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1. INTRODUCTION

The Agricultural and Resources Inventory Surveys through Aerospace Remote

Sensing (AgRISTARS) is a 6-year program of research, development, evaluation,

and application of aerospace remote sensing for agricultural resources begin-

ning in fiscal year (FY) 1980. The AgRISTARS program is a cooperative effort

of the National Aeronautics and Space Administration (NASA), the U.S. Agency

for International Development (AID), and the U.S. Departments of Agriculture,

Commerce, and the interior (USDA, USDC, and USDI).

The goal of the program is to determine the usefulness, cost, and extent to

which aerospace remote sensing data can be integrated into existing or future

USDA systems to 'improve the objectivity, reliability, timeliness, and adequacy

of information required to carry out USDA missions. The overall approach is

comprised of a balanced program of remote sensing research, development, and

testing which addresses domestic resource management as well as commodity

production information needs.

The technical program is structured into eight major projects as follows:

1. Early Warning/Crop Condition Assessment (EW/CCA)

2. Foreign Commodity Production Forecasting (FCPF)

3. Yield Model Development (YMD)

4. Supporting Research (SR)

5. Soil Moisture (SM)

6. Domestic Crops and Land Cover (DCLC)

7. Renewable Resources Inventory (RRI)

8. Conservation and Pollution (C/P)

The majority of these projects will make direct use of information on crop

phenology. Specific areas of these projects to which phenological information

is pertinent include classification, acreage and yield estimation, and detec-

tion of episodal events.

1
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This report is a review of technical literature pertaining to the effects of

environmental and cultural factors on the phenological development of corn,

soybean, wheat, barley, sorghum, rice, cotton, and sunflower. These crops

have been identified as ones of primary interest during the formative stages
g

of the AgRISTARS program. A similar report by Doraiswamy and Hodges (ref. 1)

deals with the effect of environmental and cultural factors on yield for these

crops.

Prediction of crop growth stages (phenology) may be achieved through three

independent methods: calculating historical averages for an area (normal

crop calendar); agrometeorological modeling from knowledge of crop-weather

interactions; and detecting changes in multitemporal spectral signatures

throughout the growing season. This report will focus on the agrometeorolog-

ical modeling problem. The use of remotely sensed data is examined in a

report by Cate et al (ref. 2).

The intent of this report is to go beyond a simple citation of literature:

A general framework is presented within which a critical evaluation of past

work is carMed out. Strengths and weakness of individual models are identi-

fied to gain insight into the areas which need additional developmental work.

The problem of modeling crop phenology is presented in a generalized way as a

component of the plant/soil/atmosphere system in section 2. Details of major

environmental, cultural and genetic factors are discussed in section 3. A

description of each crop and the associated crop growth scales for each are

given in the following section. Section 5 presents several generalized model-

ing approaches and a historical review of modeling attempts for each crop.

The most promising models for each crop (if any) are summarized in section 6.

The final section gives recommendations on desirable modifications and on

needed evaluation tests.

J^_^
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2. MODELING CROP PHENOLOGY

Although many crop phenology models fail to fit neatly into any one type,

most may generally be classified as one of the following types.

a. Statistical models -- use the least squares technique to choose variables

and significant interactions and to evaluate coefficients

b. Realistic physiological models - -involve detailed simulation of many

plant process [Plant physiological theories are used to choose variables

and interactions, and experimental data are used to evaluate coefficients

(ref. 3).]

c. General physiological models — involve simulation of a few plant proc-

esses from a few variables based on physiological principles and theories

with experimental data used to evaluate coefficients

These three basic model types may be evaluated for the AgRISTARS program.

Statistical models include models by Robertson, Haun, Coligado, (refs. 4-6).

Although these models are easier to develop than are physiological models,

their development requires many years or points of data, and they are &,'pend-

able only within the range of conditions in the developmental data set.

Because most meteorological variables are highly intercorrelated, statistical

models include variables and interactions which do not directly affect the

modeled response.

Of the three model types, realistic physiological models are the most laborious

to develop and test (ref. 7). Their primary application is in evaluating plant

physiological theories (ref. 3). Although sophisticated field input data

requirements for verification and operation make this type of model unsuitable

for estimating large area crop growth, some realistic models may be simplified

into general physiological models. Realistic models have been developed by

de Wit, Duncan, Stewart, Monteith, et al. (refs. 8-11).

General physiological models may be simplified from realistic physiological

models or be based on experimental data for a few key physiological processes

3



(ref, 3). This model type includes a wide range of models (refs. 12-16) and

has greater potential for accuracy and stability over a W &er range of envi-

ronmental conditions than have statistical mode1v,.

Figure 2-1 shows an overview developed by the authors to disc'±ss how crop

phenology is controlled by meteorological variables, varieties, planting

date, day length, and soil nutrient supply. The planting date begins the

crop growth cycle. Day length causes a varietal photoperiod response. Tem-

perature and precipitation (and solar radiation and soil factors, not shown)

control the amount of soil moisture available to the crop. Soil nutrient

supply and available soil moisture interact to supply the crop with minerals;

and temperature, modified by soil moisture and variety, causes a thermal

response.

For a statistical model, the above-mentioned variables as well as other corre-

lated variables such as solar radii&Jon, rain days, average rainfall or tem-

perature in various months and number of days from planting to emergence are

regressed against days between various growth stages. Products of two or more

terms and even quadratic or cubic variables may be added to the model. If

the range of conditions is not too extreme, the resulting equation will accu-

rately predict stages both in the development data set and in other data sets

in a similar environment.

For a realistic physiological model, one might grow the plant at the organ

level (e.g., leaves, roots, stems, or flowers) or for some processes at the

cellular level (e.g., floral initiation). The output of such a model may be

used to evaluate the theories of plant physiology on which the model is based.

For a general physiological model, one might derive equations for the pheno-

logical response to photoperiod and temperature from growth chamber data for

different maturity groups of a crop. These equations should describe the

photoperiod-temperature response over a wide range of conditions. Other equa-

tions would describe the soil moisture effect on temperature and the soil

nutrient effect on phenology.

/2
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Figure 2-1.--Major factors influencing crop development.
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3. CROP PNENOLOGY

The principal variables controlling crop phenology are planting date, day

length, temperature, and plant genetic component. In some situations, mois-

ture supply and nutrient availability may also strongly affect phenology.

3.1 PLANTING DATE

Planting date starts the biological clock by determining the meteorological

influences to which the plant will actually be subjected. Planting date is

influenced by meteorological, social, and economic factors, as well as by

idiosyncrasies of individual farmers.

3.2 PNOTOPERIOD

The response of plant phenology to day length is called photoperiodism. In

1920, Garner and Allard (ref. 17) became the first to study 'Ihe photoperiod

effect on flowering of plants. Subsequently, it was found Lc.wt photoperiod

influences not only the formation of flowers, fruit, and seeds but also the

character and extent of branching, leaf abscission, pubescence, root develop-

ment, dormancy, fruit ripening, senescence, and other morphological phenomena.

The influence of photoperiodism on phenology is reviewed by Major and Johnson

(ref. 18), glondin et al. (ref. 19), and Vergara et al. (ref. 20).

Flowering is the major crop response to photoperiod. In terms of a normal

24-hour day-night cycle and ignoring complexities revealed by growth chamber

studies which consider longer or shorter day-night cycles (ref. 21), it may

be said that plants respond to photoperiods that are shorter or longer than

some genetically determined photoperiod length; i.e., short-day plants and

long-day plaits, [See figure 3-1 (ref. 22) and the following discussion.]

a	
For a qualitatively photoperiod sensitive plant if the photoperiod is longer

(for a short-day p::,nt) or shorter (for a long-day plant) than the critical

photoperiod, no photoperiod response occurs and the plant does not flower

(ref. 18), while for a quantitatively photoperiod sensitive plant flowering

is delayed.
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Figure 3-1.= Number of days required for the plant to reach some stage as
a function of photoperiod for long-day (a) ai,,d short-day (b) plants.
(From reference 22.)
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If the photoperiod is shorter (for a short-day plant) or longer (for a long-

day plant) than the optimum photoperiod, the plant flowers independently of

photoperiod length (ref. 18), unless the photoperiod is so short that the

photosynthate supply limits growth and delays development (ref. 23).

If the photoperiod is between the critical and the optimum lengths, flowering

occurs more rapidly as the photoperiod length extends from the critical to the

optimum length (ref. 18). The rate of increase in development rate as the

photoperiod changes from the critical to the optimum photoperiod lengths

defines the photoperiod sensitivity.

Short day and Inng day are poor terms for this phenomenon because some short-

day varieties of corn may have a longer critical day length than some long-

day varieties of winter wheat.

