NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



p——

A 354.9:00408 0 NAS’,&% 0 9 A
g .,g-u,oaa J60469
, - FEB ¢ B .
“ .,Ma e ot A Joint Program for
P v_f;rzeyr gASA Sponsorship Agriculture and
. iy 2 Farth Rospyon i Uis Resources Inventory
Progrz,y 9o bu:ces Survey S sT
100 2y uso made e m; ot sy Agpclgégcg ouen

Supporting Research Remote Sensing
November 1979

TECHNICAL REPORT

CROP PHENOLOGY LITERATURE REVIEW FOR
CORN, SOYBEAN, WHEAT, BARLEY, SORGHUM,
RICE, COTTON, AND SUNFLOWER

T. Hodges and P. C. Doraiswamy

(E80-10093) CROP PHENGLOGY LITERATURE N80-23720
REVIEW FOR CURN, SOYBEAN, WHEAT, BARLEY,

SURGHUM, RICE, COTTON, AND SUNFLOWER

(Lockheed Electronics Co.) 90 p Unclas
HC AO05/MF AQ1 CSCL 02C G3,/43 00093

LOCKHEED ELECTRONICS COMPANY, Inc.
1830 NASA Road 1, Houston, Texas 77058

e




SR-L9-00409
JSC-16088

TECHNICAL REPORT

CROP PHENOLOGY LITERATURE REVIEW FOR
CORN, SOYBEAN, WHEAT, BARLEY, SORGHUM,
RICE, COTTON, AND SUNFLOWER

Job Order 73-312

This report describes Vegetation/Soils/Field Research activities
of the Supporting Research project of the AgRISTARS program.

PREPARED BY
T. Hodges and P. C. Doraiswamy
APPROVED BY

D. E. Phinney, Superviso
Agriculture Technology Section

Vel 2 G Rommier

o C J. E. Wainwright, Manager ~
Development and Evaluation Department

LOCKHEED ELECTRONICS COMPANY, INC.
Under Contract NAS 9-15800

For

Earth Observations Division
Space and Life Sciences Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

November 1979 LEC~13722

|
N\‘
1
i
:

|

i
|




CONTENTS
Section Page
To INTRODUCTION. o v v v v v o o o v e o s o v e enene e 14
2. MODELING CROP PHENOLOGY & v v v v v o o o v o o o v o o s oo u o 2 :
2, CROP PHENOLOGY. & o v v o v e v e e o o a o n e oo on e enas 3
3.1 PLANTING DATE. « v v v v v e v e o e o m e e s v n e o n s 3
3.2 PHOTOPERIOD. « & v v v o o v v v o m o v e o e e e e ey 3
3.2.1 FLOWERING RESPONSE TO PHOTOPERIOD. & + v v v v o v o v o o o 3-8
3.3 AIR TEMPERATURE. « v v v o v v v o v o s oo v o s o a oo 35
3.4 THERMOPERIODICITY. & v v v v v o v o o e e v e o e s e w e 37
3.5 VERNALIZATION. & v v v v v v e v e e e v e o e e e e oo s 37
3.6 SOIL TEMPERATURE + « v v v v v v o e o e e o e o e e e s n e 3-8
3.7 SOIL MOISTURE. + « v v v « + v « . .
3.8 NUTRIENT EFFECTS © v o v v v v o . . e e 3-9
3.9 VARIETAL EFFECTS . . . . e A X
4. DESCRIPTION OF CROPS. v o o v o v o v . . R B :
BT CORN o v v v e e e e e e e u R B
8.1.1 DEFINITION OF GROWTH STAGES. « v v v v v v o v v v o w o v o 42
8.2 SOYBEAN & v v v v e e e e e o e e e e e e e 42
4.2.1 DEFINITION OF GRONTH STAGES. « o v o v v o o o o v v v v oo 44
8.3 WHEAT AND BARLEY & v v v v v v o e o v v v e e oo o e s 46
4,3.1 DEFINITION OF GROWTH STAGES « « v « v v v v o o v v o v o o 4 46
B8 SORGHUM &+ & v v v v e e e e e e e e e e e e 8e7
4.4.1 DEFINITION OF GROWTH STAGES « « « o o = o v v v v v v v o s 4-9
B5 RICE. « v v v vt e e e e e e e 4-11
\
PRECEDING PAGE BLANK NOT FILMED
_____ - i NS




T AR TR TN A e

Section Page
4.5.1 DEFINITION OF GROWTH STAGES . . . . . . . . . b e e e 4-12
4.6 COTTON + v v v v o o v v v v o s e e v o e e e e e s e s s e 4-12
4.6.1 DEFINITION OF GROWTH STAGES «+ « + « « . . . . . oo v oW 4-13
4.7 SUNFLOWER. . v v« v v v v v v v v e e e e e e e e e ... 415
4.7.17 DEFINITION OF GROWTH STAGES « « &« o & ¢ 4 ¢ & ¢ v o o v 4-15

PHE[‘JOLOGICAL MODELS * L L] . L] . . [ ] . » . . . . . L] . . . . L . . . 5-]
5. ] T}‘lERI‘dAL MODEES L ] * . L ] . L] L L L] L L L] L () L[] . L] L L o . L] ] [ ] 5-]

5.1.1 THERMAL MODELS . . . . . . .. e e s e e e e e b e e e e e 5-1
5.1.2 PHOTOTHERMAL MODELS. . . . . . « v v ¢ v v v v v o v v v o s 5-3
5.,1.2.1 Nuttonson Model . . . . . « ¢ v ¢ ¢« v v v v v o 0 v v v 5-3
5.1.2.2 Robertson Model . . . . . « ¢ v v o v v v v o v v 0 0w 5-5
5.1.2.3 Coligado and Brown Model . . . . . . . . . . . o o v v o 5-9
5.2 REVIEW OF CROP SPECIFIC MODELS . . . . . . . . « . v v v v .. 5-14
5.2.1T CORN . . v v i et e e e e e e e e e e e e e e e e 5-14
5.2.2 SOYBEAN . . . . & v i e e e e e e e e e e e e e e e 5-17
5.2.3 WHEAT AND BARLEY . . . . . v v v v v v v v v v e e e v v e 5-20
5.2.4 SORGHUM. . . . . . . o o o v v it e e e e e e e e e 5-21
5.2.5 COTTON & & ¢ ¢ ¢ o o o 6 o v o 4 v o o o o o o s o o o o v 5-23
SUMMARY OF SELECTED PHENOLOGICAL MODELS FOR SPECIFIC CROPS. . . . . 6-1
6.7 CORN . & v v v o e e e e e e e e e e e e e e e e e e 6-1
6.2 SOYBEAN . . . v v v v i e e e e e e e e e e e e e e e 6-1
6.3 WHEAT. . .+ & o o o s e e e e e e e e e e e e e e e e e 6-5
6.4 BARLEY . . . . o o o e e e e e e e e e e e e 6-5
6.5 SORGHUM. . . . . . . « v v v vt v s e e e e e e e e 6-5

P ]

Vi

e

. i‘\\




Section Page

7. CONCLUSIONS AND RECOMMENDATIONS . . . . & & « v ¢« v v v v v v v o 7-1

8. REFERENCES. . . . . . b b e e b e e e e e et e e s e e e e e e g-1

Append;ix

A. BIBLIOGRAPHY. . . . . . . . . . .. Y . 11
iﬁ
|
|
|

vii
s e - s - e

o J— - .. . s e R A



Table
4-1

4-3
4-4
4-5
4-6
5-1

5-2

5-3

5-4

5-5

6-1
6-2

6-4
6-5
6-6

PRECEDING PAGE LoANK NOT FLMED

TABLES

Page
CORN GROWTH STAGES. . . . . ., « « + + « & O
SOYBEAN GROWTH STAGES . . . . . . . . e e s e e e e e . )
WHEAT GROWTH STAGES . . . . . « . « « « v « o« v . e e e s . . 4-8
SORGHUM GROWTH STAGES . . . « . . . « « v « « B P ¢
COTTON GROWTH STAGES. . . . v v v v v ¢« o v o o o + - T
SUNFLOWER GROWTH STAGES . . . + & v v v v v v s e e v e o o e s 4-16
FINAL REGRESSION COEFFICIENTS IN THE ROBERTSON (REF. 4)
MODEL AS DETERMINED FROM 1952 THROUGH 1957 DATA . . . . . . . . 5-6
REGRESSION COEFFICIENTS FOR MAJOR AND JOHNSON (REF. 89)
SOYBEAN PHENOLOGY MODEL . . . . . . . . « . « +« . s e e e e 5-8
WINTER WHEAT REGRESSION COEFFICIENTS FOR THE ROBERTSON
MODEL (EQUATION 7) AS DEVELOPED BY PHINNEY AND TRENCHARD
(REF. 90) + v v v v i e e e e e e e e e e e e e e e e e e e e 5-10
VALUES OF THE COEFFICIENTS AND EXPONENTS USED BY COLIGADO
AND BROWN (REF. 6) IN THE BIO-PHOTOTHERMAL MODEL TO
PREDICT TASSEL INITIATION TIME IN CORN. . . . . « « v v o v o« 5-13
APPROXIMATE LENGTH OF DAY ON VARIQUS DATES AT DIFFERENT
LATITUDES NORTH OF THE EQUATOR. . . . . . . . . . . e e e e e 5-18
GDD MODEL FOR CORN. . v v v v v e e v e e e e e e e e e e e a 6-2
BIO-PHOTOTHERMAL MODEL FOR CORN . . . . «v v v v v v v v v o o 6-3
PHOTOTHERMAL MODEL FOR SOYBEANS . . & & + ¢ v v v v v v v o v & 6-4
ROBERTSON TRIQUADRATIC MODEL FOR WHEAT. . . . . . . « « « « . . 6-6
ROBERTSON TRIQUADRATIC MODEL FOR BARLEY . . . . . . . . « . . . 6-7
HEAT UNIT MODEL FOR SORGHUM . . . . . .« . « v v v v v v v o v 6-8

ix




Figure
2-1
3-1

5-1

5-2

FIGURES

Page
Major factors influencing crop development . . . . . . . .. . 2-3
Number of days required for the plant to reach some stage
as a function of photopuriod for long-day (a) and short-
day (b) plants

(a) Long-day plant. . . . . . . . . .. < 14
(b) Short-day plant . . . . . . . . 2

Days for the plant to reach some stage as a function of
temperature for a law-of-the-minimum analysis and a
quadratic analysis . . . . .« .« . « . .. b e e e e e e e 3-6

Changes of cumulative DD's as they occur with changes in
]at’itUde aaaaaaaaaa . . . . . . s o 6 s ® 8 e ® ® s @ 5-4

The relative photoperiod response of corn varieties that
are short day (I and II) and day neutral (III) . . . . . ... 5-17

PRECEDING PAGE BLANK NOT FILMED

xi




1. INTRODUCTION

The Agricultural and Resources Inventory Surveys through Aerospace Remote
Sensing (AgRISTARS) is a 6-year program of research, development, evaluation,
and application of aerospace remote sensing for agricultural resources begin-
ning in fiscal year (FY) 1980. The AgRISTARS program is a cooperative effort
of the National Aeronautics and Space Administration (NASA), the U.S. Agency
foy International Development (AID), and the U.S. Departments of Agriculture,
Commerce, and the Interior (USDA, USDC, and USDI).

