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INTRODUCTION

Reliable performance ot advanced, high-strength materials in
critical applications depends on assuring that cach part placed in
service satisfies the conditions assumed in design and life pre-
diction analyses, Reliability assurance requires the availability
of nondestructive evaluation (NDE) techniques nc* only for defect
detection but also for verification of mechanical strength and
associated properties. Advanced NDE techniques are needed to con-
firm that metallic, composite, or ceramic parts will not fail under
design loads due to inadequate or degraded mechanical strengih,
This calls for NDE techniques that are sensitive to variations in
microstructure, extrinsic properties, and dispersed flaw populations
that govern the ultimate mechanical performance of a structure.

The purpose of this paper is to review ultrasonic methods that
can be used for material strength prediction and verification.
Emergent technology involving advanced ultrasonic techniques and
associated measurements is described. It is shown that ultrasonic
NDE is particularly useful in this area because it involves mech-
anical elastic waves that are strongly modulated by morphological
factors that govern mechanical styength and also dynamic failure
modes. These aspects of ultrasonic NDE will be described in con-
junction with advanced approaches und theoretical concepts for
signal acquisition and analysis fov materials characterization.

[t is emphasized that the technology is in its infancy and that much
effort is still required before the techniques and concepts can be
transferred from laboratory to field conditions.
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Fig. 1. Diagram illustrating the relation of defect and material
characterization to defining the integrated effect of the
material-defect state on structural integrity and life.

PRELIMINARY CONSIDERATTIONS

In its most general context, nondestructive evaluation (NDE) is
a branch of materials science that is concerned with all aspects of
the uniformity, quality, and serviceability of materials and stauc-
tures. Therefore, NDE should not be defined solely by the current
emphasis on the detection of overt flaws (Sharpe, 1976), Certainly,
it is necessary to extend NDE technology to characterize discrete
flaws according to their location, size, orientation, and nature.
This leads to improved asscessment of the potential criticality of
individual flaws., Concurrently, it is necessary to develop NDI
techniques for characterizing various inherent material properties,
In this case, the ewphasis is on evaluation of microstructural and
morphological factors that ultimately govern mechanical strength and
dynamic performance. As illustrated in Fig. 1, a holistic approach
combines nondestructive characterization of defects and also matcrial
environments in which the defects reside., This leads to improved
accuracy in predicting structural integrity and life upon exposure to
service conditions, particularly in the presence of discrete flaws.

The specification of flaw criticality and prediction of safe
life depend on the assumption of a realistic set of extrinsic prop-
erties and conditions, such as those listed in Fig. 2. Fracture and
life prediction analysis models invariably presuppose flaw develop-
ment and propagation in materials with well established moduli,
ultimate strengths, fracture toughnesses, and fatigue and creep prop-
ertics. It is within the province and capability of NDE technology
to verify whether or not a structural part possésses the properties
assumed in design analysis (Vary, 1980). There are numerous NDE
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Fig. 2. Material propertics and conditions that can be assessed
by various nondestructive evaluation (NDE) techniques.

techniques that can be used for material properties characterization
(e.g., radiometric, clectromagnetic, ultrasonic) (McMaster, 1959;
Green, 1973; Rrautkramexr, 1977; Hayward, 1978). Many of these are
complementary and can be used to extend or corroborate measurements
by other methods. This paper focuses on ultrasonic techniques that
have demonstrated potentials for materials characterization, These
techniques rely on physical acoustic properties of materials and the
interaction of elastic stress waves with morphological factors in the
ultrasonic regime (Mason, 1958; Kolsky, 1963; Kelsky, 1973),

All the material prop-rties and conditions listed in Fig, 2 are
amenable to ultrasonic evaluation to differing degrees (Vary, 1978a;
1980). The speed of wave propagation and cnergy loss by interaction
with material microstructure and geometrical factors underlie ultra-
sonic determination of material properties. There is a well-estab-
lished body of theorctical and experimental knowledge concerning the
ultrasonic measurement of olastic moduli (Truell et al, 1969; Schrei-
ber et al, 1973). Conversely, ultrasonic prediction of tensile and
yield strengths, and fracture toughness are currently based on empir-
ical correlations (Vary, 1978b),

