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Abstract

The full Navier-Stokes equatiomns for incompressible tutrbulent

flow must be solved to accurately represent all flow phenomena which

occur in a high Reynolds number incompressible flow. A two-layer

algebraic eddy viscosity turbulence model is used to represent the
Reynolds stress terms in the time-averaged incompressible Navier-
Stokes equations in the primitive variable formulation. The development
of the boundary~-fitted ccordinate sysﬁems has made the numerical
solution of these equations feasible for arbitrarily shaped bodies.

The non-dimensional time-averaged Navier-Stokes equations,

including the turbulence model, are represented by finite difference

approximations in the transformed (§,n) plane. The resulting coupled

system of nonlinear algebraic equations is solved using a point

successive over-relaxation (SOR) iteration.

The test case considered in this study was an NACA 64A010 air-

foil section at an angle of attack of two degrees and a Reynolds

number of 2,000,000. Several boundary-fitted coordinate systems

iv

.




vere generated and used to evaluate various filters and various
representations of the convective terms. Pressure distributions are
5 presented which emphasize the difficulties associated with each

: technique.

The preliminary results of a solution are presented which

i' encourage the continuation of the solution to obtain a steady state

solution. The major results of the evaluation of the techniques are

also summarized.
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I. INTRODUCTION

The problem of accurately predicting the flowfield about an arbi-
trary configuration in a high Reynolds number 1nconprcucib1nlflow has
provided seemingly insurmountable problems to researchers in this area.
The only way to represent fully all flow phenomeuna which occur at these
conditions is to solve the full Navier-Stokes equations for incom-
pressible turbulent flow. The primitive variable formulation must be
used if multiple bodies or three-dimensional flow is to be considered.

Since the solution of the Navier-Stokes equations is essentially a
very complex boundary value problem, the validity of the solution is
dependent on the accuracy of the representation of the boundary values.
If a conventional grid system is used for an arbitrary configuration,
interpolation will be required at the boundaries. This may lead to
poor application of the boundary conditions. In high Reynolds number
flow, there are large gradiants in regions near solid boundaries.

These gradients are generally dominant in determining the character of
the solution. The resolution of these gradients requires that a large
number of closely spaced coordinate lines exist in the regions near
solid boundaries. This would suggest using a fine mesh near these
boundaries and a coarse mesh in the regions where the gradients are
small with some type of transitional mesh in between.

A technique has been developed by Thompson, Thames, and Mastin
[1) which will help to alleviate these problems. This technique
numerically generates a discrete mesh system, called a boundary-fitted
coordinate system, for arbitrary configurations. These mesh systems

possess & constant coordinate line coincident with each physical




boundary so interpolation is sliminated at the boundaries. By modifying
the governing equations, coordinate lines can be concentrated in any
region of the field.

The two-dimensional Navier-Stokes aquations for incompressible
turbulent flow are reprasented by a finite difference approximation for
the time-averaged incompressible Navier-Stokes equations and a slightly
modified version of the algebraic turbulence model developed by Baldwin
and Lomax [2]. The finite differeice approximations must be augmented
by the inclusion of terms relating the discrete mesh and the physical
grid. This effectively removes the physical coordinate system from the
problem at the expense of complicating the original set of equations.
However, application of the boundary conditions is simplified since
the boundary conditions are given on straight boundaries in the trans-
formed plane. Since the finite difference approximations represent an
elliptic system of nonlinear partial differential equations, an
iterative technique must be used to obtain a solution. The technique
used in this study was an accelerated Gauss-Seidel iteration,or
successive over-relaxation (SOR).

These techniques have been used with some success for incompressible
viscous flow by several researchers. Bearden [3) obtained results for
laminar flow at a Reynolds number of 1,000,000 sbout a single element
airfoil at zero angle of attack using the stream function-vorticity
formulation of the Navier-Stokes equations. Reddy [4) also obtained
results for the same flow conditions using the integro-differential
formulation. Primitive variable form,-utions have been developed by
Hodge [5] and Shanks [6]. Hodge [5] obtained results for laminar flow

about a single element airfoil at zero angle of attack for a Reynolds




number of 41,400, Shanks [6) considered low Reynolds number flow about

& submerged hydrofoil.




II. THE BOUNDARY-FITTED COORDINATE SYSTEM

Much research has been devoted to the development of the techniques
necessary for numerically generating boundary-fitted coordinate systems.
Since the mathematical development and numerical implementation of these
techniques is given in great detail by Thompson, Thames, aud Mastin [1],
Hodge [5], Thompson [7], and Thames [8], only an overview will be
presented here. In addition, a method used to contract coordinate lines
near a body in the field is given in Appendix B.

Consider a two-dimensional doubly-connected region as shown in
Figure 1. The general transformation is one which associates each
point (x,y) in the physical plane with a corresponding point (§,n) in

the transformed plane, Let n = n, on “he body contour I, and n = Ny

1

on the outer boundary PZ. The contour Pl in the physical plane maps

* in the transformed plane. Similarly, the contour r2

to the contour Fl

maps to the contour I'*. The contours I, and I', represent a "cut" to
4

2 3

be made in the physical plane and constitute the reentrant segments,
P; and Fz, in the transformed plane. Let § = El on I‘4 and § = 52

on F3. £ is allowed to vary monotonically from El to &2 on both the

inner and outer boundaries, rl and F2 respectively. The values of the
physical coordinates on P3 and F4 are the same, but the function
£ = §(x,y) is multivalued on Iy and T, since §, ¥ £,ye

