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1.0 SUMMARY

A general panel method for solving the boundary value problems of linear subsonic potential

flow in three'dimensions is presented. The method is characterized by a building block

approach wherein an influence coefficient equation set is developed by assembling panel

networks appropriate to the boundary value problem. Each network is composed of a

paneled portion of the boundary surface on which a source or doublet singularity distribution

is defined, accompanied by a properly posed set of boundary conditions. Curved panels

possessing linearly varying source or quadratically varying doublet singularities are employed,

and all influence coefficients are calculated in closed form. Both analysis (Neumann) and

design (Dirichlet) boundary conditions are treated. In this treatment standard aerodynamic

auxiliary conditions (e.g., Yutta, closure, and continuity conditions) arise as natural boundary

conditions associated with various network types.

A pilot computer program was developed to assess the feasibility of the method and a wide

variety of check cases were run. These included thin and thick wing analysis and design

problems, wing-body analysis and design problems, convergence studies, trade studies, and
timing checks. These check cases indicate that the method has the necessary flexibility, sta-

bility and accuracy, and efficiency.

1. Flexibility: The method offers the user a variety of modeling options including actual
and mean surface paneling as well as velocity and potential boundary conditions

. Stability and Accuracy: The method displays a marked insensitivity to the size, shape

and arrangement of panels and achieves accurate results with relatively sparse panel
densities.

. Efficiency: The method appears to be almost as efficient as existing first order

techniques on a panel by panel basis. On acase-by-case basis the present method has

significant advantages because it requires fewer panels than first order methods. These

advantages become extremely important for complex configurations.
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2.0 INTRODUCTION

Steady, inviscid, irrotational, and incompressible fluid flow in a domain D is characterized by

a perturbation velocity potential _(P) satisfying Laplace's equation

_xx + Oyy + _zz = 0 PeD
(I)

(compressibility effects over a wide range of subsonic Mach numbers can be approximated

by the Gothert rule in which case a coordinate transformation again results in Laplace's

equation ).

Fluid flow boundary conditions associated with Laplace's equation are generally of analysis

or design type. Analysis conditions are employed on portions of the boundary where

geometry is considered fixed, and resultant pressure distributions are desired. The permea-

bility of the fixed geometry is known; hence, analysis conditions are of the Neumann type

(specification of normal velocity). Design boundary conditions are used wherever a geometry

perturbation is allowed for the purpose of achieving a specific pressure distribution. Here a

perturbation to an existing tangential velocity vector field is made; hence, design conditions
are fundamentally of the Dirichlet type (specification of potential). The design problem in

addition involves such aspects as stream surface lofting (i.e., integration of streamlines

passing through a given curve), and the relationship between a velocity field and its potential.

Green's theorem (ref. 1) shows that any solution of Laplace's equation can be expressed as

the potential induced by source and/or doublet singularities distributed on the boundary B

of D with the singularity strengths being determined by the boundary conditions. This fact

has been exploited for some time in the design of numerical solution techniques for use on

large-scale digital computers.

The Douglas Neumann program (ref. 2) was spectacularly successful for its time in solving

complex potential flow problems with Neumann boundary conditions. The numerical method

represented the boundary by constant strength source panels with the strengths determined

by an influence coefficient equation set relating the velocities induced by the source panels

to the boundary conditions. The lack of provision for doublet panels limited the class of

solutions to those without potential jumps and hence without lift.

On the otherhand, lifting solutions had long been generated by vortex lattice techniques using,

in effect, constant strength doublet panels (ref. 3). These schemes were developed primarily

for the analysis and design of thin wings. The lack of provision for source panels made the

treatment of thick configurations difficult.

One of the first computer program systems for attacking arbitrary potential flow problems

with Neumann boundary conditions (refs. 4, 5, and 6) combined the source panel scheme

of the Douglas Neumann program with variations of the vortex lattice technique to form a

general boundary value problem solver (known as the Boeing TEA 230 program). In addition

to this method, many other general schemes have been developed, typical of which are the

2



methods of references 7, 8, 9, 10, 11, and 12. These methods are all similar in technique,

differing primarily in the specific integral equation used and/or the construction of the singularity

distributions employed in its solution. Each scheme has achieved considerable success in a

variety of applications.

A very useful feature of the TEA 230 program is the ability to handle, in a logical fashion,

any well-posed Neumann boundary value problem. From its inception, the method has

employed a building block approach wherein the influence coefficient equation set for a

complex problem is constructed by simply assembling networks appropriate to the boundary

value problem. A network is viewed as a paneled surface segment on which a source or
doublet distribution is defined, accompanied by a properly posed set of Neumann boundary

conditions. The surface segment can be oriented arbitrarily in space and the boundary
conditions can be exact or linearized. Several doublet network types with differing singularity

degrees of freedom are available to simulate a variety of physical phenomena producing

discontinuities in potential. These features combine to allow the analysis of configurations

having thin or thick wings, bodies, nacelles, empennage, flaps, wakes, efflux tubes, barriers,

free surfaces, interior ducts, fans, etc.

While the extreme versatility of TEA 230 has been well appreciated over the past decade,

the need for basic improvements has become clearly evident. Some of these stem from the

fact that it sometimes takes weeks requiring the expertise of an engineer having years of

experience with the method to set up and run a complex configuration. To some extent
this is unavoidable; in order to correctly model a complex flow for which no prior user

experience is available, the engineer must understand the properties and limitations of

potential flow. However, once the boundary value problem has been formulated, the user
must still contend with certain numerical idiosyncrasies and inefficiencies which require

adherence to stringent paneling rules-rules which are frequently incompatible with the

complex geometrical contours and rapidly changing aerodynamic length scales of the vehicle

under analysis. These difficulties are directly related to the use of flat panels with constant

source and doublet strengths. Methods employing these features seem to be quite sensitive

to panel layout. Numerical problems arise when panel shapes and sizes vary, and fine

paneling in regions of rapid flow variations often forces fine paneling elsewhere. In addition,

large numbers of panels are required since numerical accuracy is often strongly affected by
local curvature and singularity strength gradient. Such problems place severe limitations on

the development of automatic panelers or other complementary aids aimed at relieving the

user of the large amount of handwork and judgements associated with producing accurate

numerical solutions involving complex geometrical shapes.

The versatility of the Boeing TEA 230 program in a user oriented environment has

motivated the adoption of a similar, but less sensitive building block approach for the present

method. In fact, the same network concept has been adopted and generalized to include

Dirichlet boundary conditions. The treatment of Dirichlet boundary conditions not only

provides the capability for designing surface segments to achieve desired pressure distributions,
but also clarifies the nature of the boundary value problem associated with modeling viscous

w_kes and other effects through the introduction of discontinuities in the potential.

3



In addition,thepresentmethodhassoughtto enhance practical usability by improving upon

the fiat, constant singularity strength panels employed in the construction of the networks.

The details of the present method arose from a prior analysis identifying the numerical

features required to eliminate the practical difficulties encountered by the TEA 230 program.

These features include the use of curved panels, linearly varying source strengths and

quadratically varying doublet strengths. The present method implements these features in

such a manner that all influence coefficients are evaluated in closed form thereby avoiding

numerical integration-a weak link where singular integrals are involved. Other higher order

panel methods have recently been studied and in some cases implemented (refs. 9, 13, and 14)

with excellent results, but the present method is the first to cover in comprehensive fashion

the complete spectrum of possible analysis and design boundary value problems.

The author wishes to acknowledge that section G. 1 and portions of appendix D were pre-

pared by Larry L. Erickson, NASA-Ames Research Center.

i .
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3.0 ABBREVIATIONS AND SYMBOLS

a

Aij

/R

X

b i

B

I

c

c A

c D

c L

c U

c(n)

CD

C F

CFy

CFZ

C L

defined by equation (A.20)

coordinate in direction of v defined in figure D.3 (meters)

elements of A defined by equation (D. 149)

wing aspect ratio

matrix of influence coefficients; also, orthogonal coordinate transformation

defined by equation (A.5)

vector of specified boundary conditions; also, defined by equation (A.20);

also, wing span (meters)

element of b

boundary of D

matrix relating panel source or doublet distribution coefficients to singu-

larity parameters in a neighborhood of the panel

portion of B

portion of B

defined by equation (D.24); also, wing chord (meters)

defined by equation (C.7)

defined by equation (C.7)

defined by equation (C.3)

defined by equation (C.3)

reference chord (meters); also, column matrix of source or doublet

coefficients

section chord (meters)

drag coefficient

force coefficient

force coefficient in Y direction

force coefficient in Z direction

lift coefficient
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cL

C(M, N)

CM X

CMy

CP

Cp

Cp o

CR

Cl, c2

d

d F

d H

dl,d 2

D

D(M, N)

D'

E(M, N, K)

El, E2, E3, E4

F(M, N, K)

g

A

g

G(M, N)

h

H (M,N, K)

centerline

panel far field moments defined by equation (D.83)

moment coefficient about X axis

moment coefficient about Y axis

central processor

pressure coefficient

existing or initial pressure coefficient

reference chord (meters)

defined by equation (G.I 8)

tail span (meters)

defined preceding equation (D.60)

defined preceding equation (D.41)

defined by equation (G.22)

fluid domain

defined by equation (D.98)

domain adjacent to D

panel edge endpoint functions defined by equation (D.58)

recombinations of far field moments

panel edge line integrals defined by equation (D.40)

_/-_2 + h 2

see equation (D. 141 )

defined by equation (D.95)

defined by equation (D. 15)

panel surface integrals defined by equation (D.25)
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H*(M, N, K)

I(M, N)

.,O.

J(M, N)

k U

k L

_1' _2

L

M

MXK

MXQ

MXFK

My

Moo

n

n

N

NHK

N o

P

Pc

P0

PI, P2, P3, P4

complementary H integrals defined by equation (D.51 )

defined by equations (D.23), (D.32), (D.77) or (D.87)

defined by equation (D.29), (D.34), (D.85) or (D.92)

defined by equation (C. 11 )

defined by equation (C. 11 )

panel edge coordinate defined in figure D.3 (meters)

unit tangent vector along edge of

values of £ at edge endpoints

typical side of

number of comer point rows (appendix A)

defined by equation (D.36)

defined by equation (D.36)

defined by equation (D.54)

moment coefficient about axis parallel to Y axis through reference point

freestream Mach number

number of panels

unit surface normal

number of comer point columns (appendix A)

defined by equation (D.49)

x coordinate of center of pressure (meters)

field point (meters); also, magnitude off t (meters)

field point position vector

centroid of

panel center defined by equation (A.2)

panel comer points
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A

P

Q

Q

r

R

R

Ro

R R

S

S R

Sl, s2

7"

t A

t D

tL

tu

A

t

T

T R

VA
-g

V

Vt

P/P

point on boundary B (meters); also, magnitude ofi_; also, point on panel S

panel point position vector

distance from P to Q (meters)

weighted residual function; also, defined by equation (D.2)

position vector (x, y, z) (meters)

origin of local panel coordinate system

origin of moment

simply connected portion of B; also panel surface

reference area (meters 2)

defined by equation (G. 18)

tangential vector field on S

defined by equation (C.8)

defined by equation (C.8)

defined by equation (C.4)

defined by equation (C.4)

unit vector in direction-_

superscript denoting transpose

reference length for computing moments about axis _R (meters)

defined by equation (D.113) or (D.131)

perturbation velocity (meters/sec.)

magnitude of V (meters/sec)

magnitude of V t (meters/sec)

:
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g_

V

_A

vB

vC

v D

_L

Voo

(x, y, z)

(x 0, Y0, z0 )

Y

magnitude of V_ (meters/sec)

total fluid velocity vector (meters/sec)

average of upper and lower surface velocities (meters/sec)

defined by equation (D. 114) or (D.t32)

defined by equation (D.115) or (D.133)

defined by equation (D. 134); also, difference at upper and lower surface

velocities (meters/sec)

lower surface velocity (meters/sec)

tangential component of 7, i.e., _ -(_ • _)q_ (meters/sec)

upper surface velocity (meters/sec)

freestream velocity vector (meters/sec)

chordwise coordinate (meters)

field point coordinates in local panel coordinate system

defined by equation (D. 15)

spanwise coordinate (meters)

vertical coordinate (meters)

OL

_n

_t

t_l, t32

F

angle of attack (degrees or radians)

defined by equation (G. 12)

defined by equation (C.3) or (C.7)

defined by equation (C.4) or (C.8)

defined by equation (G. 17)

defined by equation (C. 11)

set of control points; also, circulation (meters2/sec); also, gamma function



A

ACp

8g

_h

e(M, N, K)

_?

_H

r?V

0

xj

Xk

x(_, 77,_')

#

t

g

jump in

jump in

defined

defined

defined

value across surface

Cp across surface

by equation (A.21 )

preceding equation (D.60)

preceding equation (D.41)

defined by equation (D. 17); also, defined by equation (D.72); also,

spanwise gap (meters)

does not belong to set

defined by equation (D.52)

defined by equation (A.19)

defined by equation (A. 19); also, tangential coordinate normal to panel

edge (meters); also, fractional semispan

fractional semispan (horizontal)

fractional semispan (vertical)

polar angle (degrees)

vector of unknown singularity parameters

element of ),

k M singularity parameter

singularity distribution on a panel

doublet strength (meters2/sec)

tangential derivation of doublet strength normal to a panel edge (meters/sec)

(_t0,/a t,/_r/, _t_, $t_71, #r/_7) panel doublet distribution coefficients

(/a0,/ax,/ay,/axx,/Zxy , #yy) panel doublet distribution coefficients expanded about
the point (x, y, 0)

v (M, N, K)

= 0'_, vn)

(_, 77,_)

defined by equation (D.52)

unit edge normal defined in figure D.3

defined by equation (A. 19)

panel point coordinates in local panel coordinate system
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A ^ A

0

o

Oo, Ux, Oy

ao, o_, Or/

4

y.
1

_A

CD

Ou

OL

_o

_A_

a/_)n

_/_)np

a/anQ

_Cp

orthogonal unit vector defining local panel coordinate system

defined by equation (D. 19)

source strength (meters/sec)

panel source distribution coefficients expanded about the point (x, y, o)

panel source distribution coefficients

plane quadrilateral formed by projecting panel corner points onto the

local (_, 77) plane, which for the flat approximation is the same as the

near plane

summation over four panel edges

polar coordinate defined by figure G. 1 ; also, perturbation velocity poten-
tial (meters2/sec)

average perturbation potential (meters2/sec)

difference perturbation potential (meters2/sec)

upper surface perturbation potential (meters2/sec)

lower surface perturbation potential (meters2/sec)

total velocity potential (meters2/sec)

existing or initial velocity potential (meters2/sec)

angle of yaw (radians)

set of singularity parameter locations

leading edge sweep angle (degrees); also, set of all singularity parameters

^ --_
n °_7

n-_Tp

n.VQ

desired change inCp

11.



-IP

V

_Tp

4-

%

(-)

gradient operator

gradient operator with respect to coordinates of P

gradient operator with respect to coordinates of Q

denotes a vector, e.g., the position vector P

generally denotes a matrix, e.g., P -- (i)

elements are the coordinates of P

is the column matrix whose

denotes vector cross product
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4.0 THEORY

In this section we develop the integral equations which are the basis of the solution technique

of the present method. In section 4.1 we consider the fluid flow boundary value problems

associated with equation (1) and then in section 4.2 we use Green's theorem to derive

equivalent integral equations.

4.1 FLUID FLOW BOUNDARY CONDITIONS

In this section we consider the specification of boundary values for the perturbation poten-

tial q_ of equation (1). The boundary B of the fluid domain D contains of course the sur-

face of the configuration being analyzed or designed. To account for viscous wakes, B is

often augmented by artificial wake surfaces with boundary conditions which allow for po-

tential jumps. In particular, a domain D which is originally multiply connected is usually

made simply connected in this manner, thereby allowing the imposition of Kutta or other

conditions (see fig. 1 ). The placement of these artificial surfaces and the selection of appro-

priate boundary conditions is a physical modeling problem of some complexity. We do not

address such a problem specifically as it is beyond the scope of this report. However, we do

consider boundary conditions which are sufficiently general to allow for the treatment of a

wide variety of physical models.

D

B (wake)

To oo

(Note: For simplicity, we display a two rather than three-dimensionaldomain)

Figure 1. - Fluid Domain and Boundary
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As a general rule, a boundary value problem associated with equation (1) is well posed if
a_

either _ or its normal derivative _ is specified at every point of B (ref. 1, chapter 12).

(For simplicity, we do not address the regularity assumptions required for a rigorous treat-
ment of the subject.) One major exception is the interior Neumann problem where D is a

finite domain and only _nn is specified on B (fig. 2). Gauss' theorem shows that a solution
can exist only if

(2)

In case the specified values of _n satisfy equation (2), an infinite number of solutions for
exist, although they differ by an additive constant only. If D is an infinite domain,

(fig. 1) the behavior of ¢ near infinity must be restricted for a unique solution; however,
sufficient restriction is an automatic consequence of the integral equation formulation of
the next section, (see ref. 15, chapter 3).

Figure 2. - Neurnann Problem for Finite Domain

14



Neumann boundary conditions (specification of a¢
a---n) arise naturally in the analysis of fixed

configurations bounded by surfaces of known permeability. For example, let S be a por-

tion of B bounding D on the side with surface normal _ (fig. 3). If S is impermeable, the nor-

mal component of the total velocity _ must vanish on S. By definition, _ is the gradient

of the total potential _ defined by

q_=¢+R.Vo_ (3)

,ql,,

where R is the position vector (x,y,z) and V_ is the freestream velocity vector. Hence,

V = Voo + v¢

and the Neumann boundary condition expressing impermeability is

a_ ._ ^

an Voo • n

where

Here, V¢ is the perturbation velocity vector.

(4)

(5)

(6)

D

v

To oo

Figure 3. - Subset of Boundary and Normal
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Once a solution ¢ to any boundary value problem has been found, a pressure coefficient

Cp at each point on S may be computed by the formula

Cp = 1 - (V/Voo) 2 (7)

where V_ is the magnitude of Voo and V is the magnitude of V. For the particular case

of an impermeable boundary, equation (7) becomes

Cp = 1 -(Vt/V_)2 (8)

ii1,,

where V t is the magnitude of the tangential projection of V.

Dirichlet boundary conditions (specification of ¢) arise in connection with the inverse prob-

lem, that of solving for a specified pressure distribution on S. However, the achievement

of a desired pressure distribution on S is not physically significant without restrictions on

the flux through S. To achieve both specified pressure and normal flow distributions on S,

the position of S must in general be perturbed. To elaborate further, we must assume (for

simplicity) that S is required to be a stream surface. The specification of _b guarantees a

predetermined tangential velocity vector field, a-fortiori a predetermined pressure coefficient

distribution on S via equation (8). However, the resultant normal velocity on S will not

in general, satisfy equation (5) and for this, a modification of the normal vector distribution

(hence position) of S is required. The total design problem is thus composed of two prob-

lems. The first is to f'md a perturbation potential on S yielding a specified distribution of

pressure coefficient as defined by equation (8), and the second is to update S to be a stream
surface in the resultant flow. The two problems are coupled and in general, an iterative pro-

cedure is required for solution. Sophisticated iteration techniques are available for this pur-

pose (ref. 16). However, in most cases, the coupling is surprisingly weak and the two prob-

lems may be solved sequentially in such a manner that (5) and (8) hold simultaneously after

relatively few iterations.

To solve the first problem, we assume that an approximation to the solution already exists.

Such an approximation can be the result of a previous iteration or be defined initially by

guessing a location of S and solving the pure analysis problem. The problem then, is to

modify the existing potential so that its tangential velocity field yields a more desirable pres-
sure coefficient distribution. For this purpose, we prefer to deal directly with the tangential

velocity field itself, Our approach is to assume that ¢ is continuous on S and to specify a

vector field t on and tangent to S such that

"_ A -.I, A "_" -.k

V • t = Itl where t = t / Itl (9)

For simplicity, we assume that ,S is simply connected and that the field t is continuous and

- (. .I t I_: 0. t is otherwise arbitra . A good choice for t can be obtained by linearizing equa-

tion (8) about existing values, i.e.,

18



t = 1- _to (10)
2 1- Cpo

whereCpo and Vto aretheexistingvaluesof pressurecoefficientandtangentialvelocity
respectivelyand aCpis thedesiredchangeinpressurecoefficient•(Weassume
bCp/2(1- Cpo) issmallcomparedto 1.)

Onceafield t hasbeenselected,certainconstantsof integrationremainto bespecifiedbe-
foreequation(9)definesactualDirichletboundaryconditions.Onepossiblechoiceis the
specificationof • (andhence_) atallpointsof inflowof thefield_into S,i.e.,pointson the
boundaryof S where-_isdirectedinto S (seefig.4). Thischoiceallowstheintegrationof

onSandis thusdirectlyequivalentto Dirichletboundaryconditions•Thespecifiedvalues
of q_shouldbecloseto theexistingvalues¢'o,otherwisetheresultanttangentialvelocityVt
will notbecloseto "_andconsequentlyCp will notbecloseto Cpo+ aCp.However,there
islittle elseto guideone'schoiceof integrationconstraintswithoutanticipaungthesubsequent
problemof reloftingS to beastreamsurface.

Inflow

Three Dimensions

I"4" \
S

Inflow "_.-..._---""_

Two Dimensions

Figure 4. - Schematic of Tangential Vector Field on S

°
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In this report we do not address the theory and mechanics of stream surface lofting al-

though specific examples will be described in section 6. For present purposes, we assume

that every point of inflow on the perimeter of S remains fixed and every other point is dis-

placed in the direction of the local normal (or in some other nonsingular direction). In

general, S will not close, i.e., the points of outflow will not remain fixed. In order to obtain
such closure, we replace the specification of • at every point of inflow by the auxiliary

condition

fa_d_
=0

L

(11)

where L denotes a streamline of t on S. The condition (11) attempts to force streamlines

of the resultant flow passing through points of inflow to also pass through points of outflow.

An alternative auxiliary condition can be employed when closure is unimportant, but it is

desired that the resultant flow behave smoothly at each point of inflow to S (e.g. where S is

a vortex sheet emanating from a wing leading or trailing edge). Here the available degrees

of freedom can be used to annihilate the highest order singularity in the flow at such points.

This can be achieved by specifying

a_ (12)
= finite

an

which in effect controls certain singularity strength continuity properties (see app. C).

The use of the auxiliary conditions (11 ) and (12) together with equation (9) results in boun-

dary values on S which are no longer exactly equivalent to the specification of potential,

but from experience appear to be generally well posed. The major exception here is the case

where D is finite (fig. 2) and potential is nowhere specified on B.

We close this section by noting an important generalization of the boundary conditions of
this section in the case where S bounds D on both sides (fig. 5). Then the specification of

on one side may be replaced by the specification of z_¢ (the jump in ¢ across S). Simi-

a_ z_ a¢
larly, the specification of a-"n on one side may be replaced by the specification of a"n

a¢
(the jump in -- across S).

an
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v

To oo

Figure 5. - Subset of Boundary Which Bounds Domain on Both Sides

4.2 DERIVATION OF INTEGRAL EQUATIONS

Under rather general assumptions (ref. 1, page 221 ), Green's third identity shows that any
solution of (1) may be expressed as the perturbation potential induced by a combination of

source singularities of strength o and doublet singularities of strength/z distributed on the

boundary B, i.e.,

dS
jj _r/ JJ _"v
B B

(13)

Here r is the distance from the field point P to the boundary point Q and _nnQ is the

derivative in the direction of the inner surface normal, i.e., directed into the domain D (see

fig. 1). (On portions of B where both sides bound D the integration is performed over one

side only.) If D is infinite, the representation (13) presupposes a certain behavior at infin-

ity, namely that ¢(P) is arbitrarily small when P is sufficiently distant from B.

_ .r
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Equation (13) represents an explicit solution to any boundary value problem of the previous

section once densities o and # have been determined for which _ takes on the specified

boundary values. For this purpose, equation (I 3) can be differentiated to yield

B B

(14)

(The underlined terms in equations (13) and (14) are generally referred to as kernel func-

tions for the perturbation potential and velocity, respectively.)

Upon sending P to B in (13) and (14) and substituting the right sides of these equations

into the boundary condition equations of the previous section, we obtain integral equations

for a and #. If the boundary value problem in D is well posed, these equations are suffi-

cient to determine unique solutions a and /z on any portion B' of B where both sides

bound D (fig. 6). To see this, we note (ref. 1, page 221) that

BI#(Q) = A_(Q) Q e (15)

and

aO(Q)
o(Q) = & _ Q e B' (16)

an

where the symbol A denotes the difference between the limiting value of the quantity on

the side of B' whose normal is _ and the limiting value on the other side. However, on any

portion B' of B which bounds an adjacent domain D' (fig. 7), an infinite number of dif-

ferent source and doublet distributions can produce the desired potential in D. To under-

stand this phenomenon, we note that equation (13) defines a potential in D' as well as D.

Applying equations (15) and (16) in the present context, it follows that a and # are unique-

ly determined only when potentials in both D and D' are specified. Thus, the determination

of source and doublet distributions solving the boundary value problem in D requires the

specification of potential in every domain D' adjacent to D. This can be done explicitly,

by specifying a known potential or implicitly by assigning boundary values determining a

unique potential. For this purpose, the boundary B' of D' can be augmented by any num-
ber of additional surfaces in the interior of D'. The choice of a potential here is guided by

considerations of efficiency and accuracy. For example, it is advantageous to minimize the

number of integral equations required to solve for o and # by choosing the potential in D'

so that either a or ta is specified on the boundary via equations (15) and (16). In this

connection, the specification a = 0 or /s = 0 reduces the computation cost in solving the

2O



remainingintegralequations.Finally,thepotentialin D' shouldbechosensoasto reduce
numericalerrorsassociatedwith largesingularitystrengthgradients.

v

To oo

Figure 6. - Portion of Boundary Which Bounds Domain on Both Sides

m==.._

v

To oo

Figure 7. -- Portion of Boundary Which Bounds Adjacent Domain
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Several common choices illustrate these considerations. The first is the specification of zero

perturbation potential in D'. From equations (15) and (16), we see that this choice implies

that /a and o are equal respectively, to the limiting values of _b and _a_b on the side of B'

bounding D. Specification of _b on this side is then equivalent to the direct specification

of o. This particular choice has the advantage that the potential in D' does not by itself

cause large gradients in o and p, although it does not specifically reduce the gradients

caused by the potential in D. The method of reference 11 has implemented a similar choice
with considerable success. A typical boundary value problem for this choice is shown in figure 8.

specified value of _ on this side

/z determined by 0

Dp (_= 0 on this side
To oo

/_ = Constant = difference of
upper and lower trailing edge
doublet valueson B"

Figure 8. - Zero Perturbation Potentia/ in Adjacent Domain

A second popular choice is the potential in D' with the same value on B' as the potential

in D. This choice enjoys the advantage that p is zero on B', since ¢ is continuous across

B'. The method of reference 2 pioneered this alternative. One problem with this choice in

connection with lifting configurations is that the source strength becomes unbounded at any

point of B' common to a surface B" bounding D across which potential is discontinuous,

e.g., a wake. For this reason, the (doublet) surface B" is usually continued into D' and

assigned boundary values designed specifically to reduce the source strength gradients every-

where on B'. (Depending on the specific technique, the solution of additional equations

may be required.) The methods of reference 6 and 9 have used this device with excellent

results. A typical boundary value problem for this choice is shown in figure 9.
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D /--B'

r---o= 0

D I A ^

_, o = 0 B"
B" o _f

//=__ = specifi__ e_dgC°a_utant;;railing v

= specified on this side

Figure 9. - Source Surface Modeling

A third successful alternative is the technique used in reference 8. Sources are again the

primary singularity on B', but the requirement of additional boundaries in D' is avoided by

allowing a limited (e.g., linear) variation of doublet strength on B'. A typical boundary value

problem for this choice is shown in figure 10.

mu

a_

an
= specified on this side

B' . . _F '=0

_ _/_ = constant = T_f_:)lence of

upper and lower trailing edge
doublet values on B'

Figure 10. - Limited Variation of Doublet Strength on Boundary

• ..,
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A fourth alternative is the specification of a potential in D' with the same normal deriva-

tive on B' as that of the potential in D. This choice enjoys the advantage that o is zero

on B' since _ is continuous across B'. Moreover, special treatment of intersecting doub-
let surfaces _ is not required. However, if D' is finite, such a specification does not

determine a unique potential in D' in view of our earlier discussion of the interior Neumann

problem. This indeterminancy is reflected by the fact that a constant doublet density on a
closed surface induces no velocity in the interior; therefore, it would be impossible to solve

for a unique doublet density on B'. Here again, the problem can be remedied by introduc-

ing an artificial boundary surface in D' on whichpotential is specified, e.g., a source sur-

face on which _ = 0. If the specified values of "_n on B' satisfy equation (2), total source

strength on such a surface will vanish. Otherwise, the source strength sum will be precisely

that required to produce the net flow through B' desired. A typical boundary value prob-
lem for this choice is shown in figure 11.

= specifiedon this side

/J=O

S f

o= 0 B"/--

/z=constant = difference of
upper and lower trailing edge
doublet valueson B'

Figure 11. -- Doublet Surface Modeling
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5.0 METHOD

The present method uses a panel scheme to achieve a numerical solution to equations of

section 4.2. Panel schemes proceed by first dividing the boundary surfaces into panels.

In the present method, source (o) and/or doublet (/z) distributions are assigned to each

panel. These distributions are expressed in terms of unknown singularity parameters Xj
associated with the panel and neighboring panels. A finite set of control points (equal in
number to the number of singularity parameters) is selected at which the boundary condi-

tions are imposed. Evaluation of the boundary conditions results in a finite set of linear

equations denoted symbolically by

A;_ = b (17)

)

Here,-_ is the vector of unknown singularity parameters, -b the vector of specified boun-

dary conditions, and A the matrix of"influence coefficients."__ (Aij represents the influence

of Xj on the boundary condition hi.) The solution of (17) for X may be accomplished by
any number of computer algorithms; whereupon substitution of the corresponding distribu-

tions of o and ta into equations (13) and (14) yields the potential and velocity at any

point in D or on B. Pressure coefficients may be computed from the velocities; following

which force and moment coefficients may be obtained by integration.

