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2C. MULTISPECTRAL DATA ANALYSIS RESEARCH

This task consists of three subtasks involving research into advanced
methods for classifying multigpectral remote sensing data. The first two
are multiyear investigations resulting from proposals submitted to NASA in
response to the 1978 Applications Notice, OSTA-78-A (April 19, 1978)*. The
first year of work on both of these subtasks is reported here.

The third subtask resulted from a proposal submitted to NASA Johnson
Space Center during the contract year.$ The work was funded quite late in

the year and will be continued. A background discussion is contained in
this report.

ok Proposals entitled "Design and Applications of Multistage Classifiers for
Earth Resources Data Analysis'" and "Analysis of Multispectral Earth Re-

sources Data Using Context." Principal Investigator on both proposals was
Philip H. Swain.

$ Proposal entitled "An Addendum to Research in Remote Sensing of Agricul-

ture, Earth Resources and the Environment." Principal Investigator:
D. A. Landgrebe.




2Cl. MULTISTAGE CLASSIFICATION
D. A. Landgrebe, M. Muasher, P, H. Swain

1. Introduction

A number of different types of classifiers are now in routine use in
remote sensing. With the emergence of more complex data sets, however,
the need has been recognized for more sophisticated classifiers providing
higher performance and lower cost. The objectives of subtask 2Cl are to
continue progress toward the development of such advanced classification
techniques. More specifically, the objectives for the current year have
been (1) to test known multistage procedures and (2) to begin the develop-

ment of optimal design procedures for such classifiers.

This task is a continuing task and the work is still in preliminary
stages. Therefore this report is in the nature of a progress report,

containing no final results.
2. Literature Survey

In order to assess earlier work in this area, and to gain better un-
derstanding of the problem, a literature survey was conducted and a biblio-
graphy assembled (see Appendix 2Cl for complete survey). The survey lists

the main approaches taken to deal with the problem, citing both their ad-

vantages and drawbacks.

3. Resources

3.1 Available Software

Software from previous studies (Ref. [2] in Appendix 2CI) was available.
Certain problems with the software were corrected and the software was then

tested.

e e




3.2 Data Sets

The assembling of data sets for use in design and test tasks proved
to be a troublesome process. Flightline 210 from the 1971 Corn Blight
Watch Experiment was chosen. Some information about the data set appears

below:

No. of No. of Date Data
Run Number Channels Classes Collected

71023500 9 6 June 28, 1971

Reasons for initially choosing this data set were:

1. The large variety of classes represented in the set, containing

water, forestry, pasture, corn, soybeans and wheat.

2. The large number of channels available to work with (9) than

Landsat sets would offer.

3. The difficulty in statistically separating certain classes
(pasture and wheat, pasture and corn, corn and wheat). This was thought
to serve as a test as to whether any new methods could improve on the
accuracy.

4, Available ground truth.

4. Procedures Used

4.1 Transformation of Data

-

To aid the process of feature selection, and to obtain a nearly
uncorrelated set of features, a principle-components transformation was
applied to the data. All 9 channels were used in the transformation,
and then the first 6 transformed channels were used in the analyses be-

cause they carried 99% of the information.
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4.2 Ciass-Conditional and Aggregate Clustering

Two methods for deriving class statistics were used. In the class-~
conditional clustering method, training fields corresponding to the same
informational classes were clustered together. The resulting clusters
were identified as subclasses of that informational class. Statistics
for each cluster were calculated and used as a basis for classification

(after some refinement).

In the aggregate clustering approach, all training fields were
clustered together. The individual clusters were then each identified
with the appropriate informational classes, and statistics calculated

to serve as a basis for clasgsification.

4.3 Comparison of Conventional and Multistage Classification

Using the statistics from 4.2 above, classification was performed
using the conventional single-stage classifier and the multistage clas-
sifier available from previous studies. The resvlts appear in the

following section.

4.4 Hierarchical Clustering

In this method, the training data set was divided into two clusters,
These in turn were subdivided each into two clusters, etc., creating a
binary tree. The terminal clusters were then identified with informa-
tional classes. Statistics at each node were calculated to jetermine
the optimal subset of features to use at that node. Classification was
then performed using the available layered classification. Results appear

in the next section.

5. Results

Figure 2Cl shows the binary tree obtained from the hierarchical
clustering method. The terminal clusters arc identified with informational
classes and labeled as such. The different methods used in training and

classifying were:

—— . oy o -
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1. The hierarchical clustering method.

2. Class-conditional clustering, untransformed data, single-stage

clasgification.

3. Aggregate clustering, untransformed data, single-stage

classification.

4. C(Class-conditional clustering, untransformed data, layered

classificatioa,

5. Class-conditional clustering, transformed data, layered

classification.

6. Class-conditional clustering, transformed data, minimum-distance

(linear) classifier.

6. Discussion

The overall accuracy did not change appreciably with the change in
training or classification methods. There were two exceptions to this.
The minimum-distance classifier did not perform as well as the others; it
is assumed that this is because the classifier {s linear and is suboptional
from the Baves point of view. The hierarchical clustering method relied
heavily on the clustering algorithm, and on the distribution of data iu
high-dimensional space. Since it is not known or guaranteed that data in
n-dimensioral space tend to cluster according to classes, the method did
not prove effective in being able to separate clusters into representative

informational classes.

Although much has been learned from the different methods used, the
results do not seem to conform to theory. No appreciable gain was achieved
by using different methods. “.sed upon a review of the histograms and
statistics of the ciasses, it appears that the subclasses were unimodal,
but there was much overlap among certain classes (pasture - wheat - corn).

Attempts at improving the results have not been successful.
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Wheat did appreciably better in the hierarchical clustering approach
than 1in the other approaches, but pasture did much poorer in the same ap-
proach. Corn did best in the transformed, class-conditional clustering,
single-stage classifier approach. The results are inconclusive, however,
and further work will be done before any fin~l results can be reported.
It was observed that the present layered classifer is very effective in

reducing the time needed for carrying out a classification.

The transformation of data looks promising at it produces uncorrelated
features. Further, it imposes an approximate ordering in terms of the
"importance" of the features, i.e., the first feature is likely to be more=
important than the second, etc. A possible disadvantage of using it is
that features will have a larger variance, thus suggesting the need for a

larger number of training samples to adequately estimate the distributions.

These are examples of several factors which could be contributing to
the trends observed in the results, and these factors must be investigated.
However, before doing so, an additional data set will be chosen and similar

tests conducted on it.



APPENDIX 2C1
THE LAYERED CLASSIFIER: REVIEW OF LITERATURE

Most of the classification algorithms that have been used in remote
sensing for information extraction using pattern recognition techniques
can be regarded as "single-stage' classifiers, wherebv an "unknown' pat-
tern is tested against all classes using one feature subset, and then the
pattern is assigned to one of the present classes in a single-stage deci-

sion procedure.

In recent years, as classification of multispectral data found a
larger number of users and wider range of applications, the need has been
felt for alternate, more powerful techniques than the conventional classi~
fiers, where more information could be extracted more accurately and/or
efficiently from the scene. Some of the reasons that warranted this need

include:

1. The emergence of more complex data sets with the launching of

Landsat-D with its Thematic Mapper sensor, and the need both to handle the
data acquired efficiently and the ability to extract more information from
the data.

2. As pattern recognition methods developed they found a larger num-

ber of users with a wider range of applications. The feedback from these

different and versatile uses indicated problems and needs not initially

present.

3. There are some applications where conventional classifiers have

proved to be marginal at best. Some of these are listed in Swain et al.[1]

and include multi-image analysis and the use of mixed feature types.

4. The conventional clagsifiers use only one particular feature sub-

set and are somewhat inefficient as they must compare an unknown pattern

against all possible classes before assigning that pattern to a particular

class.
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Because of these and other factors, there has been some research in
recent years directed toward developing multistage classifiers, whereby
the decision procedures go through several stages before finally assign-

ing a pattern to a classa.

There has been some earlier work aimed at grouping together the me-
thods of designing multistage classifiers already reported in the litera-
ture [2,3]. 1In general, one can group the earlier work into two main

categories:

1. Sequential classification methods. These can be found in several
papers and books [4,5,6] in this area. Basically, the method consists of
observations made on feature measurements, one at a time. After an obser-
vation is made, the classifier either reaches a final decision and the
process is terminated, or it makes another observation until a final de-

cision is reached.

2. Hierarchical classification methods. Examples of work in this
area can be found in a review paper by Kanal [7], in papers by Mattson et
al.[8], Meisel et al.[9], Nadler [10] and wu [2].

As pointed out by Kulkarni [3], hierarchical methods differ from se-
quential ones in certain aspects. While in any sequential schemes any
class can be accepted at any stage of the measurement process, in hierar-
chical schemes classes are rejected from consideration at each stage.
Also, sequential methods impose a linear ordering on the features. In
hierarchical methods, features used along a decision path can be different

from those used along another path.

Several heuristic methods of constructing tree designs are proposed
in the literature. There have been some studies done in using optimiza-
tion methods to automate the classifier design procedure, but these are
still at an early stage. Meisel et al.,[9] presented a two-stage parti-
tioning algorithm for the design of an optimal tree. In the first stage,
a suboptimal sufficient partition is obtained. The second stage optimizes

the result of the first stage through a dynamic programming apprcach. The
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method uses a binary decision tree, but only linear discriminant functions
are allowed to partition the space.

Dynamic programming and branch-and-bound methodologies were used by
Kulkarni et al.[3] in design of hierarchical classifiers. The criterion
of optimality they use is a weighted sum of the probability of error and
the average measurement cost incurred in classifying a random sample.
Also, the design of the "optimal tree" assumes a very low error rate for
the tree. Further, the authors use only one best feature at each tree
node., Although the authors present some methods of reducing the complex-
ity of their design algorithms, the examples they and previous papers have

used involve only a small number of classes and features,

In 1974, wWu [2] published a thesis on a decision tree approach with
direct application to multispectral data analysis. He proposed several
design procedures, one of which is manual, with special emphasis on a
heuristic, machine-implemented approach. The optimality criterion he
used is again a weighted sum 6f computation cost and accuracy. He pre-
sented results which show superiority in efficiency and/or accuracy over
the conventional classifier. The method involves many approximations, is
heuristic in many respects, and is certainly suboptimal. However, it may
serve as a starting point for the design of an optimal approach, especially

since it was used successfully for some remotc sensing applications f1,12].

10




C-11

7 . References

l.

10.

11.

12.

Swain, P. H. and Hauska, H., "The Decision Tree Classifier: De-
sign and Potential," IEEE Trans. Geosciemce Electronics, Vol. GE-13,
No. 3, July 1977.

Wu, C. L., "The Decision Tree Approach to Classification," Ph.D.
dissertation, TR-EE75-17, Purdue University, West Lafayette, IN,
197%4.

Kulkarni, A. V. and Kanal, L. N., "An Optimization Approach to
Hierarchical Classifier Design," Proc. Third Int. Joint Conf. on
Pattern Recognition (Coronado, CA, Nov. 1976) IEEE Cat. No.
76CH/140-3C.

Fu, K. S., Sequential Methods in Pattern Recognition and Machine
Learning, Academic Press, 1968.

Fu, K. S., Chien, Y. T. and Cardillo, G. P., "A Dynamic Program-
ming Approach to Sequential Pattern Recognition," IEEE Trans.
Computers, Dec. 1967.

Wald, A., Sequential Analysis, Wiley, New York, 1947.

Kanal, L., "Patterns in Pattern Recognition, 1968-1974," IEEE
Trans. Info. Theory, Vol. IT-20, No. 6, Nov. 1974,

Mattson, R. L. and Dammann, J. E., "A Technique for Determining
and Coding Subclass in Pattern Recognition Problems," IBM Journal,
July 1965.

Meisel, W. S. and Michalopoulous, D. A., "A Partitioning Algorithm
With Application in Pattern Classification and the Optimization

of Decision Trees," IEEE Trams. Computers, Vol. C-22, pp. 93-103,
Jan. 1973,

Nadler, M., "Error and Reject Rates in a Hierarchical Pattern
Recognition," IEEE Trans. Computers, Vol. C-20, Dec. 1971,

Swain, P, H., Wu, C. L., Landgrebe, D. A. and Hauska, H., "Layered
Classification Techniques for Remote Sensing Applications," LARS
Information Note 061275, Laboratory for Applications of Remote
Sensing (LARS), Purdue University, West Lafayette, IN 47907, 1975.

Bartolucci, L. A., Swain, P. H. and Wu, C. L.. "Selective Radiant
Teoverature Mapping Using a Layered Classifier,' IEEE Trans., Geo-
scie ce Electronics, Vol. GE-14, pp. 101-106, Apr. 1976.

fl

Lo i




-

c-12

2C2. CONTEXTUAL CLASSIFICATION
Philip H. Swain and Howard Jay Siegel*

1. Introduction

Multispectral image data collected by remote sensing devices aboard
aircraft and spacecraft are relatively complex data entities. Both the
spatial attributes and spectral attributes of these data are known to be
information bearing [1], but to reduce the magnitude of the computations
involved, most analysis efforts have focused on one or the other. Only
within the last few years have serious efforts been made to utilize them
jointly. For example, one approach uses the spectral homogeneity of
"objects,"” such as agricultural fields, to segment the scene and then
uses sample classification to assign each object as a whole, rather than
its individual pixels (picture elements), to an appropriate ground cover
class [2]. Another approach involves extraction of features based on
gray-tone spatial-dependency matrices from which texture-like character-

istics are developed [3].

In this project we are developing a more general way to exploit the
spatial/spectral context of a pixel to achieve accurate classification.
Just as in written English one can expect to find certain letters occur-
ring regularly in particular arrangements with other letters (qu, ee, est,
tion), so certain classes of ground cover are likely to occur in the "con-
text" of others, The former phenomenon has been used to improve charac-
ter recognition accuracy in text-reading machines. We have demonstrated
that the latter can be used to improve accuracy 1In classifying remote
sensing data. Intuitively this should not be surprising since one can
easily think of ground cover classes more likely to occur in some con-
texts than in others. One does not expect to find wheat growing in the

* Substantial contributions by Dr. Stephen B. Vardeman, James C. Tilton,
and Bradley W, Smith to Task 2C2. Contextual Classification are grate-

fully acknowledged.
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midst of a housing subdivision, for axample. A close-grown, lush vegeta-
tive cover in such a location is more likely the turf of a lawn.

This report contains the theoretical foundations of a contextual
classifier, experimental results from applying the contextual classifier
to a variety of very different sets of data, and an extensive discussion
of multiprocessor implementation of the classifier algorithm,

2. The Contextual Classifier Model

Consistent with the general characteristics of imaging systems for
remote sensing, we assume a two-dimensional array of N = leNz pixels of
fixed but unknown classification, as shown in Figure 2C2.1.

Associated with the pixel having image coordinates (i,j) is its
true state or true classification eijsn -{ml,wg,...,wm}, and a random
measurement vector (observation) X eR" having class-conditionel density
p(xijloij). We note that {P(X]wi), i=1,2,...,m} is the set of class-
conditional probability density functions associating the multispectral

measurement vector X with the classes.

Let X denote a vector whose components are the ordered pixel measure-
ment vectors: .
T
X= [xijli-l.Z,...,Nl;j - 1,2,...,N2] .

Similarly, let 8 be the vector of states:
T
g = [euji-l,z,...,nl; I=1,2,...,N,] .

The individual measurement vectors are assumed to be class-condition-
ally independent; that is, their joint density can be written as:

p(x|e) = iij(x1j LR (2.1)

Evidence that this is a reasonable assumption may be found in

reference [4].

3
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Figure 2C2.1. A two~dimensional array of N = Nl X N2 pixels,

1‘1|j
i-1,J
1,3-1 1,] 1,341
1,5-1 1,
1+1.)
a p=3 choice a p~3 choice

Figure 2C2.2. Examples of p-context arrays.
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Let the action (classification) taken with respect to pixel (i,j) be
denoted by a uen. The loss suffered by taking action a 1 vhen the true
class is eij is denoted by L(eij’.ij
L(.,.). Then the average loss suffered over the N classifications in the

) for some fixed non-negative function

array 1is

Z 0yt

If we make the action aid a function of the observations, then for

a given array 6 the expected average loss (or risk) is

0

1
R = B[EEJL(GU j(x))] (2.2)

vhere the expectation i1s with respect to the distribution of the vector

of observations.

Our objective may be stated as follows: We want to determine . ‘e
1J(~) on X in such a way that for
any given array 6, the risk, equation (2.2), will be minimum. One way

dependence of the decision function a

to approach the problem of making R, small is to viewfas a realization

of a random process in two dimensiogs and to derive a decision rule which
is Bayes versus this "prior distribution" for 6 (probably under some sim-
plifying assumptions concerning the nature of this process). This is the
approach of Welch and Salter [5] and Yu [6], who make assumptions on the
random process sufficient to guarantee that the Bayes decision concerning
pixel (i,j) depends on X only through X

of the pixel.

and the four nearest neighbors

1)

We will adopt an approach to controlling Re ij(-) that is

more closely related to the large body of statistical literature trace-

through a

able to Robbins [7], and known as compound decision theory. See, for
example, the works and references of VanRyzin [8,9], Cover and Shenhar
[10], and Vardeman [11,12]. Rather than looking for a distribution for

@ whose associated Bayes rule is both simple and has small R for most 6,

]
we use the following argument. First, specify some arrangement of p
pixel locations including a pixel to be classified. Call this arrange-

ment the p-context array, several choices of which are showmn in Figure 2¢2.2.

g
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Let Q?eﬂp and §Pc(Rn)p stand respectively for p~vectors of classes and
n-dimensional measurements; each component of Q? is a variable which can
take on values in Q; each component of 5? is a random n-dimensional
vector which can take on values in the observation gpace. Correspondence
of the components of Q? and 5? to the positions in the p-context array is
fixed but arbitrary except that the pixel to be classified in the array

will always correspond to the pth component. The notation and

&y and Xy

will refer to the particular instance of @P and XP associated with
pixel (1,1).

Now, consider finding an optimal decision rule of the form

aij(g) - d(g(_ij) (2.3)

for a fixed function d(-) mapping p~-vectors of observations.to actions.

The risk associated with any rule of this form is, from equation (2.2),
1
Ry = E 'ﬁizjl“(eij’d@ij))
=1 )
- Ni}:J E L(eij,dqij)
’

- Z G(G_p)E[L(ep.d(_)Sp)>} (2.4)

6P caP

where qup), the context distribution, is the relative frequency with
which Q?occurs in the array 6 and ep is the pth component of Q?. Notice
that R0 depends on 6§ only through G(g?). Writing equation (2.4) in more
detail and invoking the class-conditional independence assumption, equa-
tion (2.1), we have

P
Ry = Z G(‘ip)f!- 0 ,d(xP)) T p(x |6 ydxP
2 6p~np (P - )1'1 1747=

p
[Qpenp 6 )L(ap'd(z ))17-1-1p(x1|61)d§

where the product is over the components xi of g?. For any frame 6, a
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decision rule d(xP) minimizing Ry can be obtained by minimiring the inte-
grand in equation (2.5) for csch-zfg thus for a cpccitic‘gij (an instance
of }P), an optimal action is:

d(;ij) = the action (classification) a which minimizes

P
Z c(ePyL(e_,a) T p(x,|6,).
P - 174
g?enp i=1

This can be written in a slightly different form which makes more appar-
ent the specific contribution due to context (the term in brackets below):

d(gij) = the action a which minimizes
p-1
Z Z c(g")i?'rlp(xilei) L(e'.a)p(xple'). 2.7
8'el Q?eﬂp
0 =o'
P

In practice, a "0-1 loss function" is usually assumed, i.e.,

0, if 6 = a
L(6,a) =
1, if 6 ¢ a

Then (2.7) simplifies and the decision rule becomes:

d(§1j) = the action a which maximizes

p-1
Z c(oP) ;’Ilp(xilei) p(X,|8) (2.8)
8 =a
P

Thus (2.8) defines a set of discriminant functions for the classification
problemn.

The optimal choice of d(:) cannot actually be determined because it
depends on G(Q?) which is unknown. We can, however, expect that, at

least for large N = N. x Nz, a decision rule in which G(g?) is replaced

1
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by an estimate of &(g’) based on the 514 will have risk io approximating
that of the optimal rule. (We call this the "bootstrap effect.") That
this is the case vhen p » 1 (approximating an optimal pointwise classi-
fier with estimated a priori probabilities) and suitable forms of esti-
mation are used is s consequence of the work of VanRyzin [9].

The notion of attempting to approximate the risk of the best rule of
the form equation (2.3) for p>1, given its first general treatment in
Gilliland and Hannan [13], has not been as thoroughly studied as the
P = 1 version. But related work for p>1 in sequence versions of com~
pound decision theory [14] suggests the validity of the generalization.
Further, Vardeman [12] points out that if one is willing to separate the
N locations into several groups Gl' Gz, ey Gl within each of which tha
511 are independent, the results for p = 1 by VanRyzin guarantees that,
for p>1, replacing the G(Q_p) by estimates of the frequencies of g" group~
by-group produces a decision procedure having the risk of the optimal
rule as an approximate upper bound on its risk. An {llustration of this

separation idea is shown in Figure 2C2.3.

In the interest of a practical solution to the problem of incorpor-
ating context into the classification procedure, estimates of c(g?) vere
derived experimentally by simply counting the occurrences of each g? ob-
tained in a preliminary classification of the scene without the use of
context. Although the use of this rather crude method of estimating
G(@?) has not been studied in the statistical literature, we will demon-
strate in Section 3 its effectiveness for our application.