The goal of the program is to determine the usefulness, cost, and extent to
which aerospace remote sensing data can be integrated into existing or future
USDA systems to improve the objectivity, reliability, timeliness, and adequacy
of information required to carry out USDA missions. The overall approach is
comprised of a balanced program of remote sensing research, development, and
testing which addresses domestic resource management as well as commodity
production information needs.

The technical program is structured into eight major projects as foliows:
1. Early Warning/Crop Condition Assessment (EW/CCA)

2. Foreign ComTodity Production Forecasting (FCPF)

3. Yield Model Development (YMD)

4. Supporting Research (SR)

5. Soil Moisture (SM)

Domestic Crops and Land Cover (DCLC)

Renewable Resources Inventory (RRI)

[00] ~ (2
.

. Conservation and Pollution (C/P)

The majority of these projects will make direct use of information on crop
phenology. Specific areas of these projects to which phenological information
is pertinent include classification, acreage and yield estimation, and detec-
tion of episodal events.




This report is a review of technical literature pertaining to the effects of
environmental and cultural fa-tors on the phenological development of corn,
soybean, wheat, barley, sorghum, rice, cotton, and sunflower. These crops
have been identified as ones of primary interest during the formative stages
of the AgGRISTARS program. A similar report by Doraiswamy and Hodges (ref. 1)
deals with the effect of environmental and cultural factors on yield for these
crops.

Prediction of crop growth stages (phenology) may be achieved through three
independent methuds: calculating historical averages for an area (normal
crop calendar); agrometeorological modeling from knowledge of crop-weather
interactions; and detecting changes in multitemnoral spectral signatures
throughout the growing season. This report will focus on the agrometeorolog-
jcal modeling problem. The use of remotely sensed data is examined in a
report by Cate et al (ref. 2),

The intent of this report is to go beyond a simple citation of literature.

A general framework is presented within which a critical evaluation of past
work is carried out. Strengths and weakness of individual models are identi-
fied to gain insight into the areas which need additional developmental work.

The problem of modeling crop phenology is presented in a generalized way as a
component of the plant/soil/atmosphere system in section 2., Details of major
environmental, cultural and genetic factors are discussed in section 3. A
description of each crop and the associated crop growth scales for each are
given in the following section., Section 5 presents several generalized model-
ing approaches and a historical review of modeling attempts for each crop.

The most promising models for each crop (if any) are summarized in section 6.
The final section gives recommendations on desirable modifications and on
needed evaluation tests.
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2, MODELING CROP PHENOLOGY

Although many crop phenology models fail te fit neatly into any one type,
most may generally be classified as one of the following types.

a. Statistical models — use the least squares technique to choose variables
and significant interactions and to evaluate coefficients

b. Realistic physiological models — involve detailed simulation of many
plant process [Plant physiological theories are used to choose variables
and interections, and experimental data are used to evaluate coefficients
(ref. 3).]

c. General physiological models — involve simulation of a few plant proc-
esses from a few variables based on physiological principles and theories
with experimental data used to evaluate coefficients

These three basic model types may be evaluated for the AgRISTARS program.
Statistical models include models by Robertson, Haun, Coligado, (refs. 4-6).
Although these models are easier to develop than are physiological models,
their development requires many years or points of data, and they are dcpend-
able only within the range of conditions in the developmental data set.
Because most meteorological variables are highly intercorrelated, statistical
models include variables and interactions which do not directly affect the
modeled response,

Of the three model types, realistic physiological models are the most laborious
to develop and test (ref. 7). Their primary application is in evaluating plant
physiological theories (ref. 3). Although sophisticated field input data
requirements for verification and operation make this type of model unsuitable
for estimating large area crop growth, some realistic models may be simplified
into general physiological models. Realistic models have been developed by

de Wit, Duncan, Stewart, Monteith, et al. (refs. 8-11).

General physiological models may be simplified from realistic physiological
models or be based on experimental data for a few key physiological processes

L e T i tewe S o r L e e
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(ref, 3). This model type includes a wide range of models (refs, 12-16) and
has greater potential for accuracy and stability over a wider range of envi-
ronmental conditions than have statistical models.

Figure 2-1 shows an overview developed by the authors to disc.ss how crop
phenology is controlled by meteorological variables, varieties, planting
date, day length, and soil nutrient supply. The planting date begins the
crop growth cycle, Day length causes a varjetal photoperiod response. Tem-
perature and precipitation (and solar radiation and soil factors, not shown)
control the amount of soil moisture avajlable to the crop. Soil nutrient
supply and available soil moisture interact to supply the crop with minerals;
and temperature, modified by soil moisture and variety, causes a thermal
response.

For a statistical model, the above-mentioned variables as well as other corre-
lated variables such as solar radida%ion, rain days, average rainfall or tem-
perature in various months and number of days from planting to emergence are
regressed against days between various growth stages. Products of two or more
terms and even quadratic or cubic variables may be added to the model. If

the range of conditions is not too extreme, the resulting equation will accu-
rately predict stages both in the development data set and in other data sets
in a similar environment,

For a realistic physiological imodel, one might grow the plant at the organ
level (e.g., leaves, roots, stems, or flowers) or for some processes at the
cellular level (e.g., floral initiation). The output of such a model may be
used to evaluate the theories of plant physiology on which the model is based.

For a general physiological model, one might derive equations for the pheno-
logical response to photoperiod and temperature from growth chamber data for
different maturity groups of a crop. These equations should describe the
photoperiod-temperature response over a wide range of conditions. Other equa-
tions would describe the soil moisture effect on temperature and the soil
nutrient effect on phenology.

L S
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Figure 2-1.— Major factors influencing crop development.




3. CROP PHENOLOGY

The principal variables controlling crop phenology are planting date, day
Tength, temperature, and plant genetic component. In some situations, mois-
ture supply and nutrient availability may also strongly affect phenology.

3.1 PLANTING DATE

Planting date starts the biological clock by determining the meteorological
influences to which the plant will actually be subjected, Planting date is
influenced by meteorological, social, and ecoromic factors, as well as by
jdiosyncrasies of individual farmers,

3.2 PHOTOPERIOD

The response of plant phenology to day length is called photoperiodism. In
1920, Garner and Allard (ref. 17) became the first to study “he photoperiod
effect on flowering of plants. Subsequently, it was found ..t photcperiod
influences not only the formation of flowers, fruit, and seeds but &lso the
character and extent of branching, leaf abscission, pubescence, root develop-
ment, dormancy, fruit ripening, senescence, and other morphological phenomena.
The influence of photoperiodism on phenology is reviewed by Major and Johnson
(ref. 18), Blondin et al. (ref. 19), and Vergara et al. (ref. 20).

Flowering is the major crop response to photoperiod. In terms of a normal
24~hour day-night cycle and ignoring complexities revealed by growth chamber
studies which consider longer or shorter day-night cycles (ref. 21), it may
be said that plants respond to photoperiods that are shorter or longer than
some genetically determined photoperiod length; i.e., short-day plants and
long-day plaats. [See figure 3-1 (ref. 22) and the following discussion. ]

For a qualitatively photoperiod sensitive plant if tne photoperiod is longer
(for a short-day p..nt) or shorter (for a long-day plant) than the critical
photoperiod, no photoperiod response occurs and the plant does not flower
(ref. 18), while for a quantitatively photoperiod sensitive plant flowering
is delayed.

3
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Figure 3-1.— Number of days required for the plant to reach some stage as
a function of photoperiod for long-day (a) and short-day (b) plants.
(From reference 22.)
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If the photoperiod is shorter (for a short-day piant) or longer (for a long-
day plant) than the optimum photoperiod, the plant flowers independently of
photoperiod length (ref. 18), unless the photoperiod is so short that the
photosynthate supply limits growth and delays development (ref. 23).

If the photoperiod is between the critical and the optimum lengths, flowering
occurs more rapidly as the photoperiod length extends from the critical to the
optimum length (ref. 18). The rate of increase in development rate as the
photoperiod changes from the critical to the optimum photoperiod lengths
defines the photoperiod sensitivity.

Short day and long day are poor terms for this phenomenon because some short-
day varieties of corn may have a longer critical day length than some long-
day varieties of winter wheat.

For domesticated crop plants, the photoperiod response may be more compley
Developnment in some varieties seems independent of day length (ref. 24), at
least in areas where such varieties have been adapted. This is because the
photoperiod is either longer (long-day plant) or shorter (short-day plant)
than the optimum photoperiod or because the photoperiod sensitivity of the
variety is low.

Several consecutive phenological events may have different photoperiod require-

ments. Thus, the minimum number of photoinductive cycles (days) to initiate
floral development in some rice varieties is insufficient to cause stem
elongation, so several additional cycles are needed to cause head emergence
(ref. 20). Auxin may cause head emergence without additional photoinductive
cycles (ref. 25).