The approach of the present method in performing these tasks is a building block approach

in which the influence coefficient equation set (17) is def'med by assembling independent

networks of panels, each of which contributes as many equations as unknowns. A network

is defined as a paneled portion of the boundary on which either a source or doublet distri-

bution is defined accompanied by a properly posed set of analysis (Neumann) or design

(Dirichlet) boundary conditions. All networks fall into four catagories: source/analysis,

doublet/analysis, source/design, and doublet/design. The present method employs a variety

of standard networks including one source/analysis, one doublet/analysis, two source/design,

two doublet/design and two special wake/design networks. The construction of each network

requires numerical development in three areas: A. Surface geometry definition; B. Singular-

ity strength definition;and C. Control point selection and boundary condition specification.

Essential features of the computational schemes in each of these areas are summarized below

and discussed in detail in appendixes A, B, and C, respectively.

A. Geometry input for a network is assumed to be a grid of comer point coordinates

partitioning the network surface into panels. Panel surface shape is obtained by fitting

a paraboloid to comer points in an immediate neighborhood by the method of least

squares. (See app. A.)

B. Discrete values of singularity strength at certain standard points on each network are

assigned as singularity parameters (the Xj of equation (17)). Singularity splines are con-
structed for each network type by fitting a linear (source) or quadratic (doublet) dis-

tribution on each panel of the network to a subset of these discrete singularity param-

eters by the method of least squares. (That is, the singularity distribution o(Q) or

/a(Q) for each panel is expressed as a sum of products of singularity parameters in an



C.

D.

E.

F.

immediate neighborhood times linear or quadratic distributions of Q.) The least square

technique allows minor discontinuities in value and gradient of the singularity strength
across panel edges, although virtual continuity is assured if paneling is sufficiently dense.

An alternate spline enforcing strict continuity of value at panel corners is available for

the doublet/analysis network. For coarse paneling, this spline yields local doublet grad-

dients which better reflect the global variations of doublet strength. (See app. B.)

Certain standard points on each network are assigned as control points. These points

include panel center points as well as network edge points. Boundary conditions in-

volving the specification of potential or velocity are applied at panel center points for

the purpose of controlling local properties of the flow, e.g., no flow through the sur-
face. Auxiliary boundary conditions at edge control points serve to convey the proper

continuity of singularity strength and gradient across network junctions, or else to con-

trol global properties of the flow such as closure. In the case of design networks, these

boundary conditions remove the degrees of freedom produced by specifying only tan-

gential derivatives of the potential at panel center control points (see the discussion for

equations (9), (10), (11 ), and (12)). In the process, they enforce standard aerodynamic

auxiliary conditions such as the Kutta condition, closure condition, and the Helmholtz

law. (See app. C.)

Once each network has been constructed, the solution of the flow problem requires

numerical development in three additional areas: D. Calculation of the influence co-

efficients comprising the matrix A of equation (17); E. Solution of the matrix equa-

tion (17) for the singularity parameters X; and F. Computation of aerodynamic quan-
tities of interest. Essential features of the schemes used in each of these areas are sum-

marized below and discussed in detail in appendixes D, E and F respectively.

Two expansions of the induced potential and velocity kernels are employed. The near

field expansion is based upon the assumption of a small panel curvature; the far field

expansion requires a relatively large separation between the field point and panel. All

resultant integrals are evaluated in closed form, using linear recursion relations that

have as initial conditions the fundamental logarithm and arctangent transcendental terms

appearing in flat panel, constant singularity strength techniques. (See app. D.)

The Crout decomposition technique is employed by the pilot code to solve equation

(17). This technique decomposes the matrix A into the product of a lower triangular

matrix and an upper triangular matrix from which point the solution _ is easily ob-

tained by forward and backward substitution. Application of the technique is accom-

plished with the aid of mass storage devices. For this purpose, the matrices (initially

generated row by row) are partitioned into randomly accessible blocks. In-block partial

pivoting is used to control error growth. (See app. E).

Once the singularity parameters _,j are found and the corresponding source and doublet
distributions determined, the potential and velocity at each panel center control point

are calculated from equations (13) and (14). A distribution of pressure coefficients on

each network is then found using the least square fit techniques of appendix B.

Finally, this distribution is integrated to yield force and moment coefficients. (See

app. F.)
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6.0 RESULTS

6.1 INTRODUCTION

In this section, we present computed results demonstrating the numerical characteristics of

the present method. These results were generated by a pilot computer program written in

FORTRAN IV and COMPASS 3 languages for the CDC 6600 digital computer. Because of

the versatility of the method, a complete analysis and display of all its capabilities would

require an enormous amount of effort. Each application of the method, especially when

design networks are involved, could well be the subject of a separate study and report,

involving modeling alternatives, timing and convergence checks, experimental comparisons,

etc. One such study has already been performed in connection with the application of a

doublet/design network to the solution of leading-edge vortex flow problems (ref. 17).

Hence, the results presented in this report are intended to give a broad view of the capabil-

ities of the method. Because the method may be the basis of future production codes

covering the subsonic, supersonic, steady and unsteady flow regimes, we have included cases

which go somewhat beyond demonstrating mere feasibility. Such cases are the result of

systematic efforts to test critical numerical features of the method, optimize modeling for

accuracy and efficiency, and explore techniques for practical use.

Numerical results are presented in sections 6.2 through 6.7 and are classified according to

the network types featured. In section 6.2, we demonstrate use of the source/analysis net-

work with some rather simple test cases. In section 6.3, we present results for the doublet/

analysis network. In contrast to source networks, the doublet networks have always re-

quired more careful treatment, because doublets create a discontinuity in potential itself,

and also induce a higher order singularity in the flow [ equations (D. 121 ) and (D. 141 ) ].

Therefore, we present cases testing convergence and sensitivity, related to the use of this

network. Section 6.4 contains results for general analysis problems involving both source/

analysis and doublet/analysis networks. Cases are presented comparing alternate formula-

tions. In section 6.5, we demonstrate the use of source/design networks with cases involving

actual surface relofting. In section 6.6, we describe the application of a doublet/design net-

work to the solution of leading-edge vortex flow problems (ref. 17). Finally, in section 6.7
we discuss the numerical efficiency of the present method and pilot code.

6.2 SOURCE/ANALYSIS NETWORKS

6.2.1 CIRCULAR CYLINDER

An impermeable circular cylinder in a uniform flow was simulated with a type 1 (source/ana-

lysis) network* containing 6, 12, and 18 equally spaced curved panels for the whole cylinder.

The panels were elongated in the cross flow direction to approximate two dimensional flow.

Schematics of singularity parameter locations and control point locations are given in

figures B. 1. and C. l, respectively, for various network types.

L.
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Boundary conditions of type equation (C.3) with c U = 0, c L = 0 and/t n = 0 were applied
at each panel center control point. Resultant source strengths and tangential velocity mag-

nitudes are plotted in figure 12, along with exact data and results generated by earlier flat-

panel, constant-strength methods. The 18 panel case is virtually indistinguishable from the

exact solution. (In contrast, 35 flat, constant strength panels still produce a noticeable error

in source strength. Due to fortuitous error cancellation (ref. 13), fiat, constant strength

source panels produce exact tangential velocities for a cylinder.) The six panel case begins to

deviate significantly from the exact solution. Analysis shows the errors are primarily due to

the violation of restriction (A.21) of appendix A. The inadequate panel density results in an

approximate surface which bulges to a radius of 1.15 at panel center points.

6.2.2 SPHERE WITH RANDOM PANELING

An impermeable sphere in a uniform flow was simulated with an 81 panel source/analysis

network. For this purpose, advantage was taken of one plane of symmetry by paneling half

the sphere only, and then calculating the perturbation potential as the sum of the potentials

induced at a point and its image. A I0 x 10 comer point grid was generated, using a random

number generator leading to a wide variation in panel size and shape as shown in figure 13a.

The use of curved panels produced a geometry remarkably close to spherical. All 81 control

points fell within a distance of 0.005 from the surface of the unit sphere, despite the fact that
the maximum diameter of some panels spanned an arc of over 60 ° . As in the previous case,

the use of such large panels violates restriction (A.21). (The consequences are not so serious

in the present example because of the number and proximity of adjacent grid points used to

obtain panel surface fits.)

Velocity magnitude at each control point is plotted in figure 13b as a function of polar angle

relative to the freestream direction. Agreement with the exact solution is good. In contrast,

an analysis with flat constant strength source panels (representative of earlier technology)

using the same panel arrangement, resulted in velocity magnitudes (V/V_) that were scattered
between 1.2 and 1.7 in the range 85 o < 0 < 95 °. This example demonstrates the extreme

forgiveness of the method to irregular paneling, a feature which greatly enhances its practical

usability for applications involving complex configurations where regular, evenly spaced

paneling cannot always be arranged.

6.3 DOUBLET/ANALYSIS NETWORKS

6.3.1 THIN CIRCULAR WING

In this example, a thin circular wing at an angle of attack was simulated with a mean surface
doublet/analysis network (type 2 with the least square doublet spline of section B.2 of appen-

dix B). A doublet/wake network (type 8 with the least square spline) was abutted to the

trailing edge to yield a lifting solution. (See, for example, ref. 18, page 538 for the necessity

of using a wake to generate a lifting solution.) Paneling for the right half of the wing and

wake is displayed in figure 14a. On the wing, cosine spacing was employed along latitude and

longitude lines with panels becoming triangular at the tip. The wake panels were attached to

corresponding trailing edge panels and elongated in the stream direction. The entire wing and
wake consisted of 108 effective panels (54 actual panels since symmetry was exploited). The

freestream was directed in the plane of the wing and (linearized) boundary conditions of
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(a) RANDOM PANELING OF SPHERE, SIDE VIEW
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(a) CIRCULAR WING AND WAKE PANELING
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type equation (C.3) with c U = 1, c L --- 0,/t n = - 1 employed to simulate unit angle of attack

for comparison with angle of attack slope data.

The resultant spanwise circulation distribution is plotted in figure 14b. The plotted points
were obtained from doublet strength along the trailing edge and agree well with the exact

solution. Integration of this distribution produced a lift coefficient of 1.776 versus the exact

coefficient of 1.790. (In particular, we have C L = 2 ftzdy. See page 546 of Ref. 18.)
VooSR

Pressures at three span stations are shown in figure 14c T.E." and also agree well with the

exact solution.

It is instructive to consider the role of the network edge control points in this case (see fig. C. 1

and section C.3 of app. C). The boundary conditions at leading edge control points automa-

tically forced doublet strength to be zero on that edge since doublet strength was zero ahead

of the leading edge. The boundary conditions at centerline control points forced the span-

wise derivative of doublet strength to be zero on the centerline because of the implied presence

of an image doublet surface. Finally, the boundary conditions at trailing edge control points
in conjunction with those at opposing wake control points produced continuity of doublet

strength and its transverse derivative onto the wake. Because of the particular construction of
the doublet distribution on the wake network, this resulted in a vanishing chordwise deriva-

tive of doublet strength at the wing trailing edge. Recalling that doublet strength is identical

to potential jump (equation 15), we see that all the usual planar wing edge conditions includ-

ing the Kutta condition were automatically satisfied.

6.3.2 THIN SWEPT WING WITH RANDOM PANELING

Figure 15 shows the stability of the mean surface doublet/analysis network (type 2 with least

square doublet spline) under extreme conditions of panel size, shape and control point loca-
tion. Here, 48 panels were used to represent the right half of a thin swept wing at 5.7 ° angle

of attack. (The wake network is not shown but is similar to that of the previous case). Boun-

dary conditions were specified as in the previous example. The wing panel layout was defined

by means of a random number generator, resulting in panels that varied considerably in shape

and size, that were occasionaly nonconvex, overlapping, and even inverted. Nevertheless,

the spanwise lift distribution as shown in figure 15b is highly accurate. Chordwise pressure
distributions displayed in figure 15c are likewise stable and deviate appreciably from the

reference solution only near the leading edge where pressure becomes singular. Mismatches

in doublet strength and derivative across panel edges occurred in this region, indicating that

finer leading edge paneling is required for accuracy. (For the two values of r/shown, there

are only two panels over approximately the first one-third of the wing chord at r/= 0 and

three panels at 77= 0.5).

6.3.3 THIN RECTANGULAR WING WITH VARYING PANEL DENSITIES

For this case, a thin rectangular wing of aspect ratio 2 at 0.01 radians angle of attack was

analyzed, using varying panel densities to check convergence of the solution. Symmetry

was exploited and the right half of the wing was simulated with a mean surface doublet/ana-

lysis network (type 2 with the continuous doublet spline of section B.3 of appendix B). The

right half of the wake was simulated with a doublet/wake network (type 8 with the continu-

o
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ous doublet spline). Both uniform and cosine spacing were employed with typical panel lay-

outs shown in figure 16a. Cases were run with 4, 16, 49, 64, and 256 wing panels. Boun-

dary conditions were imposed in the same manner as in the two previous examples.

Resultant lift coefficients are plotted in figure 16b. (All values have been scaled to one radian

angle of attack.) Lift coefficients shown were obtained by integrating trailing edge doublet

strength as before. Lift coefficients can also be calculated by integrating panel pressures as

described in appendix F. For the continuous doublet/analysis spline, these values approach

close agreement when paneling becomes sufficiently dense to produce negligible truncation
errors. For example, the lift coefficients calculated by integrating panel pressures differed

by 4.3%, 1.3%, 0.49%, 0.36%, -0.03% for the 4, 16, 49, 64 and 256 panel cases with cosine

spacing, and 4.3%, 1.5%, 0.66%, 0.53%, -0.04%, for the same cases with uniform spacing.

(Our observation has been that the deterioration of computed lift coefficients with decreas-

ing panel density is less for values calculated by integrating trailing edge doublet strength,

although in this case, the values calculated by integrating pressures happen to be better
because of fortuitous truncation errors, due to rapid span variations near the tip.) The lift

coefficients are apparently convergent with that of the 256 panel case using cosine spacing

differing from that of the highly accurate and converged solution of reference 20 by less

than 0.05%. The triangular symbols indicate the number of pressure modes rather than

panels. The equal spacing cases converge somewhat slower than cosine spacing cases and

this is probably a result of the relatively sparse paneling near the leading edge where pressure

gradients are large.

The locations of the centers of pressure are plotted in figure 16c and demonstrate conver-

gence as well. Spanwise lift distributions are plotted in figure 16d and 16e. Chordwise

pressure distributions at several span stations are plotted in figures 16f and 16g. These plots

confirm convergence. The 16 panel case with cosine spacing is already sufficiently accurate

for most purposes. The 64 panel case with cosine spacing is highly accurate.

6.3.4 THIN RECTANGULAR WING WITH PANEL MISMATCHES

The ability to refine panel density in regions of interest without refining panel density else-

where is essential for the practical usability of any panel method. The present example

demonstrates the characteristics of the present method in this regard, using the wing and

network types of the previous example. In figure 17a, we display panelings for the right

half of the wing and associated lift and moment data. In each case, three networks were

used to represent the wing and two were used to represent the wake as shown on the left of

the figure. Networks I, II and III were assigned panelings corresponding to the representation

of the wing by 144 uniformly spaced panels. Network IV was assigned N x N, uniformly

spaced panels with N = 2, 3, 4, 6, 12 and network V was paneled accordingly.

It was anticipated that the only successful cases would be those with N = 2 and N = 6 where

the edge control points of network.IV were directly opposed by those of the adjacent net-

works (see fig. C. 1. of app. C.) Surprisingly, all cases displayed basic stability. The

matching of pressure (ACp) and circulation (F)across the edges of network IV was virtually
exact for the case N = 6. Matching for the case N -- 2 is displayed in figures 17b and 17c, and

matching for the case N = 4 is displayed in figures 17 d and 17e. The circulation is of prime
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(d) SPANWISE LIFT DISTRIBUTIONS

(Cosine spacing)

c_

c_

0

Number of panels

E) 256

V 16

owe 136 Modes) Ref. 20

I I I I I

0 .2 .4 .6 .8 1.0

2y

b

(e) SPANWlSE LIFT DISTRIBUTIONS

(Uniform spacing)

3

0

I I I I I

.2 .4 :6 .8 1.0

2y

b

Figure 16. - (Continued)

36



ACp
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(g) CHORDWISE PRESSURE DISTRIBUTIONS (UNIFORM SPACING)
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(a) PANEL LAYOUTS, LIFT COEFFICIENTS AND CHORDWISE

COORDINATES OF CENTERS OF PRESSURE
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(b) MISMATCHES ACROSS NETWORK LEADING EDGE (N - 2)
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(c) MISMATCHES ACROSS NETWORK SIDE EDGES (N = 2)
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(d) MISMATCHES ACROSS NETWORK LEADING EDGE (N = 4)

q_
I

I

, 0 .5 1,0

° 1 y
b/2

.5

Mismatches plotted j

along this line
1.0

xl
C

.O2

[" .01

0

.02 -

_Cp .01 -

0 --

I I I I I I

_-_= .5+

C

I I I I I I

0 .1 .2 .3 .4 .5

Y
, Spanwise distance

b/2

Figure 17. - (Continued)

42



(e) MISMATCHES ACROSS NETWORK SIDE EDGES (N = 4)
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importance to the global properties of the flow and in all cases, it is virtually continuous
across the network junctions. The pressure mismatch across the edge 2y= 0.5 is small in

b
both cases. The pressure mismatch across the leading edge of network IV is small in the
case of N = 2, although there is a slight anomaly at about 2y = 0.3. The pressure mis-

b
match across this edge in the case N = 4 shows the clear lack of opposing control points.

Here, continuity of pressure is not enforced at any point on the edge and the only stabilizing

influence is from adjacent panel center control points. The discontinuity appears to be con-

fined to the network edge, but until more data is available, it is recommended that density

refinements be made so that all edge control points of the coarsely paneled networks be

opposed by edge control points adjacent finely paneled networks.

6.3.5 THIN RECTANGULAR WING WITH VARYING SPANWISE GAPS

In figure 18, we display spanwise lift distributions for a square wing separated from its image

by varying spanwise gaps. A 10 x 10 uniformly spaced paneling arrangement was employed

and symmetry was exploited. The purpose here was to examine the ability of the present

method (and in particular, the edge control point boundary conditions) to account for the

nonuniform convergence of the lift distribution as the right and left halves of an AR 2 rectan-

gular wing were brought together.

At a separation distance greater than 10, each half was for all practical purposes, an isolated

square wing as evidenced by the symmetric spanwise lift distribution. As the separation dis-
tance decreased, the presence of the image wing was felt and the lift distribution away from

the inboard edge began approaching that of an aspect ratio 2 wing. However, as long as the

method perceived a gap, the load at the inboard edge continued to vanish in confirmity with

the requirements of potential flow. At a separation distance of 10 -4, the method was unable

to continue the limiting process, probably because the inboard paneling was simply too coarse
to account for the severe local behavior. At a separation distance of 10 "10, the method believes

the halves to be joined, but the edge control point boundary condition equations (section C.3)

of appendix C) are still computed from the actual separated geometry resulting in some ano-
malies. At a separation distance of 10 "14, these anomalies disappear and the lift distribution

of figure 16d is achieved. This example illustrates that in potential flow, a gap which is neg-

ligible physically, can have an enormous effect on the solution. The present method seems
to account for such an effect, although numerical limitations exist for very small gaps.

6.3.6 THIN T-TAlL

In this example, a thin T-Tail configuration at 0.01 radians angle of attack and yaw was ana-

lyzed to test the functioning of the edge control point boundary conditions for nonplanar con-

figurations. A square wing was used for each of the three components of the T-Tail. Each

wing was simulated with a doublet/analysis network (type 2 with continuous spline) to which

was abutted a doublet/wake network (type 8 with continuous spline). Since T-Tail compari-

son data were unavailable, two different panel configurations were run, the first with 25

uniformly spaced panels per component and the second with 81 uniformly spaced panels per

component. Panel center boundary conditions were of type equation (C.3) with CU = 1,

c L = 0 and fin = 0. The resultant spanwise pressure distributions at half chord are displayed
in figure 19a and the spanwise load distributions together with force and moment coeffi-
cients are shown in figure 19b. Agreement between the data of the coarse and fine panelings
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(b) TOTAL SPANWISE LOAD DISTRIBUTION
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is good. The pressure and load distributions have the right character. In particular, the dis-

continuity in ACp across the junction of the horizontal components is matched by the

ACp of the vertical component at the junction. (This follows from the definition of ACp
and the fact that the upper surface Cp distribution is continuous across the junction of the
horizontal component.) The same property is true of the total load distribution. At present,

leading edge suction terms are not included in force and moment calculation; hence, only

those coefficients not significantly affected are displayed. The magnitudes and signs appear,

in our judgment, to be correct.

6.4 COMBINED SOURCE/ANALYSIS AND DOUBLET/ANALYSIS NETWORKS

6.4.1 WING-BODY ANALYSIS

In figure 20, we present aerodynamic data for a symmetric wing-body configuration at 10 °

angle of attack. The fuselage is a body of revolution of thickness ratio 0.11. The wing is

symmetric, 10% thick, and of an aspect ratio 5.6 with a leading edge sweep of 47 °. The con-

figuration was first analyzed by the method of reference 6, using 936 flat, constant-strength

source panels on the standard wing and body surfaces, accompanied by 12 lifting elements.

(This represents a typical number of panels used for wing/body applications with this method.)

The paneling employed by the present method is depicted in figure 20a and comprises 160

surface panels. The first such network contained all body panels forward of the wing. The
second and third networks contained all body panels above and below the wing, respectively.

The fourth network contained all body panels aft of the wing. The body was represented by

four source/analysis networks with a total of 96 panels. The wing surface was represented

by a 64 panel source/analysis network as shown. An internal lifting system (not shown) was
used to create lift. The lifting system was composed of four networks. The first was a 32

panel doublet/analysis network on the camber surface of the wing with stream surface (im-

permeability) boundary conditions. The second was a 4 panel type 8 (doublet/wake, No. 1 )

network, emanating from the wing trailing edge. The third was an eight panel type 8 (doub-

let/wake No. 1 ) network inside the body, extending the internal lifting system to the center-

line. The fourth was a one panel type 10 (doublet/wake No. 2) network extending the

trailing edge wake to the centerline. The continuous spline was used for all four lifting sys-

tem networks.

Spanwise load distribution comparisons are plotted in figure 20b and chordwise pressure dis-

tribution comparisons are plotted in figure 20c. In addition lift, moment, and drag coeffi-

cients are compared in figure 20b. All three coefficients agree well with the reference values;

however, the drag coefficient agreement must be considered fortuitous in view of the extreme-

ly sparse wing leading and trailing edge paneling. The calculation of accurate drag coefficients

by integrating panel pressures generally requires a greater concentration of panels near the

leading edge and trailing edge than the calculation of accurate lift and moment coefficients.

It should also be pointed out that the drag values computed by the method of reference 6

should not be considered as a valid standard, since that method has never been shown to pro-

duce reliable drag values from integrated surface pressures.
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The spanwise load distribution agreement is good, although there is a slight discrepancy in

average body lift. (The average body load was obtained by subtracting the total wing load

from the total configuration load. The result was divided by the total load and distributed

uniformly over the body span fraction. No precise span loading distribution for the body

could be calculated because the body panel columns were not located along constant span

stations.) Wing pressure agreement is excellent at the three inboard span stations. The dis-

agreement in lower surface pressures at the outboard span stations is due to higher span-

wise velocity components predicted by the present method. The reference method is known

to underestimate spanwise velocities near wing tips, However, the discrepancy may also be

due in part, to the width of the outboard panels employed in the present analysis.

6.4.2 THICK WING ANALYSIS WITH FIVE DIFFERING

BOUNDARY VALUE PROBLEM FORMULATIONS

In section 4.2, we described a variety of boundary value formulations for solving a flow prob-

lem where part of the boundary of the fluid domain also bounded an adjacent domain. It
was noted there that an infinite number of different source and doublet distributions on

this part of the boundary could all produce the desired flow in the fluid domain. In this

example, we show results generated by the present method, illustrating this point. Speci-

fically, we analyze the wing of figure 21(a) in five different ways. The wing has an/R 2 rec-
tangular panform and a symmetric, 11% thick Boeing TR17 airfoil section. A 0.1 radian angle

of attack is assumed. Analysis of the wing by the method of reference 6 using 624 constant

strength panels on the wing surface and 144 constant strength doublet panels for the internal

lifting system produced the reference solution data of figures 21 (b) and 21 (c). The wing tip was
left open for the reference calculation, an aspect that can affect in an unpredictable manner,

the pressures near the tip, due to the possibility of inflow or outflow from the tip. The mo-

ment coefficient CMy is calculated about the leading edge.

The panel layout used for the five applications of the present method is displayed in figure

21 (a). Each wing network employed in these applications comprises the lower, upper or cam-

ber wing surface and contains four panel columns spanwise and 12 panel rows chordwise.

The tip was paneled in only one instance and a network containing two panel columns and 12

panel rows was used for this purpose. A four panel type 8 network was used to represent the
wake in each case. The five methods of analysis are described in the following five paragraphs.

I. The first analysis performed was similar to that of the reference method. Source/anal-

ysis networks were placed on the wing upper and lower surfaces and a doublet/analysis

network was placed on the wing camber surface (fig. 9). All three wing networks were

assigned zero normal flow panel center boundary conditions. For each source network,

these conditions were applied on the side of the surface exposed to the exterior flow.

Resultant aerodynamic data is compared to that of the reference method in figure 22.

The data generally agrees well. As a check of the force coefficients of the reference

method, this analysis was again performed with twice as many panels, resulting in values

C L = 0.261, CMy = -0.0549, C D --- 0.0128.
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The second analysis performed used a formulation similar to that in reference 11. Both
source and doublet/analysis networks were placed on the wing upper and lower sur-

faces, (fig. 8). Boundary conditions requiting zero perturbation potential on the

interior side of the wing surface were assigned to doublet panel control points (type

equation (C. 1 I) with k U = 0, k L = 1 and _ = 0). Boundary conditions requiring
source strength to be equal to the negative of the normal component of freestream

velocity were assigned to source panel control points (type equation (C.3) with c A = 0,

cD = 1, _n -- -_ ° n). The latter boundary conditions in conjunction with zero per-
turbation flow in the wing interior cause the wing to be a stream surface in the exterior

flow. Because of the crude leading edge paneling and to a lesser extent, the open tip,

the specification of zero perturbation potential at doublet control points did not pro-

duce precisely zero perturbation flow in the wing interior near the leading and tip

edges. Consequently, the wing was not quite a stream surface in the exterior flow.

This did not seem to make a great deal of difference, however, since most of the result-

ant aerodynamic data (fig. 23) agrees well with the reference data. The disagreement

in drag and moment coefficients maY be due to a slight error in the way the pilot pro-

gram calculates pressure coefficients when source and doublet panels are superimposed

(see app. F). This error would affect primarily leading edge pressures.

The third analysis performed reversed the formulation of the first analysis placing

doublet/analysis networks on the upper and lower wing surfaces and a source analysis
network on the camber surface (fig. 11 ). Zero normal flow panel center boundary con-

ditions were applied to the doublet networks. Boundary conditions requiring the per-
turbation potential to be zero were applied at all control points of the source/analysis

network. Resultant aerodynamic data are displayed in figure 24. As an interesting note,

the source strength on the internal source/analysis network turned out to be equal to

the slope of the wing thickness.

The fourth analysis performed used doublet/analysis networks only. Doublet/analysis

networks were placed on the wing upper and lower surfaces and assigned zero normal

flow panel center boundary conditions. The resultant spanwise circulation data were

excellent, but the resultant pressure distributions were grossly in error and could only

be improved by increasing panel density. Indirect boundary conditions similar to those

of the second analysis were then substituted. Here, zero total potential on the interior

side of the wing surface was specified at panel center control points in an attempt to

force zero total velocity (stagnation) in the wing interior. (This would, in turn, cause

the wing to be a stream surface in the external flow because normal velocity is contin-

uous across a doublet surface as proven on page 170 of ref. 1 .) Stagnation was achieved

near the centerline, but rather large velocities were present outboard and these were elim-

inated by paneling the tip. Stagnant flow inside the wing implies that the total velocity

on the exterior wing surface is equal to the surface gradient of the doublet strength (see

eq. (C. 10)). Although stagnation was not quite achieved in the wing interior, the ex-
terior velocities were calculated from doublet strength gradient anyway, resulting in

slightly moreaccurate values of Cp than those produced by actual exterior surface velo-
cities calculated in the usual way. Resultant aerodynamic data are displayed in figure 25.

L ,
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. The fifth analysis performed used linearized boundary conditions and linearized geom-

etry (chapter 17, ref. 18). Source/analysis and doublet/analysis networks were

placed on the wing camber surface, which in this case was the x-y plane. As in the

third analysis, boundary conditions requiring source strength to be equal to the slope

of the wing thickness were applied to all control points of the source/analysis network.

Boundary conditions of type equations (C.7) with cA = 1 and c D = 0 were assigned to

each doublet panel control point. To be consistent with linear theory, the freestream
was directed along the planform centerline and angle of attack effects were achieved

by specifying _n = 4).1 atthese control points. In addition, pressure coefficients were

a_b This resulted in values of ACp
calculated using the linearized formulaCp = -2 a-'x
which were unaffected by the presence of the source network. Hence, lift and moment

coefficients as well as spanwise circulation (fig. 26) do not reflect thickness effects and

agree with the data of figure 16. The primary effect of the source network in this case

was to change the average of the upper and lower surface values of Cp to reflect thickness.

For a pure thin wing, the upper and lower surface values of Cp would have equal magnitudes

and opposite signs. There is not a great deal of difference in the results produced by the
first four analyses and without further study, it is difficult to favor any particular formulation.

In fact, the choice of a formulation could very well depend on the specific application at hand.

