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FOREWORD

The Cogeneration Technology Alternatives Study (CTAS) was performed

by the National Aeronautics and Space Administration, Lewis Research

Center, for the Department of Energy, Division of Fossil Fuel Utili-

zation. CTAS was aimed at providing information which will assist the

Departn:ont of Energy in establishing research and development funding

priorities and emphasis in the area of advanced energy conversion system

technology for advanced industrial cogeneration applications. CTAS

included two Department of Energy-sponsored/NASA-coDtracted studies con-

ducted in parallel by industrial teams along with analyses and evaluations
by the National Aeronautics and Space Administration's Lewis Research

Center.

This document describes the work conducted by the Energy Technology

Operation of the General Electric Company under National Aeronautics and

Space Administration contract DEN3-31.

The General Electric Company contractor report for the CTAS study i;,

contained in six volumes:

Cogeneration Technology Alternatives Study (CTAS), General Electric

Company Final Report
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Section 1

SUMMARY

Cogeneration systems in industry simultaneously generate electric

power and thermal energy. Conventional nocogeneration installations use

separate boilers or furnaces to produce the required thermal energy and

purchase electric power from a utility which rejects heat to the outside
environment. Cogeneration systems offer significant savings in fuel but

their wide spread implementation by industry has been generally limited

by economics and institutional and regulatory factors. Because of po-

tential savings to the nation, the Department of Energy, Office of Energy

Technology sponsored the Cogeneration Technology Alternatives Study (CTAS,

The National Aeronautics & Space Administration, Lewis Research Center, con-

ducted CTAS for the Department of Energy with the support of Jet Propulsion

Laboratory and study contracts with the General Electric Company and the

United Technologies Corporation.

OBJECTIVES

The objective of the CTAS is to determine if advanced technology

cogeneration systems have significant payoff over current cogeneration

systems which could result in more widespread implementation in industry

and to determine which advanced cogeneration technologies warrant major

research and development efforts.

Specifically, the objectives of CTAS are:

1. Identify and evaluate the most attractive advanced energy
conversion systems for implementation in industrial cogen-
eration systems for the 1985-2000 time period which permit
use of coal and coal-derived fuels.

2. Quantify and assess the advantages of using advanced technology
systems in industrial cogeneration.
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SCOPE

The following nine energy conversion system (ECS) types were evaluated in
CT11S

1. Steam turbine

2. Diesel engines

3. Open-cycle gas turbines

4	 Co►►rbi ned gas turbine/steam turbine cycles

S. Stirling engines

G. Closed-cycle gas turbines

7. Phosphoric acid fuel cells

8. Molten carbonate fuel cells

9. Thermioncs

In the advanced technology systems variations in temperature, pressure
ratio, heat exchanger effectiveness and other changes to a basic cycle

were grade to determine desirable parameters for many of the advanced

systems, Since coal and coal-derived Fuels were emphasized, atmospheric

and pressurized fluid bed and integrated gasifiers were evaluated.

For comparison, currently available non-condensing steam turbines
with coal-fired boilers and flue gas desulfurization, gas turbines with
heat recovery steam generators burning residual and distillate petroleum
fuel and medium speed diesels bur7ing petroleum distillate fuel were

used as a basis of comparison with the advanced technologies.

In selecting the cogeneration energy conversion system Configu-

rations to be evaluated, primary emphasis was placed oil system concepts
fired by coal and coal-derived fuels. Economic evaluations were based on

industrial ownership of the cogeneration system. Solutions to institu-

tional and regulatory problems which impact the use of cogeneration were
not addressed in this study.

Over fifty industrial pr°  ,:sses and a similar number of state-of-

the-art and advanced technology cogeneration systems were matched by

1-'2



General Electric to evaluate their comparative performance. The indus-

trial processes were selected as potentially suited to cogeneration pri-

marily from the six largest energy consuming sectors in the nation. Ad-

vanced and current technology cogeneration energy conversion systems,

which co ►ald be matte commercially avallots , in tha 1985 to 2000 year time

frame, were defined on a consistent 	 These processes and systems

were matched to determine their effectiveness in reducing fuel require-

ments, saving petroleum, cutting the annual costs of supplying energy,

reducing emissions, and improving the industry's return on investment.

Detailed data were gathered on SO process plants with major emphasis

on the following industry sectors;

1. SIC20 - Food and Kindred Products

2. SIC26 - Pulp and Paper Products

3. SIC20 - Chei►ri cal s

4. SIC29 - Petroleum Refineries

5. SIC32 - Stone, Clay and Glass

6. SIC33 - Primary Metals

In addition, four processes were selected from SIC22 - Textile Mill Pro-

ducts and SIC24 - L miber and good Products. The industry data includes

current fuel types, peak and average process temperature and heat require-

ments, plant operation in hours per year, waste fuel availability,

electric power requirements, projected growth rates to the year 2000,

and other factors needed in evaluating cogeneration systems. From this

data approximately fifty plants were selected on the basis of: energy

consumption, suitability for cogeneration, availability of data, diversity

of ty-los such as temperatures, load factors, etc., and range of ratio of

process power over process heat requirements.

Rased on the industrial process requirements and the ECS character-

istics, the performance and capital cost of each cogeneration system and

its annual cost, including fuel and operating costs, were compared with

nocogeneration systems as currently used. The ECS was either sized to



match the process heat requirements (heat snatch) and electricity either

bought or sold or sized to match the electric power (power match) in
which case an auxiliary boiler is usually required to supply the re-
maining heat needs, Cases where there was excess heat when matching

the power were excluded from the study, With the fuel variations studied
there are 51 ECS/fuel combinations and over 50 processes to be potentially
matched in both heat and power resulting in a total of approximately 5000

matches calculated. Some matches were excluded for various reasons; e.g.,

the ►CS out of temperature range or excess heat produced, resulting in

approximately 3100 matches carried through the economic evaluation. Re-

sults from these matches were extrapolated to the national level to pro-
vide additional perspective on the comparison of advanced systems.

RESULTS

A comparison of the results for these specific matches lead to the

Following observations on the various conversion technologies;

1. The atmospheric and pressurized fluidized bed steam turbine
systems give payoff compared -to conventional boiler with
flue gas desulfurization-steam turbine systems which already
appear attractive in low and medium power over heat ratio
industrial processes.

2. Open-cycle gas turbine and combined gas turbine/steam turbine
systems are well suited to medium and high power over heat ratio
industrial processes based on the fuel prices used in CTAS,
Regenerative and steam injected gas turbines do not appear to
have as much potential as the above systems, based on GE results.
Solving low grade coal-derived fuel and N0x emission problems
should be emphasized. There is payoff in these advanced systems
for increasing firing temperature.

3. The closed-cycle gas turbine systems studied by GE have higher
capital cost and poorer performance than the more promising
technologies,

4. Combined- cycle molten carbonate fuel cell and gas turbine/steam
turbine cycles using integrated gasifies• , and heat matched to
medium and high power over heat ratio industrial processes and
exporting surplus power to the utility give high fuel savings,
Because of their high capital cost, these systems may be more
suited to utility or joint utility-industry ownership.

1-4



S. Distillate-fired fuel cells did not appear attractive because
of their poor economics due to the low effectiveness of the cycle
configurations studied by GE and the higher price of distillate
fuel.

6. The very nigh power over heat ratio and moderate fuel effective-
ness characteristics of diesel engines limit their industrial
cogeneration applications. Development of an open cycle heat
pump to increase use of jacket water for additional process heat
would increase their range of potential applications.

To determine the effect of the national fuel consumption and growth

rates of the various industrial processes together with their distribution

of power to heat ratios, process steam temperatures and load factors,

each energy conversion system was assumed implemented without competition

and its national fuel, emissions, and cost of energy estimated. In this

calculation it was assumed that the total savings possible were due to

implementing the cogeneration systems in new plants added because of needed

growth in capacity or to replace old, unserviceable process boilers in the

period from 1985 to 1990. Also, only those cogeneration systems giving

an energy cost savings compared with nocogeneration were included in esti-

mating the national savings. Observations on these results are.

1. There are significant fuel, emissions, and energy cost savings
realized by pursuing development of some of the advanced tech-
nologies.

2. The greatest payoff when both fuel energy savings and economics
are considered lies in the steam turbine systems using atmospheric
and pressurized fluidized beds. In a comparison of the national
fuel and energy cost savings for heat matched cases, the atmos-
pheric fluidized bed showed an 11% increase in fuel saved and 60%
additional savings in levelized annual energy cost savings over
steam turbine systems using conventional boilers with flue gas
desulfurization whose fuel savings would be, if implemented, 0.84
quads/yeas and cost savings $1.9 billion/year. The same comparison
for the pressurized fluidized bed showed a 73Z increase in fuel
savings and a 29' increase in enerq.y cost savings

3. Open-cycle gas turbines and combined-cycles have less wide appli-
cation but offer significant savings. The advanced residual
fired open-cycle gas turbine with heat recovery steam generator
and firing temperature of . 2200 F were estiiated to have a potential
national saving of 39% fuel and 27Z energy cost compared to cur-
rently available residual-fired gas turbines whose fuel savings
would be, if implemented, 0.18 quads/year and cost savings $0.33
billions/year.

1-5
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4. Fuel and energy cost savings are several times higher when the
cogeneration systems are heat matched and surplus power exported
to the utility than when the systems are power matched.

Other important observationts made during the course of performing

CTAS were:

1. Comparison of the cogeneration systems which are heat matched
and usually exporting power to the utility with the power
matched systems shows the systems exporting power have a much
higher energy savings, often reaching two to five times the power
match cases. In the past, with few exceptions, cogeneration sys-
tems have been matched to the industrial process so as not to
export power because of numerous load management, reliability,
regulatory, economic and institutional reasons. A concerted
effort is now underway by a number of government agencies, in-
dustries, and utilities to overcome these impediments and it
should be encouraged if the nation is to receive the full poten-
tial of industrial cogeneration.

2_. The economics of industrially owned cogeneration plants are very
sensitive to fuel and electric power costa or revenues. In
creased price differentials between liquid fuels and coal would
make integrated gasifier fuel cell or combined-cycle systems
attractive for high power over heat industrial processes.

3. Almost 75% of the fuel consumed by industrial processes studied
in CTAS, which are representative of the national industrial
distribution, have power over heat ratios less than 0.25. As a
result energy conversion systems, such as the steam turbine
using the atmospheric or pressurized fluidized bed, which exhibit
good performance and economics when heat matched in the low power
over heat ratio range, give the largest national savings.

1-6
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Section 2

INTRODUCTION

BACKGROUND

Cogeneration is broadly defined as the simultaneous production of

electricity or shaft power and useful thermal energy. Industrial cogen-

eration in the context of this study refers specifically to the simul-

taneous production of electricity and process steam or hot water at an

individual industrial plant site. A number of studies addressing

various aspects of cogeneration as applied to industry have been made

in the last few years. Most of these focused on the potential benefits

of the cogeneration concept. CTAS, however, was concerned exclusively

with providing technical, cost, and economic comparisons of advanced

technology systems with each other and with currently available tech-

nologies as applied to industrial processes rather than the merits of

the concept of cogeneration.

While recognizing that institutional and regulatory factors strongly

impact the feasibility of widespread implementation of cogeneration, the

CTAS did not attempt to investigate, provide solutions, or limit the tech-

nologies evaluated because of these factors. For example, cogeneration

systems which were matched to provide the required industrial process heat

and export excess power to the utilities were evaluated (although this

has usually not been the practice in -the past) as well as systems matched

to provide only the amount of power required by the process. Also, no

attempt was made to modify the industrial processes to make them more

suitable for cogeneration. The processes were defined to be represen-

tative of practices to be employed in the 1985 to 2000 time frame.

2-1
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The cogeneration concept has been applied in a limited fashion to

power plants since the turn of the century. Their principal advantage

is that they offer a significant saving in fuel over the conventional

method of supplying the energy requirements of an industrial plant by

purchasing power from the utility and obtaining steam from an on -site

process boiler,

The saving in fuel by a cogeneraiton system can be seen by taking

a silple example of an industrial process requiring 20 units of power and

100 units of process steam energy. A steam turbine cogeneration system

(assuming it is perfectly matched, which is rarely the case) can provide

these energy needs with fuel effectiveness or power plus heat over input

fuel ratio of 0.85 resulting in a fuel input of 141 units. In the con-

ventional nocogeneration system the utility with an efficiency of 33%

requires 60 units of fuel to produce the 20 units of power and the pro-

cess boiler with an efficiency of 85% requires 118 units of fuel to pro-

duce the required steam making a total fuel required of 178 units. Thus

the cogeneration system has a fuel saved ratio of 37 over 178 or 21%.

In spite of this advantage of saving significant amounts of fuel,

the percentage of industrial power generated by cogeneration, rather

than being purchased from a utility, has steadily dropped until it is now

less than 5% of the total industrial power consumed. Why has this hap-

pened? The answer is primarily one of economics. The utilities with their

mix in ages and capital cost of plants, relative low cost of fuel, steadily

improving efficiency and increasing size of power plants all made it pos-

sible to offer industrial power at rates more attractive than industry

could produce it themselves in new cogeneration plants.

Now with long term prospects of fuel prices increasing more rapidly

than capital costs, the increased use of waste fuels by industry and the

need to conserve scarce fuels, the fuel savings advantage of cogoerating

will lead to its wider implementation. The CTAS was sponsored by the US

Department of Energy to obtain the input needed to establish R&D funding

priorities for advanced energy conversion systems which could be used in

industrial cogeneration applications. Many issues, technical, institutional

i
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and regulatory, need to be addressed if industrial cogeneration is to

realize its full potential benefits to the nation. However, the CTAS

concentrated on one portion of these issues, namely, to determine from

a technical and economic standpoint the payoff of advanced technologies

compared to currently available equipments in increasing the implemen-

tation of cogeneration by industry.

OBJECTIVE, OVERALL SCOPE, AND METHODOLOGY

The objectives of the CTAS effort were to:

1. Identify and evaluate the most attractive advanced conversion
systems for implementation in industrial cogeneration systems
for the 1985-2000 time period which permit increased use of
coal or coal-derived fuels.

2. Quantify and assess the advantages of using advances' tech-
nology systems in industrial cogeneration.

To select the most attractive advanced cogenerationc energy con-

version systems incorporating the nine technologies to be studied in the

CTAS, a large number of configurations and cycle variations were identified

and screened for detail study. The systems selected showed desirable

cogeneration characteristics and the capability of being developed

for commercialization in the 1985 to 2000 year time frame, The advanced

energy conversion system-fuel combinations selected for study are shown

in Table 2-1 and the currently available systems used as.a basis of com-

parison are shown in Table 2-2. These energy conversion systems were then

heat matched and power matched to over 50 specific industrial processes

-selected primarily from the six major energy consuming industrial sectors

of food; paper and pulp; chemicals; petroleum refineries; stone, clay and

glass; and primary metals. Several processes were also included from wood

products and textiles..

On each of these matches analyses were performed to evaluate and

compare the advanced technology systems on such factors as:

• Fuel Energy Saved

• Flexibility in Fuel Use

2-3
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Table 2-1

GE-CTAS ADVANCED TECHNOLOGY COGENFRATION ENERGY CONVERSION SYSTEMS MATCHED
TO FUELS

Coat Derived liquids
Coal Residual Distillate

Steam Turbine AFB* Yes ---

Pressurized Fluid Bed Yes --• ---

Gas Turbine
Open Cycle-NRSG - Yes Yes
Regenerative -- - Yes
Steam Injected --- Yes ---
Combined Gas Turbina/Steam

Turbine Cycle

Liquid Fired Yes - »

Integrated Gasifier
Combined Cycle Yes --- --

Closed Cycle-Helium Gas Turbine AFR --- ---
Thermionic

NRSG FGD* Yes ...

Stedm Turbine Bottomed FGD Yes ---

Stirling FGD Yes Yes

Diesels
Medium Speed --- Yes Yes
Neat Pump --- Yes Yes

Phosphoric Acid Fuel Cell Reformer --- --- Yes

Molten Carbonate Fuel Celt

Reformer --- -»- Yes
Integrated Gasifier

HRSG Yes --- ---

Steam Turbine Bottoming Yes --- ---

AFB - Atmospheric Fluidized Bed
FGD - Flue Gas Desulfurization

Table 2-2

GE-CTAS STATE OF ART COGENERATION ENERGY CONVERSION MATCHED TO FUELS

Petroleum Derived

Coal	 Residual	 DD st	 to

Steam Turbine	 FGD	 Yes	 ---

Gas Turbine	 Yes	 Yes

Diesel	 ---	 Yes	 Yes

2-4
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• Capital Costs

• Return on Investment and Annual Energy Cost Saved

9 Emissions

• Applicability to a Number of Industries.

These matches were evaluated, both on a specific process site basis;,

and on a national level where it was assumed that each ECS is applied

without competition nationwide to all new applicable industrial plants.

Because of the many different types of conversion systems studied

and myriad of possible combinations of conversion system and process

options, key features of the study were:

• The use of consistent and simplified but realistic characteri-
zations of cogeneration systems

• Use of the computer to match the systems and evaluate the
character 1 s v cs of GhiC matebes .

k

A major effort was made to strive for consistency in the performance,

capital cost, emissions, and installation requirements of the many ad-

vanced cogeneration energy conversion systems. This was accomplished first

by NASA-LeRC establishing a uniform set of study groundrules for selection

and characterization of the ECS's and industrial processes, calculation of

fuel and emissions saved and analysis of economic parameters such as level-

zed annual energy cost and return on investment. These groundrules and as-

sumptions are described in Section 3. Second, in organizing the study,

as shown in Figure 2-1, GE made a small group called Cogeneration Systems

"Technology responsible for establishing the configuration of all

the ECS's and obtaining consistent performance, cost and emission

characteristics for the advanced components from the GE organizations or

subcontractors developing these components. This team, using a standard

set of models for the remaining subsystems or components, then prepared

the performance, capital costs, and other characteristics of the overall

ECS's. As a result, any component or subsystem, such as fuel storage and

handling, heat recovery steam generator or steam turbine, appearing in

2-5
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PPROGRAM AND TECHNICAL MANAGEMENT
Review Board 	 GE Energy Technology Operation

Industrial Applications Tech,	 Cogeneration System Technology
Team ManaGement	 Team Management
GE Thermal Power Systems	 GE Corppgrato Research and

Engineering	 Dovelopment

Cogeneration Systems Criteria and
Evaluation

Team Nanagemont
GE Energy Technolo gy Operation

Fi gure 2-1. GE-CTAS Project Organization

more than one type "CS is based on the same model. This method reduces

the urea of possible inconsistency to the advanced component which, in

many ECS's, is a small fraction of the total system. The characteri-

zation of the ECS's is described in Sections 6 and 6. The functions of

obtaining consistent data on industrial processes from the industrial

A&E subcontractors was the responsibility of the Industrial Applications

Technology group and is described in Section 4. Matching of the ECS's

and processes and making the overall performance and economic evaluations

and comparisons was the responsibility of Cogeneration Systems Criteria

and Evaluation. The methodology of matching the cogeneration systems is

detailed in Section B, the results of the k."Irformance analysis in Section

9, economic analysis in Section 10, the national savings in Section 11,

and overall results and observations in Section 12.
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Section 3

STUDY GROUNDRULES AND ASSUMPTIONS

Because of the scope and complexity of the CTAS and the need for a
degree of consistency between the two parallel contractors, a number of

groundrules were specified by NASA-Li-SRC. In the listing shown below

these groundrules are grouped as applying principally to definition of

the industrial processes; energy .conversion 5yitem (ECS) performance,

capital cost or emissions; matching the ECS to the industrial processes;
economic analysis of matches; and the national savings when cogeneration

is implemented versus nocogeneration, In establishing many of then,.:

groundrules
III A&

	 obtained recommendations from DOE and the con-

tractors. In addition to the common groundrules specified by NASA-LeRC,

assumptions were made by the GE contractor. These are identified as

(GE)

INDUSTRIAL PROCESS CHARACTERISTICS

In defining the more than 50 industrial processes to be studied in

CTAS the following guidelines and groundrules were followed;

1. Processes be representative of the state-of-the-art which would
be installed in new plants built during the 1985 to 2000 year
time frame.

2. Represent a large national energy consumption and potential for
cogeneration (a principal criterion).

3. Emphasize industrial processes requiring process steam and hot
water. (GE)

4. Use average yearly capacity factors or operating hours and
during the operating times use average electrical load and
process heat requirements. (GE)
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DEFINITION OF ENERGY CONVERSION SYSTEMS (ECS)

During the selection and definition of the performance, capital costs,

and other characteristics of the energy conversion systems the following

groundrui.a were used:

1. Advanced energy conversion systems were studied which could be
commercially available in the 1985 to 2000 time frame after an
intensive R&D program.