Now £ and n have been completely specified on all the boundaries
of a closed field. It remains to define the values in the interior of
the field in terms of these boundary values. This implies that elliptic

partial differential equations can be used to generate the field points

since the solution of an elliptic partial differential equation is




completely defined in the interior of a region by its values on the
boundaries of that region. The elliptic system chosen must exhibit
certain maximum principles which preclude the occurrence of extrema
in the interior of the region. This will assure that a one-to-one
correspondence exists between the physical and the transformed plane.
The generating system of equations used in this study is a slightly
modified version of the elliptic systems given by References {1], [5],
{7], and [8]. The elliptic system used to generate the boundary-

fitted coordinate system is given by

a
+ e 4 N .
gxx Eyy 2 (E,n) (2.1a)
+ =" - .
n Ny " Q(g,n), (2.1b)

subject to the following Dirichlet boundary conditions

£ £l(x,y)
= R [x,y]erl (2.2a)
n n
A I
& €Z(X.y)
= , [x,y]eI’2 (2.2b)
n | n
2
L 4 L i

where P(&,n) and Q(£,n) are the attraction functions for the £ and n
lines respectively and «, y and J are given, along with other quantities
relating the physical and the transformed planes in Appendix A. Since

it is desired that all numerical computations be performed in the




transformed plane, the independent and dependent variables must be
interchanged. In the transformed plane, the generating system is

given by

aXep - ZBxgn + X - -(axEP(ﬁ.n) + Yan(E.n)) (2.3a)

e = ZBygn + vy 0" -(uyEP(E,n) + yynQ(E,n)) (2.3b)

n

with the transformed boundary conditions

- - -
x fl(E,nl)

- » [E,njler} (2.4a)
y £,(&n))
e —— L- ——

x sl(i,nz;T

*
= . [E,nz]erz (2.4b)

LY ] sz(i,nzid
where the definition of 8 is given in Appendix A. The functions
fl(E,nl), fz(ﬁ,nl), gl(E,nZ), and gz(E,nz) are specified by the known
shape of the contours Fl and Fz respectively, and the specified §
distribution thereon.

Even though this system of quasi-linear partial differential
equations, Equations {(2.3a) and (2.3b), is more complicated than the
original system, Equations (2.la) and (2.1b), the boundary coundi:zions
are specified along straight boundaries in the transformed plane.
Also, the coordinate line spacing in the transformed plane is uniform.

At this point it should be noted that the actual values of £ and n are

irrelevant. The only quantities required by the finite difference




expressions are the values of Af and An which are taken to be unity by
construction since cancellation occurs upon substitution into the
finite difference expressions.

The generating system of equations, Equations (2.3a) and (2.3b),
is solved in the transformed plane. All derivatives are approximated
by second-order central finite difference expressions. The resulting
set of nonlinear simultaneous difference equations is solved using a
point SOR iteration.

Due to the instability in the Navier-Stokes solution near the
trailing edge reported by Steger and Bailey [9] and Thompson [10]
for O-type coordinate systems, the coordinate systems used in this
study were generated using a different outer boundary configuration
than shown ia Figure 1. All coordinate systems used in this study
possessed a '"C-shaped" outer boundary as shown in Figure 2. The use
of this configuration eliminates the problem of the coordinate lines
having to "bend" around the sharp trailing edge.

Consider the two~-dimensional doubly-connected region shown in
Figure 2. Once again the body is represented by the closed contour Fl.
However, the '"C-shaped" outer boundary is represented by three contours,
F3 and the downstream boundaries Fz and I',. The cut in the physical

4

plane is made along the contours PS and P6' For this configuration,

n=mn on the contours PS’ Fl and F6 and n = n, on the contour r3, £

varies monotonically from § = El on PZ to £ = 52 on Pa' Once again

the contour Pl in the physical plane maps to the contour r; in the

»

transformed plane, I2 maps to F;, etc. Since the value of n is constant

along the contours T I, and F6, these contours must represent a line

5° 1




of constant n in the transformed plane. Also, the cut made in the
physical plane along the contours FS and P6 is represented by the re-
entrant segments F; and P; in the transformed plane.

Several different forms of the attraction functious, P(E,n) and
Q(&,n) from Equations (2.3a) and (2.3b), are given by References [1],
[3]), [4], and [7]. In this study only n-line contraction was used, so
P(£,n) 1s taken to be zero. Initially the form of the attraction
function, Q(£,n), was taken to be the form given in the appendix of
Reference [2]. The form of Q(f£,n) which gave the beat results, however,

is presented in the appendix of Reference [4] and Reference [7]. This

technique is developed in detail in Appendix B.




III. THE NAVIER-STOKES EQUATIONS IN PRIMITIVE VARIABLES

The time-averaged Navier-Stokes equations for two-dimensional in-
compressible flow coupled with an algebraic eddy viscosity turbulence
model are presented as an alternative to the full Navier-Stokes
equations for two-dimensional incompressible turbulent flow. The
primitive variable formulation is employed. The resultant equations
are non-dimensionalized and transformed to the transformed (£,n) plane.

The boundary conditions and their application are also presented.

A. The Basic Equations

As stated previously, the full Navier-Stokes equations for in-
compressible turbulent flow must be solved to accurately predict a high
Reynolds number incompressible flowfield. Since an extension to
multiple bodies and eventually three-dimensional flow is desired, only
the primitive variable formulation will be considered. The full
Navier-Stokes equations for two-dimensional incompressible flow are

given in the primitive variable formulation by

p(ut + uu + vuy) -=-p * u(uxx + uyy) (3.1a)
p(vt + uv_ + vvy) =- - py + u(vxx + vyy) (3.1b)
D= ux + vy = 0 (3.1c)

where u and v are the velocity components parallel to the x and y
directions respectively, p is the pressure, p is the fluid density, .
is the molecular viscosity coefficient, and the subscripts x, y, and t

represent partial differentiation in the usual manner. Equations (3.1)




theoretically include the turbulent motion of the fluid if the time
step size and the spacing of the discrete mesh points are taken to be
arbitrarily small. Thia approach is impractical due to the excessive
computational requirements. Some approximate method must be used to
model the effects of turbulence.

