

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

1	 90- 1 0- 115

SR-P9-00412
NAS9 -15466 Nkm cR•

05 9
A Joint Program far
Agriculture and
Resources Irmmtory
Surveys Trough
Aerospace
Remote Sensing

0

AgRISTARS
mate un* NASA to

"Q• ton
eSE of early end Wd*
of Earth Rem=

IAlbr"LISOn and withoutW am& ,,,.

Supporting Research
November 1979

Final Report

Vol. III
Processing Techniques Development
Part 2: Data Preprocessing and
Information Extraction tiOhniques
by P. H. Swain, P. E. Anuta, D. A. Landgrebe and H. J. Siegel

(E80-10115) PROCESSING TECHNIQUES	 N80-23742
DEVELOPMENT, VOLUME 3. PART 2: DATA	 C RQ^ I^1F PtOIPREPROCESSING AND INFORMATION EXTRACTION
TECHNIQUES Final Report, 1 Dec. 1978 - 30	 Unclas
Nov. 1979 (Purdue Univ.) 155 p	 63/43 00115

Laboratory for Applications of Remote Sensing
Purdue University
West Lafayette, Indiana 47907

04,4,141 or Co ~+

stArcS of

l'ENl OF l^f/yf

s
N	 p

••cn ^s'^

NASA

a

i

SR-P9-00412

NAS9-15466
LARS 113079	 }

FINAL REPORT

VOL. III PROCESSING TECHNIQUES DEVELOPMENT

PART 2: DATA PREPROCESSING AND INFORMATION EXTRACTION TECHNIQUES

BY

P.H. Swain, P.E. Anuta, D.A. Landgrebe, H.J. Siegel

The research reported here was initiated during the planning phases of
the AgRISTARS Supporting Research Project and, although it stands on its
own merit, it benefits the Supporting Research Project and became a
part of those plans.

Purdue University
Laboratory for Applications of Remote Sensing

West Lafayette, Indiana 47906

November 1979

i
TABLE OF CONTENTS

Page
List of	 Figures	 iii

List of	 Tables	 v

2C. Multispectral Data Analysis Research C-1

2C1. Multistage Classification	 C-2

1.	 Introduction	 C-2

2.	 Literature	 Survey	 C-2

3.	 Resources	 C-2

4.	 Procedures Used	 C-3

5.	 Results	 C-4

6.	 Discussion	 C-6

Appendix 2C1.	 The Layered Classifier: Review of Literature. C-8

7.	 References	 C-11

2C2. Contextual Classification 	 C-12

1.	 Introduction	 C-12

2.	 The Contextual Classifier Model 	 C-13

3.	 Experimental Results 	 C-20

4.	 Overview of the CDC Flexible Processor Array System C-36

5.	 Parallel Implementations of Classification Algorithms C-60

6.	 The Flexible Processor Array System Simulator	 .	 .	 . C-71

7.	 Summary and Concluding Remarks C-75

8.	 References	 C-78

Appendix 2C2.	 Implementation of the Maximum Likelihood
Classifier on a Flexible Processor	 C-81

Appendix 2C3.	 Flexible Processor System Simulator C-102

2C3. Ambiguity Reduction for Training Sample Labeling . C-110

1.	 Introduction and Background 	 C-110

2.	 References	 C-115

2D. Multisensor, Multidate Spatial Feature Matching, Correlation
Registration, Resampling and Information Extraction 	 D-1

1.	 Introduction	 D-1

2.	 Landsat SAR Data Set Description	 D-1

3.	 Crop Classification Using Landsat MSS and SAR Data . 	 .	 . D-7

4.	 Ancillary Data Digitization	 D-15

5.	 Multidata Merging Procedures	 D-18

6.	 Multitype Data Set Acquisition D-22

7.	 Image Enhancement Experiments	 D-29

8.	 Summary D-29

9.	 References	 D-30

ii

LIST OF FIGURES

Page

2C1. Binary Tree Obtained from Hierarchical Clustering
Method	 C-5

2C2.1 A Two-Dimensional Array of N-N1xN2 Pixels	 C-14

2C2.2 Examples of p-Context Arrays	 C-14

2C2.3 A 2-Context Array With Separable Pixel Groups C-19

2C2.4 Contextual Classification of Simulated Data C-23

2C2.5 Results of Contextual Classification Using Iteratively
Estimated Context Distribution	 C-26

2C2.6 Contextual Classification Results Based on Simplified
Iterative Technique	 C-27

2C2.7 Contextual Classification of Bloomington Data Using
the Unmodified Procedure for Estimating the Context
Distribution C-29

2C2.8 Performance Using Manual Template Correction for
Estimating the Context Distribution (Bloomington) C-31

2C2.9 Contextual Classification of LACIE Segment Using
the Unmodified Procedure for Estimating the Context
Distribution C-33

2C2.10 Performance Using Manual Template Correction for
Estimating the Context Distribution (LACIE data) C-34

2C2.11 Data Path Organization in the CDC Flexible Processor C-38

2C2.12 Block Diagram of Typical Flexible Processor Array 	 . C-39

2C2.13 Details of the Architecture of a Flexible Processor C-41

2C2.14 Flexible Processor Coding Form C-43

2C2.15 A Flexible Processor Image Processing System	 . .	 . C-44

2C2.16 Flexible Processor Arithmetic Logic Unit Mnemonics . C-49

202.17 Entire Command Set of Flexible Processor Arithmetic
Logic	 Unit	 C-50

2C2.18 An A-by-B Image Divided Among N Flexible Processors C-63

2C2.19 Horizontally Linear Neighborhoods	 C-67

2C2.20 Dividing an Image N subimages for Horizontally
Linear Neighborhoods, Where N =2, A-4, and B-3 C-67

2C2.21 Vertically Linear Neighborhoods 	 C-68

2C2.22 Diagonally Linear Neighborhoods C-68

2C2.23 The Diagonals of an A-by-B Image C-68

2C2.24 Nonlinear Neighborhoods 	 C-68

Tr

lit

Page

D-1. Goodyear SAR Data Set Over Phoenix, AZ Used in the Study D-2

D-2. Landsat Image, Channel 2, Cubic Resampling to a 25x25
Meter Resolution,	 Phoenix, AZ D-5

D-3. Aircraft SAR, N.N Resampled and Registered to 25x25
Meter Landsat,	 Phoenix, AZ	 D-6

D-4. Object Classification Using Boundary Data Base and
Majority or Plurality Decision Rule D-13

D-5. Comparison of Overall Text Field Classification Accuracies D-14

D-6. Forest Operating Area Map Segment, Hand-Colored for
Scanning and Digitizing	 D-16

D-7. Software Elements Developed to Study Self-Defining Data
Set	 Concept	 D-20

D-8. Landsat Land 5 Image Produced on CRT Terminal Screen
Using Two Levels (Amelia City,	 FL)	 D-23

D-9. Landsat Band 5 Image Produced on CRT Terminal Using
Two Levels D-24

D-10. Landsat RBV Data for Phoenix, AZ Area, June 17, 1978 D-26

D-11. Landsat Image of Sun City,	 AZ Area	 D-27

0 =tt. bAK-linage of Same Area Cover Ed in Figure D-11 D-27

D-13. Mixed Landsat and SAR Image D-28

iv

LIST OF TABLES
Page

D-1. Data Sets Generated for Phoeniz. AZ Site 	 D-4

D-2. Classes Analyzed in SAR/Landsat Data D-8

D-3. Cluster Block Contents D-8

D-4. Classification Results for Phoenix Site Test Fields . . D-10

D-5. Rationale for Object Classification D-12

D-6. Errors in Color Map Classification D-17

D-7. Parameters for an SDDS D-19

D-S. Proposed Changes to LARSYS Format 	 D-25

X^

2C. MULTISPF..CTRAL DATA ANALYSIS RESEARCH

This task consists of three subtaska involving research into advanced

methods for classifying multispectral remote sensing data. The first two

are multiyear investigations resulting from proposals submitted to NASA in

response to the 1978 Applications Notice, OSTA-78-A (April 19, 1978)*. The

first year of work on both of these subtasks is reported here.

The third subtask resulted from a proposal submitted to NASA Johnson

Space Center during the contract year. $ The work was funded quite late in

the year and will be continued. A background discussion is contained in

this report.

* Proposals entitled "Design and Applications of Multistage Classifiers for
Earth Resources Data Analysis" and "Analysis of Multispectral Earth Re-
sources Data Using Context." Principal Investigator on both proposals was
Philip A. Swain.

$ Proposal entitled "An Addendum to Research in Remote Sensing of Agricul-
ture, Earth Resources and the Environment." Principal Investigator:
D. A. Landgrebe.

rr.^i

C-2

2C1. MULTISTAGE CLASSIFICATION

D. A. Landgrebe, M. Muasher, P. H. Swain

1. Introduction

A number of different types of classifiers are now in routine use in

remote sensing. With the emergence of more complex data sets, however,

the need has been recognized for more sophisticated classifiers providing

higher performance and lower cost. The objectives of subtask 2C1 are to

continue progress toward the development of such advanced classification

techniques. More specifically, the objectives for the current year have

been (1) to test known multistage procedures and (2) to begin the develop-

ment of optimal design procedures for such classifiers.

This task is a continuing task and the work is still in preliminary

stages. Therefore this report is in the nature of a progress report,

containing no final results.

2. Literature Survey

In order to assess earlier work in this area, and to gain better un-

derstanding of the problem, a literature survey was conducted and a biblio-

graphy assembled (see Appendix 2C1 for complete survey). The survey lists

the main approaches taken to deal with the problem, citing both their ad-

vantages and drawbacks.

3. Resources

3.1 Available Software

Software from previous studies (Ref. [2] in Appendix 2C1) was available.

Certain problems with the software were corrected and the software was then

tested.

a

C-3

3.2 Data Sets

The assembling of data sets for use in design and test tasks proved

to be a troublesome process. Flightline 210 from the 1971 Corn Blight

Watch Experiment was chosen. Some information about the data set appears

below:

No. of	 No. of	 Date Data
Run Number	 Channels	 Classes	 Collected

71023500	 9	 6	 June 28, 1971

Reasons for initially choosing this data set were:

1. The large variety of classes represented in the set, containing

water, forestry, pasture, corn, soybeans and wheat.

2. The large number of channels available to work with (9) than

Landsat sets would offer.

3. The difficulty in statistically separating certain classes

(pasture and wheat, pasture and corn, corn and wheat). This was thought

to serve as a test as to whether any new methods could improve on the

accuracy.

4. Available ground truth.

4. Procedures Used

4.1 Transformation of Data

To aid the process of feature selection, and to obtain a nearly

uncorrelated set of features, a principle-components transformation was

applied to the data. All 9 channels were used in the transformation,

and then the first 6 transformed channels were used in the analyses be-

cause they carried 99% of the information.

3

C-4

4.2 Cuss-Conditional and Aggregate Clusterin

Two methods for deriving class statistics were used. In the class-

conditional clustering method, training fields corresponding to the same

informational classes were clustered together. The resulting clusters

were identified as subclasses of that informational class. Statistics

for each cluster were calculated and used as a basis for classification

(after some refinement) .

In the aggregate clustering approach, all training fields were

clustered together. The individual clusters were then each identified

with the appropriate informational classes, and statistics calculated

to serve as a basis for classification.

4.3 Comparison of Conventional and Multistage Classification

Using the statistics from 4.2 above, classification was performed

using the conventional single-stage classifier and the multistage clas-

sifier available from previous studies. The results appear in the

following section.

4.4 Hierarchical Clustering

In this method, the training data set was divided into two clusters.

These in turn were subdivided each into two clusters, etc., creating a

binary tree. The terminal clusters were then identified with informa-

tional classes. Statistics at each node were calculated to determine

the optimal subset of features to use at that node. Classification was

then performed using the available layered classification. Results appear

in the next section.

S. Results

Figure 2C1 shows the binary tree obtained from the hierarchical

clustering method. The terminal clusters are identified with informational

classes and labeled as such. Vic different methods used in training and

classifying were:

4

^v

A
v
t
Y

C

O
L)

C
w
0
u
ry

O
U

ry

A
Li

A
uL

a
a

eppo

Na
a+

N
7
rl
u

a
v

u
N
ro
N
a
^i

E^
0
N
w

b
a

e0

.a
O

a
a
N
N

N

C
oa

U
N

a
N
a
00
14
W

a
a^

a

a
.0

0
0

u

u
co

N
L
c
O
m

cc
41

co
b
w
O

N
a

C

a
u

A7
3

N
a
O
C
G1

o^
a
y
W

r-1
u

a
rl
W
u
a
a
a
a
N

M
ri
a
N

p

b
a

a
N

d
.b

O
O

e
c.
c..

N

C-S

.,a

C-6

1. The hierarchical clustering method.

2. Class-conditional clustering, untransformed data, single-stage

classification.

3. Aggregate clustering, untransformed data, single-stage

classification.

4. Class-conditional clustering, untransformed data, layered

classif icatioa.

5. Class-conditional clustering, transformed data, layered

classification.

6. Class-conditional clustering, transformed data, minimum-distance

(linear) classifier.

6. Discussion

The overall accuracy did not change appreciably with the change in

training or classification methods. There were two exceptions to this.

The minimum-distance classifier did not perform as well as the others; it

is assumed that this is because the classifier is linear and is suboptional

from the Bayes point of view. The hierarchical clustering method relied

heavily on the clustering algorithm, and on the distribution of data in

high-dimensional space. Since it is not known or guaranteed that data in

n-dimensional space tend to cluster according to classes, the method did

not prove effective in being able to separate clusters into representative

informational classes.

Although much has been learned from the different methods used, the

results do not seem to conform to theory. No appreciable gain was achieved

by using different methods. `-.sed upon a review of the histograms and

statistics of the classes, it appears that the subclasses were unimodal,

but there was much overlap among certain classes (pasture - wheat - corn).

Attempts at improving; the results have not been successful.

F_

c-7
Wheat did appreciably better in the hierarchical clustering approach

than in the other approaches, but pasture did much poorer in the same ap-

proach. Corn did best in the transformed, class-conditional clustering,

single-stage classifier approach. Tho results are inconclusive, however,

and further work will be done before any fin-1 results can be reported.

It was observed that the present layered classifer is very effective in

reducing the time needed for carrying out a classification.

The transformation of data looks promising at it produces uncorrelated

features. Further, it imposes an approximate ordering in terms of the

"importance" of the features, i.e., the first feature is likely to be more

important than the second, etc. A possible disadvantage of using it is

that features will have a larger variance, thus suggesting the need for a

larger number of training samples to adequately estimate the distributions.

These are examples of several factors which could be contributing to

the trends observed in the results, and these factors must be investigated.

However, before doing so, an additional data set will be chosen and similar

tests conducted on it.

I

7

C-8

APPENDIX 2C1

THE LAYERED CLASSIFIER: REVIEW OF LITERATURE

Most of the classification algorithms that have been used in remote

sensing for information extraction using pattern recognition techniques

can be regarded as "single-stage" classifiers, whereby an "unknown" pat-

tern is tested against all classes using one feature subset, and then the

pattern is assigned to one of the present classes in a single-stage deci-

sion. procedure.

In recent years, as classification of multispectral data found a

larger number of users and wider range of applications, the need has been

felt for alternate, more powerful techniques than the conventional classi-

fiers, where more information could be extracted more accurately and/or

efficiently from the scene. Some of the reasons that warranted this need

include:

1. The emergence of more complex data sets with the launching of

Landsat-D with its Thematic Mapper sensor, and the need both to handle the

data acquired efficiently and the ability to extract more information from

the data.

2. As pattern recognition methods developed they found a larger num-

ber of users with a wider range of applications. The feedback from these

different and versatile uses indicated problems and needs not initially

present.

3. There are some applications where conventional classifiers have

proved to be marginal at best. Some of these are listed in Swain et al.[1]

and include multi-image analysis and the use of mixed feature types.

4. The conventional classifiers use only one particular feature sub-

set and are somewhat inefficient as they must compare an unknown pattern

against all possible classes before assigning that pattern to a particular

class.

q

C-9

Because of these and other factors, there has been some research in

recent years directed toward developing multistage classifiers, whereby

the decision procedures go through several stages before finally assign-

ing a pattern to a class.

There has been some earlier work aimed at grouping together the me-

thods of designing multistage classifiers already reported in the litera-

ture [2,3]. In general, one can group the earlier work into two main

categories:

1. Sequential classification methods. These can be found in several

papers and books [4,5,6] in this area. Basically, the method consists of

observations made on feature measurements, one at a time. After an obser-

vation is made, the classifier either reaches a final decision and the

process is terminated, or it makes another observation until a final de-

cision is reached.

2. Hierarchical classification methods. Examples of work in this

area can be found in a review paper by Kanal [7], in papers by Mattson et

al.[8], Meisel et al.[9], Nadler [10] and Wu [2].

As pointed out by Kulkarni [3], hierarchical methods differ from se-

quential ones in certain aspects. While in any sequential schemes any

class can be accepted at any stage of the measurement process, in hierar-

chical schemes classes are rejected from consideration at each stage.

Also, sequential methods impose a linear ordering on the features. In

hierarchical methods, features used along a decision path can be different

from those used along another path.

Several heuristic methods of constructing tree designs are proposed

in the literature. There have been some studies done in using optimiza-

tion methods to automate the classifier design procedure, but these are

still at an early stage. Meisel et al.[9] presented a two-stage parti-

tioning algorithm for the design of an optimal tree. In the first stage,

a suboptimal sufficient partition is obtained. The second stage optimizes

the result of the first stage through a dynamic programming apprcach. The

9

C-10

method uses a binary decision tree, but only linear discriminant functions

are allowed to partition the space.

Dynamic programming and branch-and-bound methodologies were used by

Kulkarni et al#[3] in design of hierarchical classifiers. The criterion

of optimality they use is a weighted sum of the probability of error and

the average measurement cost incurred in classifying a random sample.

Also, the design of the "optimal tree" assumes a very low error rate for

the tree. Further, the authors use only one best feature at each tree

node. Although the authors present some methods of reducing the complex-

ity of their design algorithms, the examples they and previous papers have

used involve only a small number of classes and features.

In 1974, Wu [2] published a thesis on a decision tree approach with

direct application to multispectral data analysis. He proposed several

design procedures, one of which it manual, with special emphasis on a

heuristic, machine-implemented approach. The optimality criterion he

used is again a weighted sum of computation cost and accuracy. He pre-

sented results which show superiority in efficiency and/or accuracy over

the conventional classifier. The method involves many approximations, is

heuristic in many respects, and is certainly suboptimal. However, it may

serve as a starting point for the design of an optimal approach, especially

since it was used successfully for some remote sensing applications [11,12].

to

C-11

7 . Ref erences

1. Swain, P. H. and Itauska, H., "The Decision Tree Classifier: De-
sign and Potential," IEEE Trans. Geoscience Electronics, Vol. GE-15,
No. 3, July 1977.

2. Wu, C. L., "The Decision Tree Approach to Classification," Ph.D.
dissertation, TR-EE75-17, Purdue University, West Lafayette, IN,
1974.

3. Kulkarni, A. V. and Kanal, L. N., "An Optimization Approach to
Hierarchical Classifier Design," Proc. Third Int. Joint Conf. on
Pattern Recognition (Coronado, CA, Nov. 1976) IEEE Cat. No.
76CH 140-3C.

4. Fu, K. S., Sequential Methods in Pattern Recognition and Machine
Learning, Academic Press, 1968.

5. Fu, K. S., Chien, Y. T. and Cardillo, G. P., "A Dynamic Program-
ming Approach to Sequential Pattern Recognition," IEEE Trans.
Computers, Dec. 1967.

6. Wald, A., Sequential Analysis, Wiley, New York, 1947.

7. Kanal, L., "Patterns in Pattern Recognition, 1968-1974," IEEE
Trans. Info. Theory, Vol. IT-20, No. 6, Nov. 1974.

8. Mattson, R. L. and Dammann, J. E., "A Technique for Determining
and Coding Subclass in Pattern Recognition Problems," IBM Journal,
July 1965.

9. Meisel, W. S. and Michalopoulous, D. A., "A Partitioning Algorithm
With Application in Pattern Classification and the Optimization
of Decision Trees," IEEE Trans. Computers, Vol. C-22, pp. 93-103,
Jan. 1973.

10. Nadler, M., "Error and Reject Rates in a Hierarchical Pattern
Recognition," IEEE Trans. Computers, Vol. C-20, Dec. 1971.

11. Swain, P. H., Wu, C. L., Landgrebe, D. A. and Hauska, H., "Layered
Classification Techniques for Remote Sensing Applications," LARS
Information Note 061275, Laboratory for Applications of Remote
Sensing (LARS), Purdue University, West Lafayette, IN 47907, 1975.

12. Bartolucci, L. A., Swain, P. H. and Wu, C. L.. "Selective Radiant
TE::oerature Mapping Using a Layered Classifier," IEEE Trans. Geo-
scie ce Electronics, Vol. GE-14, pp. 101-106, Apr. 1976.

it

C-12

2C2. CONTEXTUAL CLASSIFICATION

Philip H. Swain and Howard Jay Siegel*

1. Introduction

Multispectral image data collected by remote sensing devices aboard

aircraft and spacecraft are relatively complex data entities. Both the

spatial attributes and spectral attributes of these data are known to be

information bearing [1], but to reduce the magnitude of the computations

involved, most analysis efforts have focused on one or the other. Only

within the last few years have serious efforts been made to utilize them

Jointly. For example, one approach uses the spectral homogeneity of

"objects," such as agricultural fields, to segment the scene and then

uses sample classification to assign each object as a whole, rather than

its individual pixels (picture elements), to an appropriate ground cover

class [2]. Another approach involves extraction of features based on

gray-tone spatial-dependency matrices from which texture-like character-

istics are developed [3].

In this project we are developing a more general way to exploit the

spatial/spectral context of a pixel to achieve accurate classification.

Just as in written English one can expect to find certain letters occur-

ring regularly in particular arrangements with other letters (qu, ee, est,

tion), so certain classes of ground cover are likely to occur in the "con-

text" of others. The former phenomenon has been used to improve charac-

ter recognition accuracy in text-reading machines. We have demonstrated

that the latter can be used to improve accuracy in classifying remote

sensing data. Intuitively this should not be surprising since one can

easily think of ground cover classes more likely to occur in some con-

texts than in others.	 One does not expect to find wheat growing in the

* Substantial contributions by Dr. Stephen B. Vardeman, James C. Tilton,
and Bradley W. Smith to Task M. Contextual Classification are grate-

full y acknowledged.

r►

1
i

C-13

midst of a housing subdivision, for example. A close-grown, lush vegeta-

tive cover in such a location is more likely the turf of a lawn.

This report contains the theoretical foundations of a contextual

classifier, experimental results from applying the contextual classifier

to a variety of very different sets of data, and an extensive discussion

of multiprocessor implementation of the classifier algorithm.

2. The Contextual Classifier Model

Consistent with the general characteristics of imaging systems for

remote sensing, we assume a two-dimensional array of N - N1xN2 pixels of

fixed but unknown classification, as shown in Figure 2C2.1.

Associated with the pixel having image coordinates (i,j) is its

true state or true classification 8 1 cQ -(wl,w2, ... ,wm), and a random
measurement vector (observation) Xij eRn having class-conditional density

p(Xij `0 ij). we note that (p(Xlwi), i-1,2,...,m} is the set of class-

conditional probability density functions associating the multispectral

measurement vector X with the classes.

Let X denote a vector whose components are the ordered pixel measure-

ment vectors:

X - [X
ii

(1-1, 2, ...'N1; j - 1, 2,. ..,N2]T .

Similarly, let 6 be the vector of states:

e - [011ii-1,2,...,N1; j - 1 1,2 9 ...,N
2 1

T
 .

The individual measurement vectors are assumed to be class-condition-

ally independent; that is, their joint density can be written as:

p (XID - H p(Xij le1j).	 (2.1)
i,j

Evidence that this is a reasonable assumption may be found in

reference [4].

13

C-14

811	 0 1 •••	 01N2

821	 822 ...
	

0292

8x11	 ...	
8NIN2

Figure 2C2.1. A two-dimensional array of N - N1 x N2 pixels.

i-1,j

15-1
	 i.j	 i,J+i

1 i+1.j

a p-3 choice	 a p-S choice

Figure 2C2.2. Examples of p-context arrays.

iy

C-15

Let the action (classification) taken with respect to pixel (i,j) be

denoted by aij en. The loss suffered by taking action aii when the true

class is
8ii
 is denoted by L(8 ij ,aij) for some fixed non-negative function

L(.,.). Then the average loss suffered over the N classifications in the

array is

L N^ L(8,aij).
i, j

If we make the action
aii

 a function of the observations, then for

a given array 8 the expected average lose (or risk) is

R8 ' $[-gî j L(8ij^a(X))	 (2.2)

where the expectation is with respect to the distribution of the vector

of observations.

Our objective may be stated as follows: We want to determine .1e

dependence of the decision function aij (•) on X in such a way that for

any given array 8, the risk, equation (2.2), will be minimum. One way

to approach the problem of making R 6 small is to view 8 as a realization

of a random process in two dimensions and to derive a decision rule which

is Bayes versus this "prior distribution" fore (probably under some sim-

plifying assumptions concerning the nature of this process). This is the

approach of Welch and Salter [5] and Yu [6], who make assumptions on the

random process sufficient to guarantee that the Bayes decision concerning

pixel (i,j) depends on X only through Xij and the four nearest neighbors

of the pixel.

We will adopt an approach to controlling R 8 through aij (•) that is

more closely related to the large body of statistical literature trace-

able to Robbins [7], and known as compound decision theory. See, for

example, the works and references of VanRyzin [8,9], Cover and Shenhar

[10], and Vardeman [11,12]. Rather than looking for a distribution for

6 whose associated Bayes rule is both simple and has small R 8 for most e,

we use the following argument. First, specify some arrangement of p

pixel locations including a pixel to be classified. Call this arrange-

ment the p-context array, several chores of which are shown in Figure 2C2.2.

m

C-16

Let @PeQP and XPc(Rn) p stand respectively for p-vectors of classes and

n-dimensional measurements; each component of @_p is a variable which can

take on values in 0; each component of Xp is a random n-dimensional

vector which can take on values in the observation space. Correspondence

of the components of @ p and Xp to the positions in the p-context array is

fixed but arbitrary except that the pixel to be classified in the array

will always correspond to the pth component. The notation 0 and Xis

will refer to the particular instance of @ P and XP associated with

pixel (i,j).

Now, consider finding an optimal decision rule of the form

aij (X) = d(Xij)	 (2.3)

for a fixed function d(-) mapping p-vectors of observations.to actions.

The risk associated with any rule of this form is, from equation (2.2),

R @ = E
N

E L(@ij'd(Xij))
i, j

N
E

F L(@ij'd(Xij))
i,j

_ E G(ep)E[-\@p'd(XP))	 (2.4)

@p eSIP

where G(@ P), the context distribution, is the relative frequency with

which @poccurs in the array 8 and @p is the pth component of O P . Notice

that R© depends on @ only through G(O P). Writing equation (2.4) in more

detail and invoking the class-conditional independence: assumption, equa-

tion (2.1), we have

R@ G (@P)1 L(©p d (XP)) Ir P(X1161)dXp
@p`2p	

J	 _	 i=1

P
@pesZP c()P)L(9p,d(Xp)) 7r

p(Xi,@i)dXp	

(2.5)

it

where the product is over the components Xi of XP . For any frame @, a

l4

C-17

decision rule d(XP) minimising R8 can be obtained by minimising this into-

grand in equation (2.5) for each XP; thus for a specific Xis (an instance

of XP), an optimal action is:

d(X) the action (classification) a Which minimises

P

G(eP)L(ep , a) 7r P(Xilei)-
epeflp	 i-1

This can be written in a slightly different form which makes more appar-

ent the specific contribution due to context (the term in brackets below):

d(Xij) the action a which minimises

G(8P) 7T P(Xi 1ei) L (8 '. a)P(ple').	 (2.7)
i-1

V Eft

	

	 e_p eflp
e -e'
P

In practice, a "0-1 loss function" is usually assumed, i.e.,

0, if e
L(e,a) -

1, if e	 a

Then (2.7) simplifies and the decision rule becomes:

d(Xij) - the action a which maximises

P-1

G(ep) 7T
P(Xi l e i) P(X Is)	 (2.8)

epeflp
a -a
P

Thus (2.8) defines a set of discriminant functions for the classification

problem.

