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ABSTRACT

David S. Thompson, Master of Science, 1980

Major: Aerospace Engineering, Department of Aerospace Engineering

Title of Thesis: Numerical Solution of the Navier-Stokes Equations
for High Reynolds Number Incompressible Turbulent
Flow

Directed by: Dr. Joe F. Thompson

Pages in Thesis: 58	 Words in Abstract: 198

Abstract

The full Navier-Stokes equations for incompressible turbulent

flow must be solved to accurately represent all flow phenomena which

occur in a high Reynolds number incompressible flow. A two-layer

algebraic eddy viscosity turbulence model is used to represent the

Reynolds stress terms in the time-averaged incompressible Navier-

Stokes equations in the primitive variable formulation. The development

of the boundary-fitted coordinate systems has made the numerical

solution of these equations feasible for arbitrarily shaped bodies.

The non-dimensional time-averaged Navier-Stokes equations,

including the turbulence model, are represented by finite difference

approximations in the transformed (&,n) plane. The resulting coupled

system of nonlinear algebraic equations is solved using a point

successive over-relaxation (SOR) iteration.

The test case considered in this study was an NACA 64AO10 air-

foil section at an angle of attack of two degrees and a Reynolds

number of 2,000,000. Several boundary-fitted coordinate systems
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were generated and used to evaluate various filters and various

representations of the convective terms. Pressure distributions are

presented which emphasize the difficulties associated with each

technique.

The preliminary results of a solution are presented which

encourage the continuation of the solution to obtain a steady state

solution. The major results of the evaluation of the techniques are

also aummarized.
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I. INTRODUCTION

The problem of accurately predicting the flowfield about an arbi-

trary configuration in a high Reynolds number incompressible flow has

provided seemingly insurmountable problems to researchers in this area.

The only way to represent fully all flow phenomena which occur at these

conditions is to solve the full Navier-Stokes equations for incom-

pressible turbulent flow. The primitive variable formulation must be

used if multiple bodies or three-dimensional flow is to be considered.

Since the solution of the Navier-Stokes equations is essentially a

very complex boundary value problem, the validity of the solution is

dependent on the accuracy of the representation of the boundary values.

If a conventional grid system is used for an arbitrary configuration,

interpolation will be required at the boundaries. This may lead to

poor application of the boundary conditions. In high Reynolds number

flow, there are large gradients in regions near solid boundaries.

These gradients are generally dominant in determining the character of

the solution. The revolution of these gradients requires that a large

number of closely spaced coordinate lines exist in the regions near

solid boundaries. This would suggest using a fine mesh near these

boundaries and a coarse mesh in the regions where the gradients are

small with some type of transitional mesh in between.

A technique has been developed by Thompson, Thames, and Mastin

[1) which will help to alleviate these problems. This technique

numerically generates a discrete mesh system, called a boundary-fitted

coordinate system, for arbitrary configurations. These mesh systems

possess 6. constant coordinate line coincident with each physical

A



boundary so interpolation is eliminated at the boundaries. By modifying

the governing equations, coordinate lines can be concentrated in any

region of the field.

The two-dimensional Navier-Stokes equations for incompressible

turbulent flow are represented by a finite difference approximation for

the time-averaged incompressible Navier-Stokes equations and a slightly

modified version of the algebraic turbulence model developed by Baldwin

and Lomax (2). The finite difference approximations must be augmented

by the inclusion of terms relating the discrete mash and the physical

grid. This effectively removes the physical coordinate system from the

problem at the expense of complicating the original set of equations.

However, application of the boundary conditions is simplified since

the boundary conditions are given on straight boundaries in the trans-

formed plane. Since the finite difference approximations represent an

elliptic system of nonlinear partial differential equations, an

iterative technique must be used to obtain a solution. The technique

used in this study was an accelerated Gauss-Seidel iteration.or

successive over-relaxation (SOR).

These techniques have been used with some success for incompressible

viscous flow by several researchers. Bearden [3j obtained results for

laminar flow at a Reynolds number of 1,000,000 about a single element

airfoil at zero angle of attack using the stream function-vorticity

formulation of the Navier-Stokes equations. Reddy 141 also obtained

results for the same flow conditions usint the integro-differential

formulation. Primitive variable form4•_ations have been developed by

Hodge [5) and Shanks [6). Hodge [S) obtained results for laminar flow

about a single element airfoil at zero angle of attack for a Reynolds

2
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number of 41,400. Shanks (6) considered low Reynolds number flow about

a submersed hydrofoil.
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II. THE BOUNDARY-FITTED COORDINATE SYSTEM

tfuch research has been devoted to the development of the techniques

necessary for numerically generating boundary-fitted coordinate systems.

Since the mathematical development and numerical implementation of these

techniques is given in great detail by Thompson, Thames, and Mastin [1],

Hodge [5], Thompson [7], and Thames [8], only an overview will be

presented here. In addition, a method used to contract coordinate lines

near a body in the field is given in Appendix B.

Consider a two-dimensional doubly-connected region as shown in

Figure 1. The general transformation is one which associates each

point (x,y) in the physical plane with a corresponding point (^,n) in

the transformed plane. Let n - n, on `he body contour r  and n - n2

on the outer boundary r 2 . The contour r  in the physical plane maps

to the contour ri in the transformed plane. Similarly, the contour r2

maps to the contour r2. The contours r3 and r4 represent a "cut" to

be made in the physical plane and constitute the reentrant segments,

r3 and r4, in the transformed plane. Let _ 1 on r4 and t - t2

on r3 . ^ is allowed to vary monotonically from &1 to ^2 
on both the

inner and outer boundaries, r  and r 2 respectively. The values of the

physical coordinates on r 3 and r4 are the same, but the function

_ ^(x,y) is multivalued on r 3 and r4 since ^1 # Y
Now ^ and n have been completely specified on all the boundaries

of a closed field. It remains to define the values in the interior of

the field in terms of these boundary values. This implies that elliptic

partial differential equations can be used to generate the field points

since the solution of an elliptic partial differential equation is

4



completely defined in the interior of a region by its values on the

boundaries of that region. The elliptic system chosen must exhibit

certain maximum principles which preclude the occurrence of extrema

in the interior of the region. This will assure that a one-to-one

correspondence exists between the physical and the transformed plane.