Before proceeding to a discussion of our experimental results, ve
make two further observations concerning this approach. First, seeking
a criterion for the "context richness' of a scene, wve have been able to
reach only the following result. Suppose the frequencies G(g?) are such
that G(g?)' can be written in factored form, {.e.,

G(") = 6,(8").G,(e"

where 6' and 6" sre, respectively, p - £ snd £ vectors of classes. Then
(2.6) can be written in the form

i
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Figure 2C2.3. A J-context array with scparable pixel groups.
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P p-t
Z’-“,") n p(xilei)cz(e_") . zg;p(xilei)cl(g').
g 1= e’
p~i+l

But now the terms included in the second summation are independent of the
conditions at the pixel to be classified and are therefore constant rela-
tive to the decision to be made. Thus, the dacision depends only on %
components of the p-context array and is independent of the other p ~ 2
locations. If it were possible to determine such factorability of the
c(g?). one could simplify the context classification computations by re-
ducing the size of the context array.

Second, comparing (2.7) with the results of Welch and Saltexr [5] and
reinterpreting the G(QP) as the marginal of an a priori distribution for
0, one may view (2.7) as a generalization of the Welch and Salter context
classification rule. The advantages of the present formulation are that
one need make no possibly unrealistic assumptions about the distribution
for 8§ and has complete freedom to choose both p and the form of the
p-context array. There are situations (e.g., locating clouds and their
associated shadows in a scene) in which context arrays other than those
involving neighboring pixels would be useful, a possibility unique to
this approach.

3. Experimental Results

Experiments were performed to explore the effectiveness of contextual
clagsification as applied to the analysis of multispectral remote sensing
data., First, simulated data were used to determine the degree to which
contextual classifi:at on might improve the analysis results (as compared
to no-context classiiication), given that the class-conditional densities
and the context distribution for the scene were known. The simulated data
were used again to investigate candidate methods for estimating the con-
text distribution since, as noted {n Section 2, it usually cannot be
assumed that the context distribution ‘s known a priori. Finally, con-
textual classification was applied to rcal data to determine the extent

A8
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to which the conclusions drawn from the simulated-data uxperiments could
be extended to the more realistic case.

3.1 Simulated=Data Experiments

A no-context classification of multispectral remote sensing data was
selected which had been judged to be very accurate (produced by careful
analysis and refinement of multitemporal data). Such a classificaticn
could be expected to embody the contextual content of an actual ground
scene. Using the classification map and the associated statistics of the
classes (developed in performing the no-context classification) data vec-
tors were produced by a Gaussian random number generator and composed into
a new data set, Thus the new data set had the following characteristics:

1. Each pixel in the simulated data set represented the same class
as in the "template" classification. The template could be considered
the "ground truth" for the simulated data se:.

2. All classes in the data set were known and represented.

3. All classes had multivariate Gaussian distributions with statis-
tics typical of those found in real data.

4. All pixels wore class-conditionally independent of adjacent pixels.

5. There were no mixture pixels.

Data simulated in this wmanner are somewhat of an idealization of
real remote sensing data, but the spatial organization of the simulated
data is consistent with a real world scene and the overall characteristics
of the data are consistent with the contextual classifier model. In es-
sence, then, the experimental results bzsed on the simulated data demon-
strate the effectiveness of the contexi classifier, given that the under-
lying assumptions are satisfied. Further experiments with real data are

required to generalize the conclusions.

Three dats sets were selected representing a variety of ground cover
types and textures. Data set 1 was agricultural (Williston, Nortl Dakota),
with ground resolution and spectral bands approximating those of the pro-

Jected Landsat-D Thematic HMapper. Data set 2a was Landsat-1 data from
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an urban area (Grand Rapids, Michigan). Data set 2b was from the same
Landsat frame as 2a, but from a locale having significantly different
spatial organizarion. Each data set was square, 50 pixels on a side.

Figure 2C2.4 shows the classification results obtained. The "no-
cortext" classification accuracy is plotted coincident with the vertical
axis of each graph. Data set 1 was classified using successively 0, 2,
4, 6 and 8 neighboring pixels; data sets 2a and 2b were classified using
0, 2, 4 and 8 neighboring pixels. The accuracy improvement resulting
from the use of contextual information was found to be quite significant.

To accomplish the context classification using this approach, it is
necessary to have available the class-conditional density functions for
the classes to be recognized, p(xlwi), and the context distribution (the
frequency distribution assoclated with the p-vectors, G(e_p)). In remote
sensing applications, the class-conditional density functions are typi-
cally learned from training samples. For the experiments described above,
the Gaussian class statistics on which the data simulations were based
were used for the classification (these were originally the training sta-
tistics used to produce the "template" classification). An important
question is how in practice to determine the context distribution. 1In
the foregoing experiment, this distribution was simply tabulated from
the "template" classification (actually, from an area somewhat larger
than classified in this test). But in a real data situation, such a tem-
plate is not available, else there would be no need to perform any further
classification.

One can envision a number of ways in which the context distribution
might be estimated for a given remote sensing application. For example,
it could be extracted from a classification of data obtained previously
from the same area. This would require that the area not have changed
much in its class make-up since the earlier data were collected and that
the earlier classification was reasonably accurate. Alternatively, the
distribution might be obtained from a classification of any similarly
constituted area, Still another possibility would be to estimate the

context distribution for the data to be classified from a "conventional"

R
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Figure 2C2.4. Contextual classification of simulated data.
(a) Data set 1, (b) Data set 2a. (c) Data set 2b,
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classification of the same data determined to have "reasonably gcod"
accuracy. Conceivably, one might then refine the contextual classification
by making another estimate of the context distribution based on the re-
sulting more accurate classification, and even iterate in this way until

no further improvements in accuracy were obtained. All of these methods
produce an estimate of the context distribution, and a crucial question

on which hinges the utility of this contextual classification method is
how sensitive the contextual algorithm is likely to be to the "goodness"

of the estimate.

The iterative technique starting with a no-context classification
seemed to be the most practical approach, since no classifications are
needed from earlier data or from other areas of similar context. All
that is needed is a good initial point-by-point classification of the

area in question.

To test the potential of this "bootstrap" technique, it was first
tried on the simulated data set 2a. Also, the classificatioms using the
reference template were rerun using an est!mate of the context distribu-
tion from just the 50-pixel-square area classified, rather than from the
larger area (276 x 320) used to obtain the estimate for the results pre-
sented in Figure 2C2.4. This was done to provide a better comparison to

what could be accomplished using the bootstrap technique.

Using this approach, seven iterations (classifications followed by
re-estimation of the context distribution) produced an improvement of
36 percent in overall accuracy compared to the point classification using
equal a priori probabilities (from 52 percent to over 88 percent). No
significant change was observed in average-by-class accuracy (constant at

68 percent).* This compares with an increase of over 44 percent in over-

* Classification performance can be tabulated in two ways. Overall ac-
curacy is simply the overall number of correct classifications divided
by the total number attempted. Average-by-class accuracy is obtained by
first computing the accuracy for each class and taking the arithmetic

[ average of the class accuracies. The latter is significant when the

|

classification results exhibit a tendency to discriminate in favor of
or agailnst a subset of the classes.

A

T
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sk

all accuracy (over 20 percent in average-by-class accuracy) obtained using
the context distribution estimated from the template classification. These
results are summarized in Figure 2C2.5.

As seen in Figure 2C2.5, a number of values of p were used in the
iteration process. At each iteration, the best classification found by ;
varying p, as judged by trading off overall accuracy against average-by- ;
class accuracy, was used as the template for re-estimating the context
distribution for the next iteratiomn.

The best classification on the first iteration was obtained for
P = 3 (two nearest neighbors), which was also the case for the second i
iteration. On the third iteration, the p = 5 (four nearest neighbors) 7
choice was deemed best. Finally, by the seventh iteration, the p = 9
(eight nearest neighborsg) choice was considered best. In this case, the
overall accuracy was slightly less than for the p = 5 choice (88.2 percent
versus 88.6 percent), but the average-by-class accuracy was better by a

larger margin (68.1 percent versus 67.4 percent).

This implementation of the bootstrap technique involves a large
number of classifications, usually three or more per iteration. A simpler

approach would be to do just one classification per iteration and in-

crease the number of nearest neighbors used for each iteration. As
shown in Figure 2C2.6, for data set 2a the final result using this me-

thod was virtually the same as for the more involved procedure.

It was wondered just how much of the accuracy improvement was due
to a better estimate of the point-by-point prior probabilities. After
five iterations doing O-nearest-neighbor classification, the improvement
in overall accuracy saturated at 80.3 percent, but the average perfor-
mance by class had degraded to 46.9 percent. This compares closely to
the O-nearest-neighbor classification done using the context distribution
determined from the reference template, which had an overall accuracy of
80.8 percent and an average performance by class of 48.3 percent. It
appears from this result that the context serves to improve the overall
performance compared to that of the O-nearest-neighbor result while

resisting degradation in average-by-class accuracy.

K5
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Figure 2C2.6. Contextual classification results based on
simplified iterative technique (simulated data set 2a).
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3.2 Real=Data Experiments

Having observed excellent performance of the context classifier on
simulated data, the next step was to see how well it would perform on
real data. A 50-pixel-square segment of Landsat data was chosen which
included approximately equal amounts of urban and agricultural area loca-
ted to the southeast of Bloomington, Indiana. Statistics for the spectral
classes were estimated using the 100-pixel-square area centered on the
50-pixel-square segment. A very careful classification using 14 spectral
classes was performed to delineate agricultural, urban and forested areas.
As there were too few forested pixels to delineate forest test areas re-
liably, the classification was tested only for accuracy in classifying
the agricultural and urban classes. Out of the 2500 pixels in the seg-
ment, a total of 867 pixels were manually interpreted as agricultural
and 450 pixels as urban. The identification was made by interpretation
of color infrared photography taken by aircraft on the same day as the

Landsat pass.

The results from using the full bootstrap technique on this data set
were not nearly as favorable as the results obtained from the simulated

data. See Figure 2C2.7.

The no-context classification using uniform prior probabilities had
an overall accuracy of 83,1 percent and an average-by-class accuracy of
82.7 percent, The best classification obtained using this result as a
template to estimate the context distribution was a p = 2 (one-nearest-~
neighbor) classification based on the neighbor to the '"north" (85.2 per-
cent overall, 84.7 percent average-by-class). Interestingly, the one-
nearest-neighbor result based on the neighbor to the 'west" produced a
somewhat poorer classification (84.2 percent wvcrall, 83.8 percent average
by class).* No apparent features in the scene would account for the dif-

ference (i.e., be seen by eye), raising a new issue yet to be pursued.

* In the figure, "25 window" refers to one-nearest-neiginbor-tcu-the-norxth;
"45 window'" refers to one-nearest-neighbor-to-the-~iest,

RE
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Figure 2C2.7. Contextual classification of Bloomington data using
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The gsecond iteration was performed using the one-nearest-neighbor
(north) classification from the first iteration for estimating the con-
text distribution. Here the two-nearest-neighbor (neighbors to the '"north"
and "west'") clagsification was the best with an overall accuracy of 85.2
percent and average-by-class accuracy of 84.7 percent). The best classi-
fication for the third iteration was again the one-nearest-neighbor (north)
case with 85,3 percent overall accuracy and 84,8 percent average-by-class
accuracy. The fourth iteration produced no improvement. The context clas-
sifier thus only yielded just over two percent improvement in both over-

all accuracy and average-by-class accuracy.

In order to assess the sensitivity of these results to the accuracy
of the template used to estimate the context distribution, a manual '"clean-
up" of the original template was performed, as follows: Change the clas-
sification of all incorrectly classified points in the test areas in the
original point-by-point uniform priors classification to the closest spec-

tral class in the correct information class as observed by means of a

cross-plot of Landsat bands 2 and 3. Where either of two spectral classes
might have been the correct class, a coin was tossed to decide the assign-
ment. The context distribution was then estimated from the entire modified

classification including both test and non-test areas.

The first iteration using this modified classification as template
produced excellent results (Figure 2C2.8). The p = 9 (eight-nearest-
neighbor) classification produced an improvement of over 10 percent to
93.8 percent in overall accuracy and over 1l percent to 93.6 percent in
average-by-class accuracy (compared to the conventional point classifier
with uniform prior probabilities). A second iteration was performed us-
ing a context distribution estimate from a similarly modified eight-
nearest-neighbors classification from the first iteration. No further
improvement in accuracy was observed, suggesting that this iterative

process "saturates' very quickly,

Finally, both of the techniques applied to the Landsat data from

near Bloomington were tried on a 50-pixel-square area from the northwest

corner of the Large Area Crop Inventory Experiment (LACIE), segment No.
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Figure 2C2.8. Performance using manual template correction

for estimating the context distribution (Bloomington data).
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1860 in Hodgman County, Kansas. Statistics for the 16 spectral classes
were generated from randomly located training fields scattered throughout
the entire 117 by 194-pixel Landsat data frame. The coordinates of the
training fields were chosen by selecting pixel coordinates from a random
number table and surrounding the selected pixel by the largest homogeneous
rectangle (up to field size 20 by 20). The clasegifications were tested
for accuracy over five information classes (pasture, idle, wheat, corn

and alfalfa) from "wall-to-wall" pixel-by-pixel ground truth.

The results from using the strightforward full bootstrap technique
paralleled those from the Bloomington study. Here the no-context classi-
fication using uniform prior probabilities had an overall accuracy of
78.7 percent and an average-by-claas sccuracy of 72.0 percent. As shown
in Figure 2C2.9, the best classification (after five iterations) was a
P = 9 (eight-nearest-neighbors) classification with 80.5 percent overall
accuracy and 73.0 average-by-class accuracy. The context classifier could
only manage a 1.8 percent improvement in overall accuracy here and a 1.0

percent improvement in average-by-class accuracy.

A manual "clean-up" similar to that done on the Bloomington data was
then performed on the first 25 lines of the original no-context uniform
priors classification, and the p-vector distribution was estimated from
just these 25 lines. Context classifications were performed, and the

classification accuracies were evaluated over the remaining 25 lines.

Again, the results employing the manual '"clean-up" technique were
excellent (see Figure 2C2.10). The overall accuracy over the last 25
lines of the original no-context uniform priors classification was 78.0
percent, while the average-by-class accuracy was 75.6 percent. The p = 9
(eight-nearest-neighbor) classification improved the overall accuracy by

9.4 percent and improved the average-by-class accuracy by 6.1 percent,

The excellent results produced by using the gcontext distri-
bution estimated from the manually modified point classification suggest

the following approach for classification using context:
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Figure 2C2.9. Contextual classificaicion of LACIE segment using
the unmodified procedure for estimating the context distribution.
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1. Perform point-by-point classification using uniform prior proba-
bilities on the training set as before, but with the following twist:
When a pixel is known to be of a certain information class, allow the
classifier to choose only between spectral classes associated with that
information class. This will force a 100 percent accurate classification
in the training areas and should permit an even better estimate o the
context distribution than the manual modification method described above.

2. Estimate the context distribution from the resulting 100 percent
accurate classification of the training fields.

3. Classify the entire scene with the statistical context classifier
and evaluate the results over a test set disjoint from the training set.
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4, Overview of the CDC Flexible Processor Arrav System

Classification algorithms such as the context classifier (and even
v+ch simpler algorithms used for remote sensing data analysis) typically
require large amounts of computation time. One way to reduce the execu-
tion time of these tasks is through the use of parallelism. Various paral-
lel processing systems that can be used for remote sensing have been built
or proposed. These include pipelined processors [16],multimicrocomputer
systems ['-,18], and special purpose systems [19]. The Control Data Cor-
poration }'_exiblz Processor System [16,20,21] is a commercially available

multiproceszor system which has been recommended for use in remote sensing

[22].

The remainder of Section 4 consists of a skeleton description of many
of the key features of the CDC Flexible Processor System. The description
will convey to the potential user (at the programming level) a flavor of

the task to be dealt with.

Section 5 contains a description of how the Flexible Processor System
can be used to implement contextual classification. As a somewhat simpler
problem to start with, implementation of the maximum likelihood classifier

is first discussed.
Since our research 1s being pursued remote from a real Flexible Pro-
cessor System, we have developed a simulator to facilitate code develop-

ment and testing. The simulator is described in Section 6.

4,1 The Hardware

4.1,1 Introduction

Key elements of the Flexible Processor hardware are discussed first,
focused on the Flexible Processor itself which is the basic building
block of the Flexible Processor System.

i
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4.1.2 The cbc E}g§;b1e Processor

The basic components of a Flexible Processor (FP) are shown in Figure
2C2.11. Each FP is microprogrammable, allowing parallelism at the instruc-
tion level. An example of the way in which N FPs may be configured into a

system is shown in Figure 2C2,12. There can be up to 16 FPs linked together,
providing much parallelism at the processor level. The clock cycle time S
of an FP is 125 nsec (nanoseconds). Since 16 FPs can be connected in a
parallel and/or pipelined fashion, the effective throughput can be dras-
tically increased, resulting in a potential effective cycle time of less

than 10 nsec.

A central feature of the FP is its dual 16-bit internal bus structure, i
enabling the FP to manipulate either 16- or 32-bit operands. If 32-bit 1
operands are used, the FP can be programmed to execute floating point rou-
tines (on its integer hardware) based on the floating point representation
of such systems as the IBM 370 and the PDP 11/70. If the needed data width
is 16 bits, the FP can be programmed to perform different operations on each

of the 16-bit words simultaneously.

4.1.3 Register Files

In each FP, Lhere are two files of registers, one called the tempo-
rary register file and the other the large register file. Both are divi-
ded into 16-bit addressable subunits. If the needed path width is 16 bits,
the two files can act like four files, thus creating more addressable user
space. A special feature of the temporary file is its two separate read
and two separate write address rcgisters. This can save much CPU time in
many types of matrix operations. The large register file has its own two
read/write address registers. It is possible to do either a read or write
to either file and simultaneously increment (or decrement) the address
register. The temporary file is 16 words, 32 bits each, while the large
file is 4096 words, 32 bits each. All of the register files consist of

60-nsec random-access memory.

37
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Fig. 2C2.11. pata path organization in the CDC Flexible Processor.
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Fig. 2C2.12. Block diagram of typical Flexible Processor array.
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4.1.4 Registers and Arithmetic Units

Details of the architecture of an FP are shown in Figure 2C2.13. There
are three 32-bit general purpose registers called the E, F, and G registers.
All of these registers are connected to the arithmetic logic unit (ALU),
which can perform 32-bit additions in 125 nsec. The E and G registers are
readable directly through the ALU. The general purpose registers can be
shifted separately, or the E and F registers can be combined into a 64-bit
shift register for double-length shifts. The output of the ALU is a 32-
bit register, A, that is addressable by byte (8 bits). This makes a vari-
ety of byte manipulations possible. Separate from the ALU is a hardware
integer multiplier, which takes two bytes and multiplies them to produce
a 16-bit result in 250 nsec. The input registers are the P and Q registers,
which are each 16 bits wide. The user can choose which two bytes are to be
multiplied. The FP is equipped with four index registers and eight corres-
ponding compare registers. The index registers can be used for looping
and can be incremented or decremented during any statement not addressing
those registers. The FP also contains a hardware jump stack, so it is
capable of handling standard types of program calls such as subroutine

jumps.

4.1,5 Micro-Memory and Input/Output

The micro-memory consists of 4k 48-bit words. It stores the micro-

program. Each FP in a system can contain a different program.

Input/Output (I/0) for the FP depends on the overall system (i.e.,
the FP array and its host machine). An FP is capable of interrupting
another FP for I/0. I/O among the FPs is done one of two ways. The
first is a very high speed communication link, arranged in a ring configu-
ration [20,21]. It operates at four mega-words (16 bits per word) per
second. Each FP has a station on the ring, and each station on the ring
is connected to two other stations. When an FP does a write to the ring,
it gives 16 bits of data and the address of the destination. If a station
receives data for another address, it shifts the data to the next station,

This 1s continued until the data reach the correct station. Special hard-
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ware has been added to remove data from the ring in the event of a station
failure. The data are loaded into the "input file." This 16 32-bit/word
register file can be used as a small buffer. Another form of 1/0 is through
up to 16 64k-byte banks of shared 160-nsec memory. This is not as fast as
the previous method; however, for large data transfers, it frees the ring

for other communications, as well as providing a buffer between FPs.

4.1.6 Microprogramming of the Flexible Processor

The FP is micro-programmed in "micro-assembly language," allowing
parallelism at the instruction level, as indicated in the FP coding form
shown in Figure 2C2.14. For example, it is possible to conditionally incre-
ment an index register, do a program jump, multiply two 8-bit integers,
and add the E and G registers, all simultaneously. This type of opera-
tional overlap, in conjunction with the multiprocessing capability of the

FPs, greatly increases the speed of the FP array.

4.1.7 A Flexible Processor Image Processing System

Figure 2C2.15 is a schematic block diagram of the system in operation
at the CDC Digital Systems Display Laboratory in Minneapolis [22]. This
figure is provided as an example of one possible FP array configuration.
The setup of this system has many desirable features for picture proces-
sing. The parallel-pipelined architecture of the FPs enables the system
to do rapid matrix multiplications. There are image displays attached, so
it is possible to view the pictures. The two 800-bpi tape drives, along
with the 50M disk unit, contain enough storage space for jobs that re-
quire large amounts of memory. In addition, the system can handle up to

eight terminals on its resident operating system (called ICE). Batch

jobs can also be run from its 300-card-per-minute reader.
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4.2 The Software

4.2.1 Introduction

The host for the FP system is programmable in FORTRAN. FP programs
written in assembly language can be called from the FORTRAN library, enabl-
ing the calling programs to be written in FORTRAN [22]. The average user,
then, will not have any coutact with the FP assembly language, making the
use of the system much easier. Data analysis packages, such as parts of
LARSYS, which are written in FORTRAN, can with very simple modifications
run on the FP gystem. The rest of this section overviews how to program

an FP at the micro-assembly language level,

4,2,2 Registers

The three general purpose registers (E, F, and G) are divided in
halves because they are 32 bits long and the busses are only 16. The most
significant bits of the registers are referred to as the "one" group and
the least significant bits are referred to as the "zero' group. For exam-
ple, the most significant bits of the E register are called El, and the
least significant bits of the E register are called EO.

The ability to address registers in groups of 16 bits allows one to
address halves of two separate registers simultaneously. For example, if
one wished to write into the upper 16 bits of the F register and the lower
16 bits of the G register, the pair would be referred to as F1GO in the
command. Both will get the same data, but they will get it in one machine
cycle instead of two. This increases throughput when, for example, loading

initial conditions.