For domesticated crop plants, the photoperiod response may be more complex!

Development in some varieties seems independent of day length (ref. 24), at

least in areas where such varieties have been adapted. This is because the

photoperiod is either longer (Long-day plant) or shorter (short-day plant)

than the optimum photoperiod or because the photoperiod sensitivity of the

variety is low.

Several consecutive phenological events may have different photoperiod require-

ments. Thus, the minimum number of photoinductive cycles (days) to initiate

floral development in some rice varieties is insufficient to cause stem

elongation, so several additional cycles are needed to cause head emergence

(ref. 20). Auxin may cause head emergence without additional photoinductive

cycles (ref. 25).

Once the photoperiod induction requirement is satisfied by a specific day

length for a given number of days, the phenological process is initiated and

continues irrespective of change in day length.

,1^



The influence of day length on plant development is often modified and at

times inhibited by other environmental factors, particularly temperature.

Many plants do not respond to critical photoperiods unless their thermal

requirements are met (ref. 26). Biennial plants such as winter cereals fail

to flower until they pass through a period of low temperature (vernalization).

Also, there are critical temperatures below which a plant will not flower

even though the day length requirement is satisfied. Certain plants may be

induced to flower by substituting a thermal response for the photoperiodic

response (ref. 19).

3.2.1 FLOWERING RESPONSE TO PNOTOPERIOD

Plant growth may be divided into four stages in to mas of photoperiod responses:

(1) basic vegetative period (bvp) when floral induction and floral initiation

(FI) cannot occur, (2) photoperiod sensitive period (psp) when floral induc-

tion occurs as soon as light, temperature, and water requirements are met,

(3) the reproductive stage front FI to flowering, and (4) the grain filling

or ripening stage.

Several possible reasons have been advanced for the existence of the bvp

(ref. 27): (1) the first leaves are insensitive to photoperiod, (2) the

first leaves are nearly insensitive, so the induction level is not reached

until the much more sensitive later leaves are formed, (3) the first leaves

senesce before they can induce flowering, (4) the necessary total leaf area

is not reached until later leaves emerge, or (5) the growing plant is unable

to respond to the floral stimulus, or the stimulus is unable to reach the grow-

ing point during early growth. If the bvp is due to one of the above reasons,

then it could be shortened by warm temperatures hastening leaf emergence

and expansion (reasons 1, 2, 4) or lengthened by warn temperatures hastening

leaf senescence (reason 3). If bvp is due to reason 5, its duration could

be affected by temperature, intercepted solar radiation, water stress,

nutrient uptake (to produce protein or hormone molecules needed for FI), or

possibly other factors.
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The bvp exists in winter wheat (ref. 28), rice (ref. 20), sorghum (ref. 29),

soybean (ref. 18), and possibly cotton (ref. 30). Confirmation of the bvp

has not been found in barley, corn, and sunflower. It is apparently not

present in some spring wheats (ref. 31). In winter wheat, vernalization ends

the bvp. Thereafter, long days and high temperatures induce FI in winter

wheat. Both qualitative and quantitxt-!ve photoperiod sensitive plants may

have the psp. In qualitative pho a opr:r t od sensitive plants it may last as

long as 12 years if the proper photoper.od is not received (ref. 32). In

quantitative photoperiod sensitive plants, psp may range from zero days up

to 30 days.

Many plants are sensitive to extremely small differences in daylength. Thus

in Malacca, where daylength varies by only 14 minutes, days from planting to

flowering for Siam-29 varies by up to 168 days, depending on date of planting

(ref. 33).

For sunflower (ref. 19) and cotton (ref. 34), an appropriate temperature

treatment may be substituted for a photoperiod treatment to induce floral

initiation and flowering.

3.3 AIR TEMPERATURE

Generally, air temperature affects the rate of plant development (ref. 21) as

shown in figure 3-2 (refs. 18 and 35). Below some genetically determined

temperature, development does not occur. Above that temperature, the develop-

ment rate increases with temperature until a peak rate or plateau is reached

(ref. 36). The dashed line in figure 3-2 is an example of the smooth, contin-

uous curve indicated by the plant's phenological response to photoperiod. This

response is often modeled as a quadratic or higher order function. The temper-

ature response may also be a limiting factor or law-of-the minimum type of re-

sponse (ref. 35) where temperatures above and below the optimum temperature

range limit development in a linear fashion; whereas in the optimum temperature

range, development proceeds at a maximum rate or is limited by some other
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factor. The continuous line in figure 3-2 is an example of this type of

response.

In temperate zone plants, such as small grains, high temperature accelerates

the development rate and results in a small mature plant. In plants of trop-

ical origin, however, high temperature affects growth more than it affects
n	

development, resulting in a large matve plant at an earlier date.

3.4 THERMOPERIODICITY

One of the objections to the use of degree-day (DD) models is that they do not

take into account the diurnal temperature regime known as the thermoperiod.

Phytotron experiments have demonstrated that the development of certain

plants depends on the diurnal temperature range (ref. 37) rather than on

the mean daily temperature (ref. 26). For example, high night temperatures
accelerate vegetative growth of tomatoes but inhibit flower size and fruit

development. In many plants, translocation is found to increase with decrease
irg temperature to some minimum temperature (ref. 38). The quality of fruit

and seed is often affected by thermoperiodicity. Such is the case in Hawaii,

where the highest quality sugarcane juice is associated with low night and

high day temperatures (ref. 39).

3.5 VERNALIZATION

Biennial plants require a period of cold before floral initiation can be

induced by day length (ref. 19). Flowering of winter wheat and winter barley

is delayed or prevented in a continuously warm climate (ref. 28). A few weeks

of near-freezing weather in winter prepares the plant for floral induction by

longer spring days. Spring-planted grains and wheat grown in semitropical or

tropical regions have little or no vernalization requirement (ref. 31). A

study of Australian wheat varieties found a wide range of responses to vernal-

ization and photoperiod (ref. 40).



3.6 SOIL TEMPERATURE

From planting to emergence, the plant is affected by soil temperature rather

than air temperature. After emergence, however, the plant is increasingly

affected by air temperature, although air temperature remains a secondary

,nfluence until the plant's apical meristem is above ground. (Soybean is

an exception to this pattern because at emergence the apical meristem is above

ground and air temperature begins to have a primary effect on its growth.)

After the apical meristem is above ground, the effect of soil temperature

decreases sharply.

3.7 SOIL MOISTURE

Severe water stress delays development of crop plants capable of suspending

growth, and kills plants incapable of becoming dormant. This dormancy effect

has been reported for barley (refs. 41 and 42) and sorghum (ref. 43). For

sorghum, a 10-day wilting period before floral initiation was reflected in a

10-day delay in flowering. Stress after floral initiation of 14, 21, and

28 days delayed flowering by 10, 24, and 30 days. Water stress of sorghum

just before floral initiation reduced the number of leaves initiated, sug-

gesting a time lag between floral induction and floral initiation during which

additional leaves are initiated if no water stress occurs.

Water stress has also been reported to delay floral initiation of corn, but

the degree of water stress waz not well defined (refs. 41 and 44).

Moderate water stress reduces transpiration and so increases leaf temperature

(ref. 45) which may speed up or slow down plant development (see section 3.3).

Excess water reduces soil temperature variability and also reduces soil oxygen

supply and so may delay development or injure the plant.

f^



3,8 NUTRIENT EFFECTS

Soil nutrients, the effects of which can be discovered only through carefully

controlled experiments, may affect plant development and yield in a wide

variety of ways. For example, excess nitrogen accelerates vegetative growth

and inhibits flowering of many crops, while excess phosphorus accelerates

development (ref. 46).

3.9 VARIETAL EFFECTS

Over thousands of years, the main crop plants have been bred into many varie-

ties which now have a wide range of responses to factors mentioned in sec-

tions 3 through 3.8., Thus, in the Northern Hemisphere, corn is found from

Canada (latitude 58 0 N.) to the Tropics, from sea level to an altitude of

4000 meters, and in growing seasons which range from 50 to 330 days

(ref. 47). Wheat varieties grow from latitude 66 0 N., throoghout

the temperate regions, to the equatorial highlands of Kenya and Ecuador

(ref. 47). Barley and soybeans are less widely adapted and are not found

in extremely low or extremely high latitudes, respectively.
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4. DESCRIPTION OF CROPS

4.1 CORN

Corn is a tropical C4 , warm season, short-day, cereal grass. Highest corn

yields are in areas with irrigation, high solar° radiation, hot days, and cool

nights.

Some researchers have reported day-neutral varieties of corn (refs. 18 and 24).