2. Emphasize energy conversion systems fueled by coal and coal de-
rived liquids with the properties shown in Table 3-1.

3. Design and cost the ECS's to include cleanup equipment required
to meet the emission requirements shown in Table 3-2. When
uncertainty was encountered as to how the emission level specified
could be met, the deficiency was included as a required develop-
metlt and a rough cost estimate included in the capital costs.

4. Assume boiler and heat recovery steam generators (HRSG) to have
a boiler feedwater temperature of 170 0F. (GE)

5. Set exhaust stack temperatures at 300 OF or higher if required
by pinch point requirements, except for fuel cells. (GE)

6. Assume all process and auxiliary boiler efficiencies equal 85%.
(GE)

7. All bottoming turbines; e.g., in the combined-cycle fuel cell
and thermionic are 1465 psia/1000oF turbines. (GE)

8. Do not employ supplemental firing of heat recovery steam-gen-
erators. (GE)

9. Cost commercially available components, islands and balance of
plant items common to more than one ECS using the same perfor-
mance-cost model; e.g., steam turbines, boilers, heat recovery
steam-generators, fuel storage and handling, structures, etc.

.3-2



Table 3.1

LIQUID FOOLS SPECIFICATIONS

Petroleum Petroleum Coal4erived Coal-Derived
A2 Distillate 05 Residual 112 Distillate 15 Residual

Sulfur, % wt. .5 .7 ,5 .7

Nitrogen. % wt. .06 .25 .0 nominal 1.0 nominal

Hydrogen, % wt, 12.7 10.0 0.5 nominal 0.5 "ominat

Ash. % wt. *w .03 .06 .26

Specific Gravity .05 .96 .95 1,05

Viscosity, Cantistokes 2,6 40 215 40
at 1000 F

Coiling Range, of 430.675 5OD-000 430.675 500-800
90% pts.

Cetane No. 45 40 45 40

Trace Elements, ppm wt, (order of magnitude)

Vanadium; .5 30 .S 2
Sodium a potassium „i 50 i 20
Calcium <.1.0 5 2 5
Lead ,5 5 1 5
Iron *- -- 30 30

Titanium =M -- 20 50

Nigh (Gross) Heating
Value, Btu/]b 19.I.49 )0,500 17,700 17,000

1410 3.2

EMIWON LIMITATION GUIDELINES

(misslons from energy conversion systems or au)' illary furnaces shall
not execod the values shown below;

(All units In 10%/106 Btu !lest Input)

fuel Type

Vul1 4n Sol fill	

_	

Llililld	 lr.,t(s)

Nox	0.7	 (b)	 012

S0k	1.2	 0.0	 0.2

Particulates	 011	 o J	 O.1

Smile	 20 SA( number 20 4AE number 20 SAC number

(a) For systems or auxiliary furnaaos using LDtu gas produced on-site from
Coal, the solid fuel limitation shall apply.

(0! The NOx limitations for the variou% liquid fuels is keyed to the
nitrogen content In the fuel as follows-

hi.tuidrru[ /i	 Noy

Petroleum w%tillate 	 0.4 lbs/104 Btu heat Input

Petroleum Residual Fuel 	 0 5

coal-lierlved 01%tillate 	 0.5

Coal-0erivad Residual Fuel	 015
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MATCHING OF ENERGY CONVERSION SYSTEMS (ECS) TO INDUSTRIAL. PROCESSES

When the ECS is matched to an industrial process the following
groundrules were used

1. Match the ECS in two ways, (1) match the power requirements of
the process, and (2) match the process heat requirements of the
process. In the power match, if additional heat is required,
an auxiliary boiler is added or, if excess process heat is pro-
duced by the ECS, the match is dropped from further consideration
(GE). In the ECS heat match, if the ECS cannot supply the process
power requirements, the needed power is purchased from the utili-
ty. If excess power is generated by the ECS, it is exported to
the utility for revenue.

2.. Nocogeneration case assumptions:

• Place principal emphasis on a co al-fired noconeneration Pro -
cess boiler. (GE)

• Process boiler efficiency - 85%. (GE)

• Process boiler type and fuel sized as follows: (GE)

<30 x 106 Btu/yr heat output, petroleum or coal residual

30 x 106 - 100 x 10 6 Btu/hr heat output, coal AFB

>100 X 106 Btu/hr heat output, coal, flue gas desulfurization

•Waste or by-product fuels converted to heat at various ef-
ficiencies depending on type of waste fuel. Fossil fuel and
by-product fuel assumed to be fired in same boiler. (GE)

• Utility fuel-electric efficiency	 32% including transmission
and distribution losses.

• Process boiler emissions are:

petroleum residual-fired boiler

coal-derived residual-fired boiler

AFB coal

lb/106 Btu Fired
NO S02

0.22 0.75 0.016

0.5 0.8 0.1

0.27 1.2 0,1

• Emissions due to burning waste or by-product fuels are not
included. (GE)
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3. Cogeneration case assumptions

o Approximate the process steam saturation temperature used to
determine the performance parameters of a cogeneration system
by using the peak temperature in systems consisting of a heat
recovery steam-generator to supply process steam. When the
process steam is extracted from a steam turbine, the weighted
average temperature of multiple process steam conditions is
used.

o In the fuel saved by type calculations assume that the mix of
utility fuel displaced by cogenerated power is 23% gas and oil
and 77% coal. Utility Pmissions are set equal to specifications
shown in Table 3-2.

o Auxiliary boiler efficiency - 85%. (GE)

o Waste or by-product fuels combustible in all systems that use
coal except for systems with coal gasifier.

o Emissions due to burning waste or by-product fuels are not
included. (GE)

o Minimum size of energy conversion system not observed when
calculating fuel energy or emissions savings. (GE)

ECONOMIC EVALUATION OF ENERGY CONVERSION SYSTEM-INDUSTRIAL PROCESS MATCHES

In the economic analysis the following groundrules and values of
parameters were used;

1. In the calculation of return on investment (ROI) and levelized
annual energy cost (LAEC) use the detailed ;Methodology prescribed
in NASA "Groundrules for CTAS Economic Analysis".

2. All economic calculations are made on an inflation-free basis.
(Sometimes this is called using constant dollar analysis and in
this report all results are in 1978 dollars. Escalation of par-
ticular expense or revenue above the inflation rate is included).

3. Assume all ECS giants are 100% industrially-owned.

4. Use values ur specific parameters in the economic analysis as
shown i1 Table 3-3.

5. When the MaXiML1111 practical size of a component is exceeded by
the ECS plant size requirement, use the minimum number of equal
size units which will not exceed the Maximum size allowed for
the component. (GE)
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Table 3-3

ECONOMIC ANALYSTS GROUNDRULES
(All Costs are in 1978 Constant Dollars)

Factor 	Value

Annual Inflation Rate 0
Cost of Debt (before taxes) Above Inflation 3%
Fraction of Debt in Capital 30%
Cost of Preferred Equity Above Inflation -
Fraction of Preferred Equity in Capital 0
Cost of Common Equity Above Inflation 7%
Federal & State Income Tax Rate 50%
Tax Depreciation Method Sum of Years Digits
Tax Depreciation Life 15 Years
Salvage Value 0
Investment Tax Credit 10%
Local Real Estate Taxes and Insurance 3%
Useful Life of Investment 30 Years
First Full Year of Operation 1990
Capital Cost Escalation Rate Above Inflation 0

Cost of Fuels. Power & Ex pendables for 1985 in 1978 $'s

Coal $
 1.80/106 Btu

Distillate Oil	 (Petroleum or Coal-Derived) $ 3.80/106 Btu
Oil	 Coal-Derived)Residual	 (Petroleum or $ 3.10/10	 Btu

Natural Gas $ 2.40/105 Btu
Purchased Power $ 0.033/kWh
Exported Power 0.6 x purchase

power rate

Limestone $10.00/Ton
Dolomite $12.50/Ton

Escalation of Fuels & Power Above Inflation

Coal 1%
Distillate Oil	 (Petroleum or Coal-Derived) 1%
Residual Oil	 (Petroleum or Coal-Derived) 1%
Natural Gas

1.6% (1985-2000)
Purchased & Exported Power 1%
Limestone 0
Dolomite 0



NATIONAL SAVINGS ANALYSIS

In estimating indicators of the nationwide fuel and emissions savings

to permit comparison of the various types of ECS's, the following ground_

rules were followed:

1. Potential cogeneration applications consist of new industrial
process plants built from 1985 to 2004 because of the need for
additional capacity or to replace old or obsolete plants. (GE)

2. In comparing ECS's on a national level, assume each ECS is
implemented independently of all other ECS's.
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Section 4

INDUSTRIAL PROCESSES

Industrial process data representative of those major energy con-

suming processes expected to be in place in the 1955-2000 time period

were used to provide a realistic framework for the evaluation of cogen-

eration systems. Industry experts provided data on processes selected

primarily from the six major energy-consuming industry groups as listed

in the Manufacturing Division of the Standard Industrial Classification

(SIC) Manual:

(1) Food and Kindred Products

(2) Paper and Allied Products

(3) Chemical and Allied Products

(4) Petroleum Refining

(5) Stone, Clay and Glass Products

(6) Primary Metal Industries

This section describes the process selection and provides a summary of

pertinent data.

INDUSTRIAL DATA SUBCONTRACTORS

Table 4-1 presents the industry groups used in CTAS, the industry

experts subcontracted with to provide data and the national industrial

energy consumption of these groups as reported by the Annual Survey of

Manufacturers, 1976.
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Table d-1

CTAS INDUSTRY GROUPS
Industrial Process Data Subcontractors & 1976 Energy Consumption

*Purchased Power & *% National
Electric En	 v, Industrial

SIC Industr	 Btu x 10 Energy--_, Subcontractor

20 Food & Kindred Pro,lucts 937.5 7.4 General Energy Assoc,

22 Textile Mill Products 378.6 2.6 J,E.	 Sirrine Co.

24 Lumber & Wood Products 243,8 1.9 J.E.	 Sirrine Co,

26 Paper & Allied Products	 1 294.6 10.3 J,E.	 Sirrine Co.

28 Chemical & Allied Products	 3 017,1 23.9 Dow Chemical, Midland

29 petroleum & Coal Products	 1 291.7 10.2 Dow Chemical, Midland

32 Stone, Clay & Glass Products	 1 219.6 9.7 GE Lamp Glass	 (Glass)

Kaiser Engineers	 (Stone
& Clay)

33 Primary Metal	 Industries	 2 380.5 18.9_ Kaiser Engineers

Total	 10 713.4 84.9

All	 Industries	 12 625.3 100.0

* Source; U.S. Department of Commerce, Annual Survey of Manufacturers, 1976, Issued
Harch 1978

The textile and lumber products industry groups were added to the six

major energy consumers industry groups because processes in the textile

industry have a high steam use and the wood products industry has a

high growth rate,

The energy consumption of these industry groups as measured by the

Annual Survey of Manufacturers 1976 data is about 85% of all U.S. manu-

facturing industries. (The data include only purchased fuel and elec-

tric power and does not take into account the use of energy from indus-

try-owned sources or the electric utility conversion efficiency of fuel

energy to electric energy.)

INDUSTRIAL PROCESS SELECTION

The industrial process subcontractors gathered data on present

energy use and energy consumption growth trends and projections for the

top energy consuming industries within their assigned industrial groups.

The initial data were reviewed and screened and representative industrial

plants were selected for use in following tasks of this study for



evaluation of cogeneration systems. The following factors were con-

sidered or used in selecting the industrial plants:

• Process energy consumption characteristics representative of
those anticipated to be used in the 1985-2000 time period.

• Processes represent major energy consumers and reflect a
reasonable distribution in the industry groups previously
specified.

• Processes include diverse energy needs requiring a variety
of power systems.

• Processes using a variety of fuel types with emphasis on
those using clean fuels.

• Processes be potentially good candidates for cogeneration with
emphasis on topping or front end systems.

Typical plant capacities were selected for each industry to represent

sizes of new plants expected to be constructed in the 1985-2000 time

period. Fifty nine representative industrial plants were selected and

approved by NASA for use in this study. Included were multiple plants

employing the same process but having different capacities to account for

the influence of plant size on cogeneration economics. A list of the

industries selected for further study is presented in Table 4-2.

DATA SUMMARY

Process data sheets were filled out by the industrial process sub-

contractors for their assigned industries. Each subcontractor was re-

quested to supply completed data sheets, process descriptions, flow dia-

grams, a discussion of current plants and future plans or trends, analysis

of energy requirements, and a rationale for selection of the process for

study. The narrative report and data sheets as completed by the subcon-

tractors are included in Volume III, Industrial Process Characteristics.

Some of the data for each of the selected industries are presented

in Table 4-2. The electric power requirements are given in both MW of

electricity and converted to the heat equivalent, MBtu/hr. The process

4-3
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heat requirement indicates the quantity of steam required in MBtu/hr,
the percent of the heat that is supplied as hot water when it is not all
steam, and both peak and average temperatures. The power to heat ratio

(P/H), as implied, is the ratio of process P/H (steam) in the same units.
The load factor indicates the number of hours per year that the industry
operates or requires heat and power. The primary fuel listed is that
currently being used. In those industries where waste fuel is available,

the quantity in MBtu/hr is shown. The last three columns show the pro-
Jected national energy consumption in 10 12 Btu/yr for the year 1978 and

for the years 1905 and 2000, These data include fuel energy required for

sensible (direct) heat required as well as that for steam and generation

of electric power by a utility.

Graphical summaries of this data are shown in Figures 4-1 to 4-3.

In Figure 4-1 the P/H is shown versus the total process heat. Diagonal

lines indicate the electric power requirements in MW. The process heat

requirements vary from 10 to over 3000 MBtu/hr. P/H varies from 0.01 to 3.6

on the figure but one process is off the scale of the chart at nearly 12

(see Table 4-2, SIC 28). Several industries have requirements for heat

that are well above the range of temperatures applicable to the conversion

systems being considered. These industries, such as glass, cement, copper

smelters, and aluminum are shown in Table 4-2 as having no process heat

requirements. However, they could have the potential for use with bot-

toming conversion systems to produce electricity. Because of the severe

operating conditions - e.g., high temperatures and corrosive gases - each

would have to be considered separately.

Figure 4-2 shows P/H ratio versus the process temperature. Except

for the very high temperature industries, all require temperatures in the
260 to 600°F range. Figure 4-3 shows P/H versus the lead factor in hr/yr

that the plant is operated. Most high energy consuming plants have high

load factors excepting those in the food processing industries.
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Section 5

ENERGY CONVERSION SYSTEMS

INTRODUCTION

Cogeneration couples an energy conversion system (ECS) to both a

power and a process heat requirement for a particular industrial plant

or process. State ,of-the-art energy conversion systems that are in use

for cogeneration are steam turbines, gas turbines, and diesel engines.

Of these current options, only the steam turbine system is capable of

burning coal. Advanced energy conversion systems considered in this

study were thermionic conversion of heat to electricity, stirling cycles,

closed-cycle helium gas turbine, phosphoric acid fuel cell, molten car-

bonate fuel cell, advanced air-cooled and water-cooled gas turbines,

combined-cycle and combined-cycle with integrated coal gasifier, ad-

vanced diesel and advanced diesel with heat pump, and advanced steam

generation using atmospheric fluidized beds and pressurized fluidized

beds to burn coal. Each advanced energy conversion system was evaluated

at a projected level of performance and cost that could be commercially

available to industry in the time span of 1985 to 2000. More advanced

performance can be projected beyond that time frame, but the contribution

to national fuel savings would be small. The significant developments

required for each type of advanced energy conversion system are enumerated.

A means of expressing the important performance attributes of energy

conversion systems was developed in this study in order to explicitly

match the heat to process and the power cogenerated to the designated

process temperature. The expressions that result, are very simple,

and they are based on fundamental thermodynamic relationships. These

results are expressions for the power generated per unit of fuel energy

and heat to process per unit of fuel energy related to the process
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temperature required by the industrial process. Quadratic expressions

provide an excellent fit for the nearly linear results. The final re-

sults of this work are performance characterizations of each energy

conversion system that car, be fitted to any industrial process require-

ment.

The costs of energy conversion system componen t-s were subjected to

a similar disciplined approach. To assure uniformity, common components,

such as noncondensing steam turbines, were assigned the same cost schedule

for every application. Thus, steam turbines for use with all types of

boilers, with gas turbines, with fuel cells, and with thermionics all

exhibit the same performance and cost schedule wherever they appear in

the study. Cost comparisons were made with other more detailed studies

to assure the validity of the total energy conversion system costs that

were synthesized for cogeneration in this study.

ENERGY CONVERSION SYSTEM DATA SOURCES

The principal sources of data were General Electric specialists in

particular fields and the General Electric Energy Conversion Alternatives

Study (ECAS) (Ref .1,p 5-34) performed for NASA. Additional expertise was

secured in areas where General Electric experience was not specific to

industrial applications or where a broadened overview was necessary.

Table 5-1 presents a tabulation of the major contributing organizations

associated with each major technical aspect of the study.

The selection of data sources and energy conversion system exper-

tise was made to obtain estimates of performance and costs that would

realistically meet industrial requirements. A balance between optimism

and conservatism was sought from all data sources.
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Table 5-1

ENERGY CONVERSION SYSTEM DATA SOURCES

§ tenr

Steam Turbine R Steam Sources

Gas Turbine Cycles

Diesel Engines

Pressurized Fluidized Bed
Steam Cycle

Thermionic Steam Plant

Stirling Cycle

Closed Cycle Gas Turbine

Fuel., Cell s

Molten Carbonate

- Phosphoric Acid

Integrated Gasifier Combined Cycle

Neat Recovery Steam Generator

Meat Pumps

Sources

General Electric

- ECAS Study

- Industrial Turbine Sales &
Engineering Operation

General Electric

- Gas 'turbine Division

DeLaval Corporation

General Electric -

- ECAS Study

- Energy Systems Programs Dept.

General Electric

EPRI Study

Corporate Research & Development

General Electric

- Space Division

North American Philips

General Electric

- ECAS Study

Institute of Gas Technology

General Electric

- Direct Energy Conversion Programs

- Energy Systems Programs Department

- Energy Technology Operation

General Electric

- Corporate Research & Development

- Gas Turbine Division

- Energy Technology Operation

General Electric

Industrial Turbine Sales &
Engineering Operation

General Electric

- Corporate Research & Development
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FUEL CONSIDERATIONS

The specifications for fuels as used in this study are prese ►ited in

Section 3 (STUDY GROUNDRULES). Their application to energy conversion

systems are presented in Table 5-2. Generally the lower grade of

fuel was favored for the study. Coal and coal-derived liquid fuels

received the major emphasis. Distillate fuels, either petroleum based

or coal-derived, were included only for the few ECS's that could not tol-

erate low grade fuels. As examples, the regenerative gas turbine, very

small stirling cycles, and small diesels require distillate.. In addition,

state-of-the-art turbines and diesels burning both distillate and residual

grade petroleum oils were included in the study. An indication (symbol OK)

is given in Table 5-2 where a fuel could be used, but it was riot evaluated

in this study since a lower grade of fuel could be used and should produce

a better economic result
^....	

Table 5-2

COGENERATION ENERGY CONVERSION SYSTEMS FUELS EVALUATED AND FUEL FLEXIBILITY

Coal	 Residual*	 Distillate*

Steam Turbine	 FGD	 Yes	 OK

AFB	 -	 -

PFB

Gas Turb ,tine	 Yes	 Yes

Conibi nee-Cycle	 -	 Yes	 OK

Combined-Cycle - Integrated
Gasifi er Yes - -

Helium Gas Turbine AFB OK OK

Thermionic Steam FGD Yes OK

Stirling Cycle FGD Yes Yes

Diesel - Yes Yes

Phosphoric Acid Fuel Cell - - Yes

"open Carbonate Fuel Cell - Yes

Molten Carbonate Fuel Cell -
Integrated Gasifier Yes OK -

FGD Flue Gas Desulfurization
AFB - Atmospheric Fluidized Bed
PFB - Pressurized Fluidized Bed
OK - Fuel Flexibility Indicator
* - Both Petroleum Base and Coal Derived Liquids
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ECS CHARACTERIZATION

The convention for describing process heat requirements has been the

expression of the steam flow requirement in pounds per hour and the gage

pressure at which that steam condenses. A steam turbine cogeneration sys-

tem is illustrated in Figure 5-1 to serve as an example of the methodology

used in this study. The boiler feedwater is brought to 226 F by a com-

bination of makeup water at 59 F, process return water, and steam supply

to the deaerator heater. For 100% fuel energy fired, of the order of 15%

is accounted in stack loss and other system losses. The $5% of useful

energy results in 14% electric power produced and 71% heat to process.