For example, a requirement for surface streamline tracing would clearly favor the use of

formulations No. 2 and No. 4, where potential and velocities can be computed everywhere on

the surface from the value and gradient of doublet strength. (Incidentally, this latter fact

would allow somewhat more accurate integration of force and moment coefficients

since the effect of the variation of pressure within a panel may be included in the cal-

culation.) For extremely coarse panelings formulation, No. 1 is probably the most
stable and accurate method of analysis, but it requires extra boundary conditions in-

side a lifting body. (However, the internal lifting system can be quite crude. For most

wings, the use of only three panel rows chordwise does not appreciably degrade results.)

6.5 SOURCE/DESIGN NETWORKS

6.5.1 DESIGN OF ARBITRARY AIRFOIL

Figure 27 shows an application of the type 5 (source/design No. 2) network to a two-
dimensional airfoil design problem. A NACA 65-010 symmetric airfoil at zero angle of at-

tack was chosen as the nominal configuration. The arbitrary problem selected was a redesign

of the airfoil between 20% and 90% chord producing zero Cp there. Analysis of the NACA
65-010 airfoil was accomplished by means of three source/analysis networks placed between

0% and 20% chord, 20% and 90% chord and 90% and 100% chords, respectively, as shown in

figure 27a. (Panels were elongated in the crossfiow direction to approximate two-dimensional

flow.) The resultant pressure distribution is displayed in figure 27b and is virtually identical

to that given in reference 21. The center network was then replaced by the type 5 (source/

design No. 2) network with tangential velocities of freestream magnitude as boundary condi-

tions. Together with the closure condition (eq. 1 l) these boundary conditions produced a
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flow with nonzero normal velocities at control points of the design network. The network

panels were then relofted to eliminate the normal flow This was done by sequentially moving

each point a suitable distance in the positive or negative z direction, starting with the second

point of the center network and continuing aft. The distance is determined by the require-
ment that the unit normal of each updated panel be orthogonal to the velocity vector computed

at the panel center prior to the update. In theory, the closure condition will ensure that the

last point of the network will not be moved at all, thereby, maintaining continuity in geometry

between the cer_ter design network and the aft analysis network. Because of the numerical

discretization involved in the procedure, a slight gap may appear, in which case the whole

design network is rotated about the initial corner point to achieve exact closure. Three itera-

tions produced the reasonably converged geometry displayed in figure 27a. Analysis of this

geometry produced the pressure distribution in figure 27b, which is close to that specified.

6.5.2 REDESIGN OF TR 17 AIRFOIL

A similar, but more practical application of the type 5 (source/design No. 2) network is

shown in figure 28. Here, a Boeing TR17 symmetric airfoil (11% thick) was modified to pro-

duce a different aft loading at 0° angle of attack. An analysis of the original airfoil section

produced the pressure distribution plotted in figure 28b. The desired upper surface pressure
distribution aft of 50% chord is also shown. In order to avoid the sharp discontinuities in

pressure of the previous example, the upper surface geometry was allowed to vary aft of 30%

chord and the original pressure distribution was specified between 30% and 50% chord. The

design procedure used was identical to that of the previous example with the exception of

the addition of an internal (doublet/analysis) lifting system and wake to allow for a lifting

solution. Analysis of the designed section after one iteration indicated convergence.

6.5.3 FULL AIRFOIL DESIGN

Figure 29 shows a test of the type 5 (source/design No. 2) network on a full airfoil design

problem. A circle was arbitrarily selected as a nominal airfoil. A 34 p/reel source/design

No. 2 network was placed on the airfoil surface and assigned tangential velocities of an 18%

thick, 3% cambered Karman-Trefftz airfoil as panel center boundary conditions. The closure

condition (eq. 11 ) was also enforced and a lifting system composed of the usual internal

doublet/analysis No. 1 network was employed to account for possible lift. The resultant flow

produced nonzero normal velocities at source panel control points and these components

were eliminated by relofting the airfoil panels in the same manner as the example in paragraph

6.5.1. The internal lifting system was relofted to the new camber line. The first iteration,

shown in figure 29a, indicates the unsophisticated nature of the loft procedure used. No damp-

ing was employed, i.e., the geometry was allowed to assume the position predicted, even though

the perturbation clearly violated linearity assumptions. The existence of a region of crossover at

the leading edge did not cause the failure of subsequent iterations even though boundary con-

ditions were applied on the interior side of the surface in this region. This is because sources

alone were used to represent the airfoil surface and the specified tangential components of

velocity automatically applied to both sides of the surface. At the fifth iteration, the cross-

over was finally eliminated and the geometry rapidly converged. The airfoil produced on the

ninth iteration is displayed in figure 29a and is almost indistinguishable from that of the true

Karman-Trefftz airfoil. An analysis of this geometry with the source/design network replaced

by a source/analysis network produced the Cp distribution shown in figure 29b which is
close to that desired.

- .. •

61



(a) GEOMETRY

Geometry is fixed

.O6

.04

.02

Z

c 0 .1 .2 .3

i

Design to new Cp's
(Upper surface only)

Original geometry

New geometry

.4 .5 .6 .7 .8

x/c

(b) PRESSURE DISTRIBUTION

Cp

-.4 --

-.3

-.2

O
-°1

O
0

.1

.2

O

Geometry is fixed

I I I

.1 .2 .3

"--Ira"
Design to new Cp's .......
IH_=r surface onl,,_ /-- F_nalysls OTaeslgneo
,uVVc, _.... _ section after one

l_m_r_ iteration

origional section

I I I , ___O I J

.4 .5.6.7 _ 0.9 1.0

Figure 28. - Redesign of TR 17 Airfoil

L.

62



(a) GEOMETRY

z/c

.4

.2

-.2

-.4

t /'J" / ..... _..
/" /-- Resultant geometry ,_ f Nominal geometry

/ /. / (9th iteration) --,_

L / Jr Actual (Karman- Trefftz) "\

\ 1st Iteration -= i

\ /
"\ /

"_ .7"
"_, ./

_._°__.i

0 ,2 .4 .6 °e 1.0

x/c

(b) PRESSURE DISTRIBUTION

Cp

-.8

-.4

.4

__L__- Analysis of designed

sec/_. _ /i_si9te2 Ict_rdatsitOiiution

.2 .4 x/c .6 _.0

/
C L (Desired) = .35906 I

I
C L (Designed) = .35942

Figure 29. - Full Airfoil Design

63

i



6.5.4 WING DESIGN

Figure 30 shows a three-dimensional test of a type 5 (source/design No. 2) network. Paneling

of the wing-body model used for the test is displayed in figure 30a. For economy, the model

is somewhat abbreviated; nevertheless, the wing has camber, dihedral, and twist• The pur-

pose of the test was to determine if the source/design network in conjunction with a geo-

metry lofting routine could reproduce the original geometry from a perturbed geometry,

using as boundary conditions the pressure distribution of the original wing. Analysis of the

original geometry produced the wing pressures at four span stations displayed in figure 30b.
The network arrangement and boundary conditions were identical to those of the example in

section 6.4.1, except that the wing upper surface aft of the leading edge was simulated with a sep-

arate source/analysis network• A perturbed wing geometry was achieved by compressing the

wing upper surface approximately 30% at four span stations as shown in figure 30c. The con-

figuration was reanalyzed, producing the modified wing pressures in figure 30b. The upper
surface source/analysis network with modified geometry was then replaced with a type 5

(source/design No. 2) network The design boundary conditions applied to panel center
• "k -I_

control points of this network were of type equation (C.4) with t L = 0, t U = the unit vector
in the direction of the modified geometry tangential velocities and fit = the magnitudes of the

original geometry velocities. A closure condition of type equation (C. 17) with c U = 1, c L = 0

was applied to all four panel columns• The resultant flow produced velocities with nonzero
normal components. The design sheet was then relofted to eliminate these components• For

this purpose, all grid points at the design sheet edges except those at the wing tip were held

fixed• The remaining grid points were allowed to move normal to the wing mean surfaces•

The relofting was accomplished using the method of least squares, whereby a function was

minimized with respect to a set of free parameters• The payoff was of the form

1 _ (V. _)2
PAYOFF = 2 panel

centers

where _ is the total velocity vector at a typical source/design network panel center, resulting

from solution of the flow problem• The dependence of each panel center unit normal _ on

the four panel comer points is given in equation (A. 1). Let us assume th_ _i is sucha cor-

ner point, and that _ is a unit vector normal to thewing m__an surface at Pi" Then if P. is one ;
of the corner points allowed to move, we assume Pi(Xi) = Pi(0) + ),i _ , where _i(0) is t_ae

location of _i before relofting. Xi is then a parameter to be optimized in driving PAYOFF
to a minimum. Many standard computational techniques are available for finding the mini-

mum of PAYOFF with respect to all the parameters )'i. The particular technique employed

in this case was a damped Newton-Raphson method (chapter 10 of ref. 22).

Two iterations of this design procedure produced a geometry almost identical to the original

geometry as shown in figure 30c. The difference between the first and second iterations was

relatively small. Resultant pressure distributions for the designed geometry are displayed in

figure 30b. At each lofting step, the payoff function was driven to a value very close to zero

by unique values of the free parameters. This indicated that the closure conditions performed
their function well. It also indicated the necessity of fixing the inboard edge grid points of the

design network•
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6.5.5 SPHERE DESIGN

Figure 31 shows the application of a type 5 (source/design No. 2) network to an axisymmetric

design problem. A sphere was analyzed with a type 1 (source/analysis) network. Symmetry

was exploited so that only the right half of the sphere was modeled. Nine panel rows and
columns were used for a total of 81 panels. The panel columns were defined by equally

spaced lines of longitude with respect to poles at x = -+1 and the panel rows were defined by

equally spaced x coordinates.

Application of equation (C.3) with the usual impermeability option (c U = 1, c L = 0,/3 n = 0)

produced tangential velocities agreeing well with exact velocities distribution

V/Voo = 1.5 x_-X "_ . The middle of the sphere was then chopped as shown in figure 31a
and the resultant geometry was analyzed with three source/analysis networks, the first com-

prising the first two panel rows, the second comprising the middle five rows (chopped sec-
tion), and the third comprising the last two panel rows. The resultant velocity distribution

is displayed in figure 31 b. The middle source/analysis network was then replaced by a type 5
source/design network with the tangential velocity distribution of the original sphere speci-

fied at panel center control points. The closure condition (C.I 7) with c U = 1, c L = 0 was

enforced on all panel columns. The resultant flow produced nonzero normal velocities at

each panel center control point which were eliminated by the least square lofting technique

of the previous example. In this case, grid points were allowed to move in a radial direction

with respect to the x-axis. Only the front and aft edges of the design network were held
fixed. Three iterations of this procedure produced a geometry indistinguishable from that of

the original sphere.
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6.6 DOUBLET/DESIGN NETWORKS

6.6.1 LEADING EDGE SEPARATION

Figure 32 shows the application of a type 4 (doublet/design No. 1) network to the analysis

of separated flow off the leading edge of a sharp-edged thin delta wing. This network was used

to represent the free vortex sheet shed from the leading edge as shown in figure 32(a). The wing

itself was modeled with a 30 panel type 1 (doublet/analysis) network. A simple kinematic

model of the vortex core was simulated with a type 8 (doublet/wake No. 1 ) network. Other

type 8 networks (not shown) were employed to represent wakes extending downstream
from the wing and leading edge sheets.

Analysis boundary conditions of type equation (C.3) with c U = 1, c L = 0,/3 n = 0 where speci-
fied on the wing. A sophisticated iteration procedure was used to achieve the design-type

condition of zero pressure jump across the sheet as well as the requirement that the sheet be

a stream surface (refer to equations (5) and (8) of section 4.1). This procedure used a quasi-

Newton scheme to simultaneously drive pressure and normal flow residuals to zero;however,

at each iteration step, the effective design boundary conditions at free sheet panel centers
were of type equation (C.8) with

"_' "* _ 1 Voo2 ACpot A=v/ao, tD=V A , /3t=-
o

the subscript (0) denoting existing values. These conditions follow from the formula for Cp
given by equations (F. 1 ), from which it is easy to show that the jump in C,, across a sheet
(AC o) is given by AC, = -2 (V A . VD)/V_ 2 where _A and _D are given bey equations (C.5)
and'(C.6) respectively. From equation (C. 10), we see that for a doublet sheet

ACp = -2 (V A . -_/a)/Voo 2. Then -½/Voo 2 (ACp + ACpo) = _'Ao" _'tZo) + (_'A - _'Ao, _'/a - _'/ao),
and the result follows by setting ACp = 0 and neglecting the last term on the fight, because it
is of second order in the changes from the existing values. Boundary conditions of type equa-

tion (2) were specified at the control points along the free sheet edge adjoining the wing to
enforce a Kutta condition there.

Free sheet comer points (not attached to the wing) were allowed to vary in planes perpen-

dicular to the centerline to satisfy the stream surface requirement. The variation was defined

by fixing panel edge lengths in those planes and assigning slope angles as free parameters.

Figure 32(b) shows detailed pressure distributions for a thin delta wing of aspect ratio 1.4559

at a 14 ° angle of attack. Upper and lower surface pressure distributions agree with the experi-

mental data from ref. 23 in spite of the sparse wing paneling. Figure 33 displays results for

a thin delta wing of aspect ratio 1. Normal force coefficients at four angles of attack are
plotted in figure 33(a) and they agree well with the experimental data of Peckham (ref. 24)
and theoretical results from the leading edge suction analogy of Polhamus (ref. 25). A
typical load distribution is plotted in figure 33(b) and it agrees well with experimental data.
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6.7 NUMERICAL EFFICIENCY

Enough information is currently available to surmise that the computing costs associated

with the present use of curved panels and locally varying singularity strengths are quite com-

parable on a panel by panel basis with those of first order panel methods. (In terms of

total computing cost per problem the present method has clear advantages because of the

reduced number of panels required.)

Computing costs depend primarily on central processing (CP) time and mass storage use (IO).

Although IO costs are important, they are little affected by the use of higher order panels

and singularities. To be sure, additional geometry and singularity defining quantities must

be stored for each panel, but IO costs usually depend more on mass storage access requests

than the quantity of data stored per record. For cases with less than a certain number of

panels (about 750 in our case) the IO costs of a well-optimized program are usually small

compared to CP costs. For cases with greater than this number of panels, the IO costs of

solving the influence coefficient equations are dominant.

For an influence coefficient program CP costs behave according to the rough formula,

Cost = Cln + C2n2 + C3n3 (18)

?"

Z "

where n is the number of panels. The linear term on the right is associated with the com-

putation of panel geometry, singularity strength and control point defining quantities as

well as the calculation of output. The quadratic term corresponds to the computation of

the influence coefficients and the cubic term is associated with solving the influence coeffi-

cient equation set. The severity of the cubic term can sometimes be reduced through the

use of iterative techniques, but the diagonal dominance required for convergence is difficult

to ensure for truly arbitrary configurations with interacting components. The quadratic

term is somewhat too severe to represent the behavior of the CP time for generating influence

coefficients when n is in the usual range of interest. This is because pure increases in panel

density are accompanied by a higher proportion of efficient far field calculations. Neverthe-

less, the quadratic assumption is sufficient for the present analysis•

The coefficient C 1 is considerably greater for the present method than for first order tech-

niques. With the exception of output calculations, the linear terms dominate only when

n < 25 and by the time n = 60, they contribute less than 10% of the total cost. However,

for multiple freestream directions, the output calculations can represent up to 25% of the

total CP costs even when n = 500. This is because the present pilot code calculates an enor-

mous quantity of output-primarily for diagnostic purposes. Presumably, a production pro-

gram would not require such extravagance•

The coefficient C3 is unaffected by the use of higher order panels and singularities. Current
projections indicate the cubic terms become dominant when n > 1000, so that the cost advantage

of using a higher order method is clear for large cases. Here, however, we must note that'the

effective value of n increases for networks with edge control points. In most cases to which
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currentfirstordertechniquesareapplied,theedgecontrolpointequationsaresomewhat
uncoupledfromthetotalequationset,althoughadvantageisnotderivedfromthisfactin the
pilot program.The reason for this uncoupling is that the edge control point boundary condi-

tions effectively control singularity matching across network edges (app. c) and therefore,
each such boundary condition equation depends only on a few unknown singularity para-

meters in the neighborhood of the network edge.

For problems with moderate numbers of panels (50 < n < 1000), the quadratic term of

equation (18) is dominant. The calculation of influence coefficients is the area where some

higher order methods would ordinarily be expected to incur substantial penalty. For the

present method, this is not the case; primarily because the contributions of higher order terms

can be expressed as simple combinations of lower order terms. Table 1 shows near field in-
fluence coefficient calculation time comparisons between the present method and two first

order methods-those of references 6 and 26. Table 2 shows analogous data for intermediate

and far field calculations. Reformulation of the pilot code for the curved panel option has not

yet been accomplished. The near field flat panel source calculation of the present method is

faster than that of TEA 230, although computation of higher order terms requires about l0

more operations. Actually CP time is only roughly proportional to operation count and such

a variation falls well within the range expected for different codes. The same is true of the

source intermediate and far field calculations. The times displayed in table 1 and 2 corres-

pond to the computation of the potential and velocity at a field point induced by a singularity

distribution on a panel. There is also an additional cost for transforming the resultant veloci-

ties to global coordinates. Moreover, for the present method, there is a further cost of dis-

tributing the influence coefficients to the singularity parameters. The net additional cost

for the present method is approximately 0.24 milliseconds per source influence coefficient

and 0.58 milliseconds per doublet influence coefficient. These costs diminish the effective-

ness of the far field computations in the present pilot code; however, they can be recovered

for the important source/analysis network by implementing the third recommendation of
section 7.2.

In figure 34, we show CP time comparisons between the highly optimized TEA 230 program

and the pilot code of the present method. The range of CP times for a given number of singu-

larity parameters reflects variations due to sourceand doublet and to near field and far field

ratios. TEA 230 appears to be about 30% faster on the average on a panel for panel basis.
It is estimated that for a well-polished version of the present method, this advantage could be

reduced to 15%.
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Table 1. - Near Field A IC Calculation Time Comparisons

AIC

1. Present method

(original formulation)

2. Present method
(reformulation of recursions, etc.)

3. Present method
(reformulation of code) t

4. TEA 230 (Ref. 6)

5. Flexstab (Ref.26)

Panel
geometry

Flat
Curved

Flat
Curved

Flat
Curved

Flat

Flat

CDC 6600 Time
(milliseconds)

SOU rce

8.

13.

4.2
6.1

.91

.94

Not
easily

isolated

Doublet

15.
29.

6.3
9.

1.41

1., 14.*

5.4**

tFunded by Boeing IR & D

* Linearly varying vortex

**Constant strength vortex

Table 2. - Intermediate / Far Field A IC Calculation Time Comparisons

AIC

1. Present method
(original formulation)

2. Present method
(reformulation of
recursions, etc.)

3. Present method
(reformulation of code) t

4. TEA 230 (Ref. 6)

5. Flexstab (Ref.26)

tFunded by Boeing IR & D

Panel

geometry

Flat
Curved

Flat
Curved

Flat
Curved

Flat

Flat

Far
field

.6

.6

.09

.09

.09

.09

.16

CDC 6600 Time (milliseconds)

Source

Int.
field

.9

.9

.54

.54

Doublet

Far Int.
field field

.7 1.8

.7 1.8

.26 .72

.26 .72

.26 .72

.26 .72

Not comparable

Not comparable
I

.54

.54

.26
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Present method(Pilot program)

Seconds

2000

1600

1200

8O0

400

Method ofReference 6

(TEA 230)

100 200 300 400 500 600

Number of panels

700

Figure 34. - Central Processor Time Comparisons; CDC 6600
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7.0 CONCLUDING REMARKS

7.1 CONCLUSIONS

An advanced panel method for solving boundary value problems associated with the analysis

and design of arbitrary configurations in subsonic potential flow has been presented. Theory

and computed results indicate the method has the necessary characteristics for widespread

acceptance by the user community. These characteristics include the following:

I. Generality: The method is capable of solving a wide range of analysis and design boundary

value problems. In particular, the method can handle virtually all analysis problems to

which current panel techniques are applied. The added feature of combined analysis

and design provides a capability that is extremely powerful for an extensive variety of

applications. Most design problems involve the aerodynamic design of one or more

components of a configuration in the presence of others whose geometrical shapes are

fixed. The present method provides this capability along with the limiting cases of

pure design or analysis.

. Flexibility: The method offers the user a variety of modeling options as well as a

straightforward means of implementing those most suited to a specific application. For

economical analysis and design, all the usual thin surface approximations are available.

For more accurate results, exact boundary conditions may be applied on actual config-

uration surfaces. Here, a variety of surface singularity distributions are available. The

efficient source-alone option may be employed on nonlifting portions of the configura-

tion. Components which shed vorticity can be modeled with combined source and doub-

let surfaces or source surfaces accompanied by interior doublets or doublet surfaces

accompanied by interior sources. The shed vorticity can be fixed in location and direc-

tion or designed to satisfy pressure jump and stream surface requirements. These and

other options are easily implemented through the use of standard networks to simulate

arbitrary boundary surfaces. Aside from modeling versatility, the method offers sub-

stantial paneling flexibility. No restrictions appear necessary on panel shape or orienta-

tion so long as density is sufficient for the accuracy desired.

. Stability and Accuracy: For well-posed boundary value problems, the present method
has been demonstrated to be numerically stable and accurate even under extremely adverse

conditions. It displays a marked insensitivity to paneling layout and achieves acceptable

accuracy with relatively sparse panel densities. Convergence to highly accurate results

occurs at moderate panel densities.

. Efficiency: On a panel-by-panel basis, the present method appears capable of the

same efficiency as that enjoyed by existing first order techniques. On a case-by-case

basis, the present method has significant advantages because of the reduced number of

panels required. These advantages become overwhelming for cases involving complex

configurations.

!"
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7.2 RECOMMENDATIONS

During the development of the present method, a number of improvements were discovered

but not implemented because they did not sufficiently bear on establishing feasibility. None-

theless, these improvements could have significant impact on any production-oriented ver-

sion of the method and therefore we sketch the more important ones below.

I. Curvature expansion: The curvature expansion of equation (D.I 8) is valid for any field

point, although it is used only for near field calculations. More efficient expansions are

available for this case. As an example, we have

1 1

R
J[(1-ha)_-(1 +ha)x]2+ [(i-hb)n-(l +hb)y] 2+h2

when (x,y) is in close proximity to _. By a suitable linear transformation, this approxi-

mation reduces to the flat panel expression with corresponding simplifications to equa-

tions (D.22), (D.28), (D.32) and (D.34). Here, curvature is simulated by modifications
to the panel shape and field point location.

. Near Field Influence Coefficient Calculation: One of the mitigating factors in the use of

higher order singularity splines is that the complexity of the near field influence coeffi-
cient calculation need not grow at the rate one might expect. This is because the in-

creased continuity of the splines across panel edges allows the elimination of many can-

celing line integrals. (Refer to sec. D.5 of app. D). At present, no advantage is derived
from the fact.

, Projection Algorithm: For the construction of the higher order panel surface represen-

tations and singularity distributions, an orthogonal tangent plane projection algorithm

is currently used. (Refer to eq. (A.9) and (B.5), (B.2) and (B.3.) Because of the ten-

dency of the user community to violate hypothesis (A.23), a length and azimuth pre-

serving projection would be better. For example, the standard projection could be altered

by scaling the distance from the projected point to the origin so that it is the same as

the distance from the original point to the origin.

. Curvature: At the present time, violation of the curvature restriction (A.21 ) is ignored.

It would be better to incorporate this constraint into the least square panel surface fit

algorithm so that it is satisfied automatically. At the same time, provision should be

made for better curvature definition in cases with sparse paneling, e.g., extra grid points
at panel centers.

. Specification of Singularity Strength: The specification of source or doublet strength at

a control point now requires an influence coefficient equation, although the equation
usually amounts to direct specification of an element of the solution vector. Such an

equation should be eliminated from the full equation set before solution. In the case

of the continuous doublet/analysis spline wherein the values of the singularity param-

eters do not directly correspond to singularity strength, the network boundary condi-

i'
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tion equations for any such network still uncouple from the full set and can be solved

prior to the full solution. This reduction can also be applied to certain situations

where doublet strength gradient is specified at panel center control points of a design

type network.

Superimposed Doublet and Source Panels: In the present numerics, superimposed doub-
let and source networks are treated independently even when paneling is identical.

There are clear advantages to identifying superimposed panels in the geometry defini-
tion, influence coefficient calculation and force computation procedures. These advan-

tages are best exploited by defining new network types with combined source and doub-

let splines and duplicate control points.

Force and Moment Calculations: The force and moment calculations of appendix F

should be generalized to include momentum transfer terms for cases involving permeable

surfaces and edge delta function terms for cases involving thin surface approximations.

These generalizations are already under study in connection with the work of reference 17.

Panel Center Boundary Condition Generalization: In connection with certain design

problems, it appears desirable to require that the pressure at a given control point be

equal to that at another control point. More generally, it appears desirable to allow

boundary conditions which relate quantities at any number of control points. The

closure condition (eq. (C. 17) is already a boundary condition of this type. Another ex-

ample is the slotted wind tunnel wall boundary condition, i.e., k2_b + a6 = k2¢o + a¢ o
an

where ¢o and -'-°are evaluated upstream of the slotted wall section. The well-posed nature
an

of the resultant boundary value problems is open to question, but preliminary experiments

indicate that such boundary conditions can work very well in practice. The necessary

modifications to equations (C.3) and (C.4) are straightforward.

Grid Layout Generalization. The requirement that grid points and panels be arranged
in rows and columns limits the ability to vary panel density in complex configurations.

Clearly our least square definitions of panel geometry and singularity strength do not
require such an arrangement and a more general panel identification logic is highly desirable.

Design Procedure Generalization: Of all the design procedures described in the exam-

ples of section 6, that of reference 17 appears to offer the most potential for practical

design. Here, the problem of designing a stream surface to support a given pressure

distribution is attacked as an optimization problem in which a payoff consisting of a

weighted sum of residuals is minimized using sophisticated iteration techniques. The

residuals include deviations in both pressure and normal flow and the optimizing variables

are the singularity parameters as well as the parameters controlling surface perturbations.

The pressure specification and stream surface lofting problems are coupled in this for-

mulation, but this has the advantage of allowing trade studies. For example, inequality

or equality constraints can be applied to the surface perturbation parameters, resulting

in either an acceptable or unacceptable degradation in the specified pressure distribu-

tion. Moreover, residuals of certain specified functions of pressure (forces and moments)

can be weighted and added to the payoff function.
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APPENDIX A
GEOMETRY DEFINITION

A. 1 INTRODUCTION

In this appendix, we shall define how a surface is constructed which approximates the true

surface (i.e., analytically defined input surface) for the purpose of achieving a numerical

solution to the flow problem. We assume that the overall configuration has been parti-
tioned into networks. In the interior of each network, the true surface is assumed to have

continuous position, slope and curvature. Any discontinuities in these quantities, as far as

the true configuration surface is concerned, must therefore, occur at network edges. We

assume that a discrete representation of the true network surface is provided by a grid of
corner points ]_(I,J); ] = 1,M and J = 1,N where the elements of the position vector of'_ are

resolved in a global (x,y,z) coordinate system. A planar schematic of these points is shown

in figure A. 1. The grid layout is shown as rectanguiar for convenience only. For example,
the wing comer points of figure 15a form an M = 9 by N = 7 grid. For each point J iden-
tifies the column of points to which it belongs and I identifies the row. The grid is assumed

to be sufficiently dense that the portion of the true network surface lying between four ad-

jacent comer points does not deviate significantly from their average plane (to be discussed

later). Moreover, we assume that the projection of the four cor'er points onto their average

plane defines a quadrilaterial which at most degenerates into a triangle. (We, therefore,

require at least three of every four adjacent corner points of a grid to be distinct.) The con-

struction of an approximate surface or panel S lying between four adjacent corner points
of the grid is the subject of the next two sections.

P(M, 1) P(M, N)

P(I, J)

J "P'( 1. N)

Figure A. 1. - Schematic of Corner Point Grid
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A.2 FLAT PANEL APPROXIMATION

Consider four adjacent corner points P(I,J), P(I,J+I), P(I+I,J+ 1) and P(I+I,J) and relabel

these points as 71, P'*2, _3 and i_4 respectively. In this section, we will construct a first order

approximation S to the true surface of the network lying between _1, _2,-P3 and P4. At

the same time, we will define a local orthogonal coordinate system on S for later use.

A A A

Let the orthogonal unit vectors /j, r/and _" be defined as:

A

_=
[_! + _4- _2- _3]

A. A " "I + P2 - P3 -

I

(A.I)

where ® denotes the vector cross product.

Let the average point Po be defined by

_o='4 P1 + _3 +
(A.2)

• /

A

The plane passing through Po with normal _" is defined being the average plane of the points

P'I, i_9, P-*3and 74. This plane is averagein the sense that it also passes through the midpoints
of the line segments joining _1 and 1_2, P2 and 73, 73 andy 4, 74 and _1 as shown in figure A.2.

To see this, we _ote that it is sufficient to prove that _'. (PM --fro) = 0 where 7 M is one of the

midpoints, i.e., PM = V2 (]_i + 7i+1)" By direct substitition, one can show that for any i,

7M-7o = -+(1_1 + 74-72 -73) or +-(1_1 + 72 -_3 -74)" The result then follows from (A.I),

(A.2) and the well known fact that for any vector a and b, _ • (-_®g) = 0.
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"_ r"-- Quadrilateral _ of

I the averageplane

/ ---../I

i 7,
/ ,7

,4,' I

P1

Figure A.2. - Average Plane of Four Adjacent Corner Points

Note that the average plane of four arbitrary points is not unique and depends on the order

assigned the points. Also note the cyclical order assigned the points above is such that the
normals _" of all the panels lie on the same side of the network surface.