Such varieties may be qualitative short-day plants with an optimum day length

which is longer than that of experimental conditions, or they may be quantita-

tive, short-day plants with very low photoperiod sensitivity.

Although corn varieties are adaptable to a wide range of latitudes and alti-

tudes, they grow best in a mean temperature of 21° C. Development is

hastened and yield is reduced in areas where the mean temperature is above

27° C. While some varieties are injured by temperatures below 7° C, most can

tolerate a light freeze during early vegetative growth (ref. 47).

The flower has separate male and female parts. The male flowers are in the

tassel at the top of the plant, while the female flowers are in cobs or ears

at nodes along the middle of the stem. Because corn is a short-day plant,

adapted corn varieties flower as the days become shorter; i.e., after the

summer solstice.

Under moderate water stress, leaf elongation stops. Under more severe water

stress, stomata close, transpiration is reduced; and leaf temperature increases

above air temperature, which may hasten or delay development.

Because corn has brief stages of floral initiation and anthesis, yield may

be reduced by short periods of stress at these stages. However, before floral

initiation and while the apical meristem remains below ground, the plant is

tolerant of mild frosts.



In 1977, world production of corn was 344 million metric tons, of which

41 percent was produced in the United States. World trade in corn was

64.2 million metric tons, of which 71 percent was produced in the United

States (ref. 48).

4.1.1 DEFINITION OF GROWTH STAGES

Hanway (ref. 49) has provided the most complete definition of corn growth stages

(see table 4-1). The Hanway scale, however, skips the tassel-initiation stage,

which is controlled by day length and temperature. Instead, the Hanway scale

defines stages before tassel emergence by number of leaves, which is con-

trolled by temperature, soil moisture, and soil nutrient supply. Also missing

from this scale is the tassel-emergence stage, which is primarily controlled

by day length, temperature, and water stress.

For yield modeling, important stages are planting, emergence, (Hanway 0),

floral initiation, tasseling (Hanway 5), and maturity (Hanway 10). Floral

initiation does not correspond to any Hanway stage (see table 4-1) because

it is controlled primarily by day length, whereas Hanway stages l and 2 are

primarily temperature dependent.

For ground observation, the following stages are recommended; Planting,

Hanway 0, tassel initiation, Hanway 3, Hanway 4, tassel emergence, Hanway 5,

Hanway 9, Hanway 10, and harvest. Stages that are visible from the edge of

a field are planting, Hanway 0, tassel emergence, Hanway 5, and harvest.

Observation of the other stages is difficult since several plants may need

to be cut open fcr inspection.

4.2 SOYBEAN

The soybean is a temperate, C 3 , warm season, short-day legume.

Because it is a legume crop, the soybean has roots which support nitrogen-

fixing bacteria, making it a high-protein crop that requires little

nitrogen fertilizer (ref. 47).
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Determinant varieties of the soybean cease vegetative growth at flowering and

are usually later than indeterminant varieties which continue vegetative growth

during flowering. The soybean is a branching plant with the potential for

branches or flowers at each node.

The basic vegetative period (bvp) of the soybean is quite short, possibly less

than 10 days from emergence. Flowering can be induced after the full expan-

sion of the primary leaves (first true leaves) although the flower buds require

another 20 days of development to become readily visible (ref. 50).

During the photope riod-sensitive phase, which is usually of indefinite length

in the soybean, floral initiation is delayed or prevented and flowering is pre-

vented for most varieties by 16-hour day lengths. Varieties in the high

latitude maturity groups (0-1II) have long critical photoperiods and greater

photoperiod sensitivity than varieties from the intermediate and low latitude

groups.

Soil temperatures below 20° C delay germination, i_ut germination does not change

with temperatures from 21° C to 32° C. All growth process cease at about 10° C.

Young and nearly mature plants can tolerate a light frost. Although tempera-

ture above 38° C may not affect development rate, high temperature causes a

reduction in seed quality and quantity (ref. 51).

During 1977, world soybean production was 61 million metric tons, of which

57 percent was produced in the United States. World soybean trade was

19.6 million metric tons, of which 83 percent was produced in the United

States (ref. 48).

4.2.1 DEFINITION OF GROWTH STAGES

The soybean growth-stage scale which was developed by Fehr and Caviness

(ref. 52) is shown in table 4-2. This scale and the Thompson scale (ref. 53)

are nearly identical. For yield modeling, important stages are planting,

emergence (VE), floral initiation (about 2 weeks before R1), and the stages

of flowering and bean filling (RI, R2, R3, R4, R5, R6, and R8). For ground
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observation, recommendations include observation of all stages in the Fehr-

Caviness scale, planting and harvest dates, and floral initiation date. Stages

which are visible from the edge of a field are planting, VE, VC, VO, R2, and

harvest. Observation of other stages may be important but may require close

inspection of several individual r4 ants, making such observation difficult,

4.3 WHEAT AND BARLEY

Wheat and barley are cool season, C 3 , long-day, cereal grasses that are grown

throughout the temperate regions of the world. Highest yields for both wheat

and barley are found in northern Europe and the northwestern United States

because of the mild winters, cool su-tmers, and ample rainfall in these areas

(mf, 47).

Heat tolerance in wheat and barley is much lower than that which is found in

corn or soybeans. In India, even heat resistant varieties are planted so as

to flower before the hottest part of the season (ref. 54). Both crops have

winter and spring varieties. Winter varieties are planted -in the fall and

require a cold period of several weeks (vernalization) before longer spring

days can trigger flowering. Wheat varieties are generally quantitatively

long-day plants, that is with flowering delayed but not prevented by short days.

Barley varieties generally have slightly shorter growth periods than do wheat

varieties, and in given areas are planted later and mature earlier than wheat.

On the other hand, wheat has a wider environmental range than barley, and

wheat varieties are adaptable to somewhat warmer climates. The flowers of

both wheat and barley are in the ;heads at the top of the stem.

World wheat production in 1977 was 382 ,trillion metric tons, of which 14 percent

was produced in the United States. World trade in wheat was 74 million metric

tons, of which 41 percent was from the United States (ref. 48).

4.3.1 DEFINITION OF GROWTH STAGES

Feekes (ref. 55) provided the first detailed growth stage scale for small

grains (see table 4-3). Several of Feekes" stages (such as 5, 9, 10.2 through

46",



10.5, and 11.3) are described rather subjectively. Recently, however, Waldren

and Flowerday (ref. 56) developed a scale for wheat (see to bie 4-3) in which

stages are defined more objectively than the Feekes scale stages. For yield

modeling, the most important stages are planting, beginning tillering, joint-

ing, heading, dough, and harvest. Recommendations for ground observation of

wheat and barley include observation of the Waldren and Flowerday stages and

planting dat^ because they are more precisely and objectively defined than

the Feekes scale stages. Waldren-Flowerday stages 0 and 5 are visible from

the edge of a field. However, observation of other stages may require close

inspection or handling of several plants.

4.4 SORGHUM

Sorghum is a tropical, C4 , warm season, short day, perennial grass. It ranges

from 2 to 15 feet in height. Flowers and later seeds are found in a loose-to-

dense panicle or head at the top of the stalk. Additional heads may occur on

tillers growing from nodes near the base of the plant. Sorghum is generally

planted about 2 weeks after corn in temperate regions, after the soil becomes

warm (200 -27° C). The optimum temperature is about 27° C. The plant can tol-

erate quite high temperatures, but sustained heat during grain filling reduces

yield (ref. 47). Temperatures below 15° C injure sorghum; so, in temperate

regions, the plant dies in the fall. In continuously warm areas, several

grain harvests may be obtained from one planting.

Although summer rains or irrigatior ire needed for good yields in hot regions,

sorghum is quite tolerant of drought stress. The plant becomes uormant under

severe water shortage and resumes growth upon rewetting (ref. 41). This char-

acteristic may cause yield reduction due to frost damage if extended drought

delays maturity too far into the fall in temperate regions. Short-season

sorghum varieties can be grown, in the Negev region of Israel on 20 centimeters

of stored soil moisture (ref. 57). Sorghum tolerance of water stress is partly

due to a waxy cuticle deposited over leaf and stem zurfaces that reduces water

loss when the stomata are closed.
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N

w
N
s

N

a
N

o
N

s
N

o
N N

e
_p

N N

s
N

e
N N

e.
N

â
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e

e
.3
e

v
a
c

v

e

e

e

E
s
e

e
a
e

V
a
e

V

e

e
a
e

e

e

e
a
e

w
a

e
a
e

4
e e

P PNO_r
LR 4. N

A'OM
N N• N

r
_p69 fi

r

firr
w!

^p'

N
L

t
L

K
L

4
L

t
l

<.
L

4
L

K !
1. 1.

t
4L

K
L

!