The process temperature level is described by its condenlaing steam pre-

sure, 135 psi absolute, or conventionally 120 psi gage. '

STACK &
LOST

Of

15%

FUEL
100%

1465 PSIA
10000 F STEAM

85%

BOILER

D.A.
HEATER

228°F	 170°F

FEEDWATER

14`X, POWER

TURBINE

71% HE!,T TO PROCESS
AT 3500 F, 135 PSIA

PROCESS RETURNS

590 F MAKEUP

VARIABLE:	 T PROCESS, EXHAUST PRESSURE

THROTTLE	 EFFICIENCY	 MW RANGE

1465 PSIA, 1000°F	 80%	 7.5-100
865 PSIA, 8250 F	 78`X,	 5-5050

ADVANCED ART: TURBINE GENERATOR NONE
STEAM BOILER-ATMOSPHERIC FLUIDIZED BEDS

Figure 5-1. Steam Turbine Cogenerator

5-5

w



If the steam turbine inlet conditions (Figure 5-1) were held con-

stant at 1465 psia, 1000 F and the steam was expanded to atmospheric

pressure, then a greater amount of turbine output would be achieved per

')ound of steam flow. Moreover, the preponderant temperature for the

condensation of the exhaust steam would be 212 F. Now, if that same

steam were expanded to 15 psi gage, less work would be produced, and

the exhaust steam would have a predominant temperature of 250 F.

The characteristic of this steam turbine system is shown in Figure

5-2 for a non-condensing steam turbine cogeneration system with an 80%

efficient steam turbine, an 85% efficient boiler and boiler feed at 170 F.

Steam or process heat temperature, power, and neat to process all vary

as steam turbine outlet pressure is varied. All parameters are expressed

as fractions of the fuel-fired higher heating value. For the steam tur-

bine the characteristics for power venerated and for heat to process are

STEAM TURBINE NON-CONDENSING 1400 PSIA, 1000°F
STM141 STM TUnB•146S/1000°F 7.0 MWf100 MW 1070

STEAM SOURCE
	

FUEL

CONVENTIONAL BOILER
	

COAL WITH FOO, RESIDUAL OIL
ATMOSPHERIC FLUID BEDS
	

COAL
to—

(POWER + HEAT)/FUEL HHV

0,0

S
x
J
W
R
'L

4
Z
0
taa

0A

0,2 POWER/FUEL HHV

0 l	 1	 1	 l	 1	 1
100	 200	 300	 400	 500	 60C

PROCESS TEMPERATURE, OF

Figure 5-2. Energy Conversion System Characteristic
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round to be close to linear as related to process temperature. The sum

of power generated and heat to process was 0.85 at all ;process tempera-

tures, and equals one minus the energy that was not made useful.

The synthesis of these cogeneration characteristics is readily under-

stood in the context of the steam turbine cogenerator illustrated in

Figure 5-1. In _Figure 5-3 the turbine and the process are shown in the

context of the effect of one pound of steam upon them. Evaluations

start with assignment of the process temperature, TPRO. The steam tables

then provide the saturation pressure for the process - that is the back

pressure on the steam turbine. The isentropic steam turbine expansion

work can then be found; when multiplied by the steam turbine efficiency of

80% the result is the turbine output expressed as Btu per pound of steam

flow. The remainder of the steam energy span of 1353 Btu per pound (from

inlet at 1491 to process return at 138) would be realized as process heat.

The data for a range of process temperatures from 212 F to 500 F were cal-

culated. These data were then correlated by a quadratic least squares

fit to the process temperature:

Btu/lb Turbine Output _ 531.85 - 0.856 * TPRO - $0 *C-0PRO 2
00)

iN STEAM
111

TURBINE

PROCESS

14

(1466PSIA, 1000 F. 1461,16 H)

WORK • tITUROINE • 414S

Hx ')11-WORK

HEAT TO PROCESS' Hx • 130

(170 WATER, 13011)

T PROCESS	 PSIAx --► HSx

WORK' 631.86.0,866 • TPRO .66 •./TPR0I.1\1000

Figure 5-3. Synthesis of Steam Turbine Cogeneration Characteristic
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Each energy conversion system has its own characterizing curves and

constants and a range of power generation over which it can be applied.

These characterizations and system parameters are presented in a series

of charts for each ECS in Volume IV of the General Electric final report.

STEAM TURBINE ECS

Figure 5-1 shows a schematic of the steam turbine applied to cogen-

eration. The turbine is non-condensing since the entire exhaust steam

flow is utilized as process steam. A condensing section on a cogeneration

turbine would produce power at a lower efficiency than a utility steam

turbine and would appreciably reduce the fraction of fuel energy realized

in power and heat to process. The configuration of the process returns,

makeup water, and feedwater system are detailed in Figure 5-1. The tur-

bine costs were evaluated for a single automatic extraction non-condensing

steam turbine. This selection provides for process steam at two levels

where required, or alternatively for a feedwater heater and auxiliary

steam main for the powerhouse. Two inlet throttle conditions were con-

sidered. The highest economic pressure level of 1465 psia was designated

with the highest normal superheat of 1000 F. These conditions mandate

full demineralization of the boiler feedwater. The lower throttle con-

dition of 865 psia, 825 F was selected to avoid a large cost increment for

high alloy steel superheaters and to use the least expensive feedwater

treatment. The assigned steam turbine-generator efficiencies are within

two points of the range of efficiencies appropriate to the power range of

the units.

The span of steam turbine ratings selected and the chosen steam con-

ditions represent the envelope of economic choices as evidenced by th.

industrial turbine application experience of General Electric. More ad-

vanced conditions have been available but the cost increments could not

be justified.

Figures 5-2 and 5-3 show the cogeneration characteristics for

the steam turbine system.
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The steam turbine with state-of-the-art steam boilers is available

today. Residual-fired boilers or coal-fired boilers with flue gas de-

sulfurization are state-of-the-art. Substitution of coal-derived residual

grade liquid fuel has already been demonstrated.

Atmospheric Fluidized Bed Boilers

The advanced art would substitute atmospheric fluidized beds for

the steam ''oiler. Limestone and coal supported by the fluidizing air

flow would burn, transfer heat to the steam, maintain the bed at 1550 F,

and capture the sulfur products on the limestone. The flyash from the

coal would be trapped in baghouse flue gas filters. The atmospheric

fluidized bed system is expected to be less costly than the coal-fired

boiler and FGD system that it would replace. Current development programs

are in place to demonstrate process steam and power steam boilers of the

AFB type. Commercial availability by 1985 is expected.

Pressurized Fluidized Bed Steam Cycle ECS

A second advanced means of utilizing coal for a steam turbine system

is the pres:;urized fluidized bed system illustrated in Figure 5-4. The

schematic and example heat balance at 350 F process temperature are de-

rivatives from the electric utility PFB steam system evaluated in detail

in the General Electric ECAS study (Ref.1,p 5-34). The gas turbine functions

as a supercharger pressurizing the PFB and supplying all of the air for

coal combustion. The gas turbine expands the combustion gases from 1700 F

to 915 F. The PFB bed temperature is held at 1750 F by the simultaneous

combustion of coal and intensive heat transfer to the imbedded steam generating

tubes.	 Dolomite fed into the bed captures the sulfur from the coal.

The advanced art includes the PFB and the gas cleanup or gas turbine

erosion protection means. The removal of particulates from the flue gas

stream or the cladding of the gas turbine hot path to achieve erosion pro-

tection are essential developments. The system integration and control

are also deemed significant developments. The evolution in PFB technology



beyond raising steam and superheating it were excluded from this study.

A gas-cooled PFB would transfer heat at tube metal temperatures well

above those that are well proven for steam practice and was deemed to be

at least a generation further away than the steam cooled PFB of this study.

75% 1465P, 1000F

100% 1750
BF
1 1% FEEDWATER

COAL	 MODULE 170OF

CYCLONES
00%

	 600 F 	

27°/

AIR	
GAS	 916
49%

	

AI R	 13%	 GAS

	

COMP	 TURBINE

'STEAM	 12% POWERTURBINE

63% PROCESS
11%	 350 F

0%

ECONOMIZER 300 F
16%

STACK +
OTHER

9% POWER	 LOSSES

FUEL	 COAL

VARIABLES:	 PROCESS TEMPERATURE,
STEAM TURBINE EXHAUST PRESSURE

RANGE:	 13 MW - 600 MW

ADVANCED ART:	 PFB, GAS CLEANUP

AVAILABILITY:	 1990

Figure 5-4. Pressurized Fluidized Bed Cogenerator
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GAS TURBINE - OPEN-CYCLE ECS

Table 5-3 pre s,;ents the range of open-cycle gas turbine parameters.

The liquid fuels are either petroleum or coal-based. The regenerative-

cycle would be constrained to burning distillate. Residual firing tends

to accumulate sticky deposits in regenerators that reduce the heat ex-

change effectiveness. Pressure ratios of 8, 12, and 16 were evaluated

for advanced turbines. A value of 10 was assigned to state- oi.-the-art

gas turbines. These values are appropriate for heavy duty industrial

gas turbines. The total temperature at the first stage would be 2200 F

for advanced air-cooled units and 2600 F for advanced water-cooled units.

Table 5-3

GAS TURBINE; COGENERATOR PARAMETERS

•	 Fuels: Residual, Distillate

•	 Variables: Process Temperature

Pressure Ratio - 8,	 (10),	 12,	 16

Temperature, 0F, (1750),	 (2000), 2200, 2600

Coolant Air, Water

Regeneration 0%, 60%, 85%

Steam Injected 0%,	 10%, 15%

Bottoming Steam 1465 psia, 1000 f

865 psia,	 825 F

•	 Range: Air Flow, pounds per sec.	 100 to 1000

Output 10 MW to 200 MW

9	 Advanced Art: 2200 F Air-Cooled Turbine

2600 F Water-Cooled Turbine

CDL Fuel, Water-Cooled Turbine

Steam Injection

•	 Availability: 1985 Air-Cooled 2200 F

1990 Water-Cooled 2600 F

5-11
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Although greater firing temperatures have been projected for each type of

turbine, these are values that are considered to be most reasonably at-

tainable considering the pace of advancement, the time to prove out and

debug advancements, and the implications of low NO x emission constraints.

State-of-the-art gas turbines were assigned 1750 F firing residual oil

and 2000 F firing distillate. Regener%'ors were considered at 60% and

85% effectiveness, Gas turbines with steam injected at the combustor were

evaluated usinq 15% superheated steam-to-air in l ^ction ratio which is at the

exhaust visible plume limit, 10% with superheated steam and 10% with

saturated steam. The latter gives a greater amount of process steam

availability.	 Schematic heat balances for gas turbines supplied with

100 units of fuel energy are presented in Figure 5-5. The regenerative-

cycle results in greater power production as compared to the simple-

cycle. The regenerative effect reduces the temperature level of the

exhaust gas with an adverse effect on heat to process. Thus, the sum of

cogeneration energy available, both power and heat to process, was reduced

by regeneration. This effect was noted in other energy conversion systems

and illustrates the generality, "measures that normally improve the ef-

ficiency of thermal energy conversion systems may reduce the conversion

of fuel energy to useful cogeneration energy". The schematic for the

combined-cycle with a bottoming non-condensing steam turbine was included

although it will be considered in a subsequent section.

Gas turbine performance is presented in Figure 5-6. Starting at

the value with the least specific output is the state-of-the-art simple

cycle (SO) air-cooled (AG) unit firing residual oil at 1750 F, 10 pres-

sure ratio (PR). The 10 PR characteristic continues to state-of-the-art

distillate firing at 2000 F and the ► to 2200 F. At 2200 F the consequences

of varied pressure ratio are shown with highest efficiency at 16 PR. Had

the pressure drop imposed by the HRSG been omitted, then the advanced air-

cooled simple-cycle gas turbine at 2200 F would have shown greater

specific output and efficiency as illustrated.

I
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The effect of regeneration (regenerative cycle - RC) at 60% effective-

ness (e) is found to have a higher efficiency, but at reduced specific

output., With 85% effectiveness even greater efficiency results with a

38% maximum at 10 PR. The ,erformance for the 2600 F, 16 PR simple-cycle

water-cooled gas turbine is shown within the rectangular box. The specific

output is significantly increased while the efficiency is less than the 16

PR air-cooled unit due to the heat removed by the water coolant. The

regenerative water-cooled units reach efficiencies comparable to the air-

cooled units at appreciably greater specific outputs.

The three steam injected gas turbine cases are located amongst the

regenerative water-cooled characteristics. They exhibit extremely high

specific output and efficiency when compared to any of the air-cooled or

water-cooled alternatives,

The available thermal energy in the exhaust stream of these gas tur-
'	 .re . 7	 he basi s 	_ _. s turb i nebines is preseanted in F igure -3C -i. TrIC ua5rs Is a ya p cUr^iifie cumpi°e5sor

airflow of 1000 pounds per second, and heat exchange to cool the exhaust

to 300 F. In general, the units with greater efficiency have a reduced

amount of energy in the exhaust stream.
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Figure 5-7. Gas Turbine Available Exhaust Energy, 1000 Pounds per Second
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For the gas turbine cycles, the ratio of power to fuel HHV was in-
dependent of the temperature or heat to process. Where the exhaust
temperature was sufficiently hot the exhaust could be cooled to 300 F

For those cases the heat to process was constant at the levels shown in
Figure 5-7 and was independent of process temperature. The range of gas
turbine compressor inlet airflow was a miniitaum of 100 pounds per second

and a maximum of 1000 pounds per second. The lower limit was deemed to
be marginal for residual firing due to the propensity for cooling passage
plugging and for accelerated abrasive erosion of turbine buckets. The
upper limit was deemed attainable by advances in technology for compressors
and turbines. All turbine costs were based on sin g le shaft constant speed

units including the 60 cycle generator. The power range was 10 Ml to

100 MW for state-of-the-art units up to 20 till to 200 iii! for advanced water-

cooled units.

Advances in the gas turbine that require significant developient are

the achievement of 2200 F in an air-cooled gas turbine and the achieve-
ment of 2600 F in a water-cooled gas turbine. The steam injected gas tur-

bine would require development of its combustor and steam injection con-

trol. A broad development for all gas turbines would be NO  limiting

combustion systems that would meet the new emissions standards. It was

assumed that these developments would be successful for petroleum based

liquid fuels, but their success for coal-derived liquid fuels with high

fuel-bound nitrogen was deemed moot.

DIESEL ECS

The diesel engines considered were of medium speed and size that are

typically applied ins industry and in municipal power generation. Residual

oil is the typical fuel. Distillate would become a required fuel only in

small sizes. Diesel advancement has been evolutionary. It is expected

to continue that way. Cylinder coolant temperature level may climb from

the 150 F level to 250 F t:; advanced diesels. General Electric feels

that concepts such as the adiabatic diesel with ceramic parts or the slow
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speed coal-burning diesel will require prolonged development to meet the

standards of reliability and maintenance expense required for industrial

implementation, and would be beyond the advanced diesels that will be ready

for cogeneration application over the period 1985 to 2000. Therefore,

such concepts were not included in this General Electric study.. Table

5-4 presents the details of diesel heat balances appropriate for cogen-

eration. For the state-of-the-art diesels only 58% of the fuel energy

would be utilized if the heat to process temperature was above 175 F. For

the advanced diesel more heat is available at higher temperatures. None-

thelessj only 63% of the fuel energy would be available to be utilized for

cogeneration at a process temperature of 300 F.

Table 5-4

COGENERATION DIESEL HEAT BALANCES - RESIDUAL FUEL

State-of-the-Art
Energy Source Energy/Fuel Energy

Air Cooler 0.0576 115	 F to 135 F

Lube Oil 0.0481 156 F to 170 F

Jacket Water 0.1332 160 F to 175 F

Exhaust Gas 0.2201 300 F to 820 F

Subtotal	 0.459

Power Net	 0.361

Total	 0.820

Losses	 0.180

Advanced
Energy/Fuel Energy

0.0576 115 F to 135 F

0.050 228 F to 250 F

0.0874 228 F to 250 F

0.254 300 F to 900 F

0.449

0.371

0.820

0.180

Diesel Heat Pumped ECS

The drastic reduction in available heat to process at temperatures

above 228 F in the advanced diesel is a severe detriment to the diesel

cogenerator. Higher coolant temperatures such as 300 F or 350 F for the

jacket water would require severe reductions in power output to maintain

cylinder wall temperatures that assure lubrication of the upper piston

rings. Also the gross distortion of the cylinders from cold to operating
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temperatures would introduce great design integrity uncertainties. An

open-cycle heat pump was added to the advanced diesel so that the jacket
water heat could be realized as process heat at temperatures higher than

228 F. The compressor of the heat pump was electrically driven to assure

flexibility and ease of control,.

A heat balance for the diesel-heat pump cogenerator serving a 350 F
process is presented in Figure 5-8.
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Figure 5-8. Diesel Heat Pump Cogenerator Schematic Heat Balance
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The heat pump is added to the basic advanced diesel which is unchanged.

The heat pump delivers 18 units of heat From 14 units of jacket water

heat and 4 units of electrical drive input. The aggregate heat to pro-

cess is 39 units per 100 units of fuel energy, and the net power pro-

duced is 33 units. Without the heat pump these values would be 21

and 37 respectively. The heat to process is nearly doubled by application

of the heat pump, and the fuel energy utilization becomes 72% in place

of 58%.

The heat pump system would require modest development effort. The

compressor inlet steam density is comparable to atmospheric air. Con-

ventional compressor technology is applicable. Primary concerns would

be the influence of the temperature level on the compressor and its seals.

As compared to the advanced diesel alone, the diesel heat pump cogenerator

has a greatly enhanced characteristic as shown in Figure 5-9.
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Figure 5-9. Energy Conversion System Characteristics. Advanced Diesel,
Heat Pump Providing Process Steam from Jacket Water Heat by
Vapor Compression; Jacket Water Temperature, 250OF; Residual
Fuel; 2 to 15 MW; Availability, 1990

5-18



7/-

The development of the diesel to the performance levels projected

was deemed to be evolutionary. Higher supercharge pressures, intercooling

and aftercooling charge air, and evolution into compound engines are

recognized development routes. Alternate fuels such as coal slurries in

oil are being considered by DOE but were not included in this study.

Degradation of performance and of the injection equipment due to the

hardness of coal particles, their slow burning and their ash content were

considered by GE to be barriers to their economic use in industrial cogen-

eration

The jacket water temperature of the medium speed diesel would be

brought to 250 F. This is deemed to be a significant development for an

industrial size diesel. Small diesels experience only small thermal dis-

tortion due to temperature. The means to accommodate higher temperatures

are more severely limited as diesel size increases. Higher temperatures

such as 300 F or 350 F jacket water would be excellent for coupling to

industrial processes. In GE's judgement extrapolation from the evolu-

tionary history of diesel development shows that these temperatures are

not to be expected in the time span of 1985 to 2000. The open-cycle heat

pump using 250 F jacket water as its heat source was considered as an

alternative to reach high process temperatures. Although the evaluation

and costing were based on conventional components, such a unit would be

a significant development. Its system integration and control would also

be significant.

Both current and advanced diesels will produce exhaust products that

exceed future NO  emission standards. Exhaust gas denoxification systems

will become mandatory for all industrial diesels in the future. In the

time span to 1990 such exhaust treatments should be developed and com-

mercially demonstrated. The diesel engine representative for this study

determined that the total cost attributed to advanced diesel cogeneration

systems should cover the expense of this additional equipment.
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COMBINED GAS TURBINE-STEAM TURBINE ECS

Liquid-fired combined-cycle energy conversion systems were synthe-

sized from the advanced simple-cycle gas turbines already considered and

the two non-condensing steam turbines that formed the basis for this

entire study. A basic heat balance is presented schematically in Figure

5-5 by combination of the simple cycle-diagram in the upper left and the

steam-cycle at the lower right. The specific combinations evaluated are

detailed in Table 5-5. The utilization of fuel energy was greatest at

0.76 for the unit at lowest pressure ratio and air-cooled, and measures

that enhance efficiency such as increased pressure ratios had a detri-

mental effect on the overall utilization of energy for cogeneration.

There were no advancements in these combined-cycles except for those al-

ready enumerated for the gas turbine.

