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SUMMARY

A general procedure for computing the region of influence of a maneuvering
vehicle is described. Basic differential geometric relations, including the
use of a general trajectory parameter and the introduction of auxiliary vari-
ables in the envelope theory are presented. To illustrate the application of
the method, the destruct region for a maneuvering fighter firing missiles is
computed.

INTRODUCTION

In the course of the flight of an airplane, a missile, or even a space
vehicle, certain regions in the neighborhood of the flight path are of inter-
est, usually because of the potential influence that the vehicle has on the
space in its vicinity. This influence may be of a passive nature, such as
noise, engine exhaust, or trailing vortices. It may, on the other hand, be
deliberate in character. The vehicle may, for example, emit missiles or other
projectiles, radar seeking or jamming signals, and laser guidance signals.

In such a situation it is useful to know the extent of the region of
influence as a function of the vehicle's path and its speed. The shape of
the region is generally known for constant conditions, that is, for the vehi-
cle at rest or in straight steady flight. The total region of influence for a
general flight trajectory is the interior of the envelope of all the instanta-
neous regions. It would be possible to calculate each region separately and
then determine the envelope numerically by interpolation. However, it is much
more efficient to calculate the envelope directly by determining the character-
istic lines (ref. 1) as described in the present paper. Another advantage of
this method is that the analytical nature of the envelope equations provides a
qualitative insight into the effects of various flight parameters on the size
and shape of the region of influence.

In the present paper the general procedure is described. The basic equa-
tions are given, together with some specialized analytical results that are
useful in the application of the method. Two illustrative examples, both
dealing with fighter maneuvers, are given in some detail. These examples
treat the intercept region as a function of the trajectory of the attacking
airplane only.

The basic technique has already been applied specifically to the sonic
boom problem (ref. 2), but the generality of the method and the wide range of
its potential applications in aerospace problems have apparently not been
recognized. Some of these applications include the calculation of a missile
intercept region, a jet noise constant-decibel region, and a region limited by
the lens resolution of a camera carried by a spaceship.
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SYMBOLS

speed of sound, m/sec

unit vector perpendicular to both T and 5,

constant of proportionality (used in eq. (8)), 1/m

constant relating missile range increment to vehicle velocity

(used in eq. (25)), 1/sec
total maximum range, m
basic range for projectile fired from rest, m
unit normal base vectors fixed in space
local torsion of flight path, 1/m
Mach number
function shape parameter (used in eq. (24))
unit normal vector (used in eq. (3))

general trajectory parameter

radial variable in spherical coordinate system, m

position vector of a point on the periphery of the region of

influence of a maneuvering vehicle, m
position vector of wvehicle, m
arc distance along trajectory, m

time, sec

unit vector locally tangent to flight path at vehicle location

velocity, m/sec

total velocity of projectile, m/sec

general variables

components of r

angle coordinate relative to T vector, deg

radar semicone angle, deg



K local trajectory curvature, 1/m

p local trajectory radius of curvature, 1/K, m
T time at which vehicle is at point ;t' sec

¢ angle coordinate, deg

Superscripts:

' derivative with respect to s

. derivative with respect to time
Subscripts:
o conditions when a projectile is fired from rest

p,u,v,9,T derivative with respect to the variable

ANALYSIS AND EXAMPLES
Review of Basic Equations
In this section, mathematical expressions are given for the moving trihe-

dral coordinate system and the trajectory curvature and torsion. The position
vector of the vehicle at time T is

Et(T) = xi + yﬁ + zk (1)

The moving trihedral base vectors are determined as follows:

If s denotes the length along the trajectory path, the vector T is
given by

- ax _ dy _ dz
T=—1i+—3+—
ds ds ds

k (2)

which represents a unit vector tangent to the flight path. Therefore, it is
perpendicular to its derivative, which can be written in the form

(3)

&5

- 1
n=—
K



where n is a unit vector, and K is the magnitude of dT/ds and is termed
the trajectory curvature (ref. 1, p. 13). A third unit vector perpendicular
to both T and n is defined by

b=Txn (4)

The three mutually perpendicular unit vectors T, E,_and b define the
moving trihedral coordinate system (fig. 1). The vector T points in the
direction of flight, and n points in the direction of the local center
of curvature of the trajectory. Other quantities which are used later are
the derivatives of n and b which are given by

an T b

— = —KT + } 5
= (5)
@ n 6
—=—Zn

= (6)

In equations (5) and (6), which together with equation (3) are known
as the Frenet-Serret formulas, ] is the local trajectory torsion (ref. 1,
pp. 15-18).

