as to maximize

7	
r  

p

-1 f(Xi f e i )	 Gp(Jij) (4)

O ij  c f2p,

Oij . a

where ei and Xare the class and m*asure
Mont of the ithi pixel in the p-array (in
any convenient order), f(XIO) is the class
conditional density of X, and G p (Oi) -
Gp (81, 82, ..., O ), which ideally Aust be
known for the typ9 of scene to be classi-
fied, but in practice must usually be
estimated from an accurately classified
sample of the scene or from an analogous
scene of known classification.

An experiment was formulated to
investigate the extent to which this
classifier model can utilize contextual
information in satellite-gathered remote
sensing data. In order to avoid confounding
other effects with the impact of context,
it was decided to use a simulated data set
generated as follows. A classification of
multispectral remote sensing data was
selected which had been judged to be very
accurate (typically, produced by careful
analysis and refinement of multitemporal
data). Such a classification could be
expected to embody the contextual content
of an actual ground scene. Based on the
classification map and using the associated
statistics of the classes (developed in
producing the classification) data vectors
were produced by a Gaussian random number
generator and composed into a new data set.
Thr.' the new data set had the following
characteristics:

1. Each pixel in the simulated
data set represented the
same class as in the "template"
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classification. The template
could be considered the ground
truth" for the new data set.

F	 2, All classes in the data set
were known and represented.

3, All classes had multivariate
Gaussian distributions with
statistics typical of those
found in rea data.

4. All pixels were class-condi-
tionally indepp+eendent of
adjacent pixels.

5. There were no mixture pixels.

Although the simulated data ' .. somewhat
of an idealisation of "real" remo ":-s sensing#
its spatial organisation is consiv nt with
a real world scene and its overall character-
intics are consistent with the context model
set out above. In essence, then, what the
experimental results based on the simulated
data+ show is the effectiveness of the con-
text classifier given that the underlying
assumptions are reasonable. rurther experi-
ments arA required to generalise the conclu-
sions of these results to real data,

Three data sets were selected to repro-
sent a variety of ground cover types and
textures. Data set i is agricultural
(Williston, North Dakota), with ground
resolution and spectral bands approramating
those of the projected Landsat D Thematic
Mapper. Data set 2a is Landsat 1 data from
an urban area (Grand Rapids, Michigan).
Data set 2b is from the same Landsat frame
as tae but from a locale having signifi-
cantly different spatial organization. Each
data set is square, 50 pixeln on a side.

Figure 2 shows the achieved classifi
cation results. The "no context" classifi-
cation accuracy is plotted coincident with
the vertical axis of each graph. Data not
1 was classified using success+.vely 2, 4, 6
and 8 neighboring pixelaa data sets 2a and
2b were classified using 2, 4, and 8
neighboring pixels. The results speak for
themselves. The accuracy improvement
resulting from the use of contextual infor-
ma ion is quite significant.

For this experiment, the context dis-
tribution GP (8 i ) was simply tabulated from
the "template'"' lassifi,cation. But in a
real data situation, such a template is not
available (else there would be no need to
perform any further classif ication). one
can envision a number of ways in which the
p-vector distribution might be estimated for
a remote sensing application. For example,
it could be extracted from a classification
of the same area obtainrA previously. This

would require that the area not have
changed too greatly in its class wake-up
since the earlier date were collected and
that the earlier classification was reason-
ably acourateo or, the distribution might
be obtained from a classification of any
similarly constituted area, still another
possibility would be to estimate the
p-vootor distribution for the context clas-
sification from a "conventional" alasstfica-
tion with "rosson^rbl good" accuracy, All
of these methods produce an a tima of the
p-vector distribution t and a crucial ques-
tion on which hinges the utility of this
approach is how sensitivethe contextual
algorithm is likely to be to the "goodness"
of the estimate. This question is the
subject of ongoing research.

An experiment was fnrmuiated to obtain
some evidence concerning the feasibility of
applying the context classifier to a real
data situation. The data set used covered
a somewhat larger area of Grand Rapids,
Michigan, containing both data sets 2a and
2b. Data from small areas of known ground
cover were used to estimate the training
class statistics, and data from a disjoint
set of areas of known ground cover were
used as "teat samples" to evaluate the
classifier accuracy (unfortunately, the set
used for this test was rather small,
consisting of only 136 pixels distributed
among 4 urban classes).