Table 5-5

ADVANCED COMBINED-CYCLE COGENERATORS, RESIDUAL FIRED

Air-Cooled Gas Turbine, 2200 F, 1985 Availability 	
(Power + Heat)/

	

Pressure	 Ratio	 Steam Turbine	 Size	 Fuel HHV

	

8	 1465 psia, 1000 F	 14 MW to 136 MW	 0.76

	

12	 1465 psia, 1000 F	 14 MW to 143 MW	 0.72

	

16	 865 psia, 850 F	 17 MW to 165 MW	 0.72

Water-Cooled Gas Turbine, 2600 F, 1990 Availability

Pressure Ratio	 Steam Turbine	 Size

16	 1465 psia, 1000 F	 20 MW to 200 MW

(Power + Heat)/
Fuel HHV

0.69

Integrated Gasifier , Combined-Cycle ECS

The gasification of coal can be integrated with a gas turbine burning

the product fuel gas and a non-condensing steam turbine to form a unique

cogeneration system.
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Figure 5-10 presents a schematic and sample heat balance for the

adaptation of coal gasification to fuel a gas turbine - steam turbine

combined-cycle for cogeneration. The steam turbine is a non-condensing

1465 psia, 1000 F unit as described earlier. The gasifier is an advanced

entrained bed Texaco oxygen-blown gasifier. The hot gas stream that

leaves the gasifier contains sulfurous compounds and other chemical

species that could harm the gas turbine or would violate emission limi-

tations. An extensive gas cleanup system cools these gases, chemically

removes objectionable species, and then reheats the fuel gas and re

saturates it with water vapor. Neat collected in cooling the raw fuel
gas is used for making steam and reheating the clean fuel gas.
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Figure 5-10. Integrated Gasifier-Gas Turbine Cogenerator
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The high volume of the coal-derived intermediate-Btu fuel gas re-

quires a special combustion system for the gas turbine. A firing tem-

perature of 2100 F, pressure ratio of 12:1, and first-stage turbine nozzle

water-cooling were used for the advanced gas turbine. The greater mass

flow of combustion gases as compared to a conventional gas turbine produce

greater generator output and more steam from the HRSG. The non-condensing

steam turbine produces about one fifth of the total power output at 350 F

process temperature. The cogeneration characteristics for process tem-

peratures from 200 F to 450 F are presented in Figure 5-11.
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Figure 5-11. Energy Conversion System Characteristics. Integrated Coal
Gasification with Water-Cooled Gas Turbine. Pressure Ratio,
12; Firing Temperature, 2100 o F; Steam Turbine 1465 psia,
10000 F Non-Condensing; Coal Fuel
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Advanced art for this coal- fueled gas turbine and steam turbine would
be the gasifier, the gas cleanup system, the gas turbine, and the system
integration and control, The required high pressure level for coal gasi-

fication requires numerous gasifier components to be developed beyond the

state-of-the-art. The fuel gas cleanup system requires development to

assure the retention of chemical and thermal energy after the cleanup

process. The high level of system integration to achieve high efficiency
mandates significant system integration and control development to avoid

spurious system upsets and outages.

CLOSED-CYCLE GAS TURBINE ECS

The closed-cycle gas turbine system selected for cogeneration was
adapted from the General Electric ECAS stud y (Ref.l,p 5-34). The helium

turbine and compressor designs closely resemble machinery designed for

use with the high temperature helium-cooled nuclear reactor and the

European 50 MW unit that is operational in a fossil-fired demonstration

district heating cogeneration application. A schematic of the system

serving a 350 F process demand is presented in Figure 5-12. The coal--

fueled atmospheric fluidized bed combustors are in two stages in order

to heat the helium to 1500 F. This differs significantly from the AFB

designs for steam where the bulk of the heating is below 600 F and the

non-boiler portion is all below 1000 F. As shown in Figure 5-12, the

high temperature AFB stage would operate at temperatures up to 2000 F

where very little sulfur could be captured. The lower temperature 1550 F

AFB bed would capture the sulfur from the gases leaving the high tempera-

ture bed as well as that from the coal burned within it, using limestone

as the sulfur sorbeot. Combustion air preheat would require high tempera-

ture elements in order to fully utilize the-exhaust energy and reach a

minimum loss stack temperature of 300 F.

All of these special features add to the cost of the AFB for helium

as .compared to the AFB for steam. This added costliness must be the

case wherever the heated medium is hotter, 1000 F to 1500 F in this case,
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Figure 5-12. Helium Closed-Cycle Cogenerator

or has poorer heat transfer coefficients than steam. The closed-cycle

using air as its medium has lower heat transfer coefficients than helium,

would require even greater cost in its AFB and other heat exchangers,

and has poorer aerodynamic characteristics than helium. Consequently, only

helium was considered as a working fluid in the General Electric evaluation.

The closed-cycle heat balance example achieves high efficiency in

making power through the use of an 85% effective regenerator. As a result,

a
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IPOWER + HEATMFUEL HHV

HEATIFUEL HHV

the helium flow to the HRSC is , at 463 F, and relatively little process

steam is produced. A heat rejection system is necessary to bring the

helium to the 80 F compressor inlet condition. The heat rejection de-

prives the closed-cycle of considerable cogeneration energy. The closed-

cycle gas turbine is best adapted to cogeneration where there would be a

considerable demand for heating at low temperature, Water heating ser-

vice and space heating as in a district heating service would provide

the opportunity for greater fuel energy utilization than provided by

typical industrial processes.

The cogeneration characteristics for the helium closed cycle gas

turbine with a regenerator effectiveness of 60% is presented in :Figure

5-13. At higher process temperatures greater cycle heat rejection is

required so that the sum of power plus process heat becomes progressively

less and cogeneration effectiveness_ is reduced.
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Figure 5-13, Energy Conversion System Characteristics. Helium Closed-
Cycle Gas Turbine, AFB Coal Fuel; Regenerator Effectiveness,
60%; Applicable Size, 50 to 300 MW Availability, 1990
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The helium closed-cycle gas turbine unit was not considered to be a

significant development. A 50 MW unit is already operational in Germany.

It and other closed-cycle gas turbine unfits utilize oil, coke oven gas,

and pulverized coal as fuels. The significant advanced art would be

development of a two-stage atmospheric fluidized bed to burn coal and

capture sulfur while heating helium front 1000 F to 1500 F. The two-stage

gas-heating AFO represents a major development beyond the development of

steam-producing AFB's. The gas-heating AFB must use high alloy heat

exchanger material or ceramic materials. These material requirements

greatly increase the cost of the gas-heating AFB as compared to the steam-

producing AFB.

STIRLING CYCLE FCS

The stirling cycle uses helium as an enclosed working medium in a

piston engine configuration. The heat input to the helium is at 1472 F

from an exter=nal combustion heat source as illustrated in the schematic

and heat balance of Figure 5-14. Small demonstration stirling cycles have
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Figure 5-14. Stirling Cycle Cogenerator
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run on distillate. Residual firing is an expected evolution. Coal firing

would require a separate off-engine combustor with a heat coupling medium

such as a helium loop capable of operation above 1500 F. Pulverized coal

firing with flue gas desulfurization was deemed the most certain means

to provide heat from coal. The two-stage AFB used for the helium closed-

cycle gas turbine could not be used since all of the heat would be re-

quired at temperatures hotter than the sulfur capture stage of that unit.

Serving a process heat demand at 228 F, the stirling cycle of Figure 5-14

achieves 28% efficiency related to the fuel higher heating value and de-

livers 45% heat to process for a cogeneration energy utilization of 73%.

Figure 5-15 shows the cogeneration characteristics for process temperatures

from 200 F to 500 F. Consideration was given to use of hydrogen as a

working fluid and to slower unit speeds of 900 RPM in place of 1800 RPM.

Although better efficiency would result, these alternatives would adversely

affect the industrial safety and the specific cost of the Stirling cycle

and were eliminated from the study.
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Figure 5-15. Energy Conversion System Characteristics. Stirling Engine
Cycle, 1472 0F Hot Side, Helium Working Fluid; Fuel Energy
into Engine, 80%; Fuels; Distillate, Residual, Coal with
FGD, Applicable Size, 0,5 to 2 MW; Availability, 1990
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Stirling cycle efficiency would be improved by use of heat input

temperatures above 1472 F. This selected temperature level corresponds

to the availability of super alloy metals with adequate creep rupture

strength when hot. Ceramics that might permit higher temperatures and

efficiencies were ,fudged to be inappropriate selections for this study

since the likelihood of their development to commercialization by 1990

was remote.

Significant developments are necessary in order to commercialize an

industrial-size stirling cycle for cogeneration application. Development

efforts to date have focused on smaller units For automotive service

where the fuel would be distillate. The larger industrial size and the

shift to residual fuel firing represent significant developments. The

high temperature air preheater requires development. The adaptation for

coal-firing was deemed to represent a development effort comparable to

that of the industrial size stirlin g cycle itself.

THERMIONIC ECS

Thermionic units receive high temperature radiant and convective

heat transfer at their emitters, and transmit both direct current elec-

tricity and heat energy to their collectors. The collectors are most

readily cooled by use of heat pipes connecting the collector to extended

finned cooling surfaces that are cooled by airflow. The thermionic unit

performance is shown in Figure 5-16 along with values appropriate for a

combined thermionic-steam utility power plant as labeled "EPRI". The high

temperature (1600 K) unit was cooled to 710 F collector temperature to

achieve a high 38% heat input to direct current conversion. The low

temperature (1300 K) unit has the same cogeneration (CTAS) efficiency of

25% as that used for the utility study.

The heat balance shown in Figure 5-17 shows that 17% of the fuel

higher heating value is realized as direct current electricity, and 71%

would be availa^)le as input to a steam boiler to provide process heat or

to power a non-condensing bottoming steam turbine. The thermal energy

leaving the thermionic units serves to preheat the combustion air to

1000 F. The unit size would be from 3 to 100 MW, a 1465 psia, 1000 F

5-28



CTA$ 710'F.30%

ell
!{^^

900°F6
OA 2G%

	

f
!	 1	 f	 1	 !

	

400F	 000E	 1000F	 100E	 140OF

COLUCTOR AVO TEMP

Figure 5-16. Thermionic Unit Performance

FUEL 1000
PRIMARY AIR	 60F

STACK LATENT HEAT	 SECONDARY AIR 100OF
60.8
16.0

	

033.2	 .203 INPUTS 1136.2 	 203

MISCELLANEOUS	 FLUE GAS
DC 172.7	 ^'	 w	 o 2650-231UF
AC .153.7
FANS w 13	 c7
NETAC 140.7	 145.1tl r .38	 27.6	 '7 R .26	 82.9

so
DC	 OC

SECONDARY

AIR
1D	 U.	 60010000 F
N	 r?

120.1
SECONDARY AIR 60OF

r•	 PRIMARY AIR 50OF
r

0
690.6

	

T2 300E	
^i?	 AMBIENT AIR

ZERO BASE
FOR HEAT

INTO STEAM	 SENSIBLE STACK	 BALANCE
LOSS AT 30OF

BOILER n 88%

Figure 5-17. Thermionic-Steam Cogenerator Heat Balance Based on
1000 Btu Coal HHV

5-29



non-condensing steam turbine bottoming cycle would increase the size range

to 12 MW to 300 MW, Residual oil would be fired in small units. Pul-

verized coal would be fired in large units and would require flue gas

desulfurization. In both configurations staged combustion with 1000 F

secondary air would be used to limit NO  emissions.

The thermionic topping system has been studied conceptually for

electric utility power generation, and now for industrial cogeneration

application. Unit performance used in all these studies exceeds current

performance appreciably. Significant thermionic element development is

required before the development of conceptual applications can be started.

One concept that is susceptable to early development is that of assembly

of many thermionic elements into large panels and the incorporation of

heat pipes to cool them. The conversion of do to ac power from numerous

low voltage do elements requires development to assure high reliability

and to achieve significant cost reduction. This development requirement

is common to all do energy producers.

An availability date of 1995 was applied to thermionic energy con-

version for industrial cogeneration.

PHOSPHORIC ACID FUEL CELL

The phosphoric acid fuel cell operating at 375 F is shown schematically

in Figure F,-18 with a rudimentary heat balance. The fuel gas at the anode

is hydrogen. Since sulfur poisons the fuel cell, the distillate fuel oil

must be processed through a zinc oxide reactor to remove its sulfur. The

zinc oxide consumption imposes an appreciable operating expense. The

reformer burns spent anode fuel gas and some distillate oil as its heat

source and uses the bulk of the distillate fuel as a chemical feedstock.

There is extensive heat exchange at the reformer that heats the incoming

fluid streams and cools the effluent gas streams. The shift reactors pro-

duce a high concentration of hydrogen in the fuel ;has stream. A great loss

of water vapor would occur if a 300 F stack temperature were used. The

stack gases are cooled to 100 i= in order to recover and recycle water in the

system. The cleanliness of the exhaust products permits this unusual

practice. This high latent heat rejection at the stack produces the high

45% stack energy loss.
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Figure 5 . 18. Phosphoric Acid Fuel Cell Cogenerator

The ^:ogeneration power produced is 38" of the fuel higher heating

value. Although the fuel cell operates at a nominal 325 F to 375 F level,

other heat exchangers operate at temperatures up to 750 F. Process steam

can be produced at temperature levels from 160 F to 600 F to the extent of

0.17 of the -fuel energy. If a water heating load were available in the

range of 50 F to 200 F, then an additional 0.309 of fuel energy would be

available for that service. The low temperature level of this additional

heats source precludes its economic use with an open-cycle heat pump such

as that described for use with the advanced diesel engine.

The low temperature phosphoric acid fuel cell module is currently the

subject of a DOE commercialization study. Use of distill ate fuels requires

significant fuel gas cleanup system development to assure that the fuel cell

module will not be poisoned. In common with other do power sources, the

do to ac conversion system would benefit from further development.
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MOLTEN CARBONATE FUEL CELL

The molten carbonate fuel cell operates at a high temperature of 1300 F.

Figure 5-19 presents a schematic and heat balance for a coal-fueled molten

carbonate fuel cell energy conversion system. The pressurized coal gasi-

fier would be the entrained bed Texaco type where the effluent gases are

at 2475 F. These gases are cooled by an HRSG enroute to the gas cleanup

system. The fuel gas that is not consumed in the anode side -of the fuel

cell at 1300 F is burned with supplementary air in the catalytic burner.

These combustion gases with added air provide the necessary oxygen on the

cathode side of the fuel cell. That recirculation loop has an HRSG, a

blower, and a hot gas bleed-off to the expansion gas turbine. The gas tur-

bine exhaust passes through an economizer to be cooled to the minimum stack

temperature of 300 F. The aggregate net ac power produced is 30.4% of the

fuel energy of which 6.3% is produced by the gas turbine generator. The

aggregate steam production from all HRSG's sends 47..8% heat to process.

The ability to produce high pressure steam can be exploited to increase

power production by the addition of a non-condensing steam turbine with

1465 psia, 1000 F throttle conditions.

14.3% STACK LOSS

	

PROCESS	 '-'^ l

	

ST}Eto7.0	CLEA
47.0%	

NU' I I	 ECONOMIZER -- WATER
1	 r	

sYStEM

________ ___^--,.I
I IIRsO	 I	 I	 I IIRSG

	

OASIFIi R	 I A I CELL I C	 I=>FL CTRIC

CAT.
BURNER

WATER

	

l	 '1	 I	 I T	 -MISCELLANEOUS HEAT
•AIR	 LOSSES 6.9%

COAL
100$

MOLTEN CARBONATE FUEL CELL

FUELS:	 COAL, DISTILLATE

VARIABLES:	 PROCESS TEMPERATURE 200°F TO 15000F

ADVANCED ART:	 MOLTEN CARBONATE FUEL CELL
GASIFIERS, SYSTEM INTEGRATION

AVAILABILITY:	 1990

Figure 5-19. Molten Carbonate Fuel Cell Cogenerator
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A greatly simplified system would be used for a small distillate-

fired molten carbonate fuel cell. The basic fuel cell would be unchanged.

The distillate would be processed in an autothermal reformer with air and

steam to form the fuel gas. That gas stream would be cooled in an HRSG and

then passed through a zinc oxide reactor to remove sulfur. The expansion

gas turbine would be omitted and the air would be supplied by motor driven

compressors. Table 5-6 shows the characteristics for these molten car-

bonate fuel cell energy conversion systems.

Table 5-6

MOLTEN CARBONATE FUEL CELL ENERGY CONVERSION SYSTEMS

Fuel Coal

Fuel	 Processor Entrained Gasifier

Air Supply Gas Turbine

Fuel Energy 100% 100%

Power Output 30% 38%*

Process Heat 48% 40%*

Utilization 78% 78%*

Minimum Size 100 MW 125 MW

Maximum Size 1000 MW 1250 MW

Date Available 1990 1990

Distillate

Autothermal Reformer

Air Compressor

100%

41%

23%

64%

4.4 MW

25

1990

* Bottomed by 1465 psia, 1000 F non-condensing steam turbine with
process heat at 350 F.

Many of the significant developments for the molten carbonate fuel

cell have already been considered. The coal gasifier would be of the

Texaco entrained bed type and would be the same development already con-

sidered for the integrated coal gasifier combined-cycle ECS. The full

cleanup system would also be comparable for both these systems. The molten

carbonate fuel cell module is itself a significant development. The

total system integration and control would be significant for the coal-

fueled system. The do to ac development would be comparable to that

considered for the thermionic ECS.



OVERVIEW

A summary of the performance characteristics of the various types

of ECS's is shown in Table 5-7 for a saturated steam to process tempera-

ture of 350O F (for many ECS's the performance is a function of process

steam temperature). A level of performance for each advanced energy con-

version system was developed that was considered appropriate for units to

be commercially available between 1985 and 1995, Overly ambitious per-

formance goals tend to result in expensive refinements that typically re-

duce plant reliability, State-of-the-art industrial cogeneration systems

reflect a dedication to simplicity and reliability that has been followed

in defining the advanced technology applicable in the future.

Table 5-7

COGENERATION ENERGY CONVERSION SYSTEM (ECS) PERFORMANCE CHARACTERISTICS
i

Performance Characteristi&s at Process Sat,

ECS .,_ Steam.= 350 r"__^
ow r

Power Power Process (teat Process Heat
Current State-of-Art Heat "Fu'eTr ` Tue"1_ r` Fuel	 -'--

FGD STM TURD - COAL .20 .14 .71 85

GT-NRSG - RESIDUAL ,68 129 .43 .72

DIESEL-NRSG - RESIDUAL 2103 36 .la .54

Advanced

AFT] STM TURD - COAL .20 .14 .71 .85

PtB STM TURD - COAL .32 21 .64 .84

TNTGAS COMB CYCLE - .66 .28 .43 .71CL
INT GAS FUEL CELL MC - 196 .38 ,40 .78
STM TURD

STIRLING - COAL .54 .26 .47 .73

CLOSED CYCLE GT .36 .18 .49 .67
HELIUM - COAL

THERMIONIC-STM TURD .44 .26 .59 .84
- COAL

GT-HRSG -RESIDUAL .66 .31 .46 .77

COMB CYCLE GT - RESID 1108 .37 .34 72

STM INJ GT - RESIDUAL 2,70 .36 .13 .49

DIESEL - RESIDUAL 1.75 37 .21 .58

DIESEL-11EAT PUMP - 78 .33 ,43 ,76
RESIDUAL

REGEN GT - DISTILLATE .85 .33 139 72

FUEL CELL. - DISTILLATE 2.24 .38 .17 .55

FUEL CELL MC - DIST, 1,77 .41 .23 .65

* Performance characteristics of most ECS's varies with process steam tempera-
ture.

REFERENCE

1. NASA Report CR 134949, Vol. II, Part 2 "ECAS General Electric Phase
II Final Report, Volume II Advanced Energy Conversion Systems -
Conceptual Designs Part 2, Closed Turbine Cycles", December, 1976,
General Electric, Brown DH, Pomeroy BD, Shah RP
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Section 6

CAPITAL COSTS

CAPITAL COST METHODOLOGY

It is essential that there is consistency among the capital cost

estimates if economic distinctions are to be made. Three distinct data

sources were used for the basis of costs in this study, Considerable

effort was made to assure that the final cost assemblage for each energy

conversion system represented a complete power plant, including all of

the required elements of an industrial power house, and was consistent

with all the others regardless of the source of data.

A major part of the cost of most systems is in components that are

parts of many other systems. The cost of each component; e.g., a steam

turbine, was based on the same methodology regardless of which ECS it

was a part of. This method of costing helped to assure consistency be-

tween ECS's. The cost of a diesel engine or a small gas turbine, for

example, to be installed in a purchaser's building on purchaser provided

foundations and connected at purchaser's expense is just a small part of

a new "green field" industrial power house with all prerequisite services

and amenities. For example, a diesel-generator adapted for cogeneration

costs 210 dollars per kilowatt; however, completely installed the cost is

540 dollars per kilowatt, and the entire power house 17'stallation would

cost 1000 dollars per kilowatt. The complete power house installed costs

are reported in this study.

To corroborate the level and order of these complete plant costs,

comparisons were made to more detailed evaluations of large installations

such as utility power plants. Corroboration was -Found in every instance.

Explicit cost evaluation requires detailed build-up to provide con-

fidence in the final estimates. Where only cost estimates are required,
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there are techniques that permit extrapolation from data sources of high

confidence with good assurance that the new data is of a high level of

fidelity. These techniques are used for individual equipment and for

complete power plant systems. The concept is that the cost of an entity

does not increase linearly as its size increases. Instead the cost

varies as the size to an exponent. For example, the appropriate exponent

has been found to be 0.6 for heat exchangers and 0..8 for steam turbine

generators. At some unit size it may become necessary to add multiple

units rather than continue increased unit sizes. Some elements like fuel

cell modules and DC to AC inverters and thermionic converters are small

in unit capacity and are always aggregates of numerous modules with little

cost advantage in the conversion system itself as their numbers increase.

