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SUMMARY

A finite element computer program (TAP 2) for steady-state and

transient thermal analyses of convectively cooled structures is

presented. The program has a finite element library of six elements:

two conduction/convection elements to model heat transfer in a

solid, two convection elements to model heat transfer in a fluid, and

two integrated conduction/convection elements to represent combined

heat transfer in tubular and plate/fin fluid passages. Nonlinear

thermal analysis due to temperature-dependent thermal parameters is

performed using the Newton-Raphson iteration method. Transient

analyses are performed using an implicit Crank-Nicolson time in-

tegration scheme with consistent or lumped capacitance matrices as

an option. Program output includes nodal temperatures and element

heat fluxes. Pressure drops in fluid passages may be computed as an

option. User instructions and sample problems are presented in appendixes.

INTRODUCTION

TAP 2 (Thermal Analysis Program) was written in the course of

research focused on the development of finite element methodology

for the thermal analysis of convectively cooled structures. The

finite element methodology and applications to several convectively

cooled structures are presented in references 1 to 3.

The main body of this report presents the salient features of

the finite element theory, the computer program organization, the

finite element library, the nonlinear solution algorithm, and the

transient time integration algorithm. Directions for program use

/ are presented in Appendixes A and B. Program input data and output
_4 /'"

_.- are illustrated with sample problems in Appendix C.



FINITE ELEMENT FORMULATION

Thermal analysis of convectively cooled structures includes coupled
i-

conduction and convective heat transfer in a region consisting of a

solid structure am] a moving fluid. The problem may be mathematically

formulated in terms of the energy equations of the solid and fluid

assuming incompressible flow (ref. I). The equations are derived for

a typical flow passage consisting of a thin tube containing a fluid

with a specified mass flow rate m (fig. i). Heat transfer is

expressed in terms of the wall temperature T (x,t) and fluid bulkw

temperature Tf(x,t_. The governingequations are

3Tf 3Tf
(kf Af-f - + hp (Tw- Tf)

3Tf
+ Pf cf Af-_--= 0 (fluid) (i)

3T
w

_x (kw Aw-_) + hp (Tw - Tf)

_T
w

+ Pw Cw _--t--= 0 (wall) (2)

where kf, cf, pf are the fluid thermal conductivity, specific

heat, and density, respectively; kw, Cw, Pw are the corresponding

quantities for the wall. Af is flow cross-sectional area, and Aw
is the tube conduction area. Heat exchange between the wall is

expressed in terms of the convection coefficient h and the convec-

tion perimeter of the tube p. Since the thermal parameters can be

temperature dependent, equations (i) and (2) constitute a nonlinear

set of partial differential equations.

The solid region wall of the convectively cooled structure is

represented by standard conduction/convection elements. Two conduc- "°"

tion/convection elements, a rod and a quadrilateral, are available

in the program. The fluid region of a convectively cooled structure

is modeled by elements which represent convective heat transfer in
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Figure I. Finite element representation of coupled conduction-
convection in a fluid passage.
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the coolantpassages. Basic convectivefinite elementswere developed

for the fluid to representequation (I): a mass transportconvection

elementand surface convectionelementswith unknown fluid temperatures.

Special integratedconduction/convectionfinite elementswere also

developed: a tube/fluidelementand a plate-fin/fluidelement. The

basic convectionelementsand the integratedconduction/convection

elementsmay be combinedwith the standardconductionelementsfor

analysis of a variety of convectivelycooled structures. Any of the

elementsmay also be used independently. The programperforms four

types of analyses: (I) linear steady-state,(2) lineartransient,

(3) nonlinearsteady-state,and (4) nonlineartransient.

PROGRAM ORGANIZATION

The organization of TAP 2 is based on an earlier program (TAP I)

for steady-state thermal analysis of convectively cooled structures

(ref. 4). A flow chart of the TAP 2 main program is presented in

figure 2. The main program consists of subroutines which are sequen-

tially called in a normal program execution. Sets of subroutines,

called solution modules, which perform the four basic types of

analyses are shown in figures 3 and 4. These subroutines process

input data, generate plot files, assemble and solve the equations,

print nodal temperatures, and perform heat flux calculations.

Dynamic storage allocation is used to store all input data and large

arrays in a blank common designated in the main program as A_ The

amount of blank common is the only restriction on the amount of input

data, i.e., there are no other limitations on number of nodes,

elements and thermal data.

Nodes (INPUT)

The thermal system is described by a set of nodal points with

unknown temperatures. A nodal point is described by a data card

(or card image) containing the node number, a boundary condition

code (zero Dr one), the nodal coordinates, a generation parameter,

4
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Figure 2. TAP 2 main program flow chart.
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(a) Linear, N_A = 1. (b) Nonlinearj N_A = 3.

Figure 3. Steady-state solution modules.
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(a) Linear, NANA = 2. {b) Nonlinear, NANA = 4.

Figure 4. Transient solution modules.



and a specified or initial nodal temperature if required. Nodal

points are entered in rectangular Cartesian coordinates (x,y,z).

Input data for regular nodal patterns may be reduced by utilization

of a nodal generation capability based on linear interpolation. All

nodal point data are retained in core during the assembly of the

element matrices. Nodal point data are also saved on an auxillary

storage file if plots are requested.

A boundary condition code of zero indicates an unknown nodal

temperature. A boundary condition code of one indicates a specified

nodal temperature which will be held constant during the solution.

Heat loads and convective boundary conditions are specified as a

part of the element input data.

Elements (ELTYPE)

Elements are entered into the program in groups which consist

of a number of sequentially numbered elements of the same type.

There may be more than one group of the same element type. Data

generation schemes are provided for all elements to reduce input

data for regular finite element meshes.

The input data for all elements follows the same general scheme:

(i) a control card for each element group, (2) a set of thermal

parameter cards, and (3) a set of element cards. For a linear

analysis thermal parameters are entered as constants; for a nonlinear

analysis table numbers are entered. Each element may have different

thermal parameters.

Element conductance and capacitance matrices, heat load vectors,

and heat flux matrices are computed as the element data cards are

read. These matrices are stored sequentially on files for later use

in assembly of the system equations and in heat flux computations.

For elements with more than one thermal parameter, the element

matrices are resolved into components, one for each thermal parameter.

For a linear analysis, the element conductance and capacitance

matrices are formed for the thermal parameters entered; for a nonlinear



analysis,elementmatricesareformedinitiallyforunitthermal

parameters. Elementconductivitydata are saved on an auxiliary

storage file if plots are requested.

" As elementdata are processedthe system bandwidthis computed.

Bandwidthis defined herein as the maximumdifferencebetween two

connectednode numbers plus one to accountfor the diagonal. The

bandwidthis used later in the programto determinestoragerequire-

ments for the systemmatrices. For optimumprogram storagerequire-

ments and executiontimes the bandwidthshould be a minimum;bandwidth

is determinedby the user's nodal numberingscheme (seeref. 5).

After all elementdata have been processed,the nodal coordinates

are no longerneeded, and the correspondingcore storage area is used

for other variables. The nodal boundaryconditionsare, however,

retained in core since they are requiredlater in the solution

process.

Thermal Data Tables (TABLES)

For a nonlinear or a transient analysis thermal data tables

may be required. The input data consists of a control card for

each table and a set of cards containing data points. The tabular

data are retained in core during the balance of the solution process.

Ordinarily, the amount of core storage required for the tables is

small in comparison to storage required for the system matrices.

In the solution process, linear interpolation and extrapolation are

used in looking up values in the tables.

Assembly of System Matrices (ADDSTF)

The systemmatrices are formed in banded form as shown in

figure 5. Because of mass transport convection and the upwind

finite element formulation,system matricesmay, in general, be

asymmetrical. Hence, the advantageof matrix symmetry cannotbe

taken as in structuralanalysis. In steady-state analyses (see

fig. 3), system matrices are assembledonly once. In transient
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analyses (see fig. 4), the equations are reassembled when the time

step is changed, i.e., if there is more than one time interval. In

a time interval the time step is constant, but an arbitary number

of time intervals may be used.

" Boundary Conditions (TEMPBC)

In finite element thermal analysis with TAP 2 the only nodal

boundary conditions required are specified temperatures (i.e.,

temperature gradients cannot be specified), Specified nodal

temperature data are entered into the program with the nodal input

data. Heat fluxes and convective boundary conditions are entered

with the element data and are incorporated by the program into the

system heat load vector. For a boundary with zero heat flux, no

boundary condition needs to be specified; the hoar load terms

corresponding to zero heat fluxesare automatically taken as zero.

The program handles the temperature boundary conditions using

the method described in reference S. Basically, this method

consists of modifying the conductance matrix and heat load vector

such that the size of the matrices is unchanged. The advantage of

this approach is the ease of indexing the equations, i.e., the node

numbers and equation numbers are the same. A disadvantage is that

extra equations are carried in the solution process. For TAP 2

thermal analysis temperature is the only degree of freedom per

node, hence the penalty is not very large since usually only a

small percentage of the equations have specified temperatures.

Solution for Temperatures (FACTOR and SOLVE)

The general, banded, simultaneous equations are solved by

" Gauss elimination. For some assemblies (e.g. in series) of mass

transport convection elements it is possible to obtain zero co-

efficients on the diagonal of the conductance matrix. Dependent

on the boundary conditions, such a problem may cause the equation

solver to stop with an error message to avoid a zero divisor in the

ii



Gauss eliminationprocess. This difficultycan normally be overcome

by renumberingthe nodes so that a zero diagonalcoefficientis filled

in during the eliminationprocess. A zero diagonal coefficientwill

not arise in the integratedthermal/fluidelements for a nonzero con-

vection coefficientor if fluid conductionis included.

Heat Flux Calculations(FLUX)

After the nodal temperaturesare computed,elementheat fluxes

are calculatedusing elementmatricespreviouslystored on a file.

Typical element fluxes calculatedinclude,e.g., for the quadrilateral

conduction/convectionelement, conductionheat flux componentsat

the elementcentroid and convectionheat fluxes on the top and bottom

surfaces and four edges. In general, conductionheat flux components

are positive in directionsof the local elementaxes, and surface

convection fluxes are positive into a surface.

For the integratedthermal/fluidelements,pressuredrops are

computed as a user option in the heat flux computations. Pressure

drop computationsincludeflow-frictionand flow-acceleration

effects _seeref. 6). Pressuredrops are computedfor three user

options: constantdensity, variable densityusing a density-

temperaturetable, or an ideal gas.

RestartCapability (RESTART)

A limitedrestart capabilityis available. As an option, the

time and temperatureat the completionof an analysismay be written

on a file for use in a subsequentanalysis. This feature is

useful, for example,when the results of a steady-stateanalysis are

to be used as initialconditionsfor a subsequenttransientanalysis.

THE ELEMENT LIBRARY

The libraryconsistsof sixelements(fig.6) for eithersteady-

stateor transientthermalanalysis. Lumpedor consistentcapacitance
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(a) Conduction/convection (b) Conduction/convection
rod element, quadrilateral element.

(c) Mass transport convection element.

L
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{d) Surface convection elements.

L
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(e) Tube/fluid element. {f) Plate-fin/fluid element.

Figure 6. Element.library.
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matrices are availableon all elements as an option. Conventional

and upwind formulations(seerefs. 1 to 3) are optionalfor all

convectionelementsexcept the plate-fin/fluidintegratedelement.

Conduction/ConvectionRod Element

Linear temperaturevariation is assumedbetweennodes. The

elementpermitsheat loadingdue to internalheat generation,

prescribedsurfaceheat flux, or surfaceconvection. The convection

heat transfer coefficientand fluid medium temperaturemay be

differentat each node.

Conduction/ConvectionQuadrilateralElement

The quadrilateralelement is based upon an isoparametric

formulation (ref.5). Isoparametericmeans the same interpolation

functionsdefine the element shape and the elementtemperature

distribution. The temperaturewithin the element is given by

4
T (_,n)= _ N.T. (3)

i:! 1 I

where N. are the interpolationfunctions,
I

i (I _) (i- n)Ni = E

i (i+ _) (i - n)Ne = T

i (i + _) (i + n)

i (i- 5) (!+ n) (4)N4 T

and T. are the nodal temperatures The quantities _,n denote the

isoparametriccoordinatesfor a unit square, Matrices are computed

for the elementby integrationin the _,n plane; in TAP 2 the

integralsare evaluatedby the four-pointGaussian quadratureru!e of

numerical integration(ref.5),
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For rectangular elements, the conduction heat flux component

qx varies linearly with y, but it is independent of x; similarly

the component qy varies linearly with x, but it is independent
of y. Conduction heat flux components are always calculated at the

element centroid.

The quadrilateral element permits a laminated composite material.

