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SUMMARY

The explicit expressions for an elastic-plastic trapezoidal ring element are

presented and implemented in NASTRAN computer program. The material is assumed

to obey the von Mises' yield criterion, isotropic hardening rule and the Prandtl-

Reuss flow relations. For the purpose of demonstration, two elastic-plastic

problems are solved and compared with previous results. The first is a plane-

strain tube under uniform internal pressure and the second, a finite-length tube

loaded over part of its inner surface. A very good agreement has been found in
both test problems.

INTRODUCTION

In recent years finite element method has been widely used for solving

complex nonlinear problems and many large-scale general purpose computer programs

have been developed (ref. i). The MARC and ANSYS systems have found wide appli-

cations, yet they are quite expensive. The piecewise linear analysis option of

the NASTRAN program provides an algorithm for solving nonlinear problems in mater-

ial plasticity (ref. 2). The load is applied in increments such that the stiff-

ness properties can be assumed to be constant over each increment. However, the

usefulness of this option is quite limited because only a few elements have been

implemented. These include rod, tube, bar elements for one-dimensional problems

and plate elements for two-dimensional plane stress problems. This paper
describes the implementation of a trapezoidal ring element in NASTRAN for solving

elastic-plastic problems of rotational symmetry.

The theoretical basis of our implementation follows the approach first
developed by Swedlow (ref. 3). A unique relationship between the octahedral

stress and the plastic octahedral strain is assumed to exist. The material is

assumed to obey the Mises' yield criterion, isotropic hardening rule and the

Prandtl-Reuss flow relations. The explicit expressions for axisymmetric plas-

ticity are derived. The element stiffness matrix and the stress data recovery

routines for the trapezoidal ring element are developed. Seven new subroutines
are implemented and added to the NASTRAN code.
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For the purpose of demonstration, two elastic-plastic test problems are

solved. The first is an infinitely long tube under uniform internal pressure.
The NASTRAN results are in excellent agreement with an exact solution based on a

finite-difference approach (ref. 4). The second problem is a thick-walled

cylinder of finite length loaded over part of its inner surface. The NASTRAN

results are compared with those obtained by a two-dimensional code with the use

of quadrilateral ring elements (ref. 5). A good agreement between the two
results has also been achieved.

CONSTITUTIVE RELATIONS

Following the development by Swedlow (ref. I), the constitutive relations

to he used in our formulation for solving elastic-plastic problems of rotational

symmetry will be presented here. In the development, a unique relationship

between the octahedral stress and the plastic octahedral strain is assumed to

exist and the use of ideally plastic materials is excluded. The total strain

components (er, e@, ez and Yrz) are composed of the elastic, recoverable defor-

mations and the plastic portions (eP, e_, ePz, and yP ). The rates of plastic
flow, C_p, etc.), are inaependent o_ a time scale and are simply used for con-
venience instead of the incremental values. The definitions of the octahedral

stress TO and the octahedral plastic strain rate _P in the case of rotational
symmetry are : o

To = (i/3)[((_r-GO)2+ (cr@-Crz)2+ (_z'_r)2 + 6Trz2]i/2 (i)

•P r..P.P. (_P__P)2eo (i/3) 2 .'P 'P.2= Lter-e@) + . + [ez-er) + (3/2)(.rz)2] I/2
cP (2)

where (_r' _@' _z' Trz) are the nonvanishing stress components.

A unique relationship between TO and e_ is assumed and there exists a

function, MT(To), such that

2MT(_o) : "{'olEPo (3)

The plastic modulus, MT(To), can be related to the slope, ET, of the effective
stress-strain (_-e) curve by

1 1 1
= (4)

3MT(T o) ET E

where E is the elastic modulus and

Et = o/e

= (3/_)zo

: _ eo + _/E . (5)
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The material is assumed to obey the Mises yield criterion and the Prandtl-Reuss
flow rule. The matrix relationship for the plastic flow in the case of rota-
tional symmetry is

e = [c] (6)
EZ _Z

#rz d

[C] : _ 1 -_ -_ 0

-V 1 -V 0

-_ -V 1 0

0 0 0 2(i+_)

+ 6To2MT(To) St2 SrSo SrSz 2SrTrz

S@2 SoSz 2S@Trz

Sz2 2SzTrz

SYM 4Trz 2 _ (7)

where v is the Poisson's ratio,

Sr = (2Or-O@-Oz)/3 ,

So = (2o@-Oz-ar)/3 ,

Sz = (2Oz-Or-O@)/3 • (8)

For strain-hardening materials, MT (or ET) _ 0, we can obtain the inverse of
[C] numerically and this procedure is chosen in developing NASTRAN program. For
ideally-plastic materials, MT = ET = 0, matrix [C] does not exist and the NASTRAN
program fails. However, its inverse [C]-I still exists and the closed form has
been derived in Ref. 6. In the axisymmetric case, the explicit form is (ref. 7)

2G -
_ 2G -l-v SYM- - -- SYM-[D] i-2_ A Sr2

i-_ SrS@ SO2

v V l-v SrSz SoSz Sz2 (9)

1 2
_0 0 0 _(i-_)_ _SrTrz S Ttz SzTrz Trz _
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where

A = 3To2(1 + M,I,/G)
and

1E/(I+_) (10)G =

If we want toremove the limitation that the use of ideally-plastic materials

is excluded, we have to use Eq. (9) instead of Eq. (7).