_he_?oints f._ormed by the intersection of the average plane with the perpendiculars from _1,

P2, 1"3 and P4 onto the average plane define a plane quadrilateral _ whose boundary con-

sists of the straight line segments joining these projections in cyclical order (see fig. A.2.). The

panel 2; "is taken to be the surface S which approximates the true surface. The coordinate

directions of the local coordinate system associated with S are taken to be the _, _ and

directions, however, the origin is chosen as the centroid _c of the panel _, rather than the
average point ]_o. This choice makes little difference numerically, but is made to facilitate

comparisons with earlier codes such as TEA 230, which also have origins at the panel centroid.
The centroid _c may be computed as follows:

Define

P5 = PI (A.3)

81



and

Then

[i = (_i - Po )

r_i ( _i " Po )

4
-* 1 x-

Pc = Po + Z3D
i=l

i=l .... 5

Di [(_i+_i+l) _+(r/i+r/i+l ) _] (A.4)

where

1

Di = -_" ( _i r/i+ 1 - r/i _i+ 1)

and

4

i=l

With this choice of local coordinates, any point P with components (x,y,z) in the global

system is the same as the point Q with components (_, r/, z) resolved in the local system

if and only if

--x(_-_c) _-_)

i°e._

(i)/A,lA12AI x.,
\A31 A32 A3ff\z- Zc /

where (x c, Yc, Zc) are the global coordinates of the centroid Pc •
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Here,A is the3 x 3 orthogonalmatrix,

(A.6)

A A A
(where { _ } , {71} and { _} are the column vectors containing the x, y and z components of
the unit vectors _,_ and _', respectively, and T denotes transpose.) We also note the inverse

transformation, i.e.,

= 70" +Pc (h.7)

In general, the flat panel approximation to the network surface described above possesses
discontinuities in position and slope along panel edges. However, because of our assumptions

about the smoothness of the true network surface, these discontinuities become small rela-

tive to panel size as the grid density increases.

For a somewhat coarse grid, these discontinuities as well as deviations from the true surface

can be large, relative to panel size; moreover, the effect of local curvature on the local flow is

lost. For these reasons, a curved panel approximation has been devised and is described in

the following section.

A.3 CURVED PANEL APPROXIMATION

In this section, we will construct a second order approximation to the true surface of the net-

work lying between 71 , 7 2 , 7 3 and 7 4 . Our smoothness assumptions about the true network

surface imply that for a sufficiently fine grid, the portion of the true surface lying between

71,72, 7 3 and 7 4 can be approximated by a parabolic panel S whose shape depends only
on local grid points. The panel S may be defined in a variety of ways, biat we select the

following. Using the local (_, r/, _') coordinate system constructed in section (A.2), we assume

S may be represented in the approximate form

1 -_ 1
_(_, rl) = _o + _ + _rl rl + _ _" + _rl _rl + 2 _rtrl_2 (A.8)

The coefficients ( _'o, _'_, _'r/, _'_, _'_77,_'rpT) are the.._n obtained by fitting S to a set of points
I1 which is composed of the corner points71 ,'i_2, P3 and 74, as well as every grid point ad-

jacent to these points. The fit is accomplished by the method of weighted least squares. To

be specific, we minimize the quantity

R= l_w k (_'(_k' r/k) - _'k )2
2 k

(A.9)
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where (_k, r/k, _'k)are the known coordinates of a point ]_k in H. The weights Wk are
chosen to be unity, unless _k happens to be a comer point of S, in which case W k is
chosen large (nominally 108). With this choice, S very nearly passes through its comer

points. If we let C- be the column vector with components( _'o, _'_, _'_, _'_, _'_B, _'r/B )
and _he column vector with components ( l, _k, _k, V2_k z, _k__k, ½_k 2) , then _"(_k,_k)
= Vk I Ck ' and minimizing R with respect to the components of C yields

[ ]-'_ = S Wk_kVkT S Wk_'k_k
k k

(6x 1) (6x6) (6x 1)

(A.10)

(Here the superscript-I denotes matrix inverse.)

Once the coefficients in C have been obtained the expression (A.8) for the surface S can be

simplified by a suitable transformation of coordinates. If the coefficient _'_ is nonzero, the
_ term may be eliminated by a rotation of the (/L 77, _') coordinate system about the _" axis
through the angle _be [-7r/4, lr/4] where

i, ,_/4_'2_rl +( _'//_ - _'/ir/)2 ! ]

(A.I 1)

and

This defines a primed local coordinate system such that a point P having coordinates (x,y,z)
in the global system is the same as a point _ having coordinates (_', r/', _) in the primed
local system if and only if

Q= _*' (P- Pc) (A.I 2)

where

7,' =
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Here_,andPcaredefinedinsection(A.2)and

/cosCv sin_b !)_=_0 sing/ oC°S_

In the primed local coordinate system S has the representation

_" '= _'o + d/_ '+ er/'+ at ,2 + br/,2 (A.13)

where

a

b =

d=

e --

1

(_'_ cos2_k • + 2_'_r / cos qJsin _+ _'rm sin2_k)

1

(_'_ sin 2 _b- 2_'/_r/cos _sin_ + _'r/r/c°s2_k)

_'_ cosff + _'r/sinff

-_'_ sinff + _'_ cos_b

If a 4: 0, the term linear in _ ' may be eliminated by a translation of the origin of the

((, r/', _") Coordinate system to the point

--d
_'=--, r/' = 0, _" = 0 (A.14)

2a

If b :/: 0, the term linear in 7?' may be eliminated in a similar fashion. If a = 0, then the term

linear in _' may be eliminated by a rotation of the ((, r_', _") coordinate system about the r_

axis through an angle ae [-lr/2, 1r/2], where

• -1 d
a=sm [

k1,/;7-g-J
(A.15)

If b = 0, the term linear in r/' may be eliminated similarly by a rotation about the _ axis.

If a is nonzero but much smaller than d, equation (A.14) translates the origin of the ((,

r/', _") coordinate system far away from the panel causing eventual numerical difficulties.

The transformation (A. 15) however, is a mere coordinate system rotation and clearly to be

preferred. If this transformation is used when a 4: 0, the expression for S in the resultant

((', r/", _"') coordinate system will have no linear _" term as desired, but will have quadratic
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termsinvolving_"'.Thesequadratictermsareactuallyof higherorderin6(seeeq.(A.21))
andcanbeignoredif thegridissufficientlyfineor removediterativelyotherwise.To re-
movethequadratictermsinvolving_"',iterativelyweusethefollowingprocedure.Wedefine
adoubleprimedlocalcoordinatesysteminamannersimilarto thatsuggestedabove,such
thatapoint]_havingcomponents(x,y,z)in theglobalsystemisthesameasapoint i_
havingcomponents(_", 7/",_"')in thedoubleprimedlocalsystemif andonlyif

r "l / x- Xci
= A"(P-Pc) °rtr/"t = [A"] |Y-Yc_

[_"'J tz - Zc J
(A.16)

where

= EA

and

and

(i °COS

- sin 3

COS O_

= -sin/3sina

- cos/3 sin a

o/ (oS.osin 3 l

cos/3/ k-sina 0
X

0 sin a \

)cos/3 sin/3 cos a

- sin 3 cos 13cos a

0sin o_ /
COS Q_

(d)= sin -1 _ ; -ae [-7r/2, _r/21

3 = sin-l( e41+d2+e 2) ;3e[-rr/2, zr/2]

(The matrix E represents the composition of the coordinate transformations for eliminating

d and then the resultant e.) We then replace the original (_, r/, _') local coordinate system

with the (_", r/", _'") system and repeat the construction from equation (A.8) on. If the pro-

cedure fails to converge the flat panel approximation of section (A.2) must be used. (This

contingency has never been necessary.) For a sufficiently fine grid, the procedure will con-
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vergerapidlysothatshortlyacoordinatesystemwill beobtainedin whichd ande typeterms
in equation(A.13)will beessentiallyzeroandnoquadratictermsin _"will bepresent•The
localcoordinatesystemfor whichthisoccursisthendefinedbythetransformationof equa-
tion (A.I 2)wherenow

A'= ( DnEn_lDn-I ...EI[)I ) A (A.17)

andDi, Ei arethe D andE matricesfortheith iteration.

Thecoefficient_'oof equation(A.13)maybeeliminatedbyatranslationfor the(_',r/, {")
coordinatesystemto thepoint

Ro= Pc+_'o_'" (A.18)

Wethenobtain a final local (_, r/, _') coordinate system defined by the transformation from

global to local coordinates,

Q = _" (P- Ro) (A.19)

where ._ is now the matrix -'A, defined in (A.17) and ]_o is defined by (A.18). In this

coordinate system, S has the representation

_'(_;, 77) = aS 2 + br/2 (A.20)

The domain of (_, 7/) here is again the quadralateral Z defined by projecting the comer

points 1_1,72, ]_3 and ]_4 onto the (_, r_) plane (see fig. D. 1). Equation (A.20) represents

a considerable simplification over equation (A.8) and leads to substantial economics in the

calculation of influence coefficients (app. D).

This completes the construction of the second order approximation to S. In section (A.1),

we made the assumption that the grid was sufficiently dense that the true surface lying

between four adjacent corner points did not deviate significantly from their average plane.

This assumption implies that the coefficients a and b are limited in magnitude. We formalize
this limitation as follows. Let

,.ax "'1- -- b'_r/_ (A.21 )
,5- (L n) e F-,
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Thenwerequire

< < ! (A.22)

Define this diameter d of S by

and the height _o of S by

d=2 Max
(_, n) e

Max {1_'(_, rDI}

It can be shown that 5 is an upper bound for w/d; hence, equation (A.22) implies that the

ratio of the height of S to its diameter is small. Equation (A.20) can always be ensured by

a sufficiently fine grid. As a practical matter, we have adopted

5 < .066 (A.23)

as a "rule of thumb" governing panel density. For a two dimensional cylinder, equation

(A.23) would imply a maximum of 30 ° subtended angle per panel or a minimum of 12 total

panels.

Although it is not sufficient, equation (A.22) helps to guarantee that S is a close approxima-
tion to the true surface. It also allows the expansion and subsequent integration in closed

form of the induced velocity kernels. Moreover, it is doubtful that our assumed linear or

quadratic distributions of singularity strength on S would be adequate for more highly

curved panels.
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APPENDIX B

SINGULARITY STRENGTH DEFINITION

B.I INTRODUCTION

In section 4.2 it was noted that equation (13) represents an explicit solution to any of the

boundary value problems described in section 4. l, once the source strength distribution

o(Q) and doublet strength distribution/a(Q) are determined such that the specified boundary
conditions are satisfied.

In this appendix we shall describe how an approximation to the true network singularity

distribution is defined for the purpose of achieving a numerical solution to the flow problem.

The true singularity distribution will be approximated by a truncated Taylor's series on each

panel. Such a representation is valid on any interior part of the network providing the

paneling there is sufficiently fine. It is less valid at a network edge where the true singularity

distribution may become unbounded, in which case some error on panels adjacent to the edge
will be unavoidable regardless of panel density. The approximation here as well as in the

network interior can be improved by using a higher order distribution than currently

employed by first order methods (which use zonstant source and doublet distributions).

The next logical step as far as sources are concerned is to use a linearly varying source

distribution on each panel. The order of doublet distribution consistent with such a source

distribution is quadratic. This can be seen from equation (C.10) which shows that it is the

gradient of doublet strength which performs a function similar to that of a source, i.e., it

creates a jump in a certain tangential component of velocity across a singularity surface.

Hence, the gradient of doublet strength should also be linear, following that the doublet
strength itself must be quadratic.

In this report, we will consider only a linear singularity distribution on source panels and a

quadratic distribution on doublet panels. There may be an advantage in using even higher

order distributions, but as pointed out in reference 13, it would then be necessary to

consider a higher order panel geometry definition for the sake of consistency. Specifically,
we assume that the singularity strength X at a point (_, r/, _') on a panel S is given by

Source:

Doublet:

X(_, r/, _') = o(_, 77) = o o + of _ + Or/r/ (B. I )

x(L 77,l') = _(_, 77)

1 _2 1 772
= _o + U_ t/+ pr/r/+ _. /a_ +/a/_r/_r/+ _/at/r/ (B.2)

Here (_, 7, _') are local panel coordinates as defined by equation (A. 19).

The unknown source and doublet coefficients (which may also be referred to as degrees of

freedom) on the right sides of equations (B. l) and (B.2) respectively, are not assumed

independent; rather they are linear combinations of an independent set of singularity

parameters X I' X2, X3 .... XMA X whose values are to be determined from application of

the boundary conditions. The complete set of these singularity parameters will be denoted : . , ,
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as A. In otherwords, for each panel S we have

C = BX (B.3)
where C" is the column vector of either the source or doublet coefficients and X is a column

vector whose elements Xk form a subset of _A_. In the next section_ we describe" 1) how the
set _/x_ is chosen for each type of network, 2) how the vector X is chosen for a panel, and

3) how the rectangular matrix B is determined. (For a source panel B has dimensions

3 x NS; for a doublet panel B has dimensions 6 x N D. N S and N D are the size of X for
source and doublet panels respectively and depend on the network type and on the location

of the panel within the network.)

B.2 CALCULATION OF DISTRIBUTION COEFFICIENTS

The singularity parameters _A_ are chosen to be the source or doublet singularity strengths

X(_, r/, _') at a set of discrete points _2 on the network surface. The choice of /2 for the

various types of networks employed is shown schematically in figure B. 1.

The circles represent points in _2. The intersections of the lines correspond to grid points

of the network, i.e., panel corner points (see fig. A.1). A circle at one of these intersections

therefore represents a grid point. A circle midway between two adjacent intersections

represents the average of the corresponding two grid points. Finally, a circle centrally

located among four adjacent intersections rep..[ese_nts the overage of the four corresponding
grid points. Here the average P* of N points PI, P2, • • • P'N is defined by

P* = (P1 + P2 + • • "+PN)/N (B.4)

and this definition holds even if some of the ]_i are identical. Technically, some of the points

of /2 may not lie on any panel of the network since in general the panels defined in

appendix A may not contain the grid comer points and/or midpoints; however, this is of

no consequence since only the projections of the points in /2 onto planes tangent to the

panel surfaces are employed in future computations. The reasons for the choice of singularity

parameter locations for various networks will be discussed in connection with control point

locations in appendix C.4. We also note here that even numbered networks are doublet
networks and odd numbered networks are source networks. There are no type 7 and 9

networks.

The singularity parameters in _A_ are ordered using the row index M = 1, 2 .... I as an inner

index and column index N = 1, 2,... J as an outer index in a manner similar to a doubly
indexed dimensioned variable in FORTRAN. The singularity parameters in A corresponding

to two or more points of _ which physically coincide due to triangular panels, are identified

in the ordering. This device can be used even when points do not coincide to create

networks with fewer degrees of freedom than those in figure B. 1. For example, the two
wake networks are obtained in this manner from the type 6 (doublet/analysis) network.

The first is designated type 8 (doublet/wake #1) and is obtained by identifying all parameters

in each column with the parameter at the head of the column. The second is designated

type 10 (doublet/wake No. 2) and is obtained by identifying all parameters with the first

parameter.
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• • • q
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J

Type 2 (Doublet/analysis)
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Type 3 (Source/design No. 1) Type 4 (Doublet/design No. 1)

A

J

Type 5 (Source/design No. 2)

J

Type 6 (Doublet/design No. 2)

Type 8 (Doublet/wake No. 1)

LJ

Type 10 (Doublet/wake No. 2)

Figure B. 1. - Schematic of Singularity Parameter Location
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We now define the vector _, of equation (B.3) for an arbitrary panel S. The components

of _, are the parameters Xke.A.corresponding to points Pk el2 which belong to S or else
are adjacent to points belonging to S. For this purpose a point P e 12 is considered to belong

to a panel if it is the average point of one or more of the panel's comer points. (Hence some

points in I2 belong to more than one panel.) Also, a point Q e _2 is considered adjacent to

a point P belonging to S if each of its I and J indices differ by one at the most.

The matrix B is obtained as the result of fitting the distribution of equation (B. 1) or

equation (B.2) to the singularity parameters of _, by the method of least squares. To be

specific we minimize the quantity

R= _ W k [X(_k,r/k,_'k)-Xk] 2

k

with respect to the degrees of freedom in equation (B.I) or (B.2). In equation (B.5) the

sum is over the N components of Xk which belong to S, and (/;k, r/k, _'k) are the

coordinates of the corresponding points Pk e I2 expressed in the local coordinate system of
the panel S. The weights Wk are chosen to be unity unless _k happens to belong to S

in which case W k is chosen large (nominally 108). If we let _ be the_vector having the

coefficients (degrees of freedom) of X(_, rt, _') as its components and V k the vector with

components (1, _k, _,k) in the case of a source distribution or

1 1 17k2)(1, _k, r/k, _ _k 2, _krtk ,

in the case of a doublet distribution, then the quantity R is minimized with respect to

the coefficients when

Comparison with equation (B.3) reveals that

B = Bl -I §2

where

(B.5)

(B.6)

(B.7)

BI = _ WVV T
k k k k

(B.8)

and B2 is the N column matrix whose kth column is WkV k.

Thus, for each panel S, the coefficients in equation (B.1) and (B.2) are expressed in terms

of the Xk belonging to the panel.
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B.3 CONTINUOUS DOUBLET/ANALYSIS DISTRIBUTION

The network singularity distributions defined in the previous section are basically splines

although they lack the continuity characteristics usually associated with splines. Ideally,

source strength and doublet strength and gradient should be continuous across panel edges.
This is because discontinuities in source strength and doublet gradient across a panel edge

induce logarithmically unbounded velocities there, and a discontinuity in doublet strength

induces a jump in potential at the edge as well as a velocity which becomes unbounded as

the inverse of the distance to the edge (see app. D.5). The problem with such flow

anomalies is that flow boundary conditions imposed at control points close to these

anomalies will concentrate on eliminating the anomalies in order to produce finite flow.

The only way the flow anomalies can be eliminated is by greater continuity of the source

and doublet splines ; hence, the boundary conditions will interact with the splines rather

than control the finite flow in an appropriate manner. The weak flow anomalies produced

by source and doublet gradient discontinuities are of little consequence to boundary

conditions applied at panel centers; however, the strong flow anomalies produced by
discontinuities in doublet strength can be of concern where panel center control points lie

close to panel edges, as might be the case when the upper surface of a thin wing has

different panel spacing than the lower surface.

The least square procedure employed in the previous section does produce virtual continuity

of doublet strength in regions where paneling is sufficient. In regions such as thin wing

leading edges where the singularity strength gradients are large and the paneling is usually

too coarse for the quadratic approximations to hold discontinuities do arise. It must be

remembered that discontinuities in doublet strength correspond to jumps in potential

which are not reflected in the gradient of the potential. Hence, calculation of velocities

from the gradient of the doublet strength, as in example 4 of section 5.4.2, as well as the

calculation of ACp for infinitely thin wings in many examples of section 5, can be erroneous
without taking into account the fact that the variation of potential may be "lumped" at

panel edges. This can be done after solution, i.e., after the singularity parameters are known.

It is then possible to average doublet values along common panel edges creating a unique

definition of doublet strength along grid lines. The distribution of doublet strength on any

panel may then be modified by fitting the distribution coefficients to the values on the panel

perimeter in a weighted least square sense. This refinement has been implemented in the

pilot code and is responsible for more accurate values of Cp in cases involving the least
square doublet/analysis spline of the previous section where panel density is sparse,

however, in view of the preceding paragraph it would be far more desirable to construct a

doublet spline with inherent continuity across panel edges.

It is virtually impossible to construct a quadratically accurate doublet spline with exact

continuity across all panel edges of a network when the distribution on a panel has only

six degrees of freedom (equation (B.2)). The best we can do is achieve continuity at
certain points along panel edges, e.g., at comer points. The type 4 (doublet/design no. 1)

network is continuous at panel corner points and does a good job on the inverse problem,

i.e., obtaining potential from gradient data.
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In this section we will develop an alternate spline for the type 2 (doublet/analysis) network

with sufficient continuity to yield more accurate velocity data at panel centers in cases

where panel density is sparse.

There are many ways to construct a doublet/analysis spline which is continuous at corner

points. However, we wish to preserve certain desirable characteristics of the type 2 least

square spline of the previous section. In particular we want the quadratic distribution on a

panel to depend linearly on local singularity parameters only, on the nine parameters in an

immediate neighborhood. Continuity at corner points then requires that a corner point

value of the spline depend on the four adjacent singularity parameters only. This eliminates

the choice of point values of the spline for singularity parameters as in the previous section,

since four point values cannot in general be interpolated to obtain a fifth by a second order

accurate formula. On the other hand, the following choice of singularity parameters does

allow the second order accurate determination of corner point values by four adjacent

parameters in the case where grid lines are straight• On any panel S we define the associated

panel center singularity parameter in terms of the local doublet distribution by the formula

4

X 41 _ /ii, 7 i +. -__vU _i, 7i ° (Pi + 2 - Pi (B.9)

i=l

Here

_i = _i(_i, 7i' _'i)

is the ith panel corner point as shown in figure (B.2) with 7 5 = 7 1 and P6 = P-_2" The
•

distribution #(_, 7) is defined by equation (B.2) and vta(_, 7) is the surface gradient ofta

defined by the formula

where

and

7)= [ ta t ,7), taT( ,7), 0] (B. 10)

taT{/_,7) = ta7 + ta_7/"+ ta777

Any network edge singularity parameter can be defined by equation (B.9) as well by

allowing S to collapse to the panel edge or corner associated with the parameter

(see fig. B. 1). For example, if_ 1 is a network corner point, then the appropriate

e_.xpression for the singularity parameter X at]_l is obtained by sending _2, P'3 and 7 4 to

PI" hence, from equation (B.9)

X at PI = ta(/_l' 71) (B.l 1)

/

i

¢
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Figure B.2. - Panel Schematic for Singularity Parameter Definition

If P1 and P2 are network edge grid points, then the aopropriate expression for the

s!ngularlty parameter X at the midpoint of_'l and _ is obtained by sending P_ to P2 and
_'4 to _'1; hence, from equation (B.9) " "

_at _ ,. _ /a 1+ 1--, (_ ,rtl)o (p2__" 1

1 ">1
Since ta(_, r/) is quadratic along the line joining PI and P2 the expressions in square brackets
on the right side of equation (B.I 2) can be shown to be equal so that

,(--)( )l ()()hat _ PI +P2 =U _l,r/l + _ _'_ _l,'r/1 • P'-*2-_'I

1 --k.

=/1 (_2' r/2)+ 7 _'/a (-_2,772)° (_'1-P2) (B.13)

The last expression is closely associated with the definition of the singularity parameters
used to solve the one-dimensional quadratic interpolation problem. Assume we wish to

interpolate values _tO, ta1 ...... #n + 1 defined at the points/;k, k = 0, 1 .... n + 1 where

1( ) ½(x )_o=XO,_l = _ xO+Xl ,_2 = l+X2 ..... _n+l--Xn

as shown in figure B.3. It is possible to define a function #(x) such that 1) #(x) is quadratic

on each interval Ix i_ 1, xi], i = 1, 2 .... n; 2) tt(x) is continuous and

/a '(x) --- d_(.X)dx is continuous on the full domain Ix o, Xn] ; and 3)/a(x) interpolates the

values _k, k = 0, 1 .... n + 1. Moreover, the/a(x) with such properties is unique.
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.I. : I =. I _. I . I =
T I - I I - I -
_o _ _2 _3 _ _5

x5
.,k

I
n=5

Figure B.3. - One Dimensional Quadratic Interpolation

To find p(x) we first define the singularity parameters X k as

Xk = Ok- _ Xk-Xk-1 #'k 'k = 1,2 .... n

;kO = /dO

d 2 U(x)
where/a 'k is

dx 2

possible to show that

_kn+ 1 = /an+ 1

evaluated at _k" Since/.t(x) is quadratic on Ix k _ 1, Xk] it is

°_k --_(xk_1)+_._(xk ,) (xk-xk_,)
1_(xk)+_ _(xk)(xk-,-.k)

(B.14)

This formula can be used when k = 0 and k = n + 1 by defining x_ 1 = x o and

Xn + 1 = Xn" It is then easy to show that

,,(.,4= (x,.-_,.)_,,,+,+(_k+,-x.).,. ,,'(,,k)=_'"+'-,.k
_k+l-/_k ' _k+l-_k;k = 1,2 .... n

(B.16)

(B.15)
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Equation (B. 16) has the following interpretation; plot the ;kk in place of the/ak and connect

the values with straight lines. Then /a and /a'at x k are the value and slope at xk of the
straight line segment connecting _'k and Xk + 1' From equation (B. 16) we can obtain the

coefficients of the quadratic doublet distribution in each interval in terms of the ;_k- We
have

where

1 1 1)

k+

(B.18)

and

Note that the coefficients depend only on the singularity parameters belonging to the interval

and its immediately adjacent intervals. The _'k can be obtained in terms of the/a k by solving

an equation set consisting of Xo =/ao, ;_n + l =/an + 1 and the first equation of (B. 18) for
every interval, using a tridiagonal equation solution algorithm.

The definition of equation (B.9) is an attempt to generalize equation (B. 15) for the case
of a surface spline. As in the one dimensional case, the next task is to determine the comer

point values of doublet strength and gradient. Given any corner point ]_(I, J) of the network,

we define a local (_, r/, _') coordinate system with origin at the corner ooinJ_ and with the
(_, 7?) plane approximately tangent to the true network surface. The _, _, "_"unit vectors are
defined as follows:

l(ff33-P31)+2( 23- 21 )+ ( 13- ll)l
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HereP22isthepointP(I,J)andtheotherPijaretheeightadjacentcornerpointsdefinedby

-II. -.k

Pll =P(I- 1,J- 1)

P21 = P(I, J - 1)

P31 =_(l+l,J-1)

_1 2 = i_(I - 1, J)

-,11.

P32 = P(I + 1, J)

PI3 =P(I-I'J+I)

P23 = P(I, J + 1)

P33 = P(I + 1, J + 1)

(If any index exceeds a grid point row or column limit it is assumed to be replaced by

that limit.) These comer points are shown schematically in figure (B.4) along with

the four relevant singularity parameters.

(B.20)

I:

P31 P32 P33

P21

XI

_2

"4'

P22

X4

,--b

P23

Pll P12 P13

Figure 8.4. -'Corner Point Schematic for Spline Corner Point Value
Determination at the Corner Point P22 Common to Four Panels
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Let/a c and _7/ac be the doublet strength and gradient at the origin P22" These quantities are
then to be determined in terms of the four Xi, by minimizing the function

,4 {4R='_ _ W2 /ac+ _/ac'(_i+_i+l +_i)
i=l

+1 [al _i/;i+l + a2 ( _ir/i+l + r/i/_i+l)4 + a3r/ir/i+l ] - Xi} 2

1 +Iw 2a32+_W_2a12 +W_W_Ta22 2 n (B.21 )

with respect to

gc' V_tc' ai' a2 and a 3

Here

SI=P32-P22 ' S2=P21-P22' 3=P12 22' S4=P23-P22' $5=S1 (B.22)

and

dl =P31-P22, d2 =PI1-P22, d3 =PI3-P22, d4 =P33-P2 v'. d5 =dl

and

(_i, r/i, _'i) = _i

The weight W is nominally chosen as 104. The weight W_ is chosen as the square of the
component of theSi and _i with largest magnitude, the weight W,, is chosen similarly.

The choice of R in equation (B.21) is motivated by an attempt to _btain/ac,_/a c by

fitting a quadratic distribution to X 1 , X 2, X3, X4 with a 1 , a-_, a 3 being the second order
coefficients. Such a fit has two degrees of freedom, however, if _! is parallel to'_ 3 and S'+2

is parallel to'_4, these degrees of freedom affect the second order coefficients only and
the values of/a c and_/a c are determined uniquely by the Xi"

The function R is minimized by values of/ac, V/ac, a 1, a 2, a3 which can be obtained from
a formula similar to equation (B.6), i.e.,

k
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/ac

talc

#r/c

al

a2

a 3

Known Matrix m]Determined Solely Fro

Geometry of Pij

rx,, ]

?'2

k 3

_k4 •

(B.23)

As in the one-dimensional case, once the dependence of all comer point values and gradients

on the network singularity parameters has been found the panel distributions/a(_, r/) may

be calculated. Return to figure (B.2) and equation (B.2). The six coefficients of#(_, 77) in

equation (B.2) are determined as follows. We require that the distribution actually attain

the corner point values just computed, i.e.,

ta(_i' r/i)= #i ; i= 1 .... 4 (B.24)

where Vi is the value of/a c at _i we also require that equation (B.9) hold for the panel

center singularity parameter and any network edge singularity parameter associated

with the panel. All remaining degrees of freedom (if any) are then eliminated by
requiring that

) -.via i' r/i = v/ai ; i = 1.... 4 (B.25)

hold in a least square sense, where_/a i is the value of_t_c at'_ i. Specifically, for a Panel

in the network interior, the six coefficients of #(_, r/) are obtained by minimizing the
function

with respect to

1 _/W2 [,(/_i,r/i)_,i] 2 [# ]2R=_i=l _ +W_ 2 _(_i, r/i)- taxi

+ Wr/2 [#r/(_i, r/i)- tar/i ] 2

4
lie

+W2 X-4"i=l , ]2/a(_i,r/i)-_t_(/;i,r_i)" (_i+2-_i) (B.26)

• _. i̧ :̧ 7.

.g

. ',

i •
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where/at,and/a,,,arethe _ and77componentsof_tz_, and k is the panel center singularity
_1 ql

parameter. The weight W is nominally chosen as 10 4. The weights W_ and Wr/are chosen as
the maximum values of I_i I and lr/il respectively. Only the panel center singularity parameter
defining equation is displayed on the right side, but for network edge panels the associated

network edge singularity parameter defining equations should also be included. Note that

for network corner panels the doublet distribution can only achieve specified corner

point values and singularity parameters in a least square sense. The procedure for minimizing

R is similar to that used to derive equation (B.6) and the result is a B matrix to replace

that of equation (B.3). The vector ff is again the coefficients of equation (B.2) and the

vector X consists of the singularity parameters which belong to S or immediately adjacent

panels. The 6 x N D matrix B again depends only on the geometry of the corner points of
S and those of its immediately adjacent panels.
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APPENDIX C

CONTROL POINT DEFINITION AND

BOUNDARY CONDITION SPECIFICATION

In this appendix we describe the selection of a set 1TMof control points on a network. (By

definition control points are points at which boundary conditions are applied, i.e., points at

which the integral equations or auxiliary conditions of the problem hold exactly.) In

addition, we describe the form in which the boundary conditions may be specified.

