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ABSTRACT

Several approaches to machine analysis of remotely sensed data have
been developed over the past decade, and the remote sensing data analyst
is faced with selecting which analysis approach might perform best for
a given problem. The overall objective of this study was to apply and
evaluate several currently available classification schemes tor crop
identification. The approaches examined were: (1) per point Gaussian
maximum likelihood classifier, (2) per point sum of normal densities
classifier, (3) per point linear classifier, (4) per point Gaussian
maximum likelihood decision tree classifier, and (5) texture sensitive
per field Gaussian maximum likelihood classifier.

Seven agricultural data sets were used in the study and were selected
to sample variability in soils, climate, and agricultural practices.
Five data sets were from the U.S. Corn Belt, and two were from the U.S.
Creat Plains.

Test site location and classifier both had significant effects on
classification accuracy of small grains; classifiers did not differ
significantly in overall accuracy. The majority of the difference among
classifiers was attributed to training method rather than to the classi-
fication algorithm applied. The complexity of use and computer costs for
the classifiers also varied significantly.

1Dr. Akiyama was a Visiting Scientist at the Laboratory for Applications

of Remote Sensing at the time this work was conducted.
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I. INTRODUCTION

Over the past several years, the potential utility of remotely sensed
data to survey and monitor agricultural crops and soils has been increasingly
recognized. The use of a per point maximum likelihood classifier in the
Corn Blight Watch Experiment during 1971 was the first attempt at large
scale application of digital classification of remotely sensed multispectral
data [1]. This was followed in 1973-75 by the Crop ldentification
Technology Assessment for Remote Sensing (C7(*iS) project for corn and
soybeans in Indiana and Illinois using Lanc.:: MSS data [2]. Since then
extensive re<ecarch has been devoted to wheat inventory with the Large Area
Crop Inventory Experiment (LACIE) during 1973-78 [3]. currently, interest
has been directed towaru analysis of multicrop areas, with corn and soybeans
being the major crops of interest.

To support these efforts utilizing satellite remotely sensed data,
several numerical analysis schemes have been developed and implemented
at numerous university, business, and government facilities in the United
States and abroad. Some methods developed were successful for identification
of agricultural crops, while others were not as successful. The remote
sensing data analyst, therefore, must determine which analysis approach or
algorithm might perform best for a given problem. Numerous studies have
evaluated the performance ot a given classifier, but relatively few studies
have objectively compared the performance of several approaches for a
given problem.

The overall objective of this study was to apply several currently
available classification schemes and to evaluate their performance on
several agricultural data sets. The data sets were selected to include
corn and soybeans; winter wheat; and spring wheat as the major crops.
Classification accuracy for test fields, ease of analyst use, and computer
time required were compared for (he different classifiers and data sets.

II. EXPERIMENTAL APPROACH

Test sites were selected from three major data sets: CITARS data
from 1973 over Illinois and Indiana [2]; LACIE data from 1976 over the
U.S. Great Plains [2]; and multicrop data from 1978 [4]. An 8 x 24
kilometer (5 x 15 mile) area in Fayette County in south central Illinois
was used from the CITARS data set. A 9.3 x 11.] kilometer (5 x 6
nautical mile) area was selected in each of Foster County, North Dakota
and Grant County, Kansas, from the LACIE data. Four segments, each 9.3
x 11.1 km, were selected from the multicrop data: Pottawattamie and
Shelby Counties in west central Iowa, Tippecanoe County in west central
Indiana, and Iroquois County in east central Illinois.

The segments sample several major crops: winter wheat in Kansas:
spring wheat in North Dakota; and corn and soybeans in Indiana, Illinois
and Iowa. The Corn Belt segments were located in two distinct regions
to sample variability in soils, climate, and agricultural practices.
Both areas are intensively cropped, with corn and soybeans being the
predominant agricultural crops. Ground reference data and field maps as
well as cloud-free multitemporally registered digital Landsat MSS data
were available over these sites.




Four acquisition dates were selected for analysis from the most cloud-
free, least noisy, and best registered acquisitions which temporally

sampled the crop calendar to maximize crop development differences (Table 1).