The optimal choice of d(•) cannot actually be determined because it

depends on G(8P) which is unknown. We can, however, expect that, at

least for large N - N 1 x N2 , a decision rule in which G(OP) is replaced

/7

I
C-18

by an estimate of G(e) based on the 4j will have risk R8 approximating

that of the optimal rule. (We call this the "bootstrap aft act.") That

this is the case when p - 1 (approximating an optimal pointwiss clasai-

fiar with estimated a priori probabilities) and suitable forms of esti-

nation are used is a consequence of the work of VanAyzin [93.

The notion of attempting to approximate the risk of the best rule of

the fore equation (2.3) for p>1, given its first general treatment in

Gilliland and Hannan [13], has not been as thoroughly studied as the

p - 1 version. But related work for p > 1 in seauencs versions of com-

pound decision theory [14] suggests the validity of the generalization.

Further, Vardaman [12] points out that if one is willing to separate the

N locations into several groups G1 , G2: 400 0 G within each of which the

X are independent, the results for p = 1 by VanRyz1n guarantee that,

for p >1, replacing the G(8p) by estimates of the frequencies of 8p group-

by-group produces a decision procedure having the risk of the optimal

rule as an approximate upper bound on its risk. An illustration of this

separation idea is shown in Figure 2C2.3.

in the interest of a practical solution to the problem of incorpor-

ating context into the classification procedure, estimates of G(8p) were

derived experimentally by simply counting the occurrences of each 8p ob-

tained in a preliminary classification of the scene without the use of

context. Although the use of this rather crude method of estimating

G(8p) has not been studied in the statistical literature, we will demon-

strata in Section 3 its effectiveness for our application.

Before proceeding to a discussion of our experimental results, we

make two further observations concerning this approach. First, seeking

a criterion for the "context richness" of a scene, we have been able to

reach only the following result. Suppose the frequencies G(8 p) are such

that G(OP)' can be written in factored form, i.e.,

G09)G1(8').G2(8")

where 8' and 8" are, Yes7-ectively, p - i and L vectors of classes. Then

(2.6) can be written in the form

/I

C1

C-19

W"-
.

2-context
arrey

2

Figure 2C2.3. A. context array with so-parable pixel groups.

l9

C-20

P	 P-R

ZL(OP +a) 7t P(xi ^ e i} G2 (8^^)	 Ei.,P(XiRsi)G1(®'}•

8a 	in 	 6'
P-01

But now the terms included in the second summation are independent of the

conditions at the pixel to be classified and are therefore constant rele-

tive to the decision to be made. Thus, the decision depends only on I

components of the p-contact array and is independent of the other p - I

locations. If it were possible to determins such factorability of the

G(e), one could simplify the context classification computations by re-

ducing the size of the context array.

Second, comparing (2.7) with the results of Welch and Salter [5] and

reinterpreting the G(8p) as the marginal of an a priori distribution for

8, one may view (2.7) as a generalization of the Welch and Salter context

classification rule. The advantages of the present formulation are that

one need make no possibly unrealistic assumptions about the distribution

for a and has complete freedom to choose both p and the form of the

p-context array. There are situations {e.g., locating clouds and their

associated shadows in a scene) in which context arrays other than those

involving neighboring pixels would be useful, a possibility unique to

this approach.

3. Experimental Results

Experiments were performed to explore the effectiveness of contextual

classification as applied to the analysis of multispectral remote sensing

data. First, simulated data were used to determine the degree to which

contextual classifi_%t:on might improve the analysis results (as compared

to no-context classification). given that the class -conditional densities

and the context distribution for the scene were known. The simulated data

were used again to investigate candidate methods for estimating the con-

text distribution sinct, as noted in Section 2. it usually cannot be

assumed that the context distribution '.s known a^priori. Finally. con-

textual classification was applied to real data to determine the extent

^d

{

C-21

to which the conclusions drawn from the simulated -data wxperiments could

be extended to the more realistic case.

3.1 Simulated-Data Experiments

A no-context classification of multispectral remote sensing data was

selected which had been judged to be very accurate (produced by careful

analysis and refinement of multitemporal data). Such a classification

could be expected to embody the contextual content of an actual ground

scene. Using the classification map and the associated statistics of the

classes (developed in performing the no -context classification) data vec-

tors were produced by a Gaussian random number generator and composed into

a new data set. Thus the new data set had the following characteristics:

1. Each pixel in the simulated data set represented the same class

as in the "template" classification. The template could be considered

the "ground truth" for the simulated data set.

2. All classes in the data set were known and represented.

3. All classes had multivariate Gaussian dLstributions with statta-

tics typical of those found in real data.

4. All pixels were class-conditionally independent of adjacent pixels.

S. There were no mixture pixels.

Data simulated in this manner are somewhat of an idealization of

real remote sensing data, but the spatial organization of the simulated

data is consistent with a real world scene and the overall characteristics

of the data are consistent with the contextual classifier model. In es-

sence, then, the experimental results based on the simulated data demon-

strate the effectiveness of the context: classifier,îven that the under-

lying assumptions are satisfied. Further experiments with real data are

required to generalize the conclusions.

Three data sets were selected representing a variety of ground cover

types and textures. Data set 1 was agricultural (Williston, NortF Dakota),

with ground resolution and spectral bands approximating those of the pro-

jected Landsat-D rhematic flapper. Data set 2a was Landut-1 data from

C-22

an urban area (Grand Rapids, Michigan). Data set 2b was from the same

Landsat frame as 2a, but from a locale having significantly different

spatial organization. Each data set was square, 50 pixels on a side.

Figure 202.4 shows the classification results obtained. The "no-

context" classification accuracy is plotted coincident with the vertical

axis of each graph. Data set 1 was classified using successively 0, 2,

4, 6 and 8 neighboring pixels; data sets 2a and 2b were classified using

0, 2, 4 and 8 neighboring pixels. The accuracy improvement resulting

from the use of contextual information was found to be quite significant.

To accomplish the context classification using this approach, it is

necessary to have available the class-conditional density functions for

the classes to be recognized, p(Xlw i), and the context distribution (the

frequency distribution associated with the p-vectors, G(6p)). In remote

sensing applications, the class-conditional density functions are typi-

cally learned from training samples. For the experiments described above,

the Gaussian class statistics on which the data simulations were based

were used for the classification (these were originally the training sta-

tistics used to produce the "template" classification). An important

question is how in practice to determine the context distribution. In

the foregoing experiment, this distribution was simply tabulated from

the "template" classification (actually, from an area somewhat larger

than classified in this test). But in a real data situation, such a tem-

plate is not available, else there would be no need to perform any further

classification.

One can envision a number of ways in which the context distribution

might be estimated for a given remote sensing application. For example,

it could be extracted from a classification of data obtained previously

from the same area. This would require that the area not have changed

much in its class make-up since the earlier data were collected and that

the earlier classification was reasonably accurate. Alternatively, the

distribution might be obtained from a classification of any similarly

constituted area. Still another possibility would be to estimate the

context distribution for the data to be classified from a "conventional"

kV

0u
V

F8

a

0u

ZNearest Neighbors 	
8

ib)

0	
2 NearestNeighbors	

8

(c)

C-23

Nearest Neighbors

(a)

Figure 2C2.4. Contextual classification of simulated data.

(a) Data set 1. (b) Data set 2a. (c) Data set 2b.

C-24

classification of the same data determined to have "reasonably gc.od"

accuracy. Conceivably, one might then refine the contextual classification

by making another estimate of the context distribution based on the re-

sulting more accurate classification, and even iterate in this way until

no further improvements in accuracy were obtained. All of these methods

produce an estimate of the context distribution, and a crucial question

on which hinges the utility of this contextual classification method is

how sensitive the contextual algorithm is likely to be to the "goodness"

of the estimate.

The iterative technique starting with a no-context classification

seemed to be the most practical approach, since no classifications are

needed front earlier data or from other areas of similar context. All

that is needed is a good initial point-by -point classification of the

area in question.

To test the potential of this "bootstrap" technique, it was first

tried on the simulated data set 2a. Also, the classificatiors using the

reference template were rerun using an est imate of the context distribu-

tion from just the 50-pixel-square area classified, rather than from the

larger area (276 x 320) used to obtain the estimate for the results pre-

sented in Figure 2C2.4. This was done to provide a better comparison to

what could be accomplished using the bootstrap technique.

Using this approach, seven iterations (classifications followed by

re-estimation of the context distribution) produced an improvement of

36 percent in overall accuracy compared to the point classification using

equal a priori probabilities (from 52 percent to over 88 percent). No

significant change was observed in average-by-class accuracy (constant at

68 percent).* This compares with an increase of over 44 percent in over-

* Classification performance can be tabulated in two ways. Overall ac-
curacy is simply the overall number of correct classifications divided
by the total number attempted. Average-by-class accuracy is obtained by
first computing the accuracy for each class and taking the arithmetic
average of the class accuracies. The latter is significant when the
classification results exhibit a tendency to discriminate in favor of
or against a subset of the classes.

.^y

L_

C-25

all accuracy (over 20 percent in average-by-class accuracy) obtained using

the context distribution estimated from the template classification. These

results are summarised in Figure 2C2.5.

As seen in Figure 2C2.5, a number of values of p were used in the

iteration process. At each iteration, the best classification found by

varying p, as judged by trading off overall accuracy against average-by-

class accuracy, was used as the template for re-estimating the context

distribution for the next iteration.

The best classification on the first iteration was obtained for

p - 3 (two nearest neighbors), which was also the case for the second

iteration. On the third iteration, the p - 5 (four nearest neighbors)

choice was deemed best. Finally, by the seventh iteration, the p - 9

(eight nearest neighbors) choice was considered best. In this case, the

overall accuracy was slightly less than for the p - 5 choice (88.2 percent

versus 88.6 percent), but the average-by-class accuracy was better by a

larger margin (68.1 percent versus 67.4 percent).

This implementation of the bootstrap technique involves a large

number of classifications, usually three or more per iteration. A simpler

approach would be to do just one classification per iteration and in-,

crease the number of nearest neighbors used for each iteration. As

shown in Figure 2C2.6, for data set 2a the final result using this me-

thod was virtually the same as for the more involved procedure.

It was wondered just how much of the accuracy improvement was due

to a better estimate of the point-by-point prior probabilities. After

five iterations doing O-nearest-neighbor classification, the improvement

in overall accuracy saturated at 80.3 percent, but the average perfor-

mance by class had degraded to 46.9 percent. This compares closely to

the 0-nearest-neighbor classification done using the context distribution

determined from the reference template, which had an overall accuracy of

80.8 percent and an average performance by class of 48.3 percent. It

appears from this result that the context serves to improve the overall

performance compared to that of the 0-nearest-neighbor result while

resisting degradation in average-by-class accuracy.

C-26

,^'Reeutbs with PERFECT Template

J* 71h phial ft "Iltion

ii
i

ii
i

U	 ^ Template for 4th Iteration

O	 d
tJ

C	 3rd It

t
75- Template for 3rd Iteration

O
CL

^Itarafion
0
O
O

Template for 2nd Iteration

tst Iteration

for tst Iteration

`-0 	 0	 1	 2
Uniform Est.
Priors Priors

Nearest Neighbors

Figw r E: 2C2.5. Results of contextual classification

using iteratively estimated context distribution

(simulated data set 2a).

 show

00
v
O
VC4

tO
a

.o
0

b

C-27

n

Uniform Est.
Priors Prio; s

Iteration

Figure 2C2.6. Contextual classification results based on

simplified iterative technique (simulated data set 2a).

a7

C-28

3.2 Real Data Experiments

Having observed excellent performance of the context classifier on

simulated data, the next step was to see how well it would perform on

real data. A 50-pixel-square segment of Landsat data was chosen which

included approximately equal amounts of urban and agricultural area loca-

ted to the southeast of Bloomington, Indiana. Statistics for the spectral

classes were estimated using the 100-pixel-square area centered on the

50-pixel-square segment. A very careful classification using 14 spectral

classes was performed to delineate agricultural, urban and forested areas.

As there were too few forested pixels to delineate forest test areas re-

liably, the classification was tested only for accuracy in classifying

the agricultural and urban classes. Out of the 2500 pixels in the seg-

ment, a total of 867 pixels were manually interpreted as agricultural

and 450 pixels as urban. The identification was made by interpretation

of color infrared photography taken by aircraft on the same day as the

Landsat pass.

The results from using the full bootstrap technique on this data set

were not nearly as favorable as the results obtained from the simulated

data. See Figure 202.7.

The no-context classification using uniform prior probabilities had

an overall accuracy of 83.1 percent and an average-by-class accuracy of

82.7 percent. The best classification obtained using this result as a

template to estimate the context distribution was a p - 2 (one-nearest-

neighbor) classification based on the neighbor to the "north" (85.2 per-

cent overall, 84.7 percent average-by-class). Interestingly, the one-

nearest-neighbor result based on the neighbor to the "west" produced a

somewhat poorer classification (84.2 percent :.,:^rall, 83.8 percent average

by class).* No apparent features in the scene would account for the dif-

ference (i.e., be seen by eye), raising a new issue yet to be pursued.

* In the figure, "25 window" refers to one-nearest-neighbor-tc-the-.north;
"45 window" refers to one-nearest-neighbor-tu-the-s,-est.

ag

Ar

40
V
fb

^w
W

0

C-29

TorO N for 3rd Iteration

Template for tst Iteration

_0	 0	 1	 1	 2	 4	 8
ria aia wr imv wn^'dow

Nearest Neighbors

Figure 2C2.7. Contextual classification of Bloomington data using

the unmodified procedure for estimating the context distribution.

C-30

The second iteration was performed using the one-nearest -neighbor

(north) classification from the first iteration for estimating the con-

text distribution. Here the two-nearest -neighbor (neighbors to the "north"

and "west") classification was the best with an overall accuracy of 85.2

percent and average-by-class accuracy of 84 . 7 percent). The best classi-

fication for the third iteration was again the one-nearest -neighbor (north)

case with 85.3 percent overall accuracy and 84.8 percent average-by-class

accuracy. The fourth iteration produced no improvement. The context clas-

sifier thus only yielded just over two percent improvement in both over-

all accuracy and average -by-class accuracy.

In order to assess the sensitivity of these results to the accuracy

of the template used to estimate the context distribution, a manual "clean-

up" of the original template was performed, as follows: Change the clas-

sification of all incorrectly classified points in the test areas in the

original point-by-point uniform priors classification to the closest spec-

tral class in the correct information class as observed by means of a

cross-plot of Landsat bands 2 and 3. Where either of two spectral classes

might have been the correct class, a coin was tossed to decide the assign-

ment. The context distribution was then estimated from the entire modified

classification including both test and non -test areas.

The first iteration using this modified classification as template

produced excellent results (Figure 2C2.8). The p - 9 (eight-nearest-

neighbor) classification produced an improvement of over 10 percent to

93.8 percent in overall accuracy and over 11 percent to 93.6 percent in

average-by-class accuracy (compared to the conventional point classifier

with uniform prior probabilities). A second iteration was performed us-

ing a context distribution estimate from a similarly modified eight-

nearest-neighbors classification from the first iteration. No further

improvement in accuracy was observed, suggesting that this iterative

process "saturates" very quickly.

Finally, both of the techniques applied to the Landsat data from

near Bloomington were tried on a 50-pixel-square area from the northwest

corner of the Large Area Crop Inventory Experiment (LACIE), segment No.

^U

C-31

Tmuft u& q contract
dbtrWiM wth 01 14 from
%wecteC tonpM*.

UncorroCOd Timplds

1	 2	 4	 8
UrAform
Priors

Nearest Neighbors

Figure 2C2.8. Performance using manual template correction

for estimating the context distribution (Bloomington data).

C-32

1860 in Hodgman County, Kansas. Statistics for the 16 spectral classes

were generated from randomly located training fields scattered throughout

the entire 117 by 194-pixel Landsat data frame. The coordinates of the

training fields were chosen by selecting pixel coordinates from a random

number table and surrounding the selected pixel by the largest homogeneous

rectangle (up to field size 20 by 20). The classifications were tested

for accuracy over five information classes (pasture, idle, wheat, corn

and alfalfa) from "wall-to-wall" pixel-by-pixel ground truth.

The results from using the strightforward full bootstrap technique

paralleled those from the Bloomington study. Here the no-context classi-

fication using uniform prior probabilities had an overall accuracy of

78.7 percent and an average-by-class accuracy of 72.0 percent. As shown

in Figure 2C2.9, the best classification (after five iterations) was a

p - 9 (eight-nearest-neighbors) classification with 80.5 percent overall

accuracy and 73.0 average-by-class accuracy. The context classifier could

only manage a 1.8 percent improvement in overall accuracy here and a 1.0

percent improvement in average-by-class accuracy.

A manual "clean-up" similar to that done on the Bloomington data was

then performed on the first 25 lines of the original no-context uniform

priors classification, and the p-vector distribution was estimated from

just these 25 lines. Context classifications were performed, and the

classification accuracies were evaluated over the remaining 25 lines.

Again, the results employing the manual "clean-up" technique were

excellent (see Figure 202.10). The overall accuracy over the last 25

lines of the original no-context uniform priers classification was 76.0

percent, while the average-by-class accuracy was 75.6 percent. The p - 9

(eight-nearest-neighbor) classification improved the overall accuracy by

9.4 percent and improved the average-by-class accuracy by 6.1 percent.

The excellent results produced by using the context distri-

bution estimated from the manually modified point classification suggest

the following approach for classification using context:

3.1b

l

C-33

81
3ro Nsntton

ed NsrsI'm
i

^ ^)n
Nh Nsrdlon ^ii ^on

4th NsraR an

v Nanaan

e
^.

i

•
1V. Iw 1^^^

0 1	 1 2	 4 8
^Pror^s ews WM W&W

Nearest NWghbors

Figure 2C2.9. Contextual classificaLion of LACIE segment using

the unmodified procedure for estimating the context distribution.

J3

C-34

n

V	 "etxrscts0" tsmpisN

c.

UvOrrsctsd Tae %ftlo

1	 2	 4
	

8
Uniform
Priers

Nearest Neighbors

Figure 2C2.10. Performance using manual template correction

for estimating the context distribution (LACIE data).

C-3S

1. Perform point-by-point classification using uniform prior proba-

bilities an the training set as before. but with the following twist:

When a pixel is known to be of a certain information class, allow the

classifier to choose only between spectral classes associated with that

information class. This will force a 100 percent accurate classification

In the training areas and should permit an even better estimate of the

context distribution than the manual modification method described above.

2. Estimate the context distribution from the resulting 100 percent

accurate classification of the training fields.

3. Classify the entire scene with the statistical context classifier

and evaluate the results over a teat set disjoint from the training set.

JS-

C-36

4. Overview of the CDC Flexible Processor Arral y System

Classification algorithms such as the context classifier (and even

n ch simpler algorithms used for remote sensing data analysis) typically

require large amounts of computation time. One way to reduce the execu-

tion time of these tasks is through the use of parallelism. Various paral-

lel processing systems that can be used for remote sensing have been built

or proposed. These include pipelined processors [16]pmultimicrocomputer

systems [' ,18], and special purpose systems [19]. The Control Data Cor-

poration 1'._^xib? Processor System [16,20,21] is a commercially available

multiproces-or system which has been recommended for use in remote sensing

[22].

The remainder of Section 4 consists of a skeleton description of many

of the key features of the CDC Flexible Processor System. The description

will convey to the potential user (at the programming level) a flavor of

the task to be dealt with.

Section 5 contains a description of how the Flexible Processor System

can be used to implement contextual classification. As a somewhat simpler

problem to start with, implementation of the maximum likelihood classifier

is first discussed.

Since our research is being pursued remote from a real Flexible Pro-

cessor System, we have developed a simulator to facilitate code develop-

ment and testing. The simulator is described in Section 6.

4.1 The Hardware

4.1.1 Introduction

Key elements of the Flexible Processor hardware are discussed first,

focused on the Flexible Processor itself which is the basic building

block of the Flexible Processor System.

IY

C-37

4.1.2 'rhe CDC Flexible Processor

The basic components of a Flexible Processor (FP) are shown in Figure

2C2.11. Each FP is microprogrammable, allowing parallelism at the instruc-

tion level. An example of the way in which N FPs may be configured into a

system is shown in Figure 2C2.12. There can be up to 16 FPs linked together,

providing much parallelism at the processor level. The clock cycle time

of an FP is 125 nsec (nanoseconds). Since 16 FPs can be connected in a

parallel and/or pipelined fashion, the effective throughput can be dras-

tically increased, resulting in a potential effective cycle time of less

than 10 nsec.

A central feature of the FP is its dual 16-bit internal bus structure,

enabling the FP to manipulate either 16- or 32-bit operands. If 32-bit

operands are used, the FP can be programmed to execute floating point rou-

tines (on its integer hardware) based on the floating point representation

of such systems as the IBM 370 and the PDP 11/70. If the needed data width

is 16 bits, the FP can be programmed to perform different operations on each

of the 16-bit words simultaneously.

4.1.3 Register Files

In each FP, there are two files of registers, one called the tempo-

rary register file and the other the large register file. Both are divi-

ded into 16-bit addressable subunits. If the needed path width is 16 bits,

the two files can act like four files, thus creating more addressable user

space. A special feature of the temporary file is its two separate read

and two separate write address registers. This can save much CPU time in

many types of matrix operations. The large register file has its own two

read/write address registers. It is possible to do either a read or write

to either file and simultaneously increment (or decrement) the address

register. The temporary file is 16 words, 32 bits each, while the large

file is 4096 words, 32 bits each. All of the register files consist of

60-nsec random-access memory.

37

DATA PATHS IN A FLEXIBLE PROCESSOR

HOST	
PARTY

INPUT	 LINE

32	 FILE	 CHANNELS

SMALL FILE	
HIGH SPEED

16W X 32B	
CHANNEL

32
_RING

LARGE FILE	 MICRO

4096w x 32B	 MEMORY

4K WORDS

BY 48B
ARITH. LOGIC

UNIT

MULTIPLIER

16	 16

Fig. 2C2.11. Data path organization in the CDC Flexible Processor.

w

SYSTEMS

YTROLLER

TO IMAGE

DISPLAY STATION

^-ONTROL CONSOLE

ZING

TO ALL BANKS

OF IMAGE

DISPLAY MEMORY

FLEXIBLE PROCESSOR (FP) ARRAY

TYPICAL CONFIGURATION

TO 1/0 BUFFER MEMORY

C-39

Fig. 2C2.12. Block diagram of typical Flexible Processor array.

C-40

4.1.4 Registers and Arithmetic Units

Details of the architecture of an FP are shown in Figure 2C2.13. There

are three 32-bit general purpose registers called the E, F, and G registers.

All of these registers are connected to the arithmetic logic unit (ALU),

which can perform 32-bit additions in 125 nsec. The E and G registers are

readable directly through the ALU. The general purpose registers can be

shifted separately, or the E and F registers can be combined into a 64-bit

shift register for double-length shifts. The output of the ALU is a 32-

bit register, A, that is addressable by byte (8 bits). This makes a vari-

ety of byte manipulations possible. Separate from the ALU is a hardware

integer multiplier,which takes two bytes and multiplies them to produce

a 16-bit result in 250 nsec. The input registers are the P and Q registers,

which are each 16 bits wide. The user can choose which two bytes are to be

multiplied. The FP is equipped with four index registers and eight corres-

ponding compare registers. The index registers can be used for looping

and can be incremented or decremented during any statement not addressing

those registers. The FP also contains a hardware jump stack, so it is

capable of handling standard types of program calls such as subroutine

jumps.

4.1.5 Micro-Memory and Input/Output

The micro-memory consists of 4k 48-bit words. It stores the micro-

program. Each FP in a system can contain a different program.

Input/Output (I/0) for the FP depends on the overall system (i.e.,

the FP array and its host machine). An FP is capable of interrupting

another. FP for I/0. I/O among the FPs is done one of two ways. The

first is a very high speed communication link, arranged in a ring configu-

ration [20,21]. It operates at four mega-words (16 bits per word) per

second. Each FP has a station on the ring, and each station on the ring

is connected to two other stations. When an FP does a write to the ring,

it gives 16 bits of data and the address of the destination.	 If a station

receives data for another address, it shifts the data to the next station.

This is continued until the data reach the correct station. Special hard-

(1a	, r hA*x

rroturn
to

jump
etook

s dxO
mar, I maaK

I
mar-o	 iorO

m it
morlo

u memory	 omr-O

I mm12 I mmi 1 I mmiO I
1

temporary temporary
file on• file zero

lraitlwa ItOraltOwa ^-j	 I	 I	 muItipl

input	 input
files	 files

F1on• 	 zero	 mul

ifla	 SfOa

I	 0
qr-op	 Ores

i/o ohannol•
o

oii	 aio	 ari	 are

z	 I	 w	 I	 b l	 al

	

rireot wtora90 a000w•	 63 62

intorru t re ietorm
intr I mawkO I mawkl	 I I t

ERAMf	
Figure 202.13. Details of the Architecture of a F11

I
y/

multiplior

mu It

I	 0	 •i

alu

a1 a0
b3 b2 bi b

C-41

idx0 idxl I	 idx2 I idx3
i orr0 i or- l I or-21 i ar-3

i ndox rag i •tor-•

indox oomparo rogietor•

morr0 mor+I I	 morr2 I mor3 I ma i ntononoe oomparo roe„ j 1 otor•

omr3	 condition mo•k rogietor•omrr0 omrri I omr2

brol

If lo	 lf0a

largo	 largo
file	 file
one	 :era	 4086

e0	 f1	 f0

tha •-f rag i eter► pa i r
can be combined for a
double length shift

I
the dofoult output for
the alu ie the fl-f0

rog i etor+ pair.

CRAMFof the Architecture of a Flexible Processor.

y

C-42

ware has been added to remove data from the ring in the event of a station

failure. The data are loaded into the "input file." This 16 32-bit/word

register file can be used as a small buffer. Another form of I/O is through

up to 16 64k-byte banks of shared 160-nsec memory. This is not as fast as

the previous method; however, for large data transfers, it frees the ring

for other communications, as well as providing a buffer between FPs.

4.1.6 Microprogramming of the Flexible Processor

The FP is micro-programmed in "micro-assembly language," allowing

parallelism at the instruction level, as indicated in the FP coding form

shown in Figure 2C2.14. For example, it is possible to conditionally incre-

ment an index register, do a program jump, multiply two 8-bit integers,

and add the E and G registers, all simultaneously. This type of opera-

tional overlap, in conjunction with the multiprocessing capability of the

FPs, greatly increases the speed of the FP array.

4.1.7 A Flexible Processor Image Processing System

Figure 2C2.15 is a schematic block diagram of the system in operation

at the CDC Digital Systems Display Laboratory in Minneapolis [22]. This

figure is provided as an example of one possible FP array configuration.