The generating system of equations used in this study is a slightly

modified version of the elliptic systems given by References [1], [51,

[7j, and [8]. The elliptic system used to generate the boundary-

fitted coordinate system is given by

+ &YY - - 2 P (E,n)	 (2. la)
xx	 J

n 
+nYY	

^ Q(E,n),	 (2. lb)

J

subject to the following Dirichlet boundary conditions

1(x,Y)

°	 , [x, y i Er 1 	(2.2a)

n	 nl

E2(x,y)

, [x, y i cr 2	(2.2b)

n	 n2

where P(^,n) and Q(^,n) are the attraction functions for the & and n

lines respectively and a, y and J are given, along with other quantities

relating the physical and the transformed planes in Appendix A. Since

it is desired that all numerical computations be performed in the

5



transformed plane, the independent and dependent variables must be

interchanged. In the transformed plane, the generating system is

given by

ax EE -
 

20x 
4n + Yxnn	 (axJ(E'n) + YxOt o))	 (2.3a)

ay EE - 28y En + Yynn 0 - 
(ay Ep (E ' n) + YYn4(E.n))	 (2.3b)

with the transformed boundary conditions

x	 f1(E, nl)

	

[ E, nll cri	 (2.4a)

y	 f2(E,nl)

x	 gl(E,n2)

	

. I E, n2l erg	 (2.4b)

y	 92(E,n2)

where the definition of S is given in Appendix A. The functions

fl (E ' nl ), f2 (E,nI), gl ( E ' n2 ) ' and g 2 ( t ' n2 ) are specified by the known

shape of the contours r  and r2 respectively, and the specified E

distribution thereon.

Even though this system of quasi-linear partial differential

equations, Equations (2.3a) and (2.3b), is more complicated than the

original system, Equations (2.1a) and (2.1b), the boundary conditions

are specified along straight boundaries in the transformed plane.

Also, the coordinate line spacing in the transformed plane is uniform.

At this point it should be noted that the actual values of E and n are

irrelevant. The only quantities required by the finite difference

6



expressions are the values of o& and An which are taken to be unity by

construction since cancellation occurs upon substitution into the

finite difference expressions.

The generating system of equations, Equations (2.3a) and (2.3b),

is solved in the transformed plane. All derivatives are approximated

by second-order central finite difference expressions. The resulting

set of nonlinear simultaneous difference equations is solved using a

point SOR iteration.

Due to the instability in the Navier-Stokes solution near the

trailing edge reported by Steger and Bailey [9) and Thompson [10]

for 0-type coordinate systems, the coordinate systems used in this

study were generated using a different outer boundary configuration

than shown in Figure 1. All coordinate systems used in this study

possessed a "C-shaped" outer boundary as shown in Figure 2. The use

of this configuration eliminates the problem of the coordinate lines

having to "bend" around the sharp trailing edge.

Consider the two-dimensional doubly-connected region shown in

Figure 2. Once again the body is represented by the closed contour rl.

However, the "C-shaped" outer boundary is represented by three contours,

r 3 and the downstream boundaries r 2 and r4 . The cut in the physical

plane is made along the contours r5 and r6 . For this configuration,

n = nl on the contours r 5 , r
  

and r6 and n	 n2 on the contour r3,

varies monotonically from & = f, 1 on r 2 to 	 E 2 on r 4 . Once again

the contour r l in the physical plane maps to the contour ri in the

transformed plane, I' 2 maps to r2, etc. Since the value of n is constant

along the contours r 5 , r
  

and r6 , these contours must represent a line

7



of constant n in the transformed plane. Also, the cut made in the

physical plane along the contours r5 and r6 is represented by the re-

entrant segments r* and r6 in the transformed plane.

Several different forms of the attraction functious, P( &,n) and

Q(C,n) from Equations (2.3a) and (2.3b),are given by References [1],

[3], [4], and [7]. In this study only n-line contraction was used, so

P(&,n) is taken to be zero. Initially the form of the attraction

function, Q(E,n), was taken to be the form given in the appendix of

Reference [2]. The form of Q(E,n) which gave the beat results, however,

is presented in the appendix of Reference [4] and Reference [7]. This

technique is developed in detail in Appendix B.

a
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III. THE NAVIER-STOKES EQUATIONS IN PRIMITIVE VARIABLES

The time-averaged Navier-Stokes equations for two-dimensional in-

compressible flow coupled with an algebraic eddy viscosity turbulence

model are presented as an alternative to the full Navier-Stokes

equations for two-dimensional incompressible turbulent flow. The

primitive variable formulation is employed. The resultant equations

are non-dimensionalized and transformed to the transformed Q ,n) plane.

The boundary conditions and their application are also presented.

A. The Basic Equations

As stated previously, the full Navier-Stokes equations for in-

compressible turbulent flow must be solved to accurately predict a high

Reynolds number incompressible flowfield. Since an extension to

multiple bodies and eventually three-dimensional flow is desired, only

the primitive variable formulation will be considered. The full

Navier-Stokes equations for two-dimensional incompressible flow are

given in the primitive variable formulation by

p (ut + uuX + vuy) - - pX + u(uxx + uyy )	 (3.1a)

p(vt + uvx + vvy ) - - p  + u(vxx + vyy)	 (3.1b)

D - u  + v  - 0	 (3.1c)

where u and v are the velocity components parallel to the x and y

directions respectively, p is the pressure, p is the fluid density,

is the molecular viscosity coefficient, and the subscripts x, y, and t

represent partial differentiation in the usual manner. Equations (3.1)

9



D u +v - 0
X	 y

(3.2c)

theoretically include the turbulent motion of the fluid if the time

step size and the spacing of the discrete mesh points are taken to be

arbitrarily small. This approach is impractical due to the excessive

computational requirements. Some approximate method must be used to

model the effects of turbulence.