The time-averaged Navier-Stokes equations for incompressible flow,

glven in the primitive variables by

i - R S S &
p(ut + uu_ + vuy) P, + u(uxx + “yy) p(u’v )y p(u )x (3.2a)

- butent g = _- - - - - rd - —‘-2-
p(vt + w_ + vvy) py + u(vxx + vyy) p({u’v )x o (v )y (3.2b)
D= u + vy =0 (3.2¢)
where the over bars indicate time-averaged quantities and the primes

indicate fluctuating quantities, were considered in this study. This

form was chosen because of the availability of techniques which model

the Reynolds stresses, —p(u“v”), -0(3755, and -9(377 .

The major problem associated with the primitive variable formu-
lation of the Navier-Stokes equations, Equations (3.1), is the lack of
a time derivative for pressure. There is no direct way of advancing
pressure to the next time level. In fact, the role of pressure in
incompressible flow is to somehow adjust itself so that continuity
will be satisfied. A Poisson equation in pressure can be obtained by
taking the divergence of the momentum equations, Equations (3.la) and
(3.1b). Several forms of this equation are given by Hodge [5] and
Shanks [6]. The form used in this study is given by

- - 2 2
(P + Pyy) = ()% + 2vu 4+ (v)2 + D (3.3)

10




where Dt is the time derivative of the continuity equation. Analyti-
cally, D is always zero, so Dt will always be zero. Numerically, this
is generally not true. The term Dt is retained in Equation (3.3) as a
corrective term to adjust the pressure in an attempt to drive

continuity to zero.

B. The Turbulence Model

The technique used in this study to model the Reynolds stresses
is a slightly modified version of the two-layer algebraic eddy viscosity
turbulence model developed by Baldwin and Lomax [2]. In this model,
the effects of turbulence are represented by an eddy viscosity co-
efficient Mo That is, the Reynolds stress terms of Equations (3.2a)
and (3.2b) are dropped and the molecular viscosity coefficient u 1is

replaced by u + Mo Equations (3.2) then become

p(“t + uu + vuy) =-p, *+ u(l + e)(uxx + uyy) (3.4a)
o(vt + uv, + vvy) = —py + u(l + e)(vxx + vyy) (3.4b)
D= u + vy =0 (3.4c)

where ¢ is the ratio of Me to u. In addition, the distribution of
vorticity is used to determine the length scale so that finding the

edge of the boundary layer is not necessary.

Spatial derivatives of the eddy viscosity have been neglected
in both the momentum equations and in the Poisson equation for the
pressure. This approximation was applied in order to avoid consider-
able complication of these equations, but justification was not

established.

11
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The method used to model transition is given by Cebeci and
Bradshaw [11]. The calculation of the eddy viscosity coefficient is
modified by an intermittency factor that accounts for the transitional
region that exists between laminar and turbulent regions of a flow.
This avoids the assumption that the laminar flow becomes turbulent at
the transition point which can in general lead to substantial error.
For simplicity of calculation, the body is assumed to be a flat plate.
A transition point is calculated on the upper and lower surfaces by
assuming that transition occurs at the first minimum pressure point

on each surface.

C. The Non-Dimensional Equations in the Transformed Plane

Equations (3.4) and Equation (3.3) can be simplified considerably

by using the following non-dimensional variables:

x* z x/L, y* = y/L,
ot =, vk = S,
P* = (- p)/eU’,, t* = ty /L,
Re = pU L/

where U_ is the freestream velocity, L is the characteristic length,
p, is the freestream pressure, and Re is the Reynolds number. After
substitution of the non-dimensional variables, with the asterisks
dropped for convenience henceforth, Equations (3.4) and Equation (3.3)
become

u, +uu + vu, =-p, * (uxx + uyy)(l + €)/Re (3.5a)

v, +uv + vvy - -py + (vxx + vyy)(l + ¢)/Re (3.5b)

12




D= u + vy =0

- - 2 2
(P, + pyy) (ux) +2v.u + (vy) +D,.

xx Xy

(3.5¢)

(3.5d)

This set of eﬁuations represents the form used for the bulk of this

study.

Equations (3.5) must now be transformed into the transformed plane

using the relations and definitions given in Appendix A. The resulting

transformed equations are given by

u, + u(ynuE - ycun)/J + v(xeun - xnua)/J =

- - 2
(ynpE Y;Pn)/J + [(auEE 2auEn + yunn)/J

+ (o/Jz)un + (T/Jz)uel (1 +¢)/Re

v+ U(YnV6 - ngn)/J + v(xsvn - xHVC)/J =

- - 2
(xepn xan)/J + [(uv€£ ZBVEn + yvnn)/J

+

(0/3%)v + (t/3%)v,] Q1 + ) /Re

D= (ynus = Yy, + XeVy = xnvg)/J =0
~[(ap, - 28p, + e, )/32 + (a/3%)p + (1/3%)p,]
= [y ue - ygun)2 + 2y v, - ygvn)(xgun - xnue)

- 2 2
+ (xav xnvg) 173 + D:

n

(3.6a)

(3.6b)

(3.6¢)

(3.6d)

Equations (3.6) are now given on a rectangular field with a square grid

in the transformed plane. The numerical procedures used to obtain

solutions to Equatione (3.6) are given in Chapter 4.

13




D. The Boundary Conditions
The boundary conditions on the surface of the body are given by
u=0 (3.7a)
ve0 (3.7b)
which are the no-slip boundary conditions for a viscous fluid on the
surface of a stationary body with no transpiration., However, the
pressure on the wall pw is unknown and must be calculated. Hodge
[{5] presents two methods for obtaining the pressure on the body surface.
A Chorin-type pressure iteration utilizing the continuity equation

to obtain the wall pressure is given by

(s+1) _ _ (8)
P, P, - QD (3.8a)
where 8 is the iteration counter and 2 is an appropriate acceleration

parameter given by Hodge [5] to be

Q = wi?/[28t(a+y)] (3.8b)
where w is an acceleration parameter and At is the time step size.
Another method of obtaining the wall pressure is to evaluate the
normal derivative of the pressure at the wall from the momentum equation.
The pressure normal to an n-wall is given by

( ) —
pﬁ“) =a™ L. {rp,, = Bp ) /3N (3.9)

(n)

where n - Yp is found from Equation (A.27) in Appendix A. The
normal component of the momentum equation for a body with no trans-
piration and the nc-slip boundary condition is given by
p<™ = [p, + s RX - x,RY]/y (3.108)
1 13 12 1

14




vhere

RX = ~[(-2Bu

m

£n + yunn)/J + (c/J)unl/Ra (3.10b)

RY

~[(~28v, + yvnn)/J + (o/J)vnl/Rc (3.10¢)

€n
The wall pressure can be calculated from Equations (3.10) using one-
sided difference equations.