The setup of this system has many desirable features for picture proces-

sing. The parallel-pipelined architecture of the FPs enables the system

to do rapid matrix multiplications. There are image displays attached, so

it is possible to view the pictures. The two 800-bpi tape drives, along

with the 50M disk unit, contain enough storage space for jobs that re-

quire large amounts of memory. In addition, the system can handle up to

eight terminals on its resident operating system (called ICE). Batch

jobs can also be run from its 300-card-per-minute reader.

143

v

A	 ^

w
ww
ww

I	 i
i	 ^ A

a	 I

'	 Y	 I

M

'	 h	 ouu

C-44

i

	

I	 ^	 i

w

	

M ^ MI	 I

	

1	 '

I	 I
i	 I l--_ _ .J

I

i
ii
I

L

P'9
N
Nu

N

N

01
C
•r
N
N

VO
L
d
a
v+

L
ONN
a!
oU
L

i
Q

NUN

L

•r

Li.

A
K
0

'
I

IK
sss o '

a I

K0• '1

M K	 i^ f

A 'Ko ^

A I
^ K

i

I ^^	 ^Y	 '̂ u	 $	 R	 1Y

I g	
i^

u ,

4451

C-45

4.2 The Software

4.2.1 Introduction

The host for the FP system is programmable in FORTRAN. FP programs

written in assembly language can be called from the FORTRAN library, enabl-

ing the calling programs to be written in FORTRAN [221. The average user,

then, will not have any contact with the FP assembly language, making the

use of the system much easier. Data analysis packages, such as parts of

LARSYS, which are written in FORTRAN, can with very simple modifications

run on the FP system. The rest of this section overviews how to program

an FP at the micro-assembly language level.

4.2.2 Registers

The three general purpose registers (E, F, and G) are divided in

halves because they are 32 bits long and the busses are only 16. The most

significant bits of the registers are referred to as the "one" group and

the least significant bits are referred to as the "zero" group. For exam-

ple, the most significant bits of the E register are called E1, and the

least significant bits of the E register are called E0.

The ability to address registers in groups of 16 bits allows one to

address halves of two separate registers simultaneously. For example, if

one wished to write into the upper 16 bits of the F register and the lower

16 bits of the G register, the pair would be referred to as F1GO in the

command. Both will get the same dpta, but they will get it in one machine

cycle instead of two. This increases throughput when, for example, loading

initial conditions.

4.2.3 The Transfer Constant Instruction

These registers can be loaded with a constant using the Transfer

Constant (TC) instruction. Figure 2C2.14 shows the coding form. Line three

gives the form of the TC instruction format. Omitting the AAA and the

comments, the basic form of the instruction is:

I	 .41

C-4 6

TC	 $HHHH DSTO DST1

The $ tells the assembler that the four following digits are to be in

hexadecimal. This command places the constant on both data lines to enable

the loading of two register# simultaneously. The DST (destination) is

filled in by an appropriate register which can rud off the corresponding

bus. Not all registers can provide data to ("source") or receive data

from ("destine") both busses. For example, F1 cannot read ("destine") bus 0,

the E and G registers can only be sourced into the arithmetic logic unit,

and the E1 and GO registers can only read from bus 1 [21].

Some examples of correct TC instructions are:

TC	 $FFA8 EOG1 F1GO,

TC	 $0100 EO GO

TC	 $ 0101 EO NOP .

The first command in the example transfers the hexadecimal constant FFA8

to the 16-bit registers E0, F1, GO, and G1. The second command transfers

the hex constant 0100 to the EO and GO registers. In the third command,

the NOP indicates bus 1 is not used. Note that while it is not possible

to source two different registers at the same time, it is possible to

destine two registers off the same bus at the same time.

4.2.4 The Transfer Register Instruction

Another way in which the registers can be used as a source of infor-

mation is in the Transfer Register (TR) instruction. This is the fourth

format shown in Figure 2CZ.14. The basic_ format of the instruction is:

TR	 SRCO	 DSTO	 SRC1	 DST1

This instruction tells the computer to source the register in the SRCO

field to bus 0 and to use the register(s) in the DSTO field as the

destination(s). In the event that the other bus is not to be used, a NOF

must be placed in both the SRC and DST fields corresponding to that bus.

4.2.5 Using the Temporary Files

A special feature of the temporary register files, discussed in

Section 4.1.3, is that it has separate read and write indices. The in-

47

C-47

dices are TORA, TOWA, T1RA, AND T1WA, which stand, respectively, br Tempo-

rary file 0 Read Address, Temporary file 0 Write Address, Temporary file

1 Read Address, and Temporary file 1 Write Address. Each is four bits in

length. When using the temporary files, one usually initializes the index

value and then uses special instructions to increment, decrement, or clear

these registers while doing other operations. When storing information to

a temporary file, the mnemonic used is TFxf, where x is the file number

and f is the function to be performed. The following is a list of the

available functions:

U	 increment the corresponding index

D	 decrement the corresponding index

C	 zero the corresponding index

N	 perform no operation on the index

The machine will update the read or write address, depending on the con-

text used, i.e., if a temporary file is used as a source, the read address

will be assumed, and if it is used as a destination, the write address will

be assumed. Some examples are as follows:

TC	 $0101 TFOU TF1D

TC	 $0101 TFON TF1C

TC	 $0101 TFOC TF1C

In the examples, the hex constant 0101 is stored in the temporary file

while the write pointer is incremented, decremented, unchanged, and cleared.

4.2.6 Using the Large Files

The Large files, discussed in Sectl.on 4.1.3, have only one pointer

per file, but are accessed in the same manner as the temporary file. To

access a file, the format is LFxf, where x is the file number and f is

the function to be performed on the file. The functions performed are

the C, D, and N as defined in Section 4.2.5 and A which adds index

register 0 to the corresponding index and uses that location as the de-

sired address. The instruction

TC	 $0101 LFOU UlD

would store the hex constant 0101 in large files 0 and 1 while increment-

ing the pointer for large file 0 and decrementing the pointer for large:

file 1. The length of the large file pointers is 10 bits. Iirge file

4

C-48

pointers are called LOA and UA. Both the large file and the temporary

file pointers can be accessed in the same manner as standard general pur-

pose registers.

4.2.7 Proarammina the Arithmetic Lo gic Unit

In the TR instruction there is a field labeled ADD (see Figure 2C2.14).

This field controls the function of the ALU. Output from the ALU is avail-

able as the A (accumulator) register, which can be sourced in the same

manner as the F and C registers. In the event that the A reg::ster is not

sourced, the result is moved to the FO-F1 register pair. One feature of

the A register is different from the other general purpose registers in

that it is byte addressable. This ability makes it one of the most power-

ful registers on the machine. Figure 2C2.16 is a listing of the ALU mnemonics

and a brief interpretation of their meanings. It is important to remember

that this machine is micro -codable; thus there are many possibilities that

are not in the mnemonic set. This is the extent of the assembler mnemonics

for the ALU, but there are more commands. Figure 2C2.17 shows a listing of

the entire command set. To be able to use this list, first type either an A

or an L (for arithmetic or logical) and then a C or an N (for carry or

no p arry). The A (L) determines the basic function type.	 The N further

determines the type of function by determining the type of carry. With the

above, it is possible to use Figure 2C2.17 to determine the exact function

number desired. The only other entity necessary is the function number

(from 0 to F). Thus an ANF describes the arithmetic function in the no-carry

portion of the table that is in the fifteenth row. All three of the function

descriptors are placed in the column labeled ADD (see Figure 2C2.14).

As shown in Figure 2C2.13, the A register is divided into four bytes

numbered zero through three. If AO is sourced, bytes O and 1 will be ob-

tained. Likewise, sourcing Al will yield bytes 2 and 3. If bytes 1 and 2

are needed together, adding an SW (which stands for Swap bytes) to the end

of AO will yield the desired result. If bytes 0 and 3 are needed, adding

an SW to the end of Al will yield the desired result. Thus AOSW is the

correct way to address bytes 1 and 2.

^9

C-49

Mnemonic: Function: Comments:

ADD A=E*G Twos complement add the E and G regs.

AND A=EG Logical AND the E	 and	 G	 registers.

E A=E This is	 the method for	 sourcing the
E	 register, making it	 sourcable	 to
both busses.

E•1 A=E•i This makes	 it possible to increment•
E-1 A=E-1 decrement,	 and double the E register
E •E A=E•E without ever	 having to load	 a	 con-

stant.

g-G A=E-G Twos comp lement subtract	 the E and	 G
register pairs.

E=G A=E-G-1 The Flexible p rocessor has	 a	 branch
if negative command.	 If	 the E	 regis-
ter is	 less than or e qual	 to	 the	 G
register,	 this will	 branch.

EN A=•E Logically complement the E 	 register
(E	 NOT).

G A=G This makes	 the G register sourcable
to both busses.

GN A =96 Logically	 complement	 the G register.

OR A=E*G LogicaLLy OR the	 E and G	 registers.

Sal A=E-G Ones	 Com p lement	 subtract	 the	 G
register	 from	 the	 E	 register.

SET A=E••E Set	 A	 to all ones.

XOR A=E•G EXCLUSIVE OR	 E and G registers.

ZRO A=E•E Load A	 register	 with	 all	 zeros.

Figure 2C2.16. Flexible Processor Arithmetic Ligic Unit Mnemonics.

ao

C-50

Function
	

Logical Functions
	 Arithmetic Operations

Number
	 No Carry	 Yith Carry

F = O E F = E F = E+1

F =	 • EE +G] F = EE+G] F = EE+63+1

F = VI E G] F = EE+ I G] F = EE+'G3+1

F = C O F F] F = -1(2*s comp) F = 0

F= • EEG] F= E+CE 9 G] F= E+EE'63+1

F =	 • CG] F = EE+G]+CE • G] F = [E+G+E•G7+1

F= CE • G+ # EG] F= E-G-1 F= E-G

F = EE • G] F = CE + G3-1 F = CEOG]

F = E • E+61 F = E+CEG] F = E+EEG]+1

F = E'E'G+EG] F = E+G F = E+G+1

F= G F= CE+ • G7+EG F= C+EG3+1

F = EEG] F = CEG3-1 F = EEG]

F= EF+ • F] F= E+ • E F= E+E+1

F = CE+'G] F = CE+G]+E F = EE+G3+E+1

F = E+G F = CE+ • G]+E F = EE+'G3+E+1

F= E F= E-I F= E

C7	 - contains only logical operations.

Figure 2C2.17. Entire Command Set of Flexible Processor

Arithmetic Logic Unit.

0

1

2

3

S

6

7

a

9

A

B

C

0

E

F

C-S1

Another feature of the AO and Al registers is that they can do a right

shift, preserving the signs of the registers. This is accomplished by

catenating an RS (Right Shift) at the end of the desired register. It is

possible to do a right shift in conjunction with a byte swap. The ALU has

the ability to shift a byte of zeroes into either (or both) of the AO and

Al registers. This is accomplished by shifting both accumulators right

by one byte, and loading the upper byte of the pair with zeroes. The mne-

monic for this is a RZ (Right shift Zero fill) catenated at the end of the

byte pair desired. The following is a list of the possible combinations

of the accumulator and the above operations [21]. The bus numbers are

omitted because they can be sourced to either bus. Shift is done before

swap. BO, Bl, B2, and B3 indicate the four bytes of the A register.

Source Source
A Field B Field Bus A Bus B

AO Al BI BO B3 B2

AO AIRS Illegal

AO A1RZ Illegal

AO A1SW Illegal

AORS Al Illegal

AORS AIRS LS B1 US B3

AORS A1RZ Z B1 US B3

AORS A1SW B2 B1 US B3

AORZ Al Illegal

AORZ AIRS LS B1 Z B3

AORZ A1RZ Z B1 Z B3

AORZ A1SW B2 B1 Z B3

AOSW Al Illegal

AOSW AIRS LS B1 BO B3

AOSW A1RZ1. B1 BO B3

AOSW A1SW B2 B1 BO B3

Z - one byte of zeroes
LS - sign of lower two bytes
US - sign of upper two bytes

I

C-52

4.2.8 The Index Registers

In the diagram of the machine structure (Figure 2C2.13, there are four

index registers, four index compare registers, and four compare mask re-

gisters. None of the registers can be sourced for their contents alone.

Index register 0 and its corresponding compare register are 16 bits long,

while all the others are only 8 bits long. The IDX field, shown in

Figure 2C2.14, is the field that controls the operation of the indices and

their compare registers. An INx command, where x is one of the index

registers, will increment index register x. A DCx will decrement index

register x by one, while a CLx will clear index register x. CLA will clear

all registers.

4.2.9 Conditional Operations

The condition mask registers control the condition to be used. These

registers do not have a one-to-one correspondence to the index registers.

The following is a list of the functions used in the current software (a

full listing appears in [21]. The lengths of the registers are shown in

Figure 2C2.13.

Bit	 Condition Mask Reg 0

0 EO negative

1 E1 negative

2 FO negri tive

3 F1 negative

4 GO negative

5 G1 negative

6 ALUO negative

7 ALM negative

Condition Mask Reg 3

Index Compare regO = index 0

Index Compare regO = index 0

Index Compare regl = index 1

Index Compare regl - index 1

Index Compare reg2 - index 2

Index Compare reg2 = index 2

Index Compare reg3 = index 3

Index Compare reg2 - index 3

It is possible to test for the conditions in Mask Register 0 by

placing a TN in the CND (CoNDition) column. Figure 2C2.14 shows the location

of the CND column in the coding form. To test for the logical "not" of

the condition stored in Mask Register 0, an FN is placed in the CND col-

umn. To test for the condition in Mask Register 3, an AD is placed in the

Q.3

C-53

CND column. Furthermore, the AD must be placed at least two instructions

after an increment or decrement of the register in question. If the con-

dition tested is true, the current instruction is executed.

The ability to conditionally execute a statement enables a conditional

program jump. Recall that the basic form for a TC statement is:

TC	 $HHHH DSTO DST1

If DSTO is the MAR (memory address register), then after execution of the

next statement, the FP will do a conditional jump to the value indicated

by the hex constant, which can be a program label. The following is an

example of a conditional jump which will jump to hex address 1234:

TC AD $1234 MAR NOP

To do an unconditional program jump, omit the AD. The following:

TC	 NEXT MAR NOP

will jump to the program label NEXT. Since the MAR and instruction fetch

of the FP are buffered, it is impossible to do an immediate program jump.

This adds little complication to the programming, except that the step to

be executed before the jump is placed after the actual jump statement.

It is very important, when reading source code for the machine, to remem-

ber that the order of execution is reversed.

4.2.10 Subroutine Calls, Program Jumps, and the Stack

As shown in Figure 2C2.13 there is a 16-by-12-bit stack called the return

jump stack. This is a typical LIFO buffer which is used to hold return

addresses as well as temporary data. As indicated in Figure 2C2.14, there is

a field labeled RJ. This controls the return jump stack. There are three

possible commands for the stack. SR (SubRoutine jump) will take the cur-

rent value of the MAR (which is pointing to the next statement), increment

it by one and store the result on the top of the stack. This will be the

return address. JP (JumP return) takes the current top of stack and places

it in the MAR. DF (Delete First item) will delete the top of the :Mack.

The JP does not perform the delete function. Another feature of the SR,

JP, and DF is that they all trap out interrupts. A typical subroutine

jump looks like the following:

SY

E

C- 54

Fields Type	 RJ HHHH DSTO DSTI

Label TC	 SR $1234 MAX NOP
TC NOP NOP NOP

The above routine will store label+2 on the stack, execute the NOPs,

and jump to the hexadecimal location 1234. A typical subroutine return

looks like the following:

Fields)	 Tome RJ ,HHHH DSTO DSTl

TC JP NOP NOP NOP

TC DF NOP NOP NOP

This will take the top of stack, place it in the MAR, and then delete the

top of stack. Since the CND field is valid on all types of instructions,

it is possible to do a conditional subroutine jump just by placing the

condition in the conditional field. The result looks like:

(Fields)	 Type CND RJ $HHHH	 DSTO	 DSTl

	TC AD SR $1234	 MAR	 NOP

This will store the value of the return address, execute the next state-

ment, and continue execution at location 1234. By placing a JP in the

next statement, it is possible to do a jump, execute one statement and

return.

4.2.11 The Hardware Multiply

The only remaining functional unit to be discussed is the hardware

multiply. As shown in Figure 2C2.13, the inputs are the P and Q registers

which are each 16 bits in length. The result of the multiply is a 16-bit

product, which can be the result of the multiplication of any two bytes.

This is the only case where the same byte can be sourced twice. The

mnemonics for the addressing is L for the lower byte, and U for t. ' e upper

byte. Thus, to multiply the lower byte of the P register by the upper

byte of the Q register, a PLQU would be placed in the MULT field. Caution

must be taken when a multiply is initiated. A multiply takes two machine

cycles before the result can be sourced. If an interrupt is received be-

fore the result is ready, the result will be lost. To prevent such loss,

it is necessary to trap out all interrupts. This is accomplished as

ss

r

C-55

follows: Whenever a multiply is done, an SR is placed in the RJ column

of the first statement of the multiply, and a IF is placed in the RJ

column. The net result is to push a return address onto the stack and

then pop it off the stack. This will trap out interrupts as needed. Fur-

ther, caution must be taken in that the RJ stack is only 16 units long, so

overflow is possible. If overflow occurs, no error will be flagged. The

following is a routine to square the lower byte of the Q register.

(Fields)	 TC RJ MULT	 $HHHH DSTO DST1

TR RJ MULT SRCO	 DSTO SRC1	 DST1

TC SR QLQL	 $0057 MAR NOP

TR DF QLQL MULT	 FO MULT	 F1

This not only does a multiply, but it also does a program jump and traps

interrupts all at the same time, showing how this machine obtains very

high processing speeds. (Consider that each program step takes .125 micro-

seconds). If more precision is desired, the following algebraic rule

can be used:

(a+b)*(c+d)=ac+ad+bc+bd.

This rule can be modified to the byte level, yielding the 32-bit result

in under three microseconds [26].

4.2.12 Bus Registers

The two registers in Figure 2C2.13 labeled BRGO and BRG1 are the bus

registers. Normally these are used for breakpointing. It is possible

to use these registers for general purpose registers if no breakpointing

is needed. To write into these registers, BRGO and BRG1 are put into the

respective columns, while to read from these registers, BSRO and BSRl are

put into their respective columns.

4.2.13 Shifting Data

The SH instruction field is used for shifting data as shown in

Figure 2C2.14, the OEINC, OFINC and OGINC fields all determine what type of

shift is to take place. The P field determines the Precision of the

shift. If the P field is set to S, all of the registers are treated as

a	 ^d

C-56

separate registers; howkver, if the P field is set to D (Double Precision),

the E and the F registers are tied together as one register for the shift.

The following list shows all possible shift conditions and their specific

operations. These conditions do not determine whether to execute the in-

struction, but on what version of the ALU's data [21].

ALU DATA USED
CONDITION FIELD	 FOR SHIFT

UN	 TRUE OF CURRENT DATA

TN	 TRUE OF CURRENT DATA

FN	 NOT OF CURRENT DATA

AD	 NOT OF CURRENT DATA

UP	 TRUE OF PAST DA1A

TP	 TRUE OF PAST DATA

FP	 NOT OF PAST DATA

IO	 NOT OF PAST DATA

COMMENTS

(Unchanged Now)

(True Now)

(False Now)

(Conditional based
on AD condition)

(Unconditional Past)

(True of Past data)

(False of Past data)

(Conditional based
on IO condition)

These commands not only determine the data to be shifted, but they

also control the conditions under which the shifts are done. When these

mnemonics are placed in the CND field, they are used to check the condi-

tions set in the condition field zero.

4.2.14 Input/Output to the FPs

Input/Output (I/0) is one of the most complicated parts of the entire

CDC FP System. I/O must occur in one of the following forms:

1. FP to host

2. FP to FP

3. FP to MOS RAM (shared bulk memory)

For large amounts of data requiring FP-to-FP communication, FP to MOS RAM

is the most reasonable means of data transfer. If the high-speed communi-

cation link, as described in Section 4.1.5, is used, there is only a buffer

for 16 words of information. This requires very closely timed algorithms,

as any error would result in the loss of data. Each FP is connected to

four 16-bit channels, which are called Direct Storage Access (DSA) Channels.

.5-7

C-57

Each of the channels is connected to four banks of 600 nsec MOS RAM. Each

bank of MOS RAM is addressed by bank and channel. Different banks on

various channels may be shared. For example, bank 1 on channel 3 may be

the same as bank 2 on channel 1. The FP is capable of choosing a bank and

address to which all the channels are linked through four S (Storage

location) registers and B (Bank) registers. Since the RAM memory is much

slower than the clock cycle, the read is done in two stages. The first

stage sends the bank and address to the MAR and increments the data in

the address register, initiating the read. Within the next four cycles,

the data will appear in the Zx register, where x is the channel number

(see Figure 2C2.13). The data will remain in the Zx register until the next

read is initiated. In the event of a "memory bank busy," or "data not

ready," the FP will automatically wait for two machine cycles, after which

it will repeat the process. To do a write, the data is sourced directly

to the MBR (Memory Buffer Register) of the memory bank corresponding to

the bank register. (A write is a 1-stage process.) The FP is programmed

to do I/O through the IO statement type. Figure 2C2.14 shows the form of the

statement. The IO statement is similar to the TR statement in that arith-

metic calculations can be done simultaneously with I/0. The following

statements show how to initialize the S and B registers. (The S and B

registers are linked together so that they can be loaded in one statement.)

IO CND IDX RJ MULT ADD SRCO SRC1 IO CHO -('Hl CH2 213

IO ZRO	 AO Al DS LS LS LS LS

IO FO FO DS LB LB LB LB

IO DF	 PLQL	 MULT MULT DS LSB LSB LSB LSB

1. Loads all four S registers with 0000.

2. Loads all four B registers with the contents of F0.

3. Loads all four S and B registers with the contents of the
multiplier.

The DS stands for DSA I/0. The leading L in the channel column
stands for load.

After initializing the S and B registers, the read needs to be

initialized, which is done by placing an R in the cfw nne) field of the

a9

I

C-58

channel to be read. Four cycles later, the data (or a wait) should appear

in the Zx register. To do a write, a W is placed in the channel fields

into which the data are to be written. The data to be sourced are in the

source f ields.

4.2.15 Interrupts

With I/0, interrupts are often needed. The FP has the ability to

handle up to 16 different interrupts [20,21). The FP can interrupt itself,

the host and other FPs. While processing an interrupt routine, the FP

sets a flip-flop indicating that an interrupt is being processed. This

traps all lower priority interrupts. The interrupt flip-flops are reset

when the program returns to processing the original routine, or until a

zero is stored in the interrupt register.

4.2.16 Conclusions

This has been an introduction to the parts of the FP and the ;arts of

the instruction set that will be used in the Bayes maximum likelihoo2'. clas-

sifier discussed in the next section. For further documentation, consult

the CDC Flexible Processor Textbook [211.

The experience gained through the use of the simulator (see Section 6)

has made evident the following advantages and disadvantages of the Flexible

Processor system.

Advantages:

Multiple processors (up to 16)

User microprogrammable - parallelism at the instruction level

Connection ring for inter-Flexible Processor communications

Shared bulk memory units

Separate arithmetic logic unit and hardware multiply.

Disadvantages:

f	 No floating point hardware

i

	 Micro-assembly language - difficult to program

Program memory limited to 4k microinstructions.

.S9

C-59

Based on the investigations to date, the advantages of this system appear

to outweigh the disadvantages. However, alternative approaches, such as

multimicroprocessor systems, should also be considered to determine the most

cost-effective approach for implementing the contextual classifier and other

computationally demanding image processing operations for remote sensing.

6o

I

C-60

5. Parallel Implementations of Classification Algorithms

5.1 Introduction

To demonstrate the use of a Flexible Processor (FP) system on a task

less complex than the contextual classifier, consider the analysis of

Landsat data using a Bayes maximum likelihood classifier (MLC). Landsat

measurements are taken from four spectral bands and received as a data vec-

tor. Based on decision theory akin to that developed in the section on

the contextual classifier model, the vector is classifed by determining

the probability that it belongs to each information class and assigning

it to the class for which this probability is maximum.

The way in which an FP may be used in implementing A Bayes maximum

likelihood classifier is demonstrated below. The techniques described

are to be extended to the contextual classification algorithm.

In Section 5.2, methods for implementing the MLC on an FP array are

presented. The ways in which the contextual classifer can be implemented

on an FP array are presented in Section 5.3.

5.2 Implementation of the Maximum Likelihood Classifier on an FP Array

Two methods for implementing the maximum likelihood classifier (MLC)

on an FP array are discussed. The first assigns to each FP a different

set of classes,and each FP processes all pixels for its assigned classes.

The second method assigns to each FP a different subimage, and each FP

processes the pixels in its subimage for all classes. The basic matrix

operations, described below, are the same for both methods.

The ability to do a fast matrix multiply is at the heart of efficiently

implementing the Bayes maximum likelihood classifer. The form for the

matrix multiplications is:

(X-Ui) T (C-1) (X-Ui).

where X is the data vector, U isthe mean vector for the ith class, and

C is the covariance matrix for the ith class.

61

C-61

Consider the use of the FP array to perform these classifications.

Assume there are m distinct classes and the computer system contains p

FPs. Each FP is assigned to process m/p classan. The large file in each

FP is initialized with the inverse of the covariance matrices and mean

vectors for each class it was assigned. The current data vector is

stored in each FP in the temporary file. When a new data vector is

loaded into an FP, it overwrites the previous one. For simplicity, but

without loss of generality, in the following assume that m - p. If m is

greater than p, then in each FP instead of applying just one inverse co-

variance matrix to the data set, several would be applied. This will, of

course, increase the execution time by a factor of approximately m/p.

In standard arithmetic, one would first multiply (X-U i) T and Cil,

creating a new vector. This vector would then be multiplied by (X-Ui)

resulting in a scalar. In our implementation, the order has been some-

what altered. (.X-U) T is multiplied by a column of Ci l , accumulating the

results in a variable called'kum." After this is done for column j of

Cil, it 	 is multiplied by (X-U i) j (the jth element of (X-U i)), accumulat-

ing the result in a variable called "hold" and re-initializing "sum" to

0 [16]. The following is a "Pidgeon ALGOL" description of the process

for one pixel:

hold - 0;

for j-1 to n do

begin;

SUM-0;

for k-1 to n do

sum-sum+D[k]*Cil[k,j];

hold-hold+sum*D[j];

end;

where:	 n - dimenrion of covariance matrix

D[k] - kth :'.ement of (X-U), computed when X to loaded
i

C 1 [k,j] - element in the kth row and jth column of Cpl

At the end of the routine, the value contained in the "hold"

variable is the desired scalar. This algorithm requires fewer stores

F_

C- 62

and fetches than the standard algorithm, so it shortens the run time of

the process. All pointers are kept in the index register, further simpli-

fying the process. Finally, because only two accumulators are used, the

three CPRs can be kept free for the floating-point operations, while the

accumulators are stored elsewhere.

One way to perform this algorithm is to have the host initially send

C il and Ui to FP i. The host then sends the current data vector X to FP 0,

then FP 1, FP 2, etc. As soon as the FP receives the data vector, it be-

gins the calculation of the value of the discriminant function. After

the host gives all FPs the data for pixel (i, j), it waits until FP 0 has

calculated the value for its discriminant function. The host then re-

trieves the value of the discriminant function and loads FP 0 with the

data vector for the next pixel. The host executes this process for all

the FPs. When the last FP has transmitted the result, the host does a

compare and stores the class index corresponding to the maximum of the

discriminant values computed for this pixel. Thus, the compares are done

by the host while the FPs are computing the discriminant functions for

the next pixel, minimizing delay.