A non-oontextual classification was
performed and found, based on the test set,
to be 81.4 percent accurate. The p-vector
distributions were estimated from this
classification and used to perform contex-
tual classifications using four and eight
nearest neighbors, The four-neighbor
classification wan 83.1 percent accuratet
the eight-neighbor classification was 84.6
percent accurate. For this uasa, then,
some improvement in classification accuracy
was achieved by incorporating context in
the decision process, although the improve-
ment was not as dramatic as for the simu
lated data sets. Whether this is due to
poor estimation of the p-vector distribu-
tions or simply to less contextual informa-
tion in the overall data set will be
established by further investigation.

III, MULTIPROCESSOR IMPLEMENTATION
OF CLASSIFICATION ALGORITHMS

Classification algorithms such as the
context classifier (and even much simpler
algorithms used for remote sensing data
analysis) typically require large amounts
of memory and computation. These arm said
to be processor bound. Since many avail-
able systems, such as the IBM 360/370 VM or
the PAP 11/70 UNIX, are used on a time-
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sharing basis# a large processor-bound
program forces the operating system to
operate with less overall memory, forcing
the memory management to swap large amounts
of information in and out of main memory.
This reduces the efficiency of pt *casing,
forcing the processor to take longer on all
jobs involved. For example, when UNIX is
under heavy loads (typically three to five
processor-bound jobs with 33 to 40 on-line
users) # the CPU spends up to 601 of its
time on operating systera tasks such as
memory management. one way to speed up the
processes would ;4* to add a dedicated
special-purpose processor. Through the use
of parallel processors, the system through-
put could be increased even more. Various
dedicated systems have been proposed, such
as pipelined processors 6 , multimicrocomVuter
systems' , *, and special purpose systems

To demonstrate the use of a such a
system on a task less complex than the
contextual classifier, consider the analysis
of Landsat data usii,7 a Says$ maximum likeli-
hood classifier (ML6.1, Landsat measurements
are taken from four spectral bands and
received as a data vector. Based on deci-
sion theory akin to that developed in the
previous section the vector is classified by
determining the probability that it belongs
to each information class and assigning it
to the class for which this probability is
maximum. In this case # one approach would
be to have one processor compute the prob-
ability for each of the classes. Such a
method of processing would yield a substan-
tial increase in throughput over a dedicated
single-processor system.

Consider, for example, the Control Data
Corporation (CDC) multiprocessing system
consisting of an array of dynamically micro-
programmable processors called Flexible
Processors (FP06 #10,11 . The CDC FP cur-
rently has no hardware facilities for
floating-point operations, a disadvantage of
the system. But the parallelism of the
system more than outweighs this fault. The
basic clock cycle time is 125 nose # but
since the FP is designed to be connected to
as many as 15 other FPs in a parallel and/or
pipelned fashion, the effective throughput
can be drastically increased, resulting in a
potential effective cycle time of less than
10 nsec. The CDC FP has been considered for
its use in a large-scale image processing
system 17 . Its use in ,implementing a Bayes
maximum likelihood classifier is demon-
strated below. The techniques described are
to be extended to the contextual classifica-
tion algorithm.

A configurational diagram of the FP is
shown in Figure 3. (This is a preliminary
FP design, but the final version should be
very similar.) One of the features of the

FP is the double-bus architecture which
allows the user to manipulate data in If-bit
units, Use of 16-bit integer formats
doubles the effective storage capacity of
the machine, but 32-bit lengths also are
easily handled, which makes it possible to
work with the ISM! 360/370 floating-point
numbers as well as the PDP 11170 formats,
Further# it is possiblt to implement
floatia -point operations in software# so
the machine to capable of doin floating-
point arithmetic as is roquirel by the alss-
sification algorithms,

in each FP there are two register files#
one called the temporary register file and
the other the large register file. both are
divided into 16-bit subunits. if the needed
path width is 16 bits, the two files can
act like four ;Files, thus creating more
addressable user space. A special feature
of the temporary file is its separate read
and write address registers, which can save
much CPU time in many types of matrix
operations. it is possible to do either a
read or a write to either file and simulta-
neously increment (or decrement) the address,
further increasing throughput. The tempo-
rary file is 16 words by 32 bits wide # while
the large file is 4096 words by 32 bits wide.
All of the register files consist of 60 nose
random access memory (RAM).