Each lamina is assumed to be orthotropic; input data for a lamina

consist of a conductivity tensor, a material axis angle and the lamina

thickness. An arbitrary number of lamina are permitted. For a

nonlinear analysis the lamina properties are assumed to have the same

temperature variation, i.e., an element is characterized by a single

conductivity-temperature table.

The element permits internal heat generation, prescribed edge

or surface heating, and convection heat transfer on all four edges

and the top and bottom surfaces. Convection coefficients and fluid

medium temperatures may be different at each node.

Mass TransportElement

The mass transportelementrepresentsfluid conductionand

energy transportdownstreamdue to fluid flow. The elementrepresents

the first, second,and last terms in equation (I) and is based on

the followingassumptions(ref. I): the thermalenergy state

of the fluid is characterizedby the fluid bulk temperaturewhich

varies only in the flow direction,and the fluid velocity is

representedby a mean velocity V which varies only in the flow

direction. Conventionaland upwind formulationsare availableas

an option (refs.1-3). The upwind formulationcan be useful in some

appiicationsto eliminatespuriousspatial fluid temperatureoscil-

lations,but it can have the adverseeffect of introducingartifical

diffusionwith an attendantloss of accuracy.

The mass transportelementhas an indefinite,asymmetriccon-

ductancematrix (seeref. i). As previouslydiscussed (see Solution

15



for Temperatures), some assemblies of mass transport elements may

create zero diagonal terms in the system conductance matrix.

SurfaceConvectionElements

Surface convection elements (for surfaces with one to four nodes
Q

and a fluid with one or two nodes) represent energy transfer between

a coolant passage surface and the fluid. The heat transfer is

based upon a convection coefficient for the fluid and a surface area

of the passage. The surface area is computed from the wall nodes

and an area factor supplied as input data. The fluid nodal coordinates

are arbitrary and are used only in plots. Conventional and upwind

formulations are available as an option.

Tube/Fluid Integrated Element

The tube/fluid element consists of fluid within a thin tube of

constant thickness and constant, arbitrary cross section. The

element has two fluid nodes I and J and two tube nodes L and

K. The fluid node locations are arbitrary at a given flow section

and are used only in plots. The •followingheat transfer modes are

represented in the element:

i. Axial conduction in the tube between nodes L and K;

2. Convection between the internal tube surface and the

enclosed fluid (nodes L, K, and nodes I, J);

3. Mass transport convection due to fluid flow from I to

J; and

4. Heat transfer between the external tube surface and a

surrounding medium which is represented by specifying

a heat flux or the medium temperature and convective film

coefficient.

The convection area between the internal tube surface and the

enclosed fluid is computed as the product of the distance between tube

nodes and the input tube perimeter. The external heating is assumed

16



uniform around the perimetero£ the tube. The surfacearea for

externalheat transfer is assumed equal to the internalconvection

area. The temperatureand convectioncoefficientof the surrounding

medium may be differentat each tube node.

As a user option the upwind formulationis available,and fluid

pressure drops may be calculated (seeHeat Flux Calculations).

Plate-Fin/FluidIntegratedElement

The plate-fin/fluidelementconsistsof two walls (plates)con-

nected by an internalfin. For conveniencea singleplain fin is

shown in figure 6; in practice other fin configurations(e.g.pin or

offset fins) may be representedby using an equivalentthicknessand

surface area for the single fin. Fluid flows along both sides of

the fins through an arbitraryflow cross section (showntrapezodial

for convenience),which may vary linearlyalong the element. The

elementhas six nodes: two nodes to representthe fluid bulk

temperature(nodesN and K) and four wall/finnodes _I,J, L, and M).

The followingheat transfermodes are representedin the element:

I. Two-dimensionalconductionin the fin betweenthe nodes

I, J, L, and M;

2. Convectionbetweenthe fin surfaces (nodesI, J, L, and M)

and the fluid (nodesN and K);

3. Convectionbetween the wall surfaces (topnodes M and L;

bottom nodes I and J) and the fluid (nodesN and K); and

4. Mass transportconvectiondue to fluid flow from N to K.

The fin is modeled as an isoparametricquadrilateralelement

with surfaceconvectionto a fluid with unknowntemperatures. Input

data describingthe fin includesits effectivethicknessand an area

factor for convection. Thesequantities may be adjustedas input to

permit the plain fin to representother fin configurations.

17



Convectionbetweenthe wall surfacesand fluidis basedon areas

computed using input wall widths, the fin thickness, and internally

computed distances between wall nodes. The flow cross-sectional area

may vary due to a difference in passage height at the element entrance

(I to M] and exit (J to L).

User options are available to: (i) modify the fin convective

heat transfer by an efficiency factor _ which accounts for

deviations in the fin temperature variation from the assumed linear

profile, and (2) compute fluid pressure drops (see Heat Flux Calcu-

lations).

NONLINEAR ALGORITHM

For temperature-dependent thermal properties in steady-state

analyses the finite element formulation employed in TAP 2 leads to

a set of nonlinear algebraic equations of the form

[K(T)] {T} = {Q} (5)

where [K(T)] denotes the temperature-dependent system conductance

matrix, {T} denotes the unknown nodal temperature vector, and {Q}

is the system nodal head load vector. If thermal properties are not

a function of temperature, equations (S) reduces to a linear set of

equations which may be solved directlyl If the thermal parameters

are a function of temperature, the Newton-Raphson (N-R) iteration

algorithm is used

[J]n {AT}n+I = {R}n (6)

= + {AT}n+ (7]{T}n+l {T}n 1

. . , representswhere [J]n denotes the system Jacobian matrix and JR}n
nodal residual heat loads.

18



A key assumption employed in TAP 2 is that thermal parameters

are constant within an element. This assumption permits the nonlinear

algorithm to be based upon one initial computation of element conduct-

ance matrices for unit thermal parameters. If a particular element

depends on more than one thermal parameter, the matrix is formed by

* summing component matrices, one for each thermal parameter, TP. Thus

a typical conductance matrix is expressed as

[K] =-_ TP *[K--] (8)m m
m

where the summation includes all thermal parameters, TPm, affecting

the element, and [K]m denotes a typical unit conductance matrix.

For a typical element with N nodes the average element temperature

is computed from

N

1 _ T£ (9)Ta =

and a thermal parameter is looked up in the table using linear inter-

polation.

The Jacobian matrix and residual load vector for a typical element

are computed from

J.. = TP*K.. (I0)
1j 1j

N

Ri : Qi - TP*_ Ki£ T£ (113£=1

The algorithm indicated by equations (6), (7), (10), and (11) is known

as a modifiedN-R iteration scheme" (ref. 5) " The Jacobian matrix

is formed once and is held constant during the iterations (see fig. 3).

At each iteration the unbalanced nodal loads are computed from

equation (ii), and the temperature increment is computed from equation

(6). In the full N-R iteration scheme (ref. 7), the Jacobian matrix,

oquation (i0), contains an additional term, and the Jacobian matrix is

completely reformed at each iteration. The modified N-R scheme can

19



require more iterations, but each iteration is less expensive than

the full N-R scheme. Hence, in many cases, the modified N-R

scheme has a net gain in efficiency.

TAP 2 automatically uses input nodal temperatures to initiate

the nonlinear solution process. The iteration process is terminated

when either a specified number of iterations has been performed or

the largest change in nodal temperature expressed as a percentage is

less than a specified value. For typical applications convergence

has been obtained in from one to five iterations (i.e. two to six

analyses) using a convergence criteria of 0.I percent.

TRANSIENT ALGORITHM

For linear transient analysis the finite element formulation

employed in TAP 2 leads to a set of ordinary differential equations

of the form

[c] {+}+ [K] {r} = {Q} (12)

where [C] is the system capacitance matrix. The capacitance matrix

in TAP 2 as an option may be used in two forms: (I) a consistent

formulation or (2) a lumped formulation. The capacitance matrices

produced directly in the finite element formulation are called

consistent capacitance matrices because their derivation is consistent

with the mathematical formulation of the conductance matrices. The

consistent capacitance formulation requires an implicit time-integration

scheme because the time derivatives in equation (12) are coupled

through off-diagonal terms in the capacitance matrix. TAP 2 employs

the implicit Crank-Nicolson time integration scheme (ref. 8).

To find the transient solution to equation (12) a step-by-step

procedure is used with the solution at each step computed at the

middle of the time interval (ti,ti+l), where i denotes the time

step. Defining {Ta} as the temperature vector at the middle of the

time step At, then the algorithm is

2O



= 1
[K + A-_C] {Ta} _ {Qi + Qi+l} + i [C] {T}i (13)

{T}-+ll= 2{T } - {T}. (14)a 1

The square matrix on the left-hand side of equation (13) is an

" equivalent conductance matrix. For a linear analysis, within a time

interval having a constant time step, the equivalent conductance

matrix can be formed and factored once at the beginning of the time

interval (see fig. 4). The right-hand side of equation (13) is an

equivalent load vector which must be reformed at each step since it

depends on current heat loads and temperatures.

Although the Crank-Nicolson method is unconditionally stable, a

method of estimating the time step is desirable because: (I) too

small a time step may be excessively expensive; (2) too large a time

step can introduce temporal oscillations which obliterate the true

solution; and (3) too large a time step can introduce errors in the

spatial temperature distribution. In TAP 2 the time step is estimated

on an element basis. The time step is computed from

FDT
At - _ (15)

max

where FDT is an arbitrary time step computation factor, and Xmax

is computed by a method (ref. 9) developed for symmetric conductance

matrices. Since the method gives an approximation to l for themax

asymmetric matrices encountered in TAP 2, the time computation factor,

FDT, has been adjusted by experience to give a reasonably reliable

value of an estimated AT; FDT = S is currently used.

PLOTTING PROGRAM

A companion program (ref. i0) is used to plot the finite element

model and calculated temperature distributions. The program includes

options for plots of finite element models annotated with grid point

or element numbers. Another option allows boundaries of an isolated
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portion of the model to be specified by cutting planes to permit

detailed inspection of the selected region. A!so, exploded views

can be generated which separate the elements in a finite element

model to detect the absence or presence of elements. Temperature

surfaces, i.e. T = f(x,y), can be plotted superimposed on the

nodes of the model, or temperatures can be represented as vectors

extending from the nodes.

CONCLUDING REMARKS

A finite element computer program (TAP 2) for steady,state and

transient thermal analyses of convectively cooled structures has

been presented. The program has a finite element library of six

elements: two conduction/convection elements to model heat transfer

in a solid, two convection elements to model heat transfer in a

fluid, and two integrated conduction/convection elements to represent

combined heat transfer in tubular and plate/fin fluid passages. Non-

linear thermal analysis due to temperature-dependent thermal parameters

is performed using the Newton-Raphson iteration method. Transient

ana!yses are performed using an implicit Crank-Nicolson time inte-

gration scheme with consistent or lumped capacitance matrices as

an option. Program output includes nodal temperatures and element

heat fluxes. Pressure drops in fluid passages may be computed as an

option.
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APPENDIX A: PROGRAM DETAILS

Computer and System Requirements

TAP 2 was written using standard FORTRAN IV and was developed on

. the CDC computer system at NASA/LaRC. TAP 2 is almost system inde-

pendent; the program is also operational on the DEC i0 computer system

at Old Dominion University.

Storage Allocation

Dynamic storage allocation is used; all large arrays are stored in

blank common designated as A. On the CDC system, TAP 2 computes the

blank common available from the job card field length and attempts to

process the input data and perform a solution. On the DEC I0 computer

system the length of the blank common is set by a FORTRAN statement

within the program. The program terminates execution with an error

stating the additional storage required if insufficient storage is

available.

Auxiliary Storage Files

TAP 2 uses 8 auxiliary storage files in a normal execution. The

auxiliary storage files are identified in the table below.

TAP 2 Auxiliary Storage Files

File Function

1 Element flux and pressure drop calculation data

2 Element conductance and capacitance matrices

. 3 Capacitance matrices and heat load vectors

5 Input data

- 6 Printer output

8 Node and.element data for plots

I0 Restart temperatures

20 Temperature for plots
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APPENDIX B: INPUT DATA

General Setup of Input Deck

• The general setup of a typical input data deck Cor a data file

for input via a terminal) is shown schematically in figure 7. A

deck requires four basic data groups and three optional groups of

data as follows:

(i) A single heading card containing any desired title

information;

(2) A single master control card containing control values

specifying various program options;

(3) For nonlinear analyses, a single control card containing

control values for the iterative solution;

(4) A node input deck containing nodal coordinates, the boundary

condition codes, and specified nodal temperatures;

C5) An element input deck containing element data organized by

group. Eachgroup consists of the following sequence of

cards:

Ca) a control card containing control values and a heading

to be printed for the element group,

(b) a set of material property cards,

(c) a set of element cards;

(6) For nonlinear or transient analysis, thermal data tables

organized as a set of cards for each table:

Ca) a control card containing control values and a heading

to be printed with the table, and

Cb) the data points in the thermal data table; and

(7) For a transient analysis, one or more control cards specify-

ing control values for the transient response.
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/
REQUIRED ONLY FOR J
TRANSIENT ANALYSES /

TRANSIENT CONTROL CARDS

/
OPTIONAL, FOR TRANSIENT /
OR NONLINEAR ANALYSES /

TABLE INPUT DECK /
/

/

ELEMENT INPUT DECK /
/

/ /
REQUIRED NODE INPUT DECK /
ONLY FOR

NONLINEAR NONLINEAR CONTROL CARD
ANALYSES

MASTER CONTROL CARD /
/

HEADING CARD

Figure 7. Input data sequence.