Prpposed models for cxplaining the above-mentioned empirical
correlations invoke the concept of ultrasonic stress wave inter-
actions with material microstructure to the degree where the stress
waves actually promote plastic deformation and microcrack extension
(van Elst, 1973; Vary, 1979a). This stress wave interaction concept
forms the basis for an ultrasonic approach to defining material--
defect interactions as a means for prediction of ultimate strength
and dynamic reaction to applied loads. Illustrative examples of the
concept are discussed hercinafter.
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Fig., 3. Alternative data processing and analysis methods upon the
acquisition of ultrasonic signals from a test article,

ULTRASONIC DOMAINS

There are three major domains for presenting, processing, and
analyzing ultrasonic data: (i) image domain, (ii) time domain, and
(iii) frequency domain. As indicated in Fig. 3, the detailed treat-
ment of ultrasonic signals within cach domain can be accomplished by
various methodologies, e.g., acoustic tomography, acoustic microscopy,
velocity and attenuation measurement, spectral signature analysis
(Brown, 1973; Kessler and Yuhas, 1978; Krautkramer, 1977; Vary 1980).
The end objectives range from defect detection to material property
characterization,

Irrespective of the methodology used, the fundamental process
in the image domain.produces a representation of signal strength
against spatial coordinates, An example is given in Fig. 4 wherein
material quality variations associated with microvoids and fiber
content in a composite laminate are revealed. In the image domain,
the location and size of flaws or the extent of defective material
become appavent. The chief advantage of ultrasonic imaging is in
affording means for qualitative ranking of test articles relative to {
defect poupulations and material anomalies (Posakony, 1978). ¢

The time domain methodologies all employ electrical analogs of
ultrasonic echoes and transmitted waveforms that are displayed as s

signal amplitude versus time oscilloscope traces. Specific signals

are selected for detailed examination and quantitative measurements
| of energy, velocity, or attenuation, Time domain measurements are , i
currently predominant in defect and material characterization. !

¢
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4. Through transmission immersion ultrasonic amplitude scans
(isometric scans) of graphite/polyimide composite laminate
panels. Scans show variations of transmitted signal rel-
ative to zero trunsnission baseline reference at bottom.
Although each panel was formed with the same cure pressure,
it is evident that material quality and uniformity differ
from panel to panel (Vary and Bowles, 1879).
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5. Interlaminar shear strength of graphite/polyimide composite
laminate specimens compared to ultrasonic modulus based on
density and through-thickness velocity measurements. Three
separate correlation curves that were obtained corresponded
to different combinations of morphological factors that con-
trolled fracture modes during short beam shear tests for
interlaminar shear strength (Vary and Bowles, 1977).
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Material strength correlations derived from time domain signals
are indivated in Fig., 5. This is an example of a widely-used ultra-
soniv appraach to material characterization that involves measuring
clastic constants and related strength properties. Measurement of
elastic moduli are fundamental to understanding and predicting mater-
iul tehavior, Since they are related to interatomic forces, eclastic
moduli indicate maximam attainable strengths (Green, 1973). Longi-
tudiral (v,) and transverse (v, ) wave velocities give the longitud-

inal (1) and shear (G) moduli,trcspoctiVQly, where,
2 2
L=yvy and  G= oV (1)

For linear isotropic solids w.ese twe moduli are sufficient to com-
pletely define elastic behavior, piven interconnecting relations with
othe* moduli, e.g., bulk modulus, tensile modulus, Poisson's ratio
and the Lamé constant (Schreiber et al, 1973), Anisotropic and most
polyerystalline solids present a more complex situation since the
prineipal moduli (L end G) will assume different values with differ-
ent directions of ultrasonic wave propagation. Nevertheless, there
exists an extensive literature that confirms the capabilities of var-
ious time domain mea:urements for predicting mechanical strength for
materials ranging from cast iron to concrete (Vary, 1980),