For the Corn Belt segments, an attempt was made to obtain a spring
acquisition to better separate winter small grains, trees, and peraanent
pasture from row crops. An acquisition after corn had tasseled was
included to separate corn and soybeans.

Since classification costs would be too high if all 16 bands of
data were used, classifications were performed using four bands selected

to maxlmize the average transformed divergence between pairs of classes [5].

The acquisition dates and spectral bands selected are shown in Teble 2.

Five classifiers, implemented on an IBM 370/148 computer at the
Laboratory for Applications of Remote Sensing (LARS), Purdue University,
were selected for study:

1. CLASSIFYPOINTS is a per point Gaussian maximum likelihood
classifier. It is a processor in LARSYS, a remote sensing
data analysis system developed at LARS [6].

2. CLASSIFY implements a sum of normal densities maximum likelihood
classification rule which first assigns each pixel into an
information category and then assigns the pixel to a spectral
subclass within that category. It is a processor in EODLARSYS,
developed at NASA/Johnson Space Center [7].

3. MINIMUM DISTANCE {s a linear classification rule which assigns
each plxel to the class whose mean Is closest in Euclidean
distance [8]. It is a processor in LARSYS.

4. The LAYERED classifier is a multistage decision procedure [9].
It utilizes decision tree logic with an optimum subset of
features at each tree node to classify each pixel using a
Gaussian maximum likelihood decision rule. LAYERED is also
a processor in LARSYS.

5. ECHO (Extraction and Classification of Homogeneous Objects)
utilizes both spectral and local spatial information [10].
Statistical tests are used to segment the image into homogeneous
regions and each region is then classified using a Gaussian
maximum likelihood sample classification rule. It was also
developed at LARS and is part of LARSYS.

In order to insure that differences in classification accuracies were
the result of classifier differences and not training methods, the same
set of training statistics was used for all classifiers. Training fields
were selected to represent the classes of interest: corn, soybeans, and
others in the Corn Belt segments and small grains and others in the Great
Plains segments. These fields were clustered to develop weans and
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Table 2. Specctral Bands Used in Classiflcation.

) Landsat
Test Site Acquisition Date Spectral Bands Selected
um
Fayette 6/10 .6-.7
6/29 None
7/17 .6-.7, .8-1.1
8/21 .6-.7
]
; Pottawattamie 6/16 .8-1.1
7/23 .6-.7, .8-1.1
9/6 .7-.8
9/24 None
Shelby 6/16 6-.7
7/23 .8-1.1
; 8/9 .8-1.1
9/24 .8-1.1
}
Tippecanoe 6/10 6-.7, .7-.8
7/26 .8-1.1
8/21 TJ-.8
9/26 Hone
Iroquois 6/12 71=.8
8/15 .8-1.1
8/31 .8-1.1
9/28 .6-.7
Grant 3/13 .8-1.1
5/15 +6=.7
6/2 .6-.7
7/8 6-.7
Foster 5/26 .7-.8
6/30 .7-.8
7/19 .6-.7
8/2¢4 .8-1.1
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covariances to define spectral subclasses for each of the classes of interest.
Since CLASSIFY was designed as part of an automated analysis procedure
without analyst intervention, a training method (referred to as ISOCLS)

using a random selection of individual pixels to define initial cluster

seeds for clustering the entire area is generally used in conjunction with
that algorithm. Both training methods were used in CLASSIFY.

The Fayette County site had reference data over approximately twenty-
five percent of its area, while reference data were available f~r the
entire area for the other sites. These data were sampled to define training
and test data. Half of the selected fields were used for training the
classifiers, and the remaining half were set aside for testing the classifi-
cation results. Training was based on 1.6% of the area in the Fayette
site, and between 3.5 and 7.5% in the other sites.

III. RESULTS AND DISCUSSION

The results of the classificatiuns (Table 3) were analyzed to assess
the effects of segment and classifier on classification accuracy. Segment-
to-segment variability was highly significant (p<0.01). Segment variability
was attributed to factors other than the classifier selected, including
spectral data quality and scene characteristics.