An alternative method to perform the pointwise maximum likelihood

classification of pixels using a Flexible Processor array is based upon

having each FP perform the MLC for a different section of the image.

Recall, the contextual classifier performs computations similar to thoGn

used by the maximum likelihood classifier, but is complicated by the in-

volvement of "neighboring" pixels.

Consider performing a maximum likelihood classification on an

A-by-B image with N Flexible Processors. One way to approach the problem

is to divide the image into N subimages and have each Flexible Processor

perform the maximum likelihood classification for all pixels in its sub-

image. This is shown in Figure 2C2.18. If all subimages have the same num-

ber of pixels, then the Flexible Pracessors will be fully utilized and the

classification of the entire image will take approximately 11N as much

time as it would take a single Flexible Processor to perform the entire

classificiation.	 Thus, maximum improvement, i.e., a factor of N, is

obtained.

G3

C-63

A

1
	

B

N-I

Fig. 2C2.18. An A by 8 image divided among N Flexible Processors.

F

C-64

Consider the case in which each subimage does not contain the same

number of pixels, which will occur if (A*B)/N is not an integer. This

will lead to underutilization of the Flexible Processors, but this under-

utilization will be negligible as will now be shown.

One way to approach this situation is as follows. To each of N-1

Flexible Processors, assign a subimage of size

f(A * B)/N1,

where fxj, the ceiling of x, is the smallest integer greater than or equal

to x. To the remaining Flexible Processor assign a subimage of size

(A * B) - (r(A * B)/N 1 * (N-1)).

For example, if A e 117 and B = 196 (a typical LACIE image [25]), and

N - 16, then

(22,932/161 _ r1433.251 - 1434

pixels are in each subimage associated with 15 Flexible Processors. The

remaining pixels, of which there are

22,932 - (15 * 1434) = 1422

are associated with one Flexible Processor. This sixteenth Flexible Pro-

cessor will have fewer pixels to classify and thus will finish before the

other Flexible Processors (assuming that, on the average, the time for the

floating point calculations is approximately the same for all pixels),

which implies some underutilization of this Flexible Processor.. Ideally

a factor of N = 16 performance improvement over a single Flexible Proces-

sor is desired, which, in this case, would require all 16 Flexible Proces-

sors to each classify 1434 pixels. To compute the utilization of the Flex-

ible Processor array, divide the number of pixels actually classified by

the maximum number that could be cla^::Afied in the same amount of time if

all 16 Flexible Processors were fully utilized. Thus, the utilization is

22,932/(16 * 1434) = 99+%.

Therefore, a factor of 99+% of N improvement is obtained.

In general, using the above assignment of pixels to subimages, the

utilization of the system is

A * B

r(A * B)/Nl * N

C-65

The maximum value of the denominator is A*B+N-1 and occurs when A*B - k*N+1,

where k is an arbitrary integer. Therefore,

min((A * B)/(f(A * B)/Nl * N)) - (A * B)/(A * B + N - 1).

Based on typical sizes of remotely sensed images and assuming that the

maximum size of a Flexible Processor array is 16,

A*B>10*N,

and

(A * B)/(A * B + N-1) > 99%.

Thus, in general, the worst case performance is 99+% of the ideal factor

of improvement over a single Flexible Processor.

The maximum likelihood classifier has been programmed on a simulator

for a Flexible Processor array at the Laboratory for Applications of Remote

Sensing (LARS). The simulator displays the contents of the main registers

and provides a variety of tools for debugging Flexible Processor microcode.

It is discussed in detail in Section 6. Preliminary simulation tests in-

dicate that a single Flexible Processor will perform a maximum likelihood

classification faster than a PDP-11/70. Exact comparisons of the Flexible

Processor array performance with other systems are difficult without de-

tailed information about factors such as pre- and/or post-processing of the

data not included in the computation time, data precision used, memory

load time, etc. However, to give a general idea of the effectiveness of

this approach, consider a 256 x 256 classification of Landsat data (n-4)

using 16 classes and a complete array of 16 FPs. The total processing

time is approximately 10.7 sec. ESL [26] states that their array proces-

sor gives up to an increase of 25 times over the IBM 370/158. On the

classification of four channels into eight classes, their time is 6.3 sec.

In Appendix 2C2, the MLC programs for the FP are described. Our cur-

rent algorithm, which runs on the simulator described in Section 6, uses

3526 125-asec steps to process one pixel (four floating-point component

data vector) and two classes, including choosing the maximum value.

In the next subsection, the way in which a parallel processing sys-

tem auct! as the Flexible Processor array can be used to perform context

z1assif icat ion is examined.

4;4	
NNOWNINd

C-66

1

5.3 Contextual Classification on a Flexible Processor System

Consider the implementation of a contextual classifier on an array of

Flexible Processors. Assume the neighborhood is horizontally linear, as

shown in Figure 2C2.19. Divide the image into subimages of BIN rows A pixels

long, as shown in Figure 2C2.18. If B - M, where k is an integer, there is

100% utilization of the Flexible Processors. Furthermore, there is no

overhead for inter-Flexible Processor data transfers, since the entire

neighborhood of each pixel is included in its subimage. Therefore, a

factor of N improvement is attained.

If (A * B)/N is an integer, but B = kN + x, 0 < x < N, then Flexible

Processors can be underutilized in order to keep neighborhoods within sub-

images, or Flexible Processors can be fully utilized, dividing neighbor-

hoods between Flexible Processors, necessitating inter-Flexible Processor

data transfers. This is shown for a simple example in Figure 2C2.20, where

N = 2, A = 3, and B = 4. In Figure 2C2.20(a) no inter-Flexible Processor trans-

fers are needed, but Flexible Processor 1 is not fully utilized. In Fig-

ure 2C2.20(b) both Flexible Processors are fully utilized, but, due to the hori-

zontally linear neighborhood, at least pixel 11 will have to be sent to

Flexible Processor 1 and at least pixel 12 will have to be sent to Flexible

Processor 0.

If (A*B)/N is not an integer, some inter-Flexible Processor data

transfers will be necessary. The number of transfers will be a function

of the way in which the pixels are assigned to Flexible Processors3, as in

the previous paragraph. To determine the computationally fastest approach

whenever B = kN+x, 0<x<N, requires knowledge of the actual image size, the

actual number of Flexible Processors used, the exact time required to exe-

cute inter-Flexible Processor transfers, and the length of the neighborhood.

There are two other cases of linear neighborhoods. These are verti-

cally linear and diagonally linear, as shown in Figures 2C2.21 and 2C2.22. The

analysis for these two cases is similar to that for the horizontally linear

case. The verticall., linear case is just a 90 0 rotation of the horizon-

tally linear case. The diagonally linear case can be simplified to a 450

67

FPO

I FPl

(b

00" of 1 02 1 03 03

FPO
10 1 11 1 12	 13

0 1 21 1 22 23 FPl

(a)

0001 ' 02 03

10 1 11 1213

20 121 1 22 123

m 1 1-1
Fig. 2C2.19. Horizontally linear neighborhoods. Each box is one pixel.

C-61

Fig. 2C2.20. Dividing an image N subimages for horizontally Linear neighbor-

hoods, where N=2, A=4, and B=3.

(a) Underutilization, no inter-Flexible Processor data

transfers required.

(b) Inter-Flexible Processor data transfers required, full

utilization.

6V

Fig. 2C2.21. Vertically linear neighborhoods. Each box is one pixel.

,p	 -P . I
••

Fig. 2C2.22.Diagonally linear neighborhoods. Each box is one pixel.

A

0 1 2 3

1 2 3 4

2 3 4 5
B

3 4 5 6

4 5 6 7

5 6 7 8

Fig. 2C2.23.The diagonals of an A by 8 image.

r^

3

(a)	 (b)	 (c)

Fig. M.24.Nonlinear neighborhoods. Each box is one pixel.

C-69

rotation of the horizontally linear case for B - kN by the proper assign-

ment of pixels to Flexible Processors. Consider an A by B image, A < B,

and B - k. Label the diagonals from 0 to A+B-2, as shown in Figure 2C2.23

for A - 4 and B - 6. The pixels can then be grouped into B sets of A

pixels as follows:

1. For each 1, 0 < i < A-1 the pixels in diagonals i and i+B form

a group of size B,

2. For each j, A-1 < J.:< B-1, the pixels in diagonal j form a group

of size A.

Using these rules, each Flexible Processor is assigned k groups. Thus,

the problem has been reduced to the equivalent of the horizontally linear

case, which has already been discussed. The case for B a kN+x, 0 < x < N,

is even more complex than for the analogous situation in the horizontally

linear case, and requires a detailed tradeoff analysis based on the actual

image size, the actual number of Flexible Processors used, the exact time

required to execute inter-Flexible Processor data transfers, and the length

of the neighborhood.

Now consider nonlinear neighborhoods, that is, neighborhoods which

do not fit into one of the linear classes. For example, all of the neigh-

borhoods in Figure 2C2.24 are nonlinear. Figure 2C2.24(a) and its rotations

represent the simplest nonlinear neighborhood. It is included in all other

nonlinear neighborhoods. 	 Thus, that neighborhood is called the nonlinear

kernel neighborhood.

It can be shown that there is no way to partition an A by B image

into N (not necessarily equal) sections such that a context classifier

using a nonlinear neighborhood can be implemented without involving

inter-Flexible Processor data transfers. This will be demonstrated for

the nonlinear kernel, and will thus be true for all nonlinear neighborhoods.

There are three cases to consider. If there is a horizontal border between

two subimages stored in different Flexible Processors, then pixels 1. and 2

in Figure 2C2.24(a) will be different in different Flexible Processors. If

there is a vertical border, pixels 2 and 3 will be in different Flexible

Processors. If there is a diagonal border, pixels 1 and 2 will be in different

Flexible Processors. The way in which to assign pixels to Flexible Processors in

?6

C-70

order to minimize computation time will depend upon the particular image

size, number of Flexible Processors used, time required for inter-Flexible

Processor communications and the shape and size of the neighborhood. These

factors will also determine the effectiveness of the use of the Flexible

Processor array for performing context classifications based on a given

neighborhood.

The discussion of performing classifications with the Flexible Pro-

cessor System demonstrates one way in which a multiple-processor system

can be used to speed up the processing of image data. Future work involves

programming the context classifier on the Flexible Processor simulator

using different size and shape neighborhoods and determining the most effi-

cient assignment of pixels to Flexible Processors for each case examined.

The implementation of the classifier on the simulator and eventually on

the actual FP system will provide hard data to verify the effectiveness

of the parallel processing approach.

Through the use of parallel, pipelined, and/or special purpose compu-

ter systems such as the CDC Flexible Processor System, the types of compu-

tations required for the context classifier and other computationally de-

mending processes can be implemented efficiently. This will not only re-

duce the computation time required to do contextual classification but

will also allow the investigation of techniques which may otherwise be

considered infeasible.

i

G

1

C-71

6. The Flexible Processor Array System Simulator

6.1 Introduction

Each Flexible Processor (FP) has a complicated microprogrammable in-

ternal architecture. This was overviewed in Section 4. As stated earlier,

an advantage of this microprogrammable architecture is that it allows paral-

lelism at the instruction level. This makes user verification of the cor-

rectness of FP algorithms and accurate mathematical timing analyses of

these algorithms very difficult. Thus, in order to debug, verify, and

time FP algorithms, a simulator for an array of FPs has been developed.

This simulator runs under the UNIX operating system on a PDP-11 series

computer, and has been used successfully to program a maximum likelihood

classifier, as was discussed in Section S. It displays the contents of

the FP registers on a terminal screen, in a format demonstrated in

Appendix 2C3. This section describes the modifications made to the "ori-

ginal" simulator [27] and the organization and operation of the current

simulator.

6.2 Modifications Made to the Simulator

The original simulator, written to simulate a single FP [27], was

used as a basis for the current version. The modifications made to the

original simulator come under four categories: (1) corrections, (2) ad-

ditional capabilities, (3) improved execution time, and (4) increased

documentation about the design of the simulator (program comments).

Our use of the simulator revealed some "bugs" in the system, all of

which have been corrected. The simulator now appears to perform as it

should.

The original simulator could simulate only one FP. The current

version can simulate up to sixteen, the maximum number allowed in an

actual system. Each FP in the new version has 20 times more memory

capacity (per FP) than previously allowed. The current maximum FP pro-

gram length is 2000 lines.

a	 ^y

C-72

The current program code is 15% longer than the original simulator.

The simulator occupies 38,040 bytes of main memory during execution.

While this is a substantial increase in the space required, most of the

increases in space are due to special buffering techniques employed.

Normally, output to the terminal is done one character at a time.

This requires the program to generate an interrupt to the operating sys-

tem for each character to be displayed. The operating system then checks

several flags, adds special characters where needed, awakens the device

driver, tells the device driver which terminal gets the output, and does

the output. The output from a single execution step requires exactly one

screen, which is 3370 characters. Buffering is done so that the computer

handles the interrupt routine once per screen instead of once per charac-

ter. The only change in the interrupt routine is that instead of display-

ing one character, the computer displays 3370. This reduces the load on

the system by 3369 interrupt routines per screen of output. Most of the

time required for output is not due to the physical transfer of data;

rather, it is due to the overhead of the interrupt routine. The net re-

sult is that the simulator output is over 3300 times faster with buffer-

ing than without. While the different command levels require different

size buffers, the buffering has decreased the average time required for a

display by a factor of 45.

The PDPT11 series computer uses 16 address bits; thus the maximum

amount of data address space is limited to 65,536 bytes. Each simulated

FP memory and registers require approximately 60,000 bytes, so a special

paging routine was written to page the simulated FP memories and registers

in and out of main memory as required. Output to disk is done in units

of 216 bytes. This makes the swapping routine run in ^. sicond. Without

buffering, this routine took 2.5 hours of straight transfer time. This

program can run on a PDP-11/34 in a time-shared environment.

At the beginning of every major portion of program code, comments

describing the program flow and variables modified have been added. This

facilitates understanding of the routines and makes program modifications

easier.

F_

;3

C-73

6.3 Organization of the Simulator

The simulator is divided into four programs, all written in C [28],

• language much like PL/I or PASCAL. Each of the four programs performs

• different task. "Monh.c" is the system monitor, which interfaces the

simulator to the user. "EXECh.c" is the simulator, which simulates all

of the system instructions except the I/O and the shift instructions.

"Shioh.c" simulates the rest of the instruction set. The "helph.c" pro-

gram contains a brief help file for the user who is stranded in the moni-

tor routine. In addition, helph.c contains special routines that make the

program consistent with all versions of the UNIX operating system. This

makes the program portable for use on any system that supports UNIX and

the C programming language. In addition, this routine contains all the

paging algorithms that are used, making the routines localized, easing

possible debugging problems in the future. Some of the modifications to

the simulator were done with the aid of LARS programmer Craig Stricbland

as consultant and debugger.

6.4 Operation of the Simulator

The program structure for a single FP simulation can be represented

by the following control tree diagram:

I Command Level

Single	
Memory

Step	
Modification

Execution	
Level

Level

Modify	 Modify

Single	 Indexed

Register	 Register

All register files are considered index registers. The 16 FP sys-

tem is basically the same tree structure, but *_here is one more level in

7Y

C-74

the control tree, as follows:

Processor Level

Command Command Command Command Command
Level Level Level Level Level
For For For " ' For For
FP #0 FP N1 FP N2 FP #14 FP x+15

The structure beneath the command level is the same as for the single FP

case. If the monitor receives a W, it will move one node closer to the

root of the control tree on any of the branches.

In the Command Level, there are 10 possible commands, which are as

follows:

S	 Single step program.

m	 Go to memory level.

1	 Load assembled object code.

t	 Print the contents of the registers after the input offset
(used for debugging simulator).

v	 Save the current register values in a file called status.

e XXX	 Execute X:XX program steps.

stop	 Exit from monitor routine.

! unix Execute system command.

#	 Move up one node to processor level

p	 Print out all the registers

h,H,	 Print out the help file, and the values in a file called
help,	 current node.
Help

If an s is chosen, the simulator will simulate the execution of one

program step and will move to the single step node. The following is the

command set for the single step node.

7j'

C-7s

s	 Single step program.

m	 Go to memory level.

e XXX	 Execute XXX program steps.

Move up one node to command level,

P	 Print out all the registers.

h,H,	 Print out the help file, followed
help,	 by the name of the current node.
Help

dtemp	 Print out the contents of the temporary file.

dlarge Print out the contents of the large file.

dmem	 Print out the contents of the micro-memory.

If the m is typed, the only valid arguments are a 'll' or a register

name. The monitor will print the old value of the register and ask for

a new one if the register named is a single register. If the register

selected is a register file, the monitor will ask for the index. Upon

receiving the index, the monitor will print the old value and prompt the

user for input. Valid commands are as follows:

c XXX	 Changes the old values to XXX.

i	 Increments the index without changing the old value.

Decrements the index without changing the old value.

li	 Return to original level (either the command level or the
single step level, depending on the level in which the m
was typed) .

Invalid input will yield a "What?" asking for a correct command.

These are all of the functions supported by the simulator at this

time. Appendix2C3 contains flowcharts overviewing the operation of ti ►e

simulator. As mentioned previously, the maximum likelihood classifier

has been implemented using the simulator. We are currently in the pro-

cess of implementing a contextual classifier.

7. Summary and Concluding Remarks

During this contract year, notable progress has been achieved with

respect to the research objectives set out for this task. Specifically:

7G

C-76

1. Procedur.+s have been investigated for determining and represent-

ing the contextual information in a given scene. The performance of the

contextual claasif ier is found to be sensitive to the accuracy with which the

p-context distribution is estimated. Although good results have been

achieved, both with real and simulated data (Section 3), further work is

needed on methods for determining the context distribution.

2. The contextual classifier algorithm has been aflalysed with re-

&pect to achieving efficient implementation on a multiprocessor system.

It has been shown that under rather severe restrictions on the shape of

the contextual neighborhood, an "ideal" speedup by a factor of N, for

an N-processor system, can be achieved. Easing of these restrictions

definitely incurs a cost in terms of computation time, the details of

which are the subject of ongoing analysis (Section 5).

3. Actual implementation of the contextual classifier on multiproces-

sor systems has been limited tc development of a simulator for the CDC

Flexible Processor Array System and implementation, on the simulator, of

a maximum likelihood classifier (Sections 5 and 6, Appendixes 2C2 and

20). Computations performed by the maximum likelihood classifier are

identical to many of the computations required for the contextual clas-

sifier, but the overall algorithm is considerably simpler. Thus imple-

menting the maximum likelihood classifier provided a useful means for

beginning to learn how to program a Flexible Processor Array System.

In support of the above achievements, the mathematical formulation

of the contextual classifier has been put on firmer ground and some in-

sights gained into the nature of the spatial context (Section 2). A

significant amount of effort has gone into understanding the architec-

tural details oi the Flexible Processor, in order to use its facilities

effectively (Section 4).

At this point in the study, we may conclude that the contextual

classifierdoes indeed lead to improved classification accuracy by utili-

zing spatial context information in multispectral earth resources data.

Although the computational demands of the proposed contextual classifier

are substantial, multiprocessor systems such as the CDC Flexible Proces-

sor Array System can be used to achieve efficient implementation of this

and other image processing algorithms.

.77

C-77

Ongoing research in connection with this project will be directed

toward better understanding the nature of contextual information in multi-

spectral image data and exploiting the computational efficiencies to be

gained through parallelism and other special features of advanced data

processing system architectures.

/S

C-78

8. References

1. Swain, P. H. and Davis, S. M., eds., Remote Sensing: The Quantative
Approach, McGraw-Hill International Book Co., New York, 1978.

2. Kettig, R. L. and Landgrebe, D. A., "Classification of Multispectral
Image Data by Extraction and Classification of Homogeneous Objects,"
IEEE Trans. Geoscience Electronics, Vol. GE-14, pp. 19-26, Jan. 1976.

3. Haralick, R. M., Shanmugam, K., and Dinstein, I., "Textural Features
for Image Classification," IEEE Trans. Systems, Man and Cybernetics,
Vol. SMC-3, pp. 610-621, Nov. 1973.

4. Kettig, R. L. and Landgrebe, D. A., "Computer Classification of Re-
motely Sensed Multispectral Image Data by Extraction and Classifica-
tion of Homogeneous Objects," LARS Technical Report 050975, Labora-
tory for Applications of Remote Sensing, Purdue University, West
Lafayette, IN 47907, May 1975.

5. Welch, J. R., and Salter, K. G., "A Context Algorithm for Patte rn Re-
cognition and Image Interpretation," IEEE Trans. Systems ; man and
Cybernetics, Vol. SMC-1, pp. 24-30, Jan. 1971.

6. Yu, T. S. and Fu, K. S., "Statistical Pattern Recognition Using Con-
textual Information," Technical Report TR-EE 78-17, School of Electri-
cal Engineering, Purdue University, West Lafayette, IN 47907, Mar. 1978.

7. Robbins, "Asymptotically Subminimax Solutions of Compound Statistical
Decision Problems," Proc. Second Berkeley SSymp. Mathematical Statistics
and Probability, pp. 157-163, University of California Press, 1951.

8. VanRyzin, J., "The Compound Decision Problem With m x n Finite Loss
Matrix," Annals of Mathematical Statistics, Vol. 37, pp. 412-424, 1966.

9. VanRyzin, J., "The Sequential Compound Decision Problem With m x n
Finite Loss Matrix, 11 Annals of Mathematical Statistics, Vol. 37, pp.
954-975, 1966.

10. Cover, T. and Shenhar, A., "Compound Bayes Predictors for Sequences
With Apparent Markov Structure," IEEE Trans. Systems, Man and Cyber-
netics, Vol. SMC-7, pp. 421-423, June 1977.

11. Vardeman, S., "A Note on the Applicability of Sequence Compound De-
cision Schemes," Scandinavian Journal of Statistics, Vol. 6, No. 2, 19/9.

12. Vardeman, S., "Solutions to k-Extended Compound Decision Problems,
Bootstrap and Bayes," in preparation.

13, Gilliland, D. and Hannan, J., "On the Extended Compound Decision Prob-
lem," Annals of Mathematical Statistics, Vol. 40, pp. 1536-1541, 1969.

I

C-79

14. Ballard, J., Gilliland, D. and Hannan, J., "0(0) Convergence to
k-Extended Bayes Risk in the Sequence Compound Decision Problem With
m x n Component," Research Memo RM-333, Statistics and Probability,
Michigan State University, 1975.

15. Swain, P. H., Siegel, H. J. and Smith, B. W., "Contextual Classifica-
tion of Multispectral Remote Sensing Data Using a Multiprocessor Sys-
tem," to appear in IEEE Trans. Geoscience Electronics, Apr. 1980.

16. Allen, G. R., Bonrud, L. 0., Cosgrove, J. J. and Stone, R. M., "The
Design and Use of Special Purpose Processors for the Machine Processing
of Remotely Sensed Data," Proc. Conf. Machine Processing of Remotely
Sensed Data, IEEE Cat. No. 73CH0834-2GE, pp. 1A-25 - 1A-42, Oct. 1973.

17. Siegel, H. J., "Preliminary Design of a Versatile Parallel Image Pro-
cessing System," Proc. Third Biennial Conf. Computing in Indiana, pp.
11-25, Indiana University, Bloomington, IN, Apr. 1978.

18. Siegel, H. J., Siegel, L. J., McMillen, R. J., Mueller, Jr., P. T. and
Smith, S. D., "An SIMD/MIMD Multimicroprocessor System for Image Pro-
cessing and Pattern Recognition," Proc. 1979 IEEE Computer Society Conf.
Pattern Recognition and Image Processing, IEEE Cat. No. CH1428-2, pp.
214-224, Aug. 1979.

19. Fu, K. S., "Special Computer Architectures for Pattern Recognition and
Image Processing - An Overview," Proc. 1978 Natl. Computer Conf., pp.
1003-1013, June 1978.

20. Control Data Corp., "Cyber-Ikon Image Processing System Design Concepts,"
Digital Image Systems Division, Control Data Corp., Minneapolis, MN,
Jan. 1977.

21. Control Data Corp., "Cyber-Ikon Flexible Processor Programming Text-
book," Digital Image Systems Division, Control Data Corp., Minneapolis,
MN, Dec. 1978.

22. Kast, J. L., Swain, P. H. and Phillips, T. L., "The Feasibility of Using
a Cyber-Ikon System as the Nucleus of an Experiment Agricultural Data
Center,: LARS Contract Report 021678, Laboratory for Applications of
Remote Sensing, Purdue University, West Lafayette, IN 47907, Feb. 1978.

23. Krause, K. W., "Use of the CDC Cyber-Ikon for a Bayes' Maximum Likeli-
hood Classifier," unpublished EE696 project report, School of Electri-
cal Engineering, Purdue University, West Lafayette, IN 47907, Aug. 1978.

24. Swain, P. H. and Davis, S. M., eds., Remote Sensing: The Quantitative
Approach, McGraw-Hill International Book Co., New York, 1978.

25. MacDonald, R. B., Hall, F. G. and Erb, R. B., "The Use of Landsat Data
in a Large Area Crop Inventory Experiment (LACIE)," Proc. Symp. Machine
Processing of Remotely Sensed Data, IEEE Cat. No. 75CH1009-0-C, pp.
1B-1 - 1B-23, June 1975.

C-80

26. ESL, Inc., "Advanced Scientific Array Processor," descriptive manual,
ESL, Java Dr., Sunnyvale, CA.

27. Krause, K. W., "Use of the CDC Cyber-Ikon Simulator," unpublished EE696
project report, School of Electrical Engineering, Purdue University,
West Lafayette, IN 47907, Aug. 1978.

28. Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

Ix/

C-81

APPENDIX 2C2

IMPLEMENTATION OF THE MAXIMUM LIKELIHOOD CLASSIFIER

ON A FLEXIBLE PROCESSOR

A. Initialization of the FPs by the Host Computer

B. Interrupt Routine for Flexible Processor

C. Overview of Maximum Likelihood Classifier Flexible Processor Algorithm

D. Flowchart of Floating Point Addition Routine

E. Flowchart of Floating Point Multiplication Routine

F. Flowchart of ^coating Point Compare Routine

C. Actual Flexible Processor Program

b,7

C-82

r.

A. INITIALIZATION OF THE FPs BY THE HOST COMPUTER

1. Initialize memory to zeroes.

2. Send FP size, p, sigma, X, and U.

3. Calculate det(sigma)

4. Calculate inv(sigma)

5. Calculate ln(det(sigma))

6. Calculate ln(p(w))

7. Send FP lnIsigmaj, ln(p(w))

8. Send FP inv(sigma)

F3

C-83

B. MTERRUPT ROUTINE FOR FLEXIBLE PROCESSOR

Interrupt routine

save all
registers

increment new
value pointer

store value from
in given location

maize	 no	 unsave
pointer?	 registers

Yes

return
choose max
value -..d
print it

END

S^
^r

C-84

C.1. Load Data Into FP.

1) Zero all registers. This includes all in-
dex registers, index compare registers, large file
address registers, maintenence compare registers
and temporary file address (both read and write)
registers.

2) Read the first number and store it in re-
gister F.

3) Copy the number stored in the F register
into the index compare registers number 0 and 1.
(This number is the dimension of sigma.)

4) Load all conditions. (This means that the
index compare registers are going to test for
equality to n.) Index register three will check
for equality to zero.