4.2.3 The Transfer Constant Instruction

These registers can be loaded with a constant using the Transfer

Constant (TC) instruction. Figure 2C2.14 shows the coding form. Line three
gives the form of the TC instruction format. Omitting the AAAA and the

comments, the basic form of the instruction is:
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TC $HHHH DSTO DST1
The $ tells the assembler that the four following digits are to be in
hexadecimal. This command places the constant on both data lines to enable
the loading of two registere simultaneously, The DST (destination) is
filled in by an appropriate register which can road off the corresponding
bus. Not all registers can provide data to (''source') or receive data
from ("destine'") both busses. For example, Fl cannot read ('destine') bus 0,

the E and G registers can only be sourced into the arithmetic logic unit,
and the El1 and GO registers can only read from bus 1 [21].

Some examples of correct TC instructions are:

TC $FFA8 EOGl F1GO,
TC $0100 EO GO ,
TC $0101 EO NOP .,

The first command in the example transfers the hexadecimal constant FFAS8
to the 16-bit registers EO, Fl, GO, and Gl., The second command transfers
the hex constant 0100 to the E0 and GO registers. In the third command,
the NOP indicates bus 1 is not used. Note that while it is not possible
to source two different registers at the same time, it is possible to

destine two registers off the same bus at the same time.

4.2.4 TheTransfer Register Instruction

Another way in which the registers can be used as a source of infor-
mation is in the Transfer Register (TR) instruction. This is the fourth
format shown in Figure 2CI.14. The basic format of the instruction is:

TR SRCO DSTO SRC1 DST1
This instruction tells the computer to source the register in the SRCO
field to bus 0 and to use the register(s) in the DSTO field as the
destination(s). 1In the event that the other bus is not to be used, a NOF
must be placed in both the SRC and DST fields corresponding to that bus.

4,2.5 Using the Temporary Files

A special feaiure of the temporary register fiies, discussed in

Section 4.1.3, is that it has separate read and write indices. The in-
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dices are TORA, TOWA, T1RA, AND T1WA, which stand, respectively, Hr Tempo-
rary file O Read Address, Temporary file O Write Address, Teuporary file

1 Read Address, and Temporary file 1 Write Address. Each is four bits in
length., When using the temporary files, one usually initializes the index
value and then uses special instructions to increment, decrement, or clear
these registers while doing other operations. When storing information to
a temporary file, the mnemonic used is TFxf, where x is the file number
and f is the function to be performed. The following is a list of the

available functions:

U increment the corresponding index
D decrement the corresgponding index
c zero the corresponding index

N perform no operation on the index

The machine will update the read or write address, depending on the con-
text used, i.e., if a temporary file is used as a source, the read address
will be assumed, and if it is used as a destination, the write address will

be assumed. Some examples are as follows:

TC $0101 TFOU TF1D
TC $0101 TFON TF1C
TC §0101 TFOC TF1C

In the examples, the hex constant 0101 is stored in the temporary file

while the write pointer is incremented, decremented, unchanged, and cleared.

4.2.6 Using the Large Files

The Large files, discussed in Section 4.1.3, have only one pointer
per file, but are accessed in the same manner as the temporary file. To
access a file, the format is LFxf, where x is the file number and f is
the function to be performed on the file. The functions performed are
the C, D, and N as defined in Section 4.2.5 and A which adds index
register 0 to the corresponding index and uses that location as the de-
sired address. The instruction

TC $0101 LFOU LF1D
would store the hex constant 0101 in large files O and 1 while increment-
ing the pointer for large file O and decrementing the pointer for large

file 1. The length of the large file pointers is 10 bits. large file
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pointers are called LOA and L1A. Both the large file and the temporary
file pointers can be accessed in the same manner as standard general pur-

rose registers.

4.2.7 Programming the Arithmetic Logic Unit

In the TR instruction there is a field labeled ADD (see Figure 2C2.14).
This field controls the function of the ALU. Output from the ALU is avail-
able as the A (accumulator) register, which can be sourced in the same
manter as the F and G registers. In the event that the A reg.ster is not
sourced, the result is moved to the FO-Fl register pair. One feature of
the A register is different from the other general purpose registers in
that it is byte addressable. This ability makes it one of the most power-
ful registers on the machine. Figure 2C2.16 1s a listing of the ALU mnemonics
and a brief interpretation of their meanings. It is important to remember
that this machine is micro-codable; thus there are many possibilities that
are not in the mnemonic set. This is the extent of the assembler mnemonics
for the ALU, hut there are more commands. Figure 2C2.17 shows a listing of
the entire command set. To be able to use this list, first type either an A
or an L (for arithmetic or logical) and then a C or an N (for carry or
no carry). The A(L) determines the basic function type. The N further
determines the type of function by determining the type of carry. With the
above, it is possible to use Figure 2C2.17 to determine the exact function
number desired. The only other entity necessary is the function number
(from 0 to F). Thus an ANF describes the arithmetic function in the no-carry
portion of the table that is in the fifteenth row. All three of the function
descriptors are placed in the column labeled ADD (see Figure 2C2,.14).

As shown in Figure 2C2.13, the A register is divided into four bytes
numbered zero through three. If AO is scurced, bytes 0 and 1 will be ob-
tained. Likewise, sourcing Al will yield bytes 2 and 3. 1If tytes 1 and 2
are needed together, adding an SW (which stands for SWap bytes) to the end
of AO will yield the desired result. If bytes O and 3 are needed, adding
an SW to the end of Al will yield the desired result. Thus AOSW is the

correct way to address bytes 1 and 2.
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Mnemonic:

ADD

AND

Eel
£-1
E+€

GN

OR

$B1

SET
XOR

ZRO

Figure 2C2.16.

Functidon?

A=E+6
AzEG

AzE

AsEel
Az€~1
AzE+E

A=*G
A=L+6

A=E-G

AzE+°E
AzE+G

A=L*E
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Comments?

Twos complement add the E and 6 regs.
Logical AND the E and G registerse.
This is the method for sourcing the
£ registery, making it sourcable to
both busses. : :

This makes 4t possible to increment,
decrementy and double the £ register
without ever having to Load a con~-
stant.

Twos complement subtract the € and 6
register pairs. '

The Flexible processor has a branch
1f negative command. If the E regis-~
ter s less than or equal to the 6
registery this will branch.

Logfcally complement the £ register
(E NOT).

This makes the G register sourcable
to both busses.

Logically complement the 6 register.
Logically OR the € and 6 registers.

Ones Complement subtract the ]
register from the € register.

Set A to all onese.
EXCLUSIVE OR E and G registers.

Load A register with all zeros.

Flexible Processor Arithmetic L2gic Unit Mnemonics.
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RIGNAL PAGT
oF pow g oM
Function Logical Functions ‘Arlth-etic Operations
Kumber No Carry ¥ith Carry
0 F =t F=t F = €}
1 F = *[C+6) F = [E+6) F = [(EeGle)
2 F = [*E 6] F = (€e06) F = (E+°Glel
3 F =L(F F) . F = -1(2°s comp) F = 0
) F = %(EG) F = £+(€*6) F = Ee(EG]ey
s F = *(c) F = CE+GI+[E®G]) F = [EeGeE*G]e]
6 F = CE*Ge*EG]) F = E-G-1 F = E-6
L F = [E£°6G) F = (£°6)-1 F = [E96]
8 F = ['€£+6) F = E+(EG) F = Ee[EGI)
9 F = ['E£°G+EG] F = E6 F = EeGel
A F=6 F = CE+*G)+EG F = [+EG]el
] F = (€G] F = (€G]~ F = [€6)
c F = (Fe') F = EeotE F = EeEe}
] F = (E+°G]) F = CEeGJleE F = [E¢GleEe}
€ F = E+6 F = CLEe*G)+E F = [(E+*GI+E”)
F F=¢E F = E-1 F=E

) - contains only Logical operations.

Figure 2C2.17. Entire Command Set of Flexible Processor
Arithmetic lLogic Unit.
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Another feature of the A0 and Al registers is that they can do a right
shift, preserving the signs of the registers. This is accomplished by
catenating an RS (Right Shift) at the end of the desired register. It is
possible to do a right shift in conjunction with a byte swap. The ALU has
the ability to shift a byte of zeroes into either (or both) of the A0 and
Al registers. This is accomplished by shifting both accumulators right
by one byte, and loading the upper byte of the pair with zeroes. The mne-
monic for this is a RZ (Right shift Zero fill) catenated at the end of the
byte pair desired. The following is a list of the possible combinations
of the accumulator and the above operations [21]. The bus numbers are
omitted because they can be sourced to either bus. Shift is done before

swap. BO, Bl, B2, and B3 indicate the four bytes of the A register.

Source Source

A Field B Field Bus A Bus B
AQ Al B1 BO B3 B2
A0 AlRS Illegal
A0 Al1RZ Illegal
AQ AlSW Illegal
AORS Al Illegal
AORS AlRS LS Bl Us B3
AORS A1RZ Z Bl Us B3
AORS Al1SW B2 Bl Us B3
AORZ Al Illegal
AORZ AlRS LS Bl Z B3
AORZ AlRZ 2 Bl 2 B3
AORZ AlSW B2 Bl Z B3
AQSW Al Illegal
AOSW A1RS LS Bl BO B3
AOSW AlRZ Z Bl BO B3
AOSW AlSW B2 Bl BO B3

Z - one byte of zeroes
LS - sign of lower two bytes
US - sign of upper two bytes
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4.2,8 The Index Registers

In the diagram of the machine structure (Figure 2C2.13, there are four
index registers, four index compare registers, and four compare mask re-
gisters. None of the registers can be sourced for their contents alone.
Index register O and its corresponding compare register are 16 bits long,
while all the others are only 8 bits long. The IDX field, shown in
Figure 2C2.14, is the field that controls the operation of the indices and
their compare registers. An INx command, where x is one of the index
registers, will increment index register x. A DCx will decrement index
register x by one, while a CLx will clear index register x. CLA will clear

all registers.

4.2.9 Conditional Operations

The condition mask registers control the condition to be used. These
registers do not have a one-to-one correspondence to the index registers.
The following is a list of the functions used in the current software (a
full listing appears in [21]. The lengths of the registers are shown in
Figure 2C2.13.

Bit Condition Mask Reg O Condition Mask Reg 3

0 EO0 negative Index Compare reg0 = index 0
1 El negative Index Compare regQ = index O
2 FO negative Index Compare regl = index 1
3 Fl negative Index Compare regl = index 1
4 GO negative Index Compare reg2 = index 2
5 Gl negative Index Compare reg2 = index 2
6 ALUO negative Index Compare reg3 = index 3
7 ALUl negative Index Compare reg2 = index 3

It is possible to test for the conditions in Mask Register 0 by

piacing a TN in the CND (CoNDition) column. Figure 2C2.14 shows the location

of the CND column in the coding form. To test for the logical "not" of
the condition stored in Mask Register 0, an FN is placed in the CND col-
umn. To test for the condition in Mask Register 3, an AD is placed in the
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CND column. Furthermore, the AD must be placed at least two instructions
after an increment or decrement of the register in question. If the con-

dition tested is true, the current instruction is executed.

The ability to conditionally execute a statement enables a conditional

program jump. Recall that the basic form for a TC statement is:

TC $HHHH DSTO DST1
If DSTO is the MAR (memory address register), then after execution of the
next statement, the FP will do a conditional jump to the value indicated
by the hex constant, which can be a program label. The following is an
example of a conditional jump which will jump to hex address 1234:

TC AD $1234 MAR NOP
To do an unconditional program jump, omit the AD. The following:

TC NEXT MAR NOP
will jump to the program label NEXT. Since the MAR and instruction fetch
of the FP are buffered, it is impossible to do an immediate program jump.
This adds little complication to the programming, except that the step to
be executed before the jump is placed after the actual jump statement.
It 1s very important, when reading source code for the machine, to remem-

ber that the order of execution is reversed.

4.2.10 Subroutine Calls, Program Jumps, and the Stack

As shown in Figure 2C2.13 there is a 16-by-12-bit stack called the return
Jump stack. This is a typical LIFQ buffer which is used to hold return
addresses as weli as temporary data. As indicated in Figure 2C2.14, there is
a field labeled RJ. This controls the return jump stack. There are three
possible commands for the stack. SR (SubRoutine jump) will take the cur-
rent value of the MAR (which is pointing to the next statement), increment
it by one and store the result on the top of the stack. This will be the
return address. JP (JumP return) takes the current top of stack and places
it in the MAR. DF (Delete First {tem) will delete the top of the stack.
The JP does not perform the delete function. Another feature of the SR,
JP, and DF is that they all trap out interrupts. A typical subroutine
jump looks like the following:




(Fields) Type  RJ $HHHH DSTO DST1

Label TC SR $1234 MAR NOP
TC NOP NOP NOP

The above routine will store label+2 on the stack, execute the NOPs,
and jump to the hexadecimal location 1234, A typical subroutine return
looks like the following:

(Fields) Type RJ SHHHH DSTO DST1

TC JP NOP NOP NOP
TC DF NOP NOP NOP

This will take the top of stack, place it in the MAR, and then delete the
top of stack. Since the CND field is valid on all types of instructions,
it is possible to do a conditional subroutine jump just by placing the
condition in the conditional field. The result looks like:

(Fields) Type CND RJ  $HHHH DSTO DST1

TC AD SR  $1234 MAR NOP

This will store the value of the return address, execute the next state-
ment, and continue execution at location 1234. By placing a JP in the
next statement, it is possible to do a jump, execute one statement and

return,

4.2.11 The Hardware Multiply

The only remaining functional unit to be discussed is the hardware
multiply. As shown in Figure 2C2.13, the inputs are the P and Q registers
which are each 16 bits in length. The result of the multiply is a 16-bit
product, which can be the result of the multiplication of any two bytes.
This is the only case where the same byte can be sourced twice. The
mnemonics for the addressing is L for the lower byte, and U for t.e upper
byte. Thus, to multiply the lower byte of the P register by the upper
byte of the Q register, a PLQU would be placed in the MULT field. Caution
must be taken when a multiply is initiated. A multiply takes two machine
cycles before the result can be sourced. If an interrupt is received be-
fore the result 1is ready, the result will be lost. To prevent such loss,

it is necessary to trap out all interrupts. This i1s accomplished as

sS
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follows: Whenever a multiply is done, an SR is placed in the RJ column

of the first statement of the multiply, and a DF is placed in the RJ
column, The net result is to push a return address onto the stack and
then pop it off the stack. This will trap out interrupts as needed. Fur-
ther, caution must be taken in that the RJ stack is only 16 units long, so
overflow 1s possible. If overflow occurs, no error will be flagged. The

following is a routine to square the lower byte of the Q register.

(Fields) TC RJ MULT $HHHH DSTO DSTL
TR RJ MULT SRCO DSTO  SRCL DSTL
TC SR QLQL  $0057 MAR NOP
TR DF QLQL MULT FO MULT Fl

This not only does a multiply, but it also does a program jump and traps
interrupts all at the same time, showing how this machine obtains very

high processing speeds. (Consider that each program step takes .l125 micro-
seconds). If more precision is desired, the following algebraic rule

can be used:
(a+b) *(c+d)=ac+ad+bc+bd.,

This rule can be modified to the byte level, yielding the 32-bit result

in under three microseconds [26].

4.2.12 Bus Registers

The two registers in Figure 2C2.13 labeled BRGO and BRGl are the bus
registers, Normally these are used for breakpointing. It is possible
to use these registers for general purpose registers if no breakpointing
is needed. To write into these registers, BRGO and BRGl are put into the
respective columns, while to read from these registers, BSRO and BSR1 are

put into their respective columns.

4,2.13 Shifting Data

The SH instruction field is used for shifting data as shown in
Figure 2C2.14, the OEINC, OFINC and OGINC fields all determine what type of
shift is to take place. The P field determines the Precision of the
shift, 1If the P field is set to S, all of the registers are treated as
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separate registers; howuver, if the P field is set to D (Double Precision),
the E and the F registers are tied together as one register for the shift,
The following list shows all possible shift conditions and their specific
operations. These conditions do not determine whether to execute the in-
struction, but on what version of the ALU's data [21].

ALU DATA USED
CONDITION FIELD FOR SHIFT COMMENTS

UN TRUE OF CURRENT DATA (Unchanged Now)
TN TRUE OF CURRENT DATA (True Now)

FN NOT OF CURRENT DATA (False Now)
AD

NOT OF CURRENT DATA (Conditional based
on AD condition)

UP TRUE OF PAST DA1A (Unconditional Past)
TP TRUE OF PAST DATA (True of Past data)
FP NOT OF PAST DATA (False of Past data)
I0 NOT OF PAST DATA (Conditional based

on IO condition)

These commands not only determine the data to be shifted, but they
also control the conditions under which the shifts are done. When these
mnemonics are placed in the CND field, they are used to check the condi-

tions set in the condition field zero.

4,2.14 Input/Qutput to the FPs

Input/Output (I/0) is one of the most complicated parts of the entire
CDC FP System. I/0 must occur in one of the following forms:
1. FP to host
2. FP to FP
3. FP to MOS RAM (shared bulk memory)

For large amounts of data requiring FP-to-FP communication, FP to MOS RAM
is the most reasonable means of data transfer. If the high-speed communi-
cation link, as described in Section 4.1.5, is used, there is only a buffer
for 16 words of information. This requires very closely timed algorithms,
as any error would result in the loss of data. Each FP 1is connected to

four 16-bit channels, which are called Direct Storage Access (DSA) Channels.
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Each of the channels is connected to four banks of 600 nsec MOS RAM. Each
bank of MOS RAM is addressed by bank and channel, Different banks on
various channels may be shared. For example, bank 1 on channel 3 may be
the same as bank 2 on channel 1. The FP is capable of choosing a bank and
address to which all the channels are linked through four S (Storage
location) registers and B (Bank) registers. Since the RAM memory is much
slower than the clock cycle, the read is done in two stages. The first
stage sends the bank and address to the MAR and increments the data in

the address register, initiating the read. Within the next four cycles,

the data will appear in the Zx register, where x is the channel number

(see Figure 2C2.13). The data will remain in the Zx register until the next
read is initiated. 1In the event of a "memory bank busy,'" or "data not
ready," the FP will automatically wait for two machine cycles, after which
it will repeat the process. To do a write, the data is sourced directly

to the MBR (Memory Buffer Register) of the memory bank corresponding to

the bank register. (A write is a l-stage process.) The FP is programmed

to do I/0 through the 10 statement type. Figure 2C2.14 shows the form of the
statement. The 10 statement is similar to the TR statement in that arith-
metic calculations can be done simultaneously with 1/0. The following
statements show how to initialize the S and B registers. (The S and B

registers are linked together so that they can be loaded in one statement.)

I0 CND IDX RJ MULT ADD SRCO SRCl I0 CHO CHL CH2 CH3

10 ZRO A0 Al DS LS LS LS LS
10 FO FO DS LB LB LB LB
10 DF PLQL MULT MULT DS LSB LSB LSB LSB

1. Lloads all four S registers with 0000,
2. Loads all four B registers with the contents of FO.

3. Loads all four S and B registers with the contents of the
multiplier.

The DS stands for DSA I/0. The leading L in the channel column
stands for load.

After initializing the S and B registers, the read needs to be

initialized, which is done by placing an R in the channel field of the
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channel to be read. Four cycles later, the data (or a wait) should appear
in the Zx register. To do a write, a W is placed in the channel fields
into which the data are to be written. The data to be sourced are in the

source fields.

4.2.15 Interrupts

With 1/0, interrupts are often needed. The FP has the ability to
handle up to 16 different interrupts (20,21]. The FP can interrupt itself,
the host and other FPs. While processing an interrupt routine, the FP
sets a flip-flop indicating that an interrupt is being processed. This
traps all lower priority interrupts. The interrupt flip-flops are reset
when the program returns to processing the original routine, or until a

zero is stored in the interrupt register.

4.2.16 Conclusions

This has been an introduction to the parts of the FP and the parts of
the instruction set that will be used in the Bayes maximum likelihood¢ clas-
sifier discussed in the next section. For further documentation, consult
the CDC Flexible Processor Textbook [21].

The experience gained through the use of the simulator (see Section 6)
has made evident the following advantages and disadvantages of the Plexible

Processor system.

Advantages:

Multiple processors (up to 16)

User microprogrammable ~ parallielism at the instruction level
Connection ring for inter-Plexible Processor communications
Shared bulk memory units

Separate arithmetic logic unit and hardware multiply.

Disadvantages:
No floating point hardware
Micro-assembly language - difficult to program

Program memory limited to 4k microinstructions.
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Based on the investigations to date, the advantages of this system appear
to outweigh the disadvantages. However, alternative approaches, such as
multimicroprocessor systems, should also be considered to determine the most
cost-effective approach for implementing the contextual classifier and other

computationally demanding image processing operations for remote sensing.
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5. Parallel Implementations of Classification Algorithms

5.1 1Introduction

To demonstrate the use of a Flexible Processor (FP) system on a task
less complex than the contextual classifier, consider the analysis of
Landsat data using a Bayes maximum likelihood classifier (MLC). Landsat
measurements are taken from four spectral bands and received as a data vec~
tor. Based on decision theory akin to that developed in the section on
the contextual classifiar model, the vector is classifed by determining
the probability that it belongs to each information class and assigning
it to the class for which this probability is maximum.

The way in which an FP may be used in implementing a Bayes maximum
likelihood classifier is demonstrated below. The techniques described

are to be extended to the contextual classification algorithm,
In Section 5.2, methods for implementing the MLC on an FP array are
presented. The ways in which the contextual classifer can be implemented

on an FP array are presented in Section 5.3.

5.2 Implementation of the Maximum Likelihood Classifier on an FP Array

Two methods for implementing the maximum likelihood classifier (MLC)
on an FP array are discussed. The first assigns to each FP a different
set of classes, and each FP processes all pixels for its assigned classes.
The second method assigns to each FP a different subimage, and each FP
processes the pixels in its subimage for all classes. The basic matrix

operations, described below, are the same for both methods.