Once the photoperiod induction requirement is satisfied by a specific day

length for a given number of days, the phenological process is initiated and
continues irrespective of change in day length,

3y
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The influence of day length on plant development is often modified and at
times inhibited by other environmental factors, particularly temperature.

Many plants do not respond to critical photoperiods unless their thermal
requirements are met (ref. 26). Biennial plants such as winter cereals fail
to flower until they pass through a period of low temperature (vernalization).
Also, there are critical temperatures below which a plant will not flower
even though the day length requirement is satisfied. Certain plants may be
induced to flower by substituting a thermal response for the photoperiodic
response (ref. 19).

3.2.1 FLOWERING RESPONSE TO PHOTOPERIOD

Plant growth may be divided into four stages in terms of photoperiod responses:
(1) basic vegetative period (bvp) when floral induction and floral initiation
(FI) cannot occur, (2) photoperiod sensitive period (psp) when floral induc-
tion occurs as soon as light, temperature, and water requirements are met,

(3) the reproductive stage from FI to flowering, and (4) the grain filling

or ripening stage.

Several possible reasons have been advanced for the existence of the bvp

(ref. 27): (1) the first leaves are insensitive to photoperiod, (2) the

first leaves are nearly insensitive, so the induction level is not reached
until the much more sensitive later leaves are formed, (3) the first leaves
senesce before they can induce flowering, (4) the necessary total leaf area

is not reached until later leaves emerge, or (5) the growing plant is unable
to respond to the floral stimulus, or the stimulus is unable to reach the grow-
ing point during early growth. If the bvp is due to one of the above reasons,
then it could be shortened by warm temperatures hastening leaf emergence

and expansion (reasons 1, 2, 4) or lengthened by warm temperatures hastening
leaf senescence (reason 3). If bvp is due to reason 5, its duration could

be affected by temperature, intercepted solar radiation, water stress,
nutrient uptake (to produce protein or hormone molecules needed for FI), or

possibly other factors.




The bvp exists in winter wheat (ref. 28), rice (ref. 20), sorghum (ref. 29),
soybean (ref. 18), and possibly cotton (ref. 30). Confirmation of the bvp
has not been found in barley, corn, and sunflower. It is apparently not
present in some spring wheats (ref. 31). In winter wheat, vernalization ends
the bvp. Thereafter, long days and high temperatures induce FI in winter
wheat., Both qualitative and quan*itative phctoperiod sensitive plants may
have the psp. In qualitative photoprefod sensitive plants it may last as
long as 12 years if the proper photoper.od is not received (ref. 32). In
quantitative photoperiod sensitive plants, psp may range from zero days up

to 30 days.

Many plants are sensitive to extremely small differences in daylength. Thus

in Malacca, where daylength varies by only 14 minutes, days from planting to

flowering for Siam-29 varies by up to 168 days, depending on date of planting
(ref. 33).

For sunflower (ref. 19) and cotton (ref. 34), an appropriate temperature
treatment may be substituted for a photoperiod treatment to induce floral

initiation and flowering.

3.3 AIR TEMPERATURE

Generally, air temperature affects the rate of plant development (ref. 21) as
shown in figure 3-2 (refs. 18 and 35). Below some genetically determined
temperature, development dees not occur. Above that temperature, the develop-
ment rate increases with temperature until a peak rate or plateau is reached
(ref. 36). The dashed Tine in figure 3-2 is an example of the smooth, contin-
uous curve indicated by the plant'=: phenological response to photoperiod. This
response is often modeled as a quadratic or higher order function. The temper-
ature response may also be a Timiting factor or law-of-the minimum type of re-
sponise {ref. 35) where temperatures above and below the optimum temperature
range 1imit development in a linear fashion; whereas in the optimum temperature
range, development proceeds at a maximum rate or is limited by some other

it
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factor. The continuous line in figure 3-2 is an example of this type of
response.

In temperate zone plants, such as small grains, high temperature accelerates
the development rate and results in a small mature plant. In plants of trop-
jcal origin, however, high temperature affects growth more than it affects
development, resulting in a large mature plant at an earlier date.

- 3.4 THERMOPERIODICITY

One of the objections to the use of degree-day (DD) models is that they do not
take into account the diurnal temperature regime known as the thermoperiod.
Phytotron experiments have demonstrated that the development of certain

plants depends on the diurnal temperature range (ref. 37) rather than on

the mean daily temperature (ref. 26). For example, high night temperatures
accelerate vegetative growth of tomatoes but inhibit flower size and fruit
development. In many plants, translocation is found to increase with decreas-
irg temperature to some minimum temperature (ref. 38). The quality of fruit
and seed is often affected by thermoperiodicity. Such is the case in Hawaii,
where the highest quality sugarcane juice is associated with low night and
high day tempevatures (ref. 39).

3.5 VERNALIZATION

Biennial plants require a period of cold before floral initiation can be
induced by day length (ref. 19). Flowering of winter wheat and winter bariey
is delayed or prevented in a continuously warm climate (ref. 28). A few weeks
of near-freezing weather in winter prepares the plant for floral induction by
longer spring days. Spring-planted grains and wheat grown in semitropical or
tropical regions have little or no vernalization requirement (ref. 31). A
study of Australian wheat varieties found a wide range of responses to vernal-
ization and photoperiod (ref. 40).
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3.6 SOIL TEMPERATURE

From planting to emergence, the plant is affected by soil temperature rather
than air temperature. After emergence, however, the plant is increasingly
affected by air temperature, although air temperature remains a secondary
influence until the plant's apical meristem is above ground. (Soybean is

an exception to this pattern because at emergence the apical meristem is above
ground and air temperature begins to have a primary effect on its growth.)
After the apical meristem is above ground, the effect of soil temperature
decreases sharply.

3.7 SOIL MOISTURE

Severe water stress delays development of crop plants capable of suspending
growth, and kills plants incapable of becoming dormant. This dormancy effect
has been reported for barley (refs. 41 and 42) and sorghum (ref. 43). For
sorghum, a 10-day wilting period before floral initiation was reflected in a
10-day delay in flowering. Stress after fioral initiation of 14, 21, and

28 days delayed flowering by 10, 24, and 30 days. Water stress of sorghum
just before floral initiation reduced the number of leaves initiated, sug-
gesting a time Tag between floral induction and floral initiation during which
additional Jeaves are initiated if no water stress occurs.

Water stress has also been reperted to delay floral initiation of corn, but
the degree of water stress wa:; not well defined (refs. 41 and 44}.

Moderate water stress reduces transpiration and so increases leaf temperature
(ref. 45) which may speed up or slow down plant development (see section 3.3).

Excess water reduces soil temperature variability and also reduces soil oxygen
supply and so may delay development or injure the plant.

i




3.8 NUTRIENT EFFECTS

Soil nutrients, the effects of which can be discovered only through carefully
controlled experiments, may affect plant development and yield in a wide
variety of ways. For example, excess nitrogen accelerates vegetative growth
and inhibits flowering of many crops, while excess phosphorus accelerates
development (ref. 46).

3.9 VARIETAL EFFECTS

Over thousands of years, the main crop plants have been bred into many varie-
ties which now have a wide range of responses to factors mentioned in sec-
tions 3 through 3.8, Thus, in the Northern Hemisphere, corn is found from
Canada (latitude 58° N.) to the Tropics, from sea level to an altitude of
4000 meters, and in growing seasons which range from 50 to 330 days

(ref. 47). Wheat varieties grow from latitude 66° N., throughout

the temperate regions, to the equatorial highlands of Fenya and Ecuador

(ref. 47). Barley and soybeans are less widely adapted and are not found

in extremely low or extremely high latitudes, respectively.
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4. DESCRIPTION OF CROPS

4.1 CORN

Corn is a tropical C4, warm season, short-day, cereal grass. Highest corn
yields are in areas with irrigation, high solai- radiation, hot days, and cool
nights.,

Some researchers have reported day-neutral varieties of corn (refs. 18 and 24),
Such varieties may be qualitative short-day plants with an optimum day length
which is longer than that of experimental conditions, or they may be quantita-
tive, short-day plants with very low photoperiod sensitivity.

Although corn varieties are adaptable to a wide range of latitudes and alti-
tudes, they grow best in a mean temperature of 21° C. Development is
hastened and yield is reduced in areas where the mean temperature is above
27° C. While some varieties are injured by temperatures below 7° C, most can
tolerate a 1ight freeze during early vegetative growth (ref. 47).

The flower has separate male and female parts. The male flowers are in the
tassel at the top of the plant, while the female flowers are in cobs or ears
at nodes along the middle of the stem. Because corn is a short-day plant,
adapted corn varieties flower as the davs become shorter; i.e., after the
summer solstice.

Under moderate water stress, leaf elongation stops. Under more severe water
stress, stomata close, transpiration is reduced, and Teaf temperature increases
above air temperature, which may hasten or delay development.

Because corn has brief stages of floral initiation and anthesis, yield may

be reduced by short periods of stress at these stages. However, before floral
initiation and while the apical meristem remains belcw ground, the plant is
tolerant of mild frosts.




In 1977, world production of corn was 344 million metric tons, of which
41 percent was produced in the United States., World trade in corn was
64.2 million metric tons, of which 71 percent was produced in the United
States (ref. 48).

4.1.1 DEFINITION OF GROWTH STAGES

Hanway (ref. 49) has provided the most complete definition of corn growth stages
(see table 4-1). The Hanway scale, however, skips the tassel-initiation stage,
which is controlled by day length and temperature. Instead, the Hanway scale
defines stages before tassel emergence by number of leaves, which is con-
trolled by temperature, soil moisture, and soil nutrient supply. Also missing
from this scale is the tassel-emergence stage, which is primarily controlled

by day length, temperature, and water stress,

For yield modeling, important stages are planting, emergence, (Hanway 0),
floral initiation, tasseling (Hanway 5), and maturity (Hanway 10). Floral
initiation does not correspond to any Hanway stage (see table 4-1) because
it is controlled primarily by day length, whereas Hanway stages 1 and 2 are
primarily temperature dependent.