Frequency domain methodologies begin with the acquisition and
tran:formation of time domiin signals, The transformations to the
frequency domain are made by either (i) analog frequency spectrum
analvsis or (ii) digital Fourier transform algorithms (Gericke, 1970;
Adler et al, 1977; Rose and Thomas, 1979; Vary, 1979b). Working in
the frequency domain affords access to defect and material character-
ization data that arc unattainable ox impractical to seek in the time
domain. An example of the frequency domain approach and methodology
is discussed under MATERIAL TRANSFER FUNCTION,

STRI'8S WAVE INTERACTION

As mentioned previously, significant correlations of ultrasonic
attenuation and velocity with material strength properties exist,
Many of these ultrasonic versus property correlations appear to he
fortuitous, having been found by trial or chance rather than by ex-
tentions of established principles. The classical elastic wave model
does support the expectation that velocity will relate to strength
through elastic moduli. However, current theory does not adequately
account for the strong correlations of ultimate strengths and frac-
ture toughness with attenuation. It is proposed that this lack can
be remedied by considering fracture models in which ultrasonic stress
wav-s interact with material morphological factors to the extent that
they actually promote microcracking and also catastrophic erack ex-
tention. This point of view coincides with dynamically-based models
for fracture behavior (Kolsky, 1973; Curran et al, 1977).

4]




llf,
Yy,
MIHIM mmuwun (¢}

Fig. 6. Depiction of the equivalence of ultrasound and stress
wiave propagation under linear elastic conditions wherein
material microstructure governs ultrasonic attenuation
and fracture phenomena,

The stress wave interaction concept stated above can be used for
developing a theoretical basis for correlations found between ultra-
sonic¢ attenuation and material strength and toughness. The working
hypothesis is that given linear elastic conditions, propagation of
probe ultrasound is governed by the same material morphological
factors that govern stress waves generated during fracture, Fig. 6.
e importance of microstructure in controlling mechanical behavior

s, of course, well cstablished (MacCrone, 1977: Froes et al, 1978)
Ihe use of probe ultrasound, as depicted in Fig. 7, would be expected
define material transfer functions that determine stress wave in-
teractions such as redirection and energy loss due to scattering and
ibsorption, for example. Considering material microstructure as a
filter with a transfer function definable in terms of the ultrasonic
¢ttenuation coefficient proves to be a useful concept, as indicated
results cited under FRACTURE TOUGHNESS AND ATTENUATION,
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RECEIVING
TRANSDUCER
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SIGNAL 4 HS4
MTERIAL AICROSTRUCTURE
Fig. 7. Depiction of material microstructure as an ultrasonic

wave filter in which 4 standard reference signal becomes
modulated according to a definable transfer function.
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Fig. 8. Diagram of acousto-ultrasonic apparatus for measurement of
the stress wave factor E. = R.T.C, The quantity C is the
number of time domain ”rTRgdown” oscillations exceeding a
threshold voltage as in the acousto-ultrasonic waveform
shown in Fig. 9 (Vary and Bowles, 1977; 1979).
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Fig. 9 An ultrasonic pulsed input (left) is used to excite the

acousto-ultrasonic output waveform (right) from which the
stress wave factor, E_, is measured. Both the ultrasonic
input pulse echoes and"acousto-ultrasonic output can be
measured by the alternative factors indicated in order to
determine the material modulation transfer function.