Several factors contributed to the lower classification accuracies
obtained in Fayette County: (1) the quality of multitemporal registra-
tion was only marginal, (2) the acquisitions for Fayette were not as
well distributed throughout the growing season as in the other counties,
(3) less training data were available for the Fayette site, and (4) the
training data were not as well distributed or representative.

Pottawattamie and Tippecanoe Counties had larger field sizes,
accounting in part for the relatively accurate classification. Shelby
County contained more confusion crops, including sorghum and spring oats,
and had smaller field sizes than the other counties. Iroquois County had
very few confusion crops and was almost entirely corn and soybeans. This
crop distribution made it difficult to obtain training for cover types other
than corn and soybeans.

There was no significant difference am~ny classifiers in percent
correct classification of ccrn, soybeans, or other in the five Corn Belt
segments. In addition, there was no significant difference in overall
accuracy using all seven segments. The sum-of-normal-densities classifier
using LARSYS statistics, however, gave significantly higher small grain
classification accuracy (about 2% classification improvement).

Table 4 shows the percent correctly classified averaged over all
segments for the different cover types. The performance of the ECHO
classifier was not as high as anticipated. This is probably due to the
fact that the ECHO classifier requires the analyst to set parameters defining
cell size and homogeneity factors, and the optimal settings have not been
defined. Although differences were nonsignificant overall, the LARSYS
training method provided a consistent improvement over the ISOCLS training
method in six of the seven segments. In conclusion, given a set of training
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Table 3. Comparison of Classifier Performance (Percent Correct Classification)
by Test Site.
CLASSIFIER
CLASSIFY  CLASSIFY
’ Using Using TEST
f ' TEST MINIMUM CLASSIFY lSOCLi LARSY! SITE
SITE CLASS DISTANCE POINTS LAYERED ECHO State Stats Average
Fayette, IL
Corn 81.9 81.2 63.9 7.3 77.3 8.9 76.8
Soybeans 82.0 77.0 76.8 70.7 4.7 79.0 72.5
Other 85.5 86.6 91.3 87.8 58.8 85.6 82.9
! Overall 83.5 83.0 80.5 79.5 61.1 81.6 78,2
Pottavattamie, IA
Cora . 98,7 92.2 95.7 98.2 93.0 98.4 96.9
Soybeans 92.0 89.8 92,3 ' 90.2 . 86.5 8y.3 90.0
Other 8s.3 98.0 97.5 97.1 92.1 98.4 94.7
Overall 94.9 94.7 94.7 95.4 90.6 95.3 94.3
Shelby, IA
Corn 97.1 95.1 94.5 96.1 82.8 95.9 93.6
Soybeans 89.3 92.9 98.2 95.4 98.0 98.0 95.3
Other 15.5 83.7 88.2 19.4 18.7 19.7 80.9
Overall 90.0 91.?7 93.3 91.5 83.9 92.1 90.4
Tippecanoe, LV
Cora 93.7 89.9 91.5 86.4 99.4 93.1 92.3
Soybeans 97.6 98.2 94.9 98.0 95.1 98.4 97.0
Other 94.3 96.7 100.0 96.7 69.9 96.7 92.4
Overall 95.5 94.3 94.0 92.7 94.2 95.9 94.4
Iroquois, IL
Comn 88.1 79.5 91.0 79.3 89.9 92.8 85.1
Soybeans 82.8 85.2 78.1 83.6 78.8 86.3 82.5
Other 76.4 12.7 0.0 12.7 74.5 75.0 61.9
Overall 84.9 82.1 80.5 81.2 83.6 84.2 82.8
Foster, ND
Small Crains 96.1 95,4 94.6 94.8 93.6 97.3 95.3
Other 73.3 77.1 77.0 77.6 70.5 82.3 76.3
Overall 82.7 84.7 84.3 84.8 81.3 89.3 84.5
Crant, KS
Small Crains 96.9 96.7 97.6 96.5 94.6 98.7 96.8
Other 91.8 83.2 89.3 .2 92.0 80.2 86.0
Overall 93.1 86.5 91.4 83.5  92.6 8.8 88.6

Ifruintng method generally used with CLASSIFY. Uses s random selection of individual pixels to define initial

cluster seeds for clustering the entire area.