L

K
!..
t

L

C
L

Q

pL
rn
C
G
^

^

O

A
E

°
u A u

u
.°

a
N

u
a

°
..a.

.9u

^
V

sŷ
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Sorghum is one of the best crops for producing a good yield in warm or hot,

dry, nonirrigated conditions. It also grows well in hot humid conditions.

Its chief disadvantage is that it depletes the soil nutrient supply, and the

succeeding crop must be fairly heavily fertilized.

Sorghum is not used for green pasturage since young shoots contain about

0.01 percent hydrogen cyanide which can be fatal to livestock. Sorghum stubble

is high in sugar (15-50 percent compared to 1-5 percent for corn) and may find

use as an energy source.

Most sorghum varieties seem to be quantitative short-day plants; e.g., flower-

ing is delayed rather than prevented by short days. Flowering of tropical

sorghum varieties is delayed by days longer than 11.1 hours to 12.6 hours

(ref. 58). In one study, 3 U.S, sorghum varieties were delayed by 14-hour

days (ref. 59) and, in another study, by 17-hour days (ref. 60). Some U.S.

sorghum varieties were found to have an approximately 15-day bvp (ref. 60).

The bvp might be shortened by rapid growth due to high temperatures and high

photosynthesis associated with long days during the bvp (ref. 60). High

temperatures clearly cause rapid leaf initiation and expansion in sorghum

(ref. 14).

4.4.1 DEFINITION OF GROWTH STAGES

Vanderlip and Reeves (ref. 61) have defined growth stages of sorghum (see

table 4-4). For yield modeling, the most important stages are planting,

emergence, floral initiation, half bloom or anthesis, and maturity. For

ground observation, we recommend the stages listed in table 4-1, i.e., the

stages defined by Vanderlip and Reeves (ref. 61) and planting and harvest

dates. p lanting, emergence, half bloom, maturity, and harvest can be observed

from the edge of the field. The other stages require close inspection or

cutting open of several plants.
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4.5 RICE

Rice is an annual, short day, C 3 , tropical grass. Flowers and later seeds are

found in a loose -to-dense panicle or head at the top of the stalk. Additional

heads may occur on tillers growing from nodes near the base of the plant.

Highest yields are in areas with irrigation and high solar radiation.

Flowering is prevented and most rice varieties are injured by temperatures

below 15 C (ref. 62). Temperatures above 35° C or below 15 C before or during

anthesis cause sterility in many rice varieties (refs. 63-66). Sterility

occurs in most rice varieties at temperatures above 41° C (refs. 64-66).

Rice is unique among major field crops in thriving in standing water during

most of its growth cycle (ref. 47). Up to 20 pounds per acre of nitrogen may

be fixed by bluegreen algae living in the paddies where rice is growing, which

slightly reduces the requirement for nitrogen fertilizer to obtain high yie':a.

Rice is grown from the equator to about latitude 40 0 . In the tropic areas,

two or more rice crops may be harvested if sufficient water and sunlight are

available.

Although some researchers have reported long-day rice varieties, rice is

clearly a short-day plant (ref. 67). Twelve reportedly long-day varieties

of rice were tested at the International Rice Research Institute (IRRI) at

Los Banos, Philippines, (ref. 67) and all were qualitative or quantitative

short-day plants.

The basic vegetative phase (bvp) of rice has been reported to last from

14 days to 63 days (papers cited by Vergara et al., ref. 20). The photo-

period-sensitive phase has been found to range from 0-to-30 days for quan-

titative short-day rice varieties (ref. 20) and up to 12 years for a quali-

tative short-day rice variety (ref. 32). For qualitative photoperiod sensi-

tive varieties, the critical photoperiod ranges from 13 to 16 hours. The

optimum photoperiod for qualitative and quantitative photoperiod-sensitive

varieties ranges from 10 to 13 hours (ref. 67). At 8-hour photoperiods,



flowering of most varieties is slightly delayed, probably due to insufficient

photosynthesis (ref. 23).

In 1977, world production of rice was 363 million metric tons, of which about

1.5 percent was produced in the United States. World trade in rice was

8.4 million metric tons, of which 26.5 percent came from the United States

(ref. 48)

4.5.1 DEFINITION OF GROWTH STAGES

Feekes (ref. 55) provided the first detailed growth stage description for

wheat and other small grains (see table 4-3). Several of the Feekes' s';Ages,

such as 5, 9, 10.2-10.5, and 11.3, are described rather subjectively. Recently,

however, Waldren and Flowerday (ref. 56) developed a scale for wheat (see

table 4-3) in which stages are defined more objectively than the Feekes scale

stages. For yield modeling, the most important stages are planting, beginning

tillering, jointing, heading, dough, and harvest.

Because of morphological similarities between wheat and rice (both are deter-

minent, annual, tillering grasses), the Waldren and Flowerday scale may also

be applied to rice. For ground observation for rice, we recommended observa-

tion of the Waldren and Flowerday stages and planting and harvest dates.

4.6 COTTON

Cotton is an indeterminant, C3 , tropical annual or perennial divot. It is

grown primarily for the fiber found in fruit around the seeds and secondarily

for the cotton seed and cotton-seed oils. In 1977, cotton production was

63.7 million bales worldwide, of which 23 percent was grown in the United

States. International trade in cotton was 19.5 million bales, with 28.7 per-

cent from the United States (ref. 48).

The cotton plant produces a branching stem with flowering or vegetative

branches possible at each node. As the lower node begins to produce flowering

nodes, the growing points at the tips of the upper branches continue to produce

new leaves and vegetative branches (ref. 68).

47
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Cotton grows best in areas with mild, moist springs and warm, moist summers

with mostly sunny days during the growing season. Except in irrigated areas,

cotton requires about 50 to 150 centimeters of rain per year (ref. 47).

Because cotton continues producing new leaves, branches, and flowers indefinitely,

it is usually harvested only after being killed by drought, defoliants, or

frost.

The cotton seedling is especially sensitive to low temperature injury during

the first few hours of germination and then 24 to 30 hours later (ref. 69).

The plant grows in the 15 0 to 50° C range, with the optimum temperature at

34° C, and the mean summer temperature greater than 25° C. Two species of

cotton ( Gossypium arboreum L. and G. herbaceum L.) are believed to have been

domesticated in south Asia and Africa, and two species (G. hirsutum L. and

G. barbadense L.) are believed to be from Central or South America (ref. 70).

Cotton grows from latitude 37 0 N to 32° S except in the Ukraine where it is

found up to 47° N latitude (ref. 47). It generally needs a frost-free growing

season of 180 to 300 days.

Although cotton is a short-day plant, many varieties are quantitative short

day plants and show very little response to photoperiod in terms of first-

flowering date (ref. 47). Floral initiation begins no earlier than 14 to

16 days after emergence (ref. 71) at the same time as the expansion of the

lst through 3rd true leaf. Long days or high (7 0 -8 0 C) temperatures may delay

first floral initiation. Beginning flowering is earlier, with increasing

temperatures up to 25° C.

4.6.1 DEFINITION OF GROWTH STAGES

A complete set of cotton growth stages from planting to harvest has not been

located in the technical literature. Based on the work of several researchers

(refs. 72, 68, 69), the stages in table 4-5 are proposed to cover the critical

events in the cotton cycle. First square or first flower bud visible follows

floral initiation by about 10 days (ref. 73).
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4.7 SUNFLOWER^
i

The sunflower is a determinant, annual, C 3 , temperate, short-day dicot. The

sunflower is grown mostly for oil from its seeds but also for silage and for

feeds and confectionary from the seeds (ref. 47).

The sunflower is more tolerant to high and low temperatures than are many other

summer crops. Until the 6-leaf stage, the young plants can stand temperatures

down to -5° C, and during the seed-ripening period, the plants are not harmed

at -20 C (ref. 74). The sunflower requires many days of full sunlight. Max-

imum assimilation rate occurs at 28° C, but temperature has little affect on

assimilation from 18° C to 32 0 C (ref. 75).

Although the sunflower plant is not very resistant to plant water deficits,

(ref. 74) it grows relatively well in semiarid conditions because a very

deep (2.7m) and very wide (3.0m) root system allows the plant to extract water

from a large soil volume (ref. 74).

The sunflower ranges in height from 5 to 20 feet. Seeds are borne in large

flowers at the top of the main stem and of any secondary stems. Until anthesis,

the head and leaves of sunflowers are phototropic, always moving to face the

sun (ref. 76).

As a quantitative short-day plant, sunflower phenology is relatively insensi-

tive to photope riod (ref. 74). Some research in predicting sunflower stages

has used growing degree days and latitude (ref. 77) to predict beginning of

flowering.