8




W SEmeT. oW

\'h

STRESS WAVE PACTOR

An illustrative example of the application of the stress wave
interaction concept is piven herewith, The application involves a
novel approach that was developed to evaluate fiber composite panels
for mechanical strength properties and in-service strength loss,

The approach combines instrumentation £rom two previously separate
technologies: (i) acoustic emission and {ii) pulse ultrasonics
(Liptai and Harris, 1971; Spanner, 19743 Krautkramer, 1977). The
usual procedure with acoustic emission involves the detection and
analysis of spontancous stress wave emissions due to material defor-
mation and flaw growth, The "acousto-ultrasonic! procedure employs
ultrasonically exeited elastic waves that simulat2 acoustic emission
events, as indicuted in Figs, 8, 9 (Vary and Bowles, 1977; 1979),

The object is tou generate a repeating, controlled set of elastic
waves that will interact with material morphology and boundary sur-
facex in a manner similar to spontaneous stress waves that arise
at the onset of fracture, The resultant output waveform resembles
“burst™ type acoustic emission both in the time and frequency domains.
Like spontaneous acoustic emission waveforms the acousto-ultrasonic
waverorm carries substantially more information on the material in
whick it runs than on the signal source. It is a mixed function of
multimode veloceities, attenuations, dispersions, and reflections, It
has been demonstrated that, in the restricted case of fiber composite
laminates, the acousto-ultrasonic waveform will yield correlations
with ultimate tensile and interlaminar shear strengths, Figs., 10, 11,

The correlations were obtained by measurement of a ''stress wave
factor" (see Fig. 8). The stress wave factor may be described as a
measure of the efficiency of stress wave energy transmission. This
factor apparently provides a means for rating the efficiency of the
dynamic strain energy transfer in the composites tested heretofore
{Vary and Lark, 1978). Once microcracking starts in the brittle
matrix or fibers, it is to be expected that prompt dissipation of
stress wave energy away from the crack initiation sites contributes
to dynamic integrity and ultimate strength, In unidirectional com-
posites, the stress wave factor 1s greatest along the fiber dirvection
which is also the direction of maximum strength. Regions of small
values of stress wave factor are regions of higher ultrasonic atten-
vation (Williams and Lampert, 1980). These regions are also observed
to be regions of weakness where dynamic strain energy is likely to
concentrate and promote further microcracking failure.

The preceding discussion leads to a point made previously with
regard to the phenomenon of stress wave interactions and their rela-
tion to failure dynamics. The fundamental argument being advaned
is that spontaneous stress waves that arise during microeracking can
interact with other potential crack sites leading to either cleavage

o
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or void voalescerse and thence larvge-seale abrupt failure, provided
an initiating exwess strain has been applied (Vary, 1979a). Since
the stress waves are ultrasonic in nature and subject to modulation
by the material microstructure, it should be possible to determine a
modulation transfer function by ultrasonic means. Measurement of a
stress wave factor as deseribed herein affords only a relative means.
Time domain attenuation measurements provide alternative means if the
material sample geometyy permits access along appropriate directions.
However, the more appropriate approach is to work in the frequency
domain wherein signal deconvolution is readily accomplished and the
material transfer function can be precisely defined,

MATERIAL TRANSFER FUNCTION

The conditions under which the material transfer function can
be defined ave restricted. An isotropic polyerystalline aggregate
is assumed for the purposes of this discussion. It is also assumed
that the sample has flat, parallel opposing surfaces and satisfies
the conditions necessary to obtain two back surface echoes as indi-
cated in Fig. 12 (Truell et al, 1969), Signal acquisition and pro-
gessing would be accomplished as indicated in Fig, 13 (Vary, 1979b),

It will he seen that f{requency domain analysis yields an ultra-
sonic transfer function, T, for the material in terms of its attenu-
ation coefficient, «, and reflection coefficient, R. The quantities
Bl, B2, E1, E2, T, and R are taken as Fourier transforms of corres-
ponding time domain quantitics (Bracewell, 1978). This puts the
aforementioned quantities into the frequency domain where signal de-
convolution and transfer function definition can proceed with simple
mathematical manipulations., The attenuation coefficient, being a
function ~f frequency, is likewise defined in the frequency domain,

a4 = ¢f (2)

where, f is frequency and ¢ and m are experimental constants (Vary,
1978b; Serabian, 1980), given that scatter attenuation prevails,

BROADBAND SIGNAL SOURCE ———v.
3 FREE BACK
BACK SURFACE 51.—-—‘—1 - SURFAGE OF
ECHOES T0 | SPECIMEN
ransoicER B2 Y MATERIAL
| " THICKNESS
z 1

Fig. 12, Diagram of echo system showing quantities involved in the |
definition of the material ultrasonic transfer function,
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analysis in time and frequency domains (Vary, 1979b).