TRAPEZOIDAL RING ELEMENT

The incremental displacement field employed for the trapezoidal ring
element are

Au(r,z) = 81 + 82r + 83z + 84rz ,

Aw(r,z) = 85 + 86r + 87z + 88rz . (ii)

The transformation from grid point coordinates to generalized coordinates is

{8}= [rsq]{Aq} (12)where

{Aq}T = [AUl, Aw I, Au2, Aw2, Au3, Aw3, Au4, Aw4] ,

{8}T = [81, 82, 83, 84, 85, 86, 87, 88] . (13)

the elements of the inverse of the transformation matrix [F_^] "I are the
and

coefficients of the 8's in Equations (ii), evaluated at the COl_rs of the
element.

The stiffness matrix is formed in the same manner as that for the aniso-

tropic elastic element. The final form referred to grid point coordinates is

[K] = [rsq]T[K ][FSq],
where

[2]= 2_fr[B]T[D][B]dzdr . (14)

[D], the matrix of material coefficients, is defined by Equation (9). The [B]
matrix is the same as the elastic case, but now it expresses the incremental

strains in terms of generalized coordinates

{Ae} = [B]{8} • (15)

104



NASTRAN IMPLEMENTATION

The NASTRAN implementation for an elastic-plastic trapezoidal ring element

follows the steps outlined in section 6.8, "Adding a structural element," of

reference 8. Changes were required in the functional modules PLAI, PLA3, and
PLA4, which included the writing of several new subroutines. These new routines

could easily be modeled after the existing code for the linear portion of the
program. There are two major differences in the nonlinear subroutines. First
is the new code for the calculation of the material stiffness matrix and second

is that thermal stresses and element force calculations are eliminated in the

nonlinear code.

The changes in PLAI allows this module to identify the new element as a

member of the piecewise linear element set and properly initialize the non-

linear Element Summary and Element Connection Property Tables. Three element
stress recovery subroutines were added to PLA3: PSAPRG, a driver for stress

data recovery; PSTRRI and PSTRR2, phase I and II stress recovery routines.

Element stiffness calculations in PLA4 require four new subroutines: PKAPRG,

a driver for nonlinear trapezoidal ring elements in PLA4, PKTRRI and PKTRR2,

stress recovery routines which generate stresses for the computation of the

nonlinear material matrix; and PKTRAP, the stiffness matrix generation routine

for nonlinear trapezoidal ring elements.

The computer system available for this work is IBM 360 Model 44. In order

to add the new code into Link 13, it became necessary to add a new branch to the

overlay trees to contain the new elements.

NUMERICAL EXAMPLES

For the purpose of demonstration, two elastic-plastic problems of rota-
tional symmetry were solved and compared with other results (refs. 4 and 5).

The first is an infinitely long tube under uniform internal pressure and the

second, a thick-walled cylinder of finite length loaded over part of its inner

surface. The material _roperties for both problems are the same. The elastic
constants are E = 30x10 ° psi, _ = 0.3 and the effective stress-strain curve is

represented by three line segments connecting the four points in the (e-_) plane,

(_,_) = (0.0,0.0). (0.00S, iS0,000 psi), (0.055, 225,000 psi), (0.I, 225,000 psi).

EXAMPLE i. Consider an infinitely long tube subjected to uniform internal

pressure p. The plane strain condition is assumed. The tube of outside radius

2" and inside radius i" has been divided into 25 trapezoidal ring elements.

The numerical results based on the NASTRAN program have been obtained. For this

problem, a new finite-difference approach (ref. 4) can be used to generate exact
solution and to assess the accuracy of the NASTRAN code. Some of the results

for the displacements and stresses are presented graphically in Figures 1 and 2.

Twenty-five load increments are used in NASTRAN as shown in Figure I. The
radial displacements at the inside as well as outside surface are shown as

functions of internal pressure. Figure 2 shows the distributions of radial,
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tangential and axial stress components in a pressurized tube when half of the

tube is plastic. The pressure required to achieve this state is 0.7378 _o based
on NASTRAN code and 0.7356 o o based on the finite-difference solution (ref. 4).
Both codes indicate that the maximum tangential stress occurs at the elastic-

plastic interface. As demonstrated in Figures 1 and 2, the NASTRAN results are
in excellent agreement with those based on the finite-difference approach
(ref. 4).

EXAMPLE 2. Consider a two-dimensional elastic-plastic thick-walled cylin-

der problem as shown in Figure 3. The tube with inner radius (i"), outer
radius (2") and length (4") is loaded uniformly over a middle portion (2") of

the inner surface. The mesh generation and the loading for the half of the

undeformed structure is shown in the figure. This problem was solved in (ref. 5)

based on a scale loading approach. The first load factor is the upper limit of
the elastic solution and ten additional increments were needed until one of the

outside elements becomes yielded. The same load factors were used to obtain

the NASTRAN solution. Both programs indicate that the sequence in which the

elements become plastic is 1,5,9,2,13,6,10,3,7,14,11,17,4. Some steps will

cause mgre than one element to become plastic and those elements with effective

stress _ > 0.99 oo have been considered as yielded. The numerical results for

the radial displacement at the inside, ua (point i) and outside, ub (point 5)
as functions of internal pressure are shown in Figure 4. The stress components

at the centroid of one inside element (No. I) are shown in Figure 5. The effect

of loading history on the displacements and stresses can be seen from Figures 4

and 5. A comparison of the results between NASTRAN program and reference 5

indicates that very good agreement has been achieved.

CONCLUSION

An elastic-plastic trapezoidal ring element has been implemented in NASTRAN

computer program. Its application to elastic-plastic problems of rotational

symmetry has been demonstrated by solving two thick-walled tube problems. The

NASTRAN results for both problems are in excellent agreement with the other
results.
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