The time-averaged Navier-Stokes equations for incompressible flow,

given in the primitive variables by

P (ut + uux + vuy) -px + u (uxx + uyy) -P (u'v')y -P (u "T)x	 (3.2a)

P(vt 
+ uvx + wy) -py + 11(vxx + vyy) -P(u'v')x -P(v' 2 )y 	 (3.2b)

where the over bars indicate time-averaged quantities and the primes

indicate fluctuating quantities, were considered in this study. This

form was chosen because of the availability of techniques which model

the Reynolds stresses, -P(u'v'), -P(u' 2), and -p(v'T).

The major problem associated with the primitive variable formu-

lation of the Navier-Stokes equations, Equations (3.1), is the lack of

a time derivative for pressure. There is no direct way of advancing

pressure to the next time level. In fact, the role of pressure in

incompressible flow is to somehow adjust itself so that continuity

will be satisfied. A Poisson equation in pressure can be obtained by

taking the divergence of the momentum equations, Equations (3.1a) and

(3.1b). Several forms of this equation are given by Hodge (5) and

Shanks (5). The form used in this study is-given by

-(pxx 
+ pyy) - (ux)2 + 2vxuy + (vy ) 2 + D 	 (3.3)

10



where D  is the time derivative of the continuity equation. Analyti-

cally, D is always zero, so D  will always be zero. Numerically, this

is generally not true. The term D  is retained in Equation (3.3) as a

corrective term to adjust the pressure in an attempt to drive

continuity to zero.

B. The Turbulence Model

The technique used in this study to model the Reynolds stresses

is a slightly modified version of the two-layer r-lgebraic eddy viscosity

turbulence model developed by Baldwin and Lomax (2). In this model,

the effects of turbulence are represented by an eddy viscosity co-

efficient µ t . That is, the Reynolds stress terms of Equations (3.2a)

and (3.2b) are dropped and the molecular viscosity coefficient u is

replaced by u + u t . Equations (3.2) then become

p(ut + uux + vuy) -px + u(1 + O (uxx + uyy)	 (3.4a)

p(vt + uvx + vvy)	 -py + 11(1 + e)(v
xx
 + vyy)	 (3.4b)

D - ux + vy - 0	 (3.4c)

where c is the ratio of 
P  

to u. In addition, the distribution of

vorticity is used to determine the length scale so that finding the

edge of the boundary layer is not necessary.

Spatial derivatives of the eddy viscosity have been neglected

in both the momentum equations and in the Poisson equation for the

pressure. This approximation was applied in order to avoid consider-

able complication of these equations, but justification was not

established.

V_
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The method used to model transition is given by Cabeci and

Bradshaw 1111. The calculation of the eddy viscosity coefficient is

modified by an intermittency factor that accounts for the transitional

region that exists between laminar and turbulent regions of a flow.

This avoids the assumption that the laminar flow becomes turbulent at

the transition point which can in general lead to substantial error.

For simplicity of calculation, the body is assume=d to be a flat plate.

A transition point is calculated on the upper and lower surfaces by

assuming that transition occurs at the first minimum pressure point

on each surface.

C. The Non-Dimensional Equations in the Transformed Plane

Equations (3.4) and Equation (3.3) can be simplified considerably

by using the following non-dimensional variables:

x* = x/L,	 y* = y/L,

u* = u/U.,	 v* = v/UW,

p* 	(p - pW) /CU2,,,	 t * = tU./L,

Re = PU„L/u

where U. is the freestream velocity, L is the characteristic length,

p,, is the freestream pressure, and Re is the Reynolds number. After

substitution of the non-dimensional variables, with the asterisks

dropped for convenience henceforth, Equations (3.4) and Equation (3.3)

become

ut + uux + vu  - -p x + (uxx + uyy)(1 + e)/Re	 (3.5a)

vt + uvx + vv  - -py + (vxx + vyy)(1 + O /Re	 (3.5b)

12



D - ux + v  - 0	 (3.50

-(pxx + per)	 (ux) 2 + 2vxuy + (vy) 2 + Dt .	 (3.5d)

This set of equations represents the form used for the bulk of this

study.

Equations (3.5) must now be transformed into the transformed plane

using the relations and definitions given in Appendix A. The resulting

transformed equations are given by

ut + u(y nu& - y&un)/J + v(x&un - xnud /J -

- (Ynp& - Y&pn)/J + [(au&& - 20u &n + Yunn)/J2

+ (0/J2 )un + (T/J2 )u& ] (1 + e)/Re	 (3.6a)

vt + u(ynv^ - y&vn ) /J + v(x&vn - xnvC )/J -

- (x&pn - xnp & ) /J + [(av^ c - 26v &n 
+ Yvnn)/J2

+ (o/J 2 )v n + (T/J 2 )v& ] (1 + O /Re	 (3.6b)

D - (Ynu& - 
Y&un + x^v n - x nv& ) /J - 0	 (3.6c)

-[(ap^ E - Up&n + Y
pnn )/

J2 + (o/J 2 ) pn + (T/J2)pEI

- [(Y n u4 - Y^un ) 2 + 2(y nvs — Y4v n )(x&un — xnu&)

+ (x^vn - xnv& ) 2 ] /J 2 + D 
	 (3.6d)

Equations (3.6) are now given on a rectangular field with a square grid

in the transformed plane. The numerical procedures used to obtain

solutions to Equations (3.6) are given in Chapter 4.
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D. The Boundary Conditions

The boundary conditions on the surface of the body are given by

u - 0	 (3.7a)

v - 0	 (3.7b)

which are the no-slip boundary conditions for a viscous fluid on the

surface of a stationary body with no transpiration. However, the

pressure on the wall pw is unknown and must be calculated. Hodge

(5) presents two methods for obtaining the pressure on the body surface.

A Chorin-type pressure iteration utilizing the continuity equation

to obtain the wall pressure is given by

P (8+1) . P (a) - DD	
(3.8a)

W	 w

where a is the iteration counter and n is an appropriate acceleration

parameter given by Hodge (5] to be

S1 . wJ 2 /(2At(a+Y )]	 (3.8b)

where w is an acceleration parameter and At is the time step size.