As indicated in Fig. 12, a broadband ultrasonic pulse signal pro-
duces a series of back surface echoes in the material specimen, The
first two buck surface echoes Bl and B2 re-enter the ultrasonic trans-
ducer which acts as sender and receiver, Fig. 13. 1t is appropriate
to take the internal echo El as the source signal i..r Bl, thus,

Bl = (1+R}El (3)

where, (14R) is the transmission function at the specimen-transducer
interface (Trucell, et al, 1969). A portion of the energy of El is ree
flected and appears as the second internal echo E2, giving,

B2 = TR(1+R)El 4

where, the transfer function T incorporates signal modulation factors
associated with the materinl microstructure (e,g., grain scattering,
absorption, etc.) and interface cffects. Combining the two preceding
equations,

T = B2/RB1 (5)

The transfer functions associated with coupling and other factors of
signal transduction were ignored as they cancel out just as the term
(1+R) (E1) vanishes upon combining Equations (3) and (4) to get (5).

It has been shown by Papadakis (1976) that the attenuation coefficient
can be measured by frequency spectrum analysis and that,

2 = (1/2%) Wn(RB1/B2) (6)

where, x is specimen thickness.
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B2/Bl as a function of frequency is the ultrasonic cransfer

L




By noting that the ratlos, B2/Bl, appearing in Bquations (8) and
(6) are identical functions af‘ultr@aonic frequency, we have,

o

T = oxp(-2xa) o “ (7

that is, the material transfer function or ultrasonic wave filtering
characteristic is defined in torms of the attenuation coefficient

and reflection coefficient. Por nondispersive materials, the reflec-
tion coefficient R is independent of frequency. It is a function of
material velocity and density (Truell et al, 1969; Papadakis, 1976).
Recalling that Bl and B2 were taken as Fourier transforms of corres-
ponding time domain echoes, it is clear that Bquation (8) gives the
transfer function T as the ratlo of the frequency spectra of time
domain waveforms. Therefore, in complex polar form,

T = (1/R)(a2/al)exp(i$) (8)

where, al and a2 ave the amplitude spectra for signals Bl and B2,
respectively, while ¢ is the difference in phase spectra ($2-¢1).
Here, T represents the deconvolution of the time domain counterparts
of Bl and B2 (Newhouse and Fugason, 1977; Bracewell, 1978).

Equations (7) and (8) are a basis for determining material prop-
erties by means of ultrasonic spectrum analysis and associated ultra-
sonic attenuation weasurement, The essential operations for accomp-
Iishing this, as implemented by a computer system, are illustrated .
Fige. 14 and 15, A number of ultrasenic factors dorived from material
transfer function and attenuation curves have proven to correlate well
with microstructure, fracture toughness, and yield strength in metals,
as discussed in the following section,

FRACTURE TOUGHNESS AND ATTENUATION

The feasibility of ultrasonic measurcment of plane strain frac-
ture toughness has been demonstrvated for two maraging steels and a
titanium alloy (Vary, 1978b1. A principal ultrasonic factor that
correlates with fracture toughness 1s £ which is the slope, du/df,
of the attenuation versus frequency curve, Equation (2)., The con-
stants ¢ and m for the naterial microstructure are established by the
frequency domain analyses represented in Figs. 14 and 15, The cor-
relations that have been found are shown in Figs, 16, 17, and 18,

Fracture toughness, yield strength, and related microstructural
factors are apparently intimately connected with ultrasonic and hence
(stress) wave propagation factors in polycrystalline metallic nater-
ials. The empirical correlations that are exhibited in Figs, 16
through 18 imply that stress wave interactions are important during
rapid (catastroplic) crack extension, as under the conditions for
determining fracture toughness (Brown and Srawley, 1966),
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Fig. 16, Ultrasonic attenuation factor g, as a function of fracture
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material specimens that share the same yield strength are
represented on the same line, for example, the 250-grade
maraging steels with o=1400 Mpa (Vary, 1978b),