5) Test and increment Index register three.
If it is not equal to zero read a number, load it
into the F register.

6) Move the F register to temporary file zero
while incrementing the write counter.

7) If index register 0 does not equal n, go
to step 5.

g) Zero all index registers while moving n to
the P register of the multiply while trapping in-
terrupts. (This can be done using the "sr" com-
mand.)

9) Witb interrupts trapped, move multiply
output to condition register 2. (This means that
the condition registers are now set to check for
index regis- ter 0 and 1 equal to n, index regis-
ter 2 equal to n squared and index register 3
equal to zero.)

10) Test and increment index register 2. If it
is n squared, exit.

11) Read a number, store it in large file
zero, while simultaneously incrementing its ad-
dress buffer.

12) Jump to step 10.

FIT-

C-85

C.2. Storage Format

The Storage format used in the processing scheme
is as follows:

Temporary files	 Large Files

n Sigmal,l]
Hold Sigma[2,11

normalized data	 X11,1 1
vector for X[1,2] Sigma[n,l]
class one X[1,31 Sigma[1,21

X[1,4)
normalized data	 Y11,11 Sigma[2,n)
vector for Y[1,21
class two Y11,31 Sigma[n,n1

Y[1,41
Sigma[n,n]

Sigma[1,11
Sigma[2,11

Sigma[n,11
Sigma[1,21

Sigma[2,11

Sigma[2,n)

Sigma[n,n]
mean vector for U[1,11
class one	 U[1,21

U[1,31
U[1,41

mean vector for V11,11
class two	 V[1,21

V[1,31
V[1,41

i 4, p 4
IS

f ^' {i

First Covariance
Matrix.

Second Covariance
Matrix

876

C-86
C.3. First Matrix Multiplication

1) Initialize all registers. Move 1 to the
read address of temporary file zero. Zero all oth-
er index registers, large file addresses, tem-
porary file addresses.

2) Move temporary file 0 to the F, register
(while incrementing the read address pointer.)

3) Move large file 0 to the G register (while
incrementing the address pointer.)

4) Call floating point multiply routine.

5) Store result in temporary file 1, while
increasing the write pointer.

6) If index 0 is n, jump to the subroutine
called sum.

7) If index 1 is n, jump to the next multiply
routine.

R)	 Increment index reg 0.

Go to step I.

10) Increment index 1 by 1.

11) Zero F register.	 (This is used as t he ac-
cumulater for the floating point add.)

12) Zero index register 0.

13) Zero temporary file 1 read address.

14) Test and increment index 0. If it = n, 	 go
to step 16.

15) Call floating point add subroutine. (40
cycles.) (this routine has been modified to incre-
ment the temporary file 1 read pointer as it goes
along, s, this is not necessary.)

16) Go to step 14.

17) Temporary file 0 pointer . 1.
if

18) Store f in large file 1 (while	 increment-
ing	 the pointer.) (F contains the result of the n
floating point adds.)

19) Return to calling routine

87

;e

in

C-87
CA. Second Matrix Multiplication

1) Zero all pointers to large files and tem-
porary file 1 address.

2) Write a 0 to temporary file address 0.

3) Transfer temporary file zero memory loca-
tion 0 to index register 3.

4) Test and decrement register 3. If zero go
to wrap up.

5) While incrementing the pointer to tem-
porary file 0, move the contents to the E regis-
Par_

C-88

floating pt.	
0. FLOATING POINT ADDITION ROUTINE

addn. routine	 F n E + G

strip signs

and save

for

later use

/one
Of the yeS =urn
numbers

0?

no

yes	 reverse

(E^<^G^	 the

numbers

align

binary

points

was result - G-E
yes	 normalize

E<O and	 result
%G>O?	 return

was	 result = E-G

E>0	 yeS	 normalize

and	 result

GAO?/	 return

result = E+G
normalize
result

Sng (result)
old Sgn(E)
return

CFf

C-89

E. FLOATING POINT MULTIPLICATION ROUTINE

F - E+G

9a

C-90

F. FLOATING POINT COMPARE ROUTINE

E - max (E.G)

F - l ifE -G

-O if 	 G

^^	 iJ

C-91

ra. ACTUAL FLEXIBLE PROCESSOR PROGRAM
ORG	 C6lA

•	 AVEkAuE 71ML: 612 CYCLES FER PIXEL (DOWN 20%)
•	 MIN T1NE:	 21E CYCLES PER FIXEL (DOWN 30%)
*
*s*rrr*•r••**rr*•r*•rr•rrr•r*trrrrrrrr•s•••*srr•rrr•rr•r•rrr••

+ •• +BAYES MAXIMUM LIKELIHOOD CLASSIFIER VER. 091579 2:50 *•*
*****FOR TWO FIXELSr•r•
•+- •rrrrrirr•rrsr+ rrr•rr•rrrr•*r*•+arrr*r•rrr++*rr*+s••rrrr•

TC *	 •	 + *	 FPLR	 MAR	 NOP
TC *	 *	 + *	 S 0000

•	 FIRST INTERRUPT ROUTINE. THIS ROUTINE HANDLES THE INTER — •
*	 RLIPT TO LOAD THE COVARIANCE MATRICES• THE MEAN .VECTORS 	 •
*	 AND THE DATA VECTOR.
ORG	 Coll

TC *	 •	 + •	 VINk	 MAR	 NOP
TC •	 *	 * •	 S 0000	 +	 +

• THIS ROUTINE WILL HANDLE THE INTERRUPT WHEN THE HOST JUST
• NEEDS TO ENTER THE DATA VEC10R.
ORG	 OOFE

TC *	 *	 * *	 S 0000
• THERE VALUES ARE TO BE LOADED INTO COMPARE REGISTER 3.
• THESE WILL TEST THE RESPECTIVE REGISTERS FOR INEQUALITY TO
• THEIR COMPARE REGISTERS.	 •

TC *	 CLA	 •	 S 0000	 TOWA	 TIVA
TC •	 *	 * +	 S 0001	 TFON	 TF1N

• THIS WILL CLEAR ALL OF THE INDEX REGISTERS AND ZERO THE
• TEMPORARY FILE WRITE ADDRESSES.

TC *	 *	 • *	 3 0000	 NOP	 CMRO
• THIS WILL CLEAR THE TEMPORARY FILE 0 READ ADDRESS AND THE +
• CONDITION REGISTER TO PREVENT SPURIOUS RESULTS. 	 •

TC *	 +	 * +	 a 0000	 NOP	 CMR2
• THIS WILL ZERO THE OTHER CONDITION REGISTER AND THE TEMP
• FILE READ ADDRESS. THE DIMENSION OF THE INCOMING DATA IS
• ASSUMED TO EF 4X4. IF THEMATIC MAPPER DATA IS TO BE USED
• THE MATRIX WILL BE FIVE FY FIVE.

TC *	 *	 * *	 S 0004	 FO	 ICR3
• THIS WILL STORE N IN THE INDEX COMPARE REGISTERS9

TR *	 *	 • *	 *	 NOP	 NOP	 FO	 ICR1
TC +	 *	 + *	 $ 0010	 NOP	 ICR2

• THIS IS JUST SETTING UP THE COUNTER VARIABLES FOR THE LOOP.*
WAIT TC •	 *	 * *	 WAIT	 MAR	 NOP

TC •	 *	 * •	 E FFFF	 BRGO	 BRG1
TR *	 *	 + PUPU *	 MULT	 ED	 +	 •

• THE HOST L• ILL START EXECUTION AT 100 AND WAIT HERE FOR THE
• HOST TO INTERRUPT THE FF• AT WHICH POINT THE FP WILL DO A •
• PROGRAM JUMP TO 50007 1 WHERE THERE WILL BE A JUMP TO THE	 +
• CORRECT` ROUTINE.	 •
•	 THIS IS THE WAIT R-OUTINE 9. WHICH WAITS FOR AN INTERRUPT.
FPMR TR *	 *	 • *	 E	 Al	 ED	 AO	 0
* LOAD MULTIPLICAND	 +

TR •	 *	 *	 it	 G	 AO	 P	 Al	 GO
• LOAD MULTIPLIER

TC 4	 •	 * •	 S 0004	 *	 CMRO
+ THIS CONDITION WILL CHLCK TO SEE OF FO < 0.

TC *	 •	 * •	 3 0002	 +	 CMR3
*	 IS INDEXO = COMPARE REGISIER 0?

TR *	 CLO * PUOU ADD	 Al	 +	 AO	 F1
TR +	 •	 + PU6U +	 MULT FO	 F1	 E1
TR +	 +	 •	 •	 +	 *	 •	 FO	 ICRO

IF THE VALUE RETURNED IS.ZEkO• ZLRO BOTH REGISTERS 9	RETURN

9a	 C -2—

C-92

TC AU •	 JP +	 1 0000	 Fig	 Fl
1C AD a	 OF	 1 0000	 +	 r

• IF FO IS JUSTIFIED• RElUkf1. THE PRODUCT IS NORMALIZED. 	 +

IC *	 •	 •	 •	 S OOOC	 •	 CMRI

1C INN • JP •	 S eGFF	 G1	 •
TR TNN +	 OF •	 ANU	 AO	 •	 Al	 Fl

+	 SAVE THE EXPONENT IN G1+ CLEAR E1 FOR A COUNTER	 •
TR •	 + •	 ZRO	 FI	 GI	 AO

	
El

Tk •	 CLO + +	 ZRO	 AO	 ED	 +	 •
* BY HERL• PRODUCT CANNOT BE ZERO.THE NORMALIZATION PROCESS •
+ WILL TAKE LESS THAN FOUR REPEATS OF THIS LOOP. IF IT EVER +
+ TAKES MORE• THERE IS SOMETHING FRANCHING DIRECTLY TO THIS +
• PROCESS.	 r

	

NRM TR FNN INO * +	 E +l	 AO
	

ED	 Al
IC FNN *	 + •	 NRM	 MAR	 •
SH FNN *	 + *	 +	 'NZIN LZIN NZIN S

•	 BY NOk l THE RESULT MUST EE NORMALIZED!!!!!
1R •	 •	 +	 •	 G	 AO	 +	 Al	 F1
TR *	 +	 + •	 E	 AO	 G1	 Al	 GO
TR +	 *	 * *	 +	 FO	 ED	 F1	 E1
SH •	 + *	 *	 LCIR LCIR LZIN S
IR *	 +	 + +	 AN6	 AO	 ED	 Al	 E1

+THIS WILL TAKE THE NORMALIZED RESULT. SHIFT IT LEFT• ADJUST •
*THE EXPONTENT• SC THAT IT AGREES WITH THE MANTISSA.

TC •	 +	 •	 •	 S RIFF	 G1	 •
TC •	 •	 •	 +	 S FFFF	 •	 GO
TR +	 •	 JP •	 ACE	 AO	 •	 Al	 F1

• THIS WILL "MASK OFF" ANY CARRIES INTO THE UNUSEC PORTION OF*

• THE EXPONENT.	 •

SH +	 •	 DF +	 .	 NZIN RCIR NZIN S
• THIS ROUTINE DOES THE INITIAL SETUP OF THE VARIABLES	 •
FPLR TC •	 CL2 •	 S 0000	 LOAD	 LIAD
THIS CLEARS ALL THE INDEX REGISTERS AND THE LARGE FILE WRITE
• POINTERS.	 +

TC +	 •	 +	 +	 S 0020	 NOP	 ICR2
TC *	 +	 + •	 $ 0010	 NOP	 CMR3

•	 THE 0010 TESTS FOR INDEX2 <> ITS COMPARE.	 •
*IVIG WILL LOAD THE COMPARE REGISTER TO CHECK FOR INDEX	 r

*RI:GITER EGUAL TO ITS STORED VALUE.	 •
TC +	 *	 •	 +	 S 0009	 IOWA	 T1WA

• THIS LOADS THE TEMPORARY FILE WITH THE OCTAL LOCATION OF THE*
*MEAN VECTOR.	 +

IC *	 *	 +	 •	 $ OOR8	 FO	 •
10 +	 •	 •	 •	 •	 FO	 :	 OS	 LSB	 • • r •

• THIS LOADS THE BANK AND ADDRESS LOCATION OF THE COVARIANCE +
*MATRIX	 •

•	 THIS ROUIINE LOADS THE COVARIANCE MATRIX.

I	

+
MR	 10 •	 IN2 +	 •	 *	 •	 •	 DS	 R	 + •	 +

TR •	 •	 *	 •	 •	 70	 FO	 Z1	 Fl
+	 THIS LOADS THE MANTISSA INTO TN f F1 REGISTER.	 +

+	 AND LOADS THE EXPONENT INTO THE F O REGISTER.	 •

1C AD •	 •	 +	 1MR	 MAR	 NOP
TR *	 •	 +	 +	 +	 FO	 LFOU F1	 LFlU

•	 THIS IS THE kOUTINE THAT LOADS THE MEAN VECTOR. 	 +
MNR TC •	 CL3 + +	 $ 0040	 NOP	 CMR3

TC •	 •	 +	 •	 $ 0008	 NOP	 ICR3
• THE 0040 IN CMRI TESTS FOR INDEX3 <> ITS COMPARE
IMNR TR •	 IN3 •	 •	 •	 ZO	 FO	 Zl	 F1
• THIS DOES THE I/O CALL AND LOADS THE NUMBER INTO THE FO—Fla
• REGISTER PAIR	 +

Y3

C-93

• THIS DOES THE 1/0 CALL FOR 7HI NEXT NUMBER 	 •
SH •	 •	 • •	 •	 *	 LN31	 •	 S

• THIS SHIFTS THE MOAN VEC7Ok TO THE 'LEFT * AND NEGATES THE	 •
• SIGN 6IT.

SH •	 +	 • +	 •	 +	 RCIR •	 S

THIS NEGATES THE SIGN GF THE MEAN VECTOR AND SHIFTS IT IN TO*
THE SIGN POSITION. THIS IS GONE EECAUSE THE VECTOR MANTISSA
+IS IN SRM FORM, THIS WAY. AN ADDITION TO THE VECTOR WILL 	 •
*ACTUALLY PERFORM THE OPERATION OF SUBTRACTING THE VECTOR 	 •
*FROM THE ADDEND.

IO AD *	 • *	 •	 •	 +	 OS	 R + •	 •
THIS DOES THE I/O CALL FOR THE NEXT NUMBER (1F THERE IS ONE)

TC AD •	 • *	 1 MNR	 M,AR	 NOP
TR +	 +	 * •	 •	 FO	 LFOU Fl	 LFIU

LOAD THE NEXT ELEMENT IN-THE VECTOR• AND STORE THE NEW VALUE
*THIS ROUTINE LOADS THE NORMALIZES THE DATA VECTOR. IT CAN •
*BE CALLED TO EXECUTE BY ITSELF. 	 •

TC *	 •	 * +	 S 0004	 *	 ICR3
VINR TC *	 *	 +	 S COCA	 TUBA	 TIBA

TC *	 •	 + *	 S 0040	 NOP	 CMR3
+	 THE 0040 TESTS FOR INDEX 3 <> ITS COMPARE 	 •

TC +	 CL3 + *	 $ 0027	 fC	 NOP
10 *	 •	 . .	 .	 FO	 •	 DS	 LSB * *

•	 THIS INITIALIZES THE LOCATION OF THE READ POINTER. 	 .•
10 •	 .	 * *	 r	 r	 :	 DS	 R	 * *	 +

:DIP

THIS STARTS THE FIRST READ.
TC *	 *	 *	 S 0020	 LOAD	 L1AD

 7R *	 IN3 *	 •	 *'	 ZO	 FO	 Z1	 F1
* THIS LOADS THE MANTISSA AND EXPONENT INTO THE FO-1 REGISTER•
• PAIR.	 •
*	 THE FOLLCWING DOES THE 1/0 CALL.

10 AD *	 •	 *	 +	 •	 +	 DS	 R	 • •
*	 THIS IS EXECUTED EEFCRE THE JUMP AND IT WILL LOAD THE NEEDED DATA INTO
+	 THE 20-21 REGISTER PAIR BEFORE IT IS NEEEDED• ELIMINATING A TWO CYCLE
•	 NOT READY WAIT.

TC AD +	 + *	 LOIP	 MAR	 NOP
TC *	 •	 • +	 S 0000	 BRGO	 BRGl

*	 AFTER NORMALIZING THE DATA VECTOR• STORE IT. REPEAT UNTIL ALL
+	 THE ELEMENTS RRE FINISHEDi THEN REPEAT THE CYCLE UNTIL ALL FOUR ELEMENTS
+	 ARE FINISHED BEING PROCESSED.

TC •	 •	 • •	 S 0020	 LOAD	 LIAD
TC +	 *	 *	 *	 S COCA	 70RA	 TIRA
TC *	 CL3 * +	 S 0002	 TOWA	 71WA

LOIP TR *	 IN3 * +	 *	 TFOU ERGO TFIU BRG1
TC *	 *	 SR *	 FPAR	 MAR	 +
7R +	 +	 + +	 •	 LFOU FO	 LF1U FS
TC •	 +	 +	 +	 S 0040	 *	 CMR3
7C AD •	 * +	 LOIP	 MAR	 •
7R *	 •	 r *	 •	 FO	 7i0U Fl	 TF1U
TC •	 CL3 *	 +	 S COCA	 TORA	 T1RA

LO2P TR •	 IN3 * •	 +	 TFOU ERGO TF1U BRG1
TC •	 •	 Sk .	 FPAR	 MAR	 +
TR +	 •	 • •	 •	 LFOU FO	 LF1U Fl
7C +	 •	 + •	 S 0040	 •	 CMR3
TC AO •	 + +	 LO2P	 MAR	 •
TR •	 +	 +	 •	 +	 FO	 TFOU F1	 7F1U

•	 THIS STORES THE DATA NORMALIZED DATA VECTOR IN LOCATIONS 2-5 OF THE
•	 TEMPORARY FILE, THE SECOND VECTOR WILL APPEAR IN LOCATIONS 6-9 OF
*	 THE TEMPORARY FILE.

qf,

C-94

THIS WILL FALL ThROUfH TO THE MATRIX PkOCESSING ROUTINE.
• THIS 15, THE LEEINAING OF THE MATRIX MULTIPLY ROUTINE.
STkA TC •	 CLA	 +	 S 0000	 LOAD	 L1AO

TC *	 t+ +	 S OOOG	 ERGO	 BRGI
TC *	 •	 *	 •	 s 0001	 TOBA	 718A
TC *	 + •	 S OOC1	 1FOU	 TF1U
TC •	 *	 + •	 S 0002	 TOBA	 TIBA

MLTY Tk .	 INl •	 •	 •	 TFOU ED	 TF1U E1
* THIS LOADS THE MULTIPLICAND INTO THE EO-El REGISTER PAIR.

TC *	 •	 SR *	 FPMR	 MAR	 NOP
* THIS DOES THE PROGRAM JUMP TO THE FLOATING POINT MULTIPLY ROUTINE.

TR *	 +	 * *	 •	 LFlU G1	 LFOU GO
+ THIS STEP IS DOVE BEFORE THE JUMP IS ACTUALLY EXECUTED. THIS WILL LOAD THE
• MULTIPLIER INTO THE GO - G1 REGISTER PAIR.. (F=EXG FLOATING POINT MULT)

TC *	 +	 SR *	 FPAR	 MAR	 NOP

* THIS STEP WILL 00 A JUMP TO THE FLOATINC POINT ADDITION ROUTINE . THIS ROUT-
* INE CALCULATES THE SUM OF THE CONTENTS OF THE F REGISTER AND THE ERG REGIS-
* TER PAIR. THE kESULT OF THE ADD IS THEN STORED IN THE F REGISTER.

TC *	 +	 * +	 S 0004	 NOP	 ICR1

TC *	 •	 • •	 S 0004	 NOP	 CMR3

+	 THE 0004 TESTSFOR INDEXI 0 17S COMPARE
• THIS IS EXECUTED 6EFORE THE JUMP. 11 WILL JUST LOAD THE CONDITION REGISTER
* WITH THE NEXT CONDITION TO BE TESTED.

TC AD •	 + •	 MLTY	 MAR	 NOP
TR *	 •	 •	 •	 •	 FO	 BRGO F1	 BRG1

+ ON INDEX REGISTER 1 NOT EQUAL TO ITS COMPARE, JUMP TO BEGINNING OF MULTIPLY
+ ROUTINE.

TC *	 +	 * +	 S 0001	 TOBA	 TIBA
TR *	 +	 * +	 •	 TF1N ED	 NOP	 NOP

+	 GET ADDRESS OF JTH ITEM IN THE DATA VECTOR.
TR *	 +	 * *	 ACO	 Al	 TFOD AO	 TF1D

TR *	 +	 * +	 ACC	 AO	 TORA AO	 T1RA

• THE ABOVE WAS A CHANGE 10 INSURE THAT THEPROGRAM WORKS• THIS IS KEPT.
• THIS WILL UFDATE THE ADDRESS FOR THE NEXT ROUND, STORE IT+ AND POINT TO THE
• ITEM IN QUESTION.

TR •	 IN2 * *	 +	 TFOC ED	 7F1C E1
• THIS WILL LOAD THE MULTIPLIER FOR THE SECOND MULTIPLY INTO THE EO-E1 REG-
• 1S1ER FAIR. SIMULTANEOUSLY, THIS UILL ZERO THE TEMP r1LE POINTERS. THEY
• WICL NOW POINT TO THE LOCATION OF THE ACCUMULATOR.

TR •	 +	 * •	 +	 BSRO 61	 BSRI GO
TC *	 •	 SR *	 FPMR	 MAR	 NOP
TR •	 •	 *	 +	 G	 AO	 G1	 Al	 GO

• THIS IS JUST A SUBROUTINE JUMP TO THE FLOATING POINT MULTIPLY ROUTINE.
• F=EXG

TC *	 •	 SR •	 FPAk	 MAR	 N 0 P
TR *	 +	 +	 •	 +	 TFON ERGO	 TF1N BRG1

+	 F=F+PRG. THIS CALCULATES THE SUBTOTAL OF THE MATRIX MULTIPLY.
TR •	 +	 •	 +	 +	 FO	 TFON F1	 TF1N
TC •	 •	 +	 +	 S 0002	 TOBA	 TIBA-

* THE ABOVE T^;O STEPS LOAD THE SUB TOTAL INTO THE TEMPORARY FILE LOCATION
+ ZERO.	 IT TF'EM RESETS THE READ AND WRITE. POINTERS OF THE TEMPORARY FILE TO
* LOCATION TWO.

TC •	 +	 + •	 1 0004	 NOP	 ICR2
TC *	 *	 • •	 S 0010	 NOP	 CMR3

•	 TIDE 0010 TESTS FOR INDEX2 A ITS COMPARE.

• THIS WILL DO A TEST FOR INDEX 0 NOT EQUAL TO ITS COMPARE REGISTER.

TC AD CL1 * +	 MLTY	 MAR	 NOP
TC *	 +	 • +	 $ 0000	 ERGO	 BRG1
TR +	 +	 + PUOL +	 •	 •	 MULT MCR3
TC •	 •	 +	 •	 1 0000	 70BA	 TIBA

C-95

TC •	 •	 •	 1 0026	 LOAD	 LIAD
Tk •	 •	 •	 •	 TFON LFON 7F1N LFIN
7C •	 +	 •	 +	 s 0000	 IFON	 7Fik

ST2A TC *	 CLA • •	 $ 0010	 LOAD	 LIAO
7C •	 •	 • •	 S 0600	 BRGO	 BRGI
TC •	 *	 •	 +	 s 0001	 TOBA	 718A
TC *	 •	 +	 •	 s 0005	 TFON	 TFiN
7C •	 +	 • +	 s 0006	 708A	 TIBA

ML2Y 7R •	 IN1 • •	 *	 7FOU ED	 7F1U El
• THIS LOADS THE 14UL71PLICAND INTO THE ED-El REGISTER PAIR.

7C +	 *	 SR •	 F FMR	 MAR	 NOP
• THIS DOES THE PROGRAM JUMP TO THE FLOATING POINT MULTIPLY ROUTINE*

TR *	 •	 • •	 *	 LFIU G1	 LFOU GO
• THIS STEP IS DONE BEFORE THE JUMP 1S ACTUALLY EXECU7ED.•THIS WILL LOAD THE
• MULTIPLIER INTO THE GO-GI REGISTER PAIR. (F=EXG FLOATING POINT MOLT)

7C +	 •	 SR +	 F.PAR	 MAR	 NOP
• THIS STEP WILL 00 A JUMP TO THE FLOATING'POINT ADDITION ROUTINE.THIS ROUT-
• INE CALCULATES THE SUM OF THE CONTENTS OF THE F REGISTER AND THE BRG REGIS-
• TER PAIR, THE RESULT OF THE ADD IS THEN STORED IN THE F REGISTER.

TC +	 *	 *	 S 0004	 NOP	 ICRI
TC *	 *	 * *	 1 0004	 NOP	 CMR3

•	 THE 0004 TESTS FOR INDEXI 0 ITS COMPARE
r THIS IS EXECUTED BEFORE THE JUMP. 17 WILL JUST LOAD THE CONDITION REGISTER
+ WITH THE NEXT CONDITION TO BE TESTED.

TC AD +	 + +	 ML2Y	 MAR	 NOP'
7R *	 *	 • *	 +	 FO	 BRGO F1	 BRGI

+ ON INDEX REGISTER 1 NOT EQUAL TO ITS COMPARE * JUMP TO BEGINNING OF MULTIPLY
* ROUTINE.

TC +	 +	 •	 •	 0001	 TOBA	 TIBA
TR *	 •	 + *	 *	 TF1N ED	 NOP	 NOP

•	 GET ADDRESS OF JTH ITEM IN THE DATA VECTOR.
TR *	 *	 •	 •	 ACO	 AlTFOD AO	 TF1D
TR {	 •	 • +	 ACO	 AO	 TORA AO	 TIBA

• THE ABOVE WAS A CHANGE TO INSURE THAT THE PROGRAM WORKS, THIS IS KEPT*
• THIS WILL UPDATE THE ADDRESS FOR THE NEXT ROUND. STORE IT9 AND POINT TO THE
• ITEM IN QUESTION.

TR +	 IN2 *	 *	 •	 TFOC ED	 7FIC E1
• THIS WILL LOAD THE MULTIPLIER FOR THE SECOND MULTIPLY INTO THE EO-El REG-
• ISTEk PAIR. SIMULTANEOUSLY• THIS WILL ZERO THE TEMP FILE POINTERS. THEY
• WILL NOW FOINT 70 THE LOCATION OF THE ACCUMULATOR.

TR *	 +	 * •	 +	 SSRO G1	 BSRI GO
TC *	 •	 SR *	 FPMR	 MAR	 NOP
TR •	 •	 *	 *	 G	 AO	 G1	 Al	 GO

• THIS IS JUST A SUBROUTINE JUMP 10 THE FLOATING POINT MULTIPLY ROUTINE.
• F=EXG

TC *	 +	 SR •	 FFAR	 MAR	 NOP
TR •	 •	 .	 •	 •	 TFON PRGO 7FIN RRG1

•	 F=F•BRG. THIS CALCULATES THE SUBTOTAL OF THE MATRIX MULTIPLY.
TR +	 •	 •	 +	 +	 FO	 TFON F1	 TFIN
7C +	 •	 *	 *	 S 0002	 70BA	 TIBA

• THE ABOVE TWO STEPS LOAD THE SUE TOTAL INTO THE TEMPORARY FILE LOCATION
• ZERO. 11 THEM RESETS THE READ AND WRITE POINTERS OF THE TEMPORARY FILE TO
• LOCATION TWO.