World production of sunflower seed was 10.5 million metric tons in 1977, with

5 percent of that in the United States. The U.S.S.R. is by far the largest

y	 producer of sunflower seed (ref. 48).

4.7.1 DEFINITION OF GROWTH STAGES

Robinson (ref. 74) described the sunflower growth stages which are shown in

table 4-6. Head visible follows floral initiation by about 10 to 20 days.
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For yield modeling, all the defined stages are important and should be noted

in ground observations.



5.0 PHENOLOGICAL MODELS

The following two sections will review phenological models by modeling approach

(section 5.1) and by specific crop (section 5.2). In most cases the generic

equations of a modeling approach will be presented in the first section with

crop specific coefficients in the following section. The most promising models

will be, summarized in section 6.

5.1 GENERAL MODELING APPROACHES

Phenology or plant development may be defined as the sequence of ontogenetic

events involving both growth and differentiation, leading to changes in func-

tions and morphology. It is an enormously complex process which involves

controls at molecular level; the activation and repression of genes; and dif-

ferentiation leading to organ formation, maturity, and senescence. Although

this subject has been studied in depth, our present knowledge of control

systems is still inadequate because of the complexity of the process. Thus,

there has been no attempt to model plant phenology from the available basic

information. The most comprehensive models have attempted to predict plant

development as influenced by weather by incorporating two basic plant

responses; namely, thermal and photoperiodic. This discussion of significant

models available will be organized from the simple thermal response models

to a more complex treatment of photothermal interactive models.

5.1.1 THERMAL MODELS

Temperature affects plant development through its influence on the rate of

plant metabolic processes. Low temperatures may retard development, and

increasing temperature (up to a limit) accelerates progress toward maturity.

An arbitrary scaling measure used to describe temperature influence on plant

phenology is heat units (HU's) or growing degree-days (GDD's). The concept

of HU's and GDD's dates back more than a century. It postulates that plant

growth and development are dependent upon the total amount of heat the plant

receives. There are some subtle differences between the two models as used

in the literature. In estimating HU's, one is defining the average response

of plants to maximum and minimum temperatures. The parameters required to



calculate HU's are maximum and minimum temperatures and a threshold temperature

(TH), below which development is inhibited. The DD (degree day) is a measure

of the departure of mean daily air temperature above the minimum TH.

HU is a more frequently used term; and, in agronomic literature, it is usually

applied to corn development. Aspiazu and Shaw (ref. 78) reviewed six dif-
ferent methods of HU calculations for corn development (refs. 79-82) and

suggested that the model used by Brown (ref. 83) is the method with the least

variability. Brown (ref. 83) estimated the contribution of maximum (TMAX)

and minimum (TMIN) temperatures (degrees Fahrenheit) to GDD's as follows:

Maximum temperature effect 
YMAX r-"

 1.85(T
MAX - 

50) - 0.026(T
MAX
	50)2

Minimum temperature effect 
YMIN = TMIN - 40 (1)

HU = (YMAX + YMIN)
2

The DD method was also used in predicting harvesting dates (ref. 84) and plant-

ing dates (ref. 85). Lindsey and Newman (ref. 86) developed the most precise

method, taking into account the changes in diurnal air temperature. The

t'>ree conditions for computation of DD are as follows:

a. If MIN 5 TH 5 MAX, DD = (MbXX--
 TH)

MINT'

b. If TH?MAX, DO=0..

c. If TH < MIN, DD = (Average - TH)

In spite of its lack of theoretical soundness, the HU /DD method is easy to

apply and has been widely used to guide agricultural operations and the

planning of land usage. The success of this method depends on a close

relationship between radiation and temperature, photoperiod and temperature,

and to varieties adapted to local photoperiods.
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The sorghum phenological model described by Vanderlip and Arkin (ref. 87) may
be considered as a heat unit model with heat unit base temperatures specified

for emergence, floral initiation, half bloom, rate of leaf appearance of the

first 5 leaves, rate of leaf appearance of later leaves, and rate of leaf

expansion. This model is described in section 5.2.4.

a
5.1.2 PHOTOTHERMAL MODELS

The HU/DD concept assumes that photoperiodic effects do not influence the

development rate of plants. As discussed earlier, photoperiodic effects are

very pronounced during certain stages of development, and the photothermal

interaction is quite complicated. Thus, the DD method has to be adjusted with

changes in location. The three following sections review work by three

researchers to develop photothermal models. The work of Nuttonson, Robertson,

and Coligado and Brown represents increasingly sophisticated photothermal

models.

5.1.2.1 Nuttonson Model

Nuttonson (ref. 88) conducted a study on the range of DD requirements for

development of marquis wheat. The data covered a range of photoperiod and

thermal regimes. Figure 5-1 shows the integration of photothermal responses

of marquis wheat development.

Nuttonson's photothermal concept could be written in mathematical form for

development between stages Sl and S2 as -follows:

=f S2Sl F,(P) x F 2 (T)dt	 (2)
.1 

where S1 and S2 are arbitrary numbers and F l and F2 are functions relating

development (t) to temperature (T) and photoperiod (P).

For a given stage of development in a mathematical form that assumes a linear

photothermal response and equal influence of night and day temperatures

1 = k 2ZP(T - b0 )	 (3)

1

3y



.Alaska

.Saskatchewan, Canada

• .North and South Dakota

'•Nebraska

t

60

z
^v

40
+o
bJ

20
Mexico*

2000	 3000	 4000

E degree day
[0° C (32 0 F) threshold temperature]

Figure 5-1.— Changes of cumulative DD's as they occur
with changes in latitude (ref. 88).

e5^



where k2 is the development rate per hour of photoperiod per degrees Celsius,

Tis the mean diurnal temperature (degrees Celsius), and b0 is a temperature

coefficient.

5.1,2.2 Robertson Model

Robertson (ref. 4) expanded on Nuttonson's photothermal concept for spring

wheat development in the following manner.

a. The response of temperature is nonlinear, allowing for upper and lower

critical limits as well as an optimal value.

b. The response to phutoperiod is also a nonlinear function, allowing for

thr, cardinal points.

c. Night and day temperature responses are considered separately.

d. The above three factors are considered over a fairly short phenological

period when phenological processes are uniform.

The final equation of Robertson's (re F . 4) triquadratic model is as follows:

S2

	

1 = Maturity =	 k a l (P	 a 0 ) * a 2 (P - a0) 21

	

h Ill (
T MAX 	 b0) + b2 (TMAX - 

1
0 )2 * d1(TMIN - b0) + d 2 (TMIN - b0 )2 } 1 (4)

Coefficients a 0 , a l , a 2 , b0 , b l , b 2 , d l , and d 2 are determined by an iterative

regression technique which provides the best relationship between the three

environmental factors and their interactions for the set of data used. The

values of the coefficients are given in table 5-1.

The stages considered to have fairly uniform phenological processes are plant-

ing, emergence, jointing, heading, soft dough, and hard dough/ripe. Although

the Robertson model is theoretically more acceptable than the methods dis-

cussed earlier, there are drawbacks to its use. For instance, it was diffi-

cultto obtain coefficients that covered the complete range for each factor.

Additionally, the model was limited to conditions represented by the data

set used.
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As expected, the model showed no photoperiod response during the planting-

to-emergence stage. However, the thermal response was quite supportive of

those reported in the literature. The greatest response to photoperiod

occurred during the emergence-to-jointing stage. The model did incorporate

both linear and curvilinear responses wherever the data permitted. Maximum

and minimum temperature and photoperiodic responses for each stage of devel-

opment were used in generating the development rates. This made the model

sensitive to small changes in environmental conditions and more applicable

over different environments. The Robertson triquadratic model performed

extremely well in comparison to the HU and photothermal models for the test

data of spring wheat development (ref. 4).

Major et al.. (ref. 89) modified the Robertson spring wheat model to determine

the rate of development of soybeans by using a mean daily temperature instead

of maximum and minimum temperatures. The modified form is as follows:

S2
1 = F	 (P - a 0 ) + a 2 (P - a 0 ) 2	(T - b0) + b2 (T - b0)2](5)Sl [a,	 [b,

Major et al. (ref. 89) determined the regression coefficients from field

experiments and analytical procedures for 10 soybean varieties (see

table 5-2).

Phinney and Trenchard (ref. 90) adapted the Robertson (ref. 4) spring wheat

model for winter wheat. A new set of coefficients was derived for each stage

of development in winter wheat. To account for the effect of dormancy on

winter wheat phenology, the development rate equation was multiplied by a

correction factor (MF) suggested by Feyerherm (ref, 91). The vernalization

correction factor was used as an adjustable crop calendar from emergence to

the heading stage.