The trajectory parameters s and T are related through the velocity
which is assumed to be known either as a function of s or T:

=V ’ (7)

Example: Fighter Firing Cannon Shells

To illustrate the application of these equations within a physical con-
text, consider a fighter that is firing projectiles from a cannon while maneu-
vering. The projectiles are fired in the (local) direction of flight, that is,
in the direction of T. Their deceleration due to aerodynamic drag is pro-
portional to the square of the speed:

Vp = -cVp2 (8)



Thus,

Vp dVp t
— - -ca
V#Vg Vp2 YT

which gives for the projectile velocity at time ¢t,

VvV + VO
VT = (8a)
14+ c(V + Vo) (t - T)

and for the distance traveled from the point of firing,

1
d=—=1n [1 + c(V+ Vo) (t - T)] (9)
(o}

If the projectiles are fired over the period tq < T < t, then the dis-
tribution of the projectiles in space at time t 1is given by the vector
expression

r =re(T) + d(t,T) T(T) (t1 < T < ¢t) (10)

where d 1is given by equation (9). PFigure 2 shows an example of such a dis-
tribution for an airplane performing a turning maneuver. (In the example,
c=0.0676/m, V = 183 m/sec, Vg = 183 m/sec, and 0 = 1219 m.)

If it is assumed that the projectile loses its effectiveness after its
velocity decreases to a certain value, then by inserting this value in the left
side of equation (8a) and eliminating (t - T) from equations (8a) and (9), an
effective range can be calculated. With this range, an alternate problem would
be to compute the entire "destruct" surface swept out by the shells fired over
a period of time, allowing for each shell its full range as limited by effective
velocity. For this problem, the surface is bounded on one edge by the flight
trajectory r¢(T) and on the other by the line

L = I (T) + (V)T (11)

An example of this type of problem is shown in figure 3 for the same type of
maneuver used for the example of figure 2. In this example, the projectile
effective range is taken to be 4 = 1830 m.



In these examples, simplified mathematical models have been assumed
for purposes of illustration. They could be made more sophisticated with
some increase in mathematical complexity. For example, the velocity equa-
tion (8a) could be written as a vector equation with a component in the
E—directiog resulting from gravitational attraction, and components taken
in the T,n plane because, in performing a turning maneuver, the direction
of firing is not exactly in the T-direction.

Form of Trajectory Equations

The _preceding examples require the differentiation of the flight path
vector ry in order to compute the unit tangent vector T (eq. (2)).
More complex problems require higher derivatives of r¢. It is generally
advantageous to express the flight trajectory in analytic form so that the
derivatives can be calculated analytically. Analytic expressions would nor-
mally be used in any hypothetical situation, but even if the trajectory repre-
sented an actual flight, with locations determined at specific times, it would
be preferable to fit the trajectory with an analytic curve.

However, it is not a simple matter to express most curves in terms of a
specific parameter, such as the arc-length parameter s. Circular and elliptic
arcs, for example, are more naturally expressed in terms of an angle variable.
Thus, if the trajectory coordinates are expressed in terms of a general param-
eter p, then the trajectory vector is of the form

Ie(p) = x(pP)i + y(P) I + z(p)k

and
T = p' (xpl + ypJ + 2pk) (12)
where
1
p' = (13)
prz b yp? + zp?
Also

ar ne 127
as  Prtp * P repp




which, when written in component form, is

ar

E; = (p"xp + P'zxpp)I + (p"yp + P'ZYpp)5 + (p"zp + p'zzpp)E (14)
where
L 1 dp'
p° =P E;_
or

. Xp¥pp * YpYpp * ZpZpp
P 2 2 2,2 (1)
(xp + yp© *t Zp )

Thus, performing all calculations in terms of the_parameter p, one can
calculate T from equations (12) and (13), and n and K from equa-~
tions (3), (i14), (13), and (15).

Envelope Theory

The region of interest that is associated with a maneuvering vehicle is
usually not a simple set of vector lines, as in the example of the cannon
shells fired from a fighter, but rather is a three-dimensional region. Sup-
pose, for example, the fighters were firing missiles rather than cannon shells.
Since the missiles can be fired over a certain cone angle range, there is,
associated with each point of the trajectory, a destruct region within which
a target can be destroyed. Then, to determine the boundary of the destruct
region associated with the entire trajectory, one must determine the envelope
of all the surfaces that bound these individual regions. Somewhat similar
problems involving the envelope of a family of surfaces arise in calculations
of subsonic and supersonic airplane noise.