The ability to do a fast matrix multiply 1s at the heart of efficiently
implementing the Bayes maximum likelihood classifer. The form for the
matrix multiplications is:

T ,.-1
(x-U,)" (c;) (x-U),

where X is the data vector, U, is the mean vector for the ith class, and

i

C1 is the covariance matrix for the ith class.
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Consider the use of the FP array to perform these classifications.
Assume there are m distinct classes and the computer system contains p
FPs. Each FP is assigned to process m/p classen, The large file in each
FP is initialized with the inverse of the covariance matrices and mean
vectors for each class it was assigned. The current data vector is
stored in each FP in the temporary file. When a new data vector is
loaded into an FP, it overwrites the previous one. For simplicity, but
without loss of generality, in the following assume that m = p, If m is
greater than p, then in each FP instead of applying just one inverse co-
variance matrix to the data set, geveral would be applied. This will, of

course, increase the execution time by a factor of approximately m/p.

In standard arithmetic, one would first multiply (x-ui)T and Czl.
creating a new vector. This vector would then be multiplied by (X-Ui)
resulting in a scalar. In our implementation, the order has been some-
what altered. (X-Ui)T is multiplied by a column of Czl, accumulating the
results in a variable called 'sum."” After this is done for column j of
C;l, "sum" is multiplied by (X-Ui)j (the jth element of (X-Ui))' accumulat-
ing the result in a variable called "hold" and re-initializing "sum" to
0 [16]. The following is a "pidgeon ALGOL" description of the process

for one pixel:

hold = 0;

for j=1 to n do
begin;
gum=0;

for k=1 to n do
sum-sum+D[k]*C;1[k.J]$
hold=hold+sum*D[j];

end;

where: n = dlmenesion of covariance matrix
D[k] = kth . ‘ement of (X-Ui)' computed when X 18 loaded
c‘l[k.j] = element in the kth row and jth column of C

i

At the end of the routine, the value contained in the "hold"

variable is the desired scalar. This algorithm requires fewer stores

@3
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and fetches than the standard algorithm, so it shortens the run time of
the process. All pointers are kept in the index register, further simpli-
fying the process. Finally, because only two accumulators are used, the
three GPRs can be kept free for the floating-point operations, while the

accumulators are stored elsewhere.

One way to perform this algorithm is to have the host initially send
Czlandlulto FP i. The host then sends the current data vector X to FP O,
then FP 1, FP 2, etc. As soon as the FP receives the data vector, it be-
gins the calculation of the value of the discriminant function., After
the host gives all FPs the data for pixel (i, j), it waits until FP O has
calculated the value for its discriminant function. The host then re-
trieves the value of the discriminant function and loads FP O with the
data vector for the next pixel. The host executes this process for all
the FPs. When the last FP has transmitted the result, the host does a
compare and stores the class index corresponding to the maximum of the
discriminant values computed for this pixel. Thus, the compares are done
by the host while the FPs are computing the discriminant functions for

the next pixel, minimizing delay.

An alternative method to perform the pointwise maximum likelihood
classification of pixels using a Flexible Processor array is based upon
having each FP perform the MLC for a ditferent section of the image.
Recall, the contextual classifier performs computations similar to those
used by the maximum likelihood classifier, but is complicated by the in-
volvement of "neighboring" pixels.

Congider performing a maximum likelihocd classification on an
A-by-B image with N Flexible Processors. One way to approach the problem
is to divide the image into N subimages and have each Flexible Processor
perform the maximum likelihood classification for all pixels in its sub-
image. This is shown in Figure 2C2.18. 1f all subimages have the same num-
ber of pixels, then the Flexible Processors will be fully utilized and the
classification of the entire image will take approximately 1/N as much
time as it would take a single Flexible Processor to perform the entire
classificiation. Thus, maximum improvement, i.e., a factor of N, is

obtained.

¢3
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Fig. 2€2.18. An A by B image divided among N Flexible Processors.
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Consider the case in which each subimage does not contain the same
number of pixels, which will occur if (A*B)/N 1s not an integer. This
will lead to underutilization of the Flexible Processors, but this under-
utilization will be n~gligible as will now be shown.

One way to approach this situation is as follows. To each of N-1
Flexible Processors, assign a subimage of size
(A * B)/NT,
where [x], the ceiling of x, is the smallest integer greater than or equal
to x. To the remaining Flexible Processor assign a subimage of size
(A * B) - (f(a *B)/NT * (N-1)).

For example, if A = 117 and B = 196 (a typical LACIE image [25]), and

N = 16, then

[22,932/161 = [1433.25] = 1434
pixels are in each subimage associated with 15 Flexible Processors. The
remaining pixels, of which there are

22,932 - (15 * 1434) = 1422
are associated with one Flexible Processor. This sixteenth Flexible Pro-
cessor will have fewer pixels to classify and thus will finish before the
other Flexible Processors (assuming that, on the average, the time for the
floating point calculations is approximately the same for all pixels),
which implies some underutilization of this Flexible Processor. Ideally
a factor of N = 16 performance improvement over a single Flexible Proces-
sor 1s desired, which, in this case, would require all 16 Flexible Proces-
sors to each classify 1434 pixels, To compute the utilization of the Flex-
ible Processor array, divide the number of pixels actually classified by
the maximum number that could be clacwified in the same amount of time if
all 16 Flexible Processors were fully utilized, Thus, the utilization is

22,932/(16 * 1434) = 99+7%.
Therefore, a factor of 99+% of N improvement is obtained.

In general, using the above assignment of pixels to subimages, the
utilization of the system {is

A*B
[(A *B)/N] * N

a5
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The maximum value of the denominator is A*B4N-1 and occurs when A*B = k*N+l,
where k is an arbitrary integer. Therefore,
min((A * B)/([(A * B)/N] * N)) = (A * B)/(A * B + N - 1).
Based on typical sizes of remotely sensed images and assuming that the
maximum size of a Flexible Processor array is 16,
A*B>10 *N,
and
(A *B)/(A *B + N-1) > 992,
Thus, in general, the worst case performance is 99+X of the ideal factor

of improvement over a single Flexible Processor.

The maximum likelihood classifier has been programmed on a simulator
for a Flexible Processor array at the Laboratory for Applications of Remote
Sensing (LARS). The simulator displays the contents of the main registers
and provides a variety of tools for debugging Flexible Processor microcode.
It is discussed in detail in Section 6. Preliminary simulation tests in-
dicate that a single Flexible Processor will perform a maximum likelihood
classification faster than a PDP-11/70. Exact comparisons of the Flexible
Processor array performance with other systems are difficult without de-
tailed information about factors such as pre- and/or post-processing of the
data not included in the computation time, data precision used, memory
load time, etc. However, to give a general idea of the effectiveness of
this approach, consider a 256 x 256 classification of Landsat data (n=4)
using 16 classes and a complete array of 16 FPs. The total processing
time is approximately 10.7 sec. ESL [26] states that their array proces-
sor gives up to an increase of 25 times over the IBM 370/158. On the

classification of four channels into eight classes, their time is 6.3 sec.

In Appendix 2C2, the MLC programs for the FP are described. Our cur-
rent algorithm, which runs on the simulator described in Section 6, uses
3526 125-nsec steps to process one pixel (four floating-point component

data vector) and two classes, including choosing the maximum value.

In the next subsection, the way in which a parallel processing svs-
tem sucl: as the Flexible Processor array can be used to perform context

classification is examined.
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5.3 Contextual Classification on a Flexible Processor System

Consider the implementation of a contextual classifier on an array of
Flexible Processors. Assume the neighborhood is horizontally linear, as
shown in Figure 2C2.19. Divide the image into subimages of B/N rows A pixels
long, as shown in Figure 2C2.18. If B = kN, where k is an integer, there is
100% utilization of the Flexible Processors. Furthermore, there is no
overhead for inter-Flexible Processor data transfers, since the entire
neighborhood of each pixel is included in its subimage. Therefore, a

factor of N improvement is attained.

If (A * B)/N is un integer, but B = kN + x, 0 < x < N, then Flexible
Processors can be underutilized in order to keep neighborhoods within sub-
images, or Flexible Processors can be fully utilized, dividing neighbor-
hoods between Flexible Processors, necessitating inter-Flexible Processor
data transfers. This 1is shown for a simple example in Figure 2C2.20, where
N=2, A=3, and B = 4, In Figure 2C2.20(a) no inter-Flexible Processor trans-
fers are needed, but Flexible Processor 1 is not fully utilized. In Fig-
ure 2C2.20(b) both Flexible Processors are fully utilized, but, due to the hori-
zontally linear neighborhood, at least pixel 11 will have to be sent to
Flexible Processor 1 and at least pixel 12 will have to be sent to Flexible

Processor O.

If (A*B)/N 1is not an integer, some inter-Flexible Processor data
transfers will be necessary. The number of transfers will be a function
of the way in which the pixels are assigned to Flexible Processor:s, as in
the previous paragraph. To determine the computationally fastest approach
whenever B = kN+x, O<x<N, requires knowledge of the actual image size, the
actual number of Flexible Processors used, the exact time required to exe-

cute inter-Flexible Processor transfers, and the length of the neighborhood.

There are two other cases of linear neighborhoods. These are verti-
cally linear and diagonally linear, as shown in Figures 2C2.,21 and 2C2.22, The
analysis for these two cases is similar to that for the horizontally linear
case. The vertically linear case is just a 90O rotation of the horizon-~

tally linear case. The diagonally linear case can be simplified to a 45°

U
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Fig. 2€2.19. Horizontally Linear neighborhoods. Each box is one pixel.

Fig. 2C2.20.
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Dividing an image N subimages for horizontally linear neighbor-
hoods, where N=2, A=4, and B=3,
(a) Underutilization, no inter-Flexible Processor data

transfers required.

(b) Inter-Flexible Processor data transfers required, full

utilization.
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Fig. 2C2.21. Vertically Linear neighborhoods. Each box is one pixel.

Fig. 2C2..22.Diagonally Linear neighborhoods. Each box is one pixel.,
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Fig. 2C2.23.The diagonals of an A by B image.

(a) (b) (c)

Fig. 2C2.24.Nonlinear neighborhoods. Each box is one pixel.
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rotation of the horizontally linear case for B = kN by the proper assign-
ment of pixels to Flexible Processors. Consider an A by B image, A < B,
and B = k. Label the diagonals from 0 to A+B-2, as shown in Figure 2C2.23
for A= 4 and B = 6. The pixels can then be grouped into B sets of A
pixels as follows:

1. For each i, 0 < 1 < A-1 the pixels in diagonals i and i+B form
a group of size B,

2. For each j, A-1 < j < B-1, the pixels in diagonal j form a group
of size A.
Using these rules, each Flexible Processor is assigned k groups. Thus,
the problem has been reduced to the equivalent of the horizontally linear
case, which has already been discussed. The case for B = kN+x, 0 < x < N,
is even more complex than for the analogous situation in the horizontally
linear case, and requires a detailed tradeoff analysis based on the actual
image size, the actual number of Flexible Processors used, the exact time
required to execute inter-Flexible Processor data transfers, and the length

of the neighborhood.

Now consider nonlinear neighborhoods, that is, neighborhoods which
do not fit into one of the linear classes. For example, all of the neigh-
borhoods in Figure 2C2.24 are nonlinear. Figure 2C2.24(a) and its rotations
represent the simplest nonlinear neighborhood. It is included in all other
nonlinear neighborhoods. Thus, that neighborhood is called the nonlinear

kernel neighborhood.

It can be shown that there is no way to partition an A by b image
into N (not necessarily equal) sections such that a context classifier
using a nonlinear neighborhood can be implemented without involving
inter-Flexible Processor data transfers. This will be demonstrated for
the nonlinear kernel, and will thus be true for all nonlinear neighborhoods.
There are three cases to consider. If there is a horizontal border between

two subimages stored in different Flexible Processors, then pixels 1 and 2

in Figure 2C2.24(a) will be different in different Flexible Processors. If
there is a vertical border, pixels 2 and 3 will be in different Flexible
Processors. If there is a diagonal border, pixels 1 and 2 will te in different

Flexible Processors. The way in which to assign pixels to Flexible Processors in

s b g
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order to minimize computation time will depend upon the particular image
size, number of Flexible Processors used, time required for inter-Flexible
Processor communications and the shape and size of the neighborhood. These
factors will also determine the effectiveness of the use of the Flexible
Processor array for performing context clasaifications based on a given
neighborhood.

The discussion of performing classifications with the Flexible Pro-
cessor System demonstrates one way in which a multiple-~processor system
can be used to speed up the processing of image data. Future work involves
programming the context classifier on the Flexible Processor simulator
using different size and shape neighborhoods and determining the most effi-
clent assignment of pixels to Flexible Processors for each case examined.
The implementation of the classifier on the simulator and eventually on
the actual FP system will provide hard data to verify the effectiveness
of the parallel processing approach.

Through the use of parallel, pipelined, and/or special purpose compu-
ter systems such as the CDC Flexlble Processor System, the types of compu-
tations required for the context classifier and other computationally de-
manding processes can be implemented efficiently. This will not only re-
duce the computation time required to do contextual classification but
will also allow the investigation of techniques which may otherwise be
considered infeasible.
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6. The Flexible Processor Array System Simulator

6.1 Introduction

Each Flexible Processor (FP) has a complicated microprogrammable in-
ternal architecture. This was overviewed in Section 4. As stated earlier,
an advantage of this microprogrammable architecture is that it allows paral-
lelism at the instruction level. This makes user verification of the cor-
rectness of FP algorithms and accurate mathematical timing analyses of
these algorithms very difficult. Thus, in order to debug, verify, and
time FP algorithms, a simulator for an array of FPs has been developed.
This simulator runs under the UNIX operating system on a PDP-11 series
computer, and has been used successfully to program a maximum likelihood
classifier, as was discussed in Section 5. It displays the contents of
the FP registers on a terminal screen, in a format demonstrated in
Appendix 2C3, This section describes the modifications made to the "ori-
ginal" simulator [27] and the organization and operation of the current

simulator.

6.2 Modifications Made to the Simulator

The original simulator, written to simulate a single FP [27], was
used as a basis for the current version, The modifications made to the
original simulator come under four categories: (1) corrections, (2) ad-
ditional capabilities, (3) improved execution time, and (4) increased

documentation about the design of the simulator (program comments).

Our use of the simulator revealed some "bugs" in the system, all of
which have been corrected. The simulator now appears to perform as it

should.

The original simulator could simulate only one FP. The current
version can simulate up to sixteen, the maximum number allowed in an
actual system. Each FP in the new version has 20 times more memory
capacity (per FP) than previously allowed. The current maximum FP pro-

gram length is 2000 lines.

W
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The current program code is 15X longer than the original simulator.
The simulator occupies 38,040 bytes of main memory during execution.
While this is a substantial increase in the space required, most of the
increases in space are due to special buffering techniques employed.

Normally, output to the terminal is done one character at a time,
This requires the program to generate an interrupt to the operating sys-
tem for each character to be displayed. The operating system then checks
several flags, adds special characters where needed, awakens the device
driver, tells the device driver which terminal gets the output, and does
the output. The output from a single execution step requires exactly one
screen, which is 3370 characters. Buffering is done so that the computer
handles the interrupt routine once per screen instead of once per charac-
ter. The only change in the interrupt routine is that instead of display-
ing one character, the computer displays 3370, This reduces the load on
the system by 3369 interrupt routines per screen of output., Most of the
time required for output is not due to the physical transfer of data;
rather, it is due to the overhead of the interrupt routine. The net re-
sult is that the simulator output is over 3300 times faster with buffer-
ing than without. While the different command levels require different
size buffers, the buffering has decreased the average time required for a

display by a factor of 45.

The PDP~1l1l series computer uses 16 address bits; thus the maximum
amount of data address space is limited to 65,536 bytes. Each simulated
FP memory and registers require approximately 60,000 bytes, so a special
paging routine was written to page the simulated FP memories and registers
in and out of main memory as required. OQutput to disk is done in units
of 216 bytes. This makes the swapping routine run in i s»cond. Without
buffering, this routine took 2.5 hours of straight transfer time, This

program can run on a PDP-11/34 in a time-shared environment.

At the beginning of every major portion of program code, comments
describing the program flow and variables modified have been added. This
facilitates understanding of the routines and makes program modifications

easier,
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6.3 Organization of the Simulator

The simulator is divided into four programs, all written in C [28],
a language much like PL/I or PASCAL. Each of the four programs performs
a different task. "Monh.c" is the system monitor, which interfaces the
simulator to the user. "EXECh,c" is the simulator, which simulates all
of the system instructions except the 1/0 and the shift instructions.
"Shioh.¢" simulates the rest of the instruction set. The "helph.c" pro-
gram contains a brief help file for the user who is stranded in the moni-
tor routine. In addition, helph.c contains special routines that make the
program consistent with all versions of the UNIX operating system. This
makes the program portable for use on any system that supports UNIX and
the C programming language. In addition, this routine contains all the
paging algorithms that are used, making the routines localized, easing
possible debugging problems in the future. Some of the modifications to
the simulator were done with the aid of LARS programmer Craig Strickland

as consultant and debugger.

6.4 Operation of the Simulator

The prograa structure for a single FP simulation can be represented

by the following control tree diagram:

lCommand Leve]]

Single F’///‘(;;;;:y

Step Modification
Execution Level
Level

Modi fy Modify
Single Indexed
Register Register

All register files are considered index registers. The 16 FP sys-

tem is basically the same tree structure, but there is one more level in
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the control tree, as follows:
Processor Level |
Command Command Command Command Command
Level Level Level Level Level
For For For ) For For
FP #0 FP # FP #2 FP #14 FP #15

The structure beneath the command level is the same as fo: the single FP
case. If the monitor receives a '#', it will move one node closer to the

root of the control tree on any of the branches.

In the Command Level, there are 10 possible commands, which are as

follows:
s Singlc step program.
m Go to memory level,
1 Load assembled object code.
t Print the contents of the registers after the input offget
(used for debugging simulator).
\Y Save the current register values in a file called status.

e XXX Execute XXX program steps.
stop Exit from monitor routine.

! unix Execute system command.

# Move up one node to processor level

p Print out all the registers

h,H, Print out the help file, and the values in a file called
help, current node.

Help

If an 8 18 chosen, the simulator will simulate the execution of one
program step and will move to the single step node. The following is the

command set for the single step node.
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8 Single step program.

m Go to memory level.

e XXX Execute XXX program steps.

# Move up one node to command level.
P Print out all the registers.

h,H, Print out the help file, followed
help, by the name of the current node.
Help

dtemp Print out the contents of the temporary file.
dlarge Print out the contents of the large file.

dmem Print out the contents of the micro-memory.

If the m is typed, the only valid arguments are a 'f' or a register
name. The monitor will print the old value of the register and ask for
a new one if the register named is a single register. If the register
selected is a register file, the monitor will ask for the index. Upon
receiving the index, the monitor will print the old value and prompt the

user for input. Valid commands are as follows:

¢ XXX Changes the old values to XXX,
i Increments the index without changing the old value.

-~

Decrements the index without changing the old value.

# Return to original level (either the command level or the
single step level, depending on the level in which the m
was typed).

Invalid input will yield a "What?" asking for a correct command.

These are all of the functions supported by the simulator at this
time. Appendix2C3 contains flowcharts overviewing the operation of the
simulator. As mentioned previously, the maximum likelihood classifier
has been implemented using the simulator. We are currently in the pro-

cess of implementing a contextual classifier.

7. Summary and Concluding Remarks

During this contract year, notable progress has been achieved with

respect to the research objectives set out for this task. Specifically:
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1. Procedurss have been investigated for determining and represent-
ing the contextual information in a given scene. The performance of the
contextual classifier is found to be sensitive to the accuracy with which the
p-context distribution is estimated. Although good results have been
achieved, both with real and simulated data (Section 3), further work is
needed on methods for determining the context distribution.

2. The contextual classifier algorithm has been atalyzed with re-
spect to achieving efficient implementation on a multiprocessor system.

It has been shown that under rather severe restrictions on the shape of
the contextual neighborhood, an "ideal" speedup by a factor of N, for
an N-processor sys®em, can be achieved. Easing of these restrictions
definitely incurs a cost in terms of computation time, the details of
which are the subject of ongoing analysis (Section 5).

3. Actual implementation of the contextual classifieron multiproces-
sor systems has been limited tc development of a simulator for the CDC
Flexible Processor Array System and implementation, on the simulator, of
a maximum likelihood classifier (Sections 5 and 6, Appendixes 2C2 and
2C3). Computations performed by the maximum likelihood classifier are
identical to many of the computations required for the contextual clas-

sifier, but the overall algorithm is considerably simpler. Thus imple-
menting the maximum likelihwod classifier provided a useful means for

beginning to learn how to program a Flexible Processor Array System.

In support of the above achievements, the mathematical formulation
of the contextual classifier has been put on firmer ground and some in-
sights gained into the nature of the spatial context (Sectivn 2). A
significant amount of effort has gone into understanding the architec-
tural details ot the Flexible Processor, in order to use its facilities
effectively (Sention 4).

At this poiat in the study, we may conclude that the contextual
classifierdoes indeed lead to improved classification accuracy by utili-
zing spatial context information in multispectral earth resources data.
Although the computational dcmands of the proposed contextnal classifier
are substantial, multiprocessor systems such as the CDC Flexible Proces-
sor Array System can be used to achieve efficient implementation of thie

and other image processing algorithms.
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Ongoing research in connection with this project will be directed
toward better understanding the nature of contextual information in multi-
spectral image data and exploiting the computational efficiencies to be
gained through parallelism and other special features of advanced data

processing system architectures.
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APPENDIX 2C2

IMPLEMENTATION OF THE MAXIMUM LIKELIHOOD CLASSIFIER

ON A FLEXIBLE PROCESSOR

A. Initialization of the FPs by the Host Computer

B. Interrupt Routine for Flexible Processor

C. Overview of Maximum Likelihood Classifier Flexible Processor Algorithm

D. Flowchart of Floating Point Addition Routine

E. Flowchart of Floating roint Multiplication Routine

F. Flowchart of Tloating Point Compare Routine

G. Actual Flexible Processor Program
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A. INITIALIZATION OF THE FPs BY THE HOST COMPUTER

Initialize memory to zeroes.
Send FP size, p, sigma, X, and U.
Calculate det(sigma)

Calculate inv(sigma)

Calculate In(det(sigma))
Calculate In(p(w))

Send FP In]sigma), In{p(w))

Send FP inv(sigma)
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B. [INTERRUPT ROUTINE FOR FLEXIBLE PROCESSOR

Interrupt routine

!

save all
registers

increment new
value pointer

store value from
in given location

no unsave
jregisters

= pointer?