MF = 0.5684 + 0.025081(T j ) - 0„006139(.PP)	 (6)



Regression cc

Period Cultivar Day length

a0
al a2

PE All	 cuitivars 0 0 0

EF Chippewa 64 8,09 0.02284 -0,0022(

Hark 8.02 .02370 -.0023(

Amsoy 71 9.31 .02571 -.00331

Beeson 8.72 .02435 -.007d(

Calland 9,63 ,02701 -40381

Williams 8.85 .02689 -.0034(

Clark 53 9,44 ,02606 -,0037E

Cutler 71 8.34 .02590 -,00311

Hill 18,30 -.01336 0

Dare 17.37 -,01365 0

FPF Chippewa 64 17.43 -0.01633 0

Hark 16.95 -,01785 0

Nnsoy 71 17.43 -,01471 0

Beeson 18.00 -.01249 0

Calland 21.00 -,00619 0

Williams 18.53 -,00960 0

Clark 63 17,53 -.01228 0

Cutler 71 17,84 -,01139 9

Hill 16,68 -.01257 0

Dare 16.10 -,01655 0

FTF Chippewa 64 18.46 -0.03322 0.00016

Hark 17,97 -.03493 0015E

Amsoy 71 16.94 -.04352 0

Beeson 16.86 -.04256 0

Calland 15.43 -,05743 -.01178

Williams 15,31 -,06078 -.01380

Clark 63 15,38 -.06184 .01261

Cutler 71 15,35 -,06082 -.01277

Hill 18.25 -.01255 0

Dare 17.48 -.01337 0

FPM Chippewa 64 18.64 -0.02638 0

Hark 18,72 -.02095 0

Amsoy 71 18.23 -.01956 0

Beeson 17.91 -.01908 0

Calland 18.09 -.02301 0

Williams 17.26 -.02479 0

Clark 63 17.42 -.02474 0

Cutler 71 17.97 -,02341 0

Hill 15.08 -,02021 0

Dare 15,65 -.01508 0

a PE - planting to emergence.
EF - emergence to flowering.
FPF - floweringto beginning pod fill.
FTF - flowering to termination of flowering.
FPM = flowering to physiological maturity.

/,

TABLE 5-2.-- REGRESSION COEFFICIENTS FOR MAJOR AND JOHNSON (REF. 89)

SOYBEAN PHENOLOGY MODEL



where Ti is the normal average daily temperature for January and PV is the

normal average annual precipitation. The vernalization factor showed signifi-

cant improvement only for the emergence-to-jointing stage of development and

the soft-dough-to-ripe stage (refer to table 5-3).

Phinney and Trenchard (ref. 90) suggested the need to incorporate a moisture

interaction term for phonological assessment. A mean rain day frequency term

(RM was substituted in place of day length. The new variable was computed

on a daily basis by means of a low-pass filter function

RD i = RDi-1 + k(RD i - RDi-1)
	 (7)

where RDi is the mean value of RD for the ith day. The rain day variable was

useful in improving predictions after emergence.

5.1.2.3 Coligado and Brown Model

Coligado and Brown (ref. 6) reviewed all the major NU/DD models and developed

a bin-photothermal model incorporating the photothermal principle suggested

by Nuttonson (ref. 88). It differs from the Robertson (ref. 4) model in that

temperature and day length responses are considered separately as well as

interactively. The model accounts for a genetic factor (G), mean daily

temperature (T), photoperiod (P), temperature range (R), and development

potential (DP).

The model was formulated to predict tassel initiation time in corn. The model

determines the length of delay (number of days) in tassel initiation which is

caused by suboptimal predctor variables calculated o►i a daily basis. The

shortest me to tassel initiation was under optimum conditions of T = 25° C,

P = 10 hours, and R = 0° C. The duration of the period from emergence to

tassel initiation is t:

t = (G,T,P,R)	 (8)

ya
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The genetic factor G is interpreted as a constant defined by the length of

each period under optimal conditions (hybrid determined). More precisely,

TI
t = G +[(tTi - tTO ) + bp(P i - PO ) + bR ( R i - 10 )1	 (9)

where To = 25° C, Po = 10 hours, Ro - 0° C, by is the rate of development

caused by photoperiod, and b  is the rate of development caused by temperature

change.

Tassel initiation can be calculated using the following formula:

t  = kT (T
-mT) 

; 00 < T < 25° C
	

(10)

where k  and m  are the coefficient and exponent for a hybrid. The response

to daily mean temperature can be calculated as follows:

(4t)T
i = 

tT
i
 - tT 0 = kT (Ti MT - To 

MT)

For the optimum photoperiod, k  and m T are determined by using linear regres-

sion analysis with logarithmic transformation of the data.

A linear response function relating time to ta:;sel initiation is as follows:

tp=ap+bp
	

(12)

where 10 hours < P, a  is a constant, by is time to tassel initiation (photo-

period, day and hour). The rate by was determined by using tp and P for three

mean temperatures. Additionally, b y is calculated as follows:

b  = kP(T-mp)

	

(13)
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where kp and mp are the coefficient and exponent determined by using regres-

sion analysis with logarithmic transformation of the data. The change in

time caused by photoperiod is

m
(At)p

i
 = bp(P i - P O) = kPT i p (P i - PO )

The response to temperature can be calculated using the following equation:

tR =aR +br xR ; 0° C 5 R	 (15)

where a  is a constant and b  is the time of tassel initiation (range),

b  = kR (TRmR )	 (16)

The change in time caused by range of temperature is:

M

(At) R = bR (R i - RO ) = 
kRT R(Ri - RO )	 (17)

i

A development potential factor DP, which is considered to be dependent on

the number of days from planting to emergence under optimum conditions, is

given as:

DP = 1	 C(te - 5)bDP I 	(18)
where 

bDP 
is a rate of decrease in development potential and is selected

based on the least average deviation of the predictions from the observed

time to tassel time (ref. 55). The total coefficients needed to run the

model are kT , MT , kp , mp , kR , MR , and bDp, as listed in table 5-4.

Coligado and Brown (ref, 6) compared the bio-photothermal model with the HU

and GDD models to predict tassel initiation time. The HU model was found to

have the least average deviation, followed by the GDD model. The better

results obtained by using the HU method may have been due to the curvilinear

response used for maximum temperature ranging from 10° C threshold to 30° C

(14)

y3



TABLE 5-4.-- VALUES OF THE COEFFICIENTS AND EXPONENTS USED

BY COLIGADO AND BROWN (REF. 6) IN THE BIO-PHOTOTHE:RMAL

MODEL TO PREDICT TASSEL INITIATION TIME IN CORN

Variety kT
m 

k  m k mR

Hybrid 55.0 -0.5666 548.1 -2.4757 11,497.6 -3.7567
United-108

Hybrid 226.0 -1.0039 117.1 -2.0593 3,084.3 -3.1997
Guelph Gx122



optimum. These ranges were comparable to the temperature relationship in the

dio-photothermal model. An introduction of a photothermal factor to the GGD
and HU models improved predictions more for the GOD model than for the HU

model. However, the bio-photothe ►mal model combines all three independent

variables in a form that provides the best predictions of tassel initiation

time.

5.2 REVIEW OF CROP SPECIFIC MODELS

The following sections review crop specific phenological models for corn, soy-

bean, wheat, barley, sorghum and cotton. No published model was reviewed for

rice or sunflower.

5.2.1 CORN

Most of the early work in predicting corn phenology has been in terms of HU's.

The two HU models described under model I were derived for the purpose of pre-

dicting maturity in core, These models are usually restricted to a regional

use (refs. 79-82) and a given group of varieties, and they are useful in

recommending planting schedules and rough predictions of maturity dates. It

is also a common practice to select varieties that are labeled by the HU's

they require from planting to black layer development.

HU's are useful markers for predicting corn development in a given region

where climatic changes from year to year are not drastic. Corn is adapted to

do well under high day temperatures of 27 0 to 29° C and night temperatures of

100 to 24° C. Extremely high temperatures may be injurious, especially during

the tasseling stage. The moisture requirements are fairly low with respect

to other crops (except sorghum). Corn is most sensitive to soil moisture

deficit during the period of tasseling and silking which occurs immediately

before and during pollination. When moisture is limited, cool air tempera-

tures help the plant to tolerate certain levels of moisture stress.

5  4



Baron et al. (ref. 93) studied the relationship of climatic parameters to

corn maturity. As measured by kernel moisture, corn maturity was correlated

with solar radiation, latitude, HU, GOD (above 10° C), and planting date.