C.I CONTROL POINT LOCATION

The set F for each network is shown schematically in figure C.1. (There are no type 7 and

9 networks.)

The circles represent points in P. As in figure B.1 the intersections of the lines correspond

to grid points of the network and the squares correspond to panels. Circles located on

edges or at intersections correspond to the same network locations as in figure B. ! -at least

for the present. However, a circle in the middle of a square (which we call a panel center

control point) denotes the origin of the local coordinate system (see app. A) of the

corresponding panel rather than the average of the four adjacent comer points• The points

in F may be ordered using the row index as an inner index and the column index as an

outer index. For this purpose points which coincide with previous points are deleted.

Hence, F and A have the same size for network types where A and _ are schematically

similar, i.e., types l, 2, 8, and l 0. This may not be the case with the design networks when

triangular panels are present. We do not specifically exclude triangular panels from design

networks, but we do require that the presence of triangular panels result in sets F and A

of identical size. For example, the collapse of an entire edge of a type 4 network would be

permissible.

Once F has been ordered, it is necessary to withdraw the control points on the network

edges slightly to avoid numerical difficulties associated with infinite self-induced velocities

(see app. D.5). The displacement is accomplished in the following manner. First, assume

the control point P is one of the four corner grid points of the network. Without loss

of generality, we can assume P = P(1, 1) (see fig. A. 1). Let N be the unit normal at P of
the panel containing P. The control point P is then redefined by the formula

(^^)_= _(1, l)+ct D 1 +D 2 (C.1)

where

D1 = N ® [-P(I, 2)-_(1, l)]

D2 =1_ ® 1, 1)- iff(2, 1

D̂ 2 = D 2
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Figure C. 1. - Schematic of Control Point Locations
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Here .e is a small number (nominally 1/4 x 10- 5). If either P(1, 2) or P(2, 1) coincides

with P(I, 1) we replace it by P(2, 2).

Next assume the control point P is located at the edge of the network midway between two
1 "_

_rid points Without loss of generality we can assume _ = _ (P(1, 1) + _(1, 2)). Again, let

N be the unit normal of the panel containing P. The controZl point [_ is then redefined by

the formula

P=--2 P(1, 1)+ (1,2) +etD 1
(C.2)

where

A

Ol= Dl/ID1

Here e is a small number (nominally 10-5). If P(1, 1) coincides with P(1, 2) the displace-

ment procedure of equation (C. 1) is used.

Note that the displaced network edge control points do not necessarily lie on their respective

panel surfaces. However, this causes no problems since induced velocities at these points

are computed in a special way taking into account only edge induced effects. (See the

discussion in equations (C. 16) and (C. 18).)

C.2 PANEL CENTER BOUNDARY CONDITIONS

In this section we describe the form of the boundary condition equations at panel center

control points. We first consider boundary conditions involving velocities where the

equations may take the form

specify c U, c L, 3n)
(C.3)

(_U" _U)+ (t_L " _L) =3t (specifY'_U, "_L' 3t) (C.4)

Here VU is the total upper surface velocity (perturbation plus free stream) and _L is the

total lower surface velocity. By upper surface we mean the side of the panel surface on

which lies the positive _" axis of the local coordinate system. The lower surface is the
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otherside.Theunit vectorn is theuppersurfacenormaland andtL aresurfacetangent
vectors.(Arbitraryvectorsmaybespecifiedbut theyareprojectedonto the tangent plane of

the panel at the control point before application.) Conditions of type (C.3) are employed on

analysis networks while conditions of type (C.4) are used on design networks. These condi-
tions cover problems involving both interior and exterior flows as well as thin sheets.

To explain the application of the equations (C.4) and (C.3) we first consider a panel of the

boundary surface B which bounds D on one side only (e.g., the wing section shown in

fig. 21 ). Without loss of generality we can assume this side is the upper side. Lower surface

velocities, are, then irrelevant and we may assume cU = 1, CL= 0 in equation (C.3) and
ItuI = 1 and t L = 0 in equation (C.4). Analysis boundary conditions then reduce to the

specification of/3 n, the fluid velocity normal to the panel at the control point. For example,

conditions of type (C.3) with c U = 1, c L = 0,/3 n = 0 are the usual analysis boundary condi-
tions on impermeable surfaces. On the other hand, both the unit tangent vector ]'and the

velocity component fit in the direction t U must be specified for design conditions. Often

t U is selected to be the stream direction at the control point obtained from analyzing the

flow about the existing geometry and /3t is the desired velocity magnitude to be produced
by a perturbed geometry.

Next, let us consider a portion ofthe boundary surface which bounds D on both sides

(e.g., the model of fig. 19). In order to control the flow on both sides, the surface must

conceptually be represented by superimposed source and doublet networks. Without loss

of generality we can assume the orientation of both networks is the same regarding upper

and lower surface designations. We also assume that the paneling for both networks is

identical so that a pair of boundary conditions is applied at each center control point

location. This pair may consist of two analysis, one analysis, and one design or two design

type boundary conditions. To study these combinations it is convenient to define a set of

boundary conditions equivalent to (C.4) and (C.3). For this purpose we define an "average"

velocity by

-. 1(7VA=7\ u+V (C.5)

and a "difference" velocity by

V D = V U - V L (C.6)

Then (C.4) and (C.3) are equivalent to

CA(_a" V'*A)+ CD(_" _D) = _n specify c A, c D,/3 n ) (C.7)

(t+A " _A )+ (t_D " _D )=/3t (specify t'A' _D'/3t ) (C.8)

7
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respectively, where
.¢. -_ ÷

c A = c U + c L t A = tU + t L

1 1 ÷ ÷

Eqttivalence is established by noting the inverse transformation, i.e.,

V L = V A - -5" VD

1

Cu =_ CA + c D

1

c L = -_ cA - c D

t U = _ tA + t D

-. ½-- --tL = tA_tD (C.9)

Let us first consider the case where both boundary conditions are of analysis type, i.e., of

the form (C.7). If the boundary value problem is well posed, the boundary conditions must

be independent and consistent, hence, without loss of generality we can assume that one

condition controls the normal component of the average velocity (i.e., cD = 0) and the

other controls the normal component of the difference velocity (i.e., cA = 0). In theory,
it doesn't matter which boundary condition is associated with the source panel control

point or doublet panel control point. However, in the present numerical development

(i.e., in the existing pilot code logic) a distinction must be made. The present development

calculates the influence coefficients for V A directly (see app. D.3) but obtains those for V D

by using the formula

V D = o_a + vp (C. 10)

h

which follows from equations (15), (16), and (B. 10).

Here o is source strength and _'/a the doublet strength gradient at the control point.

Because of the logical structure of the present method (in which network independence is

maintained) only the first term on the right side of equation (C. 10) is considered for a source

panel control point and only the second term is considered for a doublet panel control

point. It is then essential that the boundary condition controlling the normal component

of the difference velocity (i.e., c A = 0) be associated with the source panel control point
since only for a source panel control point is this component computed correctly. (Note

_. _ta = 0, see equation (B.10).)
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A similar situation exists in the case of one analysis boundary condition (type (C.7)) and one

design boundary condition (type (C.8)). Here the analysis boundary condition must be

associated with the source panel control point and the design boundary condition with the

doublet panel control point. The case of two design boundary conditions is slightly different

since it is no longer possible to assume without.loss of generality that one boundary

c_.ondition controls a tangential component of V A and the other a tangential component of

V D. Such an assumption is not too restrictive since one can probably -.achieve a_.ny general

design result of this type by controlling the tangential components of V A and V D separately.
At any rate, it is clear that under such an assumption the source panel boundary condition

should be used to control V A and the doublet panel boundary condition should be used to

control V D.

As a final note, equation (C. 10) implies that a surface across which normal velocity is con-

tinuous may be represented by a doublet network alone. On the other hand, a surface

across which tangential velocity is continuous may be represented by a source network

together with a doublet network of constant strength. The latter network is unnecessary

if there is no jump in potential across the surface.

Next, we consider specification of potential at panel center control points where the boundary

condition equation may take the form

kv_ U + kLq_ L =/3_ (specify k U, k L,/3_ ) (C. 11)

Here _bU and _L are the upper and lower surface values of perturbation potential respectively.
Boundary conditions imposed by equation (C. 11 ) are design (Dirichlet) conditions, but

differ from those imposed by equation (C.4) in that scalars rather than components of vectors

are specified. For this reason the symmetrically defined singularity parameter and control

point locations of network types 1 and 2 are most suitable for applying these conditions. To
avoid constructing additional design networks with identical properties we simply use these

network types substituting equation (C. 11 ) for (C.4).

The application of equation (C. 11 ) is obvious from our earlier discussion. We note only the

analogues to equations (C.5), (C.6), (C.7), (C.9), and (C.10). We have

1
OA =_(¢U +¢L), OD =_U-_L (C.12)

1 1
¢U=¢A+_¢D , ¢L=_A - _ ¢D (C.13)

and

kA_bA + kD_ D =/30 (specifykA, kD, 34)) (C.14)
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where

kA = kU + k L

1

I

ku =_ kA + kD

I

kL = -_kA - kD

Finally, we have from equation (15)

CD=U (C.15)

C.3 NETWORK EDGE BOUNDARY CONDITIONS

Boundary condition equations of type (C.7) with c A = 1, c D = 0 and 3 n = 0 are automatically
imposed at all edge control points of the doublet/analysis network. Because of the singular

behavior of the velocity induced by a finite doublet distribution at a panel edge, this boundary

condition in effect controls the continuity properties of the distribution across the edge. To

give an example we note (from equation (D. 141)) that near the common edge of two smoothly

adjoining doublet networks the downwash (normal velocity) is given by

(VA" _) = _1 ( 2A#+2A/a'l°g(Ir/l)+regularterms)r/
(C.16)

where r/is the tangential coordinate perpendicular to the edge, A_ is the jump in doublet

strength across the edge and A_' is the jump in the derivative of doublet strength in the

direction perpendicular to the edge. A control point placed near the edge requiring that

downwash be finite will tend to make Ata vanish (because of the strong antisymmetric

1 ), i.e., ta continuous across the edge. A similar control point on the opposingsingularity
"l

panel of the adjoining network will, in addition, force Ata' to vanish (because of the weaker

symmetric singularity log(It/I)), thereby establishing continuity of ta.'

Because of small, unintended discontinuities in geometry between panels of adjacent net-

works due to the approximate nature of the surface fit technique, such singularity matching

cannot be accomplished dependably if V A is computed in an exact manner. (See section
6.3.5 for the effect of geometry gaps on doublet Strength matching.) Consequently, a

special algorithm is used. This algorithm considers only velocities induced by panel edges

adjacent to the control point. Moreover, the algorithm computes an edge induced velocity

as if the edge were the straight line joining the corresponding two grid points rather than the

) : i,
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actual panel edge. This means that two doublet network edges are considered physically

joined from a potential flow standpoint if and only if the rectilinear curves formed by connecting

their edge grid points coincide. Unintended discontinuities in surface slope between adjacent
panels of two abutting networks can also occur because of the approximate nature of the

surface fit algorithm. However, the effects of such an error remain quite local in character and

no special modification is required.

The edge boundary conditions for the remaining doublet networks are the same as for the

doublet/analysis network and they control continuity of /a and/or # 'as well. As discussed

in section 4.1 these edge conditions are fundamental to the boundary value problem for design

networks and fulfill the auxiliary conditions of type equation (12). Network type 4 assumes

inflow on the left and lower edges whereas network type 6 assumes inflow on the lower edge

and outflow on the upper edge. The wake network types 8 and 10 are special design networks

used in place of a regular doublet/design network when a reasonable guess of the direction of

velocity is deemed sufficient. (A common use is for the representation of vortex wakes.)

Auxiliary conditions corresponding to equation (11) can be substituted for the continuity

boundary conditions at the edge control point heading each panel column in networks type 4

and 6. These conditions take the form

ffc ( , v>)+ v ) s:0
C

(C.17)

where the integration extends over a panel column and cU and c L are specified. The integral
is evaluated by summing over each panel in the column the product of the panel area and

the integrand evaluated at the panel center control point. The networks are assumed to be

paneled with columns aligned along streamlines. In practice this requirement may be relaxed

considerably, and only a general streamwise alignment appears necessary. Technically, new

network types should be assigned for application of these closure conditions; but to avoid

constructing additional design network with identical properties we simply use types 4 and
6 with the above mentioned modification.

The edge boundary conditions for the source/design networks 3 and 5 perform the same

functions as those for 4 and 6. For application of equation (12) a different numerical device

is used which takes advantage of the fact that a finite strength source panel induces an

infinite tangential component of velocity at its edges. To give an example we note from

equation (D. 121 ) that near the edge of two smoothly adjoining source networks the tangential

component of velocity perpendicular to the edge is given by

(-. ) lV A • _ = _ (- 2txo log (1771)+ regular terms) (C.18)

where _ is the unit tangent vector perpendicular to the edge, _ is the coordinate in this

direction measured from the edge and Ao is the jump in source strength across the edge. A

control point placed near the edge requiring that (_A ° _) be finite will tend to make Aa
vanish, i.e., source strength continuous across the edge. This in turn will accomplish

109



equation(12). Thesamespecialalgorithmsfor evaluatingVA for doubletedgecontrol
pointsareusedhere.Finally,equation(C.17)isappliedin theidenticalmannerfor network
types3 and5asfor networktypes4and6 whenclosureispreferred.

In thecasewherespecificationof potentialissubstitutedfor specificationof normalvelocity
atcentercontrolpointsof networktype2,potentialisalsospecifiedatalledgecontrol
points.

C.4 RATIONALE FOR CONTROL POINT/SINGULARITY PARAMETER LOCATIONS

The set _2 of singularity parameter locations and the set V of control point locations for

various network types are shown schematically in figures B.1 and C.1 respectively. Let us

first consider the type 1 (source/analysis) network. We note the following: l) The sets

F' and I2 are schematically the same for this network (although the precise point locations

are slightly different); 2) The points in F (or 12) are symmetrically located with respect

to the network grid point schematic: and 3) The points in 1" and I2 are located at the

panel centers.

The locating of the points of l" at panel centers is quite reasonable in view of the discussion

at the beginning of section B.3. Both the panel geometry and singularity splines are analytic

at panel centers, and moreover, the panel centers are the points which are farthest from the

flow anomalies induced by discontinuities in geometry and singularity strength at panel edges.

The locating of the points of I2 at panel centers is acceptable from two points of view.

First, $2 and r have the same size leading to the same number of equations as unknowns.

Secondly, there are a sufficient number of local singularity parameters (i.e., singularity

parameters belonging to a given panel and its immediately adjacent neighbors) to determine

the three coefficients of the panel source distribution via the method of least squares. The

smallest set of local singularity parameters occurs for each of the comer panels in a net-

work and the four local parameters in the set are sufficient to determine three coefficients.

The fact that the points of F and I2 are symmetrically located is reasonable considering

the allowable boundary condition types for this network. These boundary conditions can
a¢

involve _ or-_ only, and hence, involve no preferred direction on the network surface as

opposed to design boundary conditions which involve directional derivatives of _.

The fact that the points of l_ and fZ are identical is among other things due to considera-

tions of spline stability. As with any other application of splines, we desire that our source

and doublet splines be stable relative to the type of boundary conditions applied. This

means that small changes in the boundary conditions should result in similarly small changes

in the singularity parameters. For given sets I" and _2 the spline may be stable with respect

to one type of boundary condition but not another. Also, for a given set $2 and a given type

of boundary condition, the spline may be stable for certain control point locations but not

others. A discussion of spline stability is beyond the scope of this report (see e.g., ref. 27);

however, the source/analysis spline can be shown to be stable with respect to application

of_-_ boundary conditions at panel centers, using equation (C. 10). From experience, it also

appears to be stable with respect to the application of _ boundary conditions at panel centers.

i ¸¸

/

i ¸ !r./
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The rationale for locating the points of the sets F and _ in the case of the (doublet/

analysis) type 2 network is the same as for the (source/analysis) network. The addition of

network edge singularity parameters is due primarily to the quadratic order of the doublet

distribution on each panel. We note that the six coefficients of such a distribution

could not be determined from the four local singularity parameters in the case of a network

corner panel, were the source/analysis spline to be used. With the singularity parameter

arrangement shown in figure (B. 1) for the doublet/analysis network type, the local set of

singularity parameters for every panel contains nine singularity parameters which is more

than adequate to determine six distribution coefficients by the method of weighted least

squares. The corresponding addition of edge control points to 1" keeps the number of control

points equal to the number of singularity parameters and allows for doublet strength and

gradient matching across network edges. It can be shown using equation (C. 15) that the
arrangement of points in P and fZ in the case of the doublet/analysis network type is stable

relative to the application of 4_ boundary conditions. From experience, it also appears

to the application of _ type boundary conditions on a surface bounded bystable relative

the fluid domain on both sides.

The control points for network types 3, 4, 5, and 6 are not symmetrically located due to
the directional nature of design type boundary conditions. The discussion corresponding to

figure 4 indicates the necessity of defining "auxiliary" boundary conditions at edge points

of a design network where inflow is anticipated. For network types 3 and 4 we assume inflow

across the bottom and left side edge (relative to the schematic displayed in fig. C. 1 ): for

network type 5 we assume inflow across the bottom edge only; and for network type 6 we

assume inflow across all but the top edges. The network interior control points are located

at panel centers for the same reason as in the case of the analysis networks. Spline stability

relative to design type boundary conditions then requires that the singularity parameter points

be located at grid corner points in the case of the network types 3 and 4, and at edge midpoints

in the case of the interior parameters for network types 5 and 6. In each case the number of

singularity parameters equals the number of control points.

The wake type networks 8 and 10 are in reality the design type network number 6 where the

boundary condition has already been applied directly to the spline, resulting in fewer degrees

of freedom. The type 8 network is obtained by applying to all type 6 control points, except
for those along the bottom edge, the design type boundary condition that _ be zero in the

panel column direction. (Assuming that the panel column direction corresponds roughly to

the freestream direction such a boundary condition implies that the ACp = 0 where Cp is

computed using the linearized formula.) By integration we see that such a boundary condition

implies that all singularity parameters in each column of the type 6 singularity spline will be

equal to the value of the singularity parameter at the head of the column (i.e., at the bottom

edge of the schematic). Performing such singularity parameter identification results in the

type 8 network. The remaining control points and singularity parameters are used for doublet
strength and derivative matching (see sec. C.3). The type 10 network is obtained by requiring

in addition that _'la be zero in the row direction along the first (bottom) row of control

points, which can be achieved by identifying all singularity parameters in that row with the
first. This results in a network where doublet strength is constant everywhere. Such a

network creates a jump in potential but no jump in velocity (see equations (C. 10) and (C. 15)).
In contrast, the type 8 network creates a jump in the component of velocity perpendicular
to the column direction.
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APPENDIX D

PANEL INFLUENCE COEFFICIENT GENERATION

D.I INTRODUCTION

In this appendix we shall calculate the potential and velocity induced by a source or doublet
distribution on a curved panel. As shown in figure (D. 1), let S be the curved panel surface,

its tangent plane projection, Q a point on S,'_ the normal to S at _, and i_ a field point.

P(x,v,z)

I R°

S

_,Z

Local panel
coordinate system

A
n I

_,X

Figure D. L - Field Point�Pane� Geometry

The perturbation potential _b at _ induced by a source distribution of strength o on S

is defined by

(D.1)

H

where

R = (_- x, r/- y, _'- z) = Q-P (D.2) .... .. _.. .
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and

R = I_l = ,_ - x) 2 + (_/- y)2 + (_. _ z)2

The perturbation potential _ at _ induced by a doublet distribution of strength ta on S
with doublet axis in the _ direction is obtained by taking the directional derivative of

1
in the _ direction:

47rR

S

/f t= # ---- dS (D.3)
47rR 3

S

The perturbation velocity _ induced at P by a source or doublet distribution on S is

defined by

_:_¢ (D.4)

We assume that the surface S is defined by equation (A.20):

_"= a/_2 + bn 2, (_, 77) e (D.5)

We also assume that S does not deviate significantly from Y., more precisely that

_<<1 (D.6)

where

1 Max {,ja2_2 + b2r/2 } (D.7)

(Nominally, we assume 8 < .066 see equation (A.23).)

The distribution of singularity strength on S is assumed to be linear in the case of a

source panel and quadratic in the case of a doublet panel. To be specific we assume

o =o 0+o_+or/_, (_,7) eX (D.8)
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and

+1 _-, 1 2
u = uo + u_ + unn 2 u_ _ + u_n_n + 2 unnn ' (_' n) e _,

(D.9)

which are the same as equations (B.I) and (B.2) respectively.

D.2 EVALUATION OF SOURCE AND DOUBLET INTEGRALS

FOR AN ARBITRARY FIELD POINT

Let us first consider the evaluation of source potential defined by equation (D. 1). Evaluation

of source velocity and doublet potential and velocity will be quite similar. The first step

in the evaluation procedure is to transfer the integral over S to the equivalent integral over

Z. (See discussion of fig. (A.2) for a precise definition of the plane quadrilateral Z.)

We have

Z

From equation (D.5) we obtain

(D.10)

^ = 1 (-2a_,- 2br/, 1) (D.11)
n h/1 + 4a2_ 2 + 4b2r/2

and

sec (_, _) = ,g/1 + 4a2_2 + 4b2r/2
(D.12)

Substitution of equations (D.2), (D.8) and (D. 12) into (D. 10) yields an explicit integral

for ¢. However, the integral cannot be evaluated in closed form as it stands. By employing
• _ . . . • .

the hypothesis that 6" is neghglble compared to umty (hypothesis (D.6)) the integrand can

be approximated by terms that are integrable in closed form. A uniform approximation

to sec (2, _) can be obtained by noting that

4a2_2 + 4b2r/2 _< 16_2 '(D.13)

- i•

(

hence

sec(_, _)_ 1 (D.14)
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A uniform approximation to 1/R is somewhat more difficult to obtain since this factor is

singular. Let (x 0, Y0, 0) be the point on _ closest to (x, y, 0) (see fig. D.2) and set

z0 = _'(x 0, y0 ), h = z - z 0, and r = ,f(_ - x) 2 + (rl - y)2 (D. 15)

_e

P (x,y,z)

/
I
I

1
I

z / / ;(xo,vo,O) I

_(_,,_,s__ I

I/ \1 x_ (o.y0.z0)
4 r

I

I
@--

.I

r w X

Figure D.2. - Geometry for Curvature Approximation

Then
R ___ ,/(,2,,,2)_  _zo>+( _zo):

J

,_r2+ +h2 . -2h(t- Zo) +(_" Zo)2

r 2 + h 2

(D.16)

Let

e = (/_,n)e I;
(D.17)
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Then

-=h(r- Zo)2

r 2 + h 2

2erh + e2r 2 -_

r 2 + h 2

Therefore, if e- as everywhere negligible equation (D. ! 6) yields

] ! Zo)
h 2-_-4 , p= .,Jr"+

R p p3

(D.18)

(D.19)

\

But

Max
_=

(L n) e X

Max

(/i, n) e y.

{ Ig'(_,n)- _(Xo, Yo)I}r

_< 86 (D.20)

\

A much better bound on e is available when (x, y) is several panel diameters away from Z
and the assumption that 6 2 is negligible becomes unnecessary. However, in this case a far

field expansion will be used to obtain an efficient approximation to the right side of

equation (D.l 0). Note that the panel curvature effect is contained in the second term on
the right side of (D. 19), this term being zero for a flat panel.

Substituting equations (D.8), (D. 14) and (D. 19) into (D. 10) and rearranging them, we obtain,

after considerable algebraic manipulation:
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q_=a(x,y) l(l, l)+ox(X,y) 1(2, i)+ay(X,y) 1(1,2) (D.21)

where

o(x, y) = o0 + o_x + Or/Y

Ox(X, y) = o_

Oy(X, y) = Or/

Note that Ox(X, y) and Oy(X, y) are constant, although formal dependence on x and y
has been displayed to emphasize the shift in the origin of the Taylor's series expansion to

the point (x, y).

Here

where

1 { a[hH(M + 2 N, 3)+ 2xhH(M + I,N, 3)]I(M, N) =-_-_ H(M, N, 1) +

+ b[hH(M, N + 2, 3) + 2yhH(M, N + 1,31]

+c[hH,M,N,3)]}

(D.22)

(D.23)

")c = ax- + by 2 z 0 (D.24)

and

H(M, N, K)= of f (_- x)---M-:1 (__.-Y)2.: 1 d_ dr/ (D.25)
]_ _J_?x)2+(r/-Y)2+h2 ) K

The H integrals will be evaluated in the next section. The leading term in the righthand

side of equation (D.23) is due to the leading term on the righthand side of equation (D. 19)

and thus corresponds to a flat panel. The remaining terms having coefficients of a, b, and

c are due to the second term on the right side of equation (D. 19) and constitute panel
curvature effects.

To find 7, equation (D.21) can be differentiated. For this purpose z 0 may be treated as

constant, although formally z 0 depends on x and y because (x 0, Y0, 0) depends on x and
y, being the point on Z closest to (x, y, 0). However, the derivatives of z 0 with respect to

x and y either cancel each other or are negligible because of hypothesis (D.6). The

derivatives of the H integrals then are simple combinations of the H integrals themselves, i.e.,
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0

/)xH(M'N'K) =-(M- I)H(M- I, N, K) + KH(M + I, N, K +2)

O
--H(M,N,K) =-(N- 1)H(M,N- 1,K)+KH(M,N+ 1,K+2)
by

-- H(M, N, K) =- KhH(M, N, K + 2)
az

(D.26)

It turns out to be easier to calculate _ by differentiating equation (D.10) to obtain

rio( ) ^7= sec (_', _-/) d{dr_ and using a generalized form of equation (D.19),

that is

1 1 Kh(_" - z0) /-5" -_
_÷ , p=.,,/r"+ h"

R K oK pK+2
(D.27)

Equation (D.27) can be obtained by raising equation (D.19) to the K power and expanding

the righthand side by the binomial theorem. In either case we obtain

v = o(x, y) J(1, 1) + Ox(X, y) J(2, 1) + Oy(X, y) l(l, 2) (D.28)

where

](M, N) = [Jx(M, N), Jy(M, N), Jz(M, N)] (D.29)

i.e., Vx=O(x,y) Jx(1 , 1) +Ox(X,y) Jx(2, 1)+Oy(X,y) Jx(1,2), etc.
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and

'/Jx(M,N)=-_ H(M+ l,N, 3)+a[3hH(M+3, N, 5)+6xhH(M+,., "_ N, 5)]

+ b[3hH(M + l, N + 2, 5) + 6yhH(M + l, N + 1,5"_]

+ c[3hH(M + 1, N, 5)]}

l{Jy(M, N) = - _--_ H(M, N +1,3) + a[3hH(M + 2, N + l, 5) + 6xhH(M + l, N + l, 5)]

+ b[3hH(M, N + 3, 5) + 6yhH(M, N + 2, 5)]

+ c[3hH(M, N +1, 5)]/

.... 1 { hH(M, N, 3)+ a[H(M + ,_, N, 3)- 3h2H(M +'_.,N, 5)'Jz(M, N) 47r

+ 2xH(M + 1, N, 3)- 6xh2H(M + 1, N, 5)]

+ b[H(M, N + 2, 3) - 3h2H(M, N + 2, 5)

+ 2yH(M, N + 1,3)- 6yh"H(M, N + 1,5

+ cO,(M, N, 3)- 3h2H(M, N, 5)] }

Doublet potential and velocity can be evaluated similarly using equations (D.3), (D. 11 ) and
(D.27).

c'

However, the assumption (D. 14) is unnecessary since sec(_, _) does not appear in the
product _dS. We obtain

=/a(x, y) 1(1, 1 ) +/ax(X, y) I(2, 1) + t_y(X, y) I(1,2)

1 1

+Ytaxx(X'2 y) I(3, 1) + t_xy(X, y) I(2, 2) + ,-_yy(X' y) I(1,3) (D.30)

• :i, 7¸¸'¸ _
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where

and

1 p._x2 1u(x, y) = u 0 + u_x + uny + -2 + u_n xy + -2 unnY"

/Jx(X, y) = p._ +/a_x + p_,r/y

_y(X, y) = i%1 + g_x +/_y

Uxx(X, y) = u_

/'txy(X' Y) =/J_'ri'

,U.yy(X, y) = _'r/'r/ (D.31)

I(M,N)=_ hH(M,N, 3)+a (M+2, N, 3)+3h2H(M+2, N, 5)+6xh2H(M+ 1,N, 5

+ b[H(M, N + 2, 3) + 3h2H(M, N + 2, 5) + 6yh2H(M, N + 1,5)]

+c[- H(M, N, 3)+ 3h2H(M, N, 5)]} (D.32)

i. i _

As in equation (D.23), the terms containing a, b, and c as coefficients are the effects of

panel curvature.