)

return

choose max
value - .d
print 1t

x

END




C.1. Load Data Into FP.

1) 7Zero all registers. This includes all in-
dex registers, index compare regiaters, large file
address registers, maintenence compare reglisters
and temporary file address (both read and write)
registers.

2) Read the first number and store it in re-
gister F.
3) Copy the number stored in the F register

into the 1index compare registers number 0 and 1.
(This number is the dimension of sigma.)

4) Load all conditions. (This means that the
index compare registers are going to test for
equality to n.) Index register three will check
for equality to zero.

5) Test and increment Index register three.
If {t is not equal to zero read a number, load it
fnto the F register.

6) Move the F register to temporary file zero
while incrementing the write counter.

D) If index register 0 does not equal n, go
to step S.

8) Zero all index registers while moving n to
the P register of the multiply while trapping in-
terrupts. (This can be done using the "sr" com-
mand.)

9) With 1interrupts trapped, meve multiply

output to condition register 2, (This means that
the condition registers are now set to check for
index regis- ter 0 and 1 equal to n, index regis-
ter 2 equal to n squared and 1index vregister 3
equal to zero.)

10) Test and Iincrement index register 2. If it
is n squared, exit.

11) Read a number, =store 1t In large file
zero, while sgimultanecusly {ncrementing its ad-

dress bhuffer.

12) Jump to step 10.
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C.2. Storage Format

The Storage format used in the processing scheme
1s as follovs:

Temporary files Large Files

n Sigmail,1] First Covariance
Hold Sigma([2,1) Matrix.
normalixed data X[1,1] :
vector for X[1,2] Sigma(n,1]
class one X[1,3] Sigma(l,2])
X[1,4) :
normalized data Y([1,1] Sigma[2,n]
vector tor Y{1,2]) :
class two Y[{1,3} Sigma[n,n]
Y(1,4) I

Sigma(n,n]

Sigma{l,l] Second Covariance
Sigma(2,1) Matrix

Sigéa[n,l]
Sigma(1,2]

Sigma[2,1]
Sigmal[2,n]

Sigma[n,n]
mean vector for U[1l,1])

class one ul1,2]
ul1,3]
ufl,4)
mean vector for V{1,1]
class two vi1,2])
vi1,3]
vil,4)
$iy., |
73 )‘N&‘. VA s
;”l', ;




C.3. First Matrix Multiplication

1) Initialize all registers. Move 1 to the
read address of temporary file zero. Zero all oth-
er index registers, large file addresses, tem-
porary file addresses.

2) Move temporary file 0 to the E register
(while incrementing the read address pointer.)

3) Move large file 0 to the G register (while
incrementing the address pointer.)

4) Call floating point multiply routine.

5) Store result in temporary file 1, while

increasing the write pointer.

6) If index 0 i8 n, jump to the subroutine
called sum.

7) If index 1 18 n, jump to the next multiply
routine.

8) Increment index reg 0.

95 Go to step 1.

10) Increment index 1 by 1.

11) Zero F register. (This is used as the ac-

cumulater for the floating point add.)

12) Zero index register O.
13) Zero temporary file ! read address.
14) Test and increment index 0. If it = n, go

to step 16.

15) Call floating point add subroutine. (40
cycles.) (this routine has been modified to incre-
ment the temporary file 1 read pointer as it goes
along, s this is not necessary.)

16) Go to step 14,
17) Temporary file 0 pointer = 1.
f
18) Store f in large file | (while {increment-

ing the pointer.) (F contains the result of the n
floating point adds.)

19) Return to calling routine
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C.4. Second Matrix Multiplication

1) Zero all pointers to large files and ten-
porary file 1 address.

2) Write a O to temporary file address 0.

3) Transfer temporary file zero memory loca-

tion O to index register 3.

4) Test and decrement register 3. If zero go
to wrap up.

5) While incrementing the pointer to tem-
porary file O, move the contents to the E regis-
ter.

6) While incrementing the pointe. to large
file !, move the contents to the G register.

7) Call the floating point multiplication
routine.

8) Call the floating point add routine,

9) Send the result to temporary file 1.

10) Go to step 4.

5€

c-87




c-88

D. FLOATING POINT ADDITION ROUTINE
FaE+G

floating pt.
addn. routine

strip signs

and save
for

later use

return other
number

reverse
the
numbers

numbers
= 0?

result = G-E
normalize
result
return
result = E-G
normalize
result
return
result = E+G
normalize
result
Sng (result) =
old Sgn(E)
return

PR . Py — - Pr T



floating point
multiply routine

!

multiply mantissa
add exponents
FO = product
Fl =5

Fo = 0?

no

yes
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E. FLOATING POINT MULTIPLICATION ROUTINE
F=E+G

F1=0

normalize FO,F1
return

\I

return




floating point
compare routine

Y

store £
store G

F. FLOATING POINT COMPARE ROUTINE

|

F=0
E = stored
value of £

F=1

E = stored

value of G
return

strip signs
off £ and G

strip signs
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Fe0
vaiud ‘oFee

exponent
of G < 0

off £ and G

£ = stered
value of G

return

A

Fe=0
E = stored

value of £

return

A

£ = max (E,G)
Fs1ifE=¢g

s 0ifEFG

4
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6. ACTUAL FLEXIBLE PROCESSOR PROGRAM
ORG tCia .
. AVERAGE TIML: €12 CYCLES FER PIXEL (DOWN 10%)
. _ 21N IXM[: 21E CYCLES PER FIXZL (DOWN 30%
»
RN RRnnInrrrInnrmmrmrnrIImnmmnmMmmmmIIInmnmmnmy
s22ad0BAYES MAXIMUM LIKELIHOOD CLASSIFIER VER. 091579 2:S50%eee

ses2sFOR TWO FIXELSeosassososnsncesscsccncnscssnsencsnssssnsactttd
23 M 2 2 E R R N R R R N R R R IR R R R A B R R E E R EE R R RN R E R R R X R R E R R R R N S E R RN AR R

1C » . * e FPLR . MAR NOP
TC = * LI $ 0000 " .

* FIRST INTERRUPT ROUTINE. THIS RCUTINE HANDLES THE INTER=- »

. RUPT T0 LCAD THE COVARIANCE MATRICESy THE MEAN VECTORS *

* AND THE DATA VECTOR. : *

ORG CO1t
TC » . LI ‘ VINR MAR NOP
TC » . L $ 0000 . * *

« THIS ROUTINE WILL HANDLE THE INTERRUPT WHEN THE HOST JUST »

« NEEDS TO ENTER THE DATA VECIOR. *

ORG ~00FE .

TC = * *  a $ 0000 * .

» THERE VALUES AKRE TC BE LOADED INTO COMPARE REGISTER 3. *
THESE WILL TEST THE RESPECTIVE REGISTEKS FCR INEQUALITY TO

+ THEIR COMPARE REGISTERS. *

»

IC » CLA « » $ 0000 TOWA TI1WA
TC » + . e $ 000) TFON TF1N
» THIS WILL CLEAR ALL OF THE INDPEX REGISTERS AND 2ERO THE *
* TEMPORARY FJILE WRITE ADDRESSES. .
1C «+ * * e $ 0000 NOP CMRO
» THIS WILL CLEAK THE TEMFORARY FILE 0 READ ADDRESS AND THE »
« CONDIVION REGISTER TO PREVENT SPURIOUS RESULTS. *
TC » * * » > 0000 NOP CMR2
* THIS WILL ZERO THE OTHEK CONDITICN REGISTER AND THE TEMP *
+ FILE READ ADDRESS. THE DIMENSION OF THE INCOMING DATA IS *
= ASSUMED T0 LF aXx4, IF THEMATIC MAPPER DATA 1S T0 BE USED =
+ THE MATRIX WiLL BE FIVE PY FIVE. *
TC » * LI s 0004 Fo ICR3
« THIS WILL STOKRE N IN THE INCEX COMPARE REGISTERS, -
TR » * LI * NOP NOP FO ICR1
TC + * LI $ 0010 NOP ICR2
¢ THIS IS JUST SETTING UP THLC COGUNTER VARIABLES FOR THE LOOP,«
WAIT TC » * * & WAIT MAR NOP
TC » * LI $ FFFF BRGO BRG1
TR » * *+ PUPU » MULT £o T *
+ THE HOST LILL START EXECUTION AT 100 ANG WAIT HERE FOR THE +
*+ HOST TO INTERRUPT THE FFe AT WHICH POINT THE .FP WILL DO A *
+ PROGRAM JUMP TC 80007y WHERE THERE WILL BE A JUMP T0 THE *
¢ CORRECT RCUTINE. .
. TH1S 1S THE WAIT ROUTINE, WHICH WAITS FOR AN INTEKRUPT. *
FPMR TR +» » LI E Al EO AD Q
* LOAD MULTIPLICAND *
TR » * LI ¢ [ AO P Al GO
« LOAD MULTIPLIER *
1C « . + s 0004 » CMRO
*+ THIS COADITION WILL CHLCK 1O SEC OF FO < 0. -
1C » . L $ 0Co02 * CHMR3
* 1S INDEXO = COMPARE REGISTER 0? , *
TR » CLO » PUQU ADD Al » AC Fi
TR » » *  PULU » MULT FO F1 €1
TR » * LI * . * FO 1CRO

*]F THE VALUE RETURNED IS 2EKOe 2ERO BOTH REGISTERS, RETURNe
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TC AL o JP e $ 0000 Fo
1C LD » DF s 0000 .

o JF FO 1S VUSTIFIEDs RETUKRNG THL PRODUCT 1S NORMALI
1C . . . ¢ 000¢C .
1C TANN JP e $ EOFF 61
TR TNN DF » AND AD ]

. SAVE THE EXPONENT IN Gls CLEAR E1 FOR A COUNTER
TR . LI ] 2RO F13 G1
TR o CLO » » ZRO AD £O

» BY HCRELy PRODUCT CANNOT BE Z2ERC.THE NORMALIZATION

o WILL TAKE LESS THAN FOUR REPEATS OF THIS LOOP. IF

« TAKES MCRE, THERE 1S SOMETHING FRANCHING DIRECTLY

« PROCESS,

NRM TR FNN INOD = . E+] AD £o
1C FNN » i . NRWN MAR
SH FRN «» LI * ‘NZIN L2}

* EY NOky THE RESULT MUST EE NORMALIZED!I' M
TR » * " » G AD »
TR «» * * * £ AO Gl
TR » * * » - FO £0
SH » . LI . LCIR LC1I
TR . * * AN6 AD EO

¢« THIS WILL TAKE THE NORMALIZED RESULT, SHIFT JY LEFTe ADJUST

*THE EXPONTENT, SC THAT IT AGREELS WITH THL MANTISSA.

TC = * . * $ O1FF 61
T1C » . » » $ FFFF .
TR ¢ . JP e ACE AD *
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« THIS WILL “MASK OFF" ANY CARRIES INTO THE UNUSEC PORTION OF«

« THE EXPONLENT,

SH » . DF = . NZIN RCI
* THIS ROUTINE DOES THE INITIAL SETUP OF THE VARIABL
FPLR TC CL2 » » $ ocC0 LOA

*+THIS CLEARS ALL THE INDEX REGISTERS AND THE LARGE FILE WRITEe

* POINTERS.,
TC » . LI $ 0020 NOP
1C « . LI $ 0010 NOP
* THDC 0010 TESTS FOR INDEXZ <> 1TS COMPARE.
*THIS WILL LOAD THEL COMPARE REGISTER TO CHECK FOR IN
*REGITER EGUAL TO 1TS STORLD VALUE.
1C ¢« = LI $ 0009 TowW

F}
.
2t0. *
CMR)
-
Al Fi

N
AD €1
L L ]

PROCESS »

IT EVER

T0O THIS o
L ]

‘A *
*

N NZIN S
*

Al F1
Al ()]
F1 £l

R LZ2IN S

Al £l
«
*
*
G0

Al F1
|

R NZIN S

£ *

1] L1AD
L J
1CR2
CMR3
]

DEX .

*
A T1WA

+THIS LOADS THE TEMPORARY FILE WITH THE OCTAL LOCATION OF THEs

«MEAN VECTOR,

1C » . LI | $ 0088 FO
10 » « . . . FO . DS
*THIS LOADS THE BANK AND ADDRESS LOCATION OF THE COVARIANCE
*«MATRIX
* THIS ROUTINE LOADS THE COVARIANCE MATRIX.
1 MR 10 « IN2 . . . . DS
' TR » . « e . 20 FO 21
THIS LOADS THEL MANTISSA INTO THY F1 REGISTER.
AND LOADS THE EXPONENT INTO THE FO0 REGISTER.
TC AD = LI 1MR MAR
TR » . LI ] ] FO LFOU F1
. THIS 1S THE KOUTINE THAT LOADS THE MEAN VECTOR.
MNR  TC = CLY » » $ 0040 NOP
1C » * LI $ 0008 NOP
« THE 0040 IN CMRI TESTS FOR INDEX3 <> 17S COMPARE
IMNR TR » INI o o . Z0 FoO 21

» THIS DOLS THE 1/0 CALL AND LOADS
*« REGISTER PAIR

-

Lsg o

NOP
LF1U
.
CHR3
ICR3
»

F1

THE NUMBER INTO THE FO-F1e

*
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» THIS DOLS THE 1/0 CALL FOR THI MEXT NUMBER
SH » * . * * * LN3} *
* THIS SHIFTS THE MLAN VECTOK TO THE 'LEFTy AND NEGATES THE
» SIGN B1T, :
SH ¢ * . . * (] RCIR *

S e s e

*
*THIS NEGATES THL SIGN GF THE MEAN VECTOR AND SHIFTS IT IN TOs
*THE SIGN POS]ITION. THIS 1S LONE EECAUSE THE VECTOR MANTISSAe
1S IN S8M FORM. THIS WAYe AN ADDITION TO THE VECTOR WILL »
*ACTUALLY PERFORM THE OPERATION OF SUBTRACTING THE VECTOR *

*FROM THE ALDEND. : .

10 AD » * * * e .. DS R = o«
*+THIS DOES THE 1/0 CALL FOR TYHE NEXT NUMBER CIF THERE 1S ONE)e

TC AD . " 1MNR MAR NOP

IR » * e e . FO LFOU F1 LF1U

*LOAD THE NEXT ELEMENT IN .THE VECTORs AND STORE THE NEW VALUEe
*THIS KOUTINE LOADS THE NORMALIZES THE DATA VECTOR. IT CAN =

«BE CALLED TO0 EXECUTE BY ITSELF. *

1C » . * s $ 0004 * ICR3
VINR TC » * « w S 000A TOBA TiBA
. TC » . LI $ 0040 NOP CMR3
* THE 0040 TESTS FOK INDEX 3 <> ITS COMPARE *

TC » CL3 » » $ 0027 fo NOP

10 » * . @ . FO . DS LSB » »
* THIS INITIALIZES THE LOCATION OF THE READ POINTER. ‘e

J0 = * r % * * * (119 R * &
* THIS STARTS THE FIRST READ. »

TC » * LI $ 0020 LOAD L1AD
LOIP TR »  IN3 + . 20 Fo 21 F1
+ TH1S LOADS THE MANTISSA AND EYPONENT INTO THE FO0-1 REGISTERs
s PAIR, *
* THE FOLLCWING DOES THE 1/0 CALL,

10 AD Y * . * DS R . e
* THIS 1S EXECUTED BEFCRE THE JUMP AND 1T WILL LOAD THE NEEDED DATA INTO
* THE 20-21 REGISTER PAIR BEFORE IT 1S NEEEDEDes ELIMINATING A TWO CYCLE
. NOT READY WAIT,

TC AD » L ) LOIP MAR NOP

TC » . P $ 0000 BRGO BRG)
* AFTER NORMALIZING THE DATA VECTORe STORE ITs REPEAT UNTIL ALL
* THE ELEMENTS ARE FINISHEDs THEMN REPEAT THE CYCLE UNTIL ALL FOUR ELEMENTS
* ARE FIN]SKED BEING PROCESSEC.

TC . . $ 0020 LOAD L1AD

TC » * 4 $ 000A TORA TIRA

TC » CL3 ¢« » $ 0002 TOWA TINA
LO1P TR » INY » * TFOU EBRGO TFIU BRG)

TC » * SR » . FPAR MAR *

TR ¢ * 0 L LFOU FO LF1U F3

TC . L $ 0040 . CMR3

T1C AD " LO1P MAR *

TR » . e * FO TFoU F1} TF1U

1C » CLY ¢ o $ 000A TORA TIRA
LO2P TR o INI » o * TFOU @BRGO TF1U BRG]

TC » * SR o FPAR MAR »

TR * ¢ e . LFOU FO LFIVU F1

1C » . LI $ 0040 L CMR3

1C AD LI LO2P MAR .

TR » . * . FO TFOoU F1 TF1U

. TH1S STORES THE DATA NORMALIZED OATA VECTOR IN LOCATIONS 2-5 DOF THE

* TEMPORARY FILE, THE SECOND VECTOR WILL APPEAR IN LOCATIONS 6-9 OF
. THE TEMPORARY FILE.

¥
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THIS WILL FALL THROUGH TO THL MATRIX PROCESSING ROUTINE,

THIS 1S THE ECGINNING OF THE MATRIX MULTIPLY ROUTINE.

STRA TC = CLA ¢« o $ 0000 LOAD L1AD
TC » * ' e $ 0000 BRGO ERG1
T1C » s LI $ 0001 T0BA T1BA
1C » . .0 $ 00C1 TFoU TF1U
TC ¢ . LI $ 0002 T0BA TiBA
MLTY TR » INI & @ . TFOU €O TFIV €1
+ THIS LOADS THL MULTIPLICAND INTO THE EO-E1 REGISTER PAIR.
TC » . SR « FPMR MAR NOP
+ TH1S DOLS THE PROGRAW JUMP T0 THE FLCATING POINT MULTIPLY ROUTINE.
TR » * LI * LF1VU G1 LFOU GO

THIS STEP IS DONE BEFORE THE JUMP IS ACTUALLY EXECUTED. THIS WILL LOAD THE

*
+ MULTIPLIEK INTO THE GO-61 REGISTER PAIR.. (F=EXG FLOATING POINT MULT)

TC » * SR » FPAR MAR NOP
+ THIS STEP WILL DO A JUMP TO THE FLOATING POINT ADDITION ROUTINE.THIS ROUT-
¢ INL CALCULATES THE SUM OF THE CONTENTS OF THE F REGISTER AND THE BRG REGIS-
o TER PAIR, ThHL RESULT OF THE ADD 1S THEN STORED IN THE F REGISTER.
TC » * LI S 0004 NOP ICR1
[ . « e s 0004 NOP CMR3
. THE 0004 TESTS FOR INDEX1 <> 17S COMPARE
*+ THIS 1S EXECUTED BEFORE THE JUMP. 17 WI1LL JUST LOAD THE CONDITION REGISTER
« WITH THE NEXYT CONDITION TO BE TESTED.
TC AD » . % MLTY MAR NOP
TR » * * e . FO BRGO F1 BRG1
*« ON INDEX REGISTER 1 NOT EQUAL TO 1TS COMPARE, JUMP TO0 BEGINNING OF rULTIPLY
* ROUTINE,
TC » . LI $ 0001 TOBA Ti18A
IR » . L . TFIN EO NOP NOP
. GET ADDRESS OF JTH ITEM IN THE DATA VECTOR.
TR » . t  * ACO Al TIFOD A0 TF1D
TR ¢ . « @ ACO AD TORA AD TiRA
*» THE ABGVE WAS A CHANGE TO0 INSURE THAT THE PROGRAM WORKS, THIS 1S KEPT.
+« THIS WILL UFDATE THE ADORECSS FOR THE NEXT ROUNDs SYORE ITe AND POINT TO THE
1TEK IN QUESTION,.
TR IN2 » ¢ * TFoC [0 1F1C ¢t} :
THIS WILL LOAD THE MULTIPLIER FOR THE SECOND MULTIPLY INTO THE EO-E) REG-
*+ ISTER FAIR. SIMULTANEQUSLY, THIS UILL ZERO THE TEMP FILE POINTERS. THEY
« WILL NOW POINT 10O THE LOCATION OF THC ACCUMULATOR.
TR » L . BSRO 61 BSR1 6O
7C » * SR » FPMR MAR NOP
IR ¢ » LI 6 AQ 61 Al 1]
« THIS IS JUST A SUBROUTINE JUMP TO THE FLOATING POINT MULTIPLY ROUTINE.
*» FzLYG
1C » . SR FPAR MAR NOP
TR » . LI . TFON ERGO TFIN BRG)
. F=F+BRG. THIS CALCULATES THE SUBTOTAL OF THE MATRIX MULTIPLY.
TR * LI . FO TFON F1 TFIN
TC = . . ¢ $ 0002 TOBA TiBA.
¢« THE ABOVE TwQ STEPS LCAD THE SUB TOTAL INTO THE TEMPORARY FILE LOCATION
« 26RO, 1T THEM RESCTS THE READ AND WRITE POINTERS OF THE TEMPORARY FILE TO
¢« LOCATION TWO.
1C . . » $ 0004 NOP ICR2
1C » * « e $ 0010 NOP CMR3

THE 0010 YESTS FOR INDEX2 # JTS COMPARE,.
THIS WILL DO A TEST FOR INDEX 0 NOT EGQGUAL TO 178 COMPARE REGISTER.