Several problems may be solved on one program execution by placing

the problem data decks in sequence. Plots can be obtained for only

the last problem in a sequence.

Input Data Cards

Data cards are described in detail in this section. Input data

is read using list-directed READ statements. Input data is, therefore,

free-field and may be entered in any column on a card (or card image)

separated by blanks or commas. All parameters specified on a data

card must be entered; a blank cannot be used for a zero..

Any consistent set of units may be used. In the input data

instructions which follow sample units are given for illustrative

purposes only.

I.. HEADING CARD (18A4)

Note Columns Variable Entry

(I) 1 - 72 HED(18) Enter the heading information to be printed
with the output

NOTE

(i) Begin each new problem with a heading card.

II. MASTER CONTROL

Card 1 (8 parameters)

Note Variable Entry

(I) NU_P Total number of nodal points in the model

(2) NELTYP Number of element groups

(3) NUMTB Number of tables for transient head loads or
temperature-dependent thermal parameters

(4) NANA Analysis type
.EQ.0 Data check only
.EQ.I Linear static
.EQ.2 Linear transient
.EQ.3 Nonlinear static
.EQ.4 Nonlinear transient
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II. MASTER CONTROL (Continued)

Card 1 (8 parameters)

Note Variable Entry

(5) NDIAG Flag for diagnostic printing
.EQ.0 No diagnostic output
.EQ.I Diagnostic output
.GT.I Diagnostic output without element

matrices

(6) NFILE File control code
.EQ.0 No files are created
.GE.0 Plot files are created

.EQ.2 Restart file written

.EQ.3 Read old restart file

(7) NINT Number of time intervals for transient analysis
(default .EQ.I)

(8) NOPT Option for transient time step, DT
.EQ.0 DT computed
.EQ.I DT input

Card 2 (required only for N_NA = 3 or 4--2 parameters)

Note Variable Entry

(9) NITER Maximum number of Newton-Raphson iterations
(default .EQ. 6)

(i0) TOL Convergence tolerance (default EQ. 0.1%)

NOTES

(I) Nodes are labeled with integers ranging from "I" to the
total number of nodes in the system, "NUMNP."

(2) For each different element type (ROD, QUAD, etc.) a new
element group must be defined. Elements within groups are
assigned integer labels ranging from "I" to the total
number of elements in the group. Element groups are input
in Section IV below.

(3) For a nonlinear thermal analysis or a transient analysis
with time-dependent heat loads, thermal data may be
entered by tables. If tabular thermal data is to be

input, the number of tables Should be entered. Otherwise ,
a value of zero should be entered.
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II. MASTER CONTROL (Continued)

"(4) For NANA_EQ.0 the program reads all input data, generating
nodes and elements as requested, and generates element
matrices. Plot files are created for checking input data.

• Exit is made before the system matrices are assembled and
the solution is performed.

For NANA .EQ.I the thermal parameters are constant, and a
linear thermal analysis is performed. An unsymmetrical set
of banded equations is solved using Gaussian elimination.

For NANA .EQ.2 a linear transient analysis is performed.
Time-dependent heat loads may be entered as tables. The
optional transient control card is required (see fig. 7).
The equations are solved step-by-step using the Crank-
Nicolson time integration algorithm.

For NANA .EQ.3 the thermal parameters vary with temperature
and are entered in tabular form. The optional nonlinear
control card is required (see fig. 7). The equations are
solved by modified Newton-Raphson iteration.

For NANA .EQ.4 a nonlinear transient analysis is performed.
Time-dependent heat loads and temperature-dependent thermal
parameters are entered as tables. The optional nonlinear
and transient control cards are required. The equations
are solved step-by-step using the Crank-Nicolson time
integration algorithm with modified Newton-Raphson iteration
at each time step.

(5) Diagnostic output may be obtained using this integer. This
output typically consists of all element matrices, the
assembled matrices, and intermediate steps in the solution
process. This option should only be selected for very small
problems since a large quantity of data will be printed.

(6) For the NFILE .GE.0 node, element and temperature data are
written on files 8 and 20 for subsequent use in plotting.
See reference I0 for the source listings of the subroutines
which generate the plot data files in an unformatted binary
format. For NFILE .EQ.2 a time value and a single tempera-
ture vector are written on file i0 at the end of the program

• execution (see fig. 2). For NFILE .EQ.3 a time and tempera-
ture vector are read from file I0 during the input data
phase and are used as the initial conditions for the analysis.

(7) The total time for which the transient thermal response is
to be computed may be divided into NINT intervals. In each
interval the time step is held constant. Thus, this program
option permits utilization of variable time steps during the
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II. MASTER CONTROL (Concluded)

transient response. System matrices are reformed at the
beginning of each new time interval (see fig. 4). A new
transient control card is required for each time interval.

(8) For NOPT.EQ.0 the program automatically computes the time
step needed or if NOPT.EQ.1 the user supplies the time
step. The selection of a time step is discussed in the
Transient Algorithm section in the main body of the report.
NOPT.EQ.0 should be used with caution since a very large
amount of output could be generated if the program selects
a small time step.

(9) The Newton-Raphson iterative solutionprocess will terminate
when the number of iterations reaches the value NITER. For

NANA.EQ.3 nodal temperatures are printed at each iteration,
and element heat fluxes are calculated after the final

iteration. The largest percentage change in nodal tempera-
ture will be printed at each iteration. For NANA.EQ.4 nodal
temperatures are printed only at the completion of the
iterations.

(1O) Convergence will occur if the largest percentage change in
nodal temperatures is found to be less than the convergence
tolerance.
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III. NODAL POINT DATA (7 parameters)

Note Variable Entry

(i) N Node number

(2) ID(N) Boundary condition code
" .EQ.0 Temperature unknown

•EQ.1 Temperature specified

(3) X (N) X-coordinate
Y (N) Y-coordinate
Z(N) Z-coordinate

(4) KN Node number increment

(S) T (N) Nodal temperature
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III. NODAL POINT DATA (Continued)

NOTES

(I) Nodal point data must be defined for all (NUMNP) nodes.
Node data may be input directly (i.e., each node on its own
individual card), or the generation option may be used if
applicable (see note 4 below), .

Admissible nodal point numbers range sequentially from "1"
to the total number of nodes "NUMNP." Illegal references
are N.LE.O or N.GT.NUMNP. NUMNPmust be the last card
input.

(2) The boundary condition code is used to designate those nodes
which will have fixed values of temperature in the solution
process. The fixed value of temperature is entered in the
T(N) arrary.

(3) The coordinates of all nodes are entered in a common global
coordinate system.

(4) Nodal point cards need not be input in node-order sequence;
eventually, however, all nodes in the integer set {1, NUb_P}
must be defined. Nodal data for a series of nodes

{N1, N! + (1 x KN2), N1 + (2 x KN2), ., N2}

may be generated from information given on two cards in
sequence:

CARD 1 / N1, ID(N1), X(NI), ., KN1, T(N1) /

CARD 2 / N2, ID(N2), X(N2), ., KN2, T(N2) /

KN2 is the mesh generation parameter given on the second card
of a sequence. The first generated node is NI + (i × KN2);
the second generated node is NI + (2 x KN2), etc. Genera-
tion continues until node N2 - KNz is established. Note

that the difference N2 - NI must be evenly divisible by
KN2. Intermediate nodes between N1 - N2 are located at

equal intervals along the straight line between the two points, o
Boundary condition codes for the generated data are set equal
to the values given on the first card. Node temperatures are
found by linear interpolation between T(NI) and T(N2). No
generation is performed if KN2 is zero.
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III. NODAL POINT DATA (Concluded)

(4) (Concluded)

N1 N2

(5) Nodal temperatures entered for nodes with a boundary condi-
tion Code ID(N) .EQ.I are fixed in the solution process.
For a nonlinear steady-state analysis the first iteration is

performed with the thermal parameters evaluated for the
input nodal temperatures. For transient analyses the input
nodal temperatures are used as the initial conditions.

IV. ELEMENT DATA

Type 1 - Conduction/Convecti0n Rod Element

Rod elements (fig. 8) are identified by the number i. A linear
temperature variation is assumed between nodes. Internal heat
generation, prescribed surface heating, or convective surface
heating is incorporated into the element formulation.

A. Control Card (4 parameters)

1 The number 1
NUME Total number of rod elements in this

element group
NUMAT Number of material property cards
0 Zero

B. Material Property Cards (7 parameters)

Note Variable Entry

MID Material identification number
(i) TK Thermal conductivity (k) (required for

linear analysis only)
ITABK Table number for thermal conductivity

(nonlinear analysis only)
CP Specific heat (c_)

- ITABC Table number forPspecific heat

ICONS ICONS: .EQ.0 Lumped formulation
.EQ.I Consistent formulation

RHO Density

33



a

SURFACE HEATING
OR

CONVECTION

LOCAL_
LEMENT_
AXIS I

TYPICAL
NODE

ZCONDUCTION
AREA

Figure 8. Conduction/convection rod element.
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IV. ELEMENTDATA (Continued)

B. Material Propertz,Cards (Concluded)

_--Surface heat fluxes(positiveinto surface)(BTU/hr)

• _-- Positive sign convention for conduction
heat flux (BTU/hr)

C. Element Data Cards

One card per element in sequential order of element number
starting with one. If there is surface heating or convection
heat transfer two cards are required.

Card 1 (required--g parameters)

Note Variable Entry

ID Element number
(2) I Node number I

J Node number J
MTYPE Material identification number

(3) KK Optional element generation parameter
for automatic •generation of element data

A Cross-sectional area for conduction

VOLQ Heat generation per unit volume (e.g., BTU/
HR-FT**3)

(4) ITAB Table number for heating time history

(5) AF Area factor for surface heating or convection

Card 2 (Optional--required only if the area factor is greater
than zero)

Note Variable Entry

SURFQ Specified surface heat transfer rate (e.g.,
BTU/HR-FT**2) (positive into element)

(6) HI Convective medium heat transfer coefficient

HI at node I
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IV. ELEMENT DATA (Continued)

Note Variable Entry

(6) TI Convective medium temperature TI at node I
(Concl'd) HJ Convective medium heat transfer coefficient

H_ at node J
J • •

TJ Convective medlum temperature Tj at node J

NOTES

(I) For linear analyses the thermal conductivity TK and specific
heat CP input on the material property card are used to
compute the thermal conductancematrix, capacitance matrix,
and the heat flux recovery matrix for an element. For a non-
linear analysis and table numbers greater than zero, the

thermal matrices are initially computed using k and Cp as
unity. Later, after the thermal parameter tables have been
read in, the matrices are multiplied by appropriate values
determined from the parameter tables. The temperature used
in the table is the average temperature of the element, i.e.,
(TI + TJ)/2.

(2) The order of I and J determines the direction of the local
x-axis (see fig. 8). Conduction heat fluxes are positive in
the direction of the local x-axis.

(3) If a series of elements exists such that the element number,
N., is one greater than the previous element number (i.e.,

x = Ni-I + i) and the nodal point number can be given by

I.i= Ii-I + KK

J'l = Ji-I + KK

then only the first and last elements in the series need be
provided. The material identification number and the tempera-
ture for the generated elements are set equal to the values
on the last card. If KK (given on the last card) is input
as zero, it is set to one by the program.

(4) Only one time-dependent thermal load per element may be
specified in a table. The table number ITAB may be used to
define the time history of the heat generation per unit
volume, or a specified surface heating, or the convective
medium temperatures.

(5) If the area factor is greater than zero, the second card will
be read. The area factor is used to compute the surface
area for surface heat transfer, i.e., A (surface) = Area
factor * length of element.
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IV. ELEMENT DATA (Continued)

(6) Convection heat transfer is based on an average convection
coefficient, H = (HI + HJ)/2.

Type 3 - Conduction/Convection Quadrilateral Element

Quadrilateral elements (fig. 9) are identified by the number 3.
The element is based on an isoparametric formulation. The nodes
can be located at general points in space, but they must lie in
a plane. The element conduction heat fluxes are computed at the
element centroid in local coordinates. The element may be laminated
with an arbitrary number of different layers with different
conduction tensors for each layer. Internal heat generation,
prescribed edge or surface heating, or convective heating on all
four edges and the top and bottom surfaces of the element is
included in the element.