For ground observation, the following stages are recommended: Planting,
Hanway 0, tassel initiation, Hanway 3, Hanway 4, tassel emergence, Hanway 5,
Hanway 9, Hanway 10, and harvest. Stages that are visible from the edge of
a field are planting, Hanway 0, tassel emergence, Hanway 5, and harvest,
Observation of the other stages is difficult since several plants may need
to be cut open fcr inspection.

4.2 SOYBEAN

The soybean is a temperate, 03, warm season, short-day legume.

Because it is a legume crop, the soybean has roots which support nitrogen-
fixing bacteria, making it a high-protein crop that requires little
nitrogen fertilizer (ref. 47).
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Determinant varieties of the soybean cease vegetative growth at flowering and
are usually later than indeterminant varieties which continue vegetative growth
during flowering., The soybean is a branching plant with the potential for
branches or flowers at each node,

The basic vegetative period (bvp) of the soybean is quite short, possibly less
than 10 days from emergence. Flowering can be induced after the full expan-
sion of the primary leaves {first true leaves) although the flower buds require
another 20 days of development to become readily visible (ref. 50).

During the photoperiod-sensitive phase, which is usually of indefinite length
in the soybean, floral initiation is delayed or prevented and flowering is pre-
vented for most varieties by 16-hour day lengths, Varieties in the high
Jatitude maturity groups (0-III) have long critical photoperiods and greater
photoperiod sensitivity than varieties from the intermediate and low latitude
groups.

Soil temperatures below 20° C delay germination, bt germination does not change
with temperatures from 21° C to 32° C. A1l growth process cease at about 10° C.
Young and nearly mature plants can tolerate a light frost. Although tempera-
ture above 38° C may not affect development rate, high temperature causes a
reduction in seed quality and quantity (ref. 51).

During 1977, world soybean production was 61 million metric tons, of which
57 percent was produced in the United States. World soybean trade was
19.6 mi1lion metric tons, of which 83 percent was produced in the United
States (ref. 48).

4.2.1 DEFINITION OF GROWTH STAGES

The soybean growth-stage scale which was developed by Fehr and Caviness

(ref. 52) is shown in table 4-2. This scale and the Thompson scale (ref. 53)
are nearly identjcal. For yield modeling, important stages are planting,
emergence (VE), floral dinitiation (about 2 weeks before R1), and the stages
of flowering and bean filling (R1, R2, R3, R4, R5, R6, and R8). For ground
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observation, recommendations include observation of all stages in the Fehr-
Caviness scale, planting and harvest dates, and floral initiation date. Stages
which are visible from the edge of a field are planting, VE, VC, VO, R2, and
harvest. Observation of other stages may be important but may require close
inspection of several individual piants, making such observation difficult,

4.3 WHEAT AND BARLEY

Wheat and barley are cool season, 83. long~-day, cereal grasses that are grown
throughout the temperate regions of the world. Highest yields for both wheat
and barley are found in northern Europe and the northwestern United States
because of the mild winters, cool suamers, and ample rainfall in these areas
lref. 47).

Heat tolerance in wheat and barley is much lower than that which is found in
corn or soybeans. In India, even heat resistant varieties are planted so as

to flower before the hottest part of the season (ref. 54). Both crops have
winter and spring varieties. Winter varieties are planted in the fall and
require a cold period of several weeks (vernalization) before longer spring

days can trigger flowering. Wheat varieties are generally quantitatively
long-day plants, that is with flowering delayed but not prevented by short days.

Barley varieties generally have slightly shorter growth periods than do wheat
varieties, and in given areas are planted later and mature earlier than wheat.
On the other hand, wheat has a wider environmental range than barley, and
wheat varieties are adaptable to somewhat warmer climates. The flowers of
both wheat and barley are in the heads at the top of the stem.

World wheat production in 1977 was 382 million metric tons, of which 14 percent
was produced in the United States. World trade in wheat was 74 million metric
tons, of which 41 percent was from the United States (ref. 48).

4.3.1 DEFINITION OF GROWTH STAGES

Feekes (ref, 55) provided the first detailed growth stage scale for small
grains (see table 4-3). Several of Feekes' stages (such as 5, 9, 10.2 through
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10.5, and 11.3) are described rather subjectively. Recently, however, Waldren
and Flowerday (ref. 56) developed a scale for wheat {see tabie 4-3) in which
stages are defined more objectively than the Feekes scale stages. For yield
modeling, the most important stages are planting, beginning tillering, joint-
ing, heading, dough, and harvest. Recommendations for ground observation of
wheat and barley include observation of the Waldren and Flowerday stages and
planting dat~ because they are more precisely and objectively defined than

the Feekes scale stages. Waldren-Flowerday stages 0 and 5 are visible from
the edge of a field. However, observation of other stages may require close
inspection or handling of several plants.

4.4 SORGHUM

Sorghum is a tropical, C4, warm season, short day, perennial grass. It ranges
from 2 to 15 feet in height. Fleowers and later seeds are found in a loose-to-
dense panicle or head at the top of the stalk. Additional heads may occur on
tillers growing from nodes near the base of the piant. Sorghum is generally
planted about 2 weeks after corn in temperate regions, after the soil becomes
warm (20°-27° C). The optimum temperature is about 27° C. The plant can tol-
erate quite high temperatures, but sustained heat during grain filling reduces
yield (ref. 47). Temperatures below 15° C injure sorghum; so, in temperate
regions, the plant dies in the fall. In continuously warm areas, several
grain harvests may be obtained from one planting.

Although summer rains or irrigatior. Are needed for good yields in hot regions,
sorghum is quite tolerant of drought stress. The plant becomes uormant under
severe water shortage and resumes growth upon rewetting (ref. 41). This char-
acteristic may cause yield reducticn due to frost damage if extended drought
delays maturity too far into the fall in temperate regions. Short-season
sorghum varieties can be growr in the Negev region of Israel on 20 centimeters

of stored soil moisture (ref. 57). Sorghum tolerance of water stress is partly

due to a waxy cuticle deposited over leaf and stem zurfaces that reduces water
loss when the stomata are closed.
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Sorghum is one of the best crops for producing a good yield in warm or hot,
dry, nonirrigated conditions. It also grows well in hot humid conditions.
Its chief disadvantage is that it depletes the soil nutrient supply, and the
succeeding crop must be fairly heavily fertilized.

Sorghum is not used for green pasturage since young shoots contain about

0.01 percent hydrogen cyanide which can be fatal to livestock. Sorghum stubble
is high in sugar (15-50 percent compared to 1-5 percent for corn) and may find
use as an energy source,

Most sorghum varieties seem to be quantitative short-day plants; e.g., flower-
ing is delayed rather than prevented by short days. Flowering of tropical
sorghum varieties is delayed by days longer than 11.1 hours to 12.6 hours
(ref. 58). In one study, 3 U.S. sorghum varieties were delayed by 14-hour
days (ref. 59) and, in another study, by 17-hour days (ref. 60). Some U.S.
sorghum varieties were found to have an approximately 15-day bvp (ref. 60).
The bvp might be shortened by rapid growth due to high temperatures and high
photosynthesis associated with long days during the bvp (ref. 60). High
temperatures clearly cause rapid leaf initiation and expansion in sorghum
(ref. 14).

4.4.1 DEFINITION OF GROWTH STAGES

Vanderlip and Reeves (ref. 61) have defined growth stages of sorghum (see
table 4-4), For yield modeling, the most important stages are planting,
emergence, floral initiation, half bloom or anthesis, and maturity. For
ground observation, we recommend the stages listed in table 4-1, i.e., the
stages defined by Vanderlip and Reeves (ref. 61) and planting and harvest
dates. Planting, emergence, half bloom, maturity, and harvest can be observed
from the edge of the field. The other stages require close inspection or
cutting open of several plants.
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4.5 RICE

Rice is an annual, short day, C3, tropical grass. Flowers and later seeds are
found in a loose-to-dense panicle or head at the top of the stalk. Additional
heads may occur on tillers growing from nodes near the base of the plant.
Highest yields are in areas with irrigation and high solar radiation.

Flowering is prevented and most rice varieties are injured by temperatures
below 15 C (ref. 62). Temperatures above 35° C or below 15° C before or during
anthesis cause sterility in many rice varieties (refs, 63-66). Sterility
occurs in most rice varieties at temperatures above 41° C (refs. 64-66),

Rice is unique among major field crops in thriving in standing water during
most of its growth cycle (ref. 47). Up to 20 pounds per acre of nitrogen may
be fixed by bluegreen algae 1iving in the paddies where rice is growing, which
slightly reduces the requirement for nitrogen fertilizer to obtain high yielus.

Rice is grown from the equator to about latitude 40°. In the tropic areas,
two or more rice crops may be harvested if sufficient water and sunlight are
available.

Although some researchers have reported long-day rice varieties, rice is
clearly a short-day plant (ref. 67). Twelve reportedly long-day varieties
of rice were tested at the International Rice Research Institute (IRRI) at
Los Banos, Philippines, (ref. 67) and all were qualitative or quantitative
short-day plants.

The basic vegetative phase (bvp) of rice has been reported to last from

14 days to 63 days (papers cited by Vergara et al., ref. 20). The photo-
period-sensitive phase has been found to range from 0-to-30 days for quan-
titative short-day rice varieties (ref, 20) and up to 12 years for a quali-
tative short-day rice variety (ref. 32). For qualitative photoperiod sensi-
tive varieties, the critical photoperiod ranges from 13 to 16 hours. The
optimum photoperiod for qualitative and quantitative photoperiod-sensitive
varieties ranges from 10 to 13 hours (ref. 67). At 8-hour photoperiods,
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flowering of most varieties is slightly delayed, probably due to insufficient
photosynthesis (ref, 23).