Another method of obtaining the wall pressure is to evaluate the

normal derivative of the pressure at the wall from the momentum equation.

The pressure normal to an n-wall is given by

pan)	 n (n)	 Vp - ^Y p n - dp )w((3.9)

where n (n) • Vp is found from Equation (A.27) in Appendix A. The

normal componenC of the moracntum equation for a body with no trans-

piration and the no-slip boundary condition is given by

pi n) • 1 6P
&
 + J & R.: - x^RY] /Y	 (3.10x)
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where

RX	 ((-20u En + Yunn)/J + (a/J)u n )/Re	 (3.10b)

RY = -[(-20v &n + Yvnn)/J + (a/J)vn )/Re	 (3.100

The wall pressure can be calculated from Equations (3.10) using one-

sided difference equations.

The pressure at a sharp trailing edge is calculated by applying

Equations (3.9) or Equations (3.10) to the upper and lower surfaces of

the body at the trailing edge. Since these two values are not generally

equal, an average is taken to obtain the pressure at the trailing

edge.

The freestream boundary conditions are applied at all points on

the outer boundary. The freestream conditions are given in terms of

the non-dimensional variables by

u - cos ¢	 (3.11a)

v a sin 4	 (3.11b)

P - 0 (3.110

where 0 s the angle of attack. The freestream boundary conditions can

be appl i e" on the downstream boundary because of the large distance from

the trailing edge to the downstream boundary used in this study.
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IV. IMPLEMENTATION OF THE NUMERICAL SOLUTION

The transformed equations must now be approximated by finite

difference expressions. An outline of the techniques used to develop

a finite difference approximation is presented. The general forms of

the finite difference expressions used in the approximation are given

in Appeudix C. The method of solution of the finite difference

approximation is discussed. The finite difference approximation

for derivatives across the cut is discussed. Various numerical

techniques used to improve the stability of the numerical solution are

discussed.

A. The Finite Difference Approximation

The transformed Navier-Stokes and Poisson pressure equations,

Equations (3.6), must now be represented by a finite difference

approximation on the discrete mesh system. Since this finite difference

approximation represents a system of nonlinear partial differential

equations which are elliptic in space and parabolic in time, the

finite difference approximation choeen must accurately reflect these

characteristics. Also, consideration must be given to the stability

requirements of the method used.

For these reasons, an implicit algorithm was developed which

utilized backward-time and cen..ra -space differencing techniques.

Both first-and second-order differences were considered for the time

derivatives. Only second-order differences were used for the spatial

derivatives. Since central differences cannot be used to represent

spatial derivatives in the wall pressure calculcl .ion, kquation (3.8a)

16



or Equation (3.9), second-order forward differences were used to

represent the n-derivatives. The general forms of the finite

difference expressions used in this algorithm are given in Appendix C.

At this point, it should be noted that derivatives taken across

the "cut" in the physical plane must receive special treatment. With

reference to Figure 2, a derivative taken across the contours r  and r6

In the physical plane is taken across the reentrant segments rs and r6
in the transformed plane. Since x and y are equal along these lines,

evaluation is necessary along only one of them. As shown in Figure 3,

points in the transformed (C,n) plane which are located at (I1-N,1)

and (I2+N,1) for N < I1 have the same coordinates in the physical

(x,y) plane. With this in mind, the finite difference expressions

given in Appendix C can be used to obtain

(f )	 - (f )	 _ (f	 f	 )/2	 (4.1s)
n I1-N,1	 n i2+N,1	 I1-N,2	 I2+N,2

(f nn)I1-N,1 + (fnn)I2+N,1 ' fIl-N,2 - 2f I1-N,l + fIl+N,2
	(4.1b)

(f &n ) I1-N,1	 (f&n)I2+N,1

U11-N-1,l	 f Il-N+1,2 + fI2+N+1,2

	

-f12+N-1,2)/4
	 (4.10

where f is an arbitrary function of E and n. Th'.a insures that the

derivatives taken across the reentrant segments ..re continuous.

The nonlinear system of algebraic equations which is formed by

the application of the appropriate finite difference expressions from

Appendix C to Equations (3.6) is solved using a point SOR iteration.

17
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The calculation of a linearly optimum acceleration parameter for an

iteration of this type followe the procedure given by Thompson [7].

B. Numerical Stabilizing Techniques

Several purely numerical techniques were implemented in an attempt

to obtain a stable solution. These techniques are needed because of

the nonphysical oscillations of the dependent variables which can

develop in regions of steep gradients. These oscillations, or

numerical instabilities, can cause an otherwise stable solution to

become unstable and diverge.

There are two possi' : Ie approaches which can be taken to enhance

the stability of a numerical solution. One possible approach is to

treat the symptoms of the numerical instability by filtering or

equivalently , adding an artificial viscosity. The other approach is to

attempt to alleviate the cause of the instability.

A basic filter considered in this study is the switched form of

the Shuman filter given by Harten and Zwas [12]. The two-dimensional

Shuman filter for a general function f is given by

f i1i a f i . j + 8 [f i+l, j + f i-1, j + f i . j+1 + f i, j-1 - 4f i ^ j ] (4.2)

where 9 = 1 for the simple Shuman-filter. Since this technique has the

effect of adding an artificial viscosity, the effective Reynolds

number will be lowered considerably if the Shuman filter is applied

at all points in the field. However, this will eliminate all of the

oscillations. The characteristics of this filter can be improved

if it is locally applied only when a certain waveform is encountered.

18



If an N-waveform is to be filtered, 8 would be set to unity if an

N-waveform is encountered but would be set to zero otherwise. Thus,

only the two sharp points of the N-waveform would be filtered.

Similar statements can be made in relation to a filter for W-wave-

forms or a W-filter. Only the central point of a W-waveform is

filtered. It should be noted that the N-filter, and especially the

W-filter, add no diffusion at all to most of the field. The purpose

of the N-filter and the W-filter is not to eliminate the oscillations,

but to control them so the solution does not diverge.

The filter is applied after each time step. It could be applied

after each iteration but this often causes convergence difficulties.