A. Control Card (4 parameters)

3 The number 3

NUME Total number of quadrilateral elements in
this group

NUMAT Number of material property card sets
0 Zero

B. Material Property Card Sets (NUMAT sets required)

Card 1 (5 parameters per card)

Note Variable Entry

MID Material identification number

(I) ITABK Table number for thermal conductivity tensor
temperature variation (nonlinear analyses
only)

ITABC Table number for SPecific heat temperature
variation

ICONS .EQ.O Lumped capacitance formulation
.EQ.1 Consistent formulation

lAYERS Number of laminae

. (2) Card Set 2 (Number of cards required equal to lAYERS;
7 parameters per card)

TH Lamina thickness

(3) KXX Conductivity tensor component, K (Real)
KXY Conductivity tensor component, Kxx (Real)
KYY Conductivity tensor component, KxY (Real)

yy
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Figure 9. Conduction/convection quadrilateral element.
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IV. ELEMENTDATA (Continued)

Note Variable Entry

. (4) THETA Materialaxis angle, @ (degrees)
CP Specificheat
RHO Density

_T

qy Ky.x Kyy 3T HR-FT

Y

L K

MATERIAL AXIS

J

C. ElementData Card Sets

One card per elementis requiredin increasingnumericalorder.
Missing elementsare generated. If there is edge or surface
heating, additionalelementcards are required.
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IV. ELEMENT DATA (Continued)

Card 1 (II parameters)

Note Variable Entry

(5) M Element number
I Node I
J Node J
K Node K
L Node L
MAT Material identification number

(6) KG Element generation parameter
IEDGE IEDGE .EQ.0 No edge heating or edge

convection

.EQ.I,2,3,4 Number of edges for which
there is edge heating or
convection

ISURF ISURF .EQ.O No surface heating or
surface convection

.EQ.I Heating or convection on
top surface

.EQ.2 Heating or convection on
top and bottom surfaces

Q Volumetric heat generation rate (e.g., BTU/HR-
FT3)

(7) ITABQ Table number for time dependent heat load

Card Set 2 (IEDGE cards) (7 parameters per card)

Note Variable Entry

(8) N1 Edge node
N2 Edge node
QS Edge heat loading, q (e.g., BTU/HR FT2) (heat

flux is positive into element)
HI Convection coefficient at node N1
T1 Convective medium temperature at node N1
H2 Convection coefficient at node N2

T2 Convective medium temperature at node N2

Card Set 3 (ISURF cards) (8 parameters per card)

Note Variable Entry

(9) HI or Convection coefficient at node I) or con-

(QSURF vective surface heating, q HR-FT 2]
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IV. ELEMENT DATA (Continued)

Note Variable Entry

. (I0) TI Convective medium temperature at node I
HJ Convection coefficient at node J

TJ Convective medium temperature at node J
HK Convection coefficient at node K

TK Convective medium temperature at node K
HL Convection coefficient at node L

TL Convective medium temperature at node L

NOTES

(i) All of the components of the conductivity tensor are assumed
to have the same temperature variation in a nonlinear analysis
so that only one table is input for the entire tensor. The

look-up temperature is (TI + T + TK + TL)/4. For a non-J
linear analysis, the element matrices are formed on the first
iteration using the input values of the conductivity tensor
and specific heat. On subsequent iterations the values
entered in the thermal conductivity and specific heat tables
are used as multipliers of the matrices. Thus for a single
isotropic layer the user should either: (i) input KXY, KYY,
and CP as one (I.0) and enter the actual conductivity and
specific heat values in the tables, or (2) enter conductivity
and specific heat values and use normalized conductivity and
specific heat values in the tables.

(2) For an element with one homogeneous layer only one card is
required.

(3) For an isotropic material the conductivity value k should
be entered for K and K and K should be entered as

xx yy" xy
zero. If K is entered as zero the program will set

YY

Kyy Kxx

(4) The orientation of the local x-axis is from I to J (see fig.
9). The local y-axis then lies in the IJKL plane, and the
direction of the local z-axis is determined by the right-hand
rule. Element conduction heat fluxes are positive in the
local coordinate system.

(5) Element cards must be in element number sequence. If cards
are omitted, element data will be generated. The node numbers
will be generated with respect to the first card in the
series as follows:
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IV. ELEMENT DATA (Continued)

In = In_1 + KG

Jn = Jn-i + KG

Kn = Kn-1 + KG

L = + KG
n Ln-1

All other element information will be set equal to information
on the last card.

(6) Only one time-dependent thermal load per element may be
specified in a table. The table number ITABQ may be used
to define the time history of the heat generation per unit
volume, or a specified surface heating, or the convective
medium temperatures.

(7) If H2 and T2 are entered as zero, the program will set
Hz = HI and T2 = Tl. The convective exchange is based on
the average convection coefficient, (HI + H2)/2.

(8) For specified surface heating enter QSURF followed by seven
zero values for TI, HJ, .TL.

(9). The._onvectiye exchange is based on the average convection
coefficient, _HI_+ HJ + HK + HL)/4.

Type 8 - Mass-Transport Element

Mass transport elements (fig. I0) are identified by the number 8.
The element is used to represent combined.conduction and convective
energy transport due to a mass flow rate m.

A. Control Card (4 parameters)

8 The number 8

NUME Total number of elements in this group
NU_T Number of thermal-fluid property card sets
0 Zero
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Figure i0. Mass transport element.
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IV. ELEMENTDATA (Continued)

B. Fluid Properties (7 Parameters)

Note Variable Entry

N Property identification number

_I) TK Fluid thermal conductivity
ITABK Table number for fluid thermal conductivity
C Fluid specific heat, C

P
ITABC Table number for fluid specific heat

(2) ICONS ICONS .EQ.0 Lumped capacitance conventional
formulation

.EQ.I Consistent capacitance conven-
tional formulation

.EQ.2 Upwind conductance and capacitance
matrices, a = 1

.EQ.3 Optimum conductance and capaci-
tance matrices, _ =

opt

RHO Fluid density

C. Element Data Cards (7 parameters)

One card per element is required in increasing numerical order.
Missing elements are generated.

Note Variable Entry

M Element number
(3) II Node number, I

JJ Node number, J

MATID Property identification number
(4) KG Element generation parameter

Fluid mass flow rate (e.g., Ibm/hr)_
A Flow area
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IV. ELEMENT DATA (Continued)

NOTES

(I) For linear analyses the thermal conductivity TK and
" specific heat C are used to compute the thermal conductance

matrix, capacitance matrix, and the heat flux recovery matrix
. for an element. For a nonlinear analysis and table numbers

greater than zero, the matrices are initially computed using
the thermal parameters as unity. Later, during the solution
process, the matrices are multiplied by appropriate values
determined from the parameter tables. The look-up temperature
used in the table is the average element temperature, (TI +
TJ)/2.

(2) For ICONS .LE.I a conventional element formulation is used,
and for ICONS .EQ.2 or 3 an upwind formulation is used.
See references 1 and S for further details of the upwind
formulation. For ICONS .EQ.2 the element uses full up-
winding, i.e. the upwind parameter a = i. For ICONS .EQ.3
the "optimum" upwind value of _ is computed from

-Pe
1 + e 2

opt 1 - e-Pe Pe

where the Peclet number Pe = C m XL/(TK A) and XL is the
element length. For a nonlinear analysis, or if TK or A

equals zero, the "optimum" upwind value is used as one. Note
that the upwind parameter is used for computation of both the
conductance and capacitance matrices.

(3) The order of the element nodes determines the direction of
fluid flow; the fluid flow is from node I to J.

(4) Missing elements are generated using the same scheme as for
the rod element, i,e., node numbers will be generated with
respect to the first card as follows:

I. = I. +KGi i-I

Ji = Ji-I + KG

All other element information will be set equal to data from
" the last card.
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IV. ELEMENT DATA (Continued)

Type 9 - Surface-Convection Elements

Surface-convection elements (fig, ii) are identified by the number
9_ The elements are used to represent convective heat transfer
between a surface and a flUid with unknown temperature. Four
elements, a line, a quadriiaterai, a triangle, and a three-
dimensional surface, are available.

A, Control Card (4 parameters)

Ngte Variable Entry. . ..... : ..... ..- . .

9 The number 9
NUME The number of Surface convection elements in

this group
NUMAT Number of thermal-flulc property card sets
ND Number of element nodes

B, Fluid Properties (4 parameters)

Note Variable Entry ..

N Property identification number
(I) H Convection coefficient, h

ITABH Table number for convection coefficient

(2) ICONS .LE,I Conventional formulation
.EQ.2 Upwind formulation

C. Element Parameter Data Cards _4 + ND parameters)

One Card per element is required in increasing numerical order.
Missing elements are generated.

Note Variable Entry ..................

EID Eiement number

(3) IE(I) ND mode numbers i, J, K, L, M_ N
MATID PrOperty identification number

(4) KG Element generation parameter

(5) AFACT Area factor for COfi_tiOn

NOTES

(1) For a linear analysis, the fluid cOnVection Coeffieiefit read-
in oh _he fluid prop4rty d_rd is ug_d ifi _iemefit eompu_ktiOhs.
For a nonlinear anaiysis, vaiues from a ¢ofi_io_ doefficient
tabie are used if the tabie humber is gfeate_ than iefo.
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IV. ELEMENT DATA (Continued)

(2) The upwind formulation is avallable as an option only on
the quadrilateral element, i.e. when ND = 4. If ICONS
.EQ.2, when ND = 4, the upwind element conductance matrix
is computed based upon full upwinding, i.e. the upwind
parameter _ = I. The conventional formulation is used
for all other elements regardless of the value of ICONS.

(3) ND node numbers should be entered. For the line element
(fig. lla) and triangular element (fig. llb), node I
denotes the fluid node. For the quadrilateral element
(fig. llc) nodes I and J denote the fluid nodes. For the
plate (or 3-D) element nodes K and N denote the flUid
nodes.

(4) Missing elements are generated using the same scheme as
for the quadrilateral conduction element, i.e., node
numbers will be generated With respect to the first card
as follows:

I = I. +KGi i-1

J'l= Ji-I + KG

K. = +KGI Ki-i

L. = + KG
i Li-I

All other element information will be set equal to data from
the last card.

(5) The area factor is used to compute the convective surface
area, (fig. Ii). For the line element the area factor
equals the convective surface area. For the triangle and
quadrilateral the surface area is the product of the area
factor and distance between surface nodes. For the plate
(3-D) element the surface area is equal to the a_ea of the
quadrilateral surface IJLM times the area factor.

Type I0 - Tube/Fluid Integrated Element

Tube/fluid integrated elements (fig_ 12) are identified by the
number i0. The element represents conduction/convection heat
transfer in a thin tube of constant thickness and flow area
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IV. ELEMENT DATA (Continued)

enclosing a fluid with mass flow rate of m. Heat loading on
the tube external surface due to a specified heating or a
convective exchange with a surrounding medium is included.
Pressure drop computations are performed as an option.

A. Control Card (4 parameters)

Variable Entry

I0 The number I0

NUME Total number of tube/fluid elements in this
group

NPROP Number of thermal-fluid property card sets
NPRES Flag for pressure drop calculations

.EQ.O Pressures are not calculated

.GT.0 Pressures are calculated

B_ Thermal-Fluid Property Card Sets

Card 1 - Tube Properties (7 parameters)

Note Variable Entry

_TID Property identification number
(I) TK Thermal conductivity, k

ITAB Table number for tube thermal conductivity

(2) CP Specific heat
ITAB Table number for tube specific heat

(3) ICONS .EQ.0 Lumped conventional formulation
.EQ.I Consistent conventional formulation
.EQ.2 Upwind fluid formulation, _ = 1

RHO Tube Density

Card 2 - Fluid Properties (5 parameters)

Note Variable Entry

(4) H Fluid convection coefficient, h
ITAB Table number for convection coefficient

(5) CP Fluid specific heat, CP
ITAB Table number for fluid specific heat
RHO Fluid Density
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IV. ELEMENT DATA (Continued)

(Optional) Card 3 - Tube-Fluid Properties for Pressure Recovery_
(6 paramaters)

Note Variable Entry

(6) DH Tube hydraulic diameter, DH

(7) F Fluid friction factor, f
ITABF Table number for fluid friction factor

(8) ITAB Table number for fluid density

(9) R Gas constant, R
GC Proportfonalfty constant fn Newton's second

law, gc

C. Element Data Cards

One card per element is required in increasing numerical
order. Missing elements are generated. If there is external
surface heating on the tube, two cards per element are
required.