In 1977, world production of rice was 363 million metric tons, of which about
1.5 percent was produced in the United States. World trade in rice was

8.4 million metric tons, of which 26.5 percent came from the United States
(ref, 48).

4.5.1 DEFINITION OF GROWTH STAGES

Feekes (ref. 55) provided the first detailed growth stage description for

wheat and other small grains (see table 4-3). Several of the Feekes' si:ges,
such as 5, 9, 10.2-10.5, and 11.3, are described rather subjectively. Recently,
however, Waldren and Flowerday (ref. 56) developed a scale for wheat (see

table 4-3) in which stages are defined more objectively than the Feekes scale
stages. For yield modeling, the most important stages are planting, beginning
tillering, jointing, heading, dough, and harvest.

Because of morphological similarities between wheat and rice (both are deter-
minent, annual, tillering grasses), the Waldren and Flowerday scale may also
be applied to rice. For ground observation for rice, we recommended observa-
tion of the Waldren and Flowerday stages and planting and harvest dates.

4,6 COTTON

Cotton is an indeterminant, C3, tropical annual or perennial dicot. It is
grown primarily for the fiber found in fruit around the seeds and secondarily
for the cotton seed and cotton-seed oils. In 1977, cotton production was
63.7 million bales worldwide, of which 23 percent was grown in the United
States. International trade in cotton was 19.5 million bales, with 28.7 per-
cent from the Unjted States (ref. 48).

The cotton plant produces a branching stem with flowering or vegetative
branches possible at each node. As the lower node begins to produce flowering
nodes, the growing points at the tips of the upper branches continue to produce
new leaves and vegetative branches (ref. 68).

<6

el

e et



Cotton grows best in areas with mild, moist springs and warm, moist summers
with mostly sunny days during the growing season, Except in irrigated areas,
cotton requires about 50 to 150 centimeters of rain per year (ref. 47).

Because cotton continues producing new leaves, branches, and flowers indefinitely,
it is usually harvested only after being killed by drought, defoliants, or
frost.

The cotton seedling is especially sensitive to low temperature injury during
the first few hours of germination and then 24 to 30 hours later (ref. 69).
The plant grows in the 15° to 50° C range, with the optimum temperature at
34° C, and the mean summer temperature greater than 25° C. Two species of
cotton (Gossypium arboreum L. and G. herbaceum L.) are believed to have been
domesticated in south Asia and Africa, and two species (G. hirsutum L. and
G. barbadense L.) are believed to be from Central or South America (ref. 70).

Cotton grows from latitude 37° N to 32° S except in the Ukraine where it is
found up to 47° N latitude (ref. 47). It generally needs a frost-free growing
season of 180 to 300 days.

Although cotton is a short-day plant, many varieties are quantitative short-
day plants and show very little response to photoperiod in terms of first-
flowering date (ref. 47). Floral initiation begins no earlier than 14 to

16 days after emergence (ref. 71) at the same time as the expansion of the

Ist through 3rd true leaf. Long days or high (7°-8° C) temperatures may delay
first floral initiation. Beginning flowering is earlier, with increasing
temperatures up to 25° C.

4,6.1 DEFINITION OF GROWTH STAGES

A complete set of cotton growth stages from planting to harvest has not been
Jocated in the technical literature. Based on the work of several researchers
(refs. 72, 68, 69), the stages in table 4-5 are propnsed to cover the critical
events in the cotton cycle. First square or first flower bud visible follows
floral initiation by about 10 days (ref. 73).

433"
27




1S8AJdRH L
uorjeoidde juetjojap
A3Lienb aaqLy | “suanysiow [LOS “duniedddud] 4ly | 1S8AUARY U404 Banjel 9
aJdnjisiow |LoS
yjbua| pue A3Lienb usqL4 ‘yzbua| Aep “aunjedadwsl Jiy Ll2q uado 3si| [+
aanisLow |1Los
yabuay aaqr4 ‘yjbua| Lzp “sunjedadwsl ALy 1Loq 31st ¥
aJdnistow |Los
jue|d/saamoi 4 ‘yjbua| Aep “vunjiesadud ary Jd9MOL 4 3S1| €
aJanjystow |LoS
juejd/sasmMo| 4 ‘yrbua| Aep “sunjesadwsy airy aaenbs 3s| 2
s3|qeLJdeA aoLoyod
LeoLbojoaoagaw sjaels S, Jcll4e) °S3JEp 9BUL-3S04}
¢A31rLlenb pueis ‘aaoe/sjue|d | ‘aJanjedadws]y |LOS “3uanjzsiow [LOS burjueyd 1
pasuan|jut sJo3oej piala sa03oe) bulliodjuo) PIpUSULOIRY JAaquny

(1Z €89 /9 "43¥) SIOVLIS HIMOYD NOLLOD — G-t I74YL

P o VO e e e

et

— it o




4.7 SUNFLOWER

The sunflower is a determinant, annual, 03, temperate, short-day dicot. The
sunflower is grown mostly for oil from its seeds but also for silage and for
feeds and confectionary from the seeds (ref. 47).

The sunflower is more tolerant to high and low temperatures than are many other
summer crops. Until the 6-leaf stage, the young plants can stand temperatures
down to -5° C, and during the seed-ripening period, the plants are not harmed
at -2° C (ref. 74). The sunflower requires many days of full sunlight. Max-
jmum assimilation rate occurs at 28° C, but temperature has little afiect on
assimilation from 18° C to 32° C (ref, 75).

Although the sunflower plant is not very resistant to plant water deficits,
(ref. 74) it grows relatively well in semiarid conditions because a very

deep (2.7m) and very wide (3.0m) root system allows the plant to extract water
from a large soil volume (ref. 74),

The sunflower ranges in height from 5 to 20 feet. Seeds are borne in large
flowers at the top of the main stem and of any secondary stems. Until anthesis,
the head and leaves of sunflowers are phototropic, always moving to face the

sun (ref, 76).

As a quantitative short-day plant, sunflower phenology is relatively insensi-
tive to photoperiod (ref. 74). Some research in predicting sunflower stages
has used growing degree days and latitude (ref. 77) to predict beginning of
flowering.

World production of sunflower seed was 10.5 million metric tons in 1977, with
5 percent of that in the United States. The U.S.S.R. is by far the largest
producer of sunflower seed (ref. 48).

4,7.1 DEFINITION OF GROWTH STAGES

Robinson (ref. 74) described the sunflower growth stages which are shown in
table 4-6. Head visible follows floral initiation by about 10 to 20 days.
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For yield modeling, all the defined stages are important and should be noted
in ground observations.




5.0 PHENOLOGICAL MODELS

The following two sections will review phenological models by modeling approach
(section 5.1) and by specific crop (section 5.2). In most cases the generic
equations of a modeling approach will be presented in the first section with
crop specific coefficients in the following section. The most promising models
will be summarized in section 6.

5.1 GENERAL MODELING APPROACHES

Phenology or plant development may be defined as the sequence of ontogenetic
events involving both growth and differentiation, leading to changes in func-
tions and morphology. It is an enormously complex process which involves
controls at molecular level; the activation and repression of genes; and dif-
ferentiation leading to organ formation, maturity, and senescence. Although
this subject has been studied in depth, our present knowledge of control
systems is still inadequate because of the compiexity of the process. Thus,
there has been no attempt to model plant phenology from the available basic
information. The most comprehensive models have attempted to predict plant
development as influenced by weather by incorporating two basic plant
responses; namely, thermal and photoperiodic. This discussion of significant
models available will be organized from the simple thermal response models

to a more complex treatment of photothermal interactive models.

5.1.1 THERMAL MODELS

Temperature affects plant development through its ‘influence on the rate of
plant metabolic processes. Low temperatures may retard development, and
increasing temperature (up to a 1imit) accelerates progress toward maturity.
An arbitrary scaling measure used to describe temperature influence on plant
phenology is heat units (HU's) or growing degree-days (GDD's). The concept
of HU's and GDD's dates back more than a century. It postulates that plant
growth and development are dependent upon the total amount of heat the plant
receives. There are some subtle differences between the two models as used
in the literature. In estimating HU's, one is defining the average response
of plants to maximum and minimum temperatures. The parameters required to
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calculate HU's are maximum and minimum temperatures and a threshold temperature
(TH), below which development is inhibited. The DD (degree day) is a measure
of the departure of mean daily air temperature above the minimum TH.

HU is a more frequently used term; and, in agronomic 1iterature, it is usually
applied to corn development. Aspiazu and Shaw (ref. 78) reviewed six dif=-
ferent methods of HU calculations for corn development (refs. 79-82) and
suggested that the model used by Brown (ref. 83) is the method with the least
variability. Brown (ref. 83) estimated the contribution of maximum (TMAX)

and minimum (TMIN) temperatures (degrees Fahrenheit) to GDD's as follows:

\
Maximum temperature effect Yy,, = 1.85(TMAx - 50) - 0.026(TMAX - 50)2

Minimum temperature effect YMIN = TMIN - 40 L)

_ Owax * Y

<

HU

/

The DD method was also used in predicting harvesting dates (ref. 84) and plant-
ing dates (ref. 85). Lindsey and Newman (ref. 86) developed the most precise
method, taking into account the changes in diurnal air temperature. The

tiree conditions for computation of DD are as follows:

2
a. If MIN < TH < MAX, DD = é?aﬁx—-TS%N)'

i

b. If TH > MAX, DD
c. If TH < MIN, DD

0.

(Average - TH)

In spite of its lack of theoretical soundness, the HU/DD method is easy to
apply and has been widely used to guide agricultural operations and the
planning of land usage. The success of this methcd depends on a close
relationship between radiation and temperature, photoperiod and temperature,
and to varieties adapted to local photoperiods.




s

The sorghum phenological mode) described by Vanderlip and Arkin (ref. 87) may
be considered as a heat unit model with heat unit base temperatures specified
for emergence, floral initiation, half bloom, rate of leaf appearance of the
first 5 leaves, rate of leaf appearance of later leaves, and rate of leaf
expansion, This model is described in section 5.2,4,

5.1.2 PHOTOTHERMAL MODELS

The HU/DD concept assumes that photoperiodic effects do not influence the
development rate of plants. As discussed earlier, photoperiodic effects are
very pronounced during certain stages of development, and the photothermal
interaction is quite complicated. Thus, the DD method has to be adjusted with
changes in location. The three following sections review work by three
researchers to develop photothermal models. The work of Nuttonson, Robertson,
and Coligado and Brown represents increasingly sophisticated photothermal
models.