In addition,the technique of filtering can be applied repetitively

after each time step to further reduce the amplitude of the oscillation.

Another technique which introduces an artificial viscosity is a

fourth-order smoother related to that used by Baldwin and MacCormack

[13]. Several forms of this smoother were implemented. The form which

was finally considered simply replaces ( 1+E) in Equations (3.6) with

(1+e+v 2 pJAtRe), where V 2p is the Laplacian of the pressure and At is

the time step size. This technique introduces a significant artificial

viscosity only in regions where the Laplacian of the pressure is large.

Most of the attempts to alleviate the cause of the instability

center around the representation of the convective derivatives. The

form given by Equations (3.1) is the non-conservative form. The term

uuX + vuy in Equation (3.1a) is actually the expanded form of

(u 2 ) x	(uv) y after cancellation of the continuity equation,

Equation (3.1c), with D R 0. Analytically these two terms are
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equivalent, numerically they may not be. Four different techniques

were tested and are outlined here. Only terms in the x-momentum

equations are shown since extension to the y-momentum equation is

similar.

Two possible representations of the convective derivatives are

noted in MacCormack [14). The convective derivative (u2 )x can be

represented as the average of a product (AOP) given by

(u2)x 	 2 [(u2) i+1	(u2)i-11 .
	 (4.3)

Equation (4.3) can itself cause instabilities as explained in Reference

[14). A more stable technique is the representation of the convective

derivative (u2 )x as the product of an average (POA). This form is

given by

(u2)x	 4 [(ui+1 + ui )2 - (ui 
+ ui-1)2]	

(4.4)

These techniques are described in greater detail by Reference [14].

An attempt to improve the stability of the techniques given by

Equation (4.3) and Equation (4.4) was made by including a mass

residual correction. This technique replaces uux + vu
Y 

in Equation

(3.1a) with

(u2)x + (uv) y - u(ux + v y )	 (4.5)

which is analytically equivalent to the non-:onservative form. The

terms (u2 ) x and (uv) y can be replaced by terms of the form of Equation

(4.3) or Equation (4.4).

Beam and Warming [15] used a technique to linearize the convective

terms to prevent the instability. The form used in this study is
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given by

(u2)n+l ` (u 2 ) n + 2un (un+l - u n )
	 (4.6)

where n is the time step number. Equation (4.6) is a second-order

Taylor series expansion for (u2)n+l about (u 2 ) n . Since u  is known,

this representation for (u2)n+l is linear.
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V. RESULTS

The computer code used in this study was written by Joe F. Thompson

as part of the current research of the Department of Aerospace

Engineering at Mississippi State University for the NASA Langley

Research Center. The test case considered in this study was the flow-

field generated by an NACA 64AO10 airfoil section at an angle of

attack of two degrees and a Reynolds number of 2,000,000.

All the coordinate systems considered in this study were generated

using the method of Chapter 2. The &-attraction function P(C,n) was

obtained by the simultaneous solution of Equations (2.3) after the

initial guess had been obtained. The initial guess was formed by

placing the n-line distribution produced by the contraction near the

body on each t-line. Now the &-attraction function is given by the

product of P(&,n) as obtained above and a decaying exponential based

on --0.2d where d is the distance from the body. The n-attraction

function Q(t,n) was varied to obtain different n-line distributions

near the airfoil. In all cases, the coordinate system was "C-shaped"

with 113 E-lines and 51 n-lines in the field. There were 72 unique

points on the airfoil. The downstream and outer boundaries were

located 10 chord lengths from the airfoil. In addition, a Neumann

boundary condition was imposed on the n-lines at the downstream

boundary. A typical coordinate system generated during this study is

shown in Figure 4. The region of the field near the airfoil is shown

in Figure 5. The convergence criteria used for all coordinate systems

was 10-6.
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Similarly, the following techniques were common to most of the

Navier-Stokes solutions attempted during this study.

(1) A linear start in 100 steps was used with .•a time step size

of 0.01.

(2) The first time step was run using first-order time differencing

with no turbulence.

(3) The basic turbulence model without the transition point

calculation outlined in Chapter 3 was initiated along with

second-order time differencing after the first time step.

(4) The non-conservative forms of the momentum equations,

Equations (3.6a) and (3.6b), were considered without the

stabilizing techniques described in Chapter 4.

(5) A zero first time derivative projection for the initial guess

at the next time level was used.

(6) The pressure on the boundary was obtained from Equations (3.8)

with w - 0.5.

(7) The field pressure acceleration parameter was 1.0. The

velocities were multiplied by 2.0 in the calculation of an

optimum acceleration parameter.

(8) The velocity and pressure convergence criteria were 10 -5 and

10
-4
 respectively.

(9) Partial convergence was accepted after 100 iterations.

(10) All computations were performed on a UNIVAC 1100 series

computer.

Exceptions to these procedures are noted in the course of the discussion

of results which follows.
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The first type of coordinate system considered in this study was

generated by forming a composite functiL& for Q(E,n) as described by

Thompson [7]. A Kasirs boundary layer profile was ,joined to a

quartic polynomial at the second line inside the boundary layer. The

first coordinate system generated using this technique (CS1) had 10

n-lines contracted into the boundary. The n-line distributions in

the boundary layer for CS1 at the point of maximum thickness of the

airfoil and the leading edge of the airfoil are shown in Figures 6.a

and 6.b respectively.

CS1 was used to generate a solution which diverged at t - 1.05.

The divergence occurred near the leading edge at approximately the

first n-line off the body. As shown in Figure 7, a pressure peak

also occurred near this point. It was thought that the divergence

was caused by an insufficient number of n-lines being contracted

into the boundary layer.

To remedy this problem, a second coordinate system (CS2) was

generated using the same technique which had 20 n-lines contracted

into the boundary layer. CS2 was used extensively to test the various

numerical techniques implemented during this study. The n-line

distributions for CS2 are shown in Figures 8.a and 8.b. As shown

in Figure 8.b, the n-lines are contracted much closer to the airfoil

at the leading edge than previously shown in Figure 6.b .

CS2 was used to generate a solution which diver;zd at t - 1.08.