YC AD CLY » ¢ MLTY MAR NOP
1C » . + $ 0000 BRGO BRG1
TR o » + PUGL » . * MULT  MCR)
1C » . . * ¢ 0000 T0BA TiBA
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TC e o« » $ 0026 LOAD L1AD
TRs o & 0 . 1FON LFON TFIN LFIN
IC s & o o 5 0000 . 1FON TF1IN
ST2A TC + CLA s ¢ $ 0010 LOAD LIAD
IC s+ & o s $ 00600 8RGO BRG1
TC o o o $ 0001 1084 T1BA
e o« o o s 0005 TFON TFIN
TC ¢ ¢ o o S 0006 1084 T18A
ML2Y TR *+  INl ¢ o . TFOU EO TFIU £}
¢ THIS LOADS TME MULTIPLICAND INTO THE EO-E3 REGISTER PAIR.
1€+ o SR e FFMR MAR NOP
¢ TH1S DOES THE PROGRAM JUMP 10 THE FLOATING POINT MULTIPLY ROUTINE.
TR ¢ o o . LFIU 61 LFOU GO

*

» TH1S 1S EXECUTED BEFORE THE JUMP,.

THIS STEP 1S DONE BEFOKE THE JUMP 1S ACTUALLY EXECUTED.. THIS WILL LOAD THE
MULTIPLIER INTO THE G60-Gl REGISTER PAlIR. (FzEXG FLOATING POINT MULT)

1C o . SR » FPAR MAR . NOP
THIS STEP WILL DO A JUMP TO THE FLOATING POINT ADDITION ROUTINE.THIS ROUT=-
INE CALCULATES THE SUM OF THE CONTENTS CF THE F REGISTER AND THE BRG REGIS-
TER PAIR, THE RESULT OF THE ADD IS THEN STORED IN THE F REGISTER.

1C » * . e § 0004 NOP ICR1

1C + * * » $ 00Ca NOP CMR3

THE 0004 TESTS FOR INDEX1 <> 1TSS COMPARE

)T VILL JUST LOAD THE CONDJTION REGISTER
WITH THE NEXT CONDITION TO EE TESTED.

TC AD . w ML2Y MAR NOP -

TR * LI ] * FO BRGO F1 BRG1
ON INDEX REGISTER 1 NOT EQUAL TO 1TS COMPAREs JUMP TO BEGINNING OF MULTIPLY
ROUTINE .

1C » . . o« $ 0001 T0BA T1BA

TR » . LI * TFIN EO NOP NOP

- GET ADCRESS OF JTH 1TEM IN THE DATA VECTOR.
TR ¢ * . @ ACO Al TFOD AOD 1F1D
TR + * . » ACO AD TORA AD TiRA

THE ABOVE WAS A CHANGE 70 INSURE THAT THE PROGRAM WORKSe THIS IS KEPT.
TH1S WILL UPDATE THE ADDRESS FOR THE NEXT ROUNDs STORE ITe AND POINT TO THE
ITEM IN QUESTION.

TR + IN2 » 9 * TFOC E0 IF1C €1
« THIS WILL LCAD THE MULTIPLIER FOR THE SECOND MULTIPLY INTO THE EO-E31 REG-
o JSTEK PAIR. SIMULTANEOUSLYs THIS WILL ZERO THE TEMP FILE POINTCRS. THEY
+« WILL NOM FOINT TO THE LOCATION OF THE ACCUMULATOR.

TR » . . . * BSRO 61 BSR1 6O

1C » . SR » FPMR MAR NOP

TR * L ] 6 AOD 61 Al GO
¢« THIS 1S JUST A SUBROUTINE JUNMP TO THE FLOATING POINT MULTIPLY ROUTINE.
¢ F=EXG6 .

1C » SR ¢ FPAR MAR NOP

TR = * + 0w * TFON PBRGO TFIN BRG1
. FzF+BRG. TH1S CALCULATES THE SUBTOTAL OF THE MATRIX MULTIPLY.

TR o . LI * FO TFON F1 TFIN

TC o o o » $ 0002 1084 T1BA
o THE ABOVE TWO STEPS LOAD THE SUF TOTAL INTO THE TEMPORARY FILE LOCATION
« 2ERO, 17 THEM RESETS THE RCAD AND WRITE POINTERS OF THE TEMPORARY FILE 10
¢ LOCATION TWO,

1C » * U ) $ 0004 NOP ICR2

1C » . . * $ 0010 NOP CHMRY
e THE 0010 TESTS FOR INDEX2 & 1TS COMPARE.,
« THIS WILL DO A TEST FOR INDEX O NOV EQUAL T0 ITS COMPARE REGISTER.

TC AD CL1 » » mML2Y MAR NOP
1C » . . » $ 0000 BRGO BRG]
IR . *+  PUGL . . MULT MCR3
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. THE PKOGRAM WILL NOW FALL THROUGH 10 IHE OTPTY SECTXON OF THE PROGRAM.
o THIS 18 THE OUTPUT ROUTINE.
1C » « e e $ 0000 1nBA T1BA
TC » LI $ 0026 LOAD L1AD
TR « . LI . TFIN G} TFON GO
1C » * LI FCMP MAR ]
TR » . * e * LFORN €0 LFIN E}
FINL TR ¢ " + PUPU » MULT PRGO ¢ .
1C » » « » $ 0000 TORA T1RA
OTPT 10 » * LI * . TFON DS v LI I
10 » - * * * JFIN . DS '] "t 2 e
TC » * LI WALT MAR NOP
* THIS 1S THE FLOATING POINT ADDITION ROUTINCL. 974779, 3:45:00,
FPAR TR » - LI . ASR1 G1 Fl €1
SH UNS CLD « = . LZIN NZIN LZIN S
SH » * LI ] . RZIN N2IN RZIN S
. THIS WILL STRIP THE SIGN OF THE MANTISSA AND SAVE 17 FOR FUTURE USE.
TR » * LI | * R . BSRO ICRO
TC TNN » . . $ 0000 * CHRO
TC TNN » LI | s 0010 . CMR}
TR TNN » JP * " * . .
TR TNN » DF * . . . .
TR » . LI ZRO AD * Al CHMR1
* THIS WILL COMPARE THE BRG TO 2EROs IF 1T 1Se RETURN.
TR » * L ZRO AD EO Al 60
* THIS WILL 2ERO THE REGISTERS TC PREVENT SPURIOQOUS RESULTS.
TR » . * . £E-6 AO NOP Al ICRO
. IF JEJ<|C)s THE PROGRAM WILL REVERSE THE NUMBERS AND CONTINUC.
* SINCE ADGITION 1S CCMMUTATIVE,. THIS SHOULD NOY AFFECT THE RESULTS.,
TR » - * * XOR Al €0 ARD NOP
TC » « +r 0w $ 008C » GO0
TR » . * * . AND Al * AD GO
TC » * + e S 8000 ED *
TR = * LI £-6 Al * AO GO
1C » . . e $ 0010 . CMRO
TC FNN » * * NSH MAR *
* IF THE EXPONENT ON ONE OF THE TWO NUMBERS IS LESS THAN ZERD
* AND THE CTHER IS NOT, SUSBTRACTION TO YIELD THE NUMBER OF SHIFTS
. WILL NUT YIELD THE CORRECT ANSWERe AND THUS SPECIAL HANDLING
. MUST BE ADDED TO0 COMPENSATE FGR THIS PRORLEM, THE WAY THAT THIS
* ROUTINE HANDLES THE PROBLEM IS IT EXCLUSIVE ORS THE TWO NUMBERS
* TOGE THER AND THEN STRIPS OFF EVERYTHING EUT THE SIGN BIT. THIS
* 1S THEN SUBTRACTED FROM A CONSTANT (FOR SPEED).THE CONSTANT IS
L 8000y THUS IF THLRE IS A 1 IN THE SIGN POSITIONs THE RESULT WILL
* NOT BE NEGATIVE, INKDICATING THAT THE CORRECTION MUST TAKE PLACE.

TC TNN
TR

1 ]
*

[ ]
*

E-G

$ 0020

Al

Gl

CHMRO

THIS WILL TEST FOR E~-G->G NEGATIJVE. THIS IS ToO lNSURE THAT |BRG| >=
{Fle SIFKPLIFYING THE ALGORITHM GREATLY.
TC TNN » " SWAP MAR NOP
. THIS INVOLKES THE SWAP ROUTINE THAT WILL FORCE THE ABOVE 70 BE TRUE.
TR » * LI ZK0 . * AD CMRO
TC » . LI $ 0010 . CMR1
THE 2ERCES THAT ARE LOADED INTO CONDITION MASK REGISTER 0 TELL
THE MACHINE NOT 70 CHECK FOR ANY OF THC CONDITIONS REPRESENTED.
THE 0010 LOADED INTO CMR) TELL THE MACHINE T0 CHECK FOR THE COMPARE
REGISTER GREATER THAN INDEX REGISTER ONfe IN THIS CASEs THIS WILL
DETERMINE WHLTHER THE TWO NUMBERS ARE EQUAL OR EGUAL AND OPPOSITE IN
MAGNITUDL AND SIGN.

TR . » e

2RO . AD 61 Al €1
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TC TNN o LI tLuL MAR
. 1F THEY AREs THE PROGwAM WILL JUHMP TO A SPECIAL ROUTINC.

NOP

. BY TH1S POINT IN THL PROGRAMy |E[D]C). °
TR ¢+ o o ' BSRO (€O Fo 6o
ICe o o @ $ 0010 . 10x0
L{ I $ 0020 . CMR1
TC INN & o o RINF MAR NOP
. IF THE NUMSER OF SHIFTS KEGUIRED > 164 RETURN THE VALUE IN THE
E . F REGISTER.
TR« o & o ZRO Al 61 AD CMR1
1€« CLD s 5 0001 . CMR3

* THIS LOADS THE DATA T0 BE PROCESSED AND IT PROGRAMS THE CPU TO CHECK
. FOR REGOFINDYO. THIS IS REPRESENTED BY A ONE IN THE FIRST POSITION.
. CHECK IS INVOLKED BEY THE AD COMMAND.,
SHFT SH » INO « o » N2ZIN NZ2IN S

TC AC » . e SHFT MAR - - NOP
« INDEX REGISTER COUNTAINS THE AMOUNT BY UHICH G>Es (THE NUMBER OF ORDERS
! + OF MAGN]ITUDC. THIS ROUTINE SHIFTIS E TO 1HE RIGHT UNTIL THE TWO ORDERS OF

THIS

RZIN

. HAGN]TULE ARE CQUAL.
1C » . . » $ 0000 61 ' .
TC » - » . $ 0020 ' * CHRO
TC FPN » LA GPOS MAR NoP
. IF 61 >= 04 1TS SIGN IS TAKEN TO BE POSITIVEs AND THE NUMBERS ARE

HANDELED IN A CORRESPONDING MANNER.
BY THIS POINT¢ G MUST BE NLOL.TIVE.
TC » * LI $ 0002 : * CMRO
TC TPN » LI SSGN MAR NOP
. IF E 1S NEGATIVE,. AND G IS NEGATIVEe. THE SIGNS ARE THE SAME AND THE
. TW0 NUMBERS ARE JUST ADDED ANC ONE OF THE SIGNS 1S PRESERVED.
JC » * LI * * * *
* AT THIS POINTs [|GI>|E]e THE RESULTANT SIGN WILL BE THAT OF G.
. WITHOUT REGARD TU SIGNs THE RESULT WILL BE THE OLD SIGN OF 6
. PLUS |G-E].
DSGN TR « * « « [N AD EO . )
) IR ¢ N * a Ee1 AD £0 * .
TR » * LI ADD Fi EC AD GO
. TH1IS CALCULATES G-E.
TC » LI B s 0010 ) CMRO
. IF THE RESULT 1S >= 2EROs THERE IS NOT A ONE IN TTHE FIRST BIT POSITION,
. SO THE NUMBER 1S NOT NORMALIZEDs AND MUST BE SHIFTED UNTIL THERE APPEARS
. A *1¢* IN THE FIRST BIT POSITI1ON,

NORM TR FNN » LI £E-1 AD EC . .
JC FNN » LI ] NGRM MAR NOP
SH FNN » LI * NZIN NZIN LZIN S
. THIS ROUTINE NORPLIZES THE DATA
IR o » * .« AD FO . ]
TC . LI $ BOFF . G0
TR » . LI AND . * A0 Fl
1C . . 0 $ 0002 * CMRO
SH » i LI . NZIN LZIN NZIN S
SH TPN » LI * NZ2IN ROIN WZIN S
SH FPN » LI * NZIN RZIN N2IN 6
1C » * JP o $ 0000 ] - .
TC » * DF » $ 0000 ’ .
. THIS ROUTINE SETS THE SIGN T0 THL SORRECT SIGN AND RETURNS TO THE CALLIN
. ROUTINE.,
GPOS TC TPN ¢ LI OSGN MAR NOP
TR » *» * . * * * * [

EEFORL THE JUMP TDO GPOSy THE CONDJTION REGISTER WAS SET 70 CHECK FOR

€<0.

IF IT 1S,

£:4

THE SIGNS ARE OPPOSITE AND THE DATA IS TREATED




SSGN

EQuL

EPOS

ZAPP

NSH

. s e
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CORRESPONDINGLY,
BY DEFAULTs COTH G AND E HAVL ,THE SAME SIGNy SO THE RESULTS ARE JUSY
ADLED.,

1R o . . 0 . . . FO G0
TR » . v e ADD Al G1 AD [{]
SH » » * e . N2IN NZIN RCIR S
1C . + e $ 0010 NOP CMRO

THIS CHECKS FOR A CARRY OUT OF HME MSBe INDICATING NORMALIZATION 1S
NECESSARY.

TR TINN » L ¢ F1l €o * .

TR TNN » . 0 £+ AD (/] . .

TR TRAN ¢ LI ] d AD Fo * L

TC TRN » JP ¢ $ COfF * GO

TR INN » DF » AND . * AD F1

IF 1T 1Sy THEN THE NUMBER 1S NORMALJIZED AND THE SUBROUTINE RETURNS.
SH » " JP » NZIN N2IN LCIR S

TR * OF » 6 AD "FO * .

THIS ROUTINE EXCHANGES THE TWO REGISTERS INVOLVED SO THAT |GI>|E]|
TR o * L) * Fl Gl FO GO

TR » . LI * BSRO FoO BSR1 F1}

TC » * LI FPAR MAR NOP

IR » * LI ] G AOD BRGO A} BRG1

THIS CALLS THE ORIGINAL ROUTINE. . .
THIS 1S THE ACTION TAKEN WHEN THE ROUTINES HAVE THE SAME MAGNITUDE.

TC » * . w s 0000 NOP CMR)
1C . L) $ 0002 NOP CMRO
TC FPN » ¢ e EPOS MAR NOP
1C » . L $ 0020 NOP CMRO
TIC 1P » * * SSGN MAR NOP
T1C FP ¢ LI ] SWAP MAR _NOP
TC * LI $ 0000 NOP NOP
TC FP o LI ) SSGN MAR NOP
1C « . v e $ 0100 NOP CMRO
TR . ¢ e £=6 NOP NOP NOP NOP
JC TN » LI ZAPP MAR NOP
TC » * * e S 0020 NOP CMRO
TR » . LI t£~6 Al 61 A0 NOP
TC IN * DSGN MAR NOP
TC » * L $ 0000 G1 CMRO
1C » 4 . * CSGN MAR NOP
TR . ¢ . . NOP NOP BSR) F1
TC » * « » $ 0000 * .

TR » * JP ¢ ZRO AO FoO Al F1
1C » * DF » $ 0000 NOP CMRO
THIS ROUTINE HANDLES NUMPERS THAT HAVE DIFFERENTY EXPONENTIAL SIGNS.
TC « CLO « » $ 0010 NOP CMRD

BUG IN ASSEMBLER. NULL LINE WILL NOT BL ASSEMBLED. B8Y THIS POINT
IN THE PROGRAMs THE EXPONENT ON ONE OF THE TWO NUMBERS MUST

BE LESS THAN 2ERO. THIS PART OF THE ROUTINE VILL FORCE THE NEGATIVE
PART 10 BE STOKED IN ERG REGISTER. SINCE A SWAP CAN TAKE PLACEK,

ALL THE ORIGINAL FLAGS MUST bEL RESET IN THE EVENT OF ASHIFT.

1R o . PO '3 AI1SW » AORZ GO

1C THNN » L GLZ MAR NOP

THE G/BRG REGISTER CONTAINS THE NEGATIVE EXPONCNTe NO SWAP NEEDED.
TR FNN « * . . Fi Gl Fd G0

TR « . v @ . 8SRO FO BSR1 F1

TR » L * . 9 AQD BRGO A} BRG1

TR o . . . . BESR1 61 Fl €1

SH UNS ¢ LI . LZIN NZIN LZIN S

SH o . . » * RZIN N214 RZIN S
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’ THIS SWAFS IH[.TQC NUMBLRS AND RESETS ALL THE FLAGS NEEDED PY THE
. REST OF THE KOUTINE.

6LZ TC » ) LI | $ 0000, - €0 6o
TR . s 0 £-6 A1SW o AOSV GO
TR » * LI ] 6 AIR2 NOP AORS ICRO

.. CALCULATE THE NUMEER OF SHIFTS NEEOED, IF IT IS < 0y IT7 1S

. ACTUALLY > B0 (16)y SO RETURN THE VALUEL IN THE F REGISTER.
.
JC TRN « LI RTINF K AR NOP
TR ¢ . . » G AOSW f0 A1R2 NOP
TC » . LI $ 0010 . G0
TR » . s ¢ £-6 Al NOP AD GO
TC FNN = LI RTNF V.AR NOP
* IF THE NUMBER OF SHIFTS REGQUIRED 1S > 3¢+ RETURN THE DATA IN THE
» F REGISTER.,
IC » » * e $ 0000 d CMRO
TC . r e s 0000 . £l
TR » * * 0 . BSRO €O FO GO
JC » * L SHF 1 MAR NOP
1C . L s 0001 . CMR3
L] PREPAIR TO SHIFT THE DATA AMD RETURN TO SHIFTING ROUTINE,
RINF TR o * JP ¢ . . * . *
TJR . DF » . » - . »

. RETURN THE CONTENTS OF THE F REGISTER.
"« THIS 1S JUST FOR A BREAK POINT AND 1T 1S TO BE REMOVED WHENe

» THE PROGRAM 1S ACTUALLY INSERTED INTO THE CODE. .

FCMP TC UNS » . $ 0000 T0BA T18A

» THIS ACCEPTS THE DATA IN THE € REGISTER AND G REGISTER AS

¢« INPUTS. INJTIALLYs THE PROGRAM STORES THE ORIGINAL DATA IN
* TEMPORARY FILE. THE € REGISTER GOES IN LOCATION O AND THE =
* 6 REGISTEK GOES IN LOCATION 1, THE FOLLOWING WILL ALSO .
¢« STRIP OFF THE SIGN 517 .
TR = L L] . E AOD TFOU Al TFiU
TR » * L G AC TFOU Al 1F1v
« THIS ROUTINE STRIPS OFF THE SIGN B1Te THE CORRECT SIGN BIT »
« IS SAVEC IN THE PAST REGISTER. *
SH e« «  « » , LZIN NZIN L2IN S
SH » * . . * RZIN NZIN RZIN S
TR « . LI E A1SW E0O AOSY E)
TR = N . . G AOSY Gl Al1SV GO
¢« THC 0002 IN CMRG WILL CHECK FOR €£) NEGATIVE., THIS 1S DONE »
« IN THE PAST SENSE. IF L1<0y THEN JUMP T0 THE ROUTINE THAT »
» WILL HANDLE THAT CASE. .
TC « * * * $ 0002 NOP CMRO
1€ TPN . * EMNG MAR *

+ BY THIS POINT, THE € REGISTER MUSYT NOT BE NEGATIVE (>=C) *
» THE 0020 JN THE CMRO WILL TEST FOR G<O0. JF G<COy £ IS THE *