5.1.2.1 Nuttonson Model

Nuttonson (ref. 88) conducted a study on the range of DD requirements for
development of marquis wheat. The data covered a range of photoperiod and
thermal regimes. Figure 5-1 shows the integration of photothermal responses
of marquis wheat development.

Nuttonson's photothermal concept could be written in mathematical form for
development between stages S1 and S2 as follows:

S2
1 =fsl Fy(P) x Fy(T)dt (2)

where S1 and S2 are arbitrary numbers and F] and F, are functions relating
development (t) to temperature (T) and photoperiod (P).

For a given stage of development in a mathematical form that assumes a linear
photothermal response and equal influence of night and day temperatures

1 = kyZP(T - by) (3)
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Figure 5-1.— Changes of cumulative DD's as they occur
with changes in latitude (ref. 88).
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where k2 is the development rate per hour of photoperiod per degrees Celsius,
T is the mean diurnal temperature (degrees Celsius), and by is a temperature
coefficient.

5.1.2.2 Robertson Model

Robertson (ref. 4) expanded on Nuttonson's photothermal concept for spring
wheat development in the following manner.

a. The response of temperature is nonlinear, allowing for upper and lower
critical lTimits as well as an optimal value.

b. The response to phutoperiod is also a nonlinear function, allowing for
thr:  cardinal points.

c. Night and day temperature responses are considered separately.

d. The above three factors are considered over a fairly short phenological
period when phenologicai processes are uniform.

The final equation of Robertson's (ref. 4) triquadratic model is as follows:

S2 K
1 = Maturity = g} [{a](P - ao) + a2(P - ao) }

. 2 YA

{51 Ty = Bg) * by(Tyay = b)% + ey (Tygy = bg) + dylTypy = by) }] (4)
Coefficients g 2ys g bo, b], bZ’ d1, and d2 are determined by an iterative
regression technique which provides the best relationship between the three
environmental factors and their interactions for the set of data used. The
values of the coefficients are given in table 5-1.

The stages considered to have fairly uniform phenological processes are plant-
ing, emergence, jointing, heading, soft dough, and hard dough/ripe. Although
the Robertson model is theoretically wmore acceptable than the wethods dis-
cussed earlier, there are drawbacks to its use. For instance, it was diffi-
cult to obtain coefficients that covered the complete range For each factor.
Additionally, the model was limited to conditions represented by the data

set used.
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As expected, the model showed no photoperiod response during the planting-
to-emergence stage. However, the thermal response was quite supportive of
those reported in the literature. The greatest response to photoperiod
occurred during the emergence-to-jointing stage. The model did incorporate
both Tinear and curvilinear responses wherever the data permitted. Maximum
and minimum temperature and photoperiodic responses for each stage of devel-
opment were used in generating the development rates. This made the model
sensitive to small changes in environmental conditions and more applicable
over different environments. The Robertson triquadratic model performed
extremely well in comparison to the HU and photothermal models for the test
data of spring wheat development (ref. 4).

Major et al. (ref. 89) modified the Robertson spring wheat model to determine
the rate of development of soybeans by using a mean daily temperature instead
of maximum and minimum temperatures. The modified form is as follows:

1= g% [a](P - ao) + az(P - ao) ][F](T - bo) + b2(T - bo) ] (5) ;

Major et al. (ref. 89) determined the regression coefficients from field
experiments and analytical pracedures for 10 soybean varieties (see
table 5-2).

Phinney and Trenchard (ref. 90) adapted the Robertson (ref. 4) spring wheat

model for winter wheat. A new set of coefficients was derived for each stage

of development in winter wheat. To account for the effect of dormancy on ;
winter wheat phenology, the development rate equation was multiplied by a o
correction factor (MF) suggested by Feyerherm (ref. 91). The vernalization '
correction factor was used as an adjustable crop calendar from emergence to

the heading stage.
MF = 0.5684 + 0.025081 (TJ) - 0,006139(PP) (6)
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TABLE 5-2,~ REGRESSION COEFFICIENTS FOR MAJOR AND JOHNSON (REF. 89)
SOYBEAN PHENOLOGY MODEL

Regression coefficients for -
Period Cultivar Day length Temperature |
ag a 2 by b, b,
PE AN cultivars | 0 0 0 10,90 | 0,02150 | ~0,0008560
EF Chippewa 64 8,09 | 0.02284 | -0,002209 | 4,15} 0,03713 | © !
Hark 8,02 ,02370 | -,002309 | 5,17 | ,03850 | 0 .
Amsoy 71 9.3 J02577 | -,003386 ! 2,60 | ,04027 | © 1
Beeson 8.72 02435 | ~,007604 | 3,50 | .n3877 { O ‘
€alland 9,63 ,02700 | -,003886 | 2,24 | 04163 | ©
Wiltiams 8.85 02689 | -,003403 | 4,98 | .04228 [ 0 1
Clark 53 9,44 02606 | -,003785 | 1,03 | .04000 | O 1
Cutler 7 8.34 02590 [ -,003158 | 4,41 ,04095 | o0
HIN 18,30 [ -,01336 } © 8,97 | 02405 | o
pare 17,37 | -.01365 | 0 4,88 | .02457 | 0
FPF Chippawa 64 17.43 | -0,01633 | © 0 0 0
Hark 16,95 | -~,01785 | 0 0 0 0
Ansoy 7) 17,43 -.04n ) o [} 0 0
Beeson 18,00 -,01249 0 0 0 0
Calland 21,00 -,006)9| 0 0 0 0 1
Wiliiams 18,53 | -,00960 | © 0 0 0 1
Clark 63 17,53 ] -.01228 | o0 0 0 0 i
Cutler 7 17,84 | -,00139 | Q 0 0 0 |
HiN 16,68 | -.0257 | o 0 0 0
Dare 16,10 | -.01655 | 0 0 0 0 |
FTF Chippewa 64 18.46 | -0,03322 | 0.000165 | 13,01 | 0,06161 | -0.003619 ]
Hark 17,97 | -.03483 001503 | 14.64 | .06248 | -.004150 !
Ansoy 7 16,94 1 -,04352 | 0 14,811 .08140 | ~,005508 c
Beeson 16,86 | -.04256 | 0 13,89 ] .07940 | -,005032 1
calland 15.43 | -,05743 | -.011789 | 7.96 | ,12793 | -.00599 ‘
Williams 15,31 | -.06078 { -,013805| 4,91 | ,13743 | -.005709 %
Clark 63 15.38 | -.06184 | ~,01261} | 10,11 | .13802 | -,007228
Cutler 71 15,35 | -,06082 | -.012775] 9,19 | 13621 | -,006726 ;
Hil 18,25 | -.01256 | © 46.66 | -,02259 | 0 a
Dare 17,48 -,01337 | o© 47,281 -.02407 | ©
FPM Chippewa 64 18.64 | -0,02638 | © 16.88 | 0,04921 | -0,003096 |
Hark 18,72 -.02095 | © 11.89 | ,03874 | -.001852 1
Ansoy 7) 18,23 | ~,01956 | © 11,88 | .03604 | -.001475 %
Beeson 1799 -.01908 0 11.03 | .03508 | -,001307 i
calland 18,09 | -.02301 | © 13,10 | .04277 | -.002444 |
Williams 17.26 | -.02479 | © 12.58 | .04599 | -,002458
Clark 63 17.42] -,02474 1 © 12.96 | .04595 | -,002575
Cutler 71 17.97 | -,02341 ] 0 12,85 ,04351 | -,002478 g
HiTY 15,08 | -.02021 | o .16 .03638 | o0 ]
Dare 15,65 | ~-.01508 ] © 7.0 02774 o |

3pE = planting to emergence,

EF = emergence to flowering.

FPF = flowering to beginning pod fil1.

FTF = flowering to termination of flowering,
FPM = flowering to physiological maturity,

e
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where Tb is the normal average daily temperature for January and PP is the
normal average annual precipitation, The vernalization factor showed signifi-
cant improvement only for the emergence-to-jointing stage of development and
the soft-dough-to-ripe stage (refer to table 5-3).

Phinney and Trenchard (ref. 90) suggested the need to incorporate a moistuve
interaction term for phenological assessment. A mean rain day frequency term
(RD) was substituted in place of day length. The new variable was computed
on a daily basis by means of a low-pass filter function

where ﬁﬁ} is the mean value of RD for the ith day. The rain day variable was
useful in improving predictions after emergence.

5.1.2.3 Coligado and Brown Model

Coiigado and Brown (ref. 6) reviewed all the major HU/DD models and developed
a bin-photothermal model incorporating the photothermal principle suggested
by Nuttonson (ref, 88). It differs from the Robertson (ref. 4) model in that
temperature and day length responses are considered separately as well as
interactively. The model accounts for a genetic factor (G), mean daily
temperature (T), photoperiod (P), temperature range (R), and development
potential (DP).

The model was formulated to predict tassel initiation time in corn. The model
determines the length of delay (number of days) in tassel initiation which is
caused by suboptimal predictor variables calculated orn a daily basis. The
shortest time to tassel initiation was under optimum conditions of T = 25° C,
P =10 hours, and R = 0° C. The duration of the period from emergence to
tassel initiation is t:

t = (6,T,P,R) (8)
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The genetic factor G is interpreted as a constant defined by the length of
each period under optimal conditions (hybrid determined). More precisely,
Ty
t =6+ g% FtTi - tTo) + bp(P; - Pg) + bp(R, - Ro)] (9)
where Tb = 25° C, Pp = 10 hours, Ry = 0° C, by is the rate of development
caused by photoperiod, and bR is the rate of development caused by temperature
change.,

Tassel initiation can be calculated using the following formula:

-mT
ty = kT(T ) 3 0°<T<25°¢C (10)

where kT and my are the coefficient and exponent for a hybrid. The response
to daily mean temperature can be calculated as follows:
-mT

=M
_ ] T
(Bt)y. = tr, =ty =Ky (Ti - To ) ()

For the optimum photoperiod, kT and my are determined by using linear regres-
sion analysis with logarithmic transformation of the data.