We also obtain

= #(x, y) J(1, 1) +/ax(X, y) J(2, 1) +/ay(X, y) J(l, 2)

1 _ _ 1 "*

+ 2/axx(X' y) J(3, 1) + Pxy(X, y) J(2, 2) + _ _yy(X, y) J(l, 3)
(D.33)

where

J"_(M,N) = [Jx(M, N), Jy(M, N), Jz(M, N)] (D.34)
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and

'/Jx(M, N) = 3hH(M + 1, N, 5) + a[3H(M +3, N. 5)- 2H(M + I, N, 3)

+ 15h2H(M+3, N, 7)- 2xH(M, N, 3)+30xh2H(M+ "_.,N,7)]

+b[3H(M+ I,N+., _ 5)+ 15h2H(M+ I,N+2,7)+30yh2H(M+ 1,N+ 1,7)]

+c[-3H(M+I,N, 5)+lSh2H(M+I,N, 7)]}

1{Jy(M,N)=_ 3hH(M,N+ 1,5)+a H(M+2, N+ 1.5)+ 15h2H(M+2, N+ 1,7)

+ 30xh2H(M + l, N + l, 7)] + b[3H(M, N + 3, 5)- 2H(M, N + l, 3)

+ 15h-H(M, N + 3, 7)- 2yH(M, N, 3) + 30yh2H(M, N + 2, 7

+c[-3H(M,N+ 1,5)+ 15h2H(M,N+ 1,7)]}

Jz(M, N) =-_--_ H(M, N, 3) - 3h2H(M, N. 5) + a hH(M + 2, N, 5)

- 15h3H(M + 2. N, 7) + 12xhH(M + 1, N, 5)- 30xh3H(M + 1, N, 7)]

+b[3hH(M,N+_, "_ 5)- 15h3H(M,N+., "_ 7)+I2yhH(M,N+ 1,5)

-30yh3H(M, N + 1, 7,] + c[ghH(M, N. 5,-15h3H(M, N, 7)]}
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D.3 CALCULATION OF H INTEGRALS

In this section we shall compute in closed form each of the integrals

= ff(_- x) M-I (77- y)N-1
H(M, N, K)

pK d_dr/JJ
Z

(D.35)

P = x/(_-x) 2+(_-y)2+h 2

forM = 1,MXQ;N = I,MXQ-M+ 1 ;K= 1,MXK, 2.

Note that M and N both vary from 1 to MXQinsuchamannerthatM+N-1 _< MXQ.

The index K varies from 1 to MXK in steps of 2, which means that K is odd. The

following values of MXQ and MXK are evident from the previous section.

Panel Type MXQ MXK

Source Potential (Flat Panel)

Source Velocity (Flat Panel)

Doublet Potential (Flat Panel)

Doublet Velocity (Flat Panel)

Source Potential (Curved Panel)

Source Velocity (Curved Panel)

Doublet Potential (Curved Panel)

Doublet Velocity (Curved Panel)

2 1

3 3

3 3

4 5

4 3

5 5

5 5

6 7 (D.36)

For the range of indices above, some H(M, N, K) become divergent as the field po_t

P(x, y, z) approaches the panel surface S. This is because h approaches zero as P approaches

S, and therefore p becomes zero when the integration variables (_ 77) take on the field

point values of (x, y). Note that the singularity occurs as ]_ approaches S even though

the integration variables range over Y.. For further analysis see the discussion following

equations (D.52) and (D. 105).

(D.37)

The integrals H(M, N, K) may be computed with the aid of the following algebraic
recursion relations. From the definitions of H(M, N, K) and P we can easily derive

the following identity:

H(M + 2, N, K) + H(M, N + 2, K) + h-H(M, N, K) = H(M, N, K- 2)
: ?
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A secondrecursionrelationcanbeobtained by considering the identity

[(_ _ x)M - 2 (r/- y)N - 1"]
pK - 2 J d_dr/= (M - 2) H(M - 2, N, K - 2)

- (K - 2) H(M, N, K)

4

Integrating the left side by parts we obtain:

v/_ F(M - 1, N, K - 2),(K-2) H(M,N,K)=(M-2)H(M-2, N,K-2)- E

and by interchanging the roles of _ and 77:

4

(K-2) H(M,N,K)=(N-2)H(M,N-2, K-2)- _ vr/F(M,N-1,K-2)
1

(D.38)

(D.39)

The summations on the right sides of equations (D.38) and (D.39) are over all four
sides of 1£.

Here _'is the unit outer normal of the side L (see fig. (D.3)) and F(M, N, K) is the

line integral for side L, defined by

FfM, N, K) = ,_ - x) M-I (77 - y)N-1
P K d_, p =

L

-,](_ - x) 2 + (77 - y)2 + h 2 (D.40)

The procedure for evaluating F integrals will be described following equation (D.53). The

fundamental integrals are H(I, 1,3) and F(I, 1, 1). Once these two integrals are evaluated,
the remaining H and F integrals can be evaluated from recursion relations. The details of

the evaluation of H(1, 1, 3) are given in section G. 1 of appendix G, and F(1, 1, 1) is given
by equation (D.60). Assuming the F integrals and H(1, l, 3) are known, the recursion

relations (D.37), (D.38) and (D.39) may be recombined (app. G.2) to yield the efficient

procedure, given below, for calculating the H integrals. Because some of the H integrals

are singular on S it is actually necessary to consider three slightly different procedures

depending upon the relationship of the field point 1_ to the panel S. Define d H to be

the minimum distance of the point (x, y) to the perimeter of 2;. If 8h is some small
number (nominally chosen as 0.01) we have the following three computational procedures.
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2 .- I | _ical
side L

A

V (unit normal)

Figure D.3. - Quadrilateral Geometry

Procedure l : Ihl ;_ 8hdH, (i.e., P is not "too near" the plane of Z). When the following
eight steps are performed in the order given, all the H(M, N, K)'s will be obtained for the
MXQ and MXK given by equation (D.36).

1. 4

H(1, 1, l) =- Ihl Etan-1 [_(_2Cl-£1c2),

1

4

ClC2+_2£1£2] +Z_F(I,I,1) (D.41)

1

where tile tan- l terms are from H(I, 1, 3) (see equation (G.24), and where

g2c l = + [hi 2+g_, c 2=g-+ ihl -+g- , g= +

Here tan -1 (y, x) is defined by q_= tan -1 (sin ¢, cos ¢), e[- lr, rt], and is the same as the
ATAN2 function of FORTRAN. The sum is over the four sides of Y,.
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1

H(I, 1, K) = (K- 2) h-2

K = 3, MXK, 2.

[ 4 ](K-4) H(I,1,K-2)+ _ _F(1,1,K-2) ;
1

(D.42)

.

H(2, N, 1)- 1 h 2 v_F(l, N, 1) + _F(2, N, 1) ;
(N+ 1) 1 1

N= I,MXQ- 1. (D.43)

.

H(I,N, 1)=_ - h2(N- 2) H(I, N- 2, I) + h 2 vrtF(1, N- 1, 1)
1

4 ]E _F(1,N, 1) ; N=2, MXQ+ (D.44)

1

Note that when N -- 2, H(I, N - 2, 1) need not be computed since it is multiplied by zero.

The same holds for similar terms in steps 5 and 6.

.

H(M, N, 1) =
(M+N- 1) I 4

-h2(M-2) H(M-2, N,I)+h2 E__v/:F(M-I'N'I)

1

4 ]+ E _F(M, N, 1)

1

• M=3, MXQandN=I,MXQ-M+I (D.45)
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,

,

H(1, N, K) = --
I( 4

1
N- 2) H(I, N - 2, K- 2)- ,__,_. vr/F(1

(K-2)
1

N = 2, MXQ and K = 3, MXK, 2

H(2, N, K) = -- ]1
- __v_.F(l, N, K- 2)

l

(K - 2)
1

N = I,MXQ- 1 andK=3, MXK, 2

(D.46)

(D.47)

.

H(M, N, K) = - H(M - 2, N + 2, K) - h2H(M - 2, N, K) + H(M - 2, N, K - 2);

M = 3, MXQ and N = 1, MXQ- M + 1 and K = 3, MXK, 2 (D.48)

Procedure 2" I h l < 8hd H and (x, y, 0) ¢ Z, (i.e., _ is "near" the plane of Z but outside

the boundary of Y). In this case the recursion defined by equation (D.42) cannot be used

because h may be zero or close to zero. Hence, H(1, 1, K) for K >/3 must be computed

by some other means. Note that if H( 1, 1, K) were known for some large value of K, then

the recursion of equation (D.42) could be reversed and H(1, 1, K) could be computed for

successively lower values of K. This is what is done in steps 1 and 2 below. The justifica-

tion for step 1 is contained in appendix (G.8).

1. Set

H(1, 1, NHK + MXK) = 0.0

where NHK is a positive integer (nominally taken to be 16), and

(D.49)

,.'_ Compute
H(1, 1, K- 2)-

4

1 [h2(K 2)H(1,1,K) y_F(1,1,K 2) 3
(K 4) 1

for K = NHK + MXK, 3, - 2

3. All the remaining steps in Procedure 2 (steps 3 through 8) are the same as for

Procedure 1.

Procedure 3: Ihl <6hd H and (x, y, 0) e Z, (i.e., _ is "near" the plane of E and within

the boundary of Z).

(D.50)
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Define

H*(M, N, K) = H(M, N, K) - 2Try(M, N. K) hIM+N-K (D.51 )

where

v (M, N, K) =

0 if M or N is even

1 forM = 1 1 forN = 1

[1. 1- 3-5...]M-2[] [I • 1. 3. 5...[N-2]]

[(K - 2)(K - 4)(K - 6) ... (K - M - N)]

otherwise.

(D.52)

and K is odd.

Then it may be shown (app. G.7) that H* obeys the same recursions as H (except for the

initial condition (D_;41) which is irrelevant for procedure 2), a,,d is continuous with respect
to the field point P when (x, y, 0) e Z. Hence H* may be computed using procedure 2

(see app. G.8).

Once H* has been calculated H may be obtained from equation (D.51). Care must be
taken when M + N < K with M and N odd. H* is continuous in the interior of S but

equation (D.51) shows that H is singular there when M + N < K with singular part
2Try (M, N, K) Ihl M + N - K Upon solving (D.51) for H and substituting into our previous

formula for potential and velocity, the only terms involving v that don't cancel each

other are of the form uTh/Ihl, where T is continuous. Such terms are responsible for

jump discontinuities in potential and velocity across S. Recall from appendix C that the

potential and velocity at a panel can be expressed as upper and lower values or as average

and difference values (e.g., see equations (C.5) and (C.6)). The terms vTh/lhl make no

contribution to average values since they are positive on one side of the panel and negative

with equal magnitude on the other side. Hence, for simplicity we choose to evaluate the

average value of potential and velocity on S when h ---0 (numerically when Ihl < 80d H
where 80 is nominally chosen as 10- o). This involves no loss of generality since the

difference values can be computed directly from equations (C. 10) and (C. 15), hence, upper

and lower surface values can be easily computed from equations (C.9) and (C. 13). As a

practical matter, the desired evaluation will be accomplished simply by replacing h/Ihl

everywhere it appears by signh, where

signh =
t+l if h > 0
-1 if h<0

I 0 if h=0
(numerically Ihl < 80dH).

Note that when h ---0, all terms involving h/Ihl will disappear, with the result that average
values are calculated.
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We now evaluate the integrals F(M, N, K) for the indices M, N, K required by the H

evaluation procedures. It is apparent that we need only the following F integrals.

F(I, I,K) ; K = I,MXFK, 2

F(M,N, 1) ; M = 1,MXQ and

F(1,N,K) • N=2, MXQ and

N=I, MXQ-M+I

K =3, MXK-2,2 (D.53)

where

MXK- 2 if l hi 1> 8hd H (procedure 1)MXFK = (D.54)

[NHK + MXK- 2 if I hi < 6hdH (procedure 2)

These integrals may be obtained with the aid of three recursion relations. We have the

following two identities.

F(M + 2, N, K) + F(M, N + 2, K) + h2F(M, N, K) = F(M, N, K - 2) (D.55)

and

v/[F(M + 1, N, K) + vr/F(M, N + l, K) = _F(M, N, K)
(D.56)

Equation (D.55) is the analogue of equation (D.37), and equation (D.56) follows from

the equation in figure D.2 A third identity is obtained by considering the expression

E(_, 7) = (_ - x)M - 1 (r/- y)N - 1
pK - 2

where p(_, r/) is given by equation (D.40). From figure D.2 we see that (/_ - x) and (r/- y)

are functions only of 17 along typical side L since _ is constant. Thus, we can write

dE aE a(//- x) aE a(r_ - y)
= ..1-

d17 a(/_- x) a17 a(n-y) a17

or

_2 172 _2

d17= - - x------)+ - y--------)
171
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Performing the indicated operations yields

-(M- 1) vnF(M- i, N, K- 2) + (N- 1) v_F(M, N- 1, K- 2)

+(K - 2) vr/F(M + 1. N, K) - (K - 2) v/_F(M, N + 1, K) = E(M, N, K - 2) (D.57)

where

E(M, N, K) =

p

(_ - x) M-I (7/- y)N-1 2
pK 1

-,_-_ - x) 2 + (77 - y)2 + h 2 (D.58)

The quantities E(M, N, K) may be evaluated directly or else recursively with the aid
of the formula

P(I) =(x 2+xl) P(I-1) -XlX2V(I-2) (D.59)

where

P(I)=A2x2I-I - AlXlI-1

(See app. G.4.)

The recursion relations (D.55), (D.56) and (D.57) may be recombined to yield the

efficient procedure for evaluating the required F integrals below. (See app. G.3.) Again,

the singular behavior of some of the F integrals (near the edges of S) requires a special

case. Let us define d F to be the minimum distance of the field point _(x, y, z) to the

perimeter of S. Then if 6g is some small number (nominally chosen as 0.01) we have the
following two procedures (see app. G.3).

Procedure 4: g _> 6gdF, (i.e., P is not "too near" the perimeter of S).
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°

F(I, 1, 1)=
_J_l _2 d_ I

; £1,£2_0
k4_12+g2+ _1

in (J£12+g2-£1_ _1,_2<0

k4 t2 2 + g2_ _2)'

In + g2__1)(4 _22+ g2+ £2

g2 ;
_2 _>0, _1 <0 (D.60)

where
g2-g2+h 2, Note thato =d 2 +£2.

Here we have used three different (but equal) expressions for the evaluation of F(1, 1, 1)

in order to avoid possible round off problems from cancellation of negative and positive

numbers in the argument of the natural logarithm.

°

F(1, 1, K) =
g2(K - 2)

[(K - 3) F(1, 1, K - 2) - v_7 E(2, 1, K - 2)]

+ v_ E(I, 2, K - 2)];

t •

, a°

K = 3, MXFK, 2.

If Vr/ _< v_[gl

(i) F(1,N, 1) =

(MXFK is defined in equation (D.54).

1 I(2N - 3) RurIF(I, N- i, 1)
(N 1)

=(N- 2)(i 2 +v_2h 2) F(1,N- 2, 1) + v_E(I,N-l,= 1)]

N = 2, MXQ

(D.61)

(D.62)

r
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(ii)
- Vr/

F(M,N, I)=--F(M- I,N+I, 1)+_ F(M-I,N, 1);
v_ v_

M =2,MXQ and N= I,MXQ-M+I (D.63)

b° If

(i) F(M, 1, 1)= 1[(M-l) (2M-3)_v_F(M- l, 1, 1)

-(M- 2)(:_ 2 + Vrt2h2 ) F(M- 2, 1

M = 2, MXQ

, i)-v_E(M-I, 1,- 1)1

(D.64)

(ii)

-_ +_F(M, N, 1) = _ F(M + 1, N- 1, 1) F(M, N- 1, 1);
Vr/ vr/

N =2,MXQ and M = I,MXQ-N+ 1 (D.65)
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4. v_
F(I,2, K)=v_SF(1,1,K)-_

K = 3, MXK_'_ "_

E(I, 1, K- 2)

(D.66)

° F(I, N, K) = 2_vr/F(1, N- 1, K) - (_2 + v 2h2) F(1, N- 2, K)

+ v_2F(l, N- 2, K - 2) ;

N 3, MXQ andK =3,MXK- _ _ (D.67)

Procedure 5" g < 8gd F, (i.e., P is close to the perimeter of S).

.

F(1, l, MXFK + NFK) = 0
(See app. G.8)

where NFK is a positive integer (nominally taken as 16)

.

F(I, l,K-2) = 1 Ig2(K- 2)
(K 3)

F(1, 1, K) + vr/E(2, 1, K - 2)- v_E(1, 2, K- 2)_ "

K = MXFK + NFK, 5, 2

(D.68)

(D.69)

. F (1, 1, 1) as well as other F integrals may be computed in the same manner as for

procedure 4.

This completes the calculation of the H integrals.
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D.4 EVALUATION OF SOURCE AND DOUBLET INTEGRALS

FOR A DISTANT FIELD POINT

If the field point P is a large distance from S the approximation (D.I 8) may be replaced by
an approximation based on this fact. Let

P = IP[ and Q = IQI (D.70)

Then

Let

1 1 1 1

R= .,/p2_ 2(F. Q)+ Q2 ='-_- y, + -2(F.p2 _)+ Q2 (D.71)

l Max
e =- {Q} (D.72)

P (_, r/) e _:

Then

< 2e + e 2 (D.73)

Hence, if

e < < 1 (D.74)

we have

1 1 K(-P. _) K I IQ2 {K+2) _)2 l

__ ___+ _ ('_'. . (D.75)

R K pK pK+2 2 pK+2 p2 _.]

133



Only the first three terms of the binominal expansion are displayed (monopole, dipole, and

quadrapole). In practice this expansion is used only when e is less than 1/5. All three

terms are used unless e is less than 1/8 in which case only the first two terms are required.

Substituting (D.75) into (D. 10) and using hypothesis (D.6) we obtain for the source potential

¢ = o0I(1, 1) + o_I(2, 1) + or/I(l, 2) (D.76)

Here

= - E2 • 1 E3 •I(M,N Z  (E1) ( I (D.77)

where

El = C(M, N) (D.78)

E2= (M+I,N), C(M,N+I),

E3 = C(M + 2, N) + C(M, N + 2)

E4=/C(M+2, N)

C(M+ 1,N+ 1)

aC(M + 3, N) +

bC(M+I,N+2)

aC(M + 2, N) + bC(M, N +2)] (D.79)

(D.80)

C(M+I,N+I)

C(M, N + 2)

aC(M+2, N+I)+

bC(M, N + 3)

aC(M+3, N)+bC(M+I,N+2)
/

aC(M+2, N+I)+bC(M,N+3)

/0

/(0.8 1)

^ P
p=_

P
(D.82)
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and

C(M, N) = ff_ _M=I r/N-I d/_ dr/

In computing the elements of the matrix E4 hypothesis (D.6) has been employed. The

integrals C(M, N) will be computed later (see equation (D.94)). The induced source

velocity may be obtained by differentiating equation (D.76), and is given by

(D.83)

_ .-It, .-).

v=o0J(1, 1)+o_J(2, 1)+o17J(1,2) (D.84)

where

I(M, N)=-_--_ _-_

,r3 ^+7L2 E3P-15(_'2x E4P)_+aE4 (D.85)

A similar expansion may be obtained for the doublet induced potential and velocity.

Substituting the approximation (D.75) into equation (D.3) and using hypothesis (D.6)

we obtain,

l
q_= ta0 I(l, 1) + U_ I(2, 1) + Or/I(1, 2) +_U_ I(3, 1) +/a_r/I(2, 2) + _/ar/r/l I(1, 3)

Here

>'[ ( )1-- E2- P + E3+3 P • E4P
I(M, N) = 41r

(D.86)

(D.87)

where

E2 = [- 2aC(M + 1, N), = 2bC(M, N + 1), C(M, N)] (D.88)

E3 = - aC(M + 2, N) - bC(M, N +2) (D.89)
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and

E4 = 2aC(M + 2, N) - (a + b)C(M + I, N + 1) C(M + l, N)

I aC(M + 2, N) 1C(M + l, N) -_C(M, N + l) +bC(M, N + 2) /

(D.90)

Note that these expressions differ from the E2, E3 and E4 given above for the source.

Again, hypothesis (D.6) has been used in the computation of the matrix E4. The induced

velocity may be obtained by differentiating equation (D.86) and is given by

. ÷ ÷ 1 ÷ ÷ ! ÷

÷ 2) +2 J(3, 1) + J(2, 2) + J(1, 3)v =#0 J(l, 1)+la_ J(2, 1) +_r/J(l, /a_ /a_r/ 2/at/r/
(D.91)

Here

-'"_(M, N) =_ _-_ - +_ E3P-15(P- E4P)P+ 6E4
(D.92)

Note that the quadrapole term of expansion (D.75) is not used for doublet panel induced

potential and velocity. This is primarily because of the complexity of this term and the
resultant fact that evaluation of this term is only marginally more efficient than evaluation

of doublet velocity and potential from the formulas of the previous sections.

The computation of the C(M, N) integrals of equation (D.78) follows from the computation

of the H integrals of section (D.3) by noting that C(M, N) = H(M, N, 0) with x = y = 0.

The range for the indices M and N is the same as that for the H integrals, i.e.,

M= I,MXQ; N = i,MXQ-M+I (D.93)

where MXQ is given in (D.36). Setting K = 2 and x = y = 0 in equations (G.42) and (G.43)

and adding these equations, we obtain
4

= _ [v_ F(M + 1, N, O) + Vr/F(M, N + I, 0)3(M + N) C(M, N)

1

Upon substituting equation (D.56) on the right we obtain
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where

1 4
C(M,N)=-- _G(M,N); M= 1,MXQ

(M + N) 1

G(M, N) = F(M, N, 0) (evaluated at x = y = 0)

= f_M-I r/N-I d_; M = I,MXQ

aL

and N= 1,MXQ-M+I (D.94)

and N = 1, MXQ- M + 1 (D.95)

The integrals G(M, N) may be obtained with the aid of two recursion relations. By setting
K = 0 and x = y = 0 in equation (D.56) we have

v_G(M + 1, N) + vnG(M, N + 1) = _G(M, N)
(D.96)

By setting K = 2 and x = y = 0 in equation (D.57) we obtain

-(M - 1 ) vr/G(M - 1, N) + (N - 1) v//G(M, N - 1) = D(M, N)
(D.97)

where

D(M, N) = E(M, N, 0) (evaluated at x = y = 0)

2

=_M-I_N-1 I
1

(D.98)

The quantities D(M, N) may be evaluated directly or else recursively with the aid of

equation (D.59) (see app. G.5). The recursion relations (D.96) and (D.97) may be recombined

to yield an efficient procedure for evaluating the G integrals. (see app. G.5).

Procedure 6:

. a.

If Lvr_l _< Iv_t

1
(i) G(1, N) =- D(1, N + 1) •

Nv_
N = 1, MXQ

(D.99)
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(ii)
v.

G(M, N) = ---2" G(M - 1, N + 1) +- G(M - 1, N) •

M=2, MXQ and N=I,MXQ-M+I (D. 100)

b.

(i)
G(M, 1 ) = - --

I

Mvr/

D(M + 1, 1); M = 1, MXQ (D.101)

(ii)
G(M,N) =--G(M+I,N-1)+-G(M,N-1);

Vr/ vr/

N =2,MXQ and M = 1,MXQ-N+I (D.102)

This completes the evaluation of the source and doublet potential and velocity for a

distant field point.

D.5 BEHAVIOR OF INDUCED POTENTIAL AND VELOCITIES

In this section we shall study the behavior of the potential and velocity induced by source

and doublet panels. We shall restrict our attention to flat panels since the addition of

curvature produces no qualitative change in behavior. First, consider the potential

induced by a flat source panel. Setting a and b zero in equations (D. 10), (D. 15) and (D. 16)

we obtain

ff_b= o d_d_7

Z

(D.103)

where

R = J(_-x) 2+(r/-y)2+h 2 =0

and
h=z
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We note from (D.103) that _b is regular everywhere in finite space except perhaps on 2:.

From equation (D.75) we see that near infinity

=- d_dr/- _+0

Z

(D. 104)

Since ¢ vanishes as 1/P near P = 0%_ is regular at infinity as well. To examine the behavior

of ¢ near 2: we use equations (D.2C) and (D.22) with a = b = 0.

Then

[1 ,]_b=O(x,y) -_-_H(I, l, l

[' ] ,]+Ox(X,y) -_-_H(2, 1,1) +Oy(X,y) H(1,2,1 (D. 105)

Appendix G.6 shows that h J H(M, N, K) is continuous near Y. and equal to zero on Z if

J + M + N > K, and h J H(M, N, K) is bounded there if J + M + N = K. Consequently, _ is

continuous everywhere, in particular on Y..

From equation (D. 103) we have

ff (=_b= o _ d}dr/
47rR

y.

(D. 106)

Equation (D.106) shows v is regular everywhere in finite space except perhaps on _.

From equation (D. 104), we see that near infinity

l P 1

od dn- +O

E

so that _'= 0(1/P 3) if total source strength is zero and _'= 0(1/P 2) otherwise.

(D.107)

The behavior of v near 2: will now be examined. For this purpose one can use equations

(D.27) and (D.28) with a = b = 0. However, it is more instructive to derive an alternate

expression for_. Differentiating equation (D.103) with respect to x we obtain

ff a - I =froax

Z Z

(D. 108)
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Integrating by parts we obtain

4f()K= _(_-_ ° 4_ d_
1

2; L

Similarly

4fd_dB + o d£

l
L

Finally

o°ff_z = d_d_/

Combining all three equations we have

4

v= ax' 0y' az =VA+ B+Vc
1

where

(D. 109)

(D.110)

(D.11 I)

(D.112)

VA =- a/_' Or/'

- :f(o)o(i)VB _, _,, .
L

ff 1 1(4--_R3)_C = (0, 0, ) o d_dr/

y.

(D.113)

(D.114)

(D. 115)

(Note that _'A here is not the same quantity as the average velocity of equation (C.5).)

.L

. -' " r I
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First consider the vector _A" From equations (D. 113), (D.8), (D.22), (D.25), and (D.15)
we have

- Eo 03[' ,]vA = x(X, y), Oy(X, y), _ H(1, 1, I
(D.I 16)

Again H(1, 1, 1) is continuous everywhere, hence v-"A is continuous everywhere.

Consider "_B for a typical side L of E. Note first that if L is a common edge of _ and an

adjacent panel across which source strength is continuous and the surface slopes are continuous

(i.e., (v_,.v_,,t O) of L = - (v_, Vr/, 0) of the adjacent panel) then the behavior of _B is irrelevant
since v B is cancelled by the same component of the adjacent panel induced velocity. In any
event, the behavior of v'*B can be established as follows. From equations (D. 114), (D.22),
(D.15), and (D.40) we have

v_ = (_, _n, 0)

7
F(I, 1, 1) F(2, 1, 1) F(1,2, 1)/

o(x,.y) 4_ + °x(X' y) 41r + Oy(X, y) 41r "J (D. ! 17)

In appendix G.6 we show that gJ F(M, N, K) is continuous everywhere if J + M + N > K + 1.

Therefore, any discontinuity in 7B must arise from F(I, 1, 1). Again, from equation (D.40)
F(1, 1, 1) is continuous everywhere except possibly on L, where g = O. From equation
(D.60) we derive the following asymptotic formulas for F(I, 1, 1) as ]_ approaches a point

"_L e L"

In(1/g2) . P-*L in the interior of L (at _)

In(l/p) ; _1 " _2 i>0 and PL at endpoint of L

In(p/g2) ; _2 " _1 <0 and P'L at endpoint of L
(D.118)

Here p = [P'- PL I = _g2 + p2 We see that 7'B has a logarithmic singularity on L

which is proportional to local source strength.

Finally, we obtain from equations (D.115), (D.22) and (D.25) that

v'*C = (0, O, 1) Io(x, y)
hH(l, 1,3)

4_

-3

hH(2, 1, 3) hH(1, 2, 3)|

+ °x(X' Y) 47r + Oy(X, y) 41r "J (D.119)
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Any possible discontinuity in vC must arise from the term hH(1, 1, 3)47r

on Y_. From equation (G.24) we have

and can only occur

4

hH(1,1,3)4_r =4"_ I'-_1 (h) _]tan-. [_(_2cl-121c2)'clc2+_2_i1_211
(D. ! 20)

One can show (see sec. G. 1 of app. G) that the sum of arctangents on the fight is continuous

everywhere except on the perimeter of E where it remains bounded. Moreover, when

h _ 0 this sum approaches the value 2rt inside Z and 0 outside _. Consequently, as h _ 0,

hH(l, 1, 3)
4rr approaches 0 outside Z, 1/2 on the upper surface of Z and -1/2 on the lower

surface of Z. hH(l _ l _3) is defined to be zero on E (actually when (x, y) e _ and Ihl < 80d H
41r

where _i0 is nominally chosen as i0 -8) and this results in the computation of an average

velocity on Z as discussed in section D.3. The discontinuities of vC are essentially the same
except for the proportionality factor o(x, y). Note that this behavior gives the first term on

the righthand side of equation (C. 10).

The behavior of v in finite space can be summarized as follows. The normal component
of _ is bounded everywhere but discontinuous on _. As the field point approaches the

source panel plane, this component is zero outside Z, equal to 1/2 local source strength

on the upper side of Z and -1/2 local source strength on the lower side of _. (This component

is defined to be zero on Z.) The tangential components of 7 are continuous everywhere
except on each edge L of Z. As the field point P approaches a point P'L in the interior of

L, "_ has the following singular behavior due to the characteristics of V-*B:

- 20 log (g) _ • _ (D. 121 )
V_

4_r

-_ A

Here o is the source strength at ffL, r_ is the normal to Z at PL, £ is a unit vector along
L such that _®_ points out of Z and g is the distance from _ to the line containing L.

If P approaches a point at a comer of E, the singular behavior of "_ is derived by

summing the singular contributions of the two intersecting edges. These contributions are

described by the right side of equation (D.121) with but slight modification to the factor

-2 log(g) arising from the alternate expressions of equation (D. 118).

Next we consider the potential

in equation (D.3) we have

induced by a flat doublet panel. Setting a and b zero

(D.122)

We note from (D.122) that ¢ is regular everywhere in finite space except perhaps on _.

From equation (D.75) we see that near infinity

i,
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 ff" rh ('/P3)_b= d_dr/ • -_ + O

1;

so that _ is regular at infinity as well.

(D. 123)

To examine the behavior of ¢ near I; we use equations (D.33) and (D.34) with a = b = 0.
Then

¢ =/a(x, y) H(I, 1,3 + tZx(X, y) H(2, I, 3

+ #y(X, y) H( 1,9,_ 3) +-._/axx(X, y) H(3, 1 ,3

+/axy(X, y) H(2, 2, 3 + 2 _tyy(X, y) _ H(I, 3, 3 (D. 124)

Any possible discontinuity in _ must arise from the first term on the right. We have

already analyzed hH(1, 1, 3) in connection with equation (D.120). Consequently, we
4rr

can say that _ is bounded in a neighborhood of Z. Moreover, as the field point

approaches the doublet panel plane _b is zero outside 1_ equal to 1 [2 local doublet

strength on the upper surface and -1/2 local doublet strength on the lower surface of Z.