The highest correlation for maturity was between GOD and latitude in three

different maturity classifications. The effect of day length was quite

evident and was consistent with the observations of Ragland et al. (ref. 94)

and Hunter et al. (ref. 95), who found that increasing day length signifi-

cantly increases time from plant emergence to tassel emergence and silking.

The influence of photoperiod response on corn phenology is modeled by Coligado

and Brown (ref. 6). Unlike other photothermal models (ref. 4), this model

considers only the period during which the plant is photosensitive. Other

important points of the Coligado model are as follows:

a. The photoperiod response is limited to the day length photoperiod require-

ment of P >_ 10 hours.

b. The upper critical limit of the photoperiod response is not mentioned,

probably because the data were collected in areas where this was

unnecessary.

c. The model also considers the influence of temperature on photoperiod

response but does not account for the temperature effects on development

when P < 10 hours. Perhaps this effect is reflected in the direct thermal

effects on development. [See equation (14); coefficients are in

table 5-4].

Figure 5-2 describes a hypothetical interaction of day length and varietal

effect on development. Varieties I and II are short day, and III is a day

neutral variety. The absolute magnitude of the photoperiod response is not

to scale. Variety I will develop at a constant rate with an increasing day

length of up to an optimum of 10 hours, and between 10 to 14 hours devel-

opment rate will gradually decline. Similarly, variety II will have an opti-

mum development rate of 16 hours, and the rate will then decline to a minimum

of 20 hours. Variety III will develop at a constant rate irrespective of day

length. The primary controls on flowering for variety III may be temperature
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range and duration. It is quite possible that phenological predictions based

on HU's are highly applicable to day neutral varieties. This may be possible

for varieties T and II as long as predictions are made up to the optimum photo-

period. Also, it follows that if variety II is planted in a latitude where

day length does not exceed 16 hours, then flowering is independent of day

length, and one may conclude that the variety is day neutral (see table 5-5).

Duncan at Kentucky State University has been developing a corn growth and

yield model, but the model has not yet been published (ref. 96).

5.2.2 SOYBEAN

Soybean adapts best to regions with temperatures ranging from cold temperate

to tropical. Most varieties do well at high temperatures (ref. 97), with

optimum temperature for development around 28° C. Being short-day plants,

soybeans flower rapidly during day lengths which are less than the optimum

photoperiod. Major (ref. 22) discusses photothermal influences on soybean

development by classifying development into a juvenile phase (germination to

flower initiation), reproductive phase (flower initiation to flowering), and

ripening phase (flowering to full seed development).

During the first part of the juvenile phase called the basic vegetative phase

(bvp), the plant is too immature to respond to pLo tope riod stimulus, However,

once this vegetative stage is over, flower initiation will occur immediately

after a sufficient number of photoinductive cycles. While there is no infor-

mation available on how temperature affects these responses, it is known that

as temperature increases, the development rate increases until an optimum of

28° C (ref. 98), after which flowering is delayed.

Although photoperiod may influence the reproductive and ripening phases, it

does not exert as strong an influence as it did during earlier phases. Once

the flower is initiated, development appears to be mainly a function of tem-

perature, In indeterminate , arieties, development is more complicated

because photoperiod also affects the duration of flowering and even maturity.
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Decreasing day lengths in the fall may bring maturity more quickly to such

varieties even though temperatures are decreasing.

Modeling of soybean phenology has been attempted with the basic HU concept.
Lawn et al. (ref. 99) and Brown (ref. 83) were among the few who applied

the HU models to soybeans. Major et al. (ref. 100) evaluated 11 thermal
unit methods for predicting soybean development. They concluded that devel-

opment of early cultivars (long day length requirement) was predicted more

accurately by all thermal unit methods than was development of late cultivars.

Late cultivars had a higher coefficient of variability, especially from emer-
gence to the flowering period. This suggests that there are other environ-

mental factors (day length) that influence the development of late cultivars.

The HU method was found to fail seriously in accurately predicting postflower-

ing development.

The need for a more complete prediction model that would include the photo-

thermal concept was evident from the comparative study by Major et al.

(ref. 100). They used the Robertson model to predict development in soybeans.

The model varied from the Robertson model only in the use of a daily mean tem-

perature rather than daily maximum and minimum temperatures used by Robertson.

The results obtained by using model Ili: suggested that this model was more

accurate than were the HU models in predicting development of soybeans. The

effects of cool spring temperatures on flcwering predominated in the early

part of the season, whereas the effects of day length predominated in flower-

ing of plantings after June 1 (delayed). The hastening effects of short days

on mlatUrity were greater than the delaying, effects of cool autumn temperatures.

[See equation (5); coefficients are in table 5-2.]

There are other environmental factors such as soil moisture that retard or

hasten development. The period between seed development stages R5 and RG

marks the peak of many physiological processes. In this period, as in the

tasseling stage in corn, the vegetative growth ceases, and the potential

number of reproductive sink are set. The environmental conditions that arise

after beginning seed development (R5) and until maturity control how much of

1

aa



that potential can be expressed in yield. Moisture availability has a greater

effect on yield than on the rate of development. Moisture stress may shorten

the length of the vegetative growth period, causing a corresponding decrease

in the length of the seed-filling period and in ea rl v maturity.

Curry (ref. 101) at Ohio State University has been developing a soybean

growth and yield model, but the model has not yet been published in full.

5.2.3 WHEAT AND BARLEY

Wheat and barley are cool season, cereal grasses grown throughout the temperate

regions of the world. Winter wheat is widely grown and requires a period

of exposure to cool temperatures in order to initiate the reproductive portion,

of its life cycle. Usually planted in autumn, it undergoes a chilling process

in winter, renews the active growth cycle in the spring, and is ready for

harvest in early to mid summer. Spring wheat is usually planted in early

spring and harvested in sunnier or early autumn.

There is some evidence of the development of models for predicting wheat phe-

nology prior to Robertson (ref. 4). He provides a detailed summary of this

early scientific work. Nuttonson (ref. 88) evaluated the GDD model to predict

growth during major stages of winter wheat development. He obtained a high

coefficient of variation at sites other than those where this model was devel-

oped, and he concluded that universal applicability was not possible. The

introduction of a photothe nnal unit in the development of a phenology model

was an improvement over the GDD model (ref. 89).

The Biometeorological Time Scale was developed by using the photothermal con-

cept for spring wheat by Robertson (ref. 4). Reasonably good results were

obtained when the model was applied to independent data from Brazil. [See

equation (4); coefficients are in table 5-1.] The coefficients were variety

dependent and had to be rederived, especially for winter wheat predictions.

Feyerherm (ref. 91) developed a model for winter wheat by modifying the

Robertson model. The modification was made as a result of considering the

over-wintering factors which affect the rate of development in wir''er wheat.

5 jl?'0



Phinney and Trenchard (ref. 90) successfully adapted this model fv 'r a range

of data sets to predict winter wheat phenology. [See equation (7); coeffi-

cients are in table 5-3.] Williams (ref. 102) used the Robertson model for

a single variety of barley grown in Canada, with data from between 42 and 56

site-years. He concluded that the model-derived values were probably appli-

cable within the area in which the model was developed, but he had little

confidence in the applicability of the model in other areas.

Several environmental factors that influence the phenology of winter wheat

need to be incorporated into the Williams model. Vernalization treatment in

an appropriate temperature range effectively hastened flowering. Chujo

(ref. 103) observed a relative maximum vernalization effect of about 40 to

8° C with a minimum near 1° C and another minimum above 11° C. Plants treated

at less than optimum chill conditions and then exposed to warm temperatures

were found to be adversely affected in reproductive development. An improve-

ment in Feyerherm's vernalization factor may be necessary to account for the

complex temperature effects during vernalization. Additionally, soil moisture

effects should be considered.

5.2.4 SORGHUM

Arkin and Vanderlip and their associates have developed a sorghum phenology

model (refs. 87, 104) based on heat units and normal leaf number and leaf

size distribution of sorghum hybrids.

In its early form, the model predicts emergence (EM), leaf appearance for

the first five leaves (L5), and leaf emergence for later leaves (L) as func-

tions of daily mean temperature and temperature cutoff levels:

EM = 1/(-1.05T + 26.6) for T < 21.4°C

= 1/4.13	 for T > 21.4°C

^r



where T is mean daily temperature in degrees C, and the seedling emerges

when EM = 1:

L5 = 1/(2.8 + 0.0292(T-22) 2 for T < 22° C

= 1/2.8	 for T > 22° C

L = 1/(2.9 + 0.0567(T-22	 for T < 21° C	 r

= 1/(2.9 - 0.0562(T-21)) for 21° C < T < 30° C

= 1/2.45	 for T > 30° C

where L5 and L are in units of leaves/day.