The pressure at a sharp trailing edge is calculated by applying
Equations (3.8) or Equetions (3.10) to the upper and lower surfaces of
the body at the trailing edge. Since these two values are not generally
equal, an average is taken t~ obtain the pressure at the trailing
edge.

The freestream boundary conditions are applied at all points on
the outer boundary. The freestream conditions are given in terms of

the non-dimensional vzriables by

u = cos ¢ (3.11a)
v = gin ¢ (3.11b)
p~0 (3.11¢)

where ¢ is the angle of attack. The freestream boundary conditions can
be appliel on the downstream boundary because of the large distance from

the trailing edge to the downutream boundary used in this study. .
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1v. IMPLEMENTATION OF THE NUMERICAL SOLUTION

The ttansformed equations must now be approximated by finite
difference expressions. An outline of the techniques used to develop
a finite difference approximation is presented. The general forms of
the finite difference expressions used in the approximation are given
in Appendix C. The method of solution of the finite difference
approximation is discussed. The finite difference approximation
for derivatives across the cut is discussed. Various numerical
techniques used to improve the stability of the numerical solution are

discussed.

A. The Finite Difference Approximation

The transformed Navier-Stokes and Poisson pressure equations,
Equations (3.6), must now be represented by a finite difference
approximation on the discrete mesh system. Since this finite difference
approximation represents a system of nonlinear partial differential
equations which are elliptic in space and parabolic in time, the
finite difference approximation chosen must accurately reflect these
characteristics. Also, consideration must be given to the stability
requirements of the method used.

For these reasons, an implicit algorithm was developed which
utilized backward-time and cen.ra -space differencing techniques.
Both first-and second-order differences were considered for the time
derivatives. Only second-order differences werc used for the spatial
derivatives. Since central differences cannot be used to represent

spatial derivatives in the wall pressure calculction, kLquation (3.8a)
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or Equation (3.9), second-order forward differences were used to
represent the n~derivatives. The general forms of the finite
difference expressions used in this algorithm are given in Appendix C.
At this point, it should be noted that derivatives taken across
the "cut" in the physical plane must receive special treatment. With

reference to Figure 2, a derivative taken across the contours ', and T

5
in the physical plane is taken across the reentranrt segments r; and T

6
*
6

in the transformed plane. Since x and y are equal along these lines,
evaluation i{s necessary along only one of them. As shown in Figure 3,
points in the transformed (£,n) plane which are located at (I1-N,1)
and (I2+N,1) for N < I1 have the same coordinates in the physical
(x,y) plane. With this in mind, the finite difference cxpressions

given in Appendix C can be used to obtain

-y, ™ $12en,1 = Crron,2 = f12en,2)/2 (4.1a)
Condnien,1 ™ $nndraen,1 = frien,2 = H¥new * foew,z 4010
Cendri-n,1 = $endraem,1
= () ne1,2 = friewer,2 ¥ froene,2
-f )/4 (4.1c)

I2+N=-1,2
where f i{s an arbitrary function of £ and n. Th's insures that the
derivatives taken across the reentrant segments rre continuous.
The nonlinear system of algebraic equations which 18 formed by
the application of the appropriate finite difference expressions from

Appendix C to Equations (3.6) is solved using a point SOR iteration.
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The calculation of a linearly optimum acceleration parameter for an

iteration of this type follows the procedure given by Thompson [7].

B. Numerical Stabilizing Techniques

Several purely numerical techniques were implemented in an attempt
to obtain a stable solution. These techniques are needed because of
the nonphysical oscillations of the dependent variables which can
develop in regions of steep gradients. These oscillations, or
numerical instabilities, can cause an otherwise stable solution to
become unstable and diverge.

There are two possikie approaches which can be taken to enhance
the stability of a numerical solution. One possible approach is to
treat the symptoms of the nrmerical instability by filtering or
equivalently,adding an artificial viscosity. The other approach is to
attempt to alleviate the cause of the instability.

A basic filter considered in this study is the switched form of
the Shuman filter given by Harten and Zwas {12]. The two-dimensional
Shuman filter for a general function f is given by

£ =f,  +2f

i’j i’j 8 + fi- + - 4f ] (4'2)

1+1, 1,5 ¥ E5n g T 4y

where 8 = 1 for the simple Shuman.filter. Since this technique has the
effect of adding an artificial viscosity, the effective Reynolds

number will be lowered considerably if the Shuman filter is applied

at all points in the field. However, this will eliminate all of the

oscillations. The characteristics of this filter can be improved

if it is locally applied only when a certain waveform is encountered.
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If an N-waveform is to be filtered, 6 would be set to unity if an
N-waveform is encountered but would be set to zero otherwise. Thus,
only the two sharp points of the N-waveform would be filtered.
Similar statements can be made in relation to a filter for W-wave-
forms or a W-filter. Only the central point of a W-waveform is
filtered. It should be noted that the N-filter, and especially the
W-filter, add no diffusion at all to most of the field. The purpose
of the N-filter and the W-filter is not to eliminate the oscillations,
but to control them so the solution does not diverge.
The filter is applied after each time step. It could be applied
after each iteration but this often causes convergence difficulties.
In addition,the technique of filtering can be applied repetitively
after each time step to further reduce the amplitude of the oscillation.
Another technique which introduces an artificial viscosity is a
fourth-order smoother related to that used by Baldwin and MacCormack
{13]. Several forms of this smoother were implemented. The form which
was finally considered simply replaces (1+t) in Equations (3.6) with
(1+e+v2pJAtRe), where V2p is the Laplacian of the pressure and At is
the time step size. This technique introduces a significant artificial
viscosity only in regions where the Laplacian of the pressure is large.
Most of the attempts to alleviate the cause of the instability
center around the representation of the convective derivatives. The
form given by Equations (3.1) is the non-conservative form. The term
uu_ + vuy in Equation (3.la) 1is actually the expanded form of
(u:’-)x + (uv)y after cancellation of thé continuity equation,