There are three general purpose regis-
ters (GPRe) called the E, r and G registers.
All of these registers are connected to the
arithmetic logic unit (ALU), The E and G
registers are readable only through the ALU.
It is possible to shift the CPR* separately
as well as combining the F. and F registers
to do a double-length shifC.. The output of
the ALU is treated as a register which is
3ecessible in eight-bit units. separate
from the ALU is a hardware integer multi-
plier, which takes two eight-bit numbers and
multiplies them to produce a 16-bit product.
The input registers are the P and Q regis-
ters, which are each 16 bits wide. The
user can choose which of the two groups of
eight bits are to be multiplied,

The FP is equipped with four index
registers and four corresponding index-
compare registers. There ate four general
compare registers called maintenance compare
registers. All of the above are used for
looping and can be incremented or decremen
ted during any statement not accessing
those registers.

The FP is equipped with a Jump stack,
so it is capable of handling standard types
of program calls such as subroutine jumps.
This stack is only 10 bits wide, and is#
consequently, not suitable for storing
data.

a

1

i
3
a

3

.
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Figure 5 shows a coding form for the FP
which shows, for example, that it is possible
to conditionally increment an index register,
do a program jump, multiply two eight-bit
integers, and do a logical operation on the
R and G registers, all simultaneously. This
type of operational overlap in conjunction
with the use of many processors executing
concurrentlygreatly increases the effective
speed of the FP array.

The ability to do a fast matrix multi-
ple is at the heart of efficiently implemen-
ting the Says* maximum likelihood classifier.
The form for the matrix multiplications is's

(X-Ui ) t (C11) (X-Ui),

covariance matrix to the data set several
would be applied. This will, of course,
increase the execution time by a factor of
approximately Wp•

In stand&ro arithm9tic # one would first
multiply (X-Ui) and C , creating a new
vector. This vector would then be multi-
plied by (X-vi) resulting in & scalar, In
our implementations the order has been
somewhat alter^d. tx•n 1 is multiplied by
a column of C'^ , ocoumufating the results
in a variable called "opm." After this is
gone for column j of C	 "sum" is multi-
plied by (X-U0 (the ith element of (X-Ui)),
accumulating	 result in a variable
called "hold" and re-initialising "sum" to
0`^ '. The following is a "Pidgeon AtMV
description of the process for one pixels

totaln0
foz jol to n do

begins
sum•01
for kol to n do

sum1Msum*D[k3*Cl[k,j]s
hold-hold+sum*DEJb
ends

n - dimension of covarianoe
matrix

D[k] w kth element of (X-Ui),
computed when X is loaded

C71 Lk,j] - element in the kth row and
jth column of C;

At the end of the routine, the value con-
tained in the "hold" variable is the desired
scalar. This algorithm requires fewer
stores and fetches than the standard algo-
rithm, so it shortens the run time of the
process. All pointers are kept in the
index register, further simplifying the
process. Finally, because only two
accumulators aro used, the three GPRS can
be kept free for the floating -point opera-
tions, while the accumulators are stored
elsewhere.

Input/output (1/0) for the FP depends
on the overall system fits., the FP array
and its host maohinel. Direct I/O among
1FPS and/or the host is done via the A10,
All, ARO and ARl registers. There are
intorlinked ssemory units on the FP system
which are accessed via the Iin and a
registers« Interrupts are handled ;RPgugh
the Intr (Interrupt) registers, so I/O is
fairly easy and very fast (about 32 mega-
bytes per second).

The busses are connected to a register
pair called the SRC pair. These are linked
to the panel lights on the machine and can
be used for breakpointing or as a CPR
during execution.