(¢ is defined as zero on 2;.)

ff F(0,0, 1) 3hR
From equation (D.122) we have V = _7¢ = U - ----- + _ d_dr/

k 4, R3 4_rR 5

(D.125)

Equation (D. 125) shows that
From equation (D. 123) we see that near infinity

v='ff"ded"[ p3 3h_]___ +0 (_4)

1;

so that "_ = O(I/P 4) if total doublet strength is zero and 7= O(I/P 3) otherwise.

v is regular everywhere in finite space except perhaps on _.

(D.126)

The behavior of -_ near Z will now be examined. Differentiating equation (D. 122) with

respect to x we have
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Similarly

Finally

t, d_dr/--- t,-_

5: E

---f )/a \4nR3/ " _'_ 4-_R 3 d_dr/

L Z

oo-fay /a vr/d[ jj ar/ 4--_R3

L z

d_dn

d}dr/

(D.127)

(D. 128)

 ojf
[a f(_-x>_+ a /(r/-y,_l

d}dr/

f F(/i-x) (r/-y) ]= - /a/'_--_- _ v_ +--4rrR 3 Vr/ d[
I..--_

L

ff [011 (}-x) _# (r/-y)]
+ + dSdr/

4rrR 3 Or/ 4_rR 3

f __ ff[ata a ( l ) a (1)]= - #41rS 3 a'_ _- _ ar/ a,7

L ,_

f _ f_[__ _. ] 1= - /a4rrR3- d_ - v_ +--at/vr/ _ d_

L L

JS L_+_/_ (D.129)
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Combining all three equations we have

!
(D. 130)

where

La : + a,:J d d,
Z

f _ hvr/, ,u 1
%=
JO

4rrR 3
L

"_C = (0, O,- 1) vl_ +ap V'r/ _ dt_
arl 4rrR

L

"_D=ff( a/_a_' a_'a/_ 0)4__ d/_d_

(Note that vD is not the same as the difference velocity of equation (C.6).)

First consider the vector -_A"

(D.131)

(D.132)

(D. 133)

(D. 134)

From equations (D.131), (D.9), (D.25), and (D.31) we have

'_A = (0, 0, 1) xx(X, y) + ,Uyy(X, y H(1, !, 1) (D.135)

Again H(1, 1, 1) is continuous everywhere, hence V_Ais continuous everywhere.

Next consider -_B for a typical side L of Z. Note first that if L is a common edge of Z and

an adjacent panel across which doublet strength is continuous then the behavior of vB is
--.I.

irrelevant since vB is cancelled by the same component of the adjacent panel induced

velocity. In any event the behavior of _'B can be established as follows. From its definition

_'B is clearly continuous except possibly on L. To examine the behavior of _'B on L we
have from equations (D. 132), (D.9), (D.31), and (D.40) that

E
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. (hv gF,,,3,vB = g , g g /a(x, y) 41r

gF(2, 1,3) +UY tx" Y) .gF(1, 2, 3)+ blx(X, Y)
41r 4_r

1 gF(3, 1,3) Y) gF(2, 2, 3) 1 F(I, 3, 3)]
+_ #xx(x' Y) 4_r + #xY (x' 41r +2/_yy(x' y) 4_r

(D. 136)

The direction of _'B is the unit vector

'
Here _ is theunit vector (-vr), v_, 0) along L and PL is the closest point on L to P. The
magnitude of vB is the term m tile square brackets on the right side of equation (D. 136).
The second and third terms are bounded and the last three terms are continuous in a neigh-

borhood of L. However, the first term is unbounded as _t approaches L. From equation

(D.61) we have the following asymptotic formulas for the coefficient of _u(x, y) as _"

approaches _L and L.

gF(1,1,3) ~
g " PL in the interior of L

-- ; £1 " _2 _> 0 and PL at endpoint of L
/9" 1 + .,Jl- g2/p

1[1+ 41-g2/02];g £1 "_2 < 0and'_Latendp°int°fL

Consequently "_B becomes unbounded as the reciprocal of the distance from P to L.

(D.138)

Next we consider _C for a typical side L of Z. Note first that if L is a common edge of Z

and an adjacent panel across which the derivative of tt peipendicular to L and surface slope
are continuous then the behavior of_ C is irrelevant since vC is cancelled by the same

component of the adjacent panel induced velocity, vC is clearly continuous except perhaps

on L. From equations (D.133), (D.9), (D.31), and (D.40) we have
H

J

• 2
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. {[. ] F(1,,,1)vC = (0, O, - 1 ) x(X, y) v} + p.y(X, y) vr/ 4¢r

+ [Pxx(X, y) v_ + #xy(X, y) vr/] F(2,41rl, l)

+ [/axy(X , y) v_ + Uyy(X, y) vr/] F(l,47r2, 1 ) }

(D.139)

Any discontinuity in vC must come from the factor F(1, 1, 1). The asymptotic behavior
of this function is displayed in equation (D. 118). We see then that the normal component

of "_C has a logarithmic singularity on L proportional to the local derivative of p in a direc-
tion perpendicular to L.

Finally, we consider _'D" Clearly _'D is continuous except perhaps on Z. From equations

(D. 134), (D.9), (D.31), and (D.24), we have

vD=[.x(X,y>, .y(X,y), ojL 47 '

hH(2, 1, 3)]+[Uxx(X, y), Uxy(X, y), 0] L 4,

+[.xCX,r) ..¢x, 0]F 2,
' k 4'n"

(D. 140)

The quantities hH(2, 1, 3) and hH(1, 2, 3) are continuous everywhere, however,

hH(1, I, 3) is discontinuous on Y. as discussed previously (equation (D. 120)). The behavior
4rr

of v-*D is essentially the same except for a proportionality factor vp(x, y).

The behavior of "_ in finite space can be summarized as follows, v is continuous everywhere

in finite space except perhaps on Z. As a field point ]_ approaches a point _y. in the interior

of _ the normal component of "_ is continuous at Pzbut the tangential components
approach 1/2vp at _1_ if ]_ approaches Z from above and -l]2vp at ]_ if P" approaches
from below. (The tangential components of "_ are defined to be 0 on _ so that they are

zero everywhere in the plane of Z.) Note that it is this behavior that gives the second term

on the righthand side of equation (C.IO).

As a field point P approaches a point Pi, in the interior of an edge L of _;, _has the

following singular behavior due to the characteristics of 7B and _*Cdiscussed above:
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® + 47r log(g) + bounded terms (D.141)

_ ^. --_
Here ta is doublet strength and v/a dqublet gradient at PI. n _s the unit normal to Z at P_I,

A . _ -)" A .
is a unit vector along L such that _®n points out of _ and g = gg is the vector from

to the closest point on the line containing L. If approaches a point Ii L at a corner of _:,
the asymptotic behavior of _' is derived by summing the contributions of the two inter-

secting edges. These contributions are described by the right side of equation (D. 14 l) with

but slight modification to the factors 2/g and 2 log(g), arising from the alternate forms in

equations (D. 138) and (D. l 18) respectively.

D.6 DERIVATION OF BOUNDARY VALUE PROBLEM INFLUENCE

COEFFICIENT EQUATIONS

In section D.2 we derived the expressions for perturbation potential and velocity due to

source or doublet panels. These expressions are in terms of the panel singularity distribution

coefficients of equations (D.8) and (D.9). Before boundary conditions can be imposed,
these expressions must be re-expressed in terms of the unknown singularity parameters _ of

appendix B. In this section we describe how this is done for the specific case of the

velocities due to a doublet/analysis network.

From equations (D.33) and (D.31 ) we obtain

V = /,t O

/a_7

ta/ir_

/a

(D.142)

where

_(1, 1)] x_'(l, 1)

+J(2, 1)

yJ (1, 1)

+J(l,2)

i 1 2-_ I
'1 _ x J(1,1) '1 xY_'(I,1)
I ÷ I __
' +xJ(2,1) I +yJ(2,1)
I I

I +'_J(3, 1) +x_'(1,2)
I
I I ÷

, +I(2,2)

1 2÷
-_y J(l, 1_

÷

+ yJ (l, 2,)

1*

+_J(l,3)
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Using equation (D.34), the scalar form of equation (D. 142) is

v X

Vy

v Z

"_x(l ,1) l
I

= Jy(l, 1) I)
I
I

Jz (1, 1) [
m !

x Jx (1, 1)+ Jx (2, 1)

XJy(l, 1)+Jy(2, 1)

x Jz (1, 1)+ Jz (2, !)

.... etc.- - - --

/20

u_

u_n

/2_

(D.143)

Equation (D. 142) gives the velocity at field point i (i.e., at x i, Yi' zi) due to the doublet
distribution

1 _2 1 ,_
u(_, '_) = uo + u_ _ + /2r,n+ 2 /2_ + /2_n _+ T /2n_n"

associated with a particular panel.
equation (D. 142) as

If we label this panel as panel number k, we rewrite

k=LLI •
k

(D. 144)

From appendix B, recall that the six unknown doublet strength coefficients la0 _/2_/r/for
panel k are expressed in terms of a subset of the unknown doublet singularity parameters

X; denote this subset as Xj. From equations (B.3) and (B.6) we have

6x I 6xN D NDX 1

(D.145)

where N D is the number of doublet singularity parameters associated with panel k.
Equations (D. 144) and (D. 145) give

(D. 146)
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where the subscript (j) is used to indicate that the velocity due to the single panel k depends

on several singularity parameters _.j.

Now imagine that the network contains nine panels (e.g., as in the type 2 schematic of

figure B.2_._. Then the velocity at point i due to these nine panels, and the free-stream
velocity voo, is

9

v i = V_ + = V i (_.)
k=l

(D.147)

where V i (_) denotes that the velocity is now in terms of all the singularity parameters
associated with the network. For the case of figure B.2, type 2, there are 25 singularity

parameters.

Next, let the field point i be one of the 25 control points on the network (see fig. C.I,

type 2). Imposing the boundary condition _i " _i = 0 (where _i is the unit normal at control

point i) at each of these control points gives

25

'-* k ^ "_ ^vi(j) • n i = -V_. n i
k=l

i = 1 .... 25 (D. 148)

When cast in matrix form, equation (D. 148) becomes

(D.149)

Each row i of the aerodynamic influence coefficient matrix [Aij] represents a boundary
condition imposed at one of the 25 control points. Each column j corresponds to one

of the 25 singularity parameters in {_t" The matrix [Aij] is constructed one row (control
point) at a time. For each row, one cycles through the panels and enters the contributions

of each panel to the appropriate columns of [Aij].

For more than a single network, the procedure is exactly the same except that the matrices

in equation (D. 149) expand in size so as to incorporate all the panels, all the singularity

parameters, and all the control points of every network. The general form of equation (D. 149)
is then

MxM Mx 1 Mx 1
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where M is the total number of singularity parameters (and control points) for all the

networks. Hence 1_} can be solved for, and then the resulting velocities can be calculated
from equation (D. 147). (The value k = 9 appearing in equation (D. 147) would be replaced

with the total number of panels in all the networks.) Knowing the velocities, the pressures,
forces and moments are then computed as shown in appendix F.
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APPENDIX E

EQUATION SOLUTION

In this appendix we give a brief description of the numerical method used in the pilot code
to solve the influence coefficient equation set. This equation set is denoted in matrix form

by

AX = B (E.l)

where _, is an NxN matrix of coefficients, g is an NxM matrix of righthand sides and X
is an NxM matrix of unknowns. The method assumes that the matrix A resides in

mass storage in such a manner that each row is a record which can be accessed in a

sequential manner only. The matrix B is also assumed to be stored in, the same way and

once the matrix X has been computed it is likewise stored in the same way.

For large values of N, the data transfers to and from mass storage during solution became

excessive if the row storage format is retained. Hence, the method begins by reformatting

the A and B matrices in block form. Specifically, the matrices A and B are partitioned

into blocks (e.g., fig. E. l)

A =Aij ' i= 1,n and j = l,n (E.2)

B =Bij _ i = 1,n and j = 1,m (E.3)

which are stored as randomly accessible records. The values of n and m are determined

by the available central memory.

The Crout decomposition algorithm is then used to solve equation (E. 1 ). This algorithm

employs the substitution

to obtain

where

LU = A (EA)

LY = B (E.5)

UX = Y (E.6)

The matrix L is lower triangular and U is upper triangular normalized by ones along the

diagonal. The decomposition of equation (E.4) is accomplished as follows. The matrices

E and U" must satisfy the relationship

N

_] _ikUkj = aij
k=l

(E.7)
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B21 _22
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Figure E. 1. - Partition of Left and Right Hand Side Matrices Into Blocks
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where _i:' uij, aij are the elements in the ith row and jth jolumn of L, [7 and ._ respectively.j
From th_s equation we obtain

j-1

_ij = aij - _ _ikUkj ; i _>j (E.8)

k=l

and

; i < j (E.9)

Since _, is physically stored as its component submatrices Aij, the operations of equations
(E.8) and (E.9) are actually performed by forming the submatrices

min(i, j) - 1

Cij =Aij- E LikUkj

k=l

and then solving

(E. 1O)

and decomposing

_ij Ujj = _ij for _ij when i > j, (E. 11)

Lii Uij = Cij for Uij when i < j (E. 12)

Cii = Lii Uii when i =j (E.13)

The forward substitution of equation (E.5) is accomplished as follows. The matrix Y must

satisfy the relationship

E _ij Ykj -- bij (E. 14)

k=l

so that

where Yij, bij are the elements in the ith row and jth column of 7 and B, respectively.
The block operation is performed by first forming

1•
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i-I

Dij = Bij- _[] Lik Ykj

k=l

(E. 16)

and then solving

Lii Yij = Dij (E. 17)

by forward substitution.

The backward substitution of equation (E.6) is accomplished as follows. The solution X

must satisfy the relationship

n

Uik xkj = Yij (E. 18)

k=l

where xij is the element in the ith row and jth column of X. Since

(E. 19)
uii = 1 ,

we have

n

xij=Yij - _] UikXkj
k = i+l

(E.20)

The corresponding block operation is performed by first forming

n

Eij = Yij - _ UikXkj
k = i+l

(E.21)

and then solving

by backward substitution.

Uii Xij = Eij (E.22)

The present method does in-block partial pivoting. The pivoting is established during the

in-core decomposition step. That is the quantity

i-1

C-ii = _'ii- _ LikUki (E.23)
k=l
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if formed without any pivoting considerations. The decomposition of Cii is performed with

pivoting, that is

Cii = Pi Lii Uii (E.24)

where Pi is the identity matrix with row interchanges corresponding to the required pivoting.

At this point, the identical row swaps in _ij forj < i and Bij forj = 1, m could be performed.
However, this is not done. Instead, _ii is stored as a vector describing the row swaps required

to generate Pi from the identity matrix. Each time Lii is used to perform forward substitu-
tions, the swaps dictated by this vector are first performed on the righthand side.

The method used to detect singularities in the system uses discontinuity of the pivot elements

to flag the singularity. Each proposed pivot element is compared in absolute value to the

minimum previously accepted pivot element. If the proposed element is much less in

magnitude, a singularity is declared. While this method is adequate for the detection of

obvious singularities (row identically zero, two rows the same, etc.), it does not adequately

detect ill-conditioned problems. An additional check is provided to detect ill-conditioned

systems. The method approximates error growth by the following scheme. Let

and

a0, 0 = ao (E.25)

aij, k = aij, k-I - aik, k-1 - aik, k-1 akj, k-1/akk, k-1

The relative error e is approximated by

(E.26)

MaxI a k--Ie= 1 <k_<N k(k+ 1) [akk, k I x 10 -14
i,j>k

(E.27)

The quotient aij ' k/akk, k is the ratio of the remaining matrix elements at elimination step
k divided by the kth pivot. The product of this ratio with the growth term (k + l) k gives

the error growth ratio. The assumed initial error is l0 -14. A singularity is flagged when e
exceeds 10 -6.

=
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APPENDIX F

COMPUTATION OF AERODYNAMIC QUANTITIES

In this appendix we describe the manner in which certain local and global quantities of

aerodynamic interest are computed. Our point of departure is the computation of the

average total velocity V A at each panel center control point along with the distribution of

singulari_ strength on each panel. From the singularity distribution tile total difference
v_,elocity V D may be calculated from equation (C. 10) and then the total upper surface velocity

V U and total lower surface velocity _L may be computed from equation (C.9). (However,
note the discussion following equation (C. 10) which implies that in the case of a source

panel superimposed on a doublet panel the normal difference velocity is computed correctly
only at the source panel control point, whereas the tangential difference velocity is computed

correctly only at the doublet panel control point.)

The two velocities V U and V L are of most interest in aerodynamic applications and all
aerodynamic quantities are computed separately for each type of velocity. Hence, let

be one of these velocities. We then define a pressure coefficient Cp at each panel center
control point by the formula

where Voo is the freestream velocity. (Because of limitations in the existing pilot code logic

the computed Cp will be in error for control points on superimposed source and doublet
sheets, however, in the usual case of small or zero normal velocities the value of Cp at the

doublet control points will be quite accurate).

A linear distribution of Cp on each panel can be calculated from the values of Cp at the
control points. The method used is identical to that for computing the linear source distribu-

tion of network type number 1 (see app. B). On any panel S, we then have

= +Cp (_, 7)) CPo Cp_

The force coefficient vector C F on S is defined by

(F.2)

_ ffCp_ ds
C F = SR

S

(F.3)

where S R is a specified reference area.

Substituting (F.2) into (F.3) and using (D.30) and (D.12) we obtain the following

expression for ffF in local coordinates,
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C F = SR

1

S R

g (Cpo + Cp/_ _ + Cpr/n) (- 2a/_, - 2br/, 1) d_dr/

Z

Cpo [- 2aC(2, 1),- 2bC(l, 2), C(i, 1)]

(F.4)

w_..here C(M, N) is defined by equation (D.83) and computed in appendix D_ section 4.
(C F may be expressed in global coordinates via a premultiplication by A, _ where A is the
transformation matrix defined in equation (A. 17).) The sum of the force coefficient vectors

for each panel in a network yields a force coefficient for the whole network. The force

coefficient vectors for any collection of networks can be combined to yield a force coefficient

vector for the configuration represented by that collection. This force coefficient vector
can then be resolved into components along Voo (drag) and perpendicular to 70o (lift and

side force).

^

The moment coefficient C M at a point R R about an axis t R is defined by

ff( CM = '_R" _- RR)® _ Cp dS (F.5)

S

where T R is a reference length and R is the integration point on S. Equation (F.5) is
equivalent to

1 ^

CM=T--RtR ° [_'E +(_"o- RR) ® _"F] (F.6)

where R o is the center of the local coordinate system on S. Here C E is defined by

- _,ff o
C E = SR "SJ _ Cp dS

where

Q=R-R o

C E may be computed in local coordiantes in the same manner as C F, i.e.,

(F.7)
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Z

=S_I CpoEC(I'2)'-C(2'I)' 2(a-b) C(2,2)]

1

+-- Cp_SR [C(2, 2), - C(3, 1), 2(a - b) C(3, 2)]

1 [C(I 3), C(2, 2), 2(a b) C(2, 3)] (F.8)
S R CPr/

Here we have neglected terms of second order in a and b on account of hypothesis (D.6).

The vector _E may be expressed in global coordinates in the same way as _F'
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APPENDIX G

DERIVATION OF RESULTS GIVEN WITHOUT PROOF

IN APPENDIX D

In Appendix D, several results were given without proof. This was done in order to emphasize

the procedures required to generate the influence coefficients. In this appendix we provide

the proofs and derivations that are missing from Appendix D.

G.I. EVALUATION OF H(I, 1, 3)

In section (D.3), H(I, 1,3) was referred to as the fundamental H integral, since all the other

H (M, N, K) integrals are obtained from it and F(1, 1, 1) by the recursions given in

procedures 1, 2, 3, 4, and 5. In this section, we give a detailed derivation of the closed form

integration for H(1, 1, 3), and then describe the behavior of hH(l, 1,3).

From equations (D.25), (D. 15) and (D. 16), we have

where

H(1, 1, 3) = 193
Z

(G.I)

p= _r2+h 2

r = .,J(}- x) 2 + (r/- y)2

h=z-z o (G.2)

are illustrated in figure D.2. In equation (G. 1 ), the integration is over the flat surface

dZ = d_dr/and h is a constant as far as the integration is concerned. Changing to polar

coordinates, equation (G. 1 ) becomes

Ef°i+'[/ir>_1
rdr ] d_ (O.3)

H(1,1,3) = 2+h 2 3/2

i=l ¢i

where the upper limit on r extends to the boundary of _. The geometry of the situation

is shown in figure G. 1, where (x, y,0 ) is the perpendicular projection of the field point

P onto the plane z = 0. The case shown is where the projection of P lies'outside the boundary
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r/,y

T2

i 1,5

v •

Figure G. 1. - Geometry Relating to Equation (G.3)

3

of Y_. The "extra" contribution in the sum ]_ due to r # _ is cancelled by the final sweep
i=l

in _ from corner point 4 to comer point 5. Performing the r - integration yields

i=l ¢i

The next step is to convert equation (G.4) to a line integral along the boundary of Z. To
do this, consider figure G.2 (which is based on figure D.3).

Along typical side L of the boundary, r 2 = _2 + £2 and the variable of integration ¢ is

related to £ as follows:

£ sign (_)
cos¢= _ , sine=

_2+

tan¢= £/5 , de =
_d£

£2 + _2
(G.5)

L
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Z2
__ Typical

/ /" _M'. side L

(x,y,o) Note: g is negative for _1 > 90°

Figure G.2. - Geometry Relating to Equation (G.6).

Thus, equation (G.4) becomes

1 1 _d£

H(I, 1,3) = - (_+ a2) (G.6)
i=1

where Ihl andS*are constants as far as the integration on £ is concerned, and

*Note:

g2 = _2 + h 2 (G.7)

171is the perpendicular distance from (x, y, 0) to side L (or its extension); thus, there
is a different-_ for each side of I; (see fig. G.8).
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Separating equation (G.6) into its two parts gives

where

H(I, 1,3) = _(Ihl I1 -_ I2)

i=l

(G.8)

and

_i+l d£ 1 tan_ 1 ( )I1 = £2+52 = lal _1

£i £i

£i+1

(G.9)

Note:

I,_ = = tan -1

" (_2+_2) ._+g2 ia[' '"1 I_l <o.,o)

The integral denoted by 12 may be found in reference 28 (page 49, line 3).

Using these last two results, equation (G.8) becomes

4 £i+1

H(l'l'3)=_ _ l_ fl

i = 1 £i

(G.11)

where

/3=tan-I (1"_)-tan-1 ([El _]'h'£
(G.12)

In this form, four arc tangents must be computed for each side of _.
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To make for more efficient computations, the two arc tangents in equation (G. 12) are

combined into a single arc tangent.

3 = tan- 1 I_l_ (.J_+ g2-lhl )

_2 _+g2 + £21h t

= tan- 1 lal £
g2 + Ihl _+ g2

(G.13)

With the aid of the following sketch,

g2+lhl _+g2

and the relation

we obtain

m tan_ 1 Iml = tan -1 m
Imt

4 £i+!

H(1, 1, 3) = _-_ 3

i = 1 _i

(G.14)

(G.15)

L

L

k
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where

sin/3 =

COS j_ =

g (,_+g2 + Ihl)

g2 + Ihl _+g2

g (,_2+ g2 + Ihl)

tan/3 = (G. 16)

g2+lht _'+g2

An additional efficiency is gained by combining the difference 3 i + I - 3i into a single arc
tangent. For simplicity, consider only a single side of E, with endpoints i = 1 and i + 1 = 2.

Then

where

3_-/31 = tan -1 " _tan-1 m
- \c2/ \cl/

2 +g2Cl = g2 + Ihls 1 s I = £1

(G.17)

c2 = g2 + Ihls 2 s2= 4_2 2 + g2 (G.18)

Equation (G. 17) reduces to

32 -31
tan-1 \ClC 2 + _2£1_ 2
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and equation (G. 15) becomes
4

1

j=l

= 1 '_ tan_ 1 x .. .... .-_

Ihl ClC. _ + _2_1_ ]t.ij=l

(G.20)

where the sum is over the four sides of Z and the subscripts 1 and 2 are now taken as the

first and second endpoints of each side j.

Computing equations (G. 19) and (G.20) with the single argument FORTRAN ATAN
• _- r ntexternal function returns values offl 2 -fll m the range (-7' _) • To use the double argume

ATAN,. external function, so as to obtain values offl 2 -/31 in'the range (- 7r, 7r), we must

also compute sin(_ 2 -_l ) and cos (_2 -_l } ' These quantities are obtained from equations

(G. 16), using the difference formulas for sin and cos. The result is

sin (_32 -/31) =

a(£2c I - _1c2)

g2dld 2

cos@2-_31) = clc2 +a2_l_ 2

g2dld 2

(G.21)

where

d 1 = s 1 + [hi

d-_ = s-_ + Ihl (G.22)

Equation (G.20) is then rewritten as

l

H(1, 1,3) = [_--[

4

_ tan-I Isin (_32- J31), cos@2 -/31)1

1

(G.23)
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If g2dld2 4=0, equation (G.23) can be written as

4

H(I, 1,3)=]_ tan -I £2Cl -£1c2, ClC 2+_2£1£ 2 (G.24)
1

which is the form appearing in equation (D.41).

The quantity g =V_2+ h 2 is illustrated in figure G.3 for (x, y, 0) _ Z. Recall from equations

(D. 15) that h = z - z o where zo = aXo2 + b yo 2 and (x o, yo ) is the point on Z closest to
(x, y, 0).

P(x,y,z)
_', Z

Extension
of :E

_,x

A

z0 = _-(xo,Y 0)

Figure G.3. - The Quantity g =v_ + h2 for (x,y,o) ¢ Z

Figure G.4 shows g =V/_+ h 2 for the case (x, y, 0) e _; here, g = 0 ifP is a point on the

edge of S, S being defined by _"= a_ 2 + br/2, (_, r/) e Z. [(The quantity s = v_g 2 + £2 is also

shown in figure G.4 since it will be referred to later (in eq. G.33)].

i
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h = z-z 0

r2 §2 + _2

g2= _2+h2

s2 = g2 + {2

d = s+ Ihl

_, Z

_'/,y

(xo,Yo,O)
r

S: _"= a_2 + bT/2,(_',n)e Z:

z0 = _-(xo,vO)

h<O

P(x,y,z)

F/gure G.4. -- The Quant/ty g =_ for (x,y,O) e_.

For g = 0, both _ and h are zero. Although H(I, l, 3) is singular for h = 0, hH(l, 1, 3) is not,
and it is hH(1, 1, 3) that appears in the influence coefficient equations. For the fiat panel,

this can be seen directly from equations (D. 119), (D. 124) and (D.140); for the curved panel

the corresponding equations are (D.28), (D.30) and (D.33), respectively. An alternate form

for equations (G.21) can be obtained which handles the g = 0 case provided I_1_2 > 0. This
is shown next.

With considerable algebraic manipulation, the g2 term can be removed from the denominator

of equations (G.21). The result is
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dld 2 f 2)]Ih1(_22 - _1

sin(_2-'l) = _ _2-_l) + (_2Sl+_lS2)

h 2(g2+_12 + _2 2)

dld-_, cos (/3-_.. _/31 )= g2+ ,hi (Sl + s._)+. _1_._+. (G.25)

(sis2 + _ll_2 )

For (x, y, 0) 4 Y_, e.g., as shown in figures G.2 and G.3, the origin of _ is on an extension

of L rather than on L itself. Hence, tl and _2 are both of the same sign and _1_2 > 0.
For this condition, the terms _2Sl + tlS2 and SlS 2 + _1_2 appearing in the denominator of

equations (G.25) are never zero (even for g = 0) and dld 2 is also positive (did 2 = _1_2 for
g = 0). Thus, equations (G.25) present no computational difficulties for any field point P
satisfying (x, y, 0) 4 Z.

To summarize, hH(1, 1, 3) is given by equation (G.23) in terms of the arguments sin (132 -/31 )
and cos (132-/31). For (x, y, 0) e Z but not on an edge ofS (g _0), the arguments are those

given in equation (G.24). For (x, y, 0) 4 Z, equation (G.24) is still valid provided g _ 0; for

this case however, equation (G.23) with arguments given by equations (G.25) is preferred
since these arguments are valid for any g. Thus, equations (G.23) - (G.25) cover all cases

except when P is on an edge of S. This case is considered next.

Consider figure G.5 which shows the field point P approaching Q at an edge of S, along a

fixed direction given by 0. The pertinent geometric quantities g, _, and h are shown for

two positions of the field point. As P moves to P' to Q along 0 = constant, G moves to
G' to Q and

h_h'_0

5-*a -*0

t

g _g _0 (G.26)

Now consider equation (G. 16) viz.,

tan/3

g2+ Ihl _+g2
(G.27)
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_, Z

Figure G.5. - P Approaching Q Along a Constant Direction 0

G

G'

Q

As g _ 0 due to P _ Q along 0 = constant, equation G.27 becomes

g £
tant3 "-* -- --

Ihl I_1

(G.28)

It

From figure G.5, we see that the ratio _/h is equal to tan (_- - 0 ) when P reaches Q.

Equation (G.28) however, contains _, so we must distinguish between the case where P

approaches Q from above, i.e., h > 0, and the case where P approaches Q from below,

i.e., h < 0. These two cases are shown in figure G.6 along with the corresponding angles

0 u and O_ which are both defined over the interval (0, lr).
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s

PM

h>O

h<O

Q

i

P£

Figure G.6. - P Approaching Q From Opposite Sides of S.