CONVENTIONAL PLOT OF YIELD
STRENGTH VS FRACTURE TOUGHNESS

VIELD STRENGTH VS ULTRASONIC
QUANTITY a » AIBIK g ¢ By

QO Ti-8Mo-BV-2fe-3A|
O 200 GRADE MARAGING STIEL

1600 —~ r.-
, ¢ 0
VIR 1400k ~ o
STRENGTH, ¢ o
oy,
an 1200} e Q o)
e} O
O T T e SN N P TR RO

R Y R R N N
ULTRASONIC #ACTOR and3, uSlcm FRACTURE TOUGHNESS, Ky, MPavin

&

Fig. 17. Correlations of yield strength to fracture toughness for a
titanium alloy and a mavaging steel, The lefthand graph
is based on data from Fig. 16 and combines the ultrasonic
factor B, with fracture toughness Kye in the quantity a
as defined abc = he figure (Vary, 1978b).
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and fracture toughness '"characteristic length" factor for
three metals., The experinental data agree with theoretical
relation given by Equation (9) (Vary, 1979a).

It can be inferred thut spontaneous stress waves generated dur-
ing crack nucleation will contribute to promoting the onset of rapid
unstable crack extension. A stress wave interaction model based on
this idean was used to derive equations that predict the empirical
correlations shown in Figs. 17 and 18 (Vary, 1979a). For the oly-
crystalline aggregates for which the equations were derived tuaere ex-
ists a close relation betweren fracture toughness and yield strength.
This accounts for the appearance of yield strength o, in the equations
connecting plane strain fracture toughness KIc and tﬁe ultrasonic
attenuation factor R,

" 2 Y
(RIC/Oy) = M(veBg/m) " (9)

y F MK BB, = C (10)
where, v, is velocity and A, B, C, and M are experimental constants
that are related to material microstructural factors. The quantity By
s the derivative do/df evaluated at an attenuation coefficient a=l,
while R. is da/df evaluated at a particular threshold frequency that
correspénds to a c¢ritical ultrasonic wavelength in the material. This
wavelength is related to the mean grain boundary spacing, Equation
(9) describes the lines through the data in Fig. 18 while equation
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{10) describes the lines through the data in Fig, 17, The empirical
coefficient A and B in Equation (10) carry opposite ndgebraic signs
that appear to depend on the mode of fracture. Thus, if these co-
efficients are experimentally determined for a material that frac-
tures in a predominantly brittle manner, A assumes a negative sign,
giving a negative slope as for the line for titanium in Fig. 17,

The coefficients and associated quantities in Equation (10) apparent-
ly relate to modes of stress wave energy dissipation, residual strain
in erack nucleation sites, and whether the nucleation sites are
energy "sinks" or "sources'" during fracture. The coefficient M in
Equation (9) appears to be related to microstructural factors such as
grain size, lath spacing, ligament length (Hahn et al, 1972). The
quantity m in Equation (9) is the exponent on frequency in Equation
(?). Once these experimental constants have been determined for a
materinl, Equations (9) and (10) can be taken as simultaneous rela-
tions to solve for KIc and uy in terms of the ultrasonic factors.

CONCLUDING REMARKS

The ultrasonic NDE approaches and results that have been high-
lighted herein indicate potentials for material characterization and
property prediction. Stress wave interaction and material transfer
function concepts were cited as bases for explaining correlations be-
tween material mechanical behavior and ultrasenically-measured quonti-
ties, It is observed that the criticality and effect of any discrete
flaw (crack, inclusion, or other stress raiser) is definable only in
terms of its material microstructural environment. This underscores
the importance of ultrasonic techniques that can characterize stress
wave energy transfer properties of a material,
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