Leaf expansion (LX) is estimated in cm2/day as:

LX = 5.1(T-12) for T > 12° C

=0	 for T<12°C

Floral initiation is estimated as the day halfway between the date that the

fifth leaf is fully expanded and the date that the last leaf appears. Half

bloom is estimated as the date that the last leaf is fully expanded plus .86

times the days from floral initiation to that date. Maturity is estimated as

the date of half bloom plus .6 times the days from emergence to half bloom.

In a later form of the model (ref. 104) for a medium late genotype, seed

germination occurs when 18 heat units are accumulated over a base temperature

of 6.3° C, emergence occurs when 66 additional heat units are accumulated over

a base temperature of 11.4° C, floral initiation occurs when 497 additional

heat units are accumulated over a base temperature of 7° C. The formula for
calculating half bloom remains unchanged, and for maturity, .4 is substituted

for .6 times days from emergence to half bloom. Although the phenology model

works fairly well for sorghum hybrids planted in their normal latitude ranges

(refs. 16, 105, 87), it has nothing in it to account for photoperiod effects

when hybrids are planted outside their normal ranges.
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5.2.5 COTTON PHENOLOGY MODELS

Hesketh et al. (ref. 106) have published several papers in the process of

developing a cotton phenology model (Simcot II). The model, which has not

been published to date, estimates physiological events of cotton front daily

temperature but may not consider photoperiod.

Whisler, Landivar, and Baker (ref. 107) are also developing an as yet unpub-

lished cotton growth model (Gossymt). No details about the phenology submodel

are currently available.

Cotton phenology has points in common with that of corn and soybean. Like

soybean, cotton is an indeterminant plant with vegetative growth continuing

after flowering. However, like corn, most commercial cotton varieties are

somewhat insensitive to photoperiod.

r
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6. SUMMARY OF SELECTED PHENOLOGICAL MODELS FOR SPECIFIC CROPS

The following sections describe the most promising phenological models for

corn, soybean, wheat, barley, and sorghum. No model was found acceptable for

further testing for cotton, rice, or sunflower.

6.1 CORN

Two models are suitable for predicting phenology, and the choice of either

would be determined by the data available to run the models (tables 6-1 and

6-2). The GDD model (ref. 78) requires knowledge of the HU's necessary for

development from one stage to the next. The HU required to reach a particu-

lar stage of development is variety specific and restricts the model applica-

tion to a certain regional limit. The photothermal model (ref. 6) is

theoretically more sound than the GDD model and has rigid information require-

ments regarding the thermal and photoperiod responses to development. This

model was formulated to predict tassel initiation and has been used only by

Coligado and Brown (ref, 6). Several versions of the GDD models have been

in use for over a decade. Aspiazu and Shaw (ref. 78) evaluated six GDD

models and suggested a new version that has the least error of prediction.

6.2 SOYBEAN

The biometeorological time scale ( .BMTS) model (ref. 4) adapted by Major et al.

(ref. 89) is the best model for predicting development of soybeans. The only

change made by Major et al. in the adapted version was in the use of a

mean daily temperature rather than daily maximum and minimum temperatures.

Major (ref. 100) tested this model, along with a GDD model, for experimental

data collected at Elora, Ontario; Ames, Iowa; and Columbia, Missouri. The

BMTS model made consistently better predictions than the GDD model, and the

applicability of the model over a range of climatic conditions was quite

evident. The model coefficients were redFrived for different varieties rather

than for different locations. The data requirements for running the model are

listed in table 6-3.
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6.3 WHEAT

The Robertson (ref. 4) BMTS model is the model best suited for predicting

development of spring and winter wheat. Because this model was originally

formulated for spring wheat, Robertson was not completely convinced that it

would be as applicable in predicting development in other types of wheat. The

variety-specific coefficients were the greatest drawback. Phinney and

Trenchard (ref. 90) adapted the BMTS model for winter wheat with a vernaliza-

tion coefficient. In general, the model predictions were good, showing no

particular dependence on variety and climatic factors for the same set of

coefficients. However, the limitation of the model became evident after a

certain degree of moisture stress was reached. A moisture stress factor sug-

gested by Trenchard seems to account for some of the prediction error. How-

ever, this aspect of the model needs further evaluation. The data required

to run this model are listed in table 6-4.

6.4 BARLEY

The adapted version of the BMTS model suggested by Williams (ref. 102) is the

only suitable model currently available (see table 6-5). Since the develop-

ment of barley is similar to that of wheat, using the BMTS model for predict-

ing development of barley is quite acceptable. Williams introduced a thresh-

old coefficient as one of the temperature coefficients derived in the model

to improve the model theoretically. However, there is no evidence that this

addition improved the predictions. Since the model has not been extensively

tested, little comment can be made on its range of applicability.

6.5 SORGHUM

The phenology model of Vanderlip and Arkin (ref. 87) has been tested in the

southern and central U.S. Great Plains with favorable results where detailed

information is available about hybrid and leaf number leaf size. If values

for leaf number and leaf size of maturity groups are developed, the phenology

model could be tested for use in large area production estimates. The model

is described in table 6-6 and in section 5.8.



d
Iu
x
3

C)
U-

W
C
0

aD
ct

cy
H

F--

C)
H

w
m

ct
)

t0

W
J
m
H

-0C r-
i-) O

r-

4) .mac

4J 4J

a

C 3

•E ^-

^-̂) c
•v •3
.n Qf

•4-)
• U

4- •r

0 S-

v L
C].

4J 4-
L

.ten w
O

E

a CL)

CL
_O N

a i-)
ai ai

u '0

e 41 4̂9p s- c

•L 	 E L 443 +r
Q.

4^ C3
z

L
C b L'O	 CJ) X	 41

C a 44 C 0)	 u
.r. G. O^J f^» V O W 'O
41

U 0) >trr- L L) N c
rc •^

^ 4)CL mac'' 0
, >a1)	 3c m	 4J C to ppc

Cu V 0 •L 0L L0A
J3cn rcoo> a)

cm0) cm en
O C

L L a 4 O	 "O O
r

+j C .r .2 m 4-341 
N I-)	 b

Cn
^r

39c
0 aL) •L.ro c

•0.
c•'- 4J 4J 4J 4-)	 L u +-) 4J •r CL C L	 u

rn rti b b c (04-  en rty	 a)
(Mn

() a) .c d) O 3 4-	 .-. c	 0.4J
sr Cl 3 0. 3 r O o 4J C	 10

E E	 V b 4J '0 b	 4 to b 3	 r--2
^-`	 C(0 a) L a) L	 0 2 0 c

to
U c c 4)	 ro

E	 O 34)
m

4-) a)i-)
•r+J a)+.► 	 L 3

(O

(M
•r O a)01•r- •r 3 0	 Ci	 LO E C E C	 G)

•r	 L r03 C O 4-) U•r- L L	 C
b	 (a a)•r CL r b

•n ^r	 .S+> > S- >Rf	 C C1, L	 rt3 •r'0X C b	 c •r CL a) L 4) C
a) 3

rco (a	
m 3
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7. CONCLUSIONS AND RECOMMENDATIONS

Recommendations for further research of agromet phonological models are as

follows:

a. A bio-photothermal model that will predict all stages of corn development

U needs to be formulated. Coligado's model (ref. 6), which predicts devel-

opment only up to tassel initiation, is the only theoretically sound model

currently available.

b. The Major et al. (ref. 89) so ybean model requires testing for a wide range

of locations an ,' maturity classes. The influence of variety and clima tic

factors on the individual coefficients of the model needs further

investigation.

c. The BMTS (ref. 4) wheat model could be further improved by incorporating

into it a water stress factor that reflects the physiological response of

the wheat crop. A soil moisture budget submodel run simultaneously with

the BMTS model would be appropriate.

d. The vernalization coefficient of Feye rherm (ref. 91) coup be made more

sensitive to the temperature range and length of cool temperatures during

the vernalization process. An improved function suggested by Nix (per-

sonal connunication, 1978) would accomplish this requirement.

e. The modified BMTS model for barley (,ref. 102) has not been sufficiently

tested, nor have the coefficients been evaluated for a range of climatic

conditions. Sich testing and evaluating must be done before this model

can be suggested for predicting phenology of barley.

f. The phenology model developed by Vanderlip and Arkin (ref. 87) may be

applicable to large area production estimation if leaf number and leaf

size values can be determined for maturity groups rather than individual

varieties. If this is done, then the model should receive further testing.

r



g. For cotton, corn, and soybean (refs. 106, 96, 101), researchers at several

centers are developing growth and yield models. When available, the pheno-

logy sections of these models should be tested against available phenology

data.
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