Equation (3.1lc), with D = 0. Analytically these two terms are
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equivalent, numerically they may not be. Four different techniques
were tested and are outlined here. Only terms in the x-momentum
equations are shown since extension to the y-momentum equation is
similar.

Two possible representations of the convective derivatives are
noted in MacCormack [14]. The convective derivative (uz)x can be

represented as the average of a product (AOP) given by
@) =3 (W), - ), ] . (4.3)
Equation (4.3) can itself cause instabilities as explained in Reference
[14). A more stable technique is the representation of the convective
derivative (uz)x as the product of an average (POA). This form is
given by
W) = % Lo,y +u, R (u +u, 2] . (4.4)
These techniques are described in greater detail by Reference [14].
An attempt to improve the stability of the techniques given by
Equation (4.3) and Equation (4.4) was made by including a mass
residual correction. This technique replaces uu + vuy in Equation
(3.1a) with

(uz)x + (uv)y - u(u, + vy) 4.5)

which is analytically equivalent to the non-:onservative form. The
terms (u2)x and (uv)y can be replaced by terms of the form of Equation
(4.3) or Equation (4.4).

Beam and Warming [15] used a technique to linearize the convective

terms to prevent the instability. The form used in this study is
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given by

(uz)n+l - (uz)n + 2un(un+1 - un) (4.6)

where n is the time step number. Equation (4.6) is a second-order

Taylor series expansion for 2)™1 about (u2)®. Since u" is known,
this representation for (uz)n+l is linear.
21




V. RESULTS

The computer code used in this study was written by Joe F. Thompson
as part of the curreant research of the Department of Aerospace
Engineering at Mississippi State University for the NASA Langley
Research Center. The test case considered in this study was the flow-
field generated by an NACA 64A010 airfoil section at an angle of
attack of two degrees and a Reynolds number of 2,000,000,

All the coordinate systems considered in this study were generated
using the method of Chapter 2. The £-attraction function P(£,n) was
obtained by the simultaneous solution of Equations (2.3) after the
initial guess had been obtained. The initial guess was formed by
placing the n~line distribution produced by the contraction near the
body on each £-line. Now the E-attraction function is given by the
product of P(£,n) as obtained above and a decaying exponential based
on ~0.2d where d is the distance from the body. The n—~attraction
function Q(¢,n) was varied to obtain different n~line distributions
near the airfoil. In all cases, the coordinate system was 'C-shaped"
withv113 £-lines and 51 n~lines in the field. There were 72 unique
points or. the airfoil. The downstream and outer boundaries were
located 10 chord lengths from the airfoil. 1In addition, a Neumann
boundary condition was imposed on the n-lines at the downstream
boundary. A typical coordinate system generated during this study is
shown in Figure 4. The region of the field near the airfoil is shown
in Figure 5. The convergence criteria used for all coordinate systems

was 1076,
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Similarly, the following techniques were common to most of the

Navier-Stokes solutions attempted during this study.

(1)

(2)

(3)

(4)

A linear start in 100 steps was used with 2 time step size

of 0.01.

The first time step was run using first-order time differencing
with no turbulence.

The basic turbulence model without the transition point
calculation outlined in Chapter 3 was initiated along with
second-order time differencing after the first time step.

The non-conservative forms of the momentum equations,

. Equations (3.6a) and (3.6b), were considered without the

(5)

(6)

)

(8)

)
(10)

stabilizing techniques described in Chapter 4.

A zero first time derivative projection for the initial guess
at the next time level was used.

The pressure on the boundary was obtained from Equations (3.8)
with w = 0.5.

The field pressure acceleration parameter wasl.0. The
velocities were multiplied by 2,0 in the calculation of an
optimum acceleration parameter.

The velocity and pressure convergence criteria were 1073 and
10™"% respectively.

Partial convergence was accepted after 100 iterations.

All computations were performed on a UNIVAC 1100 series

computer.

Exceptions to these procedures are noted in the course of the discussion

of results which follows.
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The first type of coordinate system considered in this study was
generated by forming a composite functiou for Q(f,n) as described by
Thompson [7]. A Bi.asiiz boundary layer profile was joined to a
quartic polynomial at the second line inside the boundary layer. The
first coordinate system generated using this technique (CS1) had 10
n-1lines contracted into the boundary. The n-line distributions in
the boundary layer for CS1 at the point of maximum thickness of the
airfoil and the leading edge of the airfoil are shown in Figures 6.a
and 6.b respectively.

CS1 was used to generate a solution which diverged at t = 1.05.
The divergence occurred near the leading edge at approximately the
first n-line off the body. As shown in Figure 7, a pressure peak
also occurred near this point. It was thought that the divergence
was caused by an insufficient number of n-lines being contracted
into the boundary layer.

To remedy this problem, a second coordinate system (CS2) was
generated using the same technique which had 20 n-lines contracted
into the boundary layer. (€S2 was used extensively to test the various
numerical techniques implemented during this study. The n-line
distributions for CS2 are shown in Figures 8.a and 8.b. As shown
in Figure 8.b, the n-lines are contracted much closer to the airfoil
at the leading edge than previously shown in Figure 6.b .