¢« GRCATER OF THE TW0 NUMLERS. If NCT4 THEY ARE ROTH >= 0. .
TC . . . $ 0020 . CHMRO
TIC TPN » . . EGRY MAR .
¢ TH1S VILL DCTERMINE IF THERE IS A DIFFERENCE IN EXP SGN. .
TC 1PN * e $ 0000 . .
TC TNN » LI GXNG MAR .
* THIS WILL DU A JUMP IF THE SIGN OF G IS 14 OR G NEGATIVE *
IN THE EXPONENT PORTION. .
T1C » * L $ 0002 . CMRO
TC TNN » ¢ a GGRY VAR ]
¢ BY HERL4 THE EXPONENY OF G 1S POSITIVE., IF THE EXPONENT OF e
e« £ 1S NEGATIVEs BOTH MANTISSAS BEING POSITIVE. E<G .
TR FNN ¢ . w £-6 AD €o Al €1
/00
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TC TAN o LI ] GGRTY, KAR .
1C FAN ¢ . e $ 0000 Fo Fi
1C » . JP e $ 0000 TOBA T184A
TR o . OF o . TFON ([0 TFIN )
o SINCL BOTH LYPONENTS ARD MANTISSAS ARC LONNEGATIVE, THIS .
o ROUTINE CALCULATES €-Gy EXPONCNTS IN THE HOBP AND MANT]ISSASe
* IN THE LOBPS. IF THE RESULY 1S <€ 0¢ G>E¢ ELSE RETURN E. .
GGRT T1C o * LI $ 0001 T0BA 7184
I1C . JP e $ 0001 Fo F1
TR » * DF o * TFON €O TFIN [}
» JF F1>z04 E36¢ RETUKN TFL1) *
EGRY TC » * e e $ 0000 FO Fi
TC » . JP o $ 0000 T0BA TiBA
TR » * CF . TIFON EO TFIN 01
« THIS IS THC SECTION OF THC PROGRAM THAY IS CALLED IF £ 1S o
o NEGATIVE. (MANT]ISSA) ‘e
EMNG TC o . * e $ 0020 . CHRO
1C FPN ¢ LI GGRT MAR NOP
o THIS SECTION DOES THE COMPARE 1F BOTH THE OPERANDS ARE ¢ 0 ¢
« THIS WILL DETERMINE 1F THERE 1S A DIFFERENCE IN EXP SON. .
NCHP TC » . s e $ 0000 . .
TC TNN » * ¢ GBNG MAR *
s THIS WILL DO A JUMP IF THE SIGN OF 6 1S 1, OR G NEGATIVE .
e IN THE EXPONENT PORTION, . .
1C . « e $ 0002 » CMRO
TC ENN o o e NNPP MAR .
e« BY HEREy THE EXFONENY OF 6 1S POSITIVE. IF THE EXPONENY OF o
e £ l% NEGATIVE. EOTH MANTISSAS BEING NEGATIVE, EXG *
TC TRN * » $ 0000 FoO Fl
TC » . JP » $ 0000 T0BA TiBA
IR » * DF » » TFON €0 TFIN £}
« THE ABOVL WILL KETURN .
GBNG TC TNN » * @ EBNG MAR .
*» BOTH G*S EXPONENT AND SIGN ARE NEGATIVE. IF TRUEy THE SAME »
* HOLDS TRUE FOR E£. 1F THIS 1S FALSCs RETURN G. .
1C » . s $ 0001 108A T1BA
1C e + JP = $ 0001 Fo R
IR o » DF o . TFON EO TFIN €1
EBNG TR o ¢ . ¢ £~-6 AD £o Al €1
TCFNN ¢ o o GGRT MAR .
7C » . PO $ 0000 FO Fl
TC » * JP ¢ $ 0000 T0BA T1BA
1R o * DF » . : TFON €0 IFAN £}
e BOTH THE MANTISSA AND THE EXPONENTY OF BOYH £ AND G ARC .
¢« LESS THAN ZERO., CALCULATL [£-G. JF RLCSULT POSITIVE, GDE .
GXNG TC FAN » ¢ 0 EGRT MAR NOP
TC » . L $ 0000 » .
TESYT TR » . L I £-6 AD EO Al £l
TJC FNN o s @ EGRY MAR NOP
TC INN » . @ GGRY MAR NOP
TC = * + @ $ 0000 . .
*« AT THIS (PRECEEDING LINE) BOTH € AND G ARE POSITIVE. THE .
o SIGN OF THE CLXPONENT OF G IS NEGATIVE. IF THE SIGN OF THE *
e EXPONENY OF E 1S FOSITIVEs E5G¢ HENCE RCTURN Eo .
NNPP TR . * * £-6 AC £o Al €1
TC TINN o L EGRTY MAR NOP
TC FNN o e e GGRT MAR NOP
TC » . e $ 0000 . .
[ ]
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TC TAN » LI ] GGRT , MAR *

TC FNN @ LI $ 0000 Fo €1
IC » » JP e $ 0000 T0BA ..BA
TR = . DF * TFON €£0 TFIN €}

* SINCL BOTH EYPONENTS AND MANTISSAS ARE KLONNEGATIVE, THIS .
¢ ROUTINE CALCULATES E~Ge EXPONENTS IN THE HOBP AND MANTISSASe

* IN THE LOBPSe 1F THE RESULT IS <€ 0¢ GXE¢ ELSE RETURN Eo .

GGRT TIC » . LI $ 0001 1084 T18A
1C . JP o $ 0001 FO F1
TR » . DF * TFON €O TFIN 01

o 1F F1>=204 €264 RETUKN TF[1] .

EGRT TC » . * $ 0000 FO F1l
1C » ” JP o $ 0000 TO0BA TiBA
TR « . CF . TFON EO TFIN Q1

¢ TH1IS 1S THC SECTION OF THE PROGRAM THA! IS CALLED 1F E 1§

* NEGATIVE. (MANTISSA) ‘.

EMNG T1C » . LI $ 0020 . CMRO
1C FPN o e e GGRT MAR NOP

« TH)S SECTION DOES THE COMPARE 1F BOTH.THE'OPERANDS ARE € 0 » é

e« THIS WILL OETERMINE IF THERE IS A DIFFERENCE IN EXP SGN. .

NCHMP TC * L S 0000 . .
TC TNN LI GBNG MAR .

e THIS WILL DO A JUMP IF THE SIGN OF 6 1S 14 OR G NEGATIVE .

« IN THE EXPONENT PORTION. ‘ .
1C » . LI $ 0002 . CMRO
TC FNN o . . NNPP MAR *

o BY HERLy THE EXFONENY OF G 1S POSITIVE. IF THE EXPONENT OF ¢

e € l% NEGATIVE. EOTH MANTISSAS BEING NEGATIVE, EDG .
TC TNN » LI $ 0000 fFo F1
TC » . JP o $ 0000 T08A Ti1BA
TR » * DF » . TFON EO TFIN €1

« THE ABOVE WILL KETURN E -

GBNG TC TKNN » ¢ » EBNG MAR .

¢ BOTH G*'S EXPONENY AND SIGN ARE NEGATIVE. IF TRUEe THE SAME

¢ HOLOS TRUCL FOR E£. 1F THIS 1S FALSEC« RETURN G. .
1C » . * * $ 0001 T0BA Ti1BA
1C « * JP = $ 000} fFo F1
IR « . OF o * TFON [0 TF1d 01

EBNG TR . « e £E-6 AO 4] Al €1
TCFNN ¢ o @ GGRY MAR . 1
TC o . « ¢ $ 0000 FO Fi
1C » . JP ¢ $ 0000 Y0BA T18A
TR » @ DF . T1FON €0 TFIN [}

¢ BOTH YHL MANTISSA AKD THE EXPONENT OF POTH £ AND G ARC .

e LESS THAN ZfROs CALCULATL £-6+ JF RESULT POSITIVE. GOE .

GXNG TC FNN L EGRY MAR NOP
IC . * . $ 0000 * .

TEST TR » . * . {-6 AQ o Al €1
TC FNN » . ¢ EGRY MAR NOP
TC TNN » . s GGRY MAR NOP
JC o . » . $ 0000 N .

« AT THIS (PRECECDING LINE) BOTH £ AND v ARE POSITIVL, THE .

e SIGN OF THE CXPONENT OF G 1S NCGATIVE. IF THE SIGN OF THE o

e EXPONENT OF £ 1S FOSITIVEs E>G¢ HENCE RLCTURN €& *

NNPP TR L L €-6 AC €0 3| €1
TC TNN o * s EG6RT MAR NOP
TC FNN . . GGRY MAR NOP
1IC » . . 0 $ 0000 . .

]
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II.

APPENDIX 2C3
FLEXIBLE PROCESSOR SYSTEM SIMULATOR

Simulator Flowcharts

A. Setting Up Simulation

B. Input FP# and Operation to be Performed

C. Execute Single Execution Step

D. Read and Modify Register or Program Memory Content

E. Subroutine "Exec" for Executing Single Instructions.
Subroutine "Skip" for Executing Sequence of Instructions.

Simulator Displays
A. Simulator Output Display
B. Simulatur Display of Temporary File

C. Simulator Display of Large File
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START

-

Set up buffers
for 1/0 to
terminal and
disk

P

Initialize

variadbles

2nd flags
to zero

1 A, SETTING UP SIMULATION

4

Open
scratchpad

Print
No “cannot
scratchpad —»——  create Eam END
memory

open?

try later®

Print “Cyber Ikon
simulator, Do
you wish to load
statys?”

Load file
into buffer

Open
status
“ile

File opened .
successfully and move to

scratchpad

Load status?

e o o = P

| Fill with zeroes

Print Print . N
“status not “can't open —_ -
loaded” status file” Print “loading"

Vi
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1 8. INPUT FP¥ AND OPERATION TO BE PERFORMED

Print

"processor number"
FP# = input

Store old FP Page-fla
Page-flag memory in oo 09
Y scratchpad 0
i No J
For FP#
1oad memory
from scratchpad
T
?rint :-;>“
RES”?npuif
J’ -]
Operation = input
e
I ‘F
Copy B sv Page-flag _)__@
il g 2
Execute Page-flag
UNIX -1 4
command Page-flag=l
name = input
Delete open name
load programl o,
scratchpad into memory
and exit program) | closc input
h,H,help,
Help Print
©_<_ Print valid > contents of 2
comnands {print | Fp registers
: registers)
default
Print Page-flag=1
call
"t subroutine
skip
Printif1ag ~>
%
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lero error-flag

1C.

CXECUTE SINGLE EXECUTION STEP
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call
subroutine
exec
grror-flags Print
0 registers
S / g
S >» <
Print "%"
index = {nput

call
subroutine skip

1

point,
execute)

valid commands

Print and describe

h,help

rint contents of
1V FP registers

dtemp

[Dispray | .
temporary > T
file ?
Print Wﬁﬁﬂ

“starting f—{PrenssPext N
addressﬂg rf§}§§95i132

A

ohrittng | pritrhee'tt | 5 |
address 186R5AORRSEy

Print-flag = 1
| Page-flag =1
call subroutine
skip
A default option
Print
— "invalid
command™
Yo

m
‘ 20
(trace) (modify memory)




Print “Register”

reg = input

1 D. READ AND MODIFY REGISTER
OR PROGRAM MEMORY CONTENT

Print "Index"

index = input

index = 0

Y

Set pointer to
start address of
appropriate
memory area and
offset by index

Y

Print contents
of register

Invalid

Set register

to input

Y

i
index = ingex+l

index » index - )

p-T

r
1

=

No
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Print
"no action —»@
taken"
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1 E. SUBROUTINE "EXEC" FOR EXECUTING SINGLE
INSTRUCTIONS. SUBROUTINE “SKIP" for
EXECUTING SEQUENCE OF INSTRUCTIONS.

[-gﬁbroutine exec ]

mir = mbr
fetch next mbr
mar = mar+)

Y

Zero print buffer
decode instruction

Yes

Return lSubroutine sk1a

[ J = input ]

- J

conditional ang

Simulate ALY call subroutin
exec
logical section ¢,

Simulate ALU
arithmetic section

Yes

Execute move error-flag = 1?

instructions

Increment indexes A
as needed

print-flag=
nd instruction a

Execute swap and Print

shift instructions

registers

Set condition
flags including
error flag <

Y

Yes
Execute 1/0
and zero flags
No
‘ [} Print registers ]
[ Return AA_J
[ Return ]

Z
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I1 8. SINULATOR DISPLAY OF TENPORARY FILE

tampl( @) = Q000 0000
templ 1] = Q001 0001
templ 2] = 0006 dZ490
templ 3] = 0005 b640
templd4] = 2006 9400
templS] = 2006 c500
templ 6] = Q000 00000
templ 7] = 0000 ©Q0veo
templ( 8] = Q000 0000
tampl 91 = 2000 0000
tamplfal = 0000 0000
templbl = 0000 0000
templc3 = 0000 ©000
templd] = 2000 0000
tamplal = Q000 0000
tampl £l = 2000 0000

IT C. SIMULATOR DISPLAY OF LARGE FILE

8fc@® 000S c@0Q oofd be8@ 8002 c8Q0 0Q0fc

101 =

1f0 4] = c000 o0ofd 9780 00606 9c80 0001 f880 8001
1fL 81 = bo0O8BO 8002 9c8Q 8001 2440 0004 bS80 8000
iflcl = c800 0Q0fc f880 8001 bS580 89200 ff80 0003
1f(10] = 0000 Q000 0002 0000 Q000 0000 9000 @000
1¥014] = 00G00 0000 2000 0000 0000 0000 2200 00600
1fL18) = 0QQ0Q0 000C 0000 ©000 0000 0000 0000 0000
1f{1cl = @000 Q000 0000 Q00 eeee Q000 200 0000
1201 = 0000 0000 2000 00v00 2111 - 1-1- 1) 0000 ©000Q
If024] = 0000 0000 0000 0000 0000 0000 0000 0000
1f[28] = 0000 @000 Q000 @000 2000 0000 0000 0000
1f{2c) = @000 0000 200@ 0000 0000 0000 2000 @000
1fL30] = 0000 0000 0000 0000 2000 0000 Q00e 00009
1fL34]) = 0009 0000 Q000 0000 0000 0000 0000 0000
I1fL38] = Q000 0000 2000 0000 2000 0000 00020 0000
1fL3c] = 0000 0000 0000 0000 2000 0000 Q000 0000
1f{42) = 0000 0000 Q2290 QQo00 2000 Q090 Q000 QQ09Q
1fL44] = Q000 0000 0003 0000 0000 Q000 2000 0000
1€0483 = 0000 0000 0000 0000 0000 0000 000 0000
1fl4c] = Q000 00090 2000 0000 2000 0000 @000 Q000
If{(S0] = 0000 0000 2000 0000 2000 0000 0000 0000
1f[S41 = 0000 0@QeQ0 0000 0000 2000 ©O000 Q000 00Q0
1f{581 = 0000 0000 0000 0000 0000 0000 0000 0000

ORIGINAL PAGE IS
OF POOR QUALITY
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2C3. AMBIGUITY REDUCTION FOR TRAINING SAMPLE LABELING
David A. Landgrebe*

This task, envisioned as a multiyear task, began only 2 months before
the end of this report period. As a result the material presented here
does not provide final results; rather it provides background material,

an approach description, and a discussion of certain aspects of the problem.
1. Introduction and Background

The proper training of the classifier in a remote sensing data analysis
system is one of the pivotal steps to good system performance. The original
method used for training classifiers was to define a set of classes based on
user need, then to choose an adequate set of prelabeled sample pixels of
these classes by which to compute class statistics. Because it was assumed
that the labels would be established by ground observation they were always

assumed perfectly accurate.

However, in some application situations ground observations (or at
least observations from the ground) are not always possible. Thus, cases
arise where the labels associated with training pixels are not entirely

accurate.

In any application situation, there nearly always exists a wide assort-
ment of ancillary information, some of which is subjective in nature,other
objective, which should be able to materially contribute to the accuracy of
such a pixel labeling process. Examples are data about the terrain, weather
and climate, seasonal characteristics and the spatial context of pixels.

The question is what mechanism should be used to incorporate such information

into the labeling process. Thus, the objective for the current work is:

To devise and evaluate quantitative and objective means for
optimally arriving at classifier training sets using remotely
sensed spectral observations together with any other types of

ancillary data and knowledge which may become available.

*The contribdg}ﬂﬂ% of ﬂﬁ} 3% Richards and Dr. P. Swain to Task 2C3.
Ambiguity Reduction for'Trgfhing Sample Labeling are gratefully acknowledged.
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1.1 Approach

In gelecting an approach to pursue this objective it is important
to note that the ancillary data to be used is varied in type and not well
defined. The information content of such data may be known only somewhat
vaguely a priori, and in some cases it will certainly be difficult to quantify.
Such a situation suggests defining an approach which, instead of being based
on a direct deterministic calculation, might be iterative in nature so as

to provide a "convergence of evidence."”

A problem in the field of picture processing with somewhat similar
characteristics is being studied using a method, known as relaxation, which
is iterative in character. It was therefore decided to study this approach
to see if it might te adaptable to the problem at hand. Basically, the idea
would be to use the ancillary information to reduce any ambiguity which might
be associated with a given label on a given pixel. At the out.-et there would
exist an exhaustive list of labels and a set of pixels with a (preliminary)
label association for each. There would be a measure of certainty of the
accuracy of this association in quantitative form. The process would then
be one of utilizing the ancillary information in an iterative fashion to
cause reinforcement of the degree of certainty for the correct label of the

pixel at the expense of all of the incorrect ones.,

To begin the work of devising the details of this technique a careful
review of the literature generated so far regarding relaxation methods in
picture processing has been undertaken. A brief outline of this literature

follows.

1.2 Review of Literature

The class of relaxation techniques related to the present investigation
evolved from an algorithm proposed by Rosenfeld et al.[l] in 1976. This
procedure develops (spatial) consistency among sets of objects (such as
pixels) by means of measures of correlations between their labels; con-
sequently spatial context information 1s provided by a set of correlation

coefficlents., Other algorithms v-r; only slightly from this in structure,
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but appear quite different in the means by which they imbed context data

into the relaxation process. 2Zucker and Mohammed [2] have suggested two
algorithms one of which is essentailly the same as that of Rosenfeld but

in which context data are carried by sets of conditional probabilities

rather than correlations. Both this algorithm and that of Rosenfeld

derive label estimates on objects during the relaxation process by forming

a weighted arithmetic average of the "evidences" provided by neighboring
objects.* The second algorithm of Zucker and Mohammed replaces this by a
geometric average. There are certain operational characteristics of this
variation, however, that recommend it as unsuitable in pixel labeling.

More recently Peleg [3] has derived an algorithm that also uses a conditional
probability description of ccatext. However, whereas earlier algorithms

were derived on heuristic considerations, Peleg's is based upon probabilistic
foundations. Yamamoto (1) has recommended a variation on Rosenfeld's
original algorithm which has simpler forms of the compatibility coefficients.
In addition to using correlations for compatibility coefficients, Peleg

and Rosenfeld [12] devise a set of coefficients based upon mutual information

considerations.

A quite different approach has been adopted by Faugeras and Berthod
[5]. Rather than being based upon an explicit relaxation foimula, their
scheme establishes a criterion that provides a measure of the consistency
of the labeling on a set of objects along with a measure of redundancy.

It then determines a final label distribution by optimizing this measure.

The behavior of relaxation labeling processes is not well understood
as yet, and consequently there exists considerable interest in trying to
develop a theoretical basis by which to describe the various procedures and
with which their operational characteristics can be predicted. The first
extensive discussion of theoretical issues related to algorithms of the

type discussed above seems to be that of Zucker and Mohammed (6], which is

*There appear to be two implicit definitions of '"neighborhood" used in

the literature on probabilistic relaxation labeling, one of which includes
the pixel whose label is currently being modified and one which excludes
that pixel, Rosenfeld's investigations [1,11] embody the former whereas
the studies by Zucker et al«.{2,6,7] use the latter. Notwithstanding Rosen-
feld's choice, he gives the "current" pixel a low weighting to avoid it
dominating the relaxatlon procedure.
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an expanded version of [2). Later theoretical treatments include Zucker,
Leclerc and Mohammed [7], Ullman (8], Haralick, Mohammed and Zucker [9] and
Zucker, Krishnamurthy and Haar [10). 1In particular, Zucker, Leclerc and
Mohammed present a generalized form of algorithm that degenerates to the
previous well known procedures in special cases. Moreover Zucker,

Krishnamurthy and Haar have recommended methods for accelerating the process.

Some of the investigations referred to above have used pixel labeling
examples to illustrate their algorithms [3,4,5]. However, there appear to
be no detailed studies of the effectiveness of relaxation in this particular
application, although Lev, Zucker and Rosenfeld [13] and Eklundh, Yamamoto
and Rosenfeld [11] have given it preliminary consideration.

Though not specifically concerned with pixzel labeling a number of

authors have considered the problems of line and edge detection in imagery

by pixel-specific means based upon relaxation procedures [3,5,12,13,14,15,16].

1.3 Discussion

In parallel with the literature survey a software implementation of
the algorithm of Zucker und Mohammed [2] has been constructed and is teing
exercised. The purpose of this effort is to further study the possibilities
of using a relaxation approach. A more complete report of this effort is
now in preparation. In summary it can be reported that the technique does
indeed appear to have some promising aspects for the problem at hand.
However, some significant modification and adaption will be needed in order
for the approach to be useful in the pixel labeling environment. An example
of this is the following aspect of current algorithms which was discovered

during the software-implementation study.

An essential ingredient of each of the schemes in the references is
that the initial scene labeling is used only once, viz. when the algorithm
is initialized, and thereafter the success of the final labeling {s dependent
upon both the attributes of the algorithm and the accuracy of the contextual
data; both of these tend to assume increased significance relative to the
initial labeling as relaxation proceeds. This may be appropriate in picture

labeling problems such as the "toy triangle" exi~ ‘le often used [1,2] since
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the initial labeling is seen mainly as an initialization procedure and the
contextual information is often known without error. The situation 1is
usually quite different,however, in pixel labeling cases such as those
undertaken in the interpretation of Landsat images.

For example, when it is desired to determine a label for every pixe? in
an image the contextual information would generally not be known exactly
and indeed may only be an estimate based upon typical image data of a similar
type. Further, the initial labeling, by and large, would represent 'the
best one can do" based upon all spectral information at hand, apart from
context. In such a situation the information is therefore contained very
much in both the context and the initial labels. As relaxation is applied,
it is desirable that both of these sources be used to produce final labels
which are, as far as possible, consistent with both the context and the

initial labels.

Thus while the pixel labeling problem has by implication the initial
pixel labels as the primary information and context (and later other
variables) as ancillary or supporting information, the existing algorithms

seem to imply more reliance upon context than upon the initial labels.

As a result of this, one characteristic observed consistently wit!
the software implementation of the current algorithm is tnat as iteration
proceeds, the results typically improve for a while, then peak and begin
to decline. Apparently the contextual information, used in conjunction
with the initial labels, does indeed improve the accuracy at least until
the point where the influence of the initial labels has faded too far.
Thus minimally one would need to determine a suitable stopping rule; a
perhaps more suitable approach would be to modify the relaxation procedure
more fundamentally so that it no longer has this peaking characteristic.
Possible approaches to accomplish this which at the same time facilitate
the incorporation of other types of ancillary data are being sought at present.

SIS
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2D. MULTISENSOR, MULTIDATE SPATIAL FEATURE MATCHING, CORRELATION
REGISTRATION, RESAMP.ING AND INFORMATION EXTRACTION

Paul E. Anuta®

1, Introduction

The work and results described in this section ccnstitute the fuond
and final year of a research investigation into the problems of combining
and utilizing multiple data types for remote sensing surveys. The use of
more than one type of data in a computer-based application of remote sensing
has increased steadily over the past several years. Techniques for merging
and utilizing various types of data are not well developed and this task
seeks improved techniques for getting maximum benefit from available data.