Figure 4 shows now the r ps arelinked
to the host and to each other. The shift
network is one means of inter-FP commun$,-
cation, the other being through interlinked
memories. leach FP can address certain
memory banks # which carbe accessed by
certain other M. The shared memo (160
nsec cycle timed is especi&lly useful when
It is necessary to transfer large amounts
of data between ?Pa.

where X is the data vector, Ui is the mean
vector for the ith class, and Ct is the
covariance matrix for the ith class.

Consider the use of the PP array to
perform these classifications. Assume
there are m distinct classes and thecomputer
system contains p FPS. Each FP is assigned
to process m/p classes. The large file in
each FP is initialized with the inverse of
the covariance matrices and mean vectors for
each class it was assigned. The current
data vector is stored in each FP in the
temporary file, When m new data vector is
loaded into an FP it overwrites the previous
one. For simplicity, but without loss of
generality, it, the following assume that
m • p . if m is greater than p, then in each
FP instead of applying just one inverse

One way to perform this 'algortthm is
to have the host initially send C1 4 and Ui
to FP it The host then sends the current
data vector X to FP 0, then to FP 1, FP 2,
etc. At; soon as the FP receives the data
vector, it begins the calculation of the
value of the discriminant function. After
the host gives all FPs the data for pixel
(i, j), it waits until TP 0 has calculated
the value for its discriminant function.
The host then retrieves the value of the
discriminant function and loads FP 0 with
the data vector for the next pixel. The
host executes this process for all the FPs.
When the last FP has transmitted the result,
the host does a compare and stores the class
index corresponding to the maximum of the
discriminant values computed for this pixel.
Thus, the compares are done by the host
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while the FPO are computin g the discriminant
"unctions for the next pixel, minJ&Lxing
delay.

Allowing 44 FP machine cycles for each
floating point addition and 9 FP machine
cycles for each floating point multiply
the number of machine, cycles is as follows$

where j - number of pixels and
n • number of measurements

(size of data voctor)i

setup and clear registerst	 9
load meant	 2n
load covarianoe matt:ixt	 4nt
load and normalixe data vector: 42in+
inner loop of algorithms 	 S6jn
outer loop of algorithmt	 61jn

56jn 2 + 103jn + 4n 2 + 2n + j + 9,

This assumes that m, the number of classes,
equals p, the number of processors. If m
is greater than p, that runtime may be
Approximated by multiplyin g by (m/p1.

Exact comparisons of the FP array with
other systems are difficult without detailed
information about factors such as pre-or
post processing done by the host machine
and the data precision used. However, to
give a general idea of the effectiveness
of thin approach, consider A 256 x 256
classification of Landsat data (n w4) using
16 classes and a complete array of 16 FPs.
The total processing time is approximately
10.7 sec. ESL 14 states that their array
processor gives up to an increase of 25
times over the IBM 370/158. On the classi-
fication of four channels into eight
classes, their time is 6.3 sec.

Due to the organization of the FP
and the Fact the user can microprogram it,
accurate mathematical analysos of PP
algorithms are complex. In order to study
those timing questions, a simulator for a
sinctle FP was developed 15 . it has now been
expanded to handle multiple FPS. The
maximum likelihood classifier is currently
being implemented on the simulator to
confirm the analytical timing results and
to provide a working classifier program
written in FP assembly language which
could be run on the actual FP hardware.
This will allow an accurate coat-effective-
ness study.

IV. CONCLUSIONS

The preliminary results from the use
of context in classification are promising.
By studying ways of estimating the p-vector,
choosing the size and shape of neighborhood,

*to,, it may bepossible to develop a
highly accurate classifier for context-
rich scenes.

The discussion of performing of the
maximum likelihood classifier demonstrates
one way in which a multiple processor
system can be used to speed up the
processing of image data. The implements-
tion of the classifier on the simulator
and eventuallyy on the actual PP system
will provide ttOrd data to verify the
effectiveness of this approach.

Through the use of parallel, pipelinod,
and/or special purpose, computer systems,
such as the CDC Flexible Processor system,
the types of computatioax required for the
context classifier and other computation-
ally demanding processes can be implemented
efficiently, This will not only reduce
the computation time required to do contex-
tual classification but will as well allow
the investigation of techniques which may
otherwise bar considered infeasible.
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