Economics of scale, however, still apply to other components of the power

plant costs.

For the purpose of this study data were secured at two unit ratings

for equipment cost, direct field material to install the equipment, and

direct field labor to install the equipment. These data were input to

the computer. The computer thereafter compares 'the equipment size re-

quired to the input data and interpolates costs along a power law fit

of the input data. When the equipment size exceeds the limit of the

input data, additional units are added to reduce the required unit size

and the same search made. This procedure continues until sizes within

the span allowed are found.

The elements that comprise a major sector or island of the energy

conversion system are presented in Table 6.1. The costs developed from

Table 6-1 only include direct costs. Cost adders above these levels are

1% for start-up, 2% for spare parts, 90% for indirect field costs, and

an additional 26% made up of 6% engineering, 15% contingency, and 5% fee.

The resulting multipliers to get total installed costs are presented in

Table 6-2 along with a set of multipliers to derive only the indirect

portion of costs.
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Tabl a 6-1
GE_- _CTAS.CAPITAL_COSTS

COST ISLANDS MASTER LIST

Ma or Islands Accounts: Ma or Comlonent Accounts;

1.0	 Fuel	 Handling 1 Gas Metering/Scrubber
2 Gas Storage
3 Gas Pressure Regulation
4 Fuel Oil Unloading
5 Fuel Oil Storage
6 Fuel Oil Transfer
7 Fuel Oil Pump and Neater Set
8 Coal Unloading
9 Coal Storage

10 Coal Preparation
11 Coal Transfer
12 limestone/Dolomite Unloading
13 Limestone/Dolomite Storage
14 Limestone/Dolomite Preparation
15 Limestone/Dolomite Transfer

2,0	 Fuel	 Utilization and 20 Gas-fired Boiler
Cleanup 21 Oil-fired Boiler

22 Coal-fired Boiler
23 Coal-fired AFB Boiler
24 Coal-fired PFB Boiler
25 Coal	 Gasifier
26 Liquid Waste Boiler
27 Solid Waste Boiler
28 Reformer, Shifter, and Cleanup for Fuel 	 Cells
29 Stirling Engine Combustion and Cleanup

3.0	 Energy Conversion 30 Steam Turbine-Generators, Non-condensing
31 Gas Turbine-Generators
32 Diesel	 Engine-Generators
33 Thermionic Boiler/Generator and Cleanup
34 Stirling Engine-Generators
35 Fuel	 Cells-Molten Carbonate
36 Fuel	 Cells-Phosphoric Acid
37 Prime Conversion Bottoming HRSG and Steam

Turbine-Generator
4.0	 Bottoming Cycle 40 Heat Recovery Steam Generators

41 Steam Turbine-Generator, Condensing
42 Organic Vapor Boiler
43 Expansion Turbine-Generators
44 Regenerators, Vapor

5.0	 Neat Sink 50 Cooling Towers, Wet, Induced-Draft
51 Circulating Pumps
52 Steam Condensers
53 Vapor Condensers

6.0	 Neat/Energy Storage 60 Media
61 Containment
62 Heat Exchangers

7.0	 Process	 Interface 70 Neat Exchangers
71 Heat Recovery/Process Steam Generators

8.0	 Balance of Plant 80 Master Control
81 Electric Switchgear and Transformer
82 Interconnecting Piping,	 Ducting, Wiring
83 Structures and Miscellaneous
84 Service Facilities
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Table 6-2

CTAS CAPITAL COST STRUCTURE

Total Installed Cost

Equipment	 *	 (1 * 0.01 + 0.02) * (1,26)

Material	 *	 (l + 0101)	 * (1.26)

Direct Labor	 *	 (1 + 0.01 + 0.90) *x(1.26)

Indirect Cost

Equipment	 *	 0.2978

Material	 *	 0.2726

Direct labor	 *	 1.4066

Another aspect of the methodology was the derivation of some costs

where detailed evaluations had not been done. An example would be the

residual oil-fired thermionic plant. It was determined that the dif-

ference in cost from oil-fired to coal-fired steam boilers at the same

firing rate should be appropriate for the thermionic units. These dif-

ferences were derived and were applied to the coal-fired data to derive

the costs for the oil-fired thermionic unit. The coal-fired stirling

cycle represented the reverse transition. Cost of the oil-fired unit

was known. The oil to coal cost difference was added to the oil-base

case to determine the coal-fired case.

DATA SOURCES

Two of the energy conversion system costs were derived from the

General Electric study for ECAS (Ref.1, p 6-8 ). These were the pres-

surized fluidized bed steam cycle plant and the helium closed cycle gas

turbine plant. As indicated in the previous section, costs for the

thermionic energy conversion ;systems were derived on a similar basis from
the General Electric EPRI study (Ref. 2, p 6-8).
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A number of energy conversion systems costs were synthesized from
the data bank used by General Electric in application engineering for

industrial power genera4ion including cogeneration, These included all

nocogeneration boilers firing all types of fuels, both of the package

and of the field erected type, and conventional power boilers providing

steam for turbines. Also, cost of heat recovery steam generators for gas

turbines were from the same source as were industrial steam turbine costs.

The bulk of the advanced energy conversion systems costs were syn-

thesized from data on basic equipment costs. The following were added

to each system to complete the power house assemblage:

Component	 Component Description

80 Master Control

81 Electric-Switchgear

82 Interconnecting Piping

83 Structures-:Miscellaneous

84 Service Facilities

The stirling cycle costs were produced by General Electric in collaboration

with North American Philips. The costs were then reviewed with the General

Electric Locomotive Diesel Engine Department. The molten carbonate and

phosphoric acid fuel cell costs were developed by General Electric in col-

laboration with the Institute of Gas Technology. The integrated gasifier

combined-cycle costs and performance were developed from EPRI reports (Ref.

3, 4) on Coal Gasification Combined-Cycle Systems and internal GE studies.

All gas turbine cost estimates were inew evaluations in 1978 dollars for

cogeneration applications. The diesel cost estimates were derived by the

DeLaval Corporation to represent growth versions of current cogeneration

diesel systems. The heat pump for the diesel used cost estimates based on

one of the more expensive air compressors that would satisfy the performance

requirements so that the cost estimates would cover modifications necessary

to handle steam.

COST COMPARISONS

Since cost differences are a dominant factor in economic appraisals,

it is essential that costs developed for cogeneration systems have a high
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level of consistency. The smallest plant sizes are subject to the great-
est uncertainty for relative costs. For a comparison of relative costs

an industrial plant having 10 megawatts power demand and 137 million Btu
per hour process heat at 300 F was selected. The capital cost was evaluated

as dollars per kilowatt of electrical power produced after deletion of

the direct and indirect costs of an auxiliary boiler if one was necessary.
Table 6-3 presents the results. The order of listing generally follows

increasing cost. As expected distillates-fired units tend to be least

expensive followed by residual-fired and then coal-fired units.

Table 6.3

CAPITAL COSTS FOR 10 MW POWER DEMAND AND 137 MILLION BTU PER HOUR AT 300 F
(Auxiliary Boiler Cost Deleted)

CAPITAL COST. $/kW
Enerhy_ Conversion System Coal Fired Residual pistillate
Phosphoric Acid Fuel Cell 580
Gas Turbine-State-of-the-Art 775 655

-Steam Injected 665
-Combined Cycle 680
-Advanced 695
-Regenerative 745

Steam Turbine-Adv. Boiler 1260-AFB
1540-PFB

-State-of-the-Art 1635-FGD 840

Stirling Cycle 1445-FGD 845 845

Diesel	 -Advanced 980
-Heat. Pumped 995
-State-of-the-Art 1040 1040

Integrated, Gasifier Comb. Cycle 1555-G

Molten Carbonate Fuel Cell 2200-G 5.10
-Steam Turbine 2205 -6

Helium Closed-Cycle G.T. 2645-AFB

Thermionic 5660-FGD 4410
-Steam Turbine 3450-FGD 2700

FGD - Flue Gas Desulfurization
AFB - Atmospheric Fluidized Bed
PFB - Pressurized Fluidized Red

G - Gasifier
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Among distillate-fueled units the phosphoric acid fuel cell and
state-of-the-art gas turbine are the least expensive alternatives at
10 MW rating. For residual fired units several gas turbine alternatives
are least costly. The state-of-the-art residual fired gas turbine is
less costly than the steam turbine, stirling cycle or diesel. For coal
fired units the steam turbine with atmospheric fluidized bed is least
costly followed by the stirling cycle, then the PFB steam cycle, the
integrated gasifier combined-cycle, and finally the state-of-the-art
steam turbine plant with flue gas desulfurization. The greatly advanced

cycles are most costly. The source of these costs are apparent. The
molten carbonate system is complex because of the gas cleanup required
by the fuel cell. The helium closed-cycle features a two-stage AFB
furnace that heats gas over a high temperature span. The thennionic

units are inherently costly notwithstanding the assignment that they

would be manufactured into large panels in the factory in

order to reduce field erection costs.

These data at a low power level represent the highest levels of

costs that are expected. The cost data are of a nature that unit costs

decrease as size and ratings increase. The best sources of comparative

data are at power levels between 400 MW and 1000 MW for complete electric

utility plants. Such plants would tend to be more complex than cogen-

eration power plants. They would incur costs for heat rejection, systems

and for low temperature-low pressure elements of their energy conversion

machinery. At the same time they tend to be more efficient. Nonetheless,
one would expect their order of costliness to be similar to that for

cogeneration plants. Hence the major issue is one of order and relative
costs, not of absolute cost level.

Several data sources were available as discussed previously. These

include the General Electric in-depth studies for ECAS and for EPRI. Values

were taken from those studies and adapted to the same basis as the CTAS

costs. The ascending order of costs and their ratios were corroborated

for the gas turbine, steam turbine with residual bailer and AFB, PFB and

FGD, for the helium gas turbine with AFB and the thermionic-steam turbine

cycle with FGD. These data are presented in the detailed General Electric
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report, Volume IV, The corroboration that has been found indicates that

a consistency exists among the costs that are synthesized for each type

cogeneration energy conversion system in this study. The discipline of

using common components as elements for all systems, of applying a con-

sistent basis for indirect costs, and bringing each system to a common

level of completeness assures that no system has been either favored or

penalized by arbitrary assignment of costs.
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Section 7

SIGNIFICANT GENERIC DEVELOPMENTS

In Section a required developments particular to specific energy con ,-

version systems were identified. Certain developments have broad generic

impact on advanced energy conversion systems a.nd thus merit aggressive

development effort irrespective of the particular advanced systems that

are favored. Several of these have been abstracted as a result of this

study.

HIGH TEMPERATURE AIR PREHEATERS

Wherever an ECS receives all of its heat at high temperature (closed

helium gas turbine, stirling cycle, thermionics) then the combustion gas

energy below such high temperatures must be used to the greatest advantage.

When that gas heats incoming air for combustion the fraction of fuel

energy realized at high temperature is greatly increased. High tem-

perature air preheat (to 1500 F or 2000 F) is rarely used because of the

great expense of such heat exchangers and the likelihood of their adverse

effect on plant reliability and availability. A significant breakthrough

in the technology of high temperature air preheaters would enhance the

prospects of many advanced energy conversion systems.

DC TO AC ENERGY CONVERSION

The phosphoric acid fuel cell, the molten carbonate fuel cell, and

thermionic elements all deliver their electrical output as direct current,

dc. The inversion to ac is currently realized at a cost of 5O$/kW. This

high cost penalty results from the need to protect the do generating sys-

tem as well as to perform the inversion of ac function.. Advanced develop-

ment that would reduce this cost while providing full system protection

would benefit these systems as well as other do generators such as MHD

(magnetohydrodynamics) that was not a part of this study.
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COAL GASIFICATION, FUEL GAS CLEANUP

The molten carbonate fuel cell and the integrated coal gasifier com-

bined-cycle are dependent on the development of advanced coal gasification

systems. As compared to the state-of-the -art Lurgi coal gasifiers, the

advanced developments require reduced steam and air or oxygen feeds. The

development objective is to realize a higher fraction of the fuel energy

in the gaseous fuel product of the gasifier.

The fuel gas cleanup system that removes tars and sulfur and other

unwanted components imposes thermodynamic penalties on the system. The

cooling of the product gas produces some heat that is of low thermal value,

and in some designs becomes heat rejection from the plant.

Advanced developments 'that improve the thermodynamic performance or

reduce the cost of coal gasification and fuel gas cleanup systems will

have significant impact on advanced energy conversion systems.

NOx FROM COAL-DERIVED LIQUID FUELS

As compared to petroleum-derived liquid fuels, the coal-derived

counterparts have exceedingly high levels of fuel-bound nitrogen. The

reduction of exhaust NOx to permissible levels may be achieved by either

modification of the combustion process or exhaust gas treatment for de-

noxification. While the combustion process is particular for each energy

conversion system, the exhaust gas denoxification development could have

broad applications to diesels, gas turbines and other advanced energy con-

version systems.

FLUIDIZED BED COMBUSTION

The sequence of evolution envisioned for fluidized bed combustion of

coal indicates the merit of broad research and development for fluidized

beds apart and in addition to their development for particular advanced

energy conversion systems. Process steam boilers are already offered com-

mercially, and steam power boilers are at the development stage. Pressurized

fluid beds are in development. All of these are single-stage units. To
	 I
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service heating loads that are at high temperatures (1500 F to 2000 F) a

two-stage fluidized bed is needed. The very hot top bed would not capture

sulfur. Its exhaust would flow through the lower temperature bed that

would perform the sulfur capture fucntion. This development would provide

coal-firing with sulfur capture for closed-cycle gas turbines, for stirling

cycles and for other high temperature gas heating services. Fluidized bed
technology has broad impact on a variety of advanced energy conversion

systems and merits research and development effort with a broad focus.
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Section 8

ECS-INDUSTRIAL. PROCESS MATCHING

This section present, the terminology and strategies used in this

study for employing energy conversion systems in cogeneration appli-

cations.

GENERAL

ECS-Industrial process matching refers to the selection of ECS

size to meet the heat and/or power needs of a given industrial process.

An ECS used to simultaneously supply heat and power to an industrial

process is commonly referred to as a cogeneration system. The discussion

of cogeneration system performance in this study refers to the perfor-

mance of the entire industrial energy supply system which includes the

cogenerating ECS and, where required, an auxiliary boiler or purchased

electric power.

NOCOGENERATION CASE

An industry must select the means by which heat and electric

power are supplied to the process. One choice is to use a process

boiler to supply all of the heat and to purchase all electric power from

a utility. This case is called the nocogeneration case. The heat re-

jected at the utility generating site is not used.

COGENERATION CASE

An industry may choose to provide heat and electric power to the

process in part or completely through use of an energy conversion system

that produces both power and useful heat. This case is referred to as the

cogeneration case. Both power and useful heat are produced simultaneously

on-site.

1`1
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ECS-PROCESS MATCHING

The possibilities for matching the ECS's with the processes are

shown in Figures 8-1 and 8-2. Figure 8-1 represents the case where the

ratio of power to heat of the ECS is greater than that required by the

process. The ordinate of the figure represents power and the abscissa

represents heat. The circled point at the intersection is the power and heat

required by the process. Any point along the sloped line beginning at

the origin and movirig upward and to the right represents an energy con-

version system of increasing size. The slope of the line is descriptive

of the energy conversion system (power/heat ratio) characteristic and is

often dependent upon the temperature at which heat is required by the

process. As is readily observed, when the size of energy conversion sys-

tem is selected to match the power required by the process, the heat out-

put of the ECS is not sufficient to meet the process needs and an auxili-

ary boiler must be used to make up the deficiency,

When the size of energy conversion system is selected to meet the

heat needs of the process (no auxiliary boiler), more electric power is

produced than required by the process and the excess power must be ex-

ported to the utility.

Figure 8-2 represents the case where the ratio of power to heat of

the ECS is less than that required by the process. When the ECS is sized

to produce the heat required by the process the power output is less than

the process needs and the deficiency must be purchased from the utility.

In the case where the ECS is sized to produce the power required by the

process, more heat is produced than can be used by the process. Increasing

the ECS size above that for matching heat in this case decreases the ad-

vantages of cogeneration and this was excluded from further investigation

in this study.
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The case where the energy conversion system is sized to meet the

power needs of a process is referred to as a power m atch. Similarly,

the case where the energy conversion system is sized to meet the heat

needs of a process is referred to as a heat match.

The energy conversion system characteristics and the cost described

in Sections 5 and 6, and the process parameters described in Section 4

were entered into a computer data bank. A computer program was written

to match up the heat and power needs of each process with the appropriate

size of each type of energy conversion system. The computer data bank

and computer program are described in Volume II.

In summary, each match of energy conversion system and process

(cogeneration case) yielded many calculated parameters of technical and

economic interest. Each cogeneration case is compared to the no-

cogeneration case technically and economically and the results are re-

ported in the next three sections. Complete computer printouts of the

results are given in Volume VI.

FUEL. ENERGY USES

The methodology used in accounting for the nocogeneration and cogen-

eration fuel energy in the various ECS-process matches shown ire Figures

8-1 and 8-2 is essential to understanding the fuel energy saved between

the cogeneration and nocogeneration systems. A detailed ex p lanation of

the relationships between the ECS efficiency, fuel utilization effective-

ness, utility system efficiency, process boiler efficiency and the process

heat and power demands for the various type matches is described in detail

in Volume V, Section 8.3. Here only the matches where the cogeneration ECS

!;as a higher power to heat ratio than required by the process will be

briefly described.

In Figure 8-1 the match labeled "Match Power" consists of an energy

conversion system (which does not supply enough process heat) and an

auxiliary boiler added to meet the total process heat requirements. The

fuel and process energy of this match is shown graphically in Figure 8-3.

8-4
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NOCOGENERATION SYSTEM FUEL

FUTIL.	 b

Figure 8-3. Representation of Fuel Inputs with Auxiliary Boiler
(Power Match)

The Length of the center bar represents the sum of the process power, P,

and process heat, H, required. The lower bar represents the total fuel

consumed by the nocogeneration system consisting of the utility fuel,

FUTIL° made up of the portion generating power, 
PUTIL" 

and the utility

losses, LUTIL' 
and the process boiler fuel, Fb , generating steam, H b , and

the boiler stack and auxiliary losses, Lb . The upper bar represents the

cogeneration ECS fuel, F E , consisting of the portion of its fuel gen-

erating power, P E , steam, H E , and the fuel for the ECS losses, L E , and

the auxiliary boiler fuel, Fab' consisting of the fuel to generate the

remaining required steam, Habl and the boiler losses, L-ab.

By contrast the fuel bar chart for , the match labeled "Match Heat"

on Figure 8-1 is shown in Figure 8-4. Notice that the cogeneration ECS

produces more puwer than required by the process and in order to compare

the systems on a consistent basis the nocogeneration system fuel must

include the utility fuel to generate power equal to that produced by the

cogeneration ECS.
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Section 9

COGENERATION SYSTEMS PERFORMANCE

This section presents the potential fuel energy savings of cogen-

eration systems in parametric form and fuel energy and emissions savings

for a representative number of the actual systems studied. The functional

relationships between fuel energy saved and energy conversion system

parameters and process heat and power demands are discussed. It is shown

that the possible institutional barrier restraint on ability to export

power limits the fuel savings potential of many systems.

An important indicator of the performance of a cogeneration system

is the fuel energy saved ratio (FESR) defined by

FESR = 
(Fuel Used)NOCOGEN	

(Fuel Used)
COGEN	 (9-1)

Fuel Used NOCOGEN

Functional relationships describing the influence of ECS performance

parameters, utility system and nocogeneration boiler efficiency and pro-

cess heat and power needs are developed in Volume V, Section 8.3. When

the energy conversion system power to heat ratio is greater than or equal

to the process power to heat ratio, the following expressions describe

the fuel energy savings ratio:

(P/H)ECS > (P/N') PROCESS

Power Match	 Neat Match

FESR	 _ ((P/H)PROCESS + ')/nef 	 FESR = 1	 ((P/H)ECS + 1)/nef
P/N PROCESS * 1	

P/H ECS t 1
nUTIL	 nb	 nUTIL	 nb

Equation (9-2)	 ,Equation (9-3)

9-1
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where

(P/H)
ECS	 = Power to heat ratio of ECS when supplying power and

heat to a process at the required temperature.

(P/H) PROCESS " Power to heat ratio of the process.

nUTIL	
= Utility conversion efficiency of fuel energy (HHV)

to electric power (.32 used in this study).

nb	
= Process boiler (nocogeneration) conversion efficiency

of fuel energy (HHV) to heat required by the process
at the required temperature (.85 used in this study),

nef	 w Energy conversion system effectiveness (efficiency of
fuel utilization). This is simply the sum of the ECS
electrical conversion efficiency and the fraction of
fuel energy input (HHV) delivered to the process as
heat at the required temperature.