Card 1 - Element Parameters (13 parameters)

Note Variable Entry

EiD Element number

(I0) I Node number, I_ Fluid nodes
J Node number, J l
K Node number, K_ Tube nodes
L Node number, L!
MATID Property identification number

(ii) KG Element generation parameter

(12) ISURF ISURF .EQ.0; No surface heating or convection
.GT.0; Surface heating or convection

A Tube cross-sectional conduction area
(13) P Perimeter of tube for internal convective

heat transfer to fluid
G Fluid mass flow rate (e.g., ibm/hr)
AFLOW Flow area

(14) PI Element inlet pressure
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IV. ELEMENT DATA (Continued)

Card 2- External Tube Heating or Convection Data (7 parameters)

Note Variable Entry

(15) AS Area factor for surface heating or con-
vection

SURFQ Specified surface heating rate _e.g., BTU/HR-
FT**2) (positive into surface)

HL Convective heat transfer coefficient, hL,at node L

TL Surrounding medium temperature, TL, at node L

HK Convective heat transfer coefficient, hK, atnode K

TK Surrounding medium temperature, TK, at node K

ITAB Table number for time history of surface•heat-
ing or medium temperature

NOTES

(I) The thermal conductivity is used to represent•the axial
conduction of heat in the tube wall_ The thermal conductiv-

ity of the tube wall may be constant or may be entered in
tabular form for a nonlinear analysis. The look-up tempera-

ture is (TK + TL)/2.

(2) The tube specific heat is used for the tube capacitance
matrix and may be entered as a constant or as a tabular
function of temperature.

(3) If ICONS .EQ.0 a lumped conventional formulation is used
for both tube and fluid capacitance matrices, If ICONS
.EQ.I a consistent formulation i_ used for both tube and
fluid capacitance matrices. If ICONS .EQ.2 a consistent
capacitance matrix is used for the tube but upwind
conductance and capacitance matrices are formed for the
fluid with the upwind parameter, _ = I.

(4) The fluid convection coefficient h is used to represent
convective heat transfer between the tube and fluid. The

convection coefficient may be constant or may be entered in
tabular form for a nonlinear analysis. The look-up

temperature is (TI + Tj)/2_

(5) The fluid specific heat is used for the fluid mass
transport conductance matrix and the fluid capacitance
matrix. The fluid specific heat may be entered as a
constant or a tabular function of temperature.



IV. ELEMENT DATA (Continued)

(6) The tube hydraulic diameter is defined by

DH = 4 * flowcross-sectionalareawettedperimeter

(7) The fluid friction factor f is used to compute the pressure
drop in an element. The pressure drop is computed from the
equation,

L G2 1 +-- _

&P = f DH 2gc Pm gc

where

AP = pressure drop, (PI - PJ)

f = friction factor

L = element length

DH = hydraulic diameter

G = mass flow rate/flow area (e.g., ibm/hr/ftz)

pm = element mean density, (Pl + pj)/2

pi,pj = fluid densities evaluated at the temperature of
the fluid at nodes I, J

gc = proportionality constant in Newton's second law

(e.g., gc =3 2-z17f_Llbm]
ibf - sec2 !

(8) Pressure drops are computed for three density cases: (I)
constant density, (2) variable density as specified by a
density-temperature table, and (3) an ideal gas. If the
density table number is entered as zero, case (I) is assumed.

• If the density table number is greater than zero, case (2)
is assumed.

(9) If the gas constant R is entered as a positive quantity,
case (3) above is assumed. For case (3) the pressure drop
equation above is solved simultaneously with the gas law
P = pRT.
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IV. ELEMENT DATA (Continued)

(i0) The direction of fluid flow is determined by the node
numbering sequence. Flow is from node I to node J _see
fig. 12).

CII) Element cards must be in element number sequence. If
cards are omitted, element data will be generated. The
node numbers will be generated with respect to the first
card in the series as follows:

In = In_1 + KG

=J + KG
Jn n-I

K = Kn_1 + KGn

Ln = Ln-i + KG

All other information will be set equal to the data on the
last card.

(12) ISURF.GT.O indicates the tube is heated _xternally by a
specified heat flux or convectively. The program expects
to read a second card with the heating data.

(13) The perimeter of the tube is used to compute the wetted
area for convective heat transfer to the internal fluid

by multiplying it by the element length.

(14) Pressures are computed at successive nodes by PJ = PI - AP

until a new inlet pressure is specified for an element.

(15) The surface area for external heating is computed as the
product of the area factor times the perimeter times the
element length.

Type II - Plate-Fin/Fluid Integrated Element

Plate-fin/fluid integrated elements _fig. 13) are identified by
the number II. The elements represent conduction/convection heat
transfer in a coolant passage defined by two plates connected by
an internal fin. Fluid flows through the passage with mass flow

rate _.

54



SAL FLUID NODE

Mq

N
:AL WALL NODE

FLOW J

I

(a) Side view.

WALL

L

/ I I
/ I

/ K TYPICAL FLUID NODE
i FOR BULK TEMPERATURE

If
if
I I

I 11

I
/

"-BOTTOM WALL

I

FLOW

(b) Oblique view.
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IV. ELEMENT DATA (Continued)

A- Control Card (4 parameters)

Variable Entry

II The number i!
NUME Total number of plate-fin/fluid elements in

this group
NUMAT Number of thermal-fluid property card sets
NPRES Flag for pressure calculations

.EQ.0; Pressures are not calculated

.GT.O; Pressures are calculated

B. Thermal-Fluid Property Card Sets

Card 1 - Fin Properties (7 parameters)

Note Variable Entry

N Property identification number (fin and
fluid properties)

(I) TK Thermal conductivity
ITABK Table number for fin thermal conductivity
CP Specific heat
ITABCP Table number for fin specific heat

(2) ICONS .EQ.0; Lumped capacitance formulation
.EQ.I; Consistent formulation

DENS Fin density

Card 2 - Fluid ProPerties (5 parameters)

Note Variable Entry

(3) H Fluid convection coefficient

ITABH Table number for convection coefficient
C Fluid specific heat
ITABC Table number for fluid specific heat
RHO Fluid density

(Opti0nal) Card 3 - Properties for Pressure Calculations
_6 parameters)

Note Variable Entry

(4) DH Hydraulic diameter, DH

(sj F Fluid friction factor, f
ITABF Table number for f!Did friction.factor

(6) ITABR T_b!e Dumber for !_id Oess.......... .. f .... .
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IV. ELEMENT DATA (Continued)

Note VariableEntry

(7) R Gas constant R
. G( Proportionality constant in Newton's second

law, gc

C. Element Parameter Data Cards

Two cards per element are required in increasing numerical
order. Missing elements are generated.

Element Parameters

Card I (12 parameters)

Note Variable Entry

M Element number

II Node number, I
JJ Node number, J

(8) KK Node number, K (Fluid node)
LL Node number, L
MM Node number, M
NN Node number, N (Fluid node, inlet)
MATID Property identification number

(9) KG Element generation parameter

(i0) IFIN Flag for fin efficiency
.EQ.O Fin efficiency computed
.NE.O Fin efficiency set equal to one

GM Fluid mass flow rate, m (e.g., ibm/hr)

(Ii) PI Element inlet pressure, PN

Card 2 (4 parameters)

Note Variable Entry

(12) FTHICK Effective fin thickness

(13) WTOP Effective width of top wall for convection
- WBOT Effective width of bottom wall for convection

(14) AFACT Fin area factor

NOTES

(I) The thermal conductivity is used to calculate two-dimensional
heat conduction in the fin. The fin connects the top and
bottom walls, and heat conduction is represented by an
isoparametric quadrilateral finite element formulation. The
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IV. ELEMENT DATA (Continued)

thermalconductivitymay be constantor enteredin tabular
form for a nonlinearanalysis. The look-uptemperatureis

(TI + mj + Tg + TM)/4.

{2) Capacitancematrices are formed for the fin and the fluid.
Only the conventionalelement formulationis used; no
upwinding is available.

(3) The fluid convectioncoefficient h is used to represent
convectiveheat transferbetweenthe top and bottom walls
and between both sides of the fin and the fluid. The
convectioncoefficientmay be constantor be entered in
tabular form for a nonlinearanalysis. The look-up

temperatureis (TN + TK)/2.

(4) The passage hydraulicdiameter is definedby

flow cross-sectionalarea
DH = 4 * wetted perimeter

{S) The fluid friction factor f is used in computing the
pressure drop in an element. The pressure drop is computed
from the equation

AP = f DH 2gc pm + gc

where

AP = pressure drop, (PN - PK)

f = friction factor

L = element length

DH = hydraulic diameter

G = mass flow rate/flow area (e,g,, !bm/hr/ft2)

Pm = element mean density, (_K _ PN)/2

DK,PN = fluid densities evaluated at the temperatures of
the fluid nodes K, N

gc = proportionality constant in Newton's s_cond law

(e 32.17 ft - !bm_
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IV. ELEMENT DATA (Continued)

(6) Pressure drops are computed for three density cases: (i)
constant density, (2) variable density as specified by a

. density-temperature table, and (3) an ideal gas. If the
density table number is entered as zero, case (i) is
assumed. If the density table number is greater than zero,
case (2) is assumed.

{7) If the gas constant R is entered as a positive quantity
case (3) is assumed. For case (3) the pressure drop
equation above is solved simultaneously with the gas law
P = pRT.

(8) The direction of fluid flow is determined by the node
numbering sequence. Flow is from node N to node K (see
fig. 13).

(9) Element cards must be in element number sequence. If cards
are omitted, element data will be generated. The node
numbers will be generated With respect to the first card in
the series as follows:

In = In_1 + KG

Jn = Jn-i + KG

K = K + KG
n n-I

L = L +KG
n n-I

M =M + KG
n n-i

N =N + KG
n n-I

All other information will be set equal to the data on the
last card.

(i0) The fin efficiency is available only for a linear analysis.
" IFIN.EQ.I should be used for nonlinear analyses. If

INFIN.EQ.0 is used with a nonlinear analysis an incorrect
fin efficiency value will be used. For linear analyses
with IFIN.EQ.0 the fin efficiency _ is computed from
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IV. ELEMENT DATA (Continued)

2 cosh m- i
m sinh m

where

m = al_kh--

a = YLNTH _
_ ACOND

YLNTH = average height of the fin, e.g. YM - Yl (fig. 13)

PERIM = perimeter of the fin = 2*AFACT*AREA/YLNTH

AREA = surface area of one side of the quadrilateral
IJLM (fig. 13)

ACOND = conduction area of fin = XLNTH*FTHICK

XLNTH = average length of the fin, e.g. xj - xI
(fig. 13)

Tile fin.efficiency is used to modify the convective heat
transfer between the fin and fluid for the linear temperature
distribution assumed in the surface convection finite element
(see note 14 below).

(II) Pressures are computed at successive nodes by PK = PN - AP

until a new inlet pressure is specified for an element.

(12) The fin thickness is used in two ways. The thickness is used
in representing the conduction heat transfer of the fin. In
addition, the fin thickness is subtracted from the widths
of the top and bottom walls in the computation of convection
areas. For multiple fins, an effective fin thickness equal
to the number of fins times the thickness of a single fin
should be used.

(13) The top and bottom widths are used to compute the convection
areas from the walls to the fluid (see note 12). The
average of these widths is also used in the computation of
the flow area of the element. °

60



IV. ELEMENT DATA (Concluded)

(14) _e fin area factor for convection may be used to account
for multiple fins. The fin surface area is multiplied by
this factor. The convective heat transfer between the fin

" and fluid is based upon the equation

' q = qh (2*AREA*AFACT) I - TBUL4

where

= fin efficiency (see note i0)

h = convection coefficient

AREA = surface area of fin

AFACT = fin area factor

TBULK = (TN + TK)/2

V. THERmaL DATA TABLES

Thermal parameter tables are required for nonlinear and/or transient
thermal analysis. The total number of thermal parameter tables
is entered on the master control card as NUMTB (see section II).
Individual table numbers for reference to the data input here are
read in as part of the element input data. The thermal data
tables are described by the following sequence of data cards:

A. Control Card (one card for each table)

TABNO Table number
NPOINT Number of data points given in table
ITYPE .EQ.I Temp.-thermal parameter table

.EQ.2 Time-heat load table

B. Table Identification (18A4)

Any desired heading information

C. Thermal Parameter Table (4 points per card, as many cards as
required) (typical card)

Temperature for point 1 } Point 1Thermal parameter for point 1
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V. THERMAL DATA TABLES (Concluded)

Temperature for point 2 Point 2
Thermal parameter for point 2!

Temperature for point 3 | Point 3
Thermal parameter for point 3l

Temperature for point 4 1 Point 4Thermal parameter for point 4

VI, TRANSIENT CONTROLCARDS

NOTE: NiNT cards are required, see Section II, Master control.

NOPT.EQ.i (User selects time step,)

NSTEPS Number of time steps for temperature
computation

DELTA Time increment between temperature
computations

NOUT Temperature data to be printed at every NOUT
step

NOPT.EQ.O (Program computes time step.)

TFINL Final time for interval

FDT Factor for computing time step (If FDT is
entered as zero, FDT is set equal to 5.)