The theory of calculating the envelope of a one-parameter family of sur-

faces is given in reference 1 (pp. 162-168). If the parameter is p and the
family of surfaces is given in the form

F(x,y,z,p) = 0 (16)




then, when the equation

Fp(XIYIer) =0 a7

is solved simultaneously with equation (16) at a given value of p, the result-
ing solution determines a characteristic line. The set of these characteristic
lines, determined as p varies, defines the envelope of the surfaces described

by equation (16).
A simple example is the family of spheres representing the periphery of
the pressure disturbance generated by a moving point source (see ref. 2):
F(X,¥,2,T) = (f - Ty) * (£ -Iy) —a2(k-T)2=0 (18)
Differentiating with respect to the parameter T yields
~2VT * (r - ry) + 2a2(t - T) =0

or,

a(t - 1)

=31
it

(r - Et) .

This is the equation of a plane which, together with the sphere equation (18),
determines a circle (at supersonic speeds) for any given value of T, At
time t, the set of these circles formed as T varies from 0 to t comprise
the Mach surface of the moving source.

For this illustration, the basic region, being spherical, is readily
described in the form of equation (16). But other problems, as for example
those involving symmetry about just one axis, involve surfaces that are not
easily expressed analytically in this form. A more versatile expression for
the equation of the basic surface is

r = r(u,v,p) : (19)

where u and v represent auxiliary variables or new coordinates. With this
formulation the characteristic line is obtained by solving equation (19) simul-
taneously with the equation



Ly * Ly X Ip =0 (20)
(See ref. 1, p. 168.)
A common case of interest in trajectory problems is that of_a region that

is symmetric about the direction of motion, that is, about the T axis. The
geometry for this situation is depicted in figure 4. According to the figure

r = ;t +Rcos 8T+ R sin 6 cos ¢ n + R sin 6 sin ¢ b (21)
where, for the axisymmetric region, R is independent of ¢:
R = R(9,T) (21a)
Thus, if the trajectory parameter is taken to be T,
r=r(9,4,T)

which, if (0,¢,T) are substituted respectively for (u,v,p), is in the form of
equation (19). Thus equation (20) yields

Ry cos 6 - R sin @ (Rg sin 8 + R cos 0) cos ¢ (Rg sin 6 + R cos O) sin ¢
0 -R sin © sin ¢ R sin 6 cos ¢ =
V(1 - ¥R sin 6 cos ¢) + Ry cos 8 VR(x cos 8 -  8in 0 sin ¢) + R sin O cos ¢ (VR] cos ¢ + Ry sin ¢) sin 8

Expanding this determinant and collecting terms yields the equation

RRr
RV sin O|~RRgK cos ¢ + Rg sin & + R cos 8 +'f;' =0 (22)

It is interesting that, in evaluating the determinant, the torsion terms sub-
tract out.

For a straight trajectory K = 0, and the first term in equation (22)
drops out. The resulting equation is independent of ¢, and consequently the
characteristic line is a circle. When the trajectory is curved, equation (22)
can be written in the form



R -R Rt
R sin 9 cos ¢ = p sin O{sin 6 + — cos 6 + — — (23)
Rg Rg V
unless the range of © includes values for which Rg = 0. The left side of

equatlon (23) is the component of the characterlstlc vector in the direction of
n (eqg. (21)). The corresponding component in the T-direction is R(9) cos 0.
These two components and the vector length R, obtained from equation (21a),
are sufficient to determine the component in the b-direction. Thus, in this
case, the characteristic line can be plotted as a function of 0O without com-
puting the corresponding ¢ values explicitly.

Example: Missile Destruct Region

An illustration of the use of these equations is provided by the previ-
ously mentioned problem of determining the region within which a target can be
destroyed by air-to-air missiles fired by a maneuvering airplane. For this
example the basic region is considered to be determined by the radar visibility
region and the missile range.

The radar visibility region is a function of the radar sweep azimuth and
elevation angles and may be asymmetric and time-varying in form. However, for
simplicity in the illustration, it is approximated by a fixed-angle cone. The
missile range is determined as a basic range d,, when fired from rest, together
with a component A4 imparted to it by the forward motion of the airplane. The
total range is therefore a maximum in the direction of flight and falls off
somewhat if the missile is fired at an angle to this direction.