CS2 was used to generate a solution which divergad at t = 1.08.
The divergence occurred in the region of the leading edge at the eighth
n-line off the body. Once again, a pressure peak occurred in the
region near the divergsnce as shown in Figure 9. This solution was

restarted from t = 1.00 using the W-filter as described in Chapter 4.
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Once again, the iteration diverged at t = 1,08 and the pressure behavior
was the same. Repeating this procedure using the N-filter described

in Chapter 4 also had little effect on the divergence of the iteration
or the pressure behavior. Also, the repetitive application of the
W-filter after each time step had little effect on the behavior of the
solution. The solution was again restarted from t = 1,00 but with a
new initial guess for each time step. The initial guess at the new

time step was given by the previous time step solution. This also had
little effect on the divergence or the pressure behavior. Applying the
W-filter from t = 0.00 also had no significant effect. Applying the
simple Shuman filter, Equation (4.2), with 6 = 1, to the restart of this
solution produced a more rapid divergence.

An attempt was then made using CS2 to generate a solution using
the momentum equation, Equations (3.10), to obtain the pressure on the
boundary. The iteration diverged at t = 1,08 and exhibited the same
behavior as before. The pressures on the airfoil obtained using
the momentum equation were essentially the same as those obtained using
the continuity equation. Restarting the solution from t = 1.00 and
using the N-filter had little effect on the divergence of the pressure
behavior. Once again, taking the initial guess at the new time step
to be the previous time step solution had no significant effect.

Since each of these attempts was diverging soon after the start
up procedure was completed, several different start-up procedures were
tested using CS2 as the coordinate system. A 100 step cosine start was

implemented. The iteration diverged at t = 0.86. The cosine start
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was no longer considered since it diverged before the linear start.

Another start-up procedure tested was the use of first-order backward
time differences for the time derivatives. This also proved unsuc-
cessful, as the iteration diverged at t = 0.94. This was sooner than
the divergence of the second-order backward time differencing previously
used. In addition, a 100 step linear start was used with the velocity
multiple being 1.0 instead of 2.0 in the optimum acceleration parameter
calculation. This had a destabilizing effect on the iteration.
Instabilities appeared in the solution as early as t = 0.80. Divergence
occurred at t = 0.78. The pressure behavior was essentially the same

as stated previously.

Several attempts were made to stabilize the solution by repre-
senting the convective terms as described in Chapter 4 using CS2 as the
coordinate system. The product of the average representation of the
convective terms (POA), given by Equation (4.4), was implemented in
an attempt to stabilize the solution. This iteration diverged at
t = 0.74. Convergence was lost as early as t = 0.50. Once again,
the pressure behavior was similar to that shown in Figure 9. The mass
residual correction, given by Equation (4.5), was used in conjunction
with the POA representation of the convective terms in an attempt to
stabilize the iteration. The combination of these techniques proved
to be unsuccessful since this iteration diverged sooner than the
iteration without the mass residual correction. The average of the
product representation of the convective terms (AOP), given by Equation

(4.3), was implemented in conjunction with the mass residual correction,
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given by Equation (4.5), in an attempt to stabilize the solution.

This was also unsuccessful, as the iteration diverged at t = 0.54.

The AOP representation was not considered without the mass residual
correction because of the nonlinear instability reported by MacCormack
[14).

In addition, a second-order linearization of the form given by
Equation (4.6) was implemented to enhance the stability of the solution.
This was unsuccessful in that the divergen:: of the iteration occurred
at t = 0,53, The divergence of the iteration once again occurred in
the same region,

Since the iteration was diverging in the same region of the field
for all cases using the coordinate system CS2, a coordinate system was
generated (CS3) with 20 n-lines contracted into the boundary layer
using the attraction function given by Roberts [16]. This attrs tion
function is a continuous exponential function. Ttis eliminates any
problems associated with discontinuities in the derivatives of the
n-line distribution which result from a composite functioi. being
chosen for the attraction function. Figures 10.a and 10.b show the
distribution of n-lines in the boundary layer at the point c¢f maximum
thickness and the leading edge of the airfoil respectively.

CS3 was used to generate a solution which did not diverge and
seemed to be converging at time t = 2,00. However, this solution was
worthless as shown in Figure 11. This invalid pressure distribution
was obtained from an equally invalid velocity field. This behavior
was caused by the looseness of the coordinate system convergence

criteria. The distance at the leading edge to the first n-line off the

27

e e




tody was 2 x 1075, which is the same order of magnitude as the con-
vergence criteria. This problem could be alleviated by generating a
coordinate system with a decreusad snnvergence criteria or by

decreasing the number of n-lines contracied into the boundary layer.

The latter approach was implemented #ad a coordinate svstem (CS4)
was generated with 10 n-lines contracted into the boundary layer. The
distance at the leading edge to the first n~line off the body was
2.6 x 10~“. The distributions of the n-lines in the boundary layer at
the point of maximum thickness and leading edge of the airfoil are
shown in Figures 12.a and 12.b respectively.

CS4 was used to generate a solution which diverged at t = 1.18.
This solution was more well-behaved than the solution obtained using
CS3. The pressure distribution obtained at t = 1.00 is shown in
Figure 13. Once agai.n,a pressure peak occurred in the region where the
divergence originated. Application of the W-filter to the restart of
this solution had no significant effect.