FDT
DT -

where X is computed for each element
considering conductance-capacity ratio

NOUT Temperature data to be printed at every NOUT
steps
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APPENDIX C: INPUT DATA AND PROGRAM OUTPUT FOR SAMPLE PROBLEMS

Three sample problems are presented: (I) a linear steady-state

conduction analysis of a rod, _2) a linear transient analysis of conduc-w

tion in a wall, and C3) a one-dimensional forced convection analysis

of a river flow. The problems are relatively simple and were selected

to illustrate program input and output for the basic analyses options.

Four additional sample problems illustrative of the TAP 2 steady-state

analysis capability are presented in the TAP 1 user's manual _ref. 4).

Sample plots are presented in reference i0. The sample problems are

presented in figures 14 to 16.
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SAMPLE PROBLEM 1

Linear Steady-State'ConductionAnalysis of a Rod
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FRINT INPUT DATA CARl, IMAGES WITH CARD COLUMNS INDICATED EUERY IOTH CARD--
CARl,

NO;)€OL. 1 ....... 10 ........ 20..., .... 30.... .... 40, .... ...50 ........ 60 ........ 70 ........ 80
i l-I_ STEADY-STATE, PURE CONI_UCTION, ROD ELEMENT, CONSISTENT FORMULATION.
2 6 I 0 1 0 1 1 1
3 1 1 o.o 0.0 0o0 1 1.0
4 2 0 0.2 0.0 0.0 1 0.0
5 5 0 O.B 0.0 0,0 I 0.0
6 6 1 1.0 0,0 0.0 l 0.0
7 1 5 I 0
g 1 1.o o o.o o 1 o.o
9 1 1 2 1 1 1.0 0.0 0 0.0
10 5 5 6 1 i 1.0 0o0 0 0;0

l--OSTEADY_STATE, PURE CONDUCTION, ROD ELEMENTi CONSISTENT FORMULATION.

CONTROL INFORMATION

NUMBER OF NODAL POINTS = 6
NUMBER OF ELEMENT TYPES = 1
NUMBER OF TABLES = 0
ANALYSIS CODE (NANA) = 1

EQ.O_ DATA CHECK ONLY,
EO.I, LINEAR STATIC
EQ.2, LINEAR TRANSIENT
EO.3, NONLINEAR STATIC
EO.4, NONLINEAR TRANSIENT

.NUHBER OF TIME INTERVALS= I
TIME STEP CODE(NOPT) = 1

•EQ.O DT, COMPUTED
•EQ.1 DT INPUT

FILE CODE (NFILE) = I
EQoO, NO PLOT FILES
GE.I, pLOT FILES CREATED
COo,o, RESTART FILE CREATED
EQ.3, RESTART FILE READ

NEW RESTART FILE

NODAL POINT iNPUT DATA

NODE. BOUNDARY cONDITION CODE NODAL POINT COORDINATES
NUMBER X Y Z TEMPERATURE

1 1 O.OOOOOE+OO O.OOOOOE.OO O.OOOOOE+OO O,IOOOOE+O1

2 0 0,20000E+O0 O,O0000E+O0 o_O0000E+O0 O.O0000E.O0
3 0 O,40000E.O0 O.O0000E+O0 O.O0000E+O0 O.O0000E.O0
4 0 O;60000E+O0 O,O0000E+O0 o;O0000E.O0 O.O0000E+O0
5 0 O.BOOOOE+O0 O;O0000EfO0 O;O0000E+O0 O.O0000E+O0
6 I O.IO000E+01 O.O0000E.O0 O.O0000E.O0 O.O0000E.O0
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0 N El II I M E N 5 I 0 N A |. R 0 [i E I. E M E N T

NUMBER OF ROB ELEMENIS = 5

NUMBER OF MATERIALS = I

NAIERIAL CONDUCTIVITY CONDUCTIVITY SPECIFIC IIEAT SPECIFIC HEAT CONSISTENT CAP, DENSITY
TABLE K TAIct.E CSIJBP .Ell.1 YES RllO

! 0 0 •IOOOE_OI 0 O °O000E_O0 1 O 00000E.O0

CONDUCTION UOt,UME SURFACE CONVECTION CONVECTION DATA LOAD HISTORY TABLES

N I J MAT AREA II g AREA llI TI l(J TJ UO[.ll SURFACE

1 1 2 1 O,IOOOEI010.O000EIO0 O,O000E_O00.O000E_O00,O000ETO00,O000E;O00.O000E.O00.O000EIO0 O O

2 2 3 I O,IO00E-_OI O,O000EtO00,OO00E_O00.O000E.lO00.O000E_O00.O000E-IO00.O000E_O00.O000E.O0 0 0

3 3 4 I O,IO00E.IOI O.O000E.O00.O000E'IO00.OOOOE_O00.O000E_O00.O000E400 O.O000E_O0 O.0000EIO0 0 0

4 4 5 1 O.IO00E_010.O000EIO0 O.O000E-_O0 OoO000E+O00.O000E_O00.O000E.O00.O000E.O00.O000E_O0 O 0
5 5 _ I . 001000E_010.O000EIO00.OO00E_O00.O000EIO00.O000E_O0 O,O000E_O00.O000ETO00.O000E_O0 0 0

HAXIIIUIiCONDUCTANCE/CAPACITANCE RATIO, O.O0000000ETO0 ELEMENT NUMBER 5

Ox
...i



SOLUTION PARAMETERS

TOTAL NUMBER OF EQUATIONS = 6
SEMI BANDWIDTH = _'_

INPUT NODAL TEMPERATURES

TEMPERATURE VECTOR

NODE NO. NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO.4 VALUE,

I 0 •IO0000E+O 1 0 oO00000E.O0 0 •O00000E+O0 0 °O00000E+O0 0. O00000E+O0

& 0.000000E+O0

TRANSIENT CONTROL DATA

NUMBER OF STEPS = i
OUTPUT STEPS = I

TIME I NCREM_EN_T_.USED--O.O0000E+O0
DT COMPUTED = O.O0000E+O0

LINEAR ANALYSIS

TEMPERATURE VECTOR

NODE NO. NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

I O. LOOOOOE+OI O,800000E+O0 0.600000E+O0 0.400000E+O0 O. 200000E+O0

6 0 • O00000E+O0

ONE-DIMENSIONAL ROD ELEMENTS,

ELEMENT CONDUCTION SURFACE CONVECTION
FLUX FLUX

1 0.10000E+01 O.O0000E+O0
2 0.10000E+01 O.O0000E+O0
3 0.10000E+01 O.O0000E.O0
4 O.IO00CE+OI O.O0000E+O0
5 0.I0000E+01 O.O0000E+O0

STOP

END OF EXECUTION
CPU TIME: 0.96 ELAPSED TIME: 3:52.18
EXIT
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SAMPLE PROBLEM 2

Linear Transient Analysis of Conduction in a Wall
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PRINT INPUT DATA CARD IMAGES WITH CARD COLUMNS INDICATED EVERY IOTH CARD--
CARD

NOo/COL. 1 ..... ..10........ 20 ........ 30 ........ 40 ........ 50 ........ 60 ........ 70 ........ 80
1 l-D TRANSIENT, GUAD. ELEMENT, COND..EDGE CONV., CONSISTENT FORMULATION.
2 12 1 0 2 0 1 1 1
3 1 0 0.00 0.00 0.0 2 0.0
4 9 0 0.08 0.00 0.0 2 0.0
5 11 1 0.10 0o00 0o0 2 0.0
6 2 0 0.00 0.01 0.0 2 0.0
7 10 0 0.08 0.01 0.0 2 0.0
8 12 i 0.10 0.01 0.0 2 0.0
9 3 5 1 0
10 1 0 0 1 1

MOo/COL. 1 ..... o.10...o .... 20 ........ 30 ........ 40 .... °...50 ........ 60 ........ 70 ........ 80
11 1. .214E-3 0o0 .214E-3 0.0 .104 .296
12 1 1 3 4 2 1 2 1 0 0.0 0
13 2 1 0.0 .62E-2 1000. .62E-2 1000.
14 2 3 5 6 4 1 2 0 0 0.0 0
15 5 9 11 12 10 I 2 0 0 0.0 0
16 50 .01 10

1-D TRANSIENT, QUAD. ELEMENT, COND.+EDGE CONU., CONSISTENT FORMULATION.

CONTROL INFORMATION

NUMBER OF NODAL POINTS = 12

NUMBER OF ELEMENT TYPES = 1
NUMBER OF TABLES = 0

ANALYSIS CODE (NANA) = 2
EO.O, DATA CHECK ONLY,

EQ.1, LINEAR STATIC

EQ.2, LINEAR TRANSIENT

EO.3, NONLINEAR STATIC
EQ.4, NONLINEAR TRANSIENT

NUMBER OF TIME INTERVALS = I

TIME STEP CODE(NOPT) = 1
.EO.O DT COMPUTED
•EQ.1 DT INPUT

FILE CODE (NFILE) = 1
EG°O," NO PLOT FILES
GE.1, PLOT FILES CREATED

EQ.2, RESTART FILE CREATED
EGo3, RESTART FILE READ

NEW RESTART FILE

NODAL POINT INPUT DATA

NODE BOUNDARY CONDITION CODE NODAL POINT COORDINATES

NUMBER X Y Z TEhPERATURE

1 0 0.O0000E+O0 O.O0000E+O0 O.00000E+O0 OoO0000E+O0
2 0 O.O0000E+O0 0,10000E-01 0.00000E+00 0.00000E+00
3 0 0.20000E-01 0.00000E.00 0.O0000E.O0 O,O0000E.O0

4 0 0.20000E-01 0°10000E-01 0.00000E+00 O.O0000E.00

5 0 0.40000E-01 O.O0000E+O0 O.00000E+O0 0.00000E+00
6 0 0.40000E-01 0.10000E-01 0.00000E.00 0.00000E.00

7 0 0.60000E-01 0.00000E+00 0.00000E+00 O.O0000E+O0

S 0 0.60000E-01 0.10000E-01 O.00000E+O0 O.O0000E+O0
9 0 0.80000E-01 0.00000E+00 0.00000E.00 0.00000E+00

10 0 O.SO000E-01 0.10000E-01 O.O0000E.O0 0.00000E+00

11 1 0.10000E+O0 O.O0000E+O0 O.O0000E+O0 0.00000E+00

!2 1 0.10000E.00 0.10000E-01 0.00000E+00 O.O0000E+O0
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I SOP A R A M E T R I C Q U A D R I L A T E RA L E L E M E N T S

NUMBER OF QUADRILATERIAL ELEMENTS = 5
NUMBER OF DIFFERENT MATERIALS = I

MATERIAL CONDUCTIVITY SPECIFIC HEAT CONSISTENT CAP.

TABLE TABLE .EO.I YES LAYERS

1 0 0 I i

MATERIAL THICKNESS CONDUCTIVITY TENSOR SPECIFIC DENSITY
KXX KXY KYY HEAT RHO

I O.IO00E+01 0.2140E-03 O.O000E+O0 0o2140E-03 0.1040E.00 0o2960E+00

ELEMENT INPUT DATA

N I J K L MATID KG IEDGE _SURF _ HISTORY TABLE

1 I 3 4 2 I 2 1 0 O.O000EfO0 O

EDGE 2 I QS= O.O000E+O0 Hi= 0.6200E-02 TI= O.IO00E+04 H2= 0.6200E-02 T2= O.IO00E+04

2 3 5 6 4 i 2 0 0 O.O000E.O0 0

3 5 7 S 6 I 2 0 0 O.O000E+O0 O

4 7 9 10 B i 2 0 0 OoO000E.O0 0

5 9 11 12 _0 1 2 0 0 O.O000E.O0 0

MAXIMUM COHDUCTANCE/C_FACITANCE _ATIO, 0.64075494E.03 ZLEMENT NUH_ER 1

S O L U T I O N P A R A M E T E R _

TOTAL NUMBER OF EOUATZONS = !2

SEMI BANDt;IDTH = 4

INPUT NODAL TEMPERATURES

-T EM-P E R A T U R E V E C T O R

NODE NO. NO VALUE HO+l VALUE NO.2 VALUE NO.3 VALUE NO.4 VALUE,

1 O.O00000E+O0 O. O00000E+O0 O. O00000E+O0 O. O00000E+O0 O.O00000E+O0

6 O.OOO00QE+O0 O.O00000E.O0 O.O00000E+O0 O. O00000E.O0 O.O00000E+O0
11 0 •O00000E+O0 0. O00000E +00 "
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TRANSIENT CONTROL DATA