A linear response function relating time to tassel initiation is as follows:

tp =ap + b (12)

p

where 10 hours < P, ap is a constant, bP is time to tassel initiation (photo-
period, day and hour). The rate bP was determinad by using tP and P for three
mean temperatures. Additionally, bp is calculated as follows:

by = kP(T-mP) (13)

=N
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where kP and mp are the coefficient and exponent determined by using regres-
sion analysis with Jogarithmic transformation of the data. The change in
time caused by photoperiod is

..mP

i Py - Pp) (14)

1

.

(at)p,

The response to temperature can be calculated using the following equation:

t + br xR 3 0°C<R (15)

R~ R

where ap is a constant and bR is the time of tassel initiation (range).
-m
- R

The change in time caused by range of temperature is:

-mR

(At)g = ba(Ry - Rg) = kgT "(Ry = Rg) (17)

.

i

A development potential factor DP, which is considered to be dependent on
the number of days from planting to emergence under optimum conditions, is
given as:

=1 - (g, - 5)bpp | (18)

where pr is a rate of decrease in development potential and is selected
based on the least average deviation of the predictions from the observed
time to tassel time (ref. 55). The total coefficients needed to run the
model are kT, mys kp, mp, kR’ Mg and bDP’ as listed in table 5-4.

Coligado and Brown (ref. 6) compared the bio-photothermal model with the HU
and GDD models to predict tassel initiation time. The HU model was found to
have the least average deviation, followed by the GDD model. The better
results obtained by using the HU method may have been due to the curvilinear
response used for maximum temperature ranging from 10° C threshold to 30° C

B e T




TABLE 5-4.~ VALUES OF THE COEFFICIENTS AND EXPONENTS USED
BY COLIGADO AND BROWN (REF. 6) IN THE BIO-PHOTOTHERMAL

MODEL TO PREDICT TASSEL INITIATION TIME IN CORN

Variety kT My kP Mp kR Mo
Hybrid 55.0| -0.5666 | 548,11 -2.4757 { 11,497.6 | -3.7567
United-108
Hybrid 226,01 -1.0039 {117.1| -2.0593 | 3,084.3 | -3.1997
Guelph Gx122

54




optimum., These ranges were comparable to the temperature relationship in the
oio-photothermal model. An introduction of a photothermal factor to the GGD
and HU models improved predictions more for the GDD mode) than for the WU
mrdel, However, the bio-photothermal model combines all three independent
variables in a form that provides the best predictions of tassel initiation
time,

5.2 REVIEW OF CROP SPECIFIC MODELS

The following sections review crop specific phenological models for corn, soy-
bean, wheat, barley, sorghum and cotton. HNo published model was reviewed for
rice or sunflower.

5.2.1 CORN

Most of the early work in predicting corn phenology has been in terms of HU's.
The two HU models described under model I were derived for the purpose of pre-
dicting maturity in corr, These models are usually restricted to a regional
use (refs. 79-82) and a given group of varieties, and they are useful in
recommending planting schedules and rough predictions of maturity dates. It
is also a common practice to select varieties that are labeled by the HU's
they require from planting to black layer development,

HU's are useful markers for predicting corn development in a given region
where climatic changes from year to year are not drastic. Corn is adapted to
do well under high day temperatures of 27° to 29° C and night temperatures of
10° to 24° C.‘ Extremely high temperatures may be injurious, especially during
the tasseling stage. The moisture requirements are fairly Tow with respect

to other crops (except sorghum). Corn is most sensitive to soil moisture
deficit during the period of tasseling and silking which occurs immediately
before and during pollination. When moisture is limited, cool air tempera-
tures help the plant to tolerate certain ievels of moisture stress.

/54’9/
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Baron et al. (ref. 93) studied the relationship of climatic parameters to
corn maturity. As measured by kernel moisture, corn maturity was correlated
with solar radiation, latitude, HU, GDD (above 10° C), and planting date.
The highest correlation for maturity was between GDD and latitude in three
different maturity classifications. The effect of day length was quite
evident and was consistent with the observations of Ragland et al. (ref. 94)
and Hunter et al, (ref. 95), who found that increasing day length signifi-
cantly increases time from plant emergence to tassel emergence and silking,

The influence of photoperiod response on corn phenology Is modeled by Coligado
and Brown (ref. 6). Unlike other photothermal models (ref. 4), this model
considers only the period during which the plant is photosensitive. Other
important points of the Coligado model are as follows:

a. The photoperiod response is limited to the day length photoperiod require-
ment of P > 10 hours.

b. The upper critical limit of the photoperiod response is not mentioned,
probably because the data were collected in areas where this was
unnecessary.

c. The model also considers the influence of temperature on photoperiod
response but does not account for the temperature effects on development
when P < 10 hours. Perhaps this effect is reflected in the direct thermal
effects on development. [See equation (14); coefficients are in
table 5-4],

Figure 5-2 describes a hypothetical interaction of day length and varietal
effect on development. Varieties I and II are short day, and III is a day
neutral variety. The absolute magnitude of the photoperiod response is not
to scale. Variety I will develop at a constant rate with an increasing day
length of up to an optimum of 10 hours, and between 10 to 14 hours devel-
opment rate will gradually decline. Similarly, variety II will have an opti-
mum development rate of 16 hours, and the rate will then decline to a minimum
of 20 hours. Variety III will develop at a constant rate irrespective of day
length. The primary controls on flowering for variety III may be temperature

Lo
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Variety I1I

Variety I1

Variety I

Relative photoperiod response (per days)

N | i - L1 |
8 12 16 20 24

Day length, hours

Figure 5-2.— The relative photoperiod response of corn varieties that are
short day (I and II) and day neutral (III). (From reference 22.) The
Y-axis is a relative scale with no specific reference to the magnitude
of the response of varieties I, II, and III.
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range and duration. It is quite possible that phenological predictions based
on HU's are highly applicable to day neutral varieties. This may be possible
for varieties I and Il as long as predictions are made up to the optimum photo-
period. Also, it follows that if variety II is planted in a latitude where
day length does not exceed 16 hours, then flowering is independent of day
length, and one may conclude that the variety is day neutral (see table 5-5).

Duncan at Kentucky State University has been developing a corn growth and
yield model, but the model has not yet been published (ref. 96).

5.2.2 SOYBEAN

Soybean adapts best to regions with temperatures ranging from cold temperate
to tropical. Most varieties do well at high temperatures (ref, 97}, with
optimum temperature for development around 28° C. Being short-day plants,
soybeans flower rapidly during day lengths which are less than the optimum
photoperiod. Major (ref, 22) discusses photothermal infiuences on soybean
development by classifying development into a juvenile phase (germination to
flower initiation), reproductive phase (flower initiation to flowering), and
ripening phase (flowering to full seed development).

During the first part of the juvenile phase called the basic vegetative phase
(bvp), the plant is too immature to respond to pi:otoperiod stimulus. However,
once this vegetative stage is over, flower initiation will occur immediately
after a sufficient number of photoinductive cycles. While there is no infor-
mation available on how temperature affects these responses, it is known that
as temperature increases, the development rate increases until an optimum of
28° C (ref. 98), after which flowering is delayed.

Although photoperiod may influence the reproductive and ripening phases, it
does not exert as strong an influence as it did during earlier phases. Once
the flower is initiated, development appears to be mainly a function of tem-
perature, In indeterminate -arieties, development is more complicatad
because photoperiod also affects the duration of flowering and even maturity.
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Decreasing day lengths in the fall may bring maturity more quickly to such
varieties even though temperatures are decreasing.

Modeling of soybean phenology has been attempted with the basic HU concept.
Lawn et al. (ref. 99) and Brown (ref. 83) were among the few who applied

the HU models to soybeans. Major et al. (ref., 100) evaluated 11 thermal

unit methods for predicting soybean development. They concluded that devel-
opment of early cultivars (long day length requirement) was predicted more
accurately by all thermal unit methods than was development of late cultivars.
Late cultivars had a higher coefficient of variability, especially from emer-
gence to the flowering period. This suggests that there are other environ-
mental factors (day length) that influence the development of late cultivars.
The HU method was found to fail seriously in accurately predicting postflower-
ing development.

The need for a more complete prediction model that would include the photo-
thermal concept was evident from the comparative study by Major et al.

(ref. 100). They used the Robertson model to predict development in soybeans.
The model varied from the Robertson model only in the use of a daily mean tem-
perature rather than daily maximum and minimum temperatures used by Robertson.
The results obtained by using model Ii? suggested that this model was more
accurate than were the HU models in predicting development of soybeans. The
effects of cool spring temperatures on flcwering predominated in the early
part of the season, whereas the effects uf day length predominated in flower-
ing of plantings after June 1 (delayed). The hastening effects of short days

on maturity were greater than the delaying effects of cool autumn temperatures.

[See equation (6); coefficients are in table 5-2.]

There are other environmental factors such as soil moisture that retard or
hasten development. The period between seed development stages R5 and R6
marks the peak of many physiological processes. In this period, as in the
tasseling stage in corn, the vegetative growth ceases, and the potential
number of reproductive sink are set. The environmental conditions that arise
after beginning seed development (R5) and until maturity control how much of

1,
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that potential can be expressed in yield. Moisture availability has a greater
effect on yield than on the rate of development. Moisture stress may shorten
the length of the vegetative growth period, causing a corresponding decrease
in the length of the seed-filling period and in earlv maturity.