The energy conversion system effectiveness is related to the electri-

cal conversion efficiency and heat recovery fraction (at a process required

temperature) of the energy conversion system in the following manner

F + F = nef	
(9-4)

where

P = Net power generation

H = Net heat delivered to process at a specified temperature

P = Fuel consumption (HHV)

The effectiveness, power to heat ratio and electrical generating efficiency

can all be related using the previous equation

P/H = nef/p^F—	 (9-5)
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Equation 9--2 shows that for power watch cases, fuel energy savings

are limited by the process power to heat ratio (provided (P/N 
)ECS >

(P/N)PROCESS)' For the heat matched case (Equation 9-3) the fuel energy

saved ratio is a function only of ECS parameters and is not limited by

the process power to heat ratio as in the power match case, In either

the heat match or power match case, the energy conversion system effect-

iveness directly influences the fuel energy saved ratio. Increasing the

electrical generating efficiency of an ECS at the expense of reducing

the heat available (at the required temperature for a process) may re-

duce its fuel savings ability if the effectiveness Is reduced.

Figure 9-1 shows parametrically the influence of energy conversion

system effectiveness (n ef) on the fuel energy saved ratio for power matches.

Figures 9-1 and 9-2 show that the fuel energy saved ratio is limited

by the process power to heat ratio for the power match cases, Figure 9-2

further shows that the electrical generating efficiency need not be high

to achieve the maximum fuel savings.

FUEL ENERGY SAVINGS POTENTIAL OF SELECTED ENERGY CONVERSION SYSTEMS

From the previous discussion it is observed that fuel energy savings

depend upon whether export power is allowed or not, the ratio of power to

heat required by the process, the ECS ratio of power to heat, and the

effectiveness of the ECS. The ECS parameters are often functions of the

temperature at which heat is supplied, Figures 9-3 through 9-8 display

the range of fuel energy savings ratios with selected ECS's for heat matches

and power matches for process power to heat ratios of 0.1, 0.25 and 1.0.

For most ECS's, the fuel energy savings vary from a high value corres-

ponding to process heat supplied at a low temperature (250 0F, shown by

0) and a low value corresponding to process heat supplied at a high tempera-

ture (shown by 0). The high temperature used for each ECS when computing the

fuel energy savings displayed in these figures is given in Table 9-1.
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Table 9-1

MAXIMUM STEAM TEMPERATURE USED FOR FIGURES 9-3 - 9-6

Abbreviated	
Maximum Steam

0
KW, ECS Qescri Lion Title Ten) erature, UsW	 F

1 Steam Turbine, IOFO or FGD STM TURB, AFB,FGD 500

1465 psis, 1000 F

2 Steal+ Turbine, PFB, 1465 psis, PFB STM TURD, 600
1000 F

3 Thermionic, Steam Turbine, THERMIONIC STM TURD 500

Bottomed, 1465 psia, 1000F

4 Stirling Engine STIRLING, COAL 500

5 Helium, Closed-Cycle, Gas HELIUM GAS TURD. 400
Turbine, 85% Regenerator
Effectiveness

6 Integrated Coal Gasifier, Molten INT. GAS, FUEL CELL, 500
CarbSnate Fuel Cell,	 1465 psia, MC, ST.
1000 F Steam Turbine Bottomed

7 Integrated Coal Gasifier, INT, GAS COMBINED- 500

Combined-Cycle CYCLE

B Gas Turbine 1750 0F, Pr 10, Air- GAS TURBINE SOA 600
Cooled, State-of-the-art, Residual
Fuel

9 Gas Turbine, 2200
0
F, pr 12, Air- GAS TURBINE RESID. 600

Cooled, Residual	 Fuel

10 Combined-Cycle, GT, 2200 0F, pr 12, COMBINED-CYCLE 600

Residual Fuel, ;team Turbine,
1465 psia,	 1000 F

11 Gas ^urbine, Steam Injected, STM INJ. GAS TURBINE 400
2200 F, pr 16

12 Diesel, Advanced, Residual Fuel DIESEL, ADV. RESID. 450

13 Diesel & Vapor Compression Heat DIESEL, HEAT PUMP 500

Pump

14 Diesel, State-of-the-art, DIESEL, SOA 450
Residual Fuel

15 Gas Turbine, Air-Cooled, Regenera- GAS TURB, REGEN. 600
tive	 60% Regenerator Effectiveness DIST,
2200^F, pr 12, Distillate Fuel

16 Phosphoric P;11 Fuel	 Cell, FUEL CELL, PH ACID, 600

Distillate	 r,	 .l DIST,.

17 Molten Carbonate Fuel Cell, FUEL CELL, MC, DIST. 600

Distillate Fuel
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The variations in fuel energy savings with temperature are due to the

variation of energy conversion system power to heat ratio and effect-

iveness with the temperature at which heat must be supplied to process.

There are three ECS's whose characteristics do not vary with temperature

because all reject heat recovered for process use is available at a high

temperature. These are steam injected gas turbine burning residual fuel,

and the distillate fired fuel cells. These ECS's show up only as a

point on the plots.

The line identified as the maximum theoretical fuel energy savings

corresponds to a cogeneration system with an 85% effectiveness. For

power match cases the maximum fuel energy savings for an 85% effective-

ness versus the process power to heat ratio is the top line in Figure

9-1. The high power/heat ECS's are missing from the figures corres-

ponding to the process power/heat of 0.1 (Figures 9-3 and 9-4) because

they are off scale.

Low Process Power to Heat Ratio

Focusing on Figure 9-3, the heat match for a process power to heat

ratio of 0.1 shows that power would have to be exported in all cases.

The power produced by the ECS when sized co match the process heat re-

quirements exceeds the process power needs for all cases. For example,

if it were desired to use a stirling engine in a cogeneration application

for a process having a power to heat ratio of 0.1 and the stirling engine

was sized to meet the heat needs of the process, then the power produced

would be from four to six times what is required by the process depending

on the process temperature required. The costs for this system would be

commensurately higher than a system that met the miminum process needs.

When the stirling engine is sized to meet the power needs of the process

(see Figure 9.4) it can only produce from 16 to 25% of the process heat
needs (the exact amount depends on the temperature that process heat is

required), An auxiliary boiler would have to be purchased to provide the

remaining 75 to 84% of the process heat needs. Although not studied here,

in some cases it is possible to vary the ECS design and configuration to

charge (usually reduce) its P/H to better match the needs of a given process.
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Intermediate Power to Neat Ratio

Figure 9- 5 re ,°',esents the heat match case for a process power to

heat ratio of 0.25. It is interesting that most of the enery conversion

systems 'here would still be exporting power even at this: higher process

power to heat ratio.

Figire 9-6 iF the power match case For a process power to heat ratio

of 0.25. Note that the maximum fuel savings passible has increased from

13.8% for the 0.1 process power to heat ratio to 24.8%. With the exception

of tho PFR and steam turbine supplying heat at most process temperatures

supplementary boiler capacity must be added to provide the shortfall be-

tween energy conversion system heat output and process requirements.

t{ qjj Power_ to Neat Ratio

Figure 9-7 is the heat match case for a process power to heat ratio

of 1. Only a few of the cogenerating systems in this case would be ex-

porting power,

Figure 9-8 is the power match case for a process power to heat ratio

of 1. It is observed here that most systems would provide more heat than

was needed by the process (process heat required/FCS heat <1). The

greatest fuel energy savings are obtainable with high power/heat opti,ns

such as integrated gasifier molten carbonate fuel cell with steam turbine

bottoming and the combined -cycle.

Comparison of Fuel Enemy Saved Ratio at a Fixed Process Temperature

Figure 9 -9 provides a summary of the fuel energy savings ratio of the

selected energy conversion systems when providing heat to an industrial

process at 400 
O
Ffor process power to hea^ ratios of 0.1, 0.25 and 1	 The

export power allowed care is the heat ma li.1-h case. If more power is pro-

duced than required by the process, it is assumed to be exported. Any

shortfall in power required versus that produced is assumed to be purchased

from the utility.
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For each bar chart in the figure the results for state-of-the-art

ECS's are shown on the left and fifteen selected advanced' ECS's are shown

on the right. These fifteen have been selected as representative of the

various types of ECS's studied. Several gas turbines with heat recovery

steam generators of various pressure ratios and firing temperatures were

considered but only one of these was selected for this comparison, For

both the state-of-the-art and advanced systems those utilizing coal are

on the left, then those utilizing residual fuel are next followed by those

that can only use distillate fuel.

Several conclusions can be drawn from this figure. The most obvious

one is that the restriction of power export would significantly affect

the potential fuel energy savings in the low to intermediate power to

heat, ratio process ranger The reduction in fuel energy savings between

the no export and export power cases diminishes with increasing process

power to heat ratio.

The electrical conversion efficiency of each system is given at the

bottom of the figure. Note that respectable values of fuel energy savings

can be achieved at low process power to heat ratios at low ECS electrical

generating efficiencies (11 - lO%).

ENERGY AND EMISSIONS SAVINGS RESULTS FOR REPRESENTATIVE MATCHES OF ECS's
AND INDUSTRIAL PROCESSES

Fuel Energy Saved Ratio Results

Fuel energy saved ratios were computed for all energy conversion sys-

tems (described in Section 5) matched up with all processes studied

(described in Section 4). The computer-generated results are presented

in Volume V. A representative sampling of fuel energy saved ratio results

for selected plants and selected energy conversion systems are presented

in Table 9-2 for power matches and Table 9-3 for heat matches. Waste

and by-product fuels were utilized where available and feasible, as

specified in the assumptions (Section 3). By-product or waste fuel in-

creases the fuel energy saved ratio when used and decreases the fuel

energy saved ratio when not used.
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Table 9.2

FUEL ENERGY SAVED RATIO OF COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL
PROCESSES

POWER MATCII

S1A1 . .i MT	 I	 MOOD

IleIle

1

f

Note: Matches producing excess heat, or match not possible becauso process temperature required exceeds ECS capability,are Shawn by --

MEAT PACKING.	,26 ,26 ,21 ,19 ,2K	 ,B ',s3 ,24 .2112 ;26 ,23 ,21 .lO ,19 ,24 .21 119 ,14......E m.... 	 _...,.^ ..,...,. 	 ,.	 ^,_.
WALT BEVERAGES 	 ,24 ,24 ,19 ,20 ,24 ,24 ,18 ,2u^ ,20 .11 429 ,21 ,19 .10 -W H ,19 .20 ,17

AIEACIIEO KRAFT PAPER	 - ,22 ,14 --	 ,30 ,11 -,05 ,22 ,11 ,30 ,26 ,24 ,12 ,17 ,25 ,23 ,16 .21
THERM-IiECN PULPING --	 ^. ,27 ,14 ^•	 «-	 ,26 .34 - • ,9?. ,30 ,15 .21 ,31 ,29 ,20 ,27
INTEGRATED REFIT-AL -- -- ,22 ,14 -- -- .21 .27 ,21 ,11 ,30 ,25 ,23 ,12 ,17 ,25 ,23 ,DG ,21
CHLORINE.

	 ,24 	 .20 .29 ..	 .. ,26 ,35
NYLON	 72-7 	,.,.-...

PETRO-REFINING	 ,16 ,16 .il --	 .16 ,16	 IT- ,14 ,11	 ,05 .16 .14 ,13 --	 -.	 ,lT ,12 ,09 .11
INTEGRATED STEEL 	 ".^	 -^.° .,^-°„ --,•

COPPER ,20 -.	 __	 ...	 ,3O --	 ._	 ._ -•	 ,34 .17- 1 ,24 •-	 -- ,23 .30
ALUMINA ,14	 09,la ,O9 --	 .14 :13 ;09 ,I2 ,09 _,04 .13 .1 	. 0 --	 _.	 ,	 ,09 , 7 al

Table 9-3

FUEL ENERGY SAVED RATIO OF COGENERATION SYSTEMS  FOR SELECTED INDUSTRIAL
PROCESSES

HEAT MATCH

,.J	 4	
11
	

4 ^. ^ "

':^

	 tiJ	 4:, ^ F"	 ^a	 16.,	 +̂'l	 sl	 A	 4'	 l^^^`

MEAT PACKING	 .28 .28	 ,31	 ,33	 .28	 ,33	 .31 	 .421.32	 ,14 ,37	 ,34	 30	 ,22	 ,33	 ,40	 ,34	 .35	 ,36

MALT BEVERAGES	 .28 .28	 ,31	 ,31	 ,28	 ,33	 ,31	 .42	 ,34	 ,14	 ,37	 ,34	 ,38	 ,22	 ,37	 ,q0 	 ,34 133 -	,36

BLEACHED KRAFT PAPER	 .29 .29	 ,29	 .25	 ,21	 ,36	 ,17	 ,33 ,31	 ,14	 .40	 ,33	 ,36	 ,22	 ,29 739	 .33 ,24	
,36

THERM-MEC11 PULPING	 ,12	 .12	 ,29	 ,25	 .12	 ,2	 ,27	 ,39	 ,24	 .09	 ,27	 ,33	 ,36	 ,22	 ,29	 ,34	 ,33	 ,24	 .36

INTEGRATED CHEMICAL	 ,16 ,16	 .29	 .25	 ,16	 ,26	 ,27	 ,39 ,26	 ,11	 ,32	 ,33	 ,36	 ,22	 ,29	 ,34	 ,33	 ,28	 ,36

CHLORINE	 ,04	 ,OB	 ,16	 ,26	 .08	 . 1 2	 ,17	 .30 .13	 ,04	 ,15	 ,10	 .29 .	,22	 ,29	 ,22	 21 ,28	 .36

NYLON	 ,09	 .09	 .15	 .27	 .09	 ,13	 ,17	 .30 .14	 ,05	 ,16	 .17	 ,30	 ,22	 ,29	 ,23	 ,20	 28-	,36

PETRO-REFINING	 ,14 .14	 .27	 --	 .14	 ,26	 .26	 .39 ,23	 ,09 ,31	 .33	 ,35	 --	 --	 ,28	 ,31	 -2-8-	 ,36

INTEGRATED STEEL	 ,06 ,OG	 ,12	 ,22	 .06	 .71 	 .21	 .16	 .06	 .16	 .14	 ,18	 --	 ,26	 .13	 ,il	 .24	 .32

ALUMINA,265	 23	 ,25 	 .381.22 	 091,29

COPPER	 .09 .09	 .25

 ff:0

1:1.1G7,21,20,3622,29,32,32,24,36

 .33	 .34	 =-	 --	 .26	 .31	 .20	 ,36

Note: Matches producing excess heat, or match not possible because process temperature require) exceeds EC5 capability,
are shown by --,
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For these sel ,^cted results, the hi ghest fuel energy saved ratio for

state-of-the-art systems is achieved by both the gas turbine and diesel

in both heat and power matches. The highest fuel energy saved ratio for

advanced systems is achieved by the integrated coal gasifier molten car-

bonate fuel cell in the heat match case and by the distillate-fired

molten carbonate fuel cell. Comparing advanced residual fueled systems,

the air-cooled gas turbine and combined-cycle have the best fuel energy

saved ratio. There is no single system that consistently has fuel energy

savings higher than all others, Each system alone performs well in some

specific application, but not necessarily better than all others in that

application.

Emissions Saved Ratio Results

The emissions saved ratio is calculated in a manner analoaous to

the fuel energy saved ratio. It is simply the rate of pollutant emissions

(NOx , SOx, and particulates) for -the nocogeneration case minus the

emissions rate for the cogeneration case divided by the nocogeneration

emissions rate. Pollutants resulting from combustion of by-product or

waste fuels were ignored. The emissions saved ratio and emissions saved

by type for each ECS-industrial process matchup are given in Volume V.

A representative sampling of emissions saved ratio results for selected

ECS's and selected plants are presented in Tables 9- 4 through 9-7.
Tables 9-4 and 9-5 assume a coal fired nocogeneration system. Tables

9-6 and 9-7 assume residual fuel is used as the nocogeneration fuel.

The lower emissions saved ratio, when the residual fuel nocogeneration

case is assumed, results from the fact that the nocogeneration emissions

are reduced significantly in most cases. All systems with the exception

of the diesel save emissions over the nocogeneration case. Of the ad-

vanced coal burning systems, the integrated coal gasifier molten carbo-

nate fuel cell has the best emissions saved ratio. The phosphoric acid

fuel cell has the best emissions saved ratio of the advanced liquid

fueled systems.
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Table 9.4

EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

POWCR MATCH

COAL NOCOGENEnATION BASE

r

	

w	 ^d

4Y^y! SG r rte! 	 ^ f

p ,	 ^,^^ I ca '^ r ?►y ^ ĵ̂  u

BEVERAGES

_K_RAFT PAPER .. t

	

.57 1 .12  -2 1.47 1-•121. K
	

.17
. r.y
..r

ING

Note: Matches produelnq excess beat, or match not possible because process temperature required exceeds GCS ca pvq.ility,	 Eare shown by +^,

Table 9-5

EMISSIONS SAVED RATIO FOR COGINERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

NEAT MATCH

GOAL NOCOGENERATION BASE

STAIE•ONTnE ART	 ADVAU11 0

.r	 r

r	
4^S

;

c,	
Y	 Ch	 r	 ,	 ^^	 + c,

	

cr^
r^ ki n	 r	 r'	 !	 u	 + 

r 

i	 ,

NEAT PACKING .20 .29 .43 2 6 ,37 .49 .28 1.0 ,26 .20 .30 .16 .22 , ,a6 + BOG ,01 .49

,4B

.54

,a6

,a6

02

.46

.45

.50

MALT BEVERAGES .15 .25 .50 2.2 . 33 .46 ,26 1,0 .26 .16 .27 ,13 .21 .05 - ,06 +.03

BLEACHED KRAFT PAPER ,26 .35 .56 2.2 .41 .54 .16 1.0 .27 .25 ,37 .26 ,27 .09 n.07 ,10

THEW-MECH PULPING .11 .17 .53 2.6 21 .35 27 1	 0 T. 10 25 ^ ^ 22 0

^

r 0 51 B5

^.^.a

CHLORINE .07 .10 ,29 2.6 ,13 ,20 ,17 ,73 .11 ,09 .14 ,11 ,19 ,O1 • ,13 x ,01 .32 ,B5_8 ,47

NYLON

PETRO-REFINING

.06

.16

.09

.27

.20

.51

2.8

-

.11

.34.47

.1B 15

,26

,72

T.

.10

,20

.07

.21

.13

.2-8"

,0B

,19

.17

.21

,06

*^

-1.-

-.13

^-

•.01

- .14

. 29

,49

.85

.85

.46

,47

INTEGRATED STEEL .05 .OB .26 2.2 .07 .18 .03 . 02 .14 .11 .15 .13 .15 - -.08 .05

• .11

.29

.46

,49

80

.85

.B5

.46

.46

.47
COPPER 02 ,07 .Al 2.7 .il .22 ,17 1.Q .11 .Oa 13 ,10 ,17 05 -,14

ALUMNA ,14 .24 .51 -» .3? .36 .25 10 .19 521 .27 .19 ,2n -- - -.17

Note: Matches producing excess heat, or match not passible because process temperature require exneedn ECS capaAility.
are shown by -
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Table 9.7

EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

RESIDUAL NOCOGENERATION BASE

SUH.OF.TVRS ART	 I	 ADVANCIn

W

a	 9'	 a	 g 0

ZF

`^	 W	 J 4"	 G	 o

are shown by -

NEAT PACKING	 ,20 .29 .43 •2.6 ,37 .49 -213 . 	 .16 1	a.
WILT BEVERAGES	 ,20 ,29 ,43 -2.52 ,37 ,49 .28 1.00 .28 40 .30 .16 1 ,22 ,06 -.03 ,01 ,44 .87 .46

BLEACHED KRAFT PAPER	 .21 ,30 .46 •2.44 .37 .51 ,13 1,00 .24..21 ,35 .22 ,25 ,08 .09 ,06 ,52 .81 .49
THERM-MECH PULPING_.	

q

 96 .13 .42 .2,8 ,11 .32 .24 1.00 ,17 ,14 ,21 =15 ,19 .06.:17 •,OB ,48 .85 ,46
CHLORINE	 ,05 .08 .21 •2.85 ,10 ,18 ,t5 .72 ,09 ,07 ,12 .08 .16 .06 -,16 -.03 .31 .85 .dd
NYLON	 ,_„•^Q6 .09 .2Q =2.79 .11 jiff ,15 ,72 .l q :07 .13 .08 .17 .06 •.13 -,0	 .29	 fir 	d
PETRD-REFINING	 ,OB ,14 ,41	 .	 ,28 ,43 ,23 1.00 ,15 ,16 .24 .15 . .18 -	 -.19 ,47 .85 .46

INTEGRATED STEEL 	 'K ' 06 .14 -2.34 ,OB .16 ,Ol .01 .12 ,04 ,14 .)1 .13 - •.10 .03 ,27 ,80 ,44

COPPER	 as .1 q ,35 -2.87 .13 .24 .20 1:00 ,13 ,il .16 .13 .19 ,06 -,17 -.01 ,48 .85 .46
sLUMiNA	 ,05 ,16 ,40	 .25 .41 ,21 1.00 ,14 .16 .21 ,15 ,17	 -	 -.23 ,47 .85 ,46

Note: Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,

Table 9.6

EMISSIONS SAVED RATIO FOR COGENERATION SYSTEMS FOR SELECTED INDUSTRIAL PROCESSES

POWER MATCH

RESIDUAL NOCOGENERATION RASE

MEAT PACKING .18 .20 .32	 1,77	 .36 .41	 .12 .51 .13 .19 .16 .11 .1., .03 =.03 0

'

.66 .46 .43

MALT BEVERAGES .16 .2fr .30	 1,65	 .34 .39	 .10 .46 .11 .19 415 .10 112 .03 -.02 0 .45 .65 .43

BLEACHED KRAFT PAPER ,41	 0 21	 - .43	 - w .13 . 20 .22 . 22 .23 . 12 ,I2 ,16 .52 .64 ,52

TKF41•MECH PULPING 40 4.34	 - -	 .22 ,03 - - - .15 .16 .04 -.13 -.07 .47 ,72 .45

CHLORINE _ .n2 .46

NYLON - 2.79	 - -	 - ^. .06 • .83 .46

PETRO•REFINING .06 .18 .21	 -	 .26 .31	 .02 .29 .0 .14 .06 .06 .01 - - -.OS .54 .42

INTEGRATED STEEL -

_ -

	 2.19	 - - - . -.10 ,

L43

'79 .48

COPPER -	 2.55 -	 - ,97 .18 .05 -.14 -  7 45

ALUMINA .03 .15 ,TO	 . w .24 ,28 -.O1 .23 -.02 .13 ,U3 .05 .05 - •,OH .52 .42

Note; Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,
are shown by .



