BIVARIATE NORMAL CONDITIONAL AND RECTANGULAR PROBABILITIES:
A COMPUTER PROGRAM WITH APPLICATIONS

Ram Swaroop, James D. Brownlow, George R. Ashworth and William R. Winter

May 1980
BIVARIATE NORMAL CONDITIONAL AND RECTANGULAR PROBABILITIES:
A COMPUTER PROGRAM WITH APPLICATIONS

Ram Swaroop, James D. Brownlow and George R. Ashworth
System Development Corporation
Edwards, California

and

William R. Winter
NASA Dryden Flight Research Center
Edwards, California

NASA
National Aeronautics and
Space Administration
1980
INTRODUCTION

In applications involving univariate data where estimates and confidence intervals are required, the normal distribution is commonly employed. This distribution is mainly utilized because the probabilities under a normal curve are readily available. In contrast, use of multivariate probabilities in p-variate normal data are less frequent, primarily because probabilities for the multivariate normal case are generally not available. Except for very special cases, the probabilities for sections of p-dimensional space require extensive computations, since the canonical multivariate normal density changes with every change in correlation coefficient parameters. Even the probability computation in the bivariate normal case (p = 2) with only one value for the correlation coefficient over arbitrary sections of the (x, y) plane is not easy. Probability computations, therefore, in p > 2 dimensions are correspondingly much more difficult. (Ref. 1)

In many applications, problems are posed which not only require the probabilities over a section of p-dimensional space, but also the conditional probabilities of r (r < p) variables when the remaining (p - r) variables are either fixed, or are within designated intervals. For example, in aircraft target tracking studies, it is of interest to know the probability of X deviations from the target when Y deviations are considered within designated bounds. In aircraft performance studies it is important to know the distribution of the pilot's cardiac R-R intervals either under an assigned difficult aircraft maneuver or under the dynamic flight conditions.

The results on conditional and marginal distributions of r variables when the (p - r) remaining variables assume fixed values are well established. (Ref. 1) Similar results, when the remaining (p - r) variables assume values within specified ranges involve complexities and are discussed in this report.

In this study, results on bivariate normal distributions (p = 2) are reviewed. Various derivations and properties of bivariate normal conditional probabilities are derived. A computer program for conditional probabilities for all assigned values is included. From conditional and marginal probabilities, the rectangle probabilities are then obtained. Examples are presented to illustrate the use of the program. The program listing is appended to this report.

SYMBOLS

- A_y lateral acceleration
- A_z vertical acceleration
- c a constant with fixed numerical value
- $\exp(x)$ exponential function at x
F(s) conditional distribution of X at X = s Given Y is in interval (a, b)
f(u, v) general bivariate normal density
f(x), f(y) standard normal densities
f(x, y) standard bivariate normal density at X = x, Y = y
f(x|a<Y<b) conditional density of X at X = x given Y is in interval (a, b)
f(x|Y=y) conditional density of X at X = x given Y = y
f(x|Y<t, ρ<0) conditional density of X at X = x given Y is less than t and correlation is negative
f(x|Y>-t, ρ>0) conditional density of X at X = x given Y is greater than -t and correlation coefficient ρ is positive
Gp(s, t) double integral with two arguments s and t with a fixed value of correlation coefficient ρ
gt(x) conditional density of X at X = x given Y is in interval (-t, t)
gt(x|ρ>0) conditional density of X at X = x when correlation coefficient ρ is positive and Y is in interval (-t, t)
gt(x|ρ<0) conditional density of X at X = x when correlation coefficient ρ is negative and Y is in interval (-t, t)
p, r dimension of multivariate data or distribution
Pr[a<Y<b] probability that variable Y is in interval (a, b)
Pr[c<X<d, a<Y<b] joint probability that variable X is in interval (c, d) and variable Y is in interval (a, b)
Pr[X<h, Y<k] probability that X is less than h and Y is less than k
U, V, X, Y random variables
u, v, x, y, t specific values of random variables
Vc forward velocity
α fixed positive constant less than 1
μc mean of forward velocity Vc
BIVARIATE NORMAL DISTRIBUTION

A bivariate normal distribution of a random vector \((U, V)\) is characterized by parameters: \(\mu_u, \mu_v, \sigma_u, \sigma_v\) and \(\rho\). The density function

\[
f(u,v) = \left[\frac{2\pi \sigma_u \sigma_v \sqrt{1 - \rho^2}}{2(1 - \rho^2)} \right]^{-1} \exp \left(-\frac{1}{2(1 - \rho^2)} \left[(u - \mu_u)/\sigma_u \right]^2 - 2\rho \left[(u - \mu_u)/\sigma_u \right] \left[(v - \mu_v)/\sigma_v \right] + \left[(v - \mu_v)/\sigma_v \right]^2 \right)
\]

is defined over the entire \((u, v)\) plane. When the variables \(U\) and \(V\) are standardized, by defining the new variables

\[
x = \frac{U - \mu_u}{\sigma_u}, \quad y = \frac{V - \mu_v}{\sigma_v}
\]

the density function of \((X, Y)\) reduces to the canonical bivariate normal density

\[
X = \frac{U - \mu_u}{\sigma_u}, \quad Y = \frac{V - \mu_v}{\sigma_v}
\]

defined over the entire \((x, y)\) plane. The parameter \(\rho\) is called a correlation coefficient and takes values in the interval \((-1, 1)\). Without any loss of generality, this canonical density \(f(s, y)\) is considered in this study.
The density function \(f(x, y) \) exhibits certain properties. It is symmetric in opposite quadrants since
\[
f(x, y) = f(-x, -y)
\]
and
\[
f(x, -y) = f(-x, y)
\]
Further, \(f(x, y) \) is constant over all the ellipses
\[x^2 - 2\rho xy + y^2 = c(1 - \rho^2)\]
for every value of \(x \). (Fig. 1) The intercepts made by these ellipses on the \(x \) and \(y \) axes are equal. If \(\rho \) is positive, the major axis of the ellipse is along the 45° line with a length of \(2\sqrt{c(1 + \rho)} \); and the minor axis is along the 135° line with a length of \(2\sqrt{c(1 - \rho)} \). If \(\rho \) is negative, the major axis is along the 135° line with a length of \(2\sqrt{c(1 - \rho)} \); the minor axis along the 45° line has a length of \(2\sqrt{c(1 + \rho)} \). (Ref. 2) The ellipse
\[x^2 - 2\rho xy + y^2 = (1 - \rho^2) \log 1/(1 - \alpha)^2\]
for all \(0 < \alpha < 1 \), contains the \(\alpha \) proportion of the \((X, Y) \) distribution. (Ref. 3)

The marginal distributions of \(X \) and \(Y \) are standard normal with the covariance between \(x \) and \(y \) equal to \(\rho \). When \(\rho = 0 \), then
\[
f(x, y) = (\sqrt{2}\pi)^{-1} \exp(-x^2/2) (\sqrt{2}\pi)^{-1} \exp(-y^2/2)
\]
\[= f(x) \cdot f(y)\]
which is a product of standard normal densities, implying that \(\rho = 0 \) if and only if \(X \) and \(Y \) are independent. When \(\rho \neq 0 \), bivariate normal probabilities \(\Pr(X < h, Y < k) \) for a few selected values of \(h \) and \(k \) are available from tables and graphs. (Ref. 4, 5) For general values of \(h \) and \(k \) approximation and interpolation methods are used.

DERIVATION OF CONDITIONAL DENSITIES

Conditional Density of \(X \) Given \(Y = y \). It was stated earlier that if a random vector \((X, Y) \) has a bivariate normal distribution, then the marginal distribution of either \(X \) or \(Y \) is normal with mean 0 and variance 1. The conditional distribution of \(X \) for a fixed value of \(Y = y \), however, is normal with mean \(\rho y \) and variance \((1 - \rho^2) \). The conditional density \(f(x | Y = y) \) is derived below.
Figure 1. Marginal, conditional densities and ellipses of constant densities from bivariate normal density.
\[f(x | Y = y) = \frac{f(x, y)}{f(y)} \]

\[
= \frac{\left(2\pi \sqrt{1 - \rho^2}\right)^{-1} \exp \left\{ -\frac{(x^2 - 2\rho xy + y^2)}{2(1 - \rho^2)} \right\}}{(\sqrt{2\pi})^{-1} \exp \left(-\frac{y^2}{2} \right)}
\]

\[
= \left[\frac{2\pi(1 - \rho^2)}{\sqrt{2\pi}}\right]^{-1} \exp \left\{ - \left[\frac{x^2 - 2\rho xy + y^2 - (1 - \rho^2)y^2}{2(1 - \rho^2)} \right] \right\}
\]

\[
= \left[\frac{2\pi(1 - \rho^2)}{\sqrt{2\pi}}\right]^{-1} \exp \left(-\frac{(x^2 - 2\rho xy + \rho^2 y^2)}{2(1 - \rho^2)} \right)
\]

which is the density of a normal distribution with mean \(\rho y \) and variance \(1 - \rho^2 \) and is shown in Figure 1.

Conditional Density of \(X \) Given \(a < Y < b \). The conditional density of \(X \) given \(a < Y < b \) is not normal and is derived as follows.

\[
f(x | a < Y < b) = \int_a^b \frac{\left(2\pi \sqrt{1 - \rho^2}\right)^{-1} \exp \left\{ -\frac{(x^2 - 2\rho xy + y^2)}{2(1 - \rho^2)} \right\}}{(\sqrt{2\pi})^{-1} \int_a^b \exp \left(-\frac{y^2}{2} \right) dy} dy
\]

\[
= \left[\frac{\phi(b) - \phi(a)}{\frac{2\pi \sqrt{1 - \rho^2}}{\sqrt{2\pi}}}\right]^{-1} \cdot \int_a^b \exp \left\{ -\frac{(x^2 - 2\rho xy + \rho^2 x^2 + x^2(1 - \rho^2))}{2(1 - \rho^2)} \right\} dy
\]

\[
= \left(\frac{\sqrt{2\pi}}{\sqrt{2\pi(1 - \rho^2)}}\right)^{-1} \exp \left(\frac{x^2}{2} \right) \left[\frac{\phi(b) - \phi(a)}{\sqrt{1 - \rho^2}}\right]^{-1} \cdot \int_a^b \exp \left(-\frac{(y - \rho x)^2}{2(1 - \rho^2)} \right) dy
\]

\[
= f(x) \left[\frac{\phi(b) - \phi(a)}{\sqrt{1 - \rho^2}}\right]^{-1} \left\{ \phi \left(\frac{b - \rho x}{\sqrt{1 - \rho^2}} \right) - \phi \left(\frac{a - \rho x}{\sqrt{1 - \rho^2}} \right) \right\}
\]
where
\[f(x) = (\sqrt{2\pi})^{-1} \exp\left(-x^2/2\right) \]
is a standard normal density and
\[\phi(t) = \int_{-\infty}^{t} f(x) \, dx \]
is the standard normal distribution function.

This conditional density is neither normal, nor symmetric. However, in special cases discussed below, symmetry is identifiable.

Symmetry in Conditioning \(-t < Y < t\). With \(-t < Y < t\), the conditional density of \(X\) at specific values of \(x\) and \(-x\) are

\[g_t(x) = f(x| -t < Y < t) \]

\[= f(x) \left[\phi(t) - (-t) \right]^{-1} \left\{ \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

\[g_t(-x) = f(-x| -t < Y < t) \]

\[= f(-x) \left[\phi(t) - \phi(-t) \right]^{-1} \left\{ \phi\left(\frac{t + \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t + \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

The symmetry of a standard normal density shows that \(f(-x) = f(x)\). With the asymmetry of distribution function \(\phi(t) = 1 - \phi(-t)\), it is seen that

\[\phi\left(\frac{t + \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t + \rho x}{\sqrt{1 - \rho^2}}\right) \]

\[= 1 - \phi\left(\frac{-t - \rho x}{\sqrt{1 - \rho^2}}\right) - \left\{ 1 - \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

\[= \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t - \rho x}{\sqrt{1 - \rho^2}}\right) \]

Thus \(g_t(-x) = g_t(x)\), showing that for \(-t < Y < t\) the conditional density of \(X\) is symmetric in \(x\), as shown in figure 2.

The conditioning, \(-t < Y < t\), with positive and negative values of correlation coefficient \(\rho\) also show symmetry of \(g_t(x)\). It is to be noted that

\[g_t(x|\rho > 0) = f(x) [\phi(t) - \phi(-t)]^{-1} \]

\[\left\{ \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]
Conditional density

Standard normal density

Figure 2. Conditional density of X given $-t < Y < t$ ($t = 1.000$, probability = 0.6826) where (X, Y) is bivariate normal with $\rho = 0.9000$, and standard normal density.
\[g_t(x|\rho < 0) = f(x)\left[\phi(t) - \phi(-t)\right]^{-1} \cdot \left\{ \phi\left(\frac{t + \rho x}{\sqrt{1 - \rho^2}}\right) - \phi\left(\frac{-t + \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

By the symmetry of \(f(x) \), the asymmetry of \(\phi(t) \), and the arguments given earlier, it is seen that \(g_t(x|\rho > 0) = g_t(x|\rho < 0) \). The graph of such a density is shown in figure 2.

Symmetry when \(-\infty < Y < t \) and \(-t < Y < +\infty \). In these cases it is to be noted that \(\phi(-\infty) = 0 \), \(\phi(\infty) = 1 \). Thus the conditional densities of \(X \) are

\[g_t(x|\rho > 0) = f(x|Y < t) \]

\[= f(x)\left[\phi(t)\right]^{-1} \cdot \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) \]

\[g_{-t}(x|\rho > 0) = f(x|-t < Y) \]

\[= f(x)\left[1 - \phi(-t)\right]^{-1} \left\{ 1 - \phi\left(\frac{-t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

\[= f(x)\left[\phi(t)\right]^{-1} \left\{ \phi\left(\frac{t + \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

\[g_{-t}(-x|\rho > 0) = f(-x|-t < Y) \]

\[= f(x)\left[\phi(t)\right]^{-1} \left\{ \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

Thus \(g_t(x) = g_{-t}(-x) \), showing that a one-sided conditioning on \(Y \) yields the same density for \(X \) as does the conditioning on the other side for the opposite \(x \). Further, for negative and positive values of \(\rho \), it is to be noted that

\[g_t(x|\rho > 0) = f(x)\left[\phi(t)\right]^{-1} \left\{ \phi\left(\frac{t - \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

and

\[g_t(x|\rho < 0) = f(x)\left[\phi(t)\right]^{-1} \left\{ \phi\left(\frac{t + \rho x}{\sqrt{1 - \rho^2}}\right) \right\} \]

\[= g_{-t}(x|\rho > 0) \]
Therefore, if the conditioning on \(Y \) and the sign of the correlation coefficient are reversed, the density remains invariant. An example of these densities is shown in figure 3.

DERIVATION OF CONDITIONAL DISTRIBUTIONS

Conditional Distribution Function of \(X \) Given \(Y = y \). The distribution function from the conditional density

\[
 f(x|Y = y) = \left[\sqrt{2(1 - \rho^2)}\right]^{-1} \exp\left[-\frac{(x - \rho y)^2}{2(1 - \rho^2)} \right]
\]

derived earlier, is easily obtainable via the normal distribution function with mean \(\rho y \) and variance \(1 - \rho^2 \). It is to be observed from figure 1, that mean \(\rho y \) is a function of the correlation \(\rho \) and the specific conditioned value of \(y \), but the variance depends only on \(\rho \) and is invariant for all values of \(y \). Thus the width of any \(\alpha \) level confidence interval remains the same irrespective of the conditioned values of \(y \).

In applications, the conditioning of variable \(Y \) is seldom a fixed value. The conditioning is usually in a range \(a < Y < b \), and the formulae for this case are different from the results for \(Y = y \).

Conditional Distribution of \(X \) Given \(a < Y < b \). The conditional density

\[
 f(x|a < Y < b) = f(x) \left[\phi(b) - \phi(a)\right]^{-1} \left\{ \frac{\phi((b - \rho x)/\sqrt{1 - \rho^2})}{\sqrt{1 - \rho^2}} - \frac{\phi((a - \rho x)/\sqrt{1 - \rho^2})}{\sqrt{1 - \rho^2}} \right\}
\]

where

\[
 f(x) = \left(\sqrt{2\pi}\right)^{-1} \exp\left(-\frac{x^2}{2} \right)
\]

and

\[
 \phi(t) = \int_{-\infty}^{t} f(x) dx
\]

was derived earlier. A general expression for the distribution function

\[
 F(s) = \int_{-\infty}^{s} f(x|a < Y < b) dx
\]

\[
 = \left[\phi(b) - \phi(a)\right]^{-1} \int_{-\infty}^{s} f(x) \left\{ \frac{\phi((b - \rho x)/\sqrt{1 - \rho^2})}{\sqrt{1 - \rho^2}} - \frac{\phi((a - \rho x)/\sqrt{1 - \rho^2})}{\sqrt{1 - \rho^2}} \right\} dx
\]

for all the values of \(s \) involves integration of the expression which is the product of the normal density and distribution function in the appropriate range of the \(x \) values. Specifically, for the computation of \(F(s) \), the
Figure 3. Conditional density of X given $-\infty < Y < t$ ($t = 1.00$, probability = 0.8413) where (X, Y) is bivariate normal with $\rho = 0.6000$, and standard normal density.
value of double integrals such as

\[G_p(s,t) = \int_{-\infty}^{s} \exp\left(-x^2/2\right) \left[\int_{-\infty}^{t} \frac{(t - \rho x) \sqrt{1 - \rho^2}}{\exp(-u^2/2)} \, du \right] \, dx \]

for all values of \(s, t \) and \(\rho \) are required. In terms of these functions, it is easily seen that

\[F(s) = \left\{ 2\pi [\phi(b) - \phi(a)] \right\}^{-1} \left[G_p(s,b) - G_p(s,a) \right] \]

A closed analytical expression for \(G_p(s,t) \) is not available and for specific values, numerical methods may be employed. However, in cases where symmetry occurs, the numerical computations for a smaller range of values are needed. In order to calculate \(F(s) \) for all values of \(s, a, b \) and \(\rho \), a computer program using quadratures was developed at DFRC and is given in the Appendix.

Rectangle Probabilities. The region \((c < x < d, a < Y < b)\) is a rectangle in the \((x, y)\) plane. Thus the joint probability \(\Pr(c < X < d, a < Y < b) \) for real values of \(a, b, c \) and \(d \) corresponds to a rectangle probability. The appended computer program can be used to calculate all such rectangle probabilities. The procedure is to identify first that

\[\Pr[c < X < d, a < Y < b] = \Pr[c < X < d|a < Y < b] \Pr[a < Y < b] \]

\[= [F(d) - F(c)] \Pr[a < Y < b] \]

\[= [F(d) - F(c)] [\phi(b) - \phi(a)] \]

for all values of \(c < d \) and \(a < b \), and then use the computer program with the proper inputs.

COMPUTER PROGRAM INPUTS AND OUTPUTS

The computer program developed at DFRC computes the conditional density and distribution function as outputs for specified values of \(x \) given the end points of the interval of the conditioning variable \(Y \), and the correlation coefficient \(\rho \). Thus the inputs to the program are specific \(x \) values, end points of the \(Y \) interval and the \(\rho \) value. The output has two options. Either the density or distribution function, or both may be obtained by stating the options in the program.

The rectangle probabilities are to be obtained by finding the conditional probabilities. The computer program with its options is explained in the Appendix.
EXAMPLES

The following examples illustrate the use of the program and tables shown in the Appendix to calculate various probabilities.

The data for the examples are taken from a Closed Circuit Television (CCTV) experiment. In this experiment, two pilots, A and B, landed an aircraft with the help of an airborne television camera and video monitor. Each pilot made ten (10) touchdowns under visual flight regulations, and eighteen (18) touchdowns utilizing the closed circuit television monitor. The summary of data from the twenty-eight (28) touchdowns is given in Table I. For this illustration the data parameters are vertical acceleration, A_z, forward velocity, V_c and lateral acceleration A_y.

TABLE I. SUMMARY OF 28 TOUCHDOWN DATA OF CCTV EXPERIMENT

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Parameter (Units)</th>
<th>Mean μ</th>
<th>S.D. σ</th>
<th>Correlation Between</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A_z (G)</td>
<td>1.313</td>
<td>.2021</td>
<td>$(A_z, V_c) = .2481$</td>
</tr>
<tr>
<td></td>
<td>V_c (MPH)</td>
<td>60.25</td>
<td>1.3089</td>
<td>$(A_z, A_y) = -.0715$</td>
</tr>
<tr>
<td></td>
<td>A_y (G)</td>
<td>.023</td>
<td>.1227</td>
<td>$(V_c, A_y) = .2807$</td>
</tr>
<tr>
<td>B</td>
<td>A_z (G)</td>
<td>1.294</td>
<td>.1044</td>
<td>$(A_z, V_c) = -.2569$</td>
</tr>
<tr>
<td></td>
<td>V_c (MPH)</td>
<td>62.04</td>
<td>1.8747</td>
<td>$(A_z, A_y) = -.2199$</td>
</tr>
<tr>
<td></td>
<td>A_y (G)</td>
<td>-.007</td>
<td>.0801</td>
<td>$(V_c, A_y) = -.1993$</td>
</tr>
</tbody>
</table>

The variables (A_z, V_c, A_y) are assumed to follow a multivariate normal distribution. Thus any two variables follow a bivariate normal distribution and any single variable, a univariate normal distribution, as shown in figure I. Further, all the values in these data are considered to be parameter values.

Example 1. Computation of a 95% confidence interval of forward velocity (V_c) given vertical acceleration (A_z) mean is within ± one standard deviation (σ).

It is desired in this example to determine a 95% confidence interval for aircraft forward velocity (V_c), in miles per hour, at the point of touchdown, given the pilot's average vertical acceleration (A_z), in G's, within ± one standard deviation. The 95% confidence interval end points for V_c given A_z mean is within ± σ are obtained by solving for t from the equation
\[.95 = \Pr[-t < \frac{(V_c - \mu_c)}{\sigma_c} < t | -1 < \frac{(A_z - \mu_z)}{\sigma_z} < 1] \]
\[= \Pr[-t < X < t | -1 < Y < 1] \]

and identifying the interval as \((-t\sigma_c + \mu_c, t\sigma_c + \mu_c)\).

The solution of the equation for pilot A data of \(\mu_c = 60.25, \sigma_c = 1.3089, \mu_z = 1.313, \sigma_z = 0.2021\) and correlation \((A_z, V_c) = -.2481\), yields the value of \(t = 1.91666\). The 95% confidence interval, therefore, becomes

\[(57.7413, 62.7587)\]

This shows that if in pilot A data, the aircraft's vertical acceleration at touchdown is within \(+1.3 \pm 0.2\) G's, he has a 95% chance of landing the aircraft between 58 and 63 MPH.

For pilot B data, from table I, the \(t\) value computes to be 1.9136. Thus the 95% confidence interval is

\[(57.7453, 62.7547)\]

indicating if pilot B's vertical acceleration data at touchdown is within \(+1.3 \pm 0.1\) G's, he also has a 95% chance of landing the aircraft between 58 and 63 MPH.

Example 2. Computation of the probability that the forward velocity \((V_c)\) and \((A_y)\) are both within \(\pm \sigma\) of each variable. The probability of \(V_c\) and \(A_y\) being within \(\pm \sigma\) of each respective mean is an example of rectangle probability. In this example, the probability that simultaneously, \(V_c\) and \(A_y\), will be within one standard deviation of each variable's respective mean is to be computed.

This rectangle probability can be obtained by finding

\[\Pr[-1 < \frac{(V_c - \mu_c)}{\sigma_c} < 1 , -1 < \frac{(A_y - \mu_y)}{\sigma_y} < 1] \]
\[= \Pr[-1 < X < 1 | -1 < Y < 1] \Pr[-1 < Y < 1] \]

From univariate tables, \(\Pr[-1 < Y < 1] = \phi(1) - \phi(-1) = .6826\) and is not affected by the correlation coefficients. In order to obtain \(\Pr[-1 < X < 1 | -1 < Y < 1]\), the values of the correlation coefficients are needed.

The correlation coefficient \((V_c, A_y)\) for pilot A data is equal to -0.2807. The computer program output, therefore, for this correlation yields

\[\Pr[\mu_c - \sigma_c < V_c < \mu_c + \sigma_c , \mu_y - \sigma_y < A_y < \mu_y + \sigma_y] = .47554 \]

Thus, for pilot A there is a 48% chance that simultaneously at touchdown, the aircraft's forward velocity will be within \(60 \pm 1.3\) MPH and the lateral
acceleration is within 0 ±0.1 G's. Conversely, the probability is 0.52 that both variables will not simultaneously be within one standard deviation of their respective means. Similarly, for pilot B with the correlation \((V_C, A_y)\) equal to 0.1993, the program yields

\[
\Pr[\mu_c - \sigma_c < V_c < \mu_c + \sigma_c, \mu_y - \sigma_y < A_y < \mu_y + \sigma_y] = .47078
\]

which represents a 0.47 probability that the forward velocity will be within 62 ±1.9 MPH and lateral acceleration is within 0 ±0.08 G's.

Example 3. Computation of the probability of forward velocity \((V_c)\) and lateral acceleration \((A_y)\) being within ±σ of each variable, given vertical acceleration is equal to its mean \((A_z = \mu_z)\). This rectangle probability can be obtained as in Example 2, except in this case the vertical acceleration \((A_z)\) is set equal to the variable's mean value \((\mu_z)\). The probability in other words, is a function of a conditional correlation coefficient which is different from the coefficient given in the table.

For the pilot A data, this conditional coefficient is equal to 0.3809 and the program output yields

\[
\Pr[\mu_c - \sigma_c < V_c < \mu_c + \sigma_c, \mu_y - \sigma_y < A_y < \mu_y + \sigma_y] = .48391
\]

which represents a 0.48 probability that the forward velocity will be within 60.25 ±1.309 MPH, and lateral acceleration within 0.023 ±0.1227 G's given that vertical acceleration is 1.313 G's.

For pilot B, the conditional correlation coefficient is equal to -0.2807 and the corresponding rectangle probability is

\[
\Pr[\mu_c - \sigma_c < V_c < \mu_c + \sigma_c, \mu_y - \sigma_y < A_y < \mu_y + \sigma_y] = .47554
\]

This represents a 0.48 probability that the forward velocity will be within 62.0 ±1.9 MPH and lateral acceleration is within 0 ±0.08 G's given the vertical acceleration is +1.294 G's.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, March 17, 1980
APPENDIX

The program to compute the conditional density and distribution function for specified values of x given the conditioning on variable Y.
PROGRAM MAIN(OUTPUT)

C**** ILLUSTRATIVE USE OF THE ENCLOSED COMPUTER
C**** PROGRAMS TO COMPUTE VARIOUS
C**** PROBABILITIES ASSOCIATED WITH THE EXAMPLES
C**** GIVEN IN THE TEXT OF THIS PAPER...
C**** BY BROWNLOW, SDC/ISI

5 PRINT I, RPROB(-1.,1.,-1.,1.,-2907)
PRINT 1, RPROB(-1.,1.,-1.,1.,-1993)
PRINT 1, RPROB(-1.,1.,-1.,1.,-3809)

10 PRINT1, TINV(.95,-1.,1.,-2491)
PRINT 1, TINV(.95,-1.,1.,-2569)

15 FORMAT(*F10.5)
END
FUNCTION CD(X)
C****
C**** CONDITIONAL DENSITY FUNCTION
C**** CD(X\(\text{A}<X<\text{B}\)) = 1/\sqrt{2\pi}\exp(X^2)*
C**** (\phi((B-R\times X)/(\sqrt{1-R^2})) - \phi((A-R\times X)/(\sqrt{1-R^2})))
C**** / (\phi(B) - \phi(A))
C**** WHERE R = COEFFICIENT OF CORRELATION BETWEEN
C**** X AND Y
C****
C**** PHI(T) = INTEGRAL F(X) DX
C**** -INF
C**** AND F(X) = 1/\sqrt{2\pi}\exp(X^2)
C**** BY BRJWNLOW, SDC/ISI
C****
C**** COMMON/PARAM/A,B,R,SQR
C**** CD = .39894228/\sqrt{\exp(X^2)}* (\phi((B-R\times X)/SQR) -
C**** .\phi((A-R\times X)/SQR))/ (\phi(B)-\phi(A))
C****
RETURN
END
FUNCTION FINT2 737/4 OPT=1 FTN 4.2+75060

FUNCTION FINT2(F,A,B)
C**** INTERNAL OF THE FUNCTION F FROM A TO B
C**** BY GAUSSIAN-LEONARDO QUADRATURE. 95 POINT FORM
C**** REQUIRES 95 EVALUATIONS OF F(X).
C****
C**** F MUST BE DECLARED EXTERNAL IN
C**** THE CALLING PROGRAM.
C**** BY MACNOW, SOYISI
C****
C**** DOUBLE PRECISION KDOT(48), WEIGHT(48), ANSWER,A,B
C**** EQUIVALENCE (ARY(I,1),RO3T(1)), (ARY(I,2),WEIGHT(1))
C****
C**** SET UP ROJTS AND WEIGHTS...
C****
C****
DATA ((ARY(I,J),J=1,2),I=1,18) /
 0.0431 29.51 3.049 731112000 0.0332 611187 1336593 639387000
 0.6129 74904 64729 944940000 0.3244 71537 14094 623540000
 0.1135 58501 10655 920110000 0.3234 38225 66575 928429000
 0.1493 37146 54939 941999000 0.3220 62047 94030 253669000
 0.17309 58930 67191 602729000 0.3203 44662 31932 663213000
 0.21003 13104 63557 203633000 0.0132 37533 9411 005353000
 0.24174 11251 63393 312380000 0.0318 93307 70727 168558000
 0.27314 81120 91347 141973000 0.3131 64255 96851 352313000
 0.30436 54443 54495 393024000 0.3101 03325 86313 637423000
 0.33520 35223 92625 422616000 0.3067 13761 23669 149014000
 0.36595 58614 72113 635031000 0.3039 91154 20327 535743000
 0.39579 76493 28909 603235000 0.2936 35411 36325 385389000
 0.42424 83084 37300 243355000 0.32945 10899 99157 909790000
 0.45473 94221 67743 008536000 0.32899 45141 50355 236543000
 0.48349 79739 23996 354708000 0.28689 74110 63085 385643000
 0.51109 41771 54667 673546000 0.27979 0076 16548 334443000
 0.53399 81033 24137 436227000 0.27421 29627 26029 242623000

DATA ((ARY(I,J),J=1,2),I=19,37) /
 0.05021 64135 51347 163404000 0.02682 68667 25591 762198000
 0.33033 23647 75772 038540000 0.32621 23407 35672 413913000
 0.51392 59401 25495 970336000 0.2567 03630 05349 361499000
 0.04416 34037 34477 105790000 0.04290 06332 22483 610283000
 0.55371 31100 43716 193933000 0.23420 84171 92166 691232000
 0.39256 45368 42171 561344000 0.23494 33790 35260 219240000
 0.71597 93213 4546752253000 0.32737 70626 81329 374010000
 0.73333 65437 44033 1238510000 0.32176 50447 83744 349190000
 0.75943 23411 76947 498703000 0.20117 29398 92191 294983000
 0.79056 43383 73483 217634000 0.20235 57971 54333 324599000
 0.80033 37441 34140 817229000 0.19211 90311 40145 022410000
 0.81840 31017 37931 675539000 0.14660 50795 27411 467300000
 0.83722 35112 29127 126474000 0.17788 25023 16045 297643000
 0.85675 50343 43401 453463000 0.16888 54798 54245 172450000
 0.87138 55059 92634 328748000 0.11576 58293 32952 291381000
 0.88639 43174 32420 416097000 0.15039 87210 26914 393008000
 0.90166 30333 14092 341310000 0.14099 39417 72314 853150000
 0.91937 14231 23791 374925000 0.13132 32295 56961 972037000
 0.92771 24967 22033 533455000 0.12115 16046 71988 319353000

C****
FUNCTION FINT2 73/74 JPT=1

DATA((ARY(I,J),J=1,2),I=33,43)/
. 0.93937 3397 92753 21693200,
 0.95033 27177 64437 63976000,
 0.96938 92144 48742 33930000,
 0.96932 53294 93244 21217400,
 0.97081 17495 83136 46543000,
 0.98251 72639 30142 67744700,
 0.98908 1363 29523 79941000,
 0.99034 39003 23762 62157200,
 0.99599 18429 37204 29055000,
 0.99935 43758 3181 57772900,
 0.99963 3308 32320 75682400,

C****
C**** INTEGRATION DONE BY TRANSLATING F TO THE
C**** INTERVAL -1 TO 1
C****

ANSWER = 0.00
DJ = 3
DA = 1

C****
DJ = I=1,43
T = ((DJ-DA)*RODT(I) -(D9+DA))/2.00
ANSWER = ANSWER + DEIGHT(I) * FIT
T = ((DJ-DA)*(-RODT(I)) +(D9+DA))/2.00
ANSWER = ANSWER + DEIGHT(I) * FIT
C****
FINT2 = (D1-DA)*ANSWER/2.00
C****
RETURN
END
FUNCTION RECT(A,B,R)

C**** RECTANGLE PROBABILITY...
C**** VOLUME UNDER THE NORMAL BIVARIATE DENSITY,
C**** -INFX<X<A', -INFY<Y<B'.
C**** BY BRJWLOW, SDC/ISI
C**** COMMON/GPARM/ AA,BB,RR,SQR
EXTERNAL G
C****
AA = A
BB = B
RR = R
SQR = SQR(1-R*R)
C****
RECT = FINT2(G,-15.,A)
C****
RETURN
END
FUNCTION G(X)
C****
C**** CONDITIONAL DISTRIBUTION FUNCTION...
C****
5
C**** CJAMJN/SPAR4/A,B,R,SQR
C****
T = (3-R*X)/SJR
G = EXP(-X*X/2.)*PHI(T)*2.506628275
RETURN
10
END
FUNCTION TINV

FUNCTION TINV(P, A, B, R)

GIVEN A < Y < B FIND T SO THAT -T < X < T AND
P(-T < X < T, A < Y < B) = P

WITH COEFFICIENT OF CORRELATION BETWEEN X AND
Y EQUAL TO R.

P(-T < X < T, A < Y < B) = P(-T < X < T, A < Y < B) / P(A < Y < B)

T IS FOUND BY INTERVAL HALVING.

BY BROWN, SDC/IISI

DENOM = PHI(3) - PHI(A)
TMAX = 10.
TMIN = 0.

DO 1 I = 1, 50
 T = (TMAX + TMIN) / 2.

PCOMPT = RPROB(A, 3, -T, T, R) / DENOM

IF(PCOMPT .GT. P) TMAX = T
IF(PCOMPT .LT. P) TMIN = T
IF(ABS(PCOMPT - P) .LE. 1.0 .E-5) GO TO 2
 CONTINUE

PRINT 100, P, A, B, R

100 FORMAT('COULDN'T FIND T IN 50 ITERATIONS: P=*, F7.4, A=*, F7.4, B=*, F7.4,
R=*, F7.4.')
TINV = (TMIN + TMAX) / 2.
RETURN

2 TINV = T
RETURN
END
FUNCTION RPR3 (A, B, C, D, R)

C**** RECTANGULAR PROBABILITY FOR BIVARIATE
C**** NORMAL DISTRIBUTION...

5 C****
C**** CXX<0
C**** AXY<3
C****
C**** AND THE COEFFICIENT OF CORRELATION BETWEEN

10 C**** X AND Y IS R.
C**** BY BROXHO, SCIC/ISI
C****
C**** RPR3 = (RECT(D,3,R) - RECT(C,3,R)-RECT(D,A,R) + RECT(C,A,R))

15 C****
C**** RETURN
END
FUNCTION PHI 73/74 OPT=1 FTN 4.2+75363

C****
C****
60 RETURN
END
FUNCTION PHI

C****
C****
C**** NORMAL(0,1) DISTRIBUTION FUNCTION
C**** PHI(X) = INTEGRAL OF NORMAL DENSITY
C**** FROM -INFINITY TO X.
C**** BY JANLOL, SOG/ISI
C****
C**** LOGICAL FLAG
C**** IF(X .GT. -10.) GO TO 1
C**** PHI = 0.
C**** RETURN
C**** 1 IF(X .LT. 10.) GO TO 2
C**** PHI = 1.
C**** RETURN
C**** 2 FLAG = .T.
C****
C**** DETERMINE IF X>0, SERIES EXPANSION IS FOR
C**** POSITIVE VALUES OF X.
C****
C**** IF(X .ST. 0.) GO TO 3
C**** FLAG = .F.
C****
C**** INITIALIZE VALUES FOR PARTIAL SUM OF THE SERIES...
C**** 3 Z = ABS(X)
C**** D = 1.
C**** SJM = 0.
C**** TJP = Z
C**** BIT = 1.
C****
C**** 4 CONTINUE
C**** SAVE = SUM
C**** SJM = SJM + TJP/8*BIT
C****
C**** CONTINUE TO SUM UNTIL MACHINE UNDEROWS...
C****
C**** 5 IF(SAVE .LT. SUM) GO TO 6
C****
C**** UPDATE EXPRESSIONS FOR THE SUM...
C**** 6 TJP = TJP+Z*Z
C**** D = D + 2.
C**** BIT = BIT*3
C**** GO TO 4
C****
C****
C**** DEPENDING UPON WHETHER ORIGINAL X>0 OR X<0,
C**** GET APPROPRIATE INTEGRAL VALUE...
C****
C**** 5 PHI = SJM/SQR((6.28318533)*EXP(X*X)) *.5
C**** IF(FLAG) RETURN
C**** PHI = 1.-PHI
FUNCTION FRAC(73/74 OPT=1 FTN 4.2+75060)

FUNCTION FRAC(PV,Y1,Y2)

GIVEN A BIVARIATE NORMAL DISTRIBUTION
WITH COEFFICIENT OF CORRELATION RHO
AND Y1 < Y < Y2, FRAC(PV,Y1,Y2) RETURNS
THAT VALUE T, SUCH THAT:

PROB(-T < X < T, Y1 < Y < Y2) = PV

BINARY SEARCH, LIMITED TO A MAXIMUM OF 20 ITERATIONS

BY BROWNLOW, SDC/ISI, 11/79

KJOUNT = 0
TMIN = 0.
TMAX = 10.

1 T = (TMIN+TMAX)/2.

VAL = RECT(-T,T,Y1,Y2)
PRINT 100, VAL,T
100 FORMAT(* F10.3//)

IF WERE WITHIN 1.E-5 OF THE VALUE, WE
HAVE FOUND THE SOLUTION...

IF(ABS(VAL-PV) .LT. 1.E-5) GO TO 2

IF(VAL.LT. PV) TMIN=T
IF(VAL.GT. PV) TMAX = T

CHECK FOR MAXIMUM NUMBER OF ITERATIONS...

IF(KJOUNT .GE. 20) RETURN
KJOUNT = KJOUNT + 1

GJ TO 1

2 FRAC = T

RETURN
FUNCTION CONDEN(x)

C****
C**** CONDITIONAL DENSITY FUNCTION OF X, GIVEN
C**** A<X<B FROM BIVARIATE NORMAL DISTRIBUTION
C**** F(x,y) WITH COEFFICIENT OF CORRELATION RHO.
C****
C**** BY BRJWLJW, SDC/ISI, 11/79
C****

10 COMMON/RHO,A,B
C**** SET UP THE PARAMETERS, PHI IS THE UNIVARIATE
C**** NORMAL DISTRIBUTION FUNCTION.
C****

15 R = SQRT(1.-RHO*RHO)
D = PHI(B)-PHI(A)
T = PHI((3.-RHO*X)/R) - PHI((A-RHO*X)/R)
C****
CONDEN = EXP(-X*X/2.)*T/(D*2.506628275)

20 C****
RETURN
END
FUNCTION G(S,T)
C*** Multivariate normal distribution function.
C*** G(S,T) = double integral of normal
C*** multivariate density function, -Inf to S,
C*** -Inf to T.
C*** Notice that the numerical computations
C*** use the fact that the contribution to the
C*** integral value from -Inf to -15.
C*** is insignificant.
C***
C*** By 3C4NL74, SDC/ISI, 11/79
C***
15 COMMON /PASS1T/ C*** EXTERNAL FC4
C*** FF = T
20 G = FINT2(FUN,-15.,S1/5.,293195308)
C*** RETURN
END
FUNCTION FCN(x)

C***** DENSITY FUNCTION FOR DOUBLE INTEGRAL,
C***** PHI(x)*Z(x), WHERE PHI AND Z ARE THE
C***** NORMAL DISTRIBUTION AND DENSITY FUNCTIONS
C***** RESPECTIVELY.
C*****
C*****
C***** BY S. J. McLean, SUS/ISI, 11/79
C*****
C*****
C***** COMMON/ARG/RHO*A
C***** COMMON/PASS/TIT
C*****
C***** Z(ARG) = EXP(-ARG**2/2)
C*****
C***** J = (TT-RH)*X/SQRT(1.0-RH**2)
C*****
C***** FCN = PHI(J)*Z(X)**2.0*629273
C*****
C***** RETURN
END

30
FUNCTION RECT(x1, x2, y1, y2)

C**** VEC4T4GL: PR0BABILITY FOR BIVARIATE NORMAL
C**** DISTRIBUTION, x1<x2, y1<y2, AND THE
C**** COEFFICIENT OF CORRELATION IS RH0.
C****
C**** BY
C****

RECT = G(x2, y2) - G(x1, y2) - G(x2, y1) + G(x1, y1)

RETURN

END
FUNCTION CN4JST(4)

C**** CONDITIONAL DISTRIBUTION FUNCTION OF X GIVEN
C**** A<X<3 FROM BIVARIATE NORMAL DISTRIBUTION
C**** F(X,Y) WITH COEFFICIENT OF CORRELATION RHO.
C****
C**** BY R.H.NLGD, SDC/ISI, 11/79
C****
C****
C****

10 C4JST(4XG/PHI,A+4)
C**** PHI IS THE UNIVARIATE NORMAL DISTRIBUTION
C**** FUNCTION.
C****

15 C4JST=(G(Y,3)-(Y,A))/(PHI(B)-PHI(A)*5.23195308)
C**** RETURN
 END
FUNCTION FINT2
71/7+ JOPCL
FIN 4.2+75069

FUNCTION FINT2(F,*A3)
C****
C**** INTEGRAL OF THE FUNCTION F FROM A TO B
C**** BY GAUSSIAN-LEGENDRE QUADRATURE, 76 POINT FORM
C****
C**** ADD 76 EVALUATIONS OF F(X)
C****
C**** F MUST BE DECLARED EXTERNAL IN
C**** THE CALLING PROGRAM.
C****
C**** BY JOPCL JULIUS 3/13/83

10 DIJILE Prelude (4i1) & WEIGHT(48), ANSWER, DATA, DATA (48,2)
EQUIVALENCE (ARY(1,1) = FINT(1)), (ARY(1,2) = WEIGHT(1))
C****
C****
15 DATA (ARY(I,J), J=1,2), I=1,18) /
C****
C****
C****

25 C****
C****
C****

35 C****
C****
C****

DATA (ary(i,j), j=1,2), i=1,18) /
C****
C****
C****

45 C****
C****
C****

55 C****
C****
C****

DATA (ary(i,j), j=1,2), i=1,18) /
FUNCTION FINT2 73/74 J\=1

0.33373 0.3397 0.3753 2.1693000 0.01116 21.20 9.8328 49.8591000
0.37703 27.177 0.437 0.3275400 0.01016 0.7745 35.008 41.5790000
0.45775 4.2174 0.3745 0.3193000 0.00914 9.5712 3.0763 3.8663000
0.53725 0.3244 0.3206 2.1217430 0.00812 1.8769 2.5698 1.759217.000
0.61745 0.1375 0.4504300 0.00739 5.4707 9.1153 3.6526900
0.69731 0.353 0.3014 5.77644700 0.00658 8.5435 0.4225 96.1668300
0.77723 2.9223 7.9748100 0.00571 4.2027 4.2927 5.17539300
0.85724 9.3903 0.3742 0.2437200 0.00494 4.5543 3.8444 68.5574000
0.93735 1.932 2.3359200 0.00421 0.7318 1.7934 9.4640800
1.01746 5.3753 0.171 5.77724000 0.00353 3.907 8.3946 92.1732000
1.09758 0.3338 0.1210 7.6542900 0.00290 6.7920 0.5352 0.12429000

C###
C### INTEGRATION CUE BY TRANSLATING F TO THE
C### INITIAL -1 TO 1
C###

\[\int_{-1}^{1} f(x) dx \]

\[\int_{-1}^{1} f(T) dT \]

C###
C### DO 1 I=1,43
C### T = ((I-3)/4) * (3.079-0.01)
C### ANSWR = ANSWR + WEIGHT(I) * F(T)
C### 1 ANSWR = ANSWR + WEIGHT(I) * F(T)
C###
C### FINT2 = (I-0.01) * ANSWR/2.00
C###
C### RETURN
C###
FUNCTION PHI

FUNCTION PHI(X)

C****
C**** NORMAL(0,1) DISTRIBUTION FUNCTION
C**** PHI(X) = INTEGRAL OF NORMAL DENSITY
C**** FROM -INFINITY TO X.
C****
C**** LOGICAL FLAG
10 IF(X .GT. -10.) GO TO 1
 P+I = 0.
 RETURN
C****
1 IF(X .LT. 10.) GO TO 2
 PHI = 1.
 RETURN
C****
2 FLAG = .T.
C****
20 DETERMINE IF X>0, SERIES EXPANSION IS FOR
C**** POSITIVE VALUES IF X.:
C****
25 IF(X .GT. 0.) GO TO 3
 FLAG = .F.
C****
30 INITIALIZE VALUES FOR PARTIAL SUM OF THE SERIES...
C****
3 Z = ASIN(X)
 D = 1.
 SJM = 0.
 TJP = Z
 BJT = T.
C****
4 CONTINUE
C**** SAVE = SUM
 SJM = SJM + TJP/BJT
C**** CONTINUE TO SUM UNTIL MACHINE UNDERFLOWS...
C****
45 IF(SAVE .NE. SUM) GO TO 5
C**** UPDATE EXPRESSIONS FOR THE SUM...
C****
4 TJP = TJP#Z
 D = D + Z.
 BJT = BJT#)
 GO TO 4
C****
50 DEPENDING UPON WHETHER ORIGINAL X>0 OR X<0,
C**** GET APPROPRIATE INTEGRAL VALUE...
C****
5 PHI = SJM/SQRT(5.293185308*EXP(X*X)) + .5
 IF(FLAG) RETURN
C****
6 PHI = 1. - PHI
FUNCTION PHI 73/74 OPT=1

C**** RETURN
END
Normal distribution is widely employed in numerous disciplines. Unfortunately, probabilities for the multivariate normal distribution are generally not available. This paper presents some results for the bivariate normal distribution. Computer programs for conditional normal probabilities, marginal probabilities as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.