2Traintng method used vith all other classifiers. Training fields vere clustered to develop means and covariances
to define spectral subclasses for each of the classes of interest.
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statistics capable of producing high level classificatlon results, the
cholce of classification algorithm for dif{ferentiation of corn and soybeans
from other cover types makes relatively little difference.

Two additional comparisons of the classlf{icatlon schemes were considered:
the ease of use of the classification method and the computer time necded
for each classifier. The classification schemes varied considerably in
ease of use. In increaning order of complexity the classifiers were found
to be: (1) MINIMUM DISTANCE, (2) CLASSIFYPOINTS, (3) CLASSIFY, (4) ECHO,
and (5) LAYERED. The MINIMUM DISTANCE and CLASSIFYPOINTS classifiers were
almost identical in ease of use.

CLASSIFY was designed as part of a total analysis scheme in which
participation of the analyst is minimized in the clustering and definition
of training statistics with control provided by a predefined set of
analysis parameters. Although the classifier itself is not extremely
complex, the training procedure typically used in this scheme involves a
large number of parameters about which little is known.

ECHO utilizes both temporal and spatial information. The complexity
of use for ECHO arises from the necessity of setting the parameters for
cell homogeneity testing and cell size. The expertise of the analyst is
essential in setting the parameters with regard to data set used. The
ECHO classifier is, however, one of the few available classifiers that
utilize spatial as well as spectral information in the classification
process.

LAYERED implements a per point CGaussian maximum likelihood decision
tree logic which requires the additional step of designing the decision
tree. The decision tree is designed by obtaining class means and
covariance matrices for all classes and using a feature selectinn algorithm
to determine an optimal subset of features to be used at each node or the
decision tree. The time needed by the analyst to design the tree can be
significant 1if many spectral classes and features are needed to characterize
the scene of interest. Although the decision tree can become very compli-
cated and awkward to use, this classifier ie particularly well suited for
use with multitemporal or multitype data sets.

Parallelling the complexity of implementation as an important varfable
in selecting a classification scheme is the computational cost per
classification. The computer time required per square kilometer for each
segment and classifier is shown in Table 5. In order of increasing cost
per square kilometer for classification, not including cost for developing
training statistics, were (1) MINIMUM DISTANCE (1.7 seconds), (2) ECHO
(2.3 seconds), (3) LAYERED (2.3 seconds), (4) CLASSIFYPOINTS (3.8 seconds),
and (5) CLASSIFY using ISOCLS statistics (11.3 seconds).

IV. CONCLUSIONS
The results of this study show little difference in the classification

accuracies achieved by the five classification algorithms which were
considered. However, the results for the CLASSIFY algorithm using two
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different training methods did show a difference, indicating that the
major variable affecting classification accuracy is not the classifier,
but the tralning method used ia generating the class statistics to be
used in the classification. The most important aspect of training Is
that all cover types in the scene must be adequately represented by a
sufficient number of samples in cach spectral subrlass,

The ISOCLS training algorithm was a method designed for machine
automation of a large portion of the training procedure. The statistical
sampling method used for selection of training data is theoretically sound,
so it is possible that the lack of analyst refinement of the training
statistics is seriously limiting the performance. The clusters produced
by this method are of mixed cover types which may adversely affect performance.

Additional variables of interest in the study were complexity of
use¢ of the classifier and CPU cost per classification. Among the
classifiers yielding similar classification accuracies, MINIMUM DISTANCE
was the easiest for the analyst to use und costs the least per classification.

In conclusion, the classification performance of the five classification
algorithms was found to be very similar when the same training method wis
utilized. The results suggest that development of representative training
statistics is relatively more important for obtaining accurate classifi-
cations than selectiond the classification algorithm.
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