The study considered the merging of different remote sensing .-:ta
types, information extraction from the combined data and digitizatir» and
merging of ancillary data. The multidata-merging problem was explored, and
results reported in the final report of the first year {1]. Information ex-
s t;aation'o}'merged Landsat and SAR data is discussed in this, the second-year,
vffﬁal report as well as ancillary data digitization. A new concept for a

multidata merging system emerged from the study and is also described below.
2. Landsat SAR Data Set Description

Registration of the landsat MSS and SAR data types was studied in de-
tail in the first year of the project and results were reported in the final
repcrt issued in November 1978. The merged SAR/MSS data set formed the basis
of rescarch done in the current year and we will briefly describe the data

here,

The Landsat data are from frame 5-792-16152 imaged on June 19, 1977
over Phoenix, Arizona. Considerable trouble was encountered in obtaining
these data as the digital tape was initially indicated to be unavailable

even though the imagery was satisfactory. Further investigations revealed

*The contributions of Tim Crogan and Ed Crabill, both graduate students in
electrical enpineering, to Task 2.2D Multisensor, Multidate Spatial Feature
Matching, Correlation Registration, Resampling and Information Extracti.na
are gratefully acknowledged.
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Figure D-1.

Goodyear 541 ila Sct over Phoenix, Arizona used in the
study. Fl« i 17, 1977 using an AN/APD-10 X band
radar in an ¢ RI-4 aircraft. Area covered in

approximat: miles at a resolution of approx-

imately 10 !
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that band 4 was unusable and a request was made to obtain the remaining

bands since these were the only data which would match the SAR data in time.

The SAR data were flown by Goodyear Aerospace on June 17, 1977, using
an AN/APD-10X band system. The full data set is shown in Figure D-1. The

data wer: obtained in film format and were scanned and digitized to produce
a digital image data file at a resolution of approximately 14 meters. This
represents a reduction of the original system resolution of 3.3 meters due
to film and scanning degradations. The characteristics of this and all the
other data sets associated with the Phoenix site are listed on Table D-l.

The primary parameter to be selected was the resolution for the merged
data sets. The deciding factor was a strong interest in the SEASAT SAR data
which were to have a 25 meter resolution. Thus, this figure was chosen as a
desirable compromise between the 79 meter Landsat and 14 meter SAR data.
This choice would enable evaluation of the SEASAT SAR resolution in the crop

field recognition enviconment.

A 512 bty 512-point grid was defined over the crop area between Sun City
and Phoenix, Arizona, centered approximately at the point that Grand Avenue
enters Sun City from the east. At the 25 meter resolution, the area covered
is 12.8 km square or 163.8 square kilometers (7.95 miles square or 63.3
square miles). The Landsat and SAR data were registered to this grid, using
the LARS registration system and results of the previous year's registration
study [1]. The 79 meter resolution Landsat data were interpolated to 25
meters resolution, using cubic interpolation and the 14 meter SAR data were
undersampled using the nearest-neighbor rule to achieve 25 meter pixel spa-
cing. A dot matrix printer image of Landsat band 5 for the block is shown
in Figure D-2 and the SAR image is shown in Figure D-3,

The June 1977 SAR and Landsat data formed the data base for the crop
classification study. Although acquisition and registration of other data
types for this and other areas were planned, these data could not be ob-
tained and preprocessed in time for analysis in the study. SEASAT SAR,
Coastal Zone Color Scanner, Return Beam Vidicon were among those consid-
ered. Digital SEASAT SAR and RBV data were obtained during the study and

discussion of work done on these data is included in another section.

. /320
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Figure D-2.
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Landsat Image, Channel 2 (0.06-0.7 ym), Cubic Resampling

1 25 x 25 Meter Resolution (Phoenix, AZ)
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Figure D-3. Aircraft SAR (3 cm), N.N Resampled and Registered

to 25 x 25 Meter Landsat (Phoenix, AZ).
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3. Crop Classification Using Landsat MSS and SAR Data

3.1 @gg}cultural Characteristics of Data Set

In the previous section, the characteristics of the merged data set
were discussed. The agricultural “scene" consists primarily of cotton
fields with urban encroachment by Phoenix on the east and Sun City on the
west. A ground truth mission was conducted in March of 1978 in the area
with retroactive truth obtained for the data time of June 1977. Ground
truth for a total of over 600 fields was obtained for agricultural areas
both east (Area 1) and west (Area 2) of Phoenix. The 512 by 512-point data

set created covered only the west Phoenix area.

In order to simulate a segment size area, a 3 by 5-~mile block was
selected from the agricultural area indicated in Figure D-1. The crop area
between Sun City and Phoenix is limited in size and many housing tracts
exist throughout the area, thus a full 5 by 6-mile segment could not be
chosen. The 3 by 5-mile block is on the order of a segment and was assumed

to provide a reasonable simulation.

Within the 3 by 5-mile segment containing 15 sections, there were 76
ground truthed fields. The contents of these fields and the number of pixels
in each are indicated in Table D-2. Note that the majority of fields in the
area are cotton, thus a good distribution of crop types did not exist. There
are 17,054 pixels for which ground truth was collected and there are 62,699
pixels in the 3 by 5-mile block, thus only a portion of the segment could be
analyzed. Thus, due to data set limitations, the segment area was only 7.3%
of a LAC1E type segment. Nonetheless some interesting results were obtained.

3.2 C(Classifier Training

The cluster block approach was taken in training the classifier. Blocks
of pixels containing samples from each class were clustered, using the LARSYS
* CLUSTER routine. A total of five blocks were used containing 4,772 pixels
with cluster and information classes as listed in Table D-3. The statistics
from the five cluster jobs were merged using the * MERGE processor in LARSYS.

Y




Table D-2. Classes Analyzed in SAR/Landsat Data

Class No, Fields No, of Pixels

Cotton 40 9377

Alfalfa 12 3345

Barley 2 364

Urban _22 3968

TOTAL 76 17,054
Table D-3. Cluster Block Contents.
Block No. Pixels No. Clusters Classes in Cluster

1 1160 10 Alfalfa, cotton, fill
2 1300 10 Cotton, oranges, wheat
3 812 Cotton, alfalfa, barley
4 756 Alfalfa, cotton
5 744 10 Cotton, urban

D-8
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The results were statistics decks for the information classses: cotton,
alfalfa, barley and urban. Some occurrence of orange groves, wheat and

bare soil existed but the number of samples was too small to warrant keep-
ing them in the analysis. Statistics were generated for the three bands

of Landsat and for the thrce Landsat bands plus the SAR band. Training

field classification accuracy figures are not available since the statistics
are derived from clusters covering several fields and statistics subsequently

merged to a final set of class statistics.

3.3 Classification Analysis

The Landsat/SAR data set was classified using both pixel and field
classifiers and using Landsat only and Landsat plus SAR bands. The results
of these tests are presented in Table D-4 with some additional results to
be discussed later. The best overall results were obtained using the field
clagsifier and spectral data only. Addition of the SAR channel reduced
test classification accuracy in most cases, except alfalfa and barley.

The large amount of cotton in the test caused the poor performance when
SAR was added to pull the overall result way down. In general, the SAR
seems to reduce separability of the spectral classes and it would appear
that direct addition of this particular SAR data to the spectral data is

undesirable.

Multifrequency radar data with multiple polarization, collected over
a sequence of times, has been shown to provide accurate crop classification
[2]. The single time, single polarity, X band case case apparently con-
tains insufficient information in this case. The experiment should be
tried on corn, soybeans, wheat and other grains of interest to AgRISTARS
programs since the single band, single polarization case is all that is
likely to be routinely available from satellite platforms in the rext

decade.

A Data Base Approach to Classification

The availability of high resolution imagery of the earth scene from

the satellite platform provides the opportunity to employ scene structure

as an input to the classification process. High resolution refers to the
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RBV or SEASAT SAR order of resolution of 20 to 25 meters in contrast to MSS
resolution of 79 meters and thermal IR resolution of 150 meters or more,

The basic concept is to use a single channel high resolution image as a map-
ping band to define scene structure and to then use spectral samples from
within the objects in the scene for classification of those objects. The
approach is clarified in Table D-5.

Using this approach, the results in Table D-4 can be reinterpreted in
terms of knowing all field boundaries in the scene. These would be obtained
from high resolution SAR, RBV, MLA or any source of current imagery of the
scene to be analyzed. Boundary extraction is a problem in scene segmenta-
tion and not treated here. Given to a boundary definition for all scene
objects, the classifier can be trained from known scene objects and the
clagsifier applied to the data set. This gsequence is diagrammed in
Figure D-4.

In the experiments catriéd out here, both field and pixel classifica-
tion wag carried out for the SAR Landsat data set. The field classifier
results using spectral data were seen to be better than the pixel results
but neither was very good. Knowing the field boundaries allows the results
of pixel classification to be analyzed according to majority or plurality
rules. In this approach, the class having a majority or a plurality is
agsumed to be the correct class for all points in the field. This is con-
sidered to be a valid approach since we are assuming we have boundaries
enclosing every field and the contents of the field are homogeneous.

The chart in Figure D-5 compares overall test results for all cases
discussed earlier, plus majority and plurality results which are tabulations
obtained from the pixel classification results from each field. These re-
sults are gignificantly better than for the individual pixel or field clas-
sifier results. Thus the plurality rule applied to pixel classifier re-
sults for the case of known homogeneous fields appears to be an attractive

approach.

/28




Table D-5. Rationale for Object Classification

+ PFor cagses in which the sane highly structured
scene sample area is to be classified each
year for many years, & data base of object
boundaries can be maintained.

. Image segmentation technology can be used to
establish object boundaries initially and

update boundaries each year.

. Spectral classification of objects rather
than pixels or blobs can then be carried out,

/2]
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| Delineate boundaries of all fields

| and other objects in scene using a
high resolution image and store in

| data base registered to spectral data

Train pixel classifier using ground
truth and standard procedures.
Classify all pixels in spectral data.

Apply majority or plurality rule
to each object and classify entire
object as one decision

Figure D-4. Object Classification Using Boundary Data Base
and Majority or Plurality Decision Rule.
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Figure D-5. Comparison of Overall Text Field Classification Accuracies.
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4. Ancillary Data Digitization

The problem of convarsion df ancillary data sources to a digitized
gridded format was studied as another aspect of the multidata task. The
standard approach to map digitization is to manually follow all linear
features with a digitizing cursor and to store the sequence of digitized
cooxdinates for later processing. A laborious procedure is required to
assign labels to each line from the map and a gridding algorithm is then
used to create an image-like data set from the digitize line data. This
project further evaluated an alternate method for digitizing maps which
would be more efficient.

In the SRET research year ending May 1977, a color map digitizing
method was developed and reported on [3]. The approach used spectral
classification to extract polygons from color coded maps [4]. Testing
was carried out only on a pastel colored, noisy map and results wers very
good. In the current task, the use of high saturation pure colors was

evaluated and results were extremely accurate, as expected,

Two forest resource unit maps were hand-colored into 17 units and
the result photographed and digitized on a color separating microdensito-
meter. Three channel digital data sets representing the blue, green and
red primary separations were generated. A training sample was chosen from
each color and used to train the LARSYS pixel classifier. Figure D-6 con-
tains one of the map units. The maps were then classified and an evalua-

tion was made of errors.

Table D-6 contains a list of errors in each color for interiors of
polygons. Significant errors also existed at edges of polygons due to
painting irregularities and mixed pixels. The edge errors could not be
readily visually evaluated and the interior errors were assumed to repre-
sent the performance of the method. As can be seen, the error rate is
very low, on order of .2%, and it can be concluded that this method is an

attractive approach to map digitization.

/3




D-16

JRVGNAL PAGE 1S
qF POOR AT

Figure D-6. Forest Operating Area Map Segment, Hand-Colored for Scanning
and Digitizing. There Are 19 Different Areas Color Coded

With Acrylic Polymer Paint.



Table D-6. Errors in Color Map Classification.
Number of Errors.
Color AU268 Color AU271
White 53 White 96
Bright Red 3 Red 0
Red 48 Lt. Green 0
Dark Red 17 Med. Green 0
Orange Dk. Green 0
Lt. Green Yellow 0
Green 2 Gold 0
Dk. Green 318 Orange 355
Pink 0 Dk. Orange 2
Lavender 1 Lt. Blue 9
Lt. Yellow 0 Med. Blue 1
Yellow 7 Dk. Blue 1
Lt. Brown 0 Brown 0
Brown 0 Tan 0
Lt. Blue 1 Lt. Brown 0
Blue 11 Gray 0
Dk. Blue __ & Purple 2
TOTAL 478 TOTAL 457
TOTAL AREA 279,006 243,714
(Pixels)

/3y
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5. Multidata Merging Procedures

The basic problem motivating this task was the combination of
dissimilar data types to enable coordinated digital analysis for various
applications. The concept of a self-definiig data set (SDDS) set forth
here as an approach to solving the problem of merging arbitrary areas

from diverse data types. An SDDS would have the following characteristics:
. Complete geometric description of data set included in header.

. For multitype, multitemporal data sets, each channel will be
fully described.

. Format flexible to accommodate different word sizes and resolutions.

The concept was inspired by the CCT-AM tape format set forth for the
Landsat digital image tapes which will be prouduced by EDC. Full geometric
and —-adiometric information is to be provided in the headers of these
tapes. The proposal here is to provide this information for any data type

which may be used for remote sensing data aralysis.

To test the SDDS idea, a basic software system was developed in this
task which carries out the basic functions needed. The problem has two parts:
(1) generating an SDDS, and (2) combining SDDS's to form a merged data set
in a user-defined coordinate reference. Parameters judged necessary to

define an SDDS are listed in Table D-7.

The basic function needed to specify image geometry is control point
determination. A software element was created which utilizes a stored
file of ground control points and attempts to locate these points in
uncorrected imagery. The diagram in Figure D-7 shows the elements of the
experimental system, The program LOCGCP accepts control point coordinates
in latitude and longitude and cstimates the location of the point in the
image data using ephemeris and one initial control point. Small [Imapes
surrounding the estimated point can then be printed out on a line or dot
printer. Experiments were carried out oi: the use of the standard

alphanumeric CRT computer terminal to provide a rapid low cost, low resolu-
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Table D-7. Parameters for an SDDS.
Data Set Parameters

Center latitude and longitude and

corresponding line and column.
Azimuth of center column at center line.
Polynomial function for relating lines

and columns to georeference coordinates

(lat, long or UTM northing, easting).

Channel Parameters

* Time of collection
+ Type of data
* Bits per word
Cell size
+ Band size
Band center
Full-scale calibration
*  Mean

« Varilance

3¢
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Figure D-7.
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Location

REC (SPSS)
Regression Modeling
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Y

GEOD

Determination of Data
Set Parameters

« Center Coordinates
« Pixel Scales
» Heading
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CNVLRS

Generation of Self-
Defining Data Set
(SDDS) Format

REGTAP

Transform to User-
Defined Reference
Grid

Self-Defining
Set Form of

LARSYS Format (2)

Image Data in User-
Defined Grid (3)

Software Elements Developed to Study
Self-Defining Data Set Concept
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tion image display. Several gray level sets were tested and none was found
satsifactory. A two-level thresholded image was found to be quite useful
in many image cases. Data were used for the low or dark level and M's for
the bright level. The program LOCGCP displays such an image with the thres-
hold rapidly adjustable by the operator. Figures D-8 and D-9 contain two
examples of successful displays in eastern Florida. Figure D-8 isg a bridge
over an estuary on the east coast and the control point coordinates are
marked by an asterisk cursor which in this case has been moved under key-
board control to the center of the bridge. In the second example, the con-
trol point is the intersection of two interstate highways and the cursor is
located in the middle of the interchange. Many subimages do not produce
useful binary images and must be imaged on the line printer dot matrix
printer or, if possible, on a high-resolution image display. It is inter-
esting to note that subimages which are unuseable on the binary CRT are

also very difficult to interpret on any other output media.

The second step in the SDDS generation process is the regression model-
ing of the image distortions. This step is handled by standard regression
programs and coefficients relating geographic to image coordinates are
generated. This area is a subject of continuing study and the form and
number of coefficients needed for any one image cannot be stated at this
time. The functional relationship goes to the GEOD program and generates
additional parameters needed for geometric description. The CNVLRS pro-
gram reads a data set without full geometric description and generates the
SDDS.

The user then can access the SDDS tapes and generate his own merged
data set by processing any number of input SDDS files. The REGTAP pro-
gram reads user grid-definition parameters, selects areas to be used from

input SDDS's and writes out a new SDDS with the geometric characteristics

and data types he specified.

In order to test the concept on an existing data system, the LARSYS
tape format was taken as the logical starting point. Table D-7 contains
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suggested changes to the indentifications record for the image data tape
which pursue the SDDS concept. Ideally a zero-based format plan would
be established; however, the current LARSYS format although designed
for single data aircraft multispectral scanner data, has proven itself
quite durable in adapting to multitype, multidate data sets. The ele-
ments added in Table D-7 are adequate for testing purposes while new

unconstrained gereral formats are discussed.

The data-merging system outlined here was tested on one data set for
the study. The Landsat frame from the Picayune, Miss., area was selected
since it was the first frame for which both fully geometrically corrected
and uncorrected data were available. The control point finding and regres-
sion modeling portions were tested on the uncorrected frame. Geometric
description is also needed for the fully corrected data even though no
distortions exist. An affine model is used to relate line-column to UTM
or other projection coordinates for the fully corrected data. Both data
forms, after conversion to SDDS format, were processed through REGTAP to
produce anorth-oriented data set for one 1:24000 USGS quadrangle. The

package is experimental; however, it is available for use by qualified users.
6. Multitype Data Set Acquisition

The basic aim of this task was to develop merging and analysis techni-
ques for multiple data types. Landsat, SAR, and ancillary map data types
were included in the study. Many other data types were of interest but
unfortunately none could be obtained and reformatted in time to include
in the study. Examples of two additional data types were acquired near

the end of the task and reformatting software was developed for these data .

The two data examples were SEASAT SAR data and Landsat RBV data. Film
format RBV data had been acquired earlier in the'ybér for the Phoenix site
but the quality of the data was judged too poor‘to Qarrant digitizing and
analysis., Figure D-10 contains a photo of the test site made from the RBV
frame. The digital RBV data are for the Oroville, Calif., EDC example
and was useful only for developing the reformatting program. The SEASAT
SAR digital data was in LARSYS format and only ID editing and login opera-
tions were needed. No further work was performed on the RBV and SEASAT

SAR data in the contract period.
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Figure D-8. Landsat Band 5 Image produced on CRT Terminal Screen

using two levels (Amelia City, FL area).
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Table D-8.
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Proposed Changes to LARSYS Format

Additions to ID Record

Words

21
22
23
24
25
26
27
31-40
41-50

Latitude of center

Longitude of center

Column of center

Line of center

Horizontal pixel scale
Vertical pixel scale

Projection code

Coef for line geometric function

Coefficients for column geometric
function

Changes to Channel ID Words K=0,29

5K + 51
5K + 52
5K + 53
5K + 54
5K + 55

Data type code
Collection date

Bits per word
Full-gcale calibration

Band center wavelength
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Figure D-10. Landsat RBV Data for Phoenix,
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From Frame 30104-17212A, June 17, 1978.
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Figure D-11. Landsat Imag
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Figure D-12 ime Area Covered in Figure D-11.



Figure D-13. Mixed Landsat and SAR Image (Original in Colcr)
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7. Image Enhancement Experiments

The last part of the multidata task was the investigation of the image
enhancement benefits of combining different data types in black and white
and color renditions. The SAR Landsat data set for the Phoenix area was

used for this activity. The LARS digital display system was employed to
photographically mix channels of the data set through color filters onto
f4lm. The results of tlese experiments are shown in Figures D-11,12,13.
Figure D-11 contains a combination of Landsat bandr 4, 5, and 6 to pro-
duce a standard false color infrared reproduction refleccting the 79 meter
MSS resolution. The scene is the center of Sun City, Ariz., where circular
park areas are surrounded by housing units. Figure D-12 is the SAR data
for the same block at the 25 meter resvlution. Figure D-13 contains a mix-
ture image in which the SAR band replaced the blue color in the blue, green,
red sequence. The reproductions in the report are in black and white; how-
ever, the resolution properties can still be observed.

The mixture image contains the street patterns and fine structure of the
area which is lost in the Landsat. The obvious benefit here is in delinea-
ting boundaries of scene objects for aiding in classifier training and
results evaluation., Similar combinations were prepared for agricultural
areas and again a general sharpening of field and subfield edges was ob-

served. The benefit of such combinations is subjective and analyst evalua-
tion is needed to fully evaluate best combinations for aiding training
sample selection.

8. Summary

The multidata merging and informagion evaluation task investigated se-
veral aspects of utilization of different data types for remote sensing
surveys. The primary topics studied were: (1) Merging of different types
of remote sensing data, (2) digitimmtion and merging of ancillary data, and
(3) information extraction from the combined data ﬁets. Due to difficulties
in obtaining data, only Landsat and synthetic apercure radar data types
were studied. Digitization and merging of color map ancillary data sources

were studied and & color classification method was validated. A self-

/46 ——

o _’M



D-30

defining digital data set structure was defined and implemented to facilitate

merging of different data types.

The most significant result of the study is the self-defining data
set approach and its implementation in an experimental software system.
Full development of the software will greatly simplify the user creation
of complex multiple type data sets for any application. The addition of
side-looking radar data to Landsat MSS data did not provide improved
classification performance for the predominately cotton agricultural test
case. Multi-frequency radar data have shown more promise in other work.
The chief benefit perceived in radar imagery is providing a current high
resolution view of the scene to enable fine-detail structure to be mapped.
With the map structure determined, spectral classification can proceed
on the interiors of scene objects using lower spatial resolution multi-
spectral data. This approach is suggested for further study in the
repetitive multicrop monitoring applications. The current RBV data pro-
vide a potential high resolution mapping capability and future satellite

side-looking radar systems could provide superior scene structure images.
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