Section 10

ECONJMIC EVALUATION OF COGENERATION SYSTEMS

INTRODUCTION

One of the most important considerations affecting an industry's
decision as to which type of cogeneration system to install, or whether
to put in a cogeneration system at all, is its relative economics.
Industry, considering a new cogeneration plant at high capital cost,
has often found that they could not save enough in erergy costs to justi-

fy the addi -4i onal capital cnr,t over installing a process boiler and pur-

chasing power from the utility. As a result, cogeneration plants were
installed only in those industries which had several characteristics

favoring their economics such as large quantities of waste fuel (as in

the case in many pulp paper plants), steam requirements of over 100,000

pounds per hour and continuous operation (so the utilization of the

power plant equipment was high). In this section, the economics of

advanced technology cogeneration systems is compared to current

state-of-the-art systems to determine which advanced systems offer

improved economics to permit wider implementation of industrial cogen-

eration.

In the future, with the prospects of fuel costs rising more rapidly

than capital costs, the significantly better fuel efficiency and resulting

lower fuel cost of the cogeneration type power plants will tend to make

their relative economics more attractive than in the past. This rapidly

rising energy cost is increasing the energy portion of the costs of pro-

duction so that capital expenditures to reduce the cost of energy will

receive much higher industrial management priority than in the past.

Economic criteria used by industrial management in deciding between alter-

nate methods of satisfying their power and process heat requirements in-

clude:

10-1
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It

	 Minimum capital cost

L Mate of return on investment (ROT). The rate of return (de-
crease in energy cost) on the investment (increase in capital
cost) must exceed a "hurdle rate" for that industry

3. Minimum cost of energy.

Until recently, industrial management tended to weigh criteria 1 and 2
most heavily in their choice which emphasizes the short term effects.
More consideration is now being given to the longer term trends in

fuel and power availability and the resulting increasing energy costs.

Since industrial ownership is primarily emphasized in this study,

these selection criteria establish the type of economic indices that are

iisnd in comparing the relative merits of the state-of-the-art and ad-
vanced technology cogeneration systems for a particular industrial pro-
cess application. The first index is total capital cost including

interest during construction of the power plant. 'Second is the dis

counted cash flow return on investment called ROT. Rox is the discount
rate which makes the difference, in discounted after tax cash flows, of
two alternate power plants over their economic life equal to their dif-
forenre in capital costs. It is also analogous to the interest rate
which wou;d be obtained if the capital were loaned as an investment,

So ROT is a measure of the profitability of the investment and takes
into account the time value of money, taxes, depreciation and the escala-
tion of operating expenses such as fuel and revenue from the export of
surplus power. The third index is the levelized annual energy cost
(LAFC) of the power plant. LAEC Is the constant cost required each year

over the economic life of the power plant to cover the cost of capital

and the recovery of the initial investment including all expenses,

operation and maintenance, taxes And insurance, fuel and purchased

power or revenue from export power. It is analogous to the utility method
of calculating the cost of electricity in dollars per kWh except here it
is in total cost per year for the power plant. The term "levelized" means

that the escalation of expenses like fuel is taken into account by finding
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the total "present worth'' (1) of the expense over the economic life of the

plant and then finding the annual payment required to pay off this total
expense at cost of money (interest rate) for the project.

A more detailed explanation of the concepts behind ROI and LAEC is

given in the following sections. The detailed equations and basic
economic groundrules; e.g., cost of money, years of economic life, fuel
and power costs, etc. were established by NASA-LeRC after consultation
with the CTAS contractors. One important gruundrule specified by NASA-
LeRC; was that the ROI and LAEC are calculated on an inflation-free basis
in 1978 dollars. This means that the cost of money (interest) rates,

discount factors and expenses do not Include the effect of inflation.

The following equation converts the ROI calculated in this study to the
ROI i normally used that includes the effect of inflations

ROI i	11 + ROI)(1 + i) - 1

where

ROI i includes inflation

ROI is calculated with inflation set to zero as in this study

and

i = rate of inflation over the economic life.

Escalation of expenses above inflation such as fuel and power is included
in the calculations.

(1) The "present worth" or sometimes called "discounted" value of $1 re-
ceived 10 years from now in 1978 dollars at a inflation rate of 7%
and a cost of capital (interest rate) above inflation of 5% for a
total discount rate of (1 + .07) (1 + .05) - 1 = 0.124 is

Present Worth of $1	 --- -1-Q = $. 31
(1.124)

in 1978 dollars. In this study all calculations are done in 1978
dollars, which is another way of saying that the inflation rate is
set equal to zero in all calculations unless specifically noted.
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In the following subsections the analytical methodology and economic

results of the power and heat matches of the various power plant/fuel

types with more than 50 different industrial processes will be discussed.

Also, the sensitivities of capital cost, fuel and purchased power cost on

ROI and LAEC will be described. The economic groundrules and fuel and

power costs are discussed in Section 3.

RETURN ON INVESTMENT (ROI) ANALYSIS

nce in discounted,

oven their economic

study, cash flow,

economic life, n,

ROI is the discount rate w l .och makes the differe

after tax cash flows for two alternative power plants

life equal their difference in capital cost. Tn this

Sj , is calculated for each year of operation over the

of the plant and is defined as:

S  = Cash Flow Revenues - Cash Ow tating Expenses - Income Tax ('10-1)

where the income tax is_:

Income Tax = Income Tax Rate (Revenues - Cash Operating Expenses (10-2)
- Tax Depreciation) - Investment Tax Credit

The definition of ROI defined above can be expressed algebraically

as the value of ROI which satisfies the equation:

n

(SP COGEN - (Sj)NOCOGEN	
(10-3)^COGEN - ` NOCOGEN Z	 (1 + ROI)j

j=1

where

CCOGEN	
Capital cost of cogeneration system

C
NOCOGEN = Capital cost of nocogeneration system

j	 Years of plant operation = 1, 2, 3, etc. to 30
n	 Economic life = 30 years

Cash flows for the nocogeneration base case, Sj 
NOCOGEN' 

and alternate

cogeneration system S. 
COGEN , 

are calculated for each of the 30 years
^ 

of operation by substituting these values into Equation 10-2 to obtain

the income tax and Equation 10-1 for the cash flow.
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A detailed discussion of the ROT methodology and calculations is

given in Volume V, Section 0.3.

Results of_ QI Analysis,

A sample of the ROT's calculated for selected cogeneration systems

and industrial processes using a coal-fired process boiler as the nocogen

base case is shown in Table 10-1 for matching the cogen ECS to the process

power requirements. The large number of blanks indicate matches where

excess process heat is generated and the ROT was not Calculated. The

negative values of ROT indicate that the nocogen capital cost was higher

than the coven but the cash flows were less for the nocogen ECS so the

absolute value of ROT is the ROT realized if the nocogen system were in-

stalled instead of the coven ECS. A ROT of 0 indicates that the sum of

even the undiscounted cash flows over the 30- year life was less than the

difference inill capital Cost between the cogen and nocogen cases and thus

the ROT = 0. A ROT of 990 usually cleans that the capital cost and cash

flows of the coven ECS is less than the nocogen ECS and is most often

found in the case where coal-fired nocogen ECS is compared with an oil-

fired cogen ECS and is a "winner" in"estment-wise even though the ROT

value cannot be calculated. Table 10-2 shows the ROT's when these coven

CCS's are heat matched to the process. Tables 10-3 and 10-4 show the

ROT's for the sabre cogeneration systems and industrial processes as ill
Tables 10-1 and 10-2 but use a residual fired recess boiler as the noco en
base c7spa.

The results of the ROT analysis for all of the cogeneration/fuel sys-

tems heat and power matched to all of the industrial processes are shown

in Volume VT Computer Data, section 12.1 for the base case of a coal-fired

nocogenercation process boiler and in Section 12.2 for the base case of an
oil-fired nocogeneration process boiler.

An in-depth interpretation of these ROT results is best seen from
the plots of capital cost versus LAEC versus ROT which will be discussed

in a later section. Inspection of these tables shows that coal-fired

steam turbine systems, particularly the AFB, show up very well in those

industrial processes with low power to heat ratios. Those coven systems
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Table 111-1

911URN ON INVESTMENT Of i0hitNt gATIM INtR(tY C%MVERSI04 %YSTIM ti)MPARID 10
N006MRATION IN 141,1011)

POWER MATCH

WAAI NOM)(4NI, RATION ftAlij

L'i
g

Y44
i

AA PACKING
0

MU 111VIRMUS h -19 0 a	 to
4

0 0 5 0 0 17 (1 0
DUA0,10 KRAIT PAM 1199 o 34 1 0 I b 4 999 999 -t!4 0 S 430 0 0
111MI-liftil PUIPING 40

-
0 131 39 0 0 10 0 0 0

INILUMILD CHIMICAL. 9 0	 an is 1.1 1., IQ 6 999 Fit 49Q 0 0 0 0 0
011 ,011 1111. ae 4 .. I	 my s., ea . . . . .0 10 0 it

MUM
4 4 o o

PIIRO RUINING 411 -14 -31 999 111 1 it) l0 ml — -til 449 0
STIEL

4

IPPI R0 4

ALLAINA

999

10 6 0 64 999 904

Note:	 Hattlitts pxck%ss heat,	 1, 1%itch not passible beV 41tise ltj ,o Cesj	 temperaturo 1^11t11j'pkI ex t pe t l i 	tcs callabi I i ty,are shoo by

Tattle	 10,,

HITURN ON INVESTMENT 01 06MRATION FN[RaY CONYMION SMIMS VOWARU) TO
NOCOCkMRATION IN SI,11011 1 INVINTRIAL PROCMLS

14AT MATCH

COAL NOCOVIINLRAtION HANI

JknuA Wf

	

1Y	
yyr

 

Ail

27

#4

a	 0' :o -1 0 	 —0	 0	 0	 0	 0	 0
ICI T DEVERMCS	 li 999	 0	 0 24 8	 0	 0a'	0	

0, 
42	 0	 0 0	 0	 0	 a	 a -

11VACULD KRAFT PAPER	 42 999 999	 0 999 49	 6	 7	 7	 5	 4 999 17	 0 0	 0	 0	 0	
1 
0

'f11-Eivl ',Ht6l P11-VIN"G	
34. 

-2	 39	 0 999 tiU	 10	 9	 15	 4	 2 136	 k0	 0 .
	

-o	 0 ^'-O

INTEGRATED 66-1 f c A L 44	 -9	 2	 0 999 66	 14	 13 
_1p_;.. 1
 0	 6	 9	 0	 0	 0	 0	

0:-
	 0

CHLORINE	 35 999	 52	 0 999 117	
14.

	

4	 14 	 5	 4 110	 42	 0

NYLON 	
^--- 1. ^ - - - ^ - - , ,  — , , . ''. -'-T-- , - - '- 	I	 I "	 1	 -

f5	 4	
-4- 	 61. IT
	 1	 0	 22 	 17	 0	 0	 11	 7	 0	 0

43 •141	

0 .

	 9`.+:_> i 0i
	

II	 11	 s	 -0	 0	 0

INTEGRATED STEf-L -
	31 90 11 999	 0 999 54	 9	 11	 9	 7	 3 999	 73	

2

	

COPPER " 3—'---4- 16-	71 ?0	 0 0	 11

AIUNINA	 ,35 	 -0	

-jq 9 

4 - 4 



Natti. MAtches III-oduch!) excois beat, 01' match IlQt Possible becAuse process temperately 1'eq1tived exck p kjs Ccs capability,
Art, Shown by
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Table 10.3

RETURN ON INVESTMENT OF COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO
NOCOGENERATION IN SELECTED INDUSTRIAL PROCESSES

PONCR MATCH

RESIDUAL NOCOGENERATIOM BASE

NEAT PACKING 0 a 0 0 0 0 0 0 0 a 0 a 0 0 a a 0 a 0
HALT BEVERAGES 7

»

10

-

G

3

^'^

3

1

f
10 5

w2

0

7

1

5

7

l3

O

9

it

7

l0

30

5

21

a
9 G

4

11

0

a

O

0

O

0BLEACHED KRAFT PAPER

THERM- MECII PULPING- .^
—.

^.:r^ - rn 2 » 1 a ^ » 25 za B G 11 G D o
INTEGRATED CHEMICAL 30 4 - - 19 16 16 15 10 37 3a 15 8

-
13 4 0 0

CHLORINE - 13 9 - O 0
NYLON 4

- -

4 ^
-

O O

PETRO REPINING X. 1O0 .0 48 30 19 17 10 15 12 .'.9.24 - - 7 a 0 0

INTEGRATED STEEL - o 5 _ p 0

COPPER » 13 1 2 p U
AL11P11NA 25 G5 l5 45 27 15 14 1 1G 13 9 24 2a - - 4 D 0 0
Note. Matches 111-educinq excess heat, 01' Illatch not Possible beCA115e PI .oeeSS temPeratnre itquired exceeds ECS capability,are shown by

Table 10.4

RETURN ON INVESTMENT OF COGENERATION ENERGY CONVERSION SYSTEMS COMPARED TO
NOCOGENERATION IN SELECTED INDUSTRIAL PROCESSES

NEAT MATCH

RESIDUAL NOCOGENERATION BASE

MEAT PACKING 0

0 0
0	 0 0 0 0 0 0 a 0 0 0 D 0 0 0 0

WALT BEVERAGES#,^_,^^-^$,

BLEACHED KRAFT PAPER

11̂ v

24

l5

54

t

,- 1G

Q 
Y 

17
a	 4G

—9
9

27

..2

0

.27'
2

0

9

9

T "

B

^ . 0
0

5

-
10

24

,......
3

15

0
... K

0

.^..
0

0

4

G

0

0

0

0

0

0
TIIERM-i9ECH PULPING 19 ZG 19

r 0.
a 	 29 la 711

.
9 —14--7 n 26 15 a 0 10 3 li a

INTEGRATED CHEMICAL 34 84 19 O	 55^. 42 17 i5 14 15 la ?G 17 a 0 7 0 0 0

CHLORINE 24

9

43

12

'
27 '
5

i 15

1	 a9

4	 12

z3

D

5
la

4

5la

5

r1.,

14

9

1

G

0

34

22

31

17

0

o

B

a

14

11

51,^

t

a

0

0

0NYLON

PETRO-REFINING 31 131 1 , -̂	 54 _39 14 14 1 11 R 17 10 - » a 0 0 0

INTEGRATED STEEL 16 i02

^

21 0	 39 23 9 11 9 7 4 28 26 - 4 7 11 0 0

COPPER B 10 14 0	 l2 7 4 5 13 1 0 20 14 0 a 10 G 0 0

ALUMINA 30 93 0 49	 i o-32 1 12 11 9 0 G T4 B - - 0 0 0 0
Li

Nate: Matches Producing excess heat, 0r Mitch not Passible because Process temPorature required exceeds ECS capability,
are shown by »,
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burning high priced distillate 'fuel; e.g,, the regenerative gas turbine

and fuel cells are poor economically when compared to a coal-fired no-

cogen ECS. Also, those cogen systems with high capital cost show up with

poor ROT"s; e.g., thermionics. As an economic index, ROI is very sensi-

tive to capital costs and if ECS's are screened on ROI the selections will

be different than if screened on LAEC or fuel energy saved ratio.

A comparison of the ROI's using a residual-fired process boiler with

a coal-fired Process boiler nocogen base case shows that the ROT's for

the residual-fired nocogen base are higher than for the coal-fired nocogen

base. The lower price of liquid fuel compared with coal causes the

operating cost and differential cash flows of the residual nocogen system

to be greater than for the coal nocogen system. Since the capital cost

of the residual-fired nocogen system is less than any of the cogeneration

systems, the ROI's are either positive or negative and very few have a

value of 999.

LEVELIZED ANNUAL ENERGY COST (LAEC) ANALYSTS

The levelized annual energy cost is defined as the minimum constant

revenue required each year over the life of the project to cover all ex-

penses, the cost of money and recovery of the initial investment. This

calculation of LAEC is often referred to as the "utility method" cost

calculation and includes the cost of capital, recovery of investment,

income tax, depreciation, local real estate taxes, fuel and operating and

maintenance costs and the cost of purchased power or revenue from exported

power in the units of total energy system costs in 19713 dollars per year.

The LAEC is equal to

LAEC = levelized fixed charges	 (10-4)

+ levelized operating costs

levelized revenues

Levelized Fixed Charges

The levelized fixed charges (LFC) are analogous to the annual mort-

gage payments an individual makes on his loan to purchase his house ex-

cept that factors are included to take into account the tax deductions

10-h
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for interest, depreciation and investment tax credit. Tile levelized fixed

charges (LFC) are calculated by the equations

LFC - C x FCR	 (10-5)

where

FCR - fixed charge rate

C	 = capital investment.

For the economic groundrules used in CTAS shown in Table 3-3 including

zero inflation, the fixed charge rate is 0.0706. If an inflation of 6.5%

is included as well as local taxes and inflation, the FCR is0.167. A

detailed discussion of this low value of FCR and details of the LAEC calcu-

lation are given in Volume V, Section 9.4.

Levelized Operating Expenses aiid Revenues

The operating expenses or revenue over the operating life of the

power plant are levelized to account for their escalation. This ievelized

cost is the average annual constant payment during the life of the plant.

required to meet these escalating expenses. Levelization factor is the

ratio of the levelized expense divided by the expense in the first year

of operation. Because these levelization factors can be very large for

even 10N total escalation rates, it is very important in comparing leveli -

zed costs to understand the groundru.les on ,inflation and the escalation

above inflation of the expense or revenue. In CTAS the inflation rate

was set at zero and only the escalation of the expense or revenue above

the inflation rate are used to give a levelization factor of 1.128 on

oil, coal, and electric power prices.

This levelized operating costs and revenue portion of the LAEC of

equation 10-4 is:

Levelized Expenses = local taxes and insurance	 (10-6)

+ operating and maintenance

+ purchased fuel

+ purchased electricity

revenue from export power

10-9



Throughout the CTAS reports, revenue is considered to be a negative ex-
pense when power is sold to produce income to the industry.

Level ized Annual Energy Costs Res ults

A sample of levelized annual energy cost savings ratios (LAECSR)
calculated for selected industrial processes and cogeneration systems

with a coal-fired process boiler nocogen system as a base are shown in

Table 10-5 for power matches and Table 10-6 for heat matches. The same
cogeneration systems using a residual-fired process boiler nocogen sys-
tem as a base are shown in Tables 10-7 and 10-8. The LAECSR is defined

as

LAECSR 
LAEC

NOCOGEN - LAECCOGEN

LAE NOCOGEN
(10-7)

so that positive values indicate a LAEC savings when a cogeneration is
installed compared to the nocogeneration base case. A negative value of

LAECSR indicates the LA'EC is more for the cogeneration case than the

nocogeneration system.

A study of Table 10 -5, 6, 7 and 8 shows the LAECSR's for

the small 1.9 MWe meat packing plant with only 2100 hours per year op-

eration are all negative. The coal-fired FGD steam turbine performs well
with 'the AFB steam turbine showing slightly better LAECSR's in nearly all

industries. The same holds true for the state-of-the-art and advanced

gas turbines. Also, there is a correlation with the cost of cogeneration
fuel, with higher LAECSR's with coal-fired cogeneration systems compared
with residual and the distillate- fired cogeneration systems.