TC *	 +	 • •	 S 0004	 NOP	 ICR2
TC *	 •	 + *	 s 0010	 NOP	 CMR3

•	 THE 0010 TESTS FOR INDEX2 x ITS COMPARE*
+ THIS WILL DO A TEST FOR INDEX 0 NOT EQUAL TO ITS COMPARE REGISTER.

TC AD CLI + +	 ML2Y	 MAR	 NOP
TC +	 •	 • •	 S 0000	 BRGO	 BRGI
7R +	 •	 + PULL m	MULT MCR3

C-96

•	 THE PROGRAM VILL NOW FALL THROUGH TO THE OTPT SECTION, OF THE PROGRAM.
• THIS 15 THE OUTPUT ROUTINE.

7C	 •	 •	 •	 • S	 0000	 TRBA 718A
7C	 •	 •'	 •	 • s	 0026	 LOAD L1AD
TR	 •	 •	 •	 + •	 TFIN	 G1	 TFON GO
1C	 •	 •	 •	 • FCMP	 MAR •
TR	 •	 •	 •	 • +	 LFON	 CO	 LF1N El

FINL 7R	 •	 *	 •	 PUPU •	 MULT	 PRGO	 • •
TC	 +	 •	 •	 • s	 0000	 70RA TIRA

OTPT	 IO	 +	 *	 •	 + •	 •	 TFON	 DS Y	 •	 •	 r	 •
10	 •	 •	 •	 * •	 TFIN	 •	 DS W	 •	 •	 +	 •
TC	 +	 •	 +	 • WAI7	 MAR NOP

•	 THIS	 IS	 THE	 FLOATING POINT	 ADDITION	 ROUTINE.	 9/4/79. 3:45:009
;PAR	 7R	 +	 •	 •	 • •	 BSRI	 GI	 F1 El

SH UNS CLO	 +	 • •	 LZIN	 NZIN	 LZIN S
SH	 •	 +	 +	 * •	 RZIN	 NZIN	 RZIN S

•	 THIS	 VILL STRIP	 THE SIGN OF	 THE	 MANTISSA	 AND SAVE	 17 FOR FUTURE	 USE.
TR	 +	 +	 • +	 •	 •	 SSRO ICR0
TC	 TNN	 +	 •	 + s 0000	 + CMRO
TC	 TNN	 +	 +	 * s	 0010	 • CMRI
TR TNN	 +	 JP	 • *	 +	 +	 • •
TR TNN	 +	 OF	 + +	 •	 •	 • •
TR	 +	 *	 +	 • ZRO	 AO	 +	 Al CMR1
THIS	 WILL COMPARE THE	 BRG TO	 ZERO i	IF	 IT	 IS 9	 RETURN.

TR	 •	 •	 •	 + ZRO	 AO
	

ED	 Al GO
+	 THIS	 WILL	 ZERO	 THE REGISTERS	 TC PREVENT	 SPURIOUS RESULTS.

TR	 +	 •	 +	 + E-G	 AO	 NOP	 Al ICRO
+	 IF	 ILI<ICI 9	 THE	 PROGRAM WILL	 REVERSE THE	 NUMBERS AND CONTINUE.
•	 SINCE	 ADDITION	 IS CCMMUTATIVE 9	THIS SHOULD NOT	 AFFECT THE RESULTS.

Tk	 +	 +	 •	 * XOR	 Al	 ED	 AO NOP
TC	 •	 •	 +	 + s	 0080	 + GO
TR	 +	 +	 +	 + AND	 Al	 •	 AO GO
TC	 +	 +	 •	 • s	 8000	 ED +
TR	 *	 +	 +	 • E-G	 Al	 •	 AO GO
TC	 •	 +	 +	 + s	 0010	 • CMRO
TC	 FNN	 +	 +	 + NSH	 MAR +

+	 IF	 THE	 EXPONENT	 ON ONE	 OF	 THE	 TWO NUMBERS	 IS LESS THAN ZERO
•	 AND	 THE	 CTHER	 IS	 NOT• SUBTRACTION TO YIELD THE	 NUMBER OF	 SHIFTS
•	 WILL	 NUT	 YIELD	 THE CORRECT	 ANSWER•	 AND THUS SPECIAL	 HANDLING
•	 MUST	 BE	 ADDED	 TO	 COMPENSATE FOR	 THIS PROBLEM,	 THE WAY THAT	 THIS
*	 ROUTINE	 HANDLES	 THE PROBLEM	 IS	 I7	 EXCLUSIVE	 ORS	 THE	 TWO NUMBERS
•	 TOGETHER AND	 THEN STRIPS	 OFF	 EVERYTHING	 CUT	 THE	 SIGN BIT.	 THIS
+	 IS	 THEN	 SUBTRACTED FROM	 A	 CONSTANT	 (FOR	 SPEED).THE	 CONSTANT IS
•	 80009	 THUS	 IF	 THERE IS	 A	 l	 IN	 THE	 SIGN	 POSITION•	 THE RESULT	 WILL
•	 NOT	 BE	 NEGATIVE•	 INDICATING THAT	 THE	 CORRECTION	 MUST TAKE PLACE.

TC	 TNN	 +	 •	 • S	 0020	 + CMRO
TR	 .	 +	 +	 * E-G	 Al	 GI	 + •

•	 THIS	 WILL	 TEST	 FOR E-G->G	 NEGATIVE.	 THIS	 IS	 TO	 INSURE THAT	 (BRGJ	 >=
•	 BFI,	 SIMPLIFYING	 THE ALGORITHM GREATLY.

TC	 TNN	 +	 +	 + SWAP	 MAR NOP
•	 THIS	 INVOLAES	 THE SWAP ROUTINE THAT	 WILL	 FORCE	 THE	 ABOVE TO BE	 TRUE.

TR	 +	 +	 •	 + ZRO	 •	 +	 AO CMRO
7C	 +	 +	 +	 + s	 0010	 • CMR1

•	 THE	 ZEROES	 THAT	 ARE	 LOADED INTO CONDITION MASK	 REGISTER 0	 TELL
•	 THE MACHINE NOT	 TO CHECK FOR	 ANY OF	 THE	 CONDITIONS	 REPRESENTED.
+	 THE	 0010	 LOADED	 INTO CMkl	 TELL	 THE	 MACHINE	 TO CHECK FOR THE COMPARE
•	 REGISTER GREATER	 THAN INDEX	 REGISTER	 ONE.	 IN	 THIS	 CASE• THIS	 WILL
•	 DETERMINE	 6-F.ETHER	 THE TWO NUMBERS ARE EQUAL OR EQUAL AND OPPOSITE	 IN
+	 MAGNI7UDL	 AND	 SIGN.

TR	 +	 •	 +	 • ZRO	 AO	 G1	 Al El

f)

C-97

TC TNN	 •	 • + ELUL MAR NOP
• IF THEY	 ARE•	 THE PROGRAM WILL JUMP TO A	 SPECIAL ROUTINE.
+ BY 7P1S	 POINT IN THE	 PROGRAM S	IEI>lGl.'

TR •	 +	 • • • SSRO	 ED	 FO GO
TC •	 •	 • • 1	 0010 + IDXO
7C •	 •	 • • S 0020 • CMR1
TC TNN	 •	 • • RTNF MAR NOP

• IF THE NUMBER OF SHIFTS REQUIRED >	 160 RETURN THE VALUE IN	 THE
• F.REGISTER.

TR *	 •	 + * ZRO Al	 GI	 AO CMR1
TC *	 CLO	 • • 5	 0001 • CMR3

• THIS LOADS THE DATA TO B. E PROCESSED AND 17	 PROGRAMS	 THE CPU TO CHECK
• FOR REGOPINDYO. THIS IS	 REPRESENTED BY A	 ONE	 IN THE FIRST POSITION.	 THIS
* CHECK 1S	 INVOLKEG BY	 THE	 AD COMMAND.
SHFT SH *	 1N0	 * * •	 i R71N	 NZIN	 NZIN S

TC AG •	 • •	 SHFT	 MAR	 NOP
• INDEX REGISTER CGNTATNS THE AMOUNT BY WHICH G>E• (THE NUMBER OF ORDERS
• OF MAGNITUDE. THIS ROUTINE SHIFTS E TO THE RIGHT UNTIL THE TWO ORDERS OF
• MAGNITUL• E ARE EQUAL.

TC •	 •	 +	 +	 s 0000 ',	 G1	 •
TC *	 *	 • •	 S 0020	 +	 CMRO
TC FPN •	 • f	 GPOS	 MAR	 NOP

•	 IF G1 >= 0• ITS SIGN IS TAKEN TO BE POSITIVEt AND THE NUMBERS ARE

•	 HANDELED IN A CORRESPONDING MANNER.
BY THIS POINT• G MUST BE NEL— TIVE.
TC	 +	 •	 *	 • S	 0002 + CMRO
7C 7PN	 •	 •	 • SSGN MAR NOP

• IF E	 IS	 NEGA7:VE 9 AND	 G	 IS	 NEGATIVE• THE	 SIGNS ARE THE SAME	 AND THE
• TWO NUMBERS AkE	 JUST ADDED AND ONE OF THE SIGNS IS PRESERVED.

• AT	 THIS	 POINT *	 IGI>IEI.t THE	 RESULTANT SIGN WILL 6E	 THAT	 OF	 G.
• WITHOUT	 REGARD	 70 SIGN•	 THE	 RESULT	 WILL BE THE	 OLD SIGN	 OF	 G
• PLUS	 (G–El.
DSGN TR	 •	 •	 +	 * EN AO ED •	 +

1R	 *	 •	 •	 • E41 AO ED +
TR	 •	 +	 +	 • ADD Fl ED AO	 GO

• THIS CALCULATES	 G–E.
7C	 *	 +	 *	 • S	 0010 + CMRO

• IF	 THE	 RESULT	 IS	 >= ZERO,	 THERE	 IS	 NOT A ONE IN T7HE	 FIRST	 BIT	 POSITIONS
+ $O THE	 NUMBER	 IS NOT NORMALIZED9	 AND MUST BE	 SHIFTED UNTIL	 THERE	 APPEARS
+ A	 *1 •	IN	 THE	 FIRST BIT	 POSITION.
NORM TR FNN	 *	 *	 * E-1 AO ED

TC FNN	 •	 •	 * NORM MAR NOP
SH FNN	 *	 •	 * • NZIN NZIN LZIN	 S

• THIS ROUTINE	 NORMLIZES THE DATA
1R	 •	 •	 + G AO FO +	 +
TC	 •	 +	 +	 • S SOFF • GO
TR	 •	 *	 +	 * AND * • 10	 Fl
TC	 +	 •	 +	 • S	 0002 + CMRO
SH *	 +	 •	 + • NZIN LZIN NZIN	 S
SH TPN	 *	 •	 • + NZIN ROIN WIN	 S
SH FPN	 +	 •	 • + NZIN RZIN NZIii	 S
1C	 +	 +	 JP	 • s	 0000 + -	 +
TC	 •	 •	 OF	 * s 0000 + •

• THIS ROUTINE	 SETS THE	 SIGN TO THE	 SORRECT SIGN AND RETURNS TO THE CALLIN
• ROUTINE.
GPOS 7C	 TPN	 +	 +	 • DSGN MAR NUP

TR	 •	 •	 •	 • • • • •	 •

• EEFORE	 THE JUMP TO GPOSv	 THE	 CONDITION REGISTER WAS SET	 TO CHECK FOR
• E<0.	 IF	 IT)So	 THE SIGNS	 ARE	 OPPOSITE AND THE DATA IS TREATED

/°

C-98

•	 CORRESPONDINGLY.
•	 BY DEFAULT• C07H G AND E HAVL,IHE SAME SIGN S SO THE RESULTS ARE JUST

•	 A DUE G.
TR • • • • • . FO GO

SSGN TR + + • • ADD Al G1 AO GO
SH • • • • • NZIN NZIN RCIR S
TC • • • + !	 0010 NOP CMRO

+ THIS CHECKS FOR A CARRY OUT OF HE PS8.	 INDICATING NORMALIZATION IS
• NECESSARY.

1R TNN * r • C F1 ED • •
7R TNN * • • E•1 AO ED • •
TR INN • • • G AO f0 • •'
1C TNN • JP * S COfF • GO
IR TNN * OF • AND • • AO F1

• IF IT IS• THEN THE NUMBER	 IS NORMALIZED AND THE	 SUBROUTINE RETURNS.
SH + • JP * • NZIN NZIN LCIR S
7R • + OF • G AO FO •

+ THIS ROUTINE LI<CHANGES	 THE TWO REGISTERS	 INVOLVED SO THAT IGI>IE)
SWAP TR • + + + + F•l G1 FO GO

TR • + * • • BSRO FO 8SR1 F1
TC • * + * FPAR MAR NOP
TR • • • * G AO ERGO Al BRGI

• THIS CALLS THE ORIGINAL ROUTINE.
• THIS IS	 THE ACTION TAKEN WHEN 7HE ROUTINES HAVE THE SAME MAGNITUDE.
EOUL TC • • * • 3	 0000 NOP CMRI

TC • + • • S	 0002 NOP CMRO
TC FPN • • * EPOS MAR NOP
TC • • • • 1	 0020 NOP CMRO
TC 7P • * • SSGN MAR NOP
TC FP • + • SWAP MAR NOP
TC + * • • $	 0000 NOP NOP

EPOS TC FP • * + SSGN MAR NOP
7C * • • • s	 0100 NOP CMRO
TR • * • • E=G NOP NOP NOP NOP
7C IN • • + ZAPP MAR NOP
TC • • • • S	 0020 NOP CMRO
TR • • • • E-G Al G1 AO NOP
TC IN • + • DSGN MAR NOP
I • • • • S	 0000 GI CMRO
7C • + • • CSGN MAR NOP
7R • • • • • NOP NOP BSRj F1
TC • • * + S	 0000 + •

ZAPP TR • + JP * ZRO AO FO Al F1
TC * + 0 * S	 0000 NOP CMRO

* THIS ROUIINE HANDLES NUMBERS THAT HAVE OIFFERLNT EXPONENTIAL SIGNS.
NSH TC • CLO • * S	 0010 NOP CMRI]
• BUG IN ASSEMBLER. NULL	 LIKE	 WILL NOT BE	 ASSEMBLED. BY THIS	 POINT
• IN THE PROGRAM, THE EXPONENT ON ONE OF	 THE TWO NUMBERS MUST
• BE LESS	 THAN ZERO. THIS PART	 OF	 THE ROUTINE WILL FORCE THE	 NEGATIVEr
• PART 70 BE S7OkED IN	 ERG	 REGISTER. SINCE	 A SWAP CAN TAKE PLACE•
• ALL THE	 ORIGINAL FLAGS MUST	 bE RESET IN	 THE EVENT OF	 ASHIFI.

TR * + * * G AISW . AORZ GO
TC TNN * + + GLZ PAR NOP

• THE G/eRG REGISTER CONTAINS	 THE	 NEGATIVE EXPONENT* NO SWAP NEEDED.
7R FNN • • + + F1 G1 FO GO
7k • • • * + SSRO FO BSRY F1
TR + • • • G AO ERGO Al BRGI
TR • * • • • BSRI 61 Fl El
SH UNS • + • • LZIN NZIN LZIN S
SH * • • • • RZIN NZ 1.4 RZIN S

99

C-99

•	 THIS SWAi• S THE•TWC NUMbERS AND RESETS ALL THE FLAGS NEEDED PY THE
•	 REST OF THE ROUTINE.
GLZ TC •	 • +	 S MO.	 EO	 GO

TR •	 •	 . •	 E —G	 AISW *	 AOSW GO
TR *	 •	 • •	 G	 AIRZ NOP	 AORS ICRO

•	 CALCULATE THE NUMBER OF SHIFTS NECOED i IF IT IS < 0. 17 1S
•	 ACTUALLY > PO (16)9 SO RETURN THE VALUE IN THE F REGISTER.
•

TC TNN •	 * •	 RTNF	 MAR	 NOP
TR *	 •	 * •	 G	 AOSW ED	 A1RZ NOP
TC •	 •	 •	 •	 S 0010	 •	 GO
TR *	 •	 • •	 E —G	 Al	 NOP	 AO	 GO
TC FNN •	 + *	 RTNF	 KAR	 NOP

•	 IF THE NUMBER OF SHIFTS REQUIRED 1S > 1E9 RETURN THE DATA IN THE
•	 F REGISTER.

TC +	 +	 * +	 S 0000	 *	 CMRO
TC *	 •	 • •	 S 0000	 •	 El
TR *	 •	 + •	 •	 SSRO ED	 FO	 GO
TC •	 *	 * •	 SHFT	 MAR	 NOP
TC *	 +	 • •	 S 0001	 •	 CMR3

•	 PREPAIR TO SHIFT THE DATA AND RETURN TO SHIFTING R0117INE9
RTNF TR *	 •	 JP *	 •	 •	 •	 *	 •

TR is	 •	 DF *	 •	 •	 •	 •	 +
*	 RETURN THE CONTENTS OF THE F REGISTER.
• THIS IS JUST FOR A.BREAK POINT AND IT IS TO BE REMOVED WHEN*
• THE PROGRAM IS ACTUALLY INSERTED INTO THE CODE. 	 •
FCMP TC UNS •	 • *	 S 0000	 70BA	 T1BA
* THIS ACCEPTS THE DATA IN THE E REGISTER AND G REGISTER AS *
* INPUTS. INITIALLY• THE PROGRAM STORES THE ORIGINAL DATA IN *
* TEMPORARY FILE. THE E REGISTER GOES IN LOCATION 0 AND THE +
• G REGISTER GOES IN LOCATION 1. THE FOLLOWING WILL ALSO	 •
• STRIP OFF THE SIGN 917	 •

TR +	 •	 +	 •	 E	 AO	 7FOU Al	 TF1U
7R *	 *	 * *	 G	 AO	 TFOU Al	 TF1U

* THIS ROUTINE STRIPS OFF THE SIGN 617. THE CORRECT SIGN BIT •
* IS SAVED IN THE PAST REGISTER. 	 •

SH *	 +	 • +	 *	 LZIN NZIN LZIN S
SH +	 +	 *	 •	 •	 RZ1N NZ1N RZIN S
TR •	 +	 • +	 E	 AISW ED	 AOSW E1

'TR *	 +	 •	 •	 G	 AOSW G1	 AISW GO
* THE 0002 IN CMRG WILL CHECK FOR EI NEGATIVE. THIS IS DONE •
• IN THE PAST SENSE. IF LI<0s THEN JUMP TO THE ROUTINE THAT •
* WILL HANDLE THAT CASE. 	 •

TC *	 •	 • •	 S 0002	 NOP	 CMRO
TC TPN •	 • •	 EMNG	 MAR

* b y THIS POINT 4 THE E REGISTER MUST NOT BE NEGATIVE l>=C)	 +

+ THE 0020 IN THE CMRO WILL TEST FOR G<O, IF G<09 E IS THE	 •
• GREATER OF THE TWO NUMUERS. IF NOT, THEY ARE BOTH >= 0. 	 •

TC *	 •	 •	 *	 S 0020	 •	 CMRO
7C TPN *	 * •	 EGRT	 MAR	 +

. THIS WILL DETERMINE IF THERE IS A GIFFEPENCE IN EXP SGN.	 •
TC TPN *	 *	 *	 1 0000	 •	 •
TC TNN •	 * *	 GXNG	 MAR	 •

• THIS WILL DG A JUMP IF THE SIGN OF G IS 1. OR G NEGATIVE 	 •
* IN THE EXPONENT PORTION.

TC *	 •	 * *	 S 0002	 •	 CMRO
7C TNN *	 * •	 GGRT	 VAR	 +

• BY MERE• THE EXPONENT OF G IS POSITIVE. IF THE EXPONENT OF •
• E IS NEGATIVE * BOTH MANTISSAS BEING POSITIVE• E<G	 •

TR FNN •	 * *	 E-G	 AO
	

ED	 Al	 E1

lo-d

C-100

	

TC Tkh •	 • •	 CGRT.	 MAR	 •

	

TC FNh •	 • •	 i 0000	 FO	 F1
TC	 •	 JP *	 1 0000	 TOGA	 71BA

	

TR •	 +	 OF *	 .	 TFON EO	 TFIN E1
* SINCE bO7h EXPOKENTS AND MANTISSAS ARC LONNEGA71VE• 1141S 	 •
. ROUTINE CALCULATES E-G• EXPONCNTS IN THE HOBP AND MANTISSAS•
• IN THE l0@PS. IF THE RESULT IS < 0• G>E• ELSC RETURN E.

	

GGRT TC •	 •	 * *	 1 0001	 TOBA	 TIDA
	TC •	 •	 JP •	 1 0001	 FO	 Fl

	

TR •	 •	 OF .	 •	 TFON ED	 TFIN E1
• IF Fl>=0 t C>G• RETURN TFE1]	 •

	EGRT TC *	 * .• •	 i 0000	 FO	 Fl

	

TC *	 •	 JP .	 S 0000	 TOBA	 T18A

	

TR •	 •	 OF *	 *	 TFON ED	 TFIN E1
*'THIS IS THE SECTION OF THE PROGRAM THAT IS CALLED IF E IS •
• NEGATIVE. (MANTISSA)	 '•

	

EMNG TC *	 •	 • •	 1 0020	 •	 CMRO

	

TC FPN *	 * •	 GGRT	 MAR	 NOP
. THIS SECTION DOES THE COMPARE IF BOTH THE'OPERANOS ARE < 0 •
• THIS WILL DETERMINE IF THERE IS A DIFFERENCE IN EXP SGN.	 •

	

NCMP TC *	 •	 * •	 S 0000	 *	 •

	

TC TNN •	 • *	 GBNG	 MAR	 •
* THIS WILL 00 A JUMP IF THE SIGN OF G IS 1. OR G NEGATIVE	 *
• IN THE EXPONENT PORTION. 	 •

	

TC +	 •	 • •	 1 0002	 •	 CMRO

	

TC FNN •	 * •	 NNPP	 MAR	 •
* BY HERE, THE EXPONENT OF G IS POSITIVE. IF THE EXPONENT OF •
* E 1S6NEGATIVEs BOTH MANTISSAS BEING NEGATIVE * E>G

	

TC TNN •	 • •	 S 0000	 f0	 F1

	

TC -	 •	 JP •	 S 0000	 TOGA	 TIBA

	

TR *	 +	 OF *	 •	 TFON ED	 TFIN E1
. THE ABOVE WILL kETURN E	 •

	

GBNG TC TNN •	 * *	 EBNG	 MAR	 +
• BOTH G + S EXPONENT AND SIGN ARE NEGATIVE. IF TRUE• THE SAME
• HOLDS TRUE FOR E. IF THIS IS FALSE. RETURN G. 	 •

	

TC •	 +	 • •	 S 0001	 TOGA	 TIBA

	

1C *	 •	 JP •	 i 0001	 FO	 F1

	

TR •	 •	 OF ••	 TFON ED	 TFIN El

	

EBNG TR *	 •	 • •	 E-G	 AO
	

ED	 Al	 El

	

TC 'FNN •	 • •	 GGRT	 MAR	 •

	

TC •	 •	 • •	 1 GOOD	 FO	 F1
	TC •	 •	 JP •	 S 0000	 TOBA	 718A

	

TR .	 •	 OF *	 •	 TFON ED	 TFIN El
• BOTH THE MANTISSA AND THE EXPONENT OF BOTH E AND G ARE 	 •
• LESS THAN ZERO. CALCULATE E-G. IF RESULT POS171VE 9 G>E	 •

	

GXNG TC FNN •	 • •	 EGRT	 MAR	 NOP

	

TC *	 •	 •	 •	 i 0000	 •	 At

	

TEST TR *	 •	 * •	 E-G	 AO
	

ED	 Al	 El
	TC FNN •	 + •	 EGRT	 MAR	 NOP

	

TC TNN •	 • •	 GGRT	 MAR	 NOP

	

TC •	 •	 • •	 i 0000	 •	 •
• AT THIS (PRECEEDING LINE) BOTH E AND G ARE POSITIVE. THE 	 •
• SIGN OF THE EXPONENT OF G IS NEGATIVE. IF THE SIGN OF THE •

• EXPONENT OF E IS POSITIVE• E>G• HENCE RETURN E.•

	

NNPP TR •	 •	 • •	 E-G	 AO	 ED	 Al	 El

	TC TNN •	 • •	 EGRT	 MAR	 NOP

	

TC FNN •	 • *	 GGRT	 MAR	 NOP

	

TC •	 •	 • •	 i 0000	 •	 •
I

C-101

	

7C 1 Ah •	 •	 •	 f GRT ,	 MAR
7C FNN	 •	 •	 S 0000	 FO	 fl

	

1C •	 •	 JY •	 S 0000	 TOGA	 :8

	

7R .	 *	 OF	 •	 TFON r 	 TFIN E1
* SINCE BOTH EXPONENTS AND MANTISSAS ARE 1.ONAEGATIVC* THIS	 •
* ROUTINE CALCULATES E -G• EXPONENTS IN THE HOSP AND MANTISSAS*
* IN THE LOPPS * IF THE RESULT IS < 0* G>E9 ELSE RETURN E *	+

	

GGRT 7C •	 •	 * •	 S 0001	 70BA	 T18A
	7C •	 •	 JP •	 S 0001	 FO	 F1

	

TR •	 *	 OF *	 +	 TFON CO	 TFIN El
• IF Fl>= 0 t E>G * RETUkN TFE13	 •

	

EGRT 7C *	 •	 • *	 S 0000	 FO	 F1

	

TC *	 •	 JP .	 S 0000	 70BA	 T1BA

	

7R *	 •	 CF .	 •	 TFON ED	 TFIN CI
* THIS IS THE SECTION OF THE PROGRAM THAI IS CALLED IF E IS +
* NEGATIVE. (MANTISSA)	 •

	

EMNG 1C *	 *	 * 0	 1 0020	 +	 CMRO

	

1C FPN •	 * •	 GGR7	 MAR	 NOP
• THIS SECTION DOES THE COMPARE IF BOTH THE*OPERANDS ARC < 0
• THIS W1tL DETERMINE IF THERE IS A DIFFERENCE IN EXP SGN.	 •

	NCMP 7C *	 •	 * •	 S 0000	 •	 •

	

TC TNN •	 * *	 GBNG	 MAR	 •
* THIS WILL DO A JUMP IF THE SIGN OF G 1S 1, OR G NEGATIVE	 •
* IN THE EXPONENT PORTION.	 •

	

TC •	 •	 •	 *	 S 0002	 •	 CMRO

	

TC FNN • 	 • •	 NNPP	 MAR	 •
* BY HERE, 1HE EXPONENT OF G 1S POSITIVE. IF THE EXPONENT OF •
• E I.% NEGATIVE * E07H MANII SSAS BEING NEGATIVE, E>G	 •

	

7C TNN •	 *	 *	 S 0000	 FO	 F1

	

TC •	 •	 JP •	 $ 0000	 TOGA	 TIOA

	

TR *	 •	 OF +	 TFON ED	 TFIN E1
+ THE ABOVE WILL kETURN E	 •

	

GONG TC TNN+	 + •	 EBNG	 MAR	 •
• BOTH G • S EXPONENT AND SIGN ARE NEGATIVE. IF TRUE• THE SAME •
• HOLDS TPUE FOR E. IF THIS 1S FALSEi RETURN G.	 •

	

TC •	 •	 +	 •	 S 0001	 TOBA	 T1BA

	

TC *	 *	 JP *	 S 0001	 f0	 Fl

	

1R *	 •	 OF •	 *	 TFON EO	 TF1': E

	

EBNG TR •	 •	 • •	 E-G	 AO
	

ED	 Al	 E1

	

1C FNN •	 • +	 GGR7	 MAR	 •

	

TC •	 •	 •	 S 0000	 FO	 F1

	

1C •	 •	 JP +	 S 0000	 TOBA	 TIBA

	

TR •	 +	 OF •	 •	 TFON E 	 TFIN E1
• BOTH THE MANTISSA A14D THE EXPONENT OF BOTH E AND G ARE	 +

• LESS THAN ZERO. CALCULATE E -G. IF RESULT POSITIVE• G>E	 •

	

GXNG 1C FkN •	 • •	 EGRT	 MAR	 NOP

	

TC *	 •	 •	 +	 S 0000	 •	 •

	

TEST TR +	 +	 •	 •	 E-G	 AO	 ED	 Al	 E1

	

7C FNN +	 • •	 EGRT	 MAR	 NOP

	

TC TNN *	 • +	 GGRT	 MAR	 NOP

	

7C *+	 +	 •	 2 0000	 •	 •
• AT THIS (PRECEEDING LINE) BOTH E AND u ARE POSITIVE. THE	 •
• SIGN OF THE EXPONENT OF G IS NEGATIVE. if THE SIGN OF THE	 •
* EXPONENT OF E IS POSITIVES E>G• HENCE RETURN E. 	 •

	

NNPP TR *	 •	 • •	 E-G	 AO
	

ED	 Al	 E1

	

TC 7NN •	 + +	 EGRT	 MAR	 NOP

	

TC FNN •	 • •	 GGRT	 MAR	 NOP

	

TC •	 •	 •	 •	 S 0000	 •	 •
M

C-102

APPENDIX 20

FLEXIBLE PROCESSOR SYSTEM SIMULATOR

I. Simulator Flowcharts

A. Setting Up Simulation

B. Input FP# and Operation to be Performed

C. Execute Single Execution Step

D. Read and Modify Register or Program Memory Content

E. Subroutine "Exec" for Executing Single Instructions.

Subroutine "Skip" for Executing Sequence of Instructions.