The divergence occurred in the region of the leading edge at the eighth

n-line off the body. Once again, a pressure peak occurred in the

region near the divergence as shown in Figure 9. This solution was

restarted from t s 1.00 using the W-filter as described in Chapter 4.
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Once again, the iteration diverged at t - 1.08 and the pressure behavior

was the same. Repeating this procedure using the N-filter described

in Chapter 4 also had little effect on the divergence of the iteration

or the pressure behavior. Also, the repetitive application of the

W-filter after each time step had little effect on the behavior of the

solution. The solution was again restarted from t - 1.00 but with a

new initial guess for each time step. The initial guess at the new

time step was given by the previous time step solution. This also had

little effect on the divergence or the pressure behavior. Applying the

W-filter from t - 0.00 also had no significant effect. Applying the

simple Shuman filter, Equation (4.2), with 9 - 1, to the restart of this

solution produced a more rapid divergence.

An attempt was then made using CS2 to generate a solution using

the momentum equation, Equations (3.10), to obtain the pressure on the

boundary. The iteration diverged at t - 1.08 and exhibited the same

behavior as before. The pressures on the airfoil obtained using

the momentum equation were essentially the same as those obtained using

the continuity equation. Restarting the solution from t - 1.00 and

using the N-filter had little effect on the divergence of the pressure

behavior. Once again, taking the initial guess at the new time step

to be the previous time step solution had no significant effect.

Since each of these attempts was diverging soon after the start

up procedure was completed, several different start-up procedures were

tested using CS2 as the coordinate system. A 100 step cosine start was

implemented. The iteration diverged at t - 0.86. The cosine start
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was no longer considered since it diverged before the linear start.

Another start-up procedure tested was the use of first-order bacWard

time differences for the time derivatives. This also proved unsuc-

cessful, as the iteration diverged at t - 0.94. This was sooner than

the divergence of the second-order backward time differencing previously

used. In addition, a 100 step linear start was used with the velocity

multiple being 1.0 instead of 2.0 in the optimum acceleration parameter

calculation. This had a destabilizing effect on the iteration.

Instabilities appeared in the solution as early as t - 0.80. Divergence

occurred at t - M8. The pressure behavior was essentially the same

as stated previously.

Several attempts were made to stabilize the solution by repre-

senting the convective terms as described in Chapter 4 using CS2 as the

coordinate system. The product of the average representation of the

convective terms (POA), given by Equation (4.4), was implemented in

an attempt to stabilize the solution. This iteration diverged at

t - 0.74. Convergence was lost as early as t - 0.50. Once again,

the pressure behavior was similar to that shown in Figure 9. The mass

residual correction, given by Equation (4.5), was used in conjunction

with the POA representation of the convective terms in an attempt to

stabilize the iteration. The combination of these techniques proved

to be unsuccessful since this iteration diverged sooner than the

iteration without the mass residual correction. The average of the

product representation of the convective terms (AOP), given by Equation

(4.3), was implemented in conjunction with the mass residual correction,

26



given by Equation (4.5), in an attempt to stabilise the solution.

This was also unsuccessful, as the iteration diverged at t - 0.54.

The AOP representation was not considered without the mass residual

correction because of the nonlinear instability reported by MacCormack

[141.

In addition, a second-order linearization of the form given by

Equation (4.6) was implemented to enhance the stability of the solution.

This was unsuccessful in that the divergentse of the iteration occurred

at t - 0.53. The divergence of the iteration once again occurred in

the same region.

Since the iteration was diverging in the same region of the field

for all cases using the coordinate system CS2, a coordinate system was

generated (CS3) with 20 n-lines contracted into the boundary layer

using the attraction function given by Roberts [161. This attr p tion

function is a continuous exponential function. '''}.is eliminates any

problems associated with discontinuities in the derivatives of the

n-line distribution which result from a composite functiot. being

chosen for the attraction function. Figures 10.a and 10.b show the

distribution of n-lines in the boundary layer at the point of maximum

thickness and the leading edge of the airfoil respectively.

CS3 was used to generate a solution which did not diverge and

seemed to be converging at time t - 2.00. However, this solution was

worthless as shown in Figure 11. This invalid pressure distribution

was obtained from an equally invalid velocity field. This behavior

was caused by the looseness of the coordinate system convergence

criteria. The distance at the leading edge to the first n-line off the
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11-:_Jy was 2 x 10-4 , which is the same order of magnitude as the con-

vergence criteria. This problem could be alleviated by generating a

coordinate system with a decremia-d cinverge::ce criteria or by

decreasing the number of n-lines contracLed into the boundary layer.

The latter approach was implemented r.nd a coordinate s ystem (CS4)

was generated with 10 n-lines contracted into the boundary layer. The

distance at the leading edge to the first n-line off the body was

2.6 x 10-4 . The distributions of the n-lines in the boundary layer at

the point of maximum thickness and leading edge of the airfoil are

shown in Figures 12.a and 12.b respectively.

CS4 was used to generate a solution which diverged at t - 1.18.

This solution was more well-behaved than the solution obtained using

CS3. The pressure distribution obtained at t - 1.00 is shown in

Figure 13. Once again,a pressure peak occurred in the region where the

divergence originated. Application of the W-filter to the restart of

this solution had no significant effect.

A new coordinate system was generated (CS5) which utilized the

techniques outlined in Appendix B. The distributions of the n-lines

in the boundary layer at the point of maximum thickness and the

leading edge of the airfoil are shown in Figures 14.a and 14.b

respectively. As an attempt to reduce the roundoff error, a and z

are calculated directly from P(&,n) and Q(t,n). This iteration

diverged at t - 1.08 and exhibited the same behavior as observed for

CS3. The MacCormack fourth-order smoother as described in Chapter 4

was implemented in an attempt to stabilize the solution. This iteration
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had not diverged at t a 2.00, but convergence was lost as early as

t a 1.90. The maximum iteration error occurred near the upper surface

trailing edge at the sixteenth n-line off the body. The pressure

distribution obtained at t • 1.90 is shown in Figure 15. The poor

representation of the flowfield was caused by the turbulence model

Inaccurately representing the eddy viscosity. The eddy viscosity

coefficient obtained from the turbulence model was so large that the

flaw separated at the leading edge on both the upper and lower surfaces.