Tables 10-7 and 10-8 show the same cogeneration systems as above but
with the LAECSR based on residual-fired process boiler nocogeneration

systems. Comparing residual nocogen based cases with the coal nocogen,

we see that the residual based cases have a higher number of matches with

positive LAECSR's and that values are higher than when the base is a

coal-fired nocogeneration.
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Table 10.5

LEVELIZED e9!?!ldl ENSWI-Y COST SAVINGS RATIO OF COGENERATION OVER NOCOOENERATION
IN o.6ECTE0 INDUSTRIAL PROCESSES

F,"WER MATCH

COAL NOCOGENERAti,^,N BASE

- - -• - • - v i
NEAT PACKING -.84 -.34 --.35 -,38 -,6 -1.1 -1. -1.5 -,85 -1.4 -2.1 -.26 -.4 -..41 -.38 -,56 -.44 -.38 -.41

WILT BEVERAGES

BLEACHED KMFT PAPER

.01

-

-.01

--

-.06

+. p6

-.11	 OV

-.lA	 •.

-.O
-

=.2 .24•
T.

.00 -.29 -.45 -,02 -.07-.15 -.11 -.09 -.22 -.30 -.34
.

,26 -.0
-^

-,10 ,1^ x.03 02 ^;09 ^	 .•. 7 -.
v
G ,12 .4

TNERtf-HECK PULPING

INTEGRATED CHUiiCAL

-y
._ .09 -.12	 -- -- .i .10 -- -- -- .15 .11 -.05 -.05 .05

-.04

.06

-.18

-.40

-.48

-.31

-.41.. ,- 101 -.19	 -- .. .l .16 .15 .09 ,05 .O5 .0 -.11 -,13

CIILORIIii - .. -_ .,06 -. _. .. ..
-	 .

.-
.
..

,E...
.- .04 .04 -- -- -.37 -.25

NYLON

PETRO-REPINING

TNT -E-G* I iAT ii i7 STEEL

.19 -.00 -.17 --	 .23 .16 ,08 .07 .07 .02 -,Ol -.13 -.1 -- .. ..23 -.39 -.56 -.$2

_ -- .. _ , j4	 .. .. .. .. .. .. .. .. _^ >. - .03 -- -- -.37 -.29

COPPER .. .. .- -.11_

ALUMINA 12 -.13 -.21 -•	 ,lB .11 ,01 . pp .02 -,04 -,09 -.17 -.1 -• »- -,27 -,A4 -.55 -.54

Note: Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,
are Shawn by --.

Table 10-6

LEVELIZED ANNUAL. ENERGY COST SAVINGS RATIO Or COGENERATION OVER NOCOGENERATION
IN SELECTED INDUSTRIAL PROCESSES

HEAT MATCH

COAL NOCOGENERATION BASE

11;C"1 1_Fz?1i1i__
1`'

h
':'n41

/.

	 '

k^ 	 ^ H c~i 
	 9	 q 2'

MEAT PACKING -.61 -.23 -.33 -.98 <.4 -.8 .2.1-2.3 -.61 -1,3 -2.7 -.2 -,7 -1.8 -.98 -.7 -.55 -1.1 -1.7

WILT BE
...	 ....,_r._	 _ ,13 .05 -.05 -.21 .21 p -.2 -.35 .11 -.26 -.65 ,02 -.1 1.3 -.21 -,lt •.33 -.09 -1.8

BLEACHEb KRAFT PAPER 29 .15 .03 -1.1 .27 3 .05 .09 .10 .01

m
-.06 .11 .07 .91 -.66 .07 -.21 -2.2 -1.4

THERi1.11ECH PULPING a i .01 .10 -.79 1 .1 .16 .14 .19 -,02 -,10 .17 .12 ,65 -.42 .04 .09 -1.7 -1,0

INTEGRATED CHEPIiCAL .18 x-.02 -.01^ -1,2 .21
_..-

.2 .25 .29 .15 .10 ,06 ,08 >03 -1.0 -.73 -.11 -.20 -2.5 -1.6

CHLORINE	 _ .08 .0207 -.15 _ .0 1

.__....,.
.13

-.

.19 .10 00 -.01 .10

....

.18 -.12

^.
.02

_
.O7 .01 -,63 -,31

..,^

NYLON , 04 .03 .08 - O1 .0
^k

0 -.0 .02 .12 -.06 -.17 .i1 .15 J 3 .07 ,08 .02 -.49 -.21 ^-

PETRO-REPINING 21 -.06 -.29 --

26

27 .1 .27 .01 -.03 -,06 -.07 :1 -- -- -.50 -.70 -3,9 2.6

INTEGRATED STEEL .05 .03 ,06 -,26 Oe .1 .0 .15 .07 ,02 -.04 .08 .it -- -,04 00 .OI - . 4 2 -.23

COPPER .03 ,01 110 -.50 .07 .0 -,0 -,02 .15 -.12 -,28 151 1 -.4 -.22 .07 .00 -1,1 -.61

ALUMINA .16 -.11 -.39 -- 121 121 .1 .14 .07 -.i3 -.20 -.12 -.2 -:`
R,.	 .

-- -,62 - .83 -4.2 -2.Q

Note: Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,
are shown by --.
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Table 10.7

LEVELIIED ANNUAL ENERGY COST SAVINGS RATIO OF COGENERATION OVER NOCOGENERATION
IN SELECTED INDUSTRIAL PROCESSES

POWER MATCH

RESIDUAL N(ICOGENERATION BASE

3 p	 N/ `+i
1TV

9	 ^. I t	 q h I	 t

NEAT PACKING -.84 -.34 -05 -.3	 -.G -1.11 . 1E	 1.52 -.8 1.43	 2.1	 -12 -.41 -.41 -.57 -,56 -.44 -.30 -141

HALT BEVERAGES .00	 .06	 ,O1	 -103	 .14 .01	 -.1	 -,1 .O -.2	 -.3 t	.0 .01 -.07 -.03 -,02 -.1 -.21 -.26

BLEACHED KW PAPER _	 -	 .13 -.04	 - .32	 .0	 0 .21 111	 .0	 .1 .13 .03 .01 .09 -.0 -,28 -,21

THERM-MECH PULPING -	 -	 .16 -.05	 - -	 .1	 .l - -	 -	 .2 .17 .02 .02 .11 .01 -.30 -.22

INTEGRATED CHEMICAL -	 -	 X15 -. .02 .
 - -	 .31	 .2 .2 .2	 ,1	 ,14 .16 .05 .04 .11 -.01 -.27 }.20

CHLORINE .02 i .08 .08 .31 -.20

NYLON -	 -tot	 _

-
-	 _ -

-.Ot .

-
-

-.31 -.19

PETRO-REFINING .35	 .13	 .06	 -	 .3 .33	 .2	 .2 .25 .21	 .1	 .05 00 - - .02 -.1 -.25 -.22

INTEGRATED STEEL -	 -.12 -	 -	 - -	 -	 - . -.01 . -.35 -.26

COPPER

-	 _	
-	 ..10 ^- •.0

-	 -
13 -.04 -.04 - -

-.33 -.23

ALUMINA ,3)	 .10	 .04	 -	 .35. 30 .22	 .21 ,2 .1	 .1	 .07 ,06 - - 0 -.1A -.25 -,22

Note: Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,
are shown by -.

Table 10-8

LEVELIZEO ANNUAL ENERGY tC
OSS S AVING RATIO OF COGENERATION 

OVER NOCOGENERATION

PROCESSES

NEAT MATCH

RESIDUAL NOCOGENERATION BASE

W

11,
110 0

o*

h cn v y q qT IZ 4.

PLEAT PACKING -'1611-.23 -.33 -.98 -.441-.84 -2.11 -2.3 -,61 -1.2(-245 -.20 -.7(-1.76 -.9 -.7 -.5' -1.06 1.71

HALT BEVERAGES 119 .11	 1 .02 -.27	 .27 .14 -.20 -.26 .17 -.18 -.54 .09 - 104-1.10 . 1, -

BLEACHED KRAFT PAPER .35 .22 .12 -.93	 ,41 .40 .13 .17 .17 .10 .03 .19 .1 ! -.7 -,5 .o -.1 -1.94 -1.21

THEPII-MECH PULPING .17 .08 .16 -.66	 .21 .21 .22 .20 .25 .05 -.02 .23 .1 -.5 -.3. .10 -.01 . 1.47 ..

INTEGRATED CHEMICAL ,30 .13 .14 -.00	 .32 .39 .36 .39 .28 .23 .20 ,21 .1 -.7 -.4 .05

CHLORINE ,12 .06 .11 -.10	 .13 .14 .17 .23 .14 .05 .03 .14 .22 -.0 .06 .11 .0' -.56 -.26

NYLON .04 1	 .03 .08 -,01	 .06 .OA -.04 .02 .12 -06 -.17 .11 .1 _,1 .07 0 .Q -.9 + -.21

PETRO-REFINING ,36 .15 -.02 -	 .40 .41 .35 .41 .20 .17 .15 .1 .0 - . -.2 -. -2.89 -1.8

INTEGRATED STEEL 07 .05 .08 -.24	 .10 .12 .08 .16 .OB .04 -.02 .10 .l -.0 . .O -.A -.21

COPPER .05 .03 .11 -. a 8	 .08 .O5 -.05 0 .16 -.11 -126 .16 .1 -,4' -.2 O. .02 -1114 -.59

ALUMINA .34 ,12 .10 37 .37 .29 .32 .15 ,10 .05 .12 .05 - - .28 -.A5 3.00 -2A1

Note , Matches producing excess heat, or match not possible because process temperature required exceeds ECS capability,
are shown by
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A greater understanding of the interaction of the cogeneration sys-

tem capital costs, LAEC's and ROI will be shorn in the following section.

The LAEC calculation methodology was programmed into the computer-

ized CTAS Cogeneration Evaluation and Data System and LAEC's calculated
for all of the cogeneration/fuel systems heat and power matched as shown in

Vol. VI, Computer Data, Section 12.1 for the base case of a coal-fired

nocogeneration system. These same values of LAEC are repeated for the

oilfired nocogeneration case in Section 12.2 as only the LAEC's of the

nocogeneration systems change because of different fuel.

SELECTION OF COGENERATION SYSTEMS BASED ON ECONOMIC CRITERIA

In the introduction of this section the economic criteria used by
industrial management in deciding between alternate methods of satis-

fying their process heat and power requirements were low capital (,ost,

a return on investment which exceeded the industry's "hurdle rate" and

minimum cost of energy,

A graphic method of portraying these economic parameters, their re-

lationships and the application of the above selection criteria is shown

in Figure 10-1. A number of alternate nocogeneration and cogeneration

systems all matched to a single industrial process are plotted at the

intersection of their LAEC and capital cost on this graph. A very impor-

tarit r_h?r?cterist'ic of this graph is that the )S pa of the line con-

necting any two power plant alternatives plotted on this graph is a

function of the ROI of implementing the alternative with the higher
capital cost and lower LAEC compared with the other. This correlation

was used to derive the "ROI protractor" shown on Figure 10-1.

The first criterion in selecting a power plant to meet the energy

requirements of the industrial process is minimum capital cost and, in

this example, is represented by power plant A, a liquid-fired nocogen-

eration boiler and purchasing the required power from the utility. The

next higher capital cost alternative with a lower LAEC is cogeneration
oil-fired system B having a considerable savings in LAEC at a modest in-

crease in capital cost and giving a ROI of 131% on the increase in i, n-

cremental investment over system A, and other factors being equal, would

almost always be selected over system A. The next higher capital cost
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systems are two systems, very :close together, labelled G. These systems

would not be selected over B even though it has an ROT of 22% compared
to A because, in addition to the higher capital cost, they have a higher
LAEC than s System C, a coal-fired cogeneration system is the next
higher capital cost system and gives a significant decrease in LAEC over
system B and has a ROT of 45% on the incremental investment over B. The
only remaining alternative system which gives a reduction in LAEC com-
pared with C, is system U. The reduction in LAEC is small compared with
the incremental increase in capital cost so its ROT is only 7% which is
not high enough to be considered.

If the choice of power plants were restricted to those burning coal
(shown as q or n on the plot), the base coal-fired nocogeneration case
is system E. Advanced Cogeneration System C gives a significant re-
duction in LAEC compared with E at a reduction in incremental capital

cost so it is a winner. Theoretically, the ROT of C compared to E can

not be calculated because there is a savings with a reduction in capital

cost. As before, there is a low ROI = 7% when system 0 is compared to C

so 0 would not be chosen. If the selection were limited to present state-

of-the-art coal-fired systems (shown by n ) system F with a ROT of 43%

compared with E would be the system selected.

On Figure 10-1, when both a power match and heat match can be made

with a single cogeneration system-fuel combination, the power match is

indicated by a dot,	 and the heat match is indicated by a F! , 0 , Q or
0 and is connected to the power match by a straight solid line; e.g., line
GI, JL, or KM. These GI, JL & KM systems have a much higher power to heat

ratio than the process so that when heat matched to the process they gen-

erate from 3 to 6 times the power required by the process, are advanced

systems and, at the price assumed received for export power of 0.6 times

the purchase power, do not give a favorable ROT.

Application of the various energy conversion systems and the fuels

to supply a given industry with heat and power result in a wide spectrum
of economics. These plots provide a vehicle for displaying results and

comparing the economics of state-of-the-art systems versus advanced systems
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using either coal or liquid fuels. When the fuel energy saved ratio and

power generated by the various cogeneration systems are also noted on
these plots, the key data for comparison can be presented on one sheet
for each industrial process. Coupling the data presented by these plots

for several processes with representative power to heat ratios and the
energy requirement characteristics of the national population of indus-
trial processes allows the process results to be used to infer results

from a national perspective.

Figure 10-2 is a plot of selected CTAS ECS cogeneration economics

for a medium--sized petroleum refinery. The refinery requires 52 megawatts

of electric power and 1333 million Btu per hour of steam at 470 0 F and

operates 8760 hr/yr. The power to heat ratio of the petroleum refinery is
0.13, About 60% of industrial process energy required in the US for steam

and electric power is L nsumed by processes with power to heat ratios less

than or equal to 0.20. Actordingly, the ECS's that have good economics

and fuel energy savings for the petroleum refinery should be representative
of cogeneration systems that have good performance and economics over the
0	 0.20 power to heat range. These systems would have the most national

impact because of the large fraction of national energy consumption rep-

resented by these processes.

In comparison to the liquid-fueled nocogeneration case, the liquid

fueled cogeneration systems that have a ROI greater than 15% are the power

matched state-of-the-art and advanced gas turbine (GT-HRSG -), the advanced

diesel with a heat pump (DIESEL-HEAT PUMP •), ths, advanced combined-cycle

(COMB CYCLE •), the state-of-the-art steam turbine (STM TURB -, 4R). These
systems are all sized to match process power required with the exception

of the state-of-the-art steam turbine where both the heat match and power

match cases are economic. The heat match cases of all other systems have

poorer economics than the power match cases. The fuel energy savings of

these power matched cases are all about 11% to 14%. The steam turbine saves

about 18% fuel energy and it has the best return on investment (}50%) of
any system.
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An area of concern on the liquid-fired systems is the possibility

of an increasing price differential between liquid fuel and coal. The

groundrule base price of coal used is $1.80/10 6 Btu and residual liquids

is $3.10 in 1985 (in 1978 dollars). The effect of increasing the liquid

price by 50% to $4.65/10 6 Btu is to significantly increase the LAEC of

the liquid-fired systems as shown by point A for the nocogen liquid boiler,

point B for the gas turbine, (GT-HRSG -), power matched and point C for

the same gas turbine (GT-HRSG Q) heat matched. The slopes of the lines

A-B and A-C compared to those connecting the same groundrule base costs

show a significant reduction in ROI and make the liquid cogeneration ECS's

uneconomical compared to the coal-fired systems.

Concentrating on coal burning systems only, the coal-fired nocogen-

eration case with flue gas desulfurization (COAL NON-COGEN BOILER FGD S )

costs $78 million with a levelized annual energy cost of $59 million. Note

that the capital cost of the coal-fired nocogeneration case is about double

that of the liquid-fired nocogeneration case. Even though the coal-fired

nocogeneration equipment is very expensive, if the industrial can raise the

capital, it appears to be a good investment with an ROI of about 25% (using

the ROI protractor) compared to the liquid nocogeneration case.

The coal-fired cogeneration systems that fall to the left of the 15%

ROI hurdle line are the state-of-the-art steam turbine with flue gas de-

sulfurization (FGD STM TURB), the PFB steam turbine (PFB STM T!!;^B), and the

AFB steam turbine (AFB STM TURB) matched to process heat or power. Of the

economically feasible systems, the AFB steam turbine matched to process

heat gives the best economics. The capital cost is less than the nocogen-

eration boiler with flue gas desulfuriEation and the levelized annual cost

of energy is also less. A ROI cannot be calculated in this situation with

the nocogeneration case as the base because there would be a negative in-

cremental investment.

Figure 10-3 shows the economics for a thermomechanical pulp mill

which has a power to heat ratio of 0.584 The economics shown here may

be considered representative of those for processes with power to heat

ratios of from 0.20 - 0.6. About 22% of industrial energy for steam

and electric power is consumed by industries that require power to heat

10-18
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ratios over this range. For liquid fueled systems compared to the liquid

fueled nocogeneration system, those that have favorable economics are the

state-of-the-art steam turbine (STM TURB *) k the state-of-the-art gas

turbine (GT-HRSG 0), the advanced combined-cycle (COMB CYCLE Q), and the
advanced air-cooled gas turbine (GT-NRSG Q). The state-of-the-art steam
turbine, while it only generates 10 MW out of the 31.3 MW required and saves

12% in fuel, still gives a good ROI (%:* 26x) for the lowest increment of

capital cost, The other systems when now compared to the state-of-the-art

steam turbine are less attractive investments (ROI's less than 15%) with

the exception of the advanced air-cooled gas turbine (GT-NRSG Q). It has

a ROI of about 25% compared to the state-of-the-art steam turbine and has a

fuel energy saved ratio of 0.33.

Next, the coal fueled systems are compared to the coal fueled noco-

generation case. Systems that have good economic potential (fail to the

left of the 15% ROI hurdle line) are the state-of-the art steam turbine

with flue gas desulfurization (FGQ STM TURK n ), the advanced PFB steam

turbine (PFB STM TURB p) and the advanced steam turbine with AFB (AFB STM

TURB [a), The only state-of-the-art system in consideration here is the

state-of-the-art steam turbine-boiler with flue gas desulfurization. It

gives an attractive ROI of ;w27% while saving 12% in fuel energy. Of the

advanced systems, the AFB steam turbine is the ultimate winner because its

initial capital cost is less than that of the nocogeneration boiler with

flue gas desulfurization.

Figure 10-4 shows the economics for a copper smelter which has a

power to heat ratio of 0.86. The economics shown here may be considered

somewhat typical for those processes with power to heat ratios from 0.6

to 1.5. About 12% of industrial energy for steam and electric power is

consumed by industries that require power to treat ratios over this range..

Of the liquid fueled systems compared to the liquid nocogeneration case,
the state-of-the-art steam turbine (STM TURB ie) and state-of-the-art gas

turbine (GT--NRSG 0) both have ROI's less than 15'%. Of the advanced sys-

tems, the advanced air-cooled gas turbine (GT-NRSG (D) is clearly the
economic winner with a ROI of M19%. Comparing coal-fired systems, the

only system with favorable economics is the AFB steam turbine (AFB STM

TURB 0) with a ROI of -22%.
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SENSITIVITY OF ROT TO CHANGES IN COSTS

Return on Investment (ROT) is a very sensitive index of the economic

performance of cogeneration systems and the question arises as to its

sensitivity to changes in fuel, power, and capital costs. A conventional

method of presenting these sensitivities is shown in Figure 10-5 for a

steam turbine coal-fired AFB builer cogeneration system heat matched to

a medium petroleum refinery and compared to a nocogeneration residual-

fired boiler with power from the utility. Four costs were varied from

-10% to +50% of their base value; namely the cost of residual fuel for

the nocogeneration boiler, coal fuel for the steam turbine AFB boiler

and its capital cost and the price received for the power exported to

the utility. None of these sensitivities are startling and, since the

system has a high base ROT of 54%, it would appear to take a major change

to make this AFB cogeneration system look poor. These sensitivities

will be different for each industrial process with variations in energy

requirements.

The costs with the greatest uncertainties are future fuel and power

costs. Figure 10-6 shows the sensitivity to cogen fuel cost of several

cogeneration systems heat or power matched to the Same medium refinery

with a residual-fired nocogeneration boiler as the base. The price of

OPEC oil has risen about 50% in 1979 bringing it over the $3.10 per 106

Btu in 1985 as projected by DOE in 1978 and used as a groundrule in this

study. For the residual-fired combined-cycle system shown heat and power

matched in Figure 10-