NUMBER OF STEPS = 50

OUTPUT STEPS = 10
TIME INCREMENT USED= 0.10000E-01

* DT COMPUTED = 0.78033E-02

. STEP= 10 TINE = 0.10000000E+O0

T E M P E R AT U R E U E C T OR

NODE NO. NO VALUE NO.i VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

1 0.498172E+03 0.498172E+03 0.251184E.03 0.251184E+03 0.100037E.03
6 0.100037E+03 0,291439E.02 0.291439E.02 0.531769E+Ot 0.531769E+01
11 O.O00000E+O0 O.O00000E+O0

STEP= 20 TIME = 0,20000000E.O0

TEMPERATURE VECTOR

NODE NO. NO VALUE NO.I VALUE NO.2 VALUE NO.3 VALUE NO.4 VALUE,

i 0.593760E+03 0.593760E.03 0,380400E.03 0.380400E.03 0.219059E.03
6 0.219059E+03 0°110753E.03 0.110753E.03 0.441223E.02 0.441223E.02

11 O.OO0000E.O0 O.O00000E.O0

STEP= 30 TIME = 0.30000000E.O0

TEMPERATURE VECTOR

NODE NO° NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

1 0°6_6710E+03 0°646710E+03 0.455629E+03 0.455629E+03 0.297299E.03
6 0.297299E+03 0.173735E+03 0.173735E.03 0.788237E.02 0.788237E.02

11 O.OOO000E.O0 O.O00000E.O0

_p= 40 TIME = O°40000002E.O0

TEMPERATURE VECTOR

NODE NO. NO VALUE NO+I VALUE NO+2 VALUE • NO.3 VALUE NO.4 VALUE,

1 0.680216E+03 0.680216E.03 0.503750E.03 0.503750E+03 0.34857SE.03
6 0.348578E+03 0.216187E.03 0.216187E+03 0°I02739E+03 0°I02739E.03
11 O.O00000E.O0 O.O00000E.O0

STEP= 50 TINE = 0.50000004E.O0

TEMPERATURE VECTOR

NODE NO. NO VALUE NO.I VALUE NO.2 VALUE NO.3 VALUE NO+4 VALUE,

1 0.702022E+03 0.702022E+03 0.535135E+03 0.535135E+03 0.382179E+03
6 0.382179E+03 0°244151E.03 0.244151E+03 0.I18557E+03 0.I18557E+03
11 O.O00000E.O0 O.O00000E.O0

I S OR A R A ME TR I C Q U ADR I LATE RA L ELEMENTS
/

CONDUCTION FLUXES SURFACE FLUXES EDGE FLUXES
" (LOCAL AXES) (POSITIVE INTO SURFACE) (POSITIVE INTO EDGE)

ELEMENT (IX OY TOP BOTTOM lJ JK KL LI

" 1 O. 1786E.01 0.5960E-07 O.O000E+O0 0. O000E+O0 O. O000E.O0 0. O000E+O0 O. O000E+O0 -0,4353E-01

2 O. 1637E.01 0.5960E-07 O.O000E+O0 O. O000E+O0 O. O000E.O0 O. O000E.O0 O°O000E_O0 0. O000E+O0
3 O. 1477E+01 O.OO00E+O0 O.OO00E.O0 O. O000E+O0 O°O000E+O0 O. O000E.O0 O,O000E+O0 0.0000E.O0

4 O. 1344E+01 -0. 2980E-07 0. OOOOE.O0 O. OO00E+O0 O. O000E+O0 O. OO00E.O0 O. OO00E.O0 O, O000E.O0

5 0.12&9E+01 -0.2780E-07 O.OO00E+O0 O.O000E+O0 O.O000E+O0 O.OOOOE.O0 O.OOOOE+O0 O.O000E.O0

STOP

END OF EXECUTION

CF'U TIME: 3.24 ELAPSED TIME: 5:46.92
EXIT
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SAMPLE PROBLEbl 3

Forced Convection Analysis of a River Flow
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Figure 16. One-dimensional forced convection analysis of a river flow.



PRINT INPUT DATA CARD IMAGES WITH CARD COLUMNS INDICATED EVERY IOTH CARD--
CARD

NO./COL. 1 ....... i0 ........ 20 ........ 30 ........ 40 ........ 50 ........ 60 ........ 70 ........ BO
1 RIVER FLOW, TRANSIENT, MASS TRANS..SURFACE CONU. ELEMENTS, UPWIND.
2 52 2 0 2 0 1 I t
3 1 1 O. O. O. 2 1.
4 3 0 1000. O. O. 2 O.
5 49 0 24000. O, O. 2 Oo
6 51 0 25000. O. O. 2 O.
7 2 I O. O. 2000. 2 O.
B 52 I 25000. O. 2000. 2 O.
? 8 25 1 0
10 I .485E.12 0 I. 0 2 I.E.6

NO./COL. i ....... 10 ........ 20 ........ 30 ........ 40 ........ 50 ........ 60 ........ 70 ........ 80
11 I 1 3 I 2 1.95E+12 1525.
12 25 49 51 I 2 I.BSE+12 " 1525.
13 9 25 1 4
14 1 2.89E+4 0 2
15 1 I 3 4 2 I 2 305.
16 25 49 51 52 50 i 2 305.
17 20 I. 5
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RIVER FLOW, TRANSIENT, MASS TRANS.+SURFACE CONV. ELEMENTS, UPWIND.

CONTROL INFORMATION

NUMBER OF NODAL POINTS = 52
NUMBER OF ELEMENT TYPES = 2
NUMBER OF TABLES = 0
ANALYSIS CODE (NANA) = 2

EO.O, DATA CHECK ONLY,
EO.1, LINEAR STATIC
EO.2, LINEAR TRANSIENT
EQ.3, NONLINEAR STATIC
EQ.4, NONLINEAR TRANSIENT

NUMBER OF TIME INTERVALS= i
TIME STEP CODE(NOPT) = 1

.EO.O DT COMPUTED
•EO.1 DT INPUT

FILE CODE(NFILE) = 1
EO.O, NO PLOT FILES
GE.1, PLOT FILES CREATED
EQ.2, RESTART FILE CREATED
EO.3, RESTART FILE READ

NEW RESTART FILE

NODAL POINT INPUT DATA

NODE BOUNDARY CONDITION CODE NODAL POINT COORDINATES
NUMBER X Y Z TEMPERATURE

1 1 0. O0000E+O0 0.O0000E+O0 0. O0000E+O0 0. IO000E+O I
2 1 O. O0000E+O0 O.O0000E+O0 O. 20000E+04 O.O0000E+O0
3 0 O. I0000E+04 0oO0000E+O0 O. O0000E+O0 O° O0000E.O0
4 I 0 •10000E.04 0.O0000E+O0 0. 20000E.04 0 •O0000E+O0
5 0 0. 20000E+04 0.O0000E.O0 0. O0000E.O0 0 •O0000E.O0
6 1 0. 20000E.04 0 • O0000E+O0 O. 20000E.04 O. O0000E.O0
7 0 O. 30000E+04 O, O000OE+O0 O. O0000E+O0 O.O0000E+O0
S t O. 30000E+04 O. O0000E.O0 0.20000E+04 O. O0000E+O0
9 0 O. 40000E.04 O. O0000E.O0 O. O0000E+O0 O.O0000E.O0
10 1 o.40000E+04 O.O0000E.O0 O.20000E+04 O.O0000E+O0
11 0 0.50000E+04 O.O0000E+O0 O.O0000E+O0 O. O0000E+O0
12 l O.50000E+04 O.O0000E.O0 O.20000E+04 O. O0000E+O0
13 0 O.60000E+04 O. O0000E+O0 O.O0000E+O0 O.O0000E+O0
14 I 0.60000E.04 0. O0000E+O0 O.20000E.04 O.O0000E+O0
15 0 0 •70000E.04 0. O0000E.O0 0•O0000E.O0 0.O0000E.O0
16 1 0 •70000E'1"04 O.O0000E.O0 O. 20000E.04 O. O0000E+O0
17 0 O.80000E+04 0 oO0000E+O0 0•O0000E+O0 O.O0000E+O0
18 1 O.80000E+04 O. O0000E+o0 O.20000E.04 O.O0000E+O0
19 0 0 • 90000E+04 0 • O0000E+O0 O. O0000E+O0 0 •O0000E+O0
20 1 0. 90000E.04 0 • O0000E+O0 0. 20000E+04 0 • O0000E+O0
21 0 0. 10000E+05 0. O0000E+O0 0 • O0000E+O0 0 • O0000E+O0
22 I O. I0000E+05 O. O0000E+O0 O.20000E.04 0,O0000E+O0
23 0 0.11000E+05 0 • O0000E.O0 0 •O0000E+O0 0 •O0000E.O0
24 t 0 •11000E.05 0.O0000E.O0 0.20000E+04 0 •O00OOE+O0
25 0 O. 12000E+05 O.O0000E.O0 O.O0000E+O0 O.O0000E+O0
26 1 O. 12000E+05 O. O0000E+O0 O. 20000E.04 O. O0000E+O0
27 0 0 •13000E+05 0 •O0000E.O0 0 •O0000E+O0 0 •O0000E+O0
2B 1 O. 13000E+05 O.O0000E.O0 0.20000E+04 O.O0000E+O0
29 0 0.14000E+05 O.O0000E+O0 _O.O0000E+O0 - O.O0000E+O0
30 1 0 • 14000E+05 0 •O0000E+O0 0. 20000E+04 0 •O0000E+O0
31 0 O. 15000E+05 O.O0000E+O0 O.O0000E+O0 O.O0000E+O0
32 I O. 15000E.05 O.O0000E+O0 0.20000E+04 O.O0000E+O0
33 0 0. 16000E+05 0 •O0000E+O0 0 •O0000E+O0 0.O0000E.O0
34 1 0 • 16000E.05 0 •O0000E+O0 0 •20000E+04 0 •O0000E+O0
35 0 O, 17000E.05 O. O0000E.O0 O.O0000E.O0 O. O0000E+O0
36 1 0.17000E.05 0 •O0000E.O0 0. 20000E+04 0 •O0000E+O0
37 0 0•18000E.05 0.O0000E+O0 0 •O0000E+O0 0.O0000E+O0
38 i 0 • 18000E+05 O. O0000E+O0 0 • 20000E+04 0 •O0000E+O0
39 0 0. 19000E+05 0.O0000E.O0 0. O0000E .00 0 •O0000E .00
40 1 O° 19000E.05 0 °O0000E+O0 O. 20000E+04 O.O0000E+O0
41 0 0.20000E+05 O.O0000E+O0 O.O0000E.O0 O.O0000E+O0
42 1 0.20000E+05 0. O0000E.O0 O.20000E+04 O.O0000E.O0
43 0 O. 21000E+05 O.O0000E+O0 0. O0000E+O0 O, O0000E.O0
44 1 0. 71000E.05 O. O0000E.O0 0 • 20000E.04 O. O0000E+O0

45 0 O. 22000E+05 O.O0000E+O0 O.O0000E+O0 O. O0000E+O0
46 1 0. 22000E+05 0 • O0000E+O0 0 • 20000E+04 0. O0000E+O0
47 0 0 •23000E.05 0 •O0000E+O0 0.O0000E+O0 0 •O0000E+O0
48 1 0 •23000E.05 0.O0000E+O0 0.20000E+04 0 •O0000E+O0
49 0 0.24000E+05 O. O0000E+O0 0. O0000E+O0 0. O0000E+O0
50 I 0. 24000E+05 0•O0000E+O0 0•20000E.04 0 °O0000E.O0
51 0 0.25000E+05 O.O0000E+O0 O.O0000E.O0 O.O0000E+O0
52 I 0. 25000E.05 0.O0000E+O0 0 •20000E+04 0 •O0000E+O0
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MASS TRANSPORT ELEMENTS

HUMBER OF THERHA|.-FLUID ELEHENTS = 25

HUMBER OF TIIERHAL-FLUID PROF'ERTIES= 1
,J

TIIERMAL-FLUID F'ROF'ERT IES

MATERIAL CONDUCTIVITY CONDIICTIUITY SPECIFIC HEAT SF'ECIFIC IIEAr CONSISTENT CAP. DENSITY ,,
TABLE K TABLE CSUBP LIPWIND CONTROL RHO