Curry (ref. 101) at Ohio State University has been developing a soybean
growth and yield model, but the model has not yet been published in full,

5.2.3 WHEAT AND BARLEY

Wheat and barley are cool season, cereal grasses grown throughout the temperate
regicns of the world. Winter wheat is widely grown and requires a period

of exposure to cool temperatures in order to initiate the reproductive portion
of its life cycle. Usually planted in autumn, it undergoes a chilling precess
in winter, renews the active growth cycle in the spring, and is ready for
harvest in early to mid summer. Spring wheat is usually planted in early
spring and harvested in summer or early autumn.

There is some evidence of the development of models for predicting wheat phe-
nology prior to Robertson (ref. 4). He provides a detailed summary of this
early scientific work. Nuttonson (ref. 88) evaluated the GDD model to predict
growth during major stages of winter wheat development. He obtained a high
coefficient of variation at sites other than those where this model was devel-
oped, and he concluded that universal applicability was not possible. The
introduction of a photothermal unit in the developn¢nt of a phenology model
was an improvement over the GDD modal (ref. 89).

The Biometeorological Time Scale was developed by using the photothermal con-
cept for spring wheat by Robertson (ref. 4). Reascnably good results were
obtained when the model was applied to independent data from Brazil. [See
equation (4); coefficients are in table 5-1.] The coefficients were variety
dependent and had to be rederived, especially for winter wheat predictions.
Feyerherm (ref. 91) developed a model for winter wheat by modifying the
Robertson model. The modification was made as a result of considering the
over-wintering factors which affect the rate of development in wirter wheat.

5,26
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Phinney and Trenchard (ref. 90) successfully adapted this model f#r a range
of data sets to predict winter wheat phenology. [See equation (7); coeffi-
cients are in table 5-3.] Williams (ref. 102) used the Robertson model for
a single variety of barley grown in Canada, with data from between 42 and 56
site-years. He concluded that the model-derived values were probably appli-
cable within the area in which the model was developed, but he had little
confidence in the applicability of the model in other areas.

Several environmental factors that influence the phenology of winter wheat
need to be incorporated into the Williams model. Vernalization treatment in
an appropriate temperature range effectively hastened flowering. Chujo

(ref. 103) observed a relative maximum vernalization effect of about 4° to

8° C with a minimum near 1° C and another minimum above 11° C. Plants treated
at less than optimum chill conditions and then expcsed to warm temperatures
were found to be adversely affected in reproductive development. An improve-
ment in Feyerherm's vernalization factor may be necessary to account for the
complex temperature effects during vernalization. Additionally, soil moisture
effects should be considered.

5.2.4 SORGHUM

Arkin and Vanderlip and their associates have developed a sorghum phenology
model (refs. 87, 104) based on heat units and normal leaf number and leaf
size distribution of sorghum hybrids.

In its early form, the model predicts emergence (EM), leaf appearance for
the first five leaves (L5), and leaf emergence for later leaves (L) as func-
tions of daily mean temperature and temperature cutoff levels:

EM = 1/(-1.05T + 26.6) for T < 21.4°C

]

1/4.13 for T > 21.4°C




where T is mean daily temperature in degrees C, and the seedling emerges
when EM = 1:

L5 = 1/(2.8 + 0,0292(T-22)2 for T < 22° C
= 1/2.8 for T > 22° C
L = 1/(2.9 + 0.0567(T-22  for T < 21° C

"

1/(2.9 - 0.0562(T-21)) for 21°C < T < 30°¢C
1/2.45 for T > 30° C

n

where L5 and L are in units of leaves/day.

Leaf expansion (LX) is estimated in cmz/day as:

n

LX = 5.1(T-12) for T > 12° C

0 for T <12° C

Floral initiation is estimated as the day halfway between the date that the
fifth leaf is fully expanded and the date that the last leaf appears. Half
bloom is estimated as the date that the last leaf is fully expanded plus .86
times the days from floral initiation to that date. Maturity is estimated as
the date of half bloom plus .6 times the days from emergence to half bloom.

In a Tater form of the model (ref. 104) for a medium late genotype, seed
germination occurs when 18 heat units are accumulated over a base temperature
of 6.3° C, emergence occurs when 66 additional heat units are accumulated over
a base temperature of 11.4° C, floral initiation occurs when 497 additional
heat units are accumulated over a base temperature of 7° C. The formula for
calculating half bloom remains unchanged, and for maturity, .4 is substituted
for .6 times days from emergence to half bloom. Although the phenology model
works fairly well for sorghum hybrids planted in their normal latitude ranges
(refs. 16, 105, 87), it has rnothing in it to account for photoperiod effects
when hybrids are planted outside their normal ranges.




5.2.5 COTTON PHENOLOGY MODELS

Hesketh et al. (ref. 106) have published several papers in the process of
developing a cotton phenology model (Simcot II). The model, which has not
been published to date, estimates physiological events of cotton from daily
temperature but may not consider photoperiod.

Whisler, Landivar, and Baker (ref. 107) are also developing an as yet unpub-
lished cotton growth model (Gossym). No details about the phenology submodel
are currently available.

Cotton phenology has points in conmon with that of corn and soybean. Like
soybean, cotton is ar indeterminant plant with vegetative growth continuing
after flowering. However, like corn, most conmercial cotton varieties are
somewhat insensitive to photcperiod.




6. SUMMARY OF SELECTED PHENOLOGICAL MODELS FOR SPECIFIC CROPS

The following sections describe the most promising phenological models for
corn, soybean, wheat, barley, and sorghum. No model was found acceptable for
further testing for cotton, rice, or sunflower,

6.1 CORN

Two models are suitable for predicting phenology, and the choice of either
would be determined by the data available to run the models (tables 6-1 and
6-2). The GDD model (ref. 78) requires knowledge of the HU's necessary for
development from one stage to the next. The HU required to reach a particu-
lar stage of development is variety specific and restricts the model applica-
tion to a certain regional limit. The photothermal model (ref. 6) is
theoretically more sound than the GDD model and has rigid information require-
ments regarding the thermal and photoperiod responses to development. This
model was formulated to predict tassel initiation and has been used only by
Coligado and Brown (ref. 6). Several versions of the GDD models have been

in use for over a decade. Aspiazu and Shaw (ref. 78) evaluated six GDD
models and suggested a new version that has the least error of prediction.

6.2 SOYBEAN

The biometeorological time scale (BMTS) model (ref. 4) adapted by Major et al,
(ref. 89) is the best mndel for predicting development of soybeans. The only
change made by Major et al. in the adapted version was in the use of a

mean daily temperature rather than daily maximum and minimum temperatures.
Major (ref. 100) tested this model, along with a GDD model, for experimental
data collected at Elora, Ontario; Ames, Iowa; and Columbia, Missouri. The
BMTS model made consistently better predictions than the GDD model, and the
applicability of the model over a range of climatic conditions was quite
evident. The model coefficients were rederived for different varieties rather
than for different locations. The data requirements for running the model are
listed in table 6-3.
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6.3 WHEAT

The Robertson (ref. 4) BMTS model is the model best suited for predicting
development of spring and winter wheat. Because this model was originally
formulated for spring wheat, Robertson was not completely convinced that it
would be as applicable in predicting deveiopment in other types of wheat. The
variety-specific coefficients were the greatest drawback. Phinney and
Trenchard (ref. 90) adapted the BMTS model for winter wheat with a vernaliza-
tion coefficient. In general, the model predictions were good, showing no
particular dependence on variety and climatic factors for the same set of
coefficients. However, the limitation of the model became evident after a
certain degree of moisture stress was reached, A moisture stress factor sug-
gested by Trenchard seems to account for some of the prediction error. How-
ever, this aspect of the model needs further evaluation. The data required
to run this model are listed in table 6-4.

6.4 BARLEY

The adapted version of the BMTS model suggested by Williams (ref, 102) is the
only suitable model currently available (see table 6-5). Since the develop-
ment of barley is similar to that of wheat, using the BMTS model for predict-
ing development of barley is quite acceptable. Williams introduced a thresh-
old coefficient as one of the temperature coefficients derived in the model
to improve the model theoretically. However, there is no evidence that this
addition improved the predictions. Since the model has not been extensively
tested, 1ittle comment can be made on its range of applicability.

6.5 SORGHUM

The phenology model of Vanderlip and Arkin (ref. 87) has been tested in the
southern and central U.S. Great Plains with favorable results where detailed
information is available about hybrid and leaf number Teaf size. If values
for leaf number and leaf size of maturity groups are developed, the phenology
model could be tested for use in large area production estimates. The model
is described in table 6-6 and in section 5.8.
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7. CONCLUSIONS AND RECOMMENDATIONS

Reccomendations for further research of agromet phenological models are as
follows:

a.

C.

A bio-photothermal mode) that will predict all stages of corn development
needs to be formulated. Coligado's model (ref. 6), which predicts devel-
cpment only up to tassel initiation, is the only theoretically sound model
currently available.

The Major et al. (ref. 89) sovhean model requires testing for a wide range
of locations an maturity classes. The influence of variety and ciimatic
factors on the individual coefficients of the model needs further
investigation,

The BMTS (ref. 4) wheat model could be further improved by incorporating

into it a water stress factor that reflects the physiological response of
the wheat crop. A soil moisture budget submodel run simultaneously with

the BMTS model would be appropriate.

The vernalization coefficient of Feyerherm (ref. 91) couli be made more
sensitive to the temperature range and length of cool temperatures during
the vernalization process. An impreved function suggested by Nix (per-
sonal commupication, 1978) would accomplish this requirement.

The modified BMTS model for barley (ref. 102) has not been sufficiently

tested, nor have the coefficients been evaluated for a range of climatic
conditions., Such testing and evaluating must be done before this model

can be suggested for predicting phenology of barley.

Tha phenology model developed by Vanderlip and Arkin (ref. 87) may be
applicable te large area production estimation if leaf number and leaf
size vaiues can be determined for maturity groups rather than individual

varieties. If this is done, then the model should receive further testing.
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For cotton, corn, and soybean (refs. 106, 96, 101), researchers at several

centers are developing growth and yield models. When available, the pheno-
logy sections of these models should be tested against available phenology

data.
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