II. Simulator Displays

A. Simulator Output Display

B. Simulato: Display of Temporary File

C. Simulator Display of Large File

jai

C-103

I	 START	 I
	

1 A. SETTING UP SIMULATION

Set up buffers

for 110 to

terminal and

disk

Initialize

variables

2nd flags

to zero

Open

scratchpad

Is

scratchpad

open?

res

Print "Cyber Ikon

simulator. Do

you wish to load

status?~

No	 Print
cannot
createEND
memory

try later"

Open	 Yes	
load file	

Is	 YesYes	 into buffer
status	 File opened	 buffer

'Ile	
successfully	 end move to	

full?

scratchpad

NO	 No

Print	
Fill with zeroes

"can't open	 r`"^

status file"	 Lrfnt—"loading"}.

Load status?

No

Print

"status not

loaded"

1

/V

c-104

I B. INPUT FPM AND OPERATION TO BE PERFORMED

Print

"processor number"

FPM - input

Yes
or

FPM >15

Store old FP	
Page-flag

Page-flag	 yes	 memory in

f 0	 scratchpad	 0

No

For FPM
load memory

from scratchpad	 2

Print "-->"

Operation - input

copy sv s Page-flag 3

scratchpad to Operation
(save new status)

n 	 sing e 1

status file step)

Execute Page-flag

UNIX '	 Operation
n 	 m 1 4

'odi fy
command memory) Page-flag-1

name - input

Delete STOP open name

scratchpad Operation
1

=
(load

load program

into memory
2

and exit program)
close input

h ,H,hel p,
Print

^-4—
Help

Print valid Operation =	 - cnntents of
2

commands (print FP registers
registers)

—	 -- default

2
Print

Operation
a

-
Page-flag=1

call 2

7? option (execute)
skioroutine

(trace)

Print-flag
- I

/cs

C-105

1° 4p,

C-106

4

I D. READ AND MODIFY REGISTER

Print "Register"
	

OR PROGRAM MEMORY CONTENT

reg n input

Is
g	 "+M" or	 Yes 2

reg invalid?

No

s

amed registe	 Yes

or file or pro
am mem.?

No

index - 0

Set pointer to

start address of
appropriate

memory area and
offset by index

Print contents

of register

Print "Index"

index n input

Is	 Print

index	 No	 "no action

invalid?	 taken"

Yes

Invalid

>^

- Set register

input n

to input

4

input •

^.d

index n index - 1

index • Inoeol

/ is

index	 Yes

invaliJ?	
4

No

107

C-107

Zero print buffer

decode instruction

I E. SUBROUTINE "EXEC" FOR EXECUTING SINGLE

INSTRUCTIONS. SUBROUTINE "SKIP" for

EXECUTING SEQUENCE OF INSTRUCTIONS.

Return	 Subroutine ski

j - input

call subroutine

exec
i s i-1

Is
Yes

error-flag - 1?Return

XSYes
lag=	 Print

nd instruction a
dump or	 registers

eturn?

I Subroutine exec

mir - mbr

fetch next mbr
mar n mar+l

,-'instruction
conditional a

false?

No

Simulate ALU
logical section

Simulate ALU

arithmetic sectio

Execute move
instructions

Increment indexes

as needed

Execute swap and
shift instruction

Set condition
flags including

error flag

Yes

Execute I/O
	

J	 0?

and zero flags

No

Print registers

Return

Return

C-108

e ••	 5 6 o
••(Y 0U ••U O
64. G in B N •• to
W •• b L b 0 U

7 0 0 .+ N !- Oy
d .. 0 .. 0 ...+ t0 J V

.» 0 .+ 0 .+ 0 •• N :> N
4 W 0 00 L 0 IL A Z N

4
L Z

a 0 Q N
O C .+ @
C 4. 0

L F m
C0
t r
.7 I'7 a M 0 •-

La U0 UU aN
+•	 L -0 E C) •• .+ 0

A .• 0 ti 0
O. 0 F- 0

4' Na NO D
w 00
7 U0 VO .. ••

a E ^-+0 EO •• = Z
N U 0 mO ¢1V •-•^0@^
G W 0 a 0 0 Q• N0000..0 ...a ..m Q0 0 ILO 00000

N U
b

we
u

Q_0 E0 00 1-0 QOOOO
0 E 0

~
E

Ir OC 0 M 00 D:^ 0 <Qj 00000
w .•N w0 w0 F-O 0 0 2 00 00
O 0-0 V 0 V0 Z0 LL.0 •-•0000

0
J

ty 0

N RO ^^+ 00000
EO •-0 .+0 LL 0:0000

a ^0 F- 0 JS Q 0000
E 0 g 0

" 0 M 0 M 0 Z
r• X 0 Z - .,
0 AO EO mO mO as ^0^00►+0 V 0 R 0 F- 0 Q•• W 0000

E 0 E O 11 m 8 0 0 0 0
•••0 -+0 E 0 JS Q 0000
0: (0 N a N 0
Q •+ X 0 Z 0
E O A 0 E O Z

F a 40 U)OOOO
•• •• iflf	 . .^ 0 W 0 0 0 0

M •-a r• O mM Q 0 W O WG (D00
4 X 0 WO OM 110 - 0 00000
W A 0 E 0 n

•• 0 •-•0 V0 ION
IA F-
W••
JO 0M 00 --0 •• d Q0 00000
V 0 X 0 M 00 = •- 00 Z 0000^0 A0 EO k0, O 0 4 0 •-•0000
VO -•0 V0 000 Z 0 •-• 0 00000

i1

/o9

C-209

II B. SIMULATOR DISPLAY OF TE11PORARY FILE

temp[0 3 = 0000 0000
tamp [1 3 = 0001 0001
tamp[2 3 = 0006 d240
temp[3 3 = 0005 b640
tem p[4 3 = 0006 9400
tamp[5 3 = 0006 c500
temp[6 3 = 0000 0000
temPC 7 3 = 0000 0000
temPC 8 3 = 0000 0000
temPC 9 3 = 0000 0000
temp[a 3 = 0000 0000
tamp[b 3 = 0000 0000
tamp [c 3 = 0000 0000
temp t d 3 = 0000 0000
temPC e 3 = 0000 0000
tomp[f3 = 0000 0000

II C. SIMULATOR DISPLAY OF LARGE FILE

1 fC 0 3	 = 8fc0 0005 c000 00fd b080 8002 c800 00fc
1 f[4 3	 = c000 00fd 9780 0006 9c80 0001 f880 8001
lfC83	 = b080 8002 9c80 8001 a440 0004 b580 8000
IfCc3	 = c800 00fc f880 8001 b580 8000 ff80 0003
IfC103	 = 0000 0000 0000 0000 0000 0000 0000 0000
lf[143	 = 0000 0000 0000 0000 0000 0000 0000 0000
1fC183	 = 0000 0000 0000 0000 0000 0000 0000 0000
lfC1c3	 = 0000 0000 0000 0000 0000 0000 0000 0000
IfC203	 = 0000 0000 00+00 0000 0000 0000 0000 0000
lfC243 0000 0000 0000 0000 0000 0000 0000 0000
1fC283	 = 0000 0000 0000 0000 0000 0000 0000 0000
lfC2c3	 = 0000 0000 0000 0000 0000 0000 0000 0000
IfC303	 = 0000 0000 0000 0000 0000 0000 0000 0000
IfC343	 = 0000 0000 0000 0000 0000 0000 0000 0000
1fC383	 - 0000 0000 0000 0000 0000 0000 0000 0000
lfC3c3	 = 0000 0000 0000 0000 0000 0000 0000 0000
IfC403	 - 0000 0000 0000 0000 0000 0000 0000 0000
lf[443	 = 0000 0000 0000 0000 0000 0000 0000 0000
1fC483	 = 0000 0000 0000 0000 0000 0000 0000 0000
lfC4c3 0000 0000 0000 0000 0000 0000 0000 0000
lfC503	 = 0000 0000 0000 0000 0000 0000 0000 0000
1fC543	 = 0000 0000 0000 0000 0000 0000 0000 0000
1fC583	 = 0000 0000 0000 0000 0000 0000 0000 0000

ORIGINAL PAGE IS
OF POOR QUALM

/ /D

C-110

2C3. AMBIGUITY REDUCTION FOR TRAINING SAMPLE LABELING

David A. Landgrebe*

This task, envisioned as a multiyear task, began only 2 months before

the end of this report period. As a result the material presented here

does not provide final results; rather it provides background material,

an approach description, and a discussion of certain aspects of the problem.

1. Introduction and Background

The proper training of the classifier in a remote sensing data analysis

system is one of the pivotal steps to good system performance. The original

method used for training classifiers was to define a set of classes based on

user need, then to choose an adequate set of prelabeled sample pixels of

these classes by which to compute class statistics. Because it was assumed

that the labels would be established by ground observation they were always

assumed perfectly accurate.

However, in some application situations ground observations (or at

least observations from the ground) are not always possible. Thus, cases

arise where the labels associated with training pixels are not entirely

accurate.

In any application situation, there nearly always exists a wide assort-

ment of ancillary information, some of which is subjective in nature other

objective, which should be able to materially contribute to the accuracy of

such a pixel labeling process. Examples are data about the terrain, weather

and climate, seasonal characteristics and the spatial context of pixels.

The question is what mechanism should be used to incorporate such information

into the labeling process. Thus, the objective for the current work is:

To devise and evaluate quantitative and objective moans for

optimally arriving at classifier training sets using remotely

sensed spectral observations together with any other types of

ancillary data and knowledge which may become available.

The contrihutift% of 14. J Richards and Dr. P. Swain to Task 2C3.
Ambiguitv Reduction for Training Sample Labeling are gratefully acknowledged.

C-111

1.1 Approach

In selecting an approach to pursue this objective it is important

to note that the ancillary data to be used is varied in type and not well

defined. The information content of such data may be known only somewhat

vaguely a priori, and in some cases it will certainly be difficult to quantify.

Such a situation suggests defining an approach which, instead of being based

on a direct deterministic calculation, might be iterative in nature so as

to provide a "convergence of evidence."

A problem in the field of picture processing with somewhat similar

characteristics is being studied using a method, known as relaxation, which

is iterative in character. It was therefore decided to study this approach

to see if it might 1•e adaptable to the problem at hand. Basically, the idea

would be to use the ancillary information to reduce any ambiguity which might

be associated with a given label on a given pixel. At the out.-et there would

exist an exhaustive list of labels and a set of pixels with a (preliminary)

label association for each. There would be a measure of certainty of the

accuracy of this association in quantitative form. The process would then

be one of utilizing the ancillary information in an iterative fashion to

cause reinforcement of the degree of certainty for the correct label of the

pixel at the expense of all of the incorrect ones.

To begin the work of devising the details of this technique a careful

review of the literature generated so far regarding relaxation methods in

picture processing has been undertaken. A brief outline of this literature

follows.

1.2 Review of Literature

The class of relaxation techniques related to the present investigation

evolved from an algorithm proposed by Rosenfeld et al.[1] in 1976. This

procedure develops (spatial) consistency among sets of objects (such as

pixels) by means of measures of correlations between their labels; con-

sequently spatial context information is provided by a set of correlation

coefficients. Other algorithms `^ 	 only slightly from this in structure,

C-112

but appear quite different in the means by which they imbed context data

into the relaxation process. Zucker and Mohammed [2] have suggested two

algorithms one of which is essentailly the same as that of Rosenfeld but

in which context data are carried by sets of conditional probabilities

rather than correlations. Both this algorithm and that of Rosenfeld

derive label estimates on objects during the relaxation process by forming

a weighted arithmetic average of the "evidences" provided by neighboring

objects. * The second algorithm of Zucker and Mohammed replaces this by a

geometric average. There are certain operational characteristics of this

variation, however, that recommend it as unsuitable in pixel labeling.

More recently Peleg [3] has derived an algorithm that also uses a conditional

probability description of cc,nt ,^xt. However, whereas earlier algorithms

were derived on heuristic considerations, Peleg's is based upon probabilistic

foundations. Yamamoto [1] has recommended a variation on Rosenfeld's

original algorithm which has simpler forms of the compatibility coefficients.

In addition to using correlations for compatibility coefficients, Peleg

and Rosenfeld [12] devise a set of coefficients based upon mutual information

considerations.

A quite different approach has been adopted by Faugeras and Berthod

[S]. Rather than being based upon an explicit relaxation formula, their

scheme establishes a criterion that provides a measure of the consistency

of the labeling on a set of objects along with a measure of redundancy.

It then determines a final label distribution by optimizing this measure.

The behavior of relaxation labeling processes is not well understood

as yet, and consequently there exists considerable interest in trying to

develop a theoretical basis by which to describe the various procedures and

with which their operational characteristics can be predicted. The first

extensive discussion of theoretical issues related to algorithms of the

type discussed above seems to be that of Zucker and Mohammed [6], which is

*There appear to be two implicit definitions of "neighborhood" used in
the literature on probabilistic relaxation labeling, one of which includes
the pixel whose label is currently being modified and one which excludes

that pixel. Rosenfeld's investigations (1,11] embody the former whereas
the studies by Zucker et al.[2,6,7] use the latter. Notwithstanding Rosen-

feld's choice, tie gives the "current" pixel a low weighting to avoid it
dominating the relaxation procedure.

//3

C-113

an expanded version of [2]. Later theoretical treatments include Zucker,

Leclerc and Mohammed [71, Ullman (8), Haralick, Mohammed and Zucker (9] and
Zucker, Krishnamurthy and Haar (10]. In particular, Zucker, Leclerc and

Mohammed present a generalized form of algorithm that degenerates to the

previous well known procedures in special cases. Moreover Zucker,

Krishnamurthy and Haar have recommended methods for accelerating the process.

Some of the investigations referred to above have used pixel labeling

examples to illustrate their algorithms [3,4,5]. However, there appear to

be no detailed studies of the effectiveness of relaxation in this particular

application, although Lev, Zucker and Rosenfeld [13] and Eklundh, Yamamoto

and Rosenfeld [111 have given it preliminary consideration.

Though not specifically concerned with p i:.el labeling a number of

authors have considered the problems of line and edge detection in imagery

by pixel-specific means based upon relaxation procedures [3,5,12,13,14,15,16].

1.3 Discussion

In parallel with the literature survey a software implementation of

the algorithm of Zucker and Mohammed [2] has been constructed and is being

exercised. The purpose of this effort is to further study the possibilities

of using a relaxation approach. A more complete report of this effort is

now in preparation. In summary it can be reported that the technique does

indeed appear to have some promising aspects for the problem at hand.

However, some significant modification and adaption will be needed in order

for the approach to be useful in the pixel labeling environment. An example

of this is the following aspect of current algorithms which was discovered

during the software-implementation study.

An essential ingredient of each of the schemes in the references is

that the initial scene labeling is used only once, viz. when the algorithm

is initialized, and thereafter the success of the final labeling is dependent

upon both the attributes of the algorithm and the accuracy of the contextual

data; both of these tend to assume increased significance relative to the

initial labeling as relaxation proceeds. This may be appropriate in picture

labeling problems such as the "toy triangle" ex:i- , le often used (1,21 since

3

C-114

the initial labeling is seen mainly as an initialization procedure and the

contextual information is often known without error. The situation is

usually quite diffe rent however, in pixel labeling cases such as those

undertaken in the interpretation of Landsat images.

For example, when it is desired to determine a label for every pixel in

an image the contextual information would generally not be known exactly

and indeed may only be an estimate based upon typical image data of a similar

type. Further, the initial labeling, by and large, would represent "the

best one can do" based upon all spectral information at hand, apart from

context. In such a situation the information is therefore contained very

much in both the context and the initial labels. As relaxation is applied,

it is desirable that both of these sources be used to produce final labels

which are, as far as possible, consistent with both the context and the

initial labels.

Thus while the pixel labeling problem has by implication the initial

pixel labels as the primary information and context (and later other

variables) as ancillary or supporting information, the existing algorithms

seem to imply more reliance upon context than upon the initial labels.

As a result of this, one characteristic observed consistently wit'

the software implementation of the current algorithm is tnat as iteration

proceeds, the results typically improve for a while, then peak and begin

to decline. Apparently the contextual information, used in conjunction

with the initial labels, does indeed improve the accuracy at least until

the point where the influence of the initial labels has faded too far.

Thus minimally one would need to determine a suitable stopping rule; a

perhaps more suitable approach would be to modify the relaxation procedure

more fundamentally so that it no longer has this peaking characteristic.

Possible approaches to accomplish this which at the same time facilitate

the incorporation of other types of ancillary data are being sought at present.

C-115

2. References

1. Rosenfeld, A., R. Hummel 6 S. Zucker, "Scene Labeling by Relaxation
Algorithms," IEEE Trans. Syst. Man, Cyber, vol. SMC-6, ?_:. 424-433,
June 1976.

2. Zucker, S. & J. Mohammad, "Analysis of Probabilistic Relaxation Labeling
Processes," Proe. 1978 IEEE Conf. Pattern Recognition and Image
Processing, Chicago, IL, May 1978, pp. 307-312.	

,.

3. Peleg, S., "A New Probabilistic Relaxation Scheme," Proc. 1979 IEEE
Conf. Pattern Recoil ition and Image Processing, Cb4-ago, IL, Aug. 1979,
pp. 337-343.

4. Yamamoto, H., "A Method of Deriving Compatibility Coefficients fox
Relaxation Operators," Comp. Graph. Image Processing, Vol. 10, pp.
256-271, 1979.

5. Fauge ras, 0., & M. Berthod, "Scene Labeling: An Optimization Approach,"
P roc. 19'9 IEEE Conf. Pattern Recognition and Image Processing, Chicago,
IL, Aug. 1979, pp. 318-326.

6. Zucker, S., and J. Mohammed, "Analysis of Probabilistic Relaxation Labeling
Processes," Technical Report -78-3R, Dept. of Electrical Engineering,
McGill University, Montreal, Jan. 1978.

7. Lucke r, S., Y. Leclerc 6 J. Mohammed, "Continuous Relaxation and Local
MaA'.mum Selection," Technical Report 78-15R, Dept. of Electrical
Enp.I.neering, McGill University, Montreal, Dec. 1978.

ti. Ullman, S., "Relaxation and Constrained Optimization by Local Processes,"
,one. ^ ..t. rrj ph. Image Processing, 10, (1979) , pp. 115-125.

9. Haralick. 'R., J. Mohammed 6 S. Zucker, "Compatabilities and the Fixed
Points of Azithmetic Relaxation Processes," Technical Report **-16R,
Dept. of L1< • ztrical Engineering, McGill University, Montreal, 1979.

10. Zucker, S., 1̂ . Krishnamurthy b R. Haar, "Relaxation Processes for Scene
Labeling: 17-evergence. Speed and Stability," IEEE. Trans. Syst. Man_.
Cyber, Vol. SMC-8, Jan. 1978, pp. 41-48.

!l. Rklundh, J., H. Yamamoto b A. Rosenfeld, "Relaxation Methoes in Multi-
spectral PLxel Classifications." Technical Report 662, Computer Science
Center, :1niversity of Maryland. College Park, July 1978.

12. Ptleg, S., b A. Rosenfeld, " Determining Compatibility Coefficients for
Curve Enhancement Relaxation Processes," IEEE Trans. Syst. Man, Cyber,
SMC-8. (July 1978), 548-555.

13. Lev, A., S. Zucker 6 A. Rosenfeld, "Iterative Enhancement of Noisy
Images," IEEE Trans. Syst. Man, Cybe_r., SMC-7, (June 1977), 435-442.

C-116

14. Schachter,, B. J., A. Levi, S. Zucker, 6 A. Rosenfeld, "An Application
of Relaxation Methods to Edge Reinforcement," IRE& Transactions on
Systems. Man and Cybernetics, Vol. SNC-7 No. 11, November 1977.

15. Zucker, S., R. Hummel i A. Rosenfeld, "An Application of Relaxation
Labeling to Line and Curve Enhancement," JE&E Transactions on Computers.
Vol. C-26, No. 4, April 1977.

16. Zucker, S., R. Hummel, 6 A. Rosenfeld, "Correction to 'An Application
of Relaxation Labeling to Line and Curve Enhancement'," IEEE Transactions
On Comcuters, Vol. C-26, No. 9, Sept. 1977.

D-1

2D. MULTISENSOR, MULTIDATE SPATIAL FEATURE MATCHING, CORRELATION
REGISTRATION. RESAMP'.7NG AND INFORMATION EXTRACTION

Paul E. Anutae

1. Introduction

The work and results described in this section ctnsticute the rv,—,ond

and final year of a research investigation into the problems of combining

and utilizing multiple data types for remote sensing surveys. The use of

more than one type of data in a computer-based application of remote sensing

has increased steadily over the past several years. Techniques for merging

and utilizing various types of data are not well developed and this task

seeks improved techniques for getting maximum benefit from available data.

The study considered the merging of different remote sensing .,its

types, information extraction from the combined data and digitizatiol ar.d

merging of ancillary data. The multidata-merging problem was explored, and

results reported in the final report of the first year [1]. Information ex-

traction of,merged Landsat and SAR data is discussed in this, the second-year,

final report as well as ancillary data digitization. A new concept for a

multidata merging system emerged from the study and is also described below.

^_. Landsat SAR Data Set Description

Registration of the Landsat MSS and SAR data types was studied in de-

tail in the first year of the project and results were reported in the final

repert issued in November 1978. The merged SAR/MSS data set formed the basis

of research done in the current year and we will briefly describe the data

here.

The Landsat data are from frame 5-792-16152 imaged on June 19, 1977

over Phoenix, Arizona. Considerable trouble was encountered in obtaining

these data as the digital tape was initially indicated to be unavailable

even though the imagery was satisfactory. Further investigations revealed

*The contributions of Tim Grogan and Ed Crabill, both graduate students in
electrical engineering, to Task 2.2D Multisensor, Multidate Spatial Fear-ire
Matching, Correlation Registration, Resampling and Information Extracti.-n
are gratefully acknowledged.

AS	 A-A

D-2

-1

ORI('fW PAGE IS
QUALITY

.-0	 2

Figure D-I. Goodyear SAR ij.,lj .`Ict over Phoenix, Arizona used in the
study. Flown ot, toms 17, 1977 using an AN/APD-10 X band

radar in an Air i,,rco RF--4 aircraft. Area covered in
approximatel} 1_' by 38 miles at a resolution of approx-

imately 10 it ► .

D-3

that band 4 was unusable and a request was made to obtain the remaining

bands since these were the only data which would match the SAR data in time.

The SAR data were flown by Goodyear Aerospace on June 17, 1977, using

an AN/APD-10X band system. The full data set is shown in Figure D-1. The

data were obtained in film format and were scanned and digitized to produce

a digital image data file at a resolution of approximately 14 meters. This

represents a reduction of the original system resolution of 3.3 meters due

to film and scanning degradations. The characteristics of this and all the

other data sets associated with the Phoenix site are listed on Table D-1.

The primary parameter to be selected was the resolution for the merged

data sets. The deciding factor was a strong interest in the SEASAT SAR data

which were to have a 25 meter resolution. Thus, this figure was chosen as a

desirable compromise between the 79 meter Landsat and 14 meter SAR data.

This choice would enable evaluation of the SEASAT SAR resolution in the crop

field recognition environment.

A 512 by 512-point grid was defined over the crop area between Sun City

and Phoenix, Arizona, centered approximately at the point that Grand Avenue

enters Sun City from the east. At the 25 meter resolution, the area covered

is 12.8 km square or 163.8 square kilometers (1.95 miles square or 63.3

square miles). The Landsat and SAR data were registered to this grid, using

the LARS registration system and results of the previous year's registration

study [1]. The 79 meter resolution Landsat data were interpolated to 25

meters resolution, using cubic interpolation and the 14 meter SAR data were

undersampled using the nearest-neighbor rule to achieve 25 meter pixel spa-

cing. A dot matrix printer image of Landsat band 5 for the block is shown

in Figure D-2 and the SAR image is shown in Figure D-3.

The June 1977 SAR and Landsat data formed the data base for the crop

classification study. Although acquisition and registration of other data

types for this and other areas were planned, these data could not be ob-

tained and preprocessed in time for analysis in the study. SEASAT SAR,

Coastal Zone Color Scanner, Return Beam Vidicon were among those consid-

ered. Digital SEASAT SAR and RBV data were obtained during the study and

discussion of work done on these data is included in another section.