1 0 O. 4850E_12 0 O. I000E_01 2 O. IO00E 107

ELEHEHT INPUT DATA

N I J F'ID KG MASS FLOW RATE FLOW AREA UPWIND PARAMETER

I I 3 1 2 0.1850E.13 0.1525EI04 O.IO00EIOI
2 3 5 1 2 0.1_50Ef13 0.1525E;04 0.I000EI01

3 5 7 1 2 0.1R50E+13 0.1525E_04 O°lO00Et01

4 7 9 I 2 0 1850E.13 0°1525E_04 0.I000E.01
5 9 11 1 2 0 1850E_13 0.1525E;04 0.I000E$01

6 11 13 I 2 0 1850E$13 0.1525E_04 0°I000E;01

7 13 15 1 2 0 tRSOE.13 0.1525E.04 0.1000E_01
8 15 17 I 2 0 1050E413 0.1525E_04 0.I000E;01

9 17 19 I 2 0 1850E+13 0.1525E104 0.1000E_01

10 19 21 I 2 0 I050E_13 0.1525E_04 0.I000E401

11 21 23 I 2 0 JO50E+13 0.1525E_04 0.1000E_01

J2 23 25 I 2 0 1050E.13 0.1525E_04 0.I000E$01

13 25 27 1 2 0 1050E+_3 0 1525E¢04 0.1000E_01
14 27 29 I 2 0 1050E&13 0 !525Ef04 O.IO00E_01

15 29 31 I 2 0 1950EF13 0 1525E_04 O.IO00E_OI

I& 31 33 I 2 0 1950E_!3 0 1525E+04 O.IO00E.OI
17 33 35 1 2 0 1850E_13 0 1525E;04 0.I000E401
18 35 37 1 2 0.1050E$13 0 1525E_04 O.IO00E_01

19 37 39 I 2 0.1050E+13 0 1525E104 0.1000E_OI
20 39 41 I 2 0.1050E_3 0 1525EI04 0.I000E401

21 41 43 1 _ O.IgSOE;13 0 I.,.=,,E$O 0.I000E401

22 43 45 I 2 0.I_50E.13 0 1525EF()4 0.1000E;OI
23 45 47 I 2 0.1850E{13 0 I_i25E_()4 0.1000El01

24 47 49 1 2 0.I_50EF13 0.1525EF04 0.1000E_O!
25 49 51 1 2 0.1850E_13 0.1525E+04 0.1000E_O_

MAXIMUM CONDUCTANCE/CAPACITANF_E P_ATIO, 0.11640000E_02 ELEHENT NUMFIER 25

P_
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b SURFACE C ON VE C T I O N E L E ME N T S

NUMBER OF CONVECTION ELEMENTS = 25

NUMBER OF CONVECTION F'ROrERTIES = I

• NUMBER OF ELEMENT NODES = 4

CONVECTION PROPERTIES

PROPERTY CONVECTION 11 CONVECTION 11TAE_LE ICONS

1 0 _2890E105 0 ='_

ELEMENT INPUT DATA

N I J K L M N HATIP KG AREA FACTOR

1 1 3 4 2 0 0 I 2 0.3050E.03
2 3 5 6 4 0 0 I 2 0.3050ET03
3 5 7 g 6 0 0 I 2 0.3050E_03
4 7 9 10 8 0 0 1 2 0.3050E_03
5 9 11 12 10 0 0 1 2 0.3050E$03
6 11 13 14 12 0 0 1 2 0.3050E+03
7 13 15 16 14 0 0 1 2 0.3050E_03
O 15 17 18 16 0 0 1 2 0o3050E+03
9 17 19 20 1B 0 0 I 2 0.3050E$03
I0 19 21 22 20 0 0 1 2 0.3050E_03
11 21 23 24 22 0 0 1 2 0.3050ET03
12 23 25 26 24 0 0 1 _ 0.3050E$03
13 25 27 28 26 0 0 1 2 0.3050E.03
14 27 29 30 2B 0 0 1 2 0.3050E$03
15 29 31 32 30 0 0 1 2 0.3050E.03
16 31 33 34 32 0 0 1 2 0.3050E.03
17 _ 33 35 36 34 0 0 I 2 0.3050E_03
IB 35 37 3B 36 0 0 I 2 0.3050EI03
19 37 39 40 3B 0 0 1 2 0.3050E.03
20 39 41 42 40 0 0 I 2 0.3050E_03
21 41 43 44 42 0 0 1 2 0.3050E$03
22 43 45 46 44 0 0 1 2 0.3050E_03
23 45 47 48 46 0 0 I 2 0.3050E_03
24 47 49 50 4B 0 0 1 2 0.3050E.03
25 49 51 52 50 0 0 1 2 0.3050EI03
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SOLUTION PARAMETERS

TOTAL NUMBER OF E[_UATIDNS = 52
SEMI BANDWIDTH = 4 t

INPUT NODAL TEMPERATURES
TEMPERATURE VECTOR

NODE NO, NO VALUE NO+l VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

1 O. 100000E+01 O.O00000E+O0 O.O00000E+O0 0°O00000E.O0 O.O00000E+O0
6 O.O00000E+O0 O,O00000E+O0 O. O00000E+O0 O,O00000E+O0 O.OO0000E+O0

11 0, O00000E+O0 0 • O00000E.O0 0, O00000E+O0 0, O00000E+O0 0 oOOO000E+O0
16 0,000000E+O0 O.O00000E+O0 O.OOOO00E+O0 O.O00000E+O0 0.O00000E+O0
21 O.O00000E+O0 0.O00000E+O0 0. O00000E+O0 O,OOO000E+O0 O.O00000E+O0
26 O, O00000E+O0 O, O00000E+O0 O, O00000E+O0 O, O00000E+O0 0 ° O00000E+O0
31 O, OO0000E+O0 0 •O00000E_.O0 O,O00000E+O0 O,O00000E+O0 0,000000E+OO
36 o, O00oooE+oo O. oOOO00E+O0 O, OOOOOOE+O0 O, O00000E+O0 O, O00000E.O0
41 O.OOO000E+O0 O.O00000E.O0 O, O00000E+O0 O, O00000E+O0 O,OO0000E+O0
46 O. O00000E+O0 O.O00000E+O0 0. O00000E+O0 0.O00000E+O0 0.O00000E.O0
51 0 • OOO000E+O0 0 •O00000E+O0

J,,
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TRANSIENT CONTROL DATA

NUMBER OF STEPS = 20
OUTPUT STEPS = 5
TIME INCREMENT USED= 0.10000E+01
DT COMPUTED = 0.42955E.00

STEP= 5 TIME : 0.50OO0000E+01

TEMPERATURE VECTOR

• -NoDENo_ NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

! 0.100000E+01 O.O00000E.O0 0.993685E.00 O.O00000E+O0 0.971704E.00
6 O.O00000E+O0 0.975810E+O0 O.O00000E+O0 O.860581E+O0 O.O00000E+O0
11 O.B52299E+O0 O.O00000E+O0 0.673930E+00 O.O00000E+O0 0.429359E.00
16 O.O00000E+O0 0°233705E+00 O.O00000E.O0 0,113523E+00 O°O00000E.O0
21 0,506617E-01 O.O00000E.O0 0.211821E-01 O.O00000E+O0 0°841176E-02
26 O°O00000E+O0 0°320409E-02 O.O00000E+O0 0°117921E-02 O.O00000E+O0
31 0.421653E-03 O°O00000E.O0 0°147120E-03 O°O00000E+O0 0o502604E-04
36 O.O00000E+O0 0.169582E-04 O°O00000E+O0 0.556422E-05 O.O00000E+O0
41 0.181056E-05 O,O00000E+O0 0.581722E-06 O°O00000E+O0 0°184797E-06
46 O.O00000E+O0 0.581402E-07 O.O00000E+O0 O°tS2925E-07 O.O00000E.O0
51 0.656081E-OB O.O00000E+O0

STEP= 10 TIME = 0.I0000000E.02

TEMPERATURE VECTOR

NODE NO. NO VALUE NO+I VALUE NO.2 VALUE NO+3 VALUE NO+4 VALUE,

1 0.100000E+01 O.O00000E+O0 0.995187E+00 O.O00000E+O0 0°990302E+00
6 O.O00000E.O0 0.98459SE.O0 O.O00000E+O0 0.979641E+00 O.O00000E+O0
11 0.968098E+00 O.O00000E+O0 0°963915E+00 O.O00000E+O0 0.934692E+00
16 O°O00000E+O0 0.919845E+00 O.O00000E.O0 O.g6961SE+O0 O.O00000E+O0
21 0.804376E+00 O.O00000E+O0 0.722288E.00 O.O00000E.O0 0.607926E.00
26 O.O00000E+O0 0.468542E.00 O,O00000E.O0 0.329207E.00 O,O00000E+O0
31 0.212138E+00 O.O00000E+O0 0.126569E+00 O.O00000E+O0 O.70&O59E-01
36 O.O00000E+O0 0.371519E-01 O.O00000E+O0 0.185797E-01 O.O00000E+O0
41 0.888779E-02 O.O00000E.O0 0.408864E-02 O.O00000E+O0 0.181716E-02
46 O.O00000E+O0 0.783942E-03 O.O00000E+O0 0.33277&E-03 O.O00000E+O0
51 0.155803E-03 O.O00000E+O0

STEP= 15 TIME = 0.15000000E+02

T EHP E R A T U R E VECTOR

NODE NO° NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUEr

1 0°100000E+01 O.O00000E+O0 0°995275E+00 O°O00000E+O0 0.990564E+00
6 O.O00000E+O0 0.985863E.00 O.O00000E+O0 0.981124E+00 O°O00000E+O0

11 0°976402E.00 O°O00000E+O0 0°9712S2E.00 O°O00000E.O0 0.966481E.00
16 O.O00000E+O0 0.959661E+00 O.O00000E.O0 0.954273E.00 O.O00000E+O0
21 0.943124E.00 O.O00000E.O0 0.933243E+00 O.O00000E+O0 0.914719E.00
26 O.O00000E+O0 0.890385E+00 O.O00000E+O0 0.856800E.00 O.O00000E.O0
31 0,808826E+00 O.O00000E+O0 0.745651E+00 O,O00000E+O0 0.667257E+O0
36 O.O00000E+O0 0.573934E.00 O.O00000E+O0 0.469728E+00 O°O00000E+O0
41 0.363329E.00 O.O00000E.O0 0.264930E+00 O.O00000E+O0 0.182298E.00
46 O.O00000E+O0 0.118891E+00 O.O00000E+O0 0.746004E-01 O.O00000E+O0
51 0.489005E-01 O.O00000E+O0

STEP= 20 TIME = 0.20000000E+02

TEMPERATURE VECTOR

NODE NO. NO VALUE NO+I VALUE NO+2 VALUE NO+3 VALUE NO+4 VALUE,

'Q I O.IO0000E.01 OoO00000E+O0 0°995_7BE+00 O°O00000E+O0 0,99057BE.00
6 O.O00000E+O0 0.985899E+O0 O.O00000E.O0 0.981_41E+00 O.O00000E.O0

11 0.976599E+00 O.O00000E+O0 0.971975E.00 O.O00000E+O0 0.967341E+00

16 O.O00000E+O0 0.962729E+00 O°O00000E.O0 0.95797BE+00 O.O00000E+O0
21 0.953312E+00 O.O00000E+O0 0.948073E+00 O.O00000E+O0 0.943020E.00
26 O°O00000E+O0 0.936523E+00 O.O00000E+O0 0.929764E.00 O.O00000E+O0
31 0.920565E.00 O.O00000E.O0 0.909019E.00 O.O00000E.O0 O°B93672E+O0
36 O.O00000E+O0 0.872675E+00 O.O00000E+O0 0.844640E+00 O.O00000E.O0
41 0.807766E.00 O,O00000E+O0 0°760320E+00 O.O00000E.O0 0.701726E.00
46 O.O00000E+O0 0.633310E+00 O.O00000E.O0 0.560300E.00 O°O00000E.O0
51 0.499091E+00 O.O00000E+O0
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MASS TRANSPORT ELEMENT

HEAT FLUXES

ELEMENT FLUID HEAT FLUX

1 0o1846E.13
0.1837E+13

3 0.1828E+13

4 0.14_20E+13

5 0°1811E.13

6 0,1802E+13

7 0.1794E+13
8 0.1785E.13

9 0.1777E+13

I0 0.1768E+13
11 0.1759E+13

12 0.1749E+13

13 0.1739E+13
14 0.1726E+13

15 0.1712E+13

16 0.1692E+13
17 0.1667E+13

18 0o1634E+13

19 0.1589E+13
20 0.1528E+13

21 0.1450E+13

22 0,1352E+13

23 0.1235E+13
24 0,II04E+13

25 0,9799E_12

SURFACE CONVECTION ELEMENT

HEAT FLUXES

ELEMENT SURFACE HEAT FLUX(POSITIVE INTO SURFACE)

1 0.8794E+I0
_ 0.8752E@I0

3 0,8711E+10

4 0,8670E+I0

5 . 0.8629E+I0
6 0,8588E+I0

7 0.8547E+I0

8 0.8506E+I0
9 0,8465E+I0

I0 0.8424E.I0
ii 0.8380E910

12 0,8335E+10
13 0.8284E.I0

!4 0.8225E.10
15 0.8155E+I0

16 0.8063E+I0 •
17 0.7945E+10
18 0.7785E.10
19 0,7569E910

20 0.7283E+I0

21 0.6911E+I0

22 0.6444E+I0
23 0,5884E+I0

24 0.5261E+10
_ 0.4669E+10

ExEcuTION
4.93 ELAPSED TIME: 13:10.02
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