A new coordinate system was generated (CS5) which utilized the
techniques outlined in Appendix B. The distributions of the n-lines
in the boundary layer at the point of maximum thickness and the
leading edge of the airfoil are shown in Figures l4.a and 14.b
respectively. As an attempt to reduce the roundoff error, o and 7t
are calculated directly from P(£,n) and Q(£,n). This {teration
diverged at t = 1.08 and exhibited the same behavior as observed for
CS3. The MacCormack fourth-order smoother as described in Chapter 4

was implemented in an attempt to stabilize the solution. This iteration
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had not diverged at t = 2,00, but convergence was lost as early as

t » 1,90, The maximum iteration error occurred near the upper surface
trailing edge at the sixteenth n-line off the body. The prassure
distribution obtained at t = 1.90 is shown in Figure 15. The poor
reprasentation of the flowfield was caused by the turbulence model
inaccurately reprasenting the eddy viscosity. The eddy viscosity
coefficient obtained from the turbulence model was so large that the
flcw separated at the leading edge on both the upper and lower surfaces.
This separation was caused by the sssumption that the antire flowfield
was turbulent. However, the flow near the leading edge was actually
laninar. This led to the inclusion of the transition point calculation
as discussed in Chapter 3.

At this point in time, adequate computational facilities became
unavailable locally. This necessitated a converaion of all programs
for compatibility with the CDC computational facilities available at
NASA Langley Research Center. Because of this delay, orly preliminary
data is available from the nevw techniques implemented during the
convarsion.

CS5 was regenerated with a convergence criteria of 1078, Using
this new coordinate system, a solution was generated by including
the transition point calculation outlined in Chapter 3, in additiom to
the fourth-order MacCormack smoother and the calculation of o and 1
from »{f,n) and Q(£,n). Preliminary results indicate that the transition
point on the lower surface is calculated to be near the trailing edge
of the airfoil. Previously, all of the lower surface was turbulent.

Now all of the lower surface is laminar. This trend occurred from
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t =0.00tot = 0.70, the last time level where data is available.

Also, full convergence has been cbtained up to this time level.
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VI. CONCLUSIONS

The development 5f the boundary-fi:ted coordinate systems have

made the numerical solution of the Navier-Stokes equations for high

Reynolds number incompressible turbulent flow feasible. Several

numerical techniques were implemented and evaluated during this

study.

The following list suamarizes the most important results of

this evaluation.

Q1)

(2)

(3)

The non-conservative formulation of the Navier-Stokes equations
gives better results than formulations involving AOP or POA
representations of the convective terms. In addition, the
mass residual correction and the second-order linearization
were also ineffective.

The MacCormack smoother was the only filter which enhanced

the stability of the solution significantly. The Shuman
filter, N-filter, and W-filter did not significantly affect

the stability of the solution. The ineffectiveness of these
filters can be attributed to the larger time step size of
implicit methods. The filter was not applied as often

over the same time interval as it would have been for the
explicit methods for which it was developed.

The pressure on the boundary can be obtained from the continuity
equation via a Chorin-type iteration or from the component

of the momentum equation normal to the boundary. However,
using the continuity equation seems to improve the stability

of the solution slightly.
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(4) Preliminary data indicates that the addition of an inter-
mittency factor at the transition point significantly improves
the effects of the algebraic turbulence model used in this
astudy.

(5) Better results are obtained for coordinate systems which
have a continuous distribution of coordinate lines with
small convercence criteria (10-%).

The preliminary .esults of the final solution described in

Chapter 5 are the most encouraging to date. This solution should be

continued in an attempt to obtain a valid steady-state solution.
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APPENDIX A
Various Relations in the Transformed Plane

This Appendix contains many of the pertinent definitions and
relations in the transformed (£,n) plane. Thompson, Thames, and
Mastin [1l] present a comprehensive set of relations and the notation
used in Reference [l]) is retained here. Similarly, the following
function definitions are applicable:

f(x,y,t) ~ A twice continuousiy differentiable scalar function of

X,y and t
F(x,y) = 1 Fl(x,y) + Fz(x,y) - A continuously differentiable
vector-valued function; i and j
are the conventional Cartesian
coordinate unit vectors.

It should be noted that all derivative transformations given here are

in the geometrically non-conservative form.

Definitions of the Transformation

a = xi + yﬁ (A.1)
g = xgxn + yEyn (A.2)
y = xé + yé (A.3)
Dx = ozxgC - ZBxgn + Yxnn (A.4)
Dy = AYep ~ 28:»’5n + Yon (A.5)
o = (yng - ngy)/J (A.6)
T = (any - yan)/J (A.7)
J - xgyn - xnyE (A.8)
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Where J is the determinant of the Jacobian matrix.

Derivative Transformations

-
n

<af/a'x>y.t = O, f - VL)1 (A.9)

£

y (Bflay)x,t - (xefn - xnfE)IJ (A.10)

- 2 2 a Z, - 2 2
£~ (°f/ox )y,c (yn- Zygynfgn +yvif )3

» "€ nn
+(y3y,, - 2y, 7.y, +¥2y )(x £, - x.f)/33
n &E E'n"En £°nn” ""n"E & n
2 _ 2
+(yan€ 2yEyann + yExnn)
- 3
(ygfn ynfg)/J (A.11)
= 2 2 = 2 - 2 112
fyy (3<f/3y )x,t (xnfﬁg ZXExnfEn + ngnn),J
2y 2 - 3
O Vpg XX Ve, Xy VO £ - X £) /3

x2x - 2
(x(%eg = 2x,X X+ xpx )

S f 3
Gef, Y Ee)/d (A.12)

- [¢ - - 2
fy = LRy ¥ xye) £ - Xy £ - x oy £ 110
_ _ 3
I yoxee © Ggyp Fxve) Xe Xy 10 £ -y )13

* [xnyny€E - (xﬁyn + xnyﬁ) Yen + xﬁyﬁynn]

- 3
(ngn xnfg)/J (A.13)

Vector Derivative Transformations

Laplacian:
26 m - 2 - -
veE (afEE 23fEn + yfnn)/J + [(axEE 28xCn + Yxnn)(yﬁfn ynfE)
- - 3
+ (ayEE ZBYCn + Yynn)(xnfﬁ xafn)]/J (A.14)
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or

2f m - 2
VE = (afg, - 28, 4 yE 4 Of +TE)/

Gradient:
Vf = [(ynfi - yefn) i+ (xﬁfn - xnfg)lllJ
Divergence:
Te Fo by, (F)p = 5 (B + X (F) = x (Fy) 113
Curl:

U F=kly (F)p -y (F)) - x.(F)) + X, (F)el/d

Unit Tangent and Normal Vectors

Normal to n-Line:
(n)

n

W/ [In] = Gyt +x DI

Normal to £--Line:
L8

i1l

ve/lvel = (v 1 - x DIV

Tangent to n-Line:
(n)

t

a My - (x 1+ y /7Y
Tangent to £-Line:
®) L (©)

e = xk = ~(x 1 +y §)//a

Vector Components Tangent and Normal to £ and n-Lines

SR I :
F Yoz F = (-yF) + xEFz)//§

() _ () o NS
FE Bt F (XEFI + yérz)/ Y

) . () I~
FI} = l;l . E - (ynFl - anz)/ a

@€ . ) - -
Fooolose c P -(x F) 4y F)lva
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(a.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)




Directional Derivatives

ag/aa™™ = o™ . ys - (vf, - BE/IN

ot/ = a® - vt - o, - 82107

a0t 2 ¢ L ve - - g /e
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(A.27)

(A.28)

(A.29)

(A.30)
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APPENDIX B
Concentration of Coordinate Lines Near a Body

Consider the coordinate system generation Equations (2.3) applied
to concentric circular boundaries of radius T and Ty With n = 1 on
the inner boundary, n = J on the outer boundary,and £ varying mono-

tonically from 1 to Ez around these boundaries, the solution of

Equations (2.3) can be given in the form

x = r(n) cos [2r (==1)] (B.1a)
52"1

y = () sin [21 EZD] . (B.1b)
2

Substitution of these expressions into either of the equations of (2.3)

with P(£,n) = 0 yields

!

rl
e Q(&,n) = 0. (B.2)

This can be made a perfect differential by taking the control function

Q(t,n) of the form

Q(g,n) = - %;%%% (B.3)
where the minus sign has been introduced merely for convenience.
Substituting Equation (B.3) into Equation (B.2) yields
AR A (5.8)
which can be integrated twice to yield
r(n) = c,e clf(n) . (B.5)

The constants of integration may be evaluated from the boundary
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conditions, r(l) = Ty r(J) = r,, 80 that

f(n) - £Q1)
r(n) = r, {(eyfe) £ = EDy (8.6)

This equation may then be solved for f(n) to yield

12,
f(n) - £Q1) _ 1 (8.7)
£(J) - £(Q1) T, *
In{—=]
o1

If the distance from the body to the Nth n-line is specified to be L

the following equation must be satisfied:

N

1n [-r—]

f(N) - £(1) 1
O -t " T, (8.8)

In[—=]

1

It should be noted that the form of f(n) is still arbitrary, subject to
Equation (B.8). The form™ used in this study is given by

£(n) = nk"t (3.9)
where K is a constant which must satisfy the nonlinear equation

r

N
In[—]
N-1 r
e —t. (3.10)
JK -1 2
In[—]
51

Once K has been determined from Equation (B.10), the control function

Q(5,n) 1s determined from Equations (B.3) and (B.9) to be

aCe,m = - S0 oy (8.11)

*The form of f(n) was obtained from Reference [17].
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Although the above analysis was developed for circular boundaries, the

effect will generally be the same for arbitrary boundary configurations.
The procedure which gave the best results was to fix the distance

of the n = 2 line at one one-hundredth of the boundary layer thickness

from the body. Therefore, r, = r(2) is given by

N
2 0.05

r . (B.12)
N /Re 1l

It should be noted that r, was set equal to the radius of a circle

circumscribed about the body and that r, was set equal to the radius

of the circular arc which represents a portion of the outer boundary.
Now N and N have been specified so K is obtained by solving Equation
(B.10) using a false position iteration.
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APPENDIX C

Genaral Finite Difference Expressions

This appendix summarizes the finite difference expressions for a
general function f£(£,n,t) which are necessary for implementation of the
procedures outlined in Chapter IV. It should be noted that since
the step size in the transformed plane is unity, it does not appear
in the spatial difference expressions. For convenience, two short
conventions are used in this appendix. All difference equations
apply at the point denoted by the space subscripts (i,j) and the tiue
superscript (n). The subscripts (i,j) and superscript (n) are
understood where they are omitted. In this appendix, only time

derivatives and £-derivatives are shown.

Time Derivative Approximations

Firast-Order Backwards:
£ = %1 4 /ot (n.3)
Second-Order Backwards:

n-1

£2 - %2 - 4™ 4 38 /2 €.2)

Spatial Derivative Approximations (Second-Order Only)

First Derivative, Central Difference:

£ (c.3)

fp=f 1-1,3

£ 14,3
First Derivative, Forward Difference:

3, )/2 (C.4)

f_ = (-f 141, - 1,

£ 142,93 ¥ 4f
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First Derivative, Backward Difference:

£om (8, g = b8, o+ 38 )2 (C.5)

Second Derivative, Central Difference:

fe ™ faan,g T Myt fra, (©.6)
Cross Derivative, Central Difference:
fen ™ a0~ f1a1,50 7 f1e1,90 * fe1, 30004 (.7

Cross Derivative, {-Forward Difference and n-Central Difference:

£en = (£

-3(

+ £ + 4(f £

142,341 © “i42,§=1 141,341 © “1+41,3-1)

£, 441 = £1,4007% (c.8)

Cross Derivative, {-Backward Difference and n-Central Difference:

fEn' (fi-Z.Jﬂ - fi-Z.J-l B “fi‘l'i""l ) fi'l’j'l)

IR NN (c.9)

Cross Derivative, £-Central Derivative and n-Forward Difference:

fEn = (f £ + 4(f £

1-1,3+2 = “1+1,§42 141,341 ~ “1-1,3+1)

-3(f ))/4 (c.10)

141, = f1-1,9
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