4210

D-4

m	
co

b

Li,
N1 w y	 p^q

r-4 3
m

O^ H b v

n
q

d t7 U
9-1r N 1+ t^

O^ 	41 p

O LI •4 r 4	 w m
01 UQ^ 1^r aiC 9-1 O	 'y

l^ Vl

cc{^

w O^ r-1 L

ti wOO N 6 U O
r4

0 O^
'

0

M

n	 b 0)
O u	 O 0 C 0.0 {^ N AO d O q1	 01 ^ '^'+
r4

0 M^
0

'r'4 Cd 0 r 4 0)0) M e%
44 m GO

N ^
Cl
	

ctl

Q

w L: G' 10 0•

e1{ bt^^ u
iJ -,04

W
%Q N d 'd m u m+1 yy

t0	 t0 m	 'rl O c0 t0 OV1 i]+

U

N	 • i	 r-I "
0r	 cy

"i rq r4 'a
0!	 01	 t0q

N
a^ u	 m
mm	 ' C7 'LI a0

N
N

_4 'pvy C	 ono
^
0
^ eê^^

0m
4f cc0̂

.0 C:
v N

d

0
w m

4J v1 r 1 r-4 M
.7

a0i H
cli^a

u1

01
^ m

^ qWq

m

y
q r-1 M ^ r-1

d ^ ^
N U

A N

N uy Ln Ln
r-1 N N N

x x

C14 N
Ln
N

Ln
N

,L

t0
H

m IT 04 cli LN

Q M U1 V1 M
vV r..{

m

a Ln Ln Ln

0 0^ o rq

zo

O
°o

o
rn

r-4 r4

rn
0 0 0 0

D-5

0	 0	 1	 1	 12	 2
4	 8	 2	 6	 0	 4	 8
0	 0	 0	 0	 0	 0	 0

1 1 1 1 d l 1 1 1 J J l y y

• r

	

040 .0	 t

080 +N

120+

	

+	 !	
i

r	 ,^
160	 ire+ 	 ^^-

200+ w'

M

	

280+	 1^

	

:20-+	 •

y..
S

	

360+	 t~

1400+

t	 ^ r	 ^ r
440+
.,.

t	 t	 r	 t	 I	 t	 t	 t	 t	 t	 t	 t	 r	 t
0	 0	 1	 1	 2	 2
4	 8	 2	 6	 0	 4	 80	 0	 :l	 0	 0	 0	 0

3	 3	 4	 4	 42	 6	 0	 4	 8
0	 0	 0	 0
	

0

t	 t
4	 4
	

4
0	 4
	

8
0	 n
	

0

3	 3
2
	

6
0
	

0

Figure D-2. Lanlaat lmage, Channel 2 (0.0- 0.7 Ittn), Cuhic Res:unhliny,

to a 25 x 25 Ptuter Resolution (Plioenix, AZ)

7f	 R PA GF aS

/,2a
.E-lmk_

D-6

r -

2	 3	 3	 4
8	 2	 6	 0
0	 0	 0	 0

4	 4

0	 0
1	 1	 1	 1

0	 0	 1	 1	 2	 2
4	 8	 2	 6	 0	 4
0	 0	 0	 0	 0	 0

	

1	 1	 1	 1	 1 1 1 1	 1	 1	 1	 1

J40+

W	 r +^ \	 ,'

OSO

120.4-11

160-^-.	 - '^'	 ^

200

rz+	
^ •,^1vT -̂'

2404

280-

320- r 	'-1p

r

3160 4	 LAI --

400 +	 ~ .	 ' 3' 	.,^

4404
v	 ^

4	 t

4801

	

r	 r	 T	 T	 T ' T	 r	 t	 t	 T	 r
0	 0	 1	 1	 2	 2	 2
4	 8	 2	 6	 0	 4	 8
0	 0	 0	 0	 0	 0	 0

.. N

ko J
ti	 r

a.

t	 T	 T	 r
3
	

3
	

4
	

4	 4

2
	

6
	

0
	

4	 8
0
	

0
	

0
	

0	 0

Figure D-3. Aircraft SAR (3 cm), N.N Resarnpled and Registered

to 25 x 25 Meter Landsat (Phoenix, A7.).

ORIGINAL PAGE IS

OF p(1OR QV Al'V

/a3

adGmaw

D-7

3. Crop Classification Using Landsat MSS and SAR Data

3.1 Agricultural Characteristics of Data Set

In the previous section, the characteristics of the merged data net

were discussed. The agricultural "scene" consists primarily of cotton

fields with urban encroachment by Phoenix on the east and Sun City on the

west. A ground truth mission was conducted in March of 1978 in the area

with retroactive truth obtained for the data time of June 1977. Ground

truth for a total of over 600 fields was obtained for agricultural areas

both east (Area 1) and west (Area 2) of Phoenix. The 512 by 512-point data

set created covered only the west Phoenix area.

In order to simulate a segment size area, a 3 by 5-mile block was

selected from the agricultural area indicated in Figure D-1. The crop area

between Sun City and Phoenix is limited in size and many housing tracts

exist throughout the area, thus a full 5 by 6-mile segment could not be

chosen. The 3 by 5-mile block is on the order of a segment and was assumed

to provide a reasonable simulation.

Within the 3 by 5-mile segment containing 15 sections, there were 76

ground truthed fields. The contents of these fields and the number of pixels

in each are indicated in Table D-2. Note that the majority of fields in the

area are cotton, thus a good distribution of crop types did not exist. There

are 17,054 pixels for which ground truth was collected and there are 62,699

pixels in the 3 by 5-mile block, thus only a portion of the segment could be

analyzed. Thus, due to data set limitations, the segment area was only 7.3%

of a LAC1E type segment. Nonetheless some interesting results were obtained.

3.2 Classifier Training

The cluster block approach was taken in training the classifier. Blocks

'	 of pixels containing samples from each class were clustered, using the LARSYS

* CLUSTER routine. A total of five blocks were used containing 4,772 pixels

with cluster and information classes as listed in Table D-3. The statistics

from the five cluster jobs were merged using the * MERGE processor in LARSYS.

/14 y

D-8

Table D-2. Classes Analyzed in SAR/Landsat Data

Class No. Fields No. of Pixels

Cotton 40 9377

Alfalfa 12 3345

Barley 2 364

Urban 22 3968

TOTAL 76 179054

Table D-3 . Cluster Block Contents.

Block	 No. Pixels	 No. Clusters	 Classes in Cluster

1	 1160 10 Alfalfa, cotton, fill

2	 1300 10 Cotton, oranges, wheat

3	 812 6 Cotton, alfalfa, barley

4	 756 6 Alfalfa, cotton

5	 744 10 Cotton, urban

/' q^+

D-9

The results were statistics decks for the information classses: cotton,

alfalfa, barley and urban. Some occurrence of orange groves, wheat and

bare soil existed but the number of samples was too small to warrant keep-

ing them in the analysis. Statistics were generated for the three bands

of Landsat and for the three- Uindwit hcmdH plum the SAN hand. 'rralning

field classification accuracy figures are not available since the statistics

are derived from clusters covering several fields and statistics subsequently

merged to a final set of class statistics.

3.3 Classification Analysis

The Landsat/SAR data set was classified using both pixel and field

classifiers and using Landsat only and Landsat plus SAR bands. The results

of these tests are presented in Table D-4 with some additional results to

be discussed later. The best overall results were obtained using the field

classifier and spectral data only. Addition of the SAR channel reduced

test classification accuracy in most cases, except alfalfa and barley.

The large amount of cotton in the test caused the poor performance when

SAR was added to pull the overall result way down. In general, the SAR

seems to reduce separability of the spectral classes and it would appear

that direct addition of this particular SAR data to the spectral data is

undesirable.

Multifrequency radar data with multiple polarization, collected over

a sequence of times, has been shown to provide accurate crop classification

[2]. The single time, single polarity, X band case case apparently con-

tains insufficient information in this case. The experiment should be

tried on corn, soybeans, wheat and other grains of interest to AgRISTARS

programs since the single band, single polarization case is all that is

likely to be routinely available from satellite platforms in the next

decade.

3.4 Data Base Approach to Classification

The availability of high resolution imagery of the earth scene from

the satellite platform provides the opportunity to employ scene structure

as an input to the classification process. High resolution refers to the

/a 4

V7

auu^
01
1+
O
M

U

K

W
.d

rl
is

a+

d
H

d

ti

Pd

N
O
W

OD
aJ
r4
O

aO

w
,a
to
a
co

0

0
r4
.o

H

w.aw 8
a a,a^

d 1 m 0
C6 O b
to e4 V4

P4 U

W

L
N r-1 O O, m

M •r^
0

d	 W ^ ^D O N f^

.-1

M	 b cn ►.^ N en	 cn

a+
s co L s vvi

tn

.r

a4
 -01

Co cn Ui	 ao

4 co f-
%D

O
N

co	 %D

a+ Pu
T N -S

O

A.i
N b w %D v1 M O w
LJ	 rl rz

m y
ina w w

co

M	 r-I
U

.-	 W
g

N co LM M	 %D
i	 Yi

14^)
4l +^ N

0
v1 %D 4	 %D

U

co .^

N ^ Na0
a0 u w ►

p
e ai

U
O

^
^0

a

D-10

D-11

RBV or SEASAT SAR order of resolution of 20 to 25 meters in contrast to MSS

resolution of 79 meters and thermal IR resolution of 150 meters or more.

The basic concept is to use a single channel high resolution image as a map-

ping band to define scene structure and to then use spectral samples from

within the objects in the scene for classification of those objects. The

approach is clarified in Table D-5.

Using this approach, the results in Table D-4 can be reinterpreted in

terms of knowing all field boundaries in the scene. These would be obtained

from high resolution SAR, RBV, MLA or any source of current imagery of the

scene to be analyzed. Boundary extraction is a problem in scene segmenta-

tion and not treated here. Given to a boundary definition for all scene

objects, the classifier can be trained from known scene objects and the

classifier applied to the data set. This sequence is diagrammed in

Figure D-4.

In the experiments carried out here, both field and pixel classifica-

tion was carried out for the SAR Landsat data set. The field classifier

results using spectral data were seen to be better than the pixel results

but neither was very good. Knowing the field boundaries allows the results

of pixel classification to be analyzed according to majority or plurality

rules. In this approach, the class having a majority or a plurality is

assumed to be the correct class for all points in the field. This is con-

sidered to be a valid approach since we are assuming we have boundaries

enclosing every field and the contents of the field are homogeneous.

The chart in Figure D-5 compares overall test results for all cases

discussed earlier, plus majority and plurality results which are tabulations

obtained from the pixel classification results from each field. These re-

cults are significantly better than for the individual pixel or field clas-

sifier results. Thus the plurality rule applied to pixel classifier re-

sults for the case of known homogeneous fields appears to be an attractive

approach.

1.2411*

D-12

Table D-5. Rationale for Object Classification

For cases in which the same highly structured

scene sample area is to be classified each

year for many years, a data base of object

boundaries can be maintained.

Image segmentation technology can be used to

establish object boundaries initially and

update boundaries each year.

Spectral classification of objects rather

than pixels or blobs can then be carried out.

/30

Delineat

and oths

high rem

data bas

Train pi

truth at

Classify

Apply ms

to each

object s

Figure D-4. Objec

and Major

A

4

C
M
a

D-14

F-

Overall ClasifiCation Results

Pixel	 Field	 + SAR	 + SAR	 Majority	 Plurality

	

Pixel	 Field
Classifier

Figure D-S. Comparison of overall Text Field Classification Accuracies.

D-1S

4. Ancillary Data Digitisation

The problem of conversion of ancillary data sources to a digitized

&ridded format was studied as another aspect of the multidata task. The

standard approach to map digitization is to manually follow all linear

features with a digitizing cursor and to store the sequence of digitized

coordinates for later processing. A laborious procedure is required to

assign labels to each line from the map and a gridding algorithm is then

used to create an image-like data set from the digitize line data. This

project further evaluated an alternate method for digitizing maps which

would be more efficient.

In the SRU research year ending May 1977, a color map digitizing

method was developed and reported on [3]. The approach used spectral

classification to extract polygons from color coded maps [4]. Testing

was carried out only on a pastel colored, noisy map and results were very

good. In the current task, the use of high saturation pure colors was

evaluated and results were extremely accurate, as expected.

Two forest resource unit maps were hand-colored into 17 units and

the result photographed and digitized on a color separating microdensito-

meter. Three channel digital data sets representing the blue, green and

red primary separations were generated. A training sample was chosen from

each color and used to train the LARSYS pixel classifier. Figure D-6 con-

tains one of the map units. The maps were then classified and an evalua-

tion was made of errors.

Table D-6 contains a list of errors in each color for interiors of

polygons. Significant errors also existed at edges of polygons due to

painting irregularities and mixed pixels. The edge errors could not be

readily visually evaluated and the interior errors were assumed to repre-

sent the performance of the method. As can be seen, the error rate is

very low, on order of .22. and it can be concluded that this method is an

attractive approach to map digitization.

/3,ZJ

D-16

Figure D-6. Forest Operating Area *tap Segment, Hand-Colored for Scanning

and Digitizing. There Are 19 Different Areas Color Coded

With Acrylic Polymer Paint.

/o5 3

Table D-6. Errors in Color Map Classification.

Number of Errors.

Color AU268 Color AU271

White 53 White 96

Bright Red 3 Red 0

Red 48 Lt. Green 0

Dark Red 17 Med. Green 0

Orange 9 Dk. Green 0

Lt. Green 4 Yellow 0

Green 2 Gold 0

Dk. Green 318 Orange 355

Pink 0 Dk. Orange 2

Lavender 1 Lt. Blue 9

Lt. Yellow 0 Med. Blue 1

Yellow 7 Dk. Blue 1

Lt. Brown 0 Brown 0

Brown 0 Tan 0

Lt. Blue 1 Lt. Brown 0

Blue 11 Gray 0

Dk. Blue 4 Purple 2

TOTAL 478 TOTAL 457

TOTAL AREA 279,006	 243,714
(Pixels)

D-17

<
	 /.-V

D-18

S. Multidata Merging Procedures

The basic problem motivating this task was the combination of

dissimilar data types to enable coordinated digital analysis for various

applications. The concept of a self-def init.g data set (SDDS) set forth

here as an approach to solving the problem of merging arbitrary areas

from diverse data types. An SDDS would have the following characteristics:

. Complete geometric description of data set included in header.

For multitype, multitemporal data sets, each channel will be

fully described.

. Format flexible to accommodate different word sizes and resolutions.

The concept was inspired by the CCT-AM tape format set forth for the

Landsat digital image tapes which will be produced by EDC. Full geometric

and -adiometric information is to be provided in the headers of these

tapes. The proposal here is to provide this information for any data type

which may be used for remote sensing data analysis.

To test the SDDS idea, a basic software system was developed in this

task which carries out the basic functions needed. The problem has two parts:

(1) generating an SDDS, and (2) combining SDDS's to form a merged data set

in a user-defined coordinate reference. Parameters judged necessary to

define an SDDS are listed in Table D-7.

The basic function needed to specify image geometry is control point

determination. A software element was created which utilizes a stored

file of ground control points and attempts to locate these points in

uncorrected imagery. The diagram in Figure D-7 shows the elements of the

experimental system. The program LOCGCP accepts control point coordinates

in latitude and longitude and estimates the location of the point in the

image data using ephemeris and one initial control point. Small. fm;wcs

surrounding the estimated point can then be printed out on a line or dot

printer. Experiments were carried out oi. '.he use of the standard

alphanumeric CRT computer terminal to provide a rapid low cost, low resolu-

/.35

D-19

Table D-7. Parameters for an SDDS.

Data Set Parameters

• Center latitude and longitude and

corresponding line and column.

• Azimuth of center column at center line.

• Polynomial function for relating lines

and columns to georeference coordinates

(lat, long or UTM northing, easting).

Channel Parameters

• Time of collection

• Type of data

• Bits per word

Cell size

• Band size

• Band center

• Full-scale calibration

• Mean

• Variance

43`

.D-20

l	 Uncorrected

Data (1)

Image	 LOCGCP	 Ground Control
Interaction

	

	 Library
Ground Control

Location

REC (SPSS)

Regression Modeling

1 Thru 5 Degree

GEOD

Determination of Data

Set Parameters

• Center Coordinates

• Pixel Scales

• Heading

CNVLRS

1 Generation of Self-

Defining Data Set

(SDDS) Format

Self-Defining
Set Form of2f

LARSYS Format (2)

REGTAP
User Grid

Definition	 10
1
Transform to User-

Defined Reference

Grid

3 l	 Image Data in User-

l	 Defined Grid (3)

Figure D-7. Software Elements Developed to Study

Self-Defining Data Set Concept

i3

_ Y	 I

D-21

tion image display. Several gray level sets were tested and none was found

satsifactory. A two-level thresholded image was found to be quite useful

in many image cases. Data were used for the low or dark level and We for

the bright level. The program LOCGCP displays such an image with the thres-

hold rapidly adjustable by the operator. Figures D-8 and D-9 contain two

examples of successful displays in eastern Florida. Figure D-8 is a bridge

over an estuary on the east coast and the control point coordinates are

marked by an asterisk cursor which in this case has been moved under key-

board control to the center of the bridge. In the second example, the con-

trol point is the intersection of two interstate highways and the cursor is

located in the middle of the interchange. Many subimages do not produce

useful binary images and must be imaged on the line printer dot matrix

printer or, if possible, on a high-resolution image display. It is inter-

esting to note that subimages which are unuseable on the binary CRT are

also very difficult to interpret on any other output media.

The second step in the SDDS generation process is the regression model-

ing of the image distortions. This step is handled by standard regression

programs and coefficients relating geographic to image coordinates are

generated. This area is a subject of continuing study and the form and

number of coefficients needed for any one image cannot be stated at this

time. The functional relationship goes to the GEOD program and generates

additional parameters needed for geometric description. The CNVLRS pro-

gram reads a data set without full geometric description and generates the

SDDS.

The user then can access the SDDS tapes and generate his own merged

data set by processing any number of input SDDS files. The REGTAP pro-

gram reads user grid-definition parameters, selects areas to be used from

input SDDS's and writes out a new SDDS with the geometric characteristics

and data types he specified.

In order to test the concept on an existing data system, the LARSYS

tape format was taken as the logical starting point. Table D-7 contains

/3"

D-22

suggested changes to the indentifications record for the image data tape

which pursue the SDDS concept. Ideally a zero-based format plan would

be established; however, the current LARSYS format although designed

for single data aircraft multispectral scanner data, has proven itself

quite durable in adapting to multitype, multidate data sets. The ele-

ments added in Table D-7 are adequate for testing purposes while new

unconstrained general formats are discussed.

The data-merging system outlined here was tested on one data set for

the study. The Landsat frame from the Picayune, Miss., area was selected

since it was the first frame for which both fully geometrically corrected

and uncorrected data were available. The control point finding and regres-

sion modeling portions were tested on the uncorrected frame. Geometric

description is also needed for the fully corrected data even though no

distortions exist. An aff ine model is used to relate line-column to UTM

or other projection coordinates for the fully corrected data. Both data

forms, after conversion to SDDS format, were processed through REGTAP to

produce a north-oriented data set for one 1:24000 USGS quadrangle. The

package is experimental; however, it is available for use by qualified users.

6. Multitype Data Set Acquisition

The basic aim of this task was to develop merging and analysis techni-

ques for multiple data types. Landsat, SAR, and ancillary map data types

were included in the study. Many other data types were of interest but

unfortunately none could be obtained and reformatted in time to include

in the study. Examples of two additional data types were acquired near

the end of the task and reformatting software was developed for these data .

The two data examples were SEASAT SAR data and Landsat RBV data. Film

format RBV data had been acquired earlier in the year for the Phoenix site

but the quality of the data was judged too poor to warrant digitizing and

analysis. Figure D-10 contains a 1)11()tci of the test site made from the RBV

frame. The digital RBV data are for the Oroville, Calif., EDC example

and was useful only for developing the reformatting program. The SEASAT

SAR digital data was in LARSYS format and only ID editing and login opera-

tions were needed. No further work was performed on the RBV and SEASAT

SAR data in the contract period.

i3y

D-23

P
If IAlin►

Figure D-8. Landsat Band 5 Image produced on CRT Terminal Screen

using two levels (Amelia City, FL area).

/VD

D-24

Figure D-9. Landsat Band 5 Image produced on CRT Terminal Using Two Levels.

pRK',l AAL PAGE IS

OF POOR QU A1M

iY/

Table D-8. Proposed Changes to LARSYS Format

Additions to ID Record

Words

21	 Latitude of center

22	 Longitude of center

23	 Column of center

24	 Line of center

25	 Horizontal pixel scale

26	 Vertical pixel scale

27	 Projection code

31-40 Coef for line geometric function

41-50 Coefficients for column geometric
function

Changes to Channel ID Words	 K-0,29

5K + 51 Data type code

5K + 52 Collection date

5K + 53 Bits per word

5K + 54 Full-scale calibration

5K + 55 Band center wavelength

D-2 5

^y^

D-26

	

. it	
'

14ft

F.

T

'	 ^	 ..	 _	 ^ ,̂ `a^r_	 'C.•K. ^	 s^	 ,,fir	 r t

r''-'"fir	 ^	 y

.r

r	 ,:

jr

M
IT.	 Ir

Figure D-10, Landsat RBV Data for Phoenix, AZ Area

From Frame 30104-17212A. June 17, 1978.

pFIGiNAL PAGIE ^5

^ y3

D-27

A

0

f M
F
	

^R	 i
1

AL

Figure D-11. Landsat lmage of Sun City, AZ Area (Original in Color).

or

' r
Y.4

_r

r f-1
	 ,&

i igure D-12. SAk Judge of Same Area Covered in Figure D-11.

/VV

F

D-28

Figure D-13. Mixed Landsat and SAR Image (Original in Colcr)

ORIGINAL. PACE !S

r)F WoR 7UALmf

D-29

1. Image Enhancement Experiments

The last part of the multidata task was the investigation of the image

enhancement benefits of combining different data types in black and white

and color renditions. The SAR Landut data set for the Phoenix or" was

used for this activity. The LARS digital display system was employed to

photographically mix channels of the data set through color filters onto

film. The results of these experiments are shown in Figures D-11,12,13.

Figure D-11 contains a combination of Landeat band y, 4, S, and 6 to pto -

duce a standard false color infrared reproduction reflccting the 19 meter

MSS resolution. The scene is the center of Sun City, Ariz., where circular

park areas are surrounded by housing units. Figure D-12 is the SAR data

for the same block at the 25 meter resolution. Figure D-13 contains a mix-

ture image in which the SAR band replaced the blue color in the blue, green,

red sequence. The reproductions in the report are in black and white; how-

ever, the resolution properties can still be observed.

The mixture image contains the street patterns and fine structure of the

area which is lost in the Landsat. The obvious benefit here is in delinea-

ting boundaries of scene objects for aiding in classifier training and

results evaluation. Similar combinations were prepared for agricultural

areas and again a general sharpening of field and subfield edges was ob-

served. The benefit of such combinations is subjective and analyst evalua-

tion is needed to fully evaluate best combinations for aiding training

sample selection.

8. Summary

The multidats merging and information evaluation task invebtigated se-

veral aspects of utilization of different data types 'or remote sensing

surveys. The primary topics studied were: (1) Merging of different types

of remote sensing data, (2) divitixntion and merging of ancillary data. and

(3) information extraction from the combined data sets. Due to difficulties

in obtaining data, only Landsat and synthetic aperture radar data types

were studied. Digitization and merging of color map ancillary data sources

were studied and a color classification method was validated. A self-

! b	 ..0

D-30

defining digital data set structure was defined and implemented to facilitate

merging of different UP& types.

The most significant result of the study is the self-defining data

set approach and its implementation in an experimental software system.

Full development of the software will greatly simplify the user creation

of complex multiple type data sets for any application. The addition of

side-looking radar data to Landsat MSS data did not provide improved

classification performance for the predominately cotton agricultural test

case. Multi-frequency radar data have shown more promise in other work.

The chief benefit perceived in radar imagery is providing a current high

resolution view of the scene to enable fine -detail structure to be mapped.

With the map structure determined, spectral classification can proceed

on the interiors of scene objects using lower spatial resolution multi-

spectral data. This approach is suggested for further study in the

repetitive multicrop monitoring applications. The current RBV data pro-

vide a potential high resolution mapping capability and future satellite

side-looking radar systems could provide superior scene structure images.

9. References

1. Anuta, F. E., Hixson, M. M. and Swain, P. H., "Vol. III Processing
Techniques Development," Final Report of NASA Contract NAS9-15466,
Contract Report 112778, Laboratory for Applications of Remote Sensing
(LARS), Purdue University, November 1978.

2. Bush, T. F. and Ulaby, F. T., "Cropland Inventories Using an Orbital
Im:.ging Radar," Remote Sensing Laboratory Technical Report 330-4,
University of Kansas Center for Research, Inc., January 1977.

3. Landgrebe, D. A., "Final Technical Report for NASA Contract NAS9-14970,"
Vol. II, Laboratory for Applications of Remote Sensing (LARS), Purdue
University, May 31, 1977.

4. Chu, Nim-Yau and Anuta, P. E., "Automatic Color Map Digitization by
Spectral Classification," Photogrammetric Engineering & Remote Sensing
Journal, Vul. 45, No. 4, April 1979, pp. 507-515.

	1980015251.pdf
	0024A02.TIF
	0024A03.TIF
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.TIF
	0024A08.TIF
	0024A09.TIF
	0024A10.TIF
	0024A11.TIF
	0024A12.TIF
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.TIF
	0024B10.TIF
	0024B11.TIF
	0024B12.TIF
	0024B13.TIF
	0024B14.TIF
	0024C01.TIF
	0024C02.TIF
	0024C03.TIF
	0024C04.TIF
	0024C05.TIF
	0024C06.TIF
	0024C07.TIF
	0024C08.TIF
	0024C09.TIF
	0024C10.TIF
	0024C11.TIF
	0024C12.TIF
	0024C13.TIF
	0024C14.TIF
	0024D01.TIF
	0024D02.TIF
	0024D03.TIF
	0024D04.TIF
	0024D05.TIF
	0024D06.TIF
	0024D07.TIF
	0024D08.TIF
	0024D09.TIF
	0024D10.TIF
	0024D11.TIF
	0024D12.TIF
	0024D13.TIF
	0024D14.TIF
	0024E01.TIF
	0024E02.TIF
	0024E03.TIF
	0024E04.TIF
	0024E05.TIF
	0024E06.TIF
	0024E07.TIF
	0024E08.TIF
	0024E09.TIF
	0024E10.TIF
	0024E11.TIF
	0024E12.TIF
	0024E13.TIF
	0024E14.TIF
	0024F01.TIF
	0024F02.TIF
	0024F03.TIF
	0024F04.TIF
	0024F05.TIF
	0024F06.TIF
	0024F07.TIF
	0024F08.TIF
	0024F09.TIF
	0024F10.TIF
	0024F11.TIF
	0024F12.TIF
	0024F13.TIF
	0024F14.TIF
	0024G01.TIF
	0024G02.TIF
	0024G03.TIF
	0024G04.TIF
	0024G05.TIF
	0024G06.TIF
	0024G07.TIF
	0024G08.TIF
	0024G09.TIF
	0024G10.TIF
	0024G11.TIF
	0024G12.TIF
	0024G13.TIF
	0024G14.TIF
	0025A02.TIF
	0025A03.TIF
	0025A04.TIF
	0025A05.TIF
	0025A06.TIF
	0025A07.TIF
	0025A08.TIF
	0025A09.TIF
	0025A10.TIF
	0025A11.TIF
	0025A12.TIF
	0025A13.TIF
	0025A14.TIF
	0025B01.TIF
	0025B02.TIF
	0025B03.TIF
	0025B04.TIF
	0025B05.TIF
	0025B06.TIF
	0025B07.TIF
	0025B08.TIF
	0025B09.TIF
	0025B10.TIF
	0025B11.TIF
	0025B12.TIF
	0025B13.TIF
	0025B14.TIF
	0025C01.JPG
	0025C02.TIF
	0025C03.TIF
	0025C04.JPG
	0025C05.JPG
	0025C06.TIF
	0025C07.TIF
	0025C08.TIF
	0025C09.TIF
	0025C10.TIF
	0025C11.TIF
	0025C12.TIF
	0025C13.TIF
	0025C14.TIF
	0025D01.JPG
	0025D02.TIF
	0025D03.TIF
	0025D04.TIF
	0025D05.TIF
	0025D06.TIF
	0025D07.TIF
	0025D08.JPG
	0025D09.JPG
	0025D10.TIF
	0025D11.JPG
	0025D12.JPG
	0025D13.JPG
	0025D14.TIF
	0025E01.TIF
	0026E01.TIF