This separation was caused by the assumption that the entire flowfield

was turbulent. However, the.flow near the leading edge was actually

laminar. This led to th* inclusion of the transition point calculation

as discussed in Chapter 3.

At this point in time, adequate computational facilities became

unavailable locally. This necessitated a conversion of all programs

for compatibility with the CDC computational facilities available at

NASA Langley Research Center. Because of this delay, only preliminary

data is available from the new techniques implemented during the

conversion.

CSS was regenerated with a convergence criteria of 10-8 . Using

this new coordinate system, a solution was generated by including

the transition point calculation outlined in Chapter 3, in addition to

the fourth-order McCormack smoother and the calculation of o and t

from ?U ,n) and Q(4,0. Preliminary results indicate that the transition

point on the lower surface is calculated to be near the trailing edge

of the airfoil. Previously, all of the lower surface was turbulent.

Now all of the lower surface is laminar. This trend occurred from
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t - 0.00 to t - 0.70, the last time level where data is available.

Also, full convergence has been obtained up to this time level.

30

1r



VI. CONCLUSIONS

The development of the boundary-fitted coordinate systems have

made the numerical solution of the Navler--Stokes equations for high

Reynolds number incompressible turbulent flow feasible. Several

numerical techniques were implemented and evaluated during this

study. The following list summarises the most important results of

this evaluation.

(1) The non-conservative formulation of the Navier-Stokes equations

gives better results than formulations involving AOP or POA

representations of the convective terms. In addition, the

mess residual correction and the second-order linearization

were also ineffective.

(2) The McCormack smoother was the only filter which enhanced

the stability of the solution significantly. The Shuman

filter. N-filter, and W-filter did not significantly affect

the stability of the solution. The ineffectiveness of these

filters can be attributed to the larger time step size of

implicit methods. The filter was not applied as often

over the same time interval as it would have been for the

explicit methods for which it was developed.

(3) The pressure on the boundary can be obtained from the tontinuity

equation via a Chorin-type iteration or from the component

of the momentum equation normal to the boundary. However,

using the continuity equation seems to improve the stability

of the solution slightly.
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(4)Preliminary data indicates that the addition of an inter-

mittency factor at the transition point significantly improves

the effects of the algebraic turbulence model used in this

study.

(5)Better results are obtained for coordinate systems which

have a continuous distribution of coordinate lines with

small convergence criteria (10-8).

The preliminary -exults of the final solution described in

Chapter 5 are the most encouraging to date. This solution should be

continued in an attempt to obtain a valid steady-state solution.
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a x2	 y2
n + n

(A.1)

APPENDIX A

Various Relations in the Transformed Plane

This Appendix contains many of the pertinent definitions and

relations in the transformed (&,n) plane. Thompson, Thames, and

Mastin [1] present a comprehensive set of relations and the notation

used in Reference [1] is retained here. Similarly, the following

function definitions are applicable:

f(x,y,t) - A twice continuously differentiable scalar function of

x,y and t

F(x,y) - i F1 (x,y) + 3 F2 (x,y) - A continuously differentiable

vector valued functions i and j

are the conventional Cartesian

coordinate unit vectors.

It should be noted that all derivative transformations given here are

in the geometrically non-conservative form.

Definitions of the Transformation

R = x^x n + yv n	 (A.2)

Y	 x2 + y2	 (A. 3)

DX E axy - 
2axCn + Yxnn	

(A.4)

Dy E 
ay e - 2 ^y^n + Y

y nn	 (A. 5)

a = (y &Dx - x&Dy)/J	 (A.6)

z = (x nDy - yn Dx)/J	 (A. 7)

J _ xVn - xny^	 (A.8)
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Where J is the determinant of the Jacobian matrix.

Derivative Transformations

fx	 (af/ax)
Y.t 

= (ynfE - Ytfn) /J	 (A.9)

fy	(af/ ay ) x,t
 - (xEfn - xnfE )/J
	 (A.10)

fxx _ (32f/ax2)y.t = (Yn , ^ti - 2yEynfEn + v2fnn)
/J2

+(yny^ - 2y^ynyEn + y2Ynn ) (xnfE - xEfn)/J 3

+(ynxEE 2yEynxEn + y2xnn)

	

(YE fn - Yn ft ) /J 3 	(A.il)

fyy = ( a 2 f/ay2 ) x't - (xnfEE - 2xExnfEn + x2fnn);J2

+(xnyEE- 2xExnYyn + x2Ynn ) (xnfE - X&fn) /J3

+(xnx E - 2x xnxEn + xExnn)

	

N f n - y nf E )
/J3	 (A.12)

fxy - [(xEyn + xnyE) fEn - Y,fnn - xnynfEE]/J2

	

+ [xny nxEE	 (xEyn + xnyE) xEn +
	
xEYExnn 1(y nfE 

- Y&fn) /J3

+ [x ny nyEE - (xEy n + xJO yEn + xEYEynn]

(xE fn - xn f E )/J 3 	(A.13)

Vector Derivative Transformations

Laplacian:

v 2 A. _ (afEE - 
2sf &n + Y fnn )

/J2 + [(axEE - 28x
En + Yxnn)(YEfn - y n f E)

	

+ 
(ay

EE - 
26Y En + YYnn ) (x n fE - N fn )] /J3 	(A.14)

F
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or

V2f - (of && - 
20f &n 

+ Yfnn + of  
+ tft) /J2
	

(A.15)

Gradient:

Vf - [ (Ynft - yE f n ) i + (x& f n - xnfM I /J

Divergence:

y • F - [yn (F1)^ - y^(F1 ) n + x^(F2 ) n - xn(F,)&I/J

Curl:

V x F - k[yn (F2 ) - y^(F2 ) n - xC (F1) n + xn(F1)^I/1

Unit Tangent and Normal Vectors

Normal to n-Line:

n(n)
=	 Vn /jonj _ (-y t i+ xtl)/I

Normal to t--Line:

Tangent to n-Line:

t(n) _ n (n)A - (Y + YwIry

Tangent to t-Line:

t () n (s) xk -(xn i + ynj) /T

Vector Components Tangent and Normal to 4 and n-Lines

F	 (TI)	 =
n

n(TO	
F (-y^F l + x^F2)/ 3Y

Ft (n)	 - t(n)	
F - (x^Fl + yEF2)/r

Fn ( y ) n(O	
F - (y nFl - xT^F2)/V(X-

Ft (^)	 - t (E )	 F = -(xnF1 + y nF2 ) /-

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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Directional Derivatives

3f/8n (n) = n (n) . Vf - (Yf n - Bf & )/Jv.—y 	(A.27)

8f /at (n) = t 	 Vf - f //Y- 	(A.28)

2f /en (&) ° n(O . Vf - (aft - Ofn)/.J3a	 (A.29)

2f/2t (0 = t (O Vf - fn /fa	 (A. 30)

i
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r" 	r'	 f"r, - 
—r ff - 0

(B.4)

APPENDIX B

Concentration of Coordinate Lines Near a Body

Consider the coordinate system generation Equations (2.3) applied

to concentric circular boundaries of radius r  and r 2 . With n - 1 on

the inner boundary, n - J on the outer boundary,and C varying mono-

tonically from 1 to 
&2 

around these boundaries, the solution of

Equations (2.3) can be given in the form

x - r(n) cos [2n ( -1 )]	 (B. la)
2

y - r(n) sin [2n(
1
)] .
	

(B. lb)
2

Substitution of these expressions into either of the equations of (2.3)

with P(4,n) - 0 yields

r"	 r'

This can be made a perfect differential by taking the control function

Q(^,n) of the form

Q(&.n) _ —!!k!
	 (B.3)

where the minus sign has been introduced merely for convenience.

Substituting Equation (B.3) into Equation (B.2) yields

which can be integrated twice to yield
c f (n)

r (n) - c
2e 1	 (B.5)

The constants of integration may be evaluated from the boundary
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conditions, r(1) - rl , r (J) - r2 , so that

[ f (n) - f (1)
r(n) - rl { (

r2/rl) f(J) - f(1))	 (B. 6)

This equation may then be solved for f(n) to yield

in[ r n ]
	f(n) - fS1) 	 rl	 (B.7)

	

f (J) - f (1)	 r
ln[r2]

1

If the distance from the body to the Nth n-line is specified to be rn,

the following equation must be satisfied:

r
In [N]

	

f (N) - f(l)	 rl	 (B.8)

	

W) - f(l)	 r '
ln[ ]

1

It should be noted that the form of f(n) is still arbitrary, subject to

Equation (B.8). The form * used in this study is given by

f(n) - nKn-1	 (B.9)

where K is a constant which must satisfy the nonlinear equation

r

	

N-1 - 1	
ln(rl]

^ 

JKJ-1 - l -
	 r2
	 (B. 10)

ln[r ]
1

Once K has been determined from Equation (B.10), the control function

Q(4,n) is determined from Equations (B.3) and (B.9) to be

Q(&,n) _ - (2 
+ n1nK) 

lnK .(1 + nlnK)

*The form of f(n) was obtained from Reference [17).

(B.11)
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Although the above analysis was developed for circular boundaries, the

effect will generally be the same for arbitrary boundary configurations.

The procedure which gave the beat results was to fix the distance

of the n - 2 line at one one-hundredth of the boundary layer thickness

from the body. Therefore, r  • r(2) is given by

r
N m 

0.05 + r
1
	(B. 12)

R-

It should be noted that r  was set equal to the radius of a circle

circumscribed about the body and that r2 was set equal to the radius

of the circular arc which represents a portion of the outer boundary.

Now r  and N have been specified so K is obtained by solving Equation

(B.10) using a false position iteration.

54



APPENDIX C

General Finite Difference Expressions

This appendix summarizes the finite difference expressions for a

general function f(C,n,t) which are necessary for implementation of the

procedures outlined in Chapter IV. It should be noted that since

the step size in the transformed plane is unity, it does not appear

in the spatial difference expressions. For convenience, two short

conventions are used in this appendix. All difference equations

apply at the point denoted by the space subscripts (i,j) and the time

superscript (n). The subscripts (i,j) and superscript (n) are

understood where they are omitted. In this appendix, only time

derivatives and 4-derivatives are shown.

Time Derivative Approximations

First-Order Backwards:

fn s (-fn-1 + fn) /At

Second-Order Backwards:

ft 2 (fn-2 - 4f n-1 + 3fn)/2At	 (C.2)

Spatial Derivative Approximations (Second-Order Only)

First Derivative, Central Difference:

f4 = 
fi+1.j	 fi-1,j	

(C.3)

First Derivative, Forward Difference:

f & x (-f1+2,j + 4fi+l,j - 3f i.j )/2	 (C.4)
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First Derivative, Backward Difference:

f 4 
m 

(f i-2,j - 4fi-10j+ 3f Ili )/2	
(C.5)

Second Derivative, Central Difference:

fcc " fi+l,j - 2f Ili + fi-1,j	
(C.6)

Cross Derivative, Central Difference:

f En " (f i+l, j+l - f i+l, j-i f 1-1, j+l + f i-1, j-1) /4
	 (C.7)

Cross Derivative, C-Forward Difference and n-Central Difference:

fCn " (-fi+2,j+1 + fi+2,j-1 + 4(fi+i,j+i - fi+l,j-1)

-3(fi •j+l - 
fi.j-1))/4 	 (C.8)

Cross Derivative, 4-Backward Difference and n-Central Difference:

f4n= 
(fi-2,j+1 - f1-2,j -1 - 4(fi-1,j+l - fi-1,j-1)

-3(filj+l- fi,j-1))/4	 (C.9)

Cross Derivative, &-Central Derivative and n-Forward Difference:

f&n 
5 

fi-1,j+2 - fi+i,j+2 + 4(fi+l,j+l - fi-l,j+l)

-3(fi+l,j - fi- l,j))/4	 (C.10)
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