With 0 now considered to be either 0 u or O_ we can then write

tan(_'/2-O)= -- , 0_< O _< _-
Ihl

(G.29)

Thus, equation (G.28) becomes

tan/3 _ sign (£) tan (_- 0) (G.30)

Evaluating this at the two endpoints of L, viz, at £1 and _2, and noting that £2 is positive
and _ 1 is negative for P at some point on the interior of the edge of S, gives

/32 -/31 -* zr-20 , 0 _< 0 _< lr (G.31)

where 0 is either 0 u or 0_.
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Substituting this for one of the sides in equation (G.20) gives

hH(l,l,3)=l_ . tan-I \ClC 2 + a_'_l_2/ + Or 20)

where the last term is for the side at which P is on the edge of S.

(G.32)

Equation (G.31 ) shows that for P being a point on the edge of S, the value 132 -/31 for that
edge depends on the direction of approach. Thus, as stated in section D.5, the sum of the

arc tangent terms making up hH(1, 1, 3) is bounded, but not continuous for P on an edge

of S (or Z for a flat panel); that is, the value ofhH(1, 1,3) is indeterminate. This difficulty

is avoided for the network edge control points by withdrawing these control points slightly

from the edge as described in appendix C.

Finally, we determine the character ofhH(1, 1, 3) for the case h = 0, but P is not on an

edge of S. For (x, y, 0) e Z, this places P at a point on the interior of S. Thus, referring

to figure G.7, we want to see how hH(l, 1,3) behaves as P approaches the point z o.

First, write equation (G. i 6) in terms of the angles a and 0 defined in figure G.7, viz.,

g
tana =-- , cos_ =-

g s

Ihl ~ a ~
sin0 = m , cos0 = - , 0 _< 0 _< _r

g g

(G.33)

where O'is taken as either0" u or 0"_ in the same fashion as 0 u and 0_ of figure G.6. So,

equation {G. 16) becomes

tan/3 =

1 +lh/ 41+(_/g)2
g

= (tan _)

= (tan c0

cos

1 +sin_ "4/1 +tan2o_

(cos cos  
cos----g;-fin3)

(G.34)

2
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Forthecaseshownin figureG.7,viz.,(x, y,0) =
zeroas h
becomes

(Xo'Yo'0) eV we see that 0"goes to
goes to zero and that c_ takes on the same value as 4. Hence, equation (G.34)

I

tan/3 ]= tanq_
i

h_0

(x, y,O) e _: (G.35)

This result is valid for each side of 2:, so with the aid of figure G.8 we see that equation

(G.20) yields

4

IhZ:h._,l 3_ = iTi (_2-_,)j= 2.±' ' IhJ
j=l

h --*0

(x, y,0) e Z (G.36)

Projection of Y, i
onto z = zo plane

Figure G.8. - Geometric Interpretation of Equation (G.36)
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_', Z

P(x,v,z)

(xo,Yo,O)

Side L

Intersection of S
with the plane
defined by _ and h I

I edge

I of S

Figure G. 7. - Field Point P Approaching the Point z 0 orl the Interior of S
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If the point P(x, y, z) is located such that (x, y,0 ) _/Y., e.g., as in figure G.3, the 0"s for the

four sides of Z do not all go to zero when h goes to zero. This is shown in figure G.9.

Note that the lengths _j are in the plane z = z 0 whereas the actual _; are defined in the plane
= 0, see figure G.3.) The side "facing" the point (x, y, z0) is called side one. We see that

0"1 is greater than lr/2 and the 0"s for the remaining sides are less than 7r/2. Thus, as h goes

to zero, 01 -+ n and 0'j _ 0 forj = 2, 3, 4. Substituting these values for 0'into equation
(G.34) gives

[ {+tan¢_ for sideltan fl = tan_ for sides 2, 3, 4

h--*O

(x, y,0 ) _ _ (G.37)

P(x,y,z)

g3

g4 gl

(x,y,z O)

g2 /
/

/
/ 7

03 /

_3 /
/

/
/

[XO,YO,ZO)

Projection of
onto z = z0 plane

i•

Figure G.9. - The Case h _ 0 for (x,y,O) ¢ _,
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Equation (G.20) then becomes

hH(l, 1,3) = _ ! j=2

11 _0

(x,y,0) _ _

From figure G. 10, we see that

(_2- _l)side
1

= F (clockwise)

j=2

(counterclockwise)

so

hH(l,l,3)[

h _ 0

=0

(x,y,0)¢ _

(G.38)

(G.39)

(G.40)

i

Side 1

Projection of _ ....- ---- ""

onto z = z0 plane -"

Figure G. 10. - Geometric Interpretation of Equations (G.38) - (G.40)

L
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Taken together, equations (G.36) and (G.40) give

rr -- (x, y, O) e i_
hH(l, 1,3)] = Ihl

I

h -_ 0 , (x,y,0)¢Y,

(G.41 )

provided P is not oil an edge of S (recall equation (G.32)). This result holds for either a

curved or a flat panel. For a flat panel, S becomes Z, and h = 0 corresponds to the plane

z = 0 (which contains _). The effect of the hH(l, 1,3)jump property (across S) on the

source velocity, and oll the doublet velocity and potential, is discussed in section D.5 for
the flat panel case.

G.2 PROCEDURE 1 RECURSIONS: EQUATIONS (D.41) --* (D.48)

The equations given in procedure 1 are obtained from recombinations of equations (D.37),

(D.38), (D.39), and (D.56). These four equations are repeated here for convenience

H(M + 2, N, K) + H(M, N + 2, K) + h2H(M, N, K) = H(M, N, K- 2) (D.37)

4

(K-2) H(M,N,K) =(M-2) H(M-2,N,K-2)- L u_F(M-1,N,K-2),

1

(D.38)

4

(K-2) H(M,N,K) =(N-2) H(M,N-2,K-2)- _[_ v_F(M,N-1,K-2)
1 "1

(D.39)

v_F(M + 1, N, K) + vr_F(M, N + 1, K) = _F(M, N, K) (D.56)

Our first task is to put the recursions (D.37), (D.38) and (D.39) into normal form, i.e.,

derive three equivalent recursions in each of which only one index varies. To do this we

replace M by M + 2 in equation (D.38) and N by N + 2 in equation (D.39) to obtain

and

4

(K-2) H(M+2, N,K)=MH(M,N,K-2)- _] v_jF(M+I,N,K-2)
1

4

(K-2) H(M,N+2, K)=NH(M,N,K-2)- _ vr/F(M,N+I,K-2)
1

(G.42)

(G.43)
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Substituting HfM + "_.,N, K) from (G.42) and HfM, N + ,,"_K) from fG.43) into equation

(D.37) and rearranging we obtain

(K-2) h2H(M,N,K) =(K-M-N-2) H(M,N,K-2)

4 4

]_ v_F(M+l,Y, K-2)+ ]_
1 1

vr/F(M, N + 1, K- 2)

Substituting D.56, we obtain a recursion which involves variations in the K index only:

(K- 2) h 2 H(M, N, K) = (K- M- N- 2) H(M, N, K- 2) +

4

g F(M, N, K - 2)
1

(G.44)

Substituting H(M, N, K) from equation (D.38) into (G.44) and rearranging we obtain

(K- M-N- 2) H(M, N, K- 2) = (M - 2) h 2 H(M- 2, N, K- 2)

4 .4

-h 2 _ v/_F(M-I,N,K-2)- ]_
1 1

FfM, N, K - 2).

Replacing K by K +2 we obtain a recursion which involves variations in the M index only:

(K- M- N) H(M, N, K) = (M- 2) h 2 H(M- 2, N, K)

4 4

-h 2 ]_ v//F(M- 1,N,K)- _ "ffF(M,N,K)
1 1

(GAS)

Interchanging the roles of M and N, and v//and vr/, we obtain a recursion which involves
variations in the N index only:

(K- M - N) H(M, N, K) = (N- 2) h 2 H(M, N- 2, K)

4 4

-h 2 _ vnF(M,N- l,K)- ]_ _FZ(M,N,K). (G.46)
1 1

Now it is an easy matter to derive equations (D.41) through (D.48). Setting M = N = 1

in equation (G.44) yields equation (D.42). Setting K = 3 in addition and substituting

H(1, l, 3) from equation (G.24) yields equation (D.41). Equation (D.43) is obtained by

setting K = 1 and M = 2 in equation (G.45). Here we note that the first term on the right
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of (G.45) has a zero coefficient, hence H(0, N, 1) is not needed. Equation (D.44) is obtained

by setting M = 1 and K = 1 in equation (G.46). Equation (D.45) is obtained by setting K = 1

in equation (G.45). Equation (D.46) is obtained by setting M = 1 in equation (D.39).

Equation (D.47) is the result of setting M = 2 in equation (D.39). Finally, equation (D.48)
is simply a rearrangement of the terms of equation (D.37).

G.3 PROCEDURE 4 RECURSIONS: EQUATIONS (D.61) _ (D.67)

The equations given in Procedure 4 are obtained from recombinations of equations (D.55),
(D.56) and (D.57). These three equations are repeated here for convenience.

F(M + 2, N, K) + F(M, N + 2, K) + h 2 F(M, N, K) = F(M, N, K- 2) (D.55)

v_ F(M + 1, N, K) + Vr/F(M, N + 1, K) = g F(M, N, K) (D.56)

-(M- l)vrlF(M- I,N,K-2)+(N- 1)v_F(M,Y- I,K-2)

+ (K - 2) Vr/F(M + 1, N, K) - (K - 2) v//F(M, N + 1, K) = E(M, N, K - 2) (D.57)

Our first task is to put the recursions (D.55), (D.56) and (D.57) into useful form, i.e., derive
equivalent recursions which will allow systematic evaluation. To do this we solve

equations (D.56v) and _D.57) for the unknowns F(M + 1, N, K) and F(M, N + 1, K) using

the fact that v_- + vr/_ = 1 and obtain

1 [(K- 2) v_ _ F(M, N, K) + (M- l) vr/2 F(M- l, N, K- 2)F(M+ 1, N,K)= (K-2)

- (N - 1) v_ivr?' F(M, N - 1, K - 2) + Vr_E(M, N, K - 2)] (G.47)

and

1 [(K - 2) Vr/_ F(M, N, K) - (M - 1 ) v_vrl F(M - 1, N, K - 2)F(M, N + 1, K) - (K - 2)

+ (N- l) v/_2 F(M, N - 1, K - 2) - v/_ E(M, N, K - 2)] (G.48)

Replacing M by M + 1 in (G.47), and N by N + 1 in (G.48) we obtain

! [(K - 2) v/_ _ F(M + I, N, K) + M vr/2 F(M, N, K - 2)F(M+2, N,K)=(K 2)

-(N- 1)v_v_ F(M+ 1,N- 1,K-2)+Ur/E(M+ 1,N,K-2] (G.49)
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F(M, N + 2, K)= _ K-2)vrlF_F(M,N+I,K)-(M-1)v_vrl F(M-1,N+I,K-2)

+ Nv_ 2 F(M, N, K - 2) - v_ E(M, N + 1, K - 2)]

Adding equations (G.49) and (G.50) and noting that v_ 2 + vr/2 = ! :

(G.50)

F(M + 2, N, K) + F(M, N + 2, K)

'l ']=_ (K-2)-ff /_ F(M+ I,N,K)+vr/F(M,N+I,K

+(N+M- I)F(M,N,K-2)

rv_ F(M+ l, N-l, K- 2)+Vrt F(M, N, K- 2) 1B _Y _ 1 ) v_
L

(M-I )v_
L 1

+vr/E(M + 1,N,K-2)-v_E(M,N+ 1, K-2) I
(G.51)

The term on the left side of (G.51) is equal to F(M, N, K - 2) - h 2 F(M, N, K) from equation

(D.55). The terms in square brackets on the right side of (G.51 ) can be reduced via

equation (D.56). For the first square bracket we use (D.56) directly. For the second, we

replace N by N- 1 and K by K- 2. For the third, we replace M by M- 1 and K by

K - 2. Making the substitutions and rearranging, we obtain the following recursion on K:

1 l'[_K7 M - N - 1 ) F(M, N, K - 2)
F(M, N, K) - g2 (K - 2)

+(N- 1)_ Vrt F(M, N- 1,K- 2)

+(M-1)_v_F(M-1,N,K-2)-vr/E(M+I,N,K-2)

+ v_ E(M, N + 1, K- 2)]
(G.52)

Next we solve equation (D.56) for FfM + 1, N, K) and for F(M, N + 1, K):

N, Vr/ F(M, N + 1, K) (G.53)
F(M + 1, N, K) = v'-_ F(M, K) - v_

and

F(M,N+ l,K) =_ F(M,N,K)-g F(M+ I,N,K)
(G.54)
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Replacing M by M + 1 in equation (G.53) we have

F(M + "_ N, K) a v_
"' =v'7_ F(M + i, N, K)-_-- F(M + 1, N + 1, K). _G.55)

Next we substitute the expression for F(M + 1, N, K) given by (G.53) into the first term

on the right side of(G.55) and the expression for F(M + 1, N + 1, K) given by (G.53) with
N replaced by N + 1 into the second term on the right side of (G.55) to obtain:

-, =_1 15 F(M,N,K)F(M + "_ N, K) 2

-2_vr/F(M,N+ l,K) + vr_2F(M,N+2,K)] (G.56)

Finally, we solve equation (D.55) for F(M + 2, N, K) and substitute the result into the left

side of (G.56). Upon rearrangement we obtain

F(M, N + 2, K) = 2 :_vr/F(M, N + 1, K)

_ (_2 + v_"h') F(M, N, K)+ v_ 2 F(M, N, K - 2) (G.57)

Interchanging the roles of M and N, and v/_ and vr/, we have the symmetric result:

F(M+2, N,K)=25v_F(M+ I,N,K)

We need one more result.

_ (_2 + Vr/2h2) F(M, N, K) + vr_2 F(M, N, K - 2)

Replacing N by N - 1 in equation (G.47) we have

(G.58)

(K - 2) F(M, N, K) -- (K - 2) Vrt _ F(M, N - 1, K)

-(M-1)v_v_F(M-I,N-1,K-2)

+ (N - 2) v/_2 F(M, N - 2, K - 2)

- v_ E(M, N- 1, K- 2) (G.59)

The second and third terms on the right side of (G.59) can be transformed into

expressions involving K rather than K - 2 using equation (D.55). For the second term,

we replace M byM-I and N by N- l in (D.55) and for the third term we replace N
by N - 2 in (D.55). Upon substitution into (G.59) we obtain:
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(K-2) F(M,N,K):(K-2)Vr/_F(M,N-I,K)-(M-I)v_vrIF(M+ 1, N-I,K)

Next we replace
term on the right of (G.60). In addition, we replace M by M - 1 in equation (G.54) and

substitute the result into the third term on the right of (G.60). Finally, we replace N by

N - 2 in equation (G.56) and substitute the result into the fifth term on the right of

(G.60). Making these substitutions and rearranging, we obtain:

F(M,N,K) =(K_M_N+ 1) (K-M-2N+3) Svr/F(M,N-1, K)

+(N-2)(_2+v2h 2) F(M,N_2,K)

- (M- 1) _v_ F(M - 1, N, K)

- (M- 1) v_vrlh2 F(M - 1, N- 1, K)

-v_E(M,N-1,K-2)]

Interchanging the roles of M and N, and v/_ and Vr/weobtain

F(M'N' K) = (K-M-N+ 1) K- 2M-N + 3)5v_ F(M- 1, N, K)

+(M-2)(]2+vr/2h 2) F(M-2, N,K)

- (N - 1 ) _vr/F(M, N - 1, K)

-(N-1)v_vrlh2F(M-1, N-1,K)

+ vr/E(M - 1, N, K - 2)]

- (M - 1) v_v_7 F(M - 1, N + 1, K)

- (M - 1) vliVrl h 2 F(M- 1, N- 1, K)

2 F(M + 2, N- 2, K)+ (N - 2) v_

+ (N - 2) v_ 2 F(M, N, K)

+ (N - 2) v_2h 2 F(M, N - 2, K)

- v_ E(M, N - l, K - 2) (G.60)

N by N - 1 in equation (G.53) and substitute the result into the second

(G.61)

(G.62)
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Notice the + sign in the last term on the right side of (G.62) as compared with the - sign

in the analogous term of (G.61). This is because the left side of equation (D.57) undergoes a

change of sign when M and N, and v_ and v_ are interchanged, hence our formulas will be
correct if we replace E by - E whenever sucl_ t an interchange is made

Now we are prepared to derive equations (D.61) through (D.67). Equation (D.61) is obtained

from equation (G.52) by setting M = N = I. Equation (D.62) is obtained from equation (G.61)

by setting M = K = 1. Equation (D.63) is simply a rearrangement of equation (D.56) with

K = 1. Equation (D.64) is obtained from equation (G.62) by setting N = K = I. Equation

(D.65) is simply a rearrangement of equation (D.56) with K = I. Equation (D.66) is obtained
from equation (G.61) by setting M = 1 and N = 2. Finally, equation (D.67) is obtained from

equation (G.57) by setting M = 1 and replacing N by N - 2.

G.4 PROCEDURE FOR EVALUATING THE E FUNCTIONS

The E functions are defined by equation (D.58) which we repeat here for convenience:

E(M, N, K)- (__ x)M- 1 (7?- y)N- 1

oK

2

, P=_/(_-x)2+(r/-y)2+h2 (D.58)
1

The E functions required for Procedure 4 can be evaluated recursively using equation
(D.59) which we also repeat here for convenience:

P(l)=(x 2+x 1) P(I-1)-XlX 2P(I-2) (D.59)

where

- I-1
P(I)_-A2x2I 1 _AlXl

Examination of Procedure 4 indicates that we need to calculate the following E functions:

a. E(2, 1, K - 2) K = 3, MXFK, 2

b. E(1, 2, K - 2) K = 3, MXFK, 2

c. E(I, N- 1,- 1) N = 2, MXQ

d. E(M- I,1,-1) M =2,MXQ

e. E(1, I,K-2) K= 3, MXK- 2, 2 (G.63)

These functions can be evaluated using equation (D.59). For this purpose we set E = P where

x 1 , x 2 , A 1 , and A 2 are defined respectively as:
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a. x,=o_ Xl=Pl " A-_ = (_2-x)/P2, A 1 = (_l-X)/Ol; I =1 MXFK 3
_ _ _ 2

bx2=P2-2' Xl=Pl-2' A'=07"_-Y)/P2'- - AI=(r/1-Y)/Pl; I=l' 2
MXFK - 3

c. x2=tr?2-y), Xl=(rll-y), A2=P 2, AI=Pl; I=I,MXQ-1

d. x2=(_2-x), Xl=(_l-X), A2=P 2, AI=P 1" I=I,MXQ-I

-0 -')

e. x2=P 2 - Xl =Pl ", A2 = I/P2' A! = 1/Pl: I= 1, 2
MXK - 5

(G.64)

G.5 PROCEDURE 6 RECURSIONS: EQUATIONS (D.99) -* (D.102)

The equations in Procedure 6 are obtained from recombinations of equations (D.96),
(D.97) and (D.98), which we repeat here for convenience:

v_ G(M + 1, N) + vrt G(M, N + 1) = _ G(M, N)
(D.96)

-(M-I)vr/G(M-1, N)+(N-I)v_G(M,N-I) =D(M,N)
(D.97)

where

D(M,N)=_M-Ir/N-11i
(D.98)

Equation (D. 100) is obtained from equation (D.96) by replacing M by M - 1 and rearranging.

Equation (D. 102) is obtained from equation (D.96) by replacing N by N - 1 and rearranging.

Equation (D.99) is obtained from equation (D.97) by setting M = 1 and replacing N by

N + 1. Equation (D.101) is obtained from equation (D.97) by setting N = 1 and replacing M

byM+l.

We note from equations (D.99) and (D.101) that the D functions must be evaluated for

the two cases:

a. D(1, N+I) N =I,MXQ

b. D(M + 1, 1) M = 1, MXQ (G.65)
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This can be done recursively using equation (D.59). We have

a. x2=r/2, xl=r/I, A2=rl 2, Al=r/l; I=I,MXQ

b. x2=_2, xi=_ 1, A2=_ 2, AI=_I; I=I,MXQ (G.66)

G.6 CONTINUITY PROPERTIES OF THE H AND F INTEGRALS

In this section we prove that h J H(M, N, K) is bounded as a function of P(x, y, z) if

J = K - M - N and is continuous everywhere and equal to zero when h = 0 if J > K - M - N.

In addition, we show that gJ F(M, N, K) is continuous everywhere and equal to zero when
g=0ifJ>K-M-N+ !.

We first note that

where

It follows that

pK/> Ihl J - 1

Hence we have

p> I/i- xl

p> It/- yl

p > Ihl

P = _(_ - x) 2 + (77- y)2 + h 2

If-xl M-1 177-yl N-lp3 where J = K- M- N.

(G.67)

(G.68)

h JH(M,N,K) _< ff IhlJIf-xl M-l In-yl N-1
pK

= IhH (1, 1,3)1

From equation (G.24) we see that Ih H(I, 1,3) I_ 41r.

Hence

Ih J H(M, N, K) I _<4_t if J = M + N - K

ffd _dr/

d/_dra < !hi j_,r 7

(G.69)

(G.70)
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This shows that h J H(M, N, K) is bounded when J = M + N - K. Now from equation (D.25)

it is clear that for arbitrary J, h J H(M, N, K) is continuous everywhere except perhaps at

h = 0. However, we have

hJH(M,N,K)=hJ-(K-M-N) [hK-M-NH(M,N,K)]
(G.71)

The term in square brackets on the right is bounded by 47r from the result above, hence, if
J > K - M - N the expression on the right tends to zero uniformly as h _ 0. Thus

h J H(M, N, K) is also continuous at h = 0 and equal to zero there.

Before considering the F integrals we prove one additional result concerning the H integrals,

namely that when either M or N is even, then H(M, N, K) is continuous everywhere,

except when h = 0 and (x, y, 0) belongs to the perimeter of Z. Without loss of generality,
we assume that M is even. When M = 2, the result follows from equation (D.38) by noting

from equation (D.40) that all F integrals are continuous everywhere, except perhaps when

h = 0 and (x, y, 0) belongs to L. For M > 2, the result follows inductively from (D.38).

Next we show that gJ F(M, N, K) is continuous everywhere and equal to zero when g = 0

if J > K - M - N + 1. From the fact that p = _, we have in addition to the inequalities

(G.67), the inequality

p > g (G.7 la)

Hence

pKt>t _'g'J- 1 I/_-x_M, - 1 [r/-yIN, - 1 P ifJ=K-M-N+2 (G.72)

It follows that

[gJ F(M, N, K) I _<fLgJl_- xlM -oKlit/-yIN - 1 fL gd_d_ _ _-- = gF(1, l, l)
(G.73)

From equation (D.60) it is easily shown that

IF(l,1, 1)I_C l+C211ng[ (G.74)

for some constants C1 and C 2 independent of g, hence

IgJ F(M, N, K)I _< g(C 1 + C2[ln gi) ifJ = K-M - N + 2 (G.75)

This shows that IgJ F(M, N, K)_ tends to zero uniformly as g _ 0.' From equation (D.40),
it is clear that for arbitrary J, gJ F(M, N, K) is continuous everywhere except perhaps at g = 0 where

0 =_g2 + _2 may be zero. However, we have

- (K - M - N + 2) [gK - M - N + 2 F(M, N, K)| (G.76)gJ gJF(M, N, K) k J
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The term in square brackets tends uniformly to zero as g _ 0 from the result above so that
gJ F(M, N, K) does likewise when J/> K - M - N + 2. Hence, gJ F(M, N, K) is continuous

everywhere and equal to zero when g = 0 if J > K - M - N + 1.

G.7 PROPERTIES OF H*

In this section we discuss the properties of H* as defined by equations (D.51 ) and (D.52),

which we repeat here for convenience

H* (M, N, K) = H(M, N, K) - e(M, N, K) (D.51 )

e(M, N, K) = 2rr v(M, N, K) Ihl M + N - K

v(M, N, K) =

0 if M or N is even

[1.1.3.5...IM-21][I.I,3.5...IN-21]

[(K- 2)(K- 4)(K- 6) .-. (K- M- N)]
(D.52)

First we show that H* satisfies the same recursions as H, in particular that H* satisfies the

recursions of Procedure 1 for h _ 0 with the exception of the initial condition (D.41 ).

For this purpose, it is sufficient to show that e(M, N, K) satisfies the homogeneous recur-
sions (D.42) -* (D.48), i.e., the recursions with all F functions set identically zero. For

this purpose we note from equation (D.52) that e(M, N, K) satisfies:

h 2 (K - 2) e(M, N, K)

e(M, N, K - 2) - (K - M - N - 2)
(G.77)

h2 Me(M r N, K)
e(M +2, N, K) = (K-M-N-2) (G.78)

h 2 Ne(M, N, K)
e(M, N + 2, K) -

(K-M-N-2)
(G.79)

We note that the initial condition

e(1, 1, 1) = 2_r[ hi (G.80)

Then equation (D.42) (with F = 0 and H replaced by e) follows from equation (G.77) with

M = N = 1. Equation (D.43) follows from the (D.52) and the fact that M is even. Equation

(D.44) follows from equation (G.79) with M = K = 1 and N replaced by N - 2. Equation

(D.45) follows from equation (G.78) with K = 1 and M replaced by M - 2. Equation (D.46)

follows from equation (G.79) with M = 1 and N replaced by N - 2 combined with equation

(G.77) with M = 1 and N replaced by N - 2. Equation (D.47) follows from
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equation (D.52) and the fact that M is even. Finally, equation (D.48) may be obtained by

subtracting (G.77) from the sum of (G.78) and (G.79), and then replacing M by M - 2.

Next we prove that H*(M, N, K) is continuous when (x, y, 0) belongs to the interior of Z.

From section (G.6) we know that H(M, N, K) is continuous everywhere when K < M + N

and bounded when K = M + N. However, when K = M + N, either M or N must be even since

K is odd, hence, we know in addition that for K = M + N, H(M, N, K) is continuous every-

where except perhaps when (x, y, 0) belongs to the perimeter of Z and h = 0. It follows

from equation (D.51 ) that H*(M, N, K) is continuous when (x, y, 0) is in the interior of

and K _< M + N. Hence, we consider only the case K > M + N. For this case we shall show
that

:

fr (_ - x)M - 1 (7/- y)N - 1 d_dr/, (G.81 )H*(M, N, K) J.I pK

where Z* is the exterior of Z, i.e., the whole _ - r/plane minus the quadrilateral E. From

equations (D.51 ) and (D.35) it is sufficient to show that

e(M,N,K)= ff (_- x)M- 1 (r/-y)N- 1pK d_dr/ (G.82)

/_- r/Plane

To do this we let (/j - x) = thlr cos0 and (r/- y) = [hlr sin0. Then

ff (__x)M-l(77_y)N-!pK d_dr/
- rl Plane

/

i ¸k¸ . .

= ihlM +N_ K rM+N- 1

(1 + r2) K/2

(cos0)M- 1 (sin0)N- 1 drd0

Hence, it is sufficient to show that

oo _2rt

'f0f0v(M, N, K)= ,_-_-
rM + N - 1

(1 + r 2) K/2 (c°s0)M - 1 (sin0)N - 1 drd0

=['10 (l + r2) _/'2 L2"_ _0 (c°s0)M (sin0)N -

(G.83)

(G.84)

r
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By symmetry, the second integral in square brackets is zero unless M and N are both odd.

Hence, we need only consider the case when M and N are both odd.

1 ,.27r ' 4 frr/2

"/0/ (cos0)M-I (sin0)N-1 dO= _J0 (cos0)M-' (sin0)N-! dO
(G.85)

The first integral in square brackets can be put in similar form by setting r = tan q_ to obtain

OO

(1 + r 2) K/2 dr = (sin40 M + N - 1 (cos40K - M - N - 1 d_ (G.86)
0

From integral tables tref. 29) we have that

f0 _r/2

_ 1 I-'(M/2)F(N/2)

(c°s x)M- 1 (sin x)N- 1 dx- _7-p (M.M@+N)

(G.87)

where F is the P function and

2(M - 1 )/2 _ if M is odd (G.88)

Applying (G.87) to (G.86) and (G.85), and substituting into (G.84), we need only to
show that

Upon applying (G.88) to (G.89) and comparing with equation (D.52) we obtain the
desired result.

G.8 VALIDITY OF REVERSE RECURSIONS (PROCEDURES 2 AND 5)

In this section we justify use of the initial condition (D.49) in the reverse recursion (D.50).

The argument is precisely the same for the use of equation (D.68) as an initial condition

for equation (D.69) and we therefore consider only equations (D.49) and (D.50) which

we repeat here for convenience
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H(I, 1, NHK + MXK) = 0. (NHK = 16)

H(1, l,K-2) =

4
1 rh2(K-2) H(1,1,K) - ]_ _F(1, I,K-2)]

(K -4) L 1 J

(D.49)

(D.50)

for K = NHK + MXK, 3, - 2.

Without loss of generality, we assume (x, y, 0) _ 1_. (If (x, y, 0) e Z, we replace H by
H* in which case we are dealing with (D.49) and (D.50) as applied to Procedure 3.) In

either case, we have p >d H where d H is defined as the minimum distance from (x, y, 0)
to the perimeter of Z. Then

ff d_dr/ 1 /'ffd_dr/ _ 1 H(1, 1, K)

H(1, 1,K+J)= jd _-_-j _< dHJ-- JJ W dHJ

(G.90)

It follows from the assumption of Procedure 2 (Ihl < 6h dH) that
J

[hJ H(1, 1, K + J)l _< I(d--_) H(I, 1, K)I =6hJ IH(1, 1, K)[
(G.91)

Setting K = MXK and J = NHK we have

IhNHK H(1, 1, NXK + MXK) I _ 6h NHK IH(1, 1, MXK)I

By substituting equation (D.49) into equation (D.50) for K = NHK + MXK and then

successively solving for H(I, 1, K) with lower values of K, we find

(G.92)

(NHK+MXK-2) hNHKH(I 1 NHK+MXK)+Fterms
H(I, 1, MXK) = (MXK- 2) ' '

(G.93)

Since 6 h = .01 we see from (G.92) that the first term on the right of (G.93) is negligible
compared with H(1, 1, MXK), hence, it can be ignored. This is easily accomplished by

setting H(I, 1, NHK + MXK) = 0.

i

k
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