The total destruct region, then, is limited laterally by the radar scan
and longitudinally by the missile range, as depicted diagrammatically in fig-
ure 5(a). This region will be approximated by the region represented by the
analytic expression

= d(T) cos nb = [d, + Ad(T)] cos nb (24)

where d is the maximum range and the parameter n is chosen so that the ray
to the point of maximum diameter matches the radar cone angle. (See fig. 5(b).)
The point of maximum diameter is determined by differentiating the expression
for the diameter

R sin O = 4 cos n® sin ©
and setting the derivative equal to zero:
d(cos 9 cos n® - n sin n® sin ) =0

10




Thus, if ®* is the radar semicone angle, the value of n satisfying
n = cot 8* cot no*

is to be inserted in the approximating equation (24). If the simple linear
estimate

Ad(T) = &V (25)

is assumed, then equations (23) and (24) yield

cot nb cqVy cos nd
R sin 6 cos ¢ = p sin 6 sin 6 = ————|cos O + —————;————— (26)
n

The remaining components of the characteristic vector can be obtained as
explained following equation (23).

Figure 6 shows, in perspective view, an example for a radar angle of 16°
and a maximum range of 3.11 km. The vehicle trajectory has an increasing
curvature, giving rise to an increasing elongation of the characteristic
curves and, consequently, of the envelope.

Thus the intercept region for a missile in straight flight is confined to
a relatively narrow cylinder, but the lateral extent of the intercept region
for an airplane on a helical trajectory is significantly greater.

The shape of the characteristic lines is strongly sensitive to the trajec-
tory curvature when the basic region given by equation (24) is highly elongated.
This dependence can be observed qualitatively by studying the envelopes for
various values of the parameter n in equation (24). For n =1, the region
is a sphere and the characteristic lines are circles.

Figure 7 shows, for a slightly curved trajectory (P = 3.05 km), the enve-
lope that results for values of n = 1.5, 2.0, and 3.0 corresponding, respec-
tively, to radar angles of 31.5°, 24.1°9, and 16.3°. It is seen that, as the
radar angle 9* decreases, the characteristic lines and the envelope become
highly elongated.

CONCLUDING REMARKS

A general procedure for computing a region of influence associated with a
maneuvering vehicle has been described. The method described for calculating
the envelope of the individual constant-state regions directly from the ana-
lytic expression for the characteristic lines has significant advantages over

n




the strictly numerical approach. It is more efficient computationally, and

the analytic form of the characteristic equation provides a qualitative insight
into the effect of the various flight parameters on the size and shape of the
region of influence. Application of the theory was illustrated by computation
of the destruct region for a fighter firing cannon shells, as an example of

a simple vector line surface, and the destruct region for a fighter firing
missiles, as an example of the application of the envelope theory.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
March 20, 1980
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Moving trihedral coordinate system

Coordinate system fixed in space

Figure 1.- Fixed and moving coordinate systems.
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Diagrammatic view
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Computer plot

Figure 2.- Example of computing distribution at fixed time
of projectiles fired from turning airplane.




Projectile locations
representing maximum
effective range

Diagrammatic view

Flight path—"

Projectile path

Computer plot

Figure 3.- Destruct surface swept out by projectiles fired from
turning airplane (perspective view).
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R sin 6 cos ¢

R cos 6

Figure 4.- Geometry defining general point on axisymmetric surface.



Boundary determined
by radar sweep

Boundary determined
//////—by missile range

6%)

(a) Potential missile effectiveness region as determined by
radar sweep angle and missile range.

5 %)

(b) Analytic approximation to missile effectiveness
region in the form d cos nb.

Figure 5.~ Physical and analytic approximations to
missile effectiveness region.
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Flight path

Airplane at time Ty

\Airplane at time T,

———Missile effectiveness region o
for airplane at T Set of characteristic
1 lines constituting

. . . envelope
Missile effectiveness region

for airplane at Ty

Characteristic line of
envelope, tangent to both
regions

(a) Concept schematic. (b) Computed example.

Figure 6.- Section of missile effectiveness envelope for airplane
performing turn of increasing curvature.
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Flight path Flight path Flight path
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(a) 6* = 31.59, (b) 6* = 24.10, (c) 6% = 16.30,

Figure 7.- Comparison of envelope shapes for increasing elongation of basic effectiveness
region (decreasing radar cone angle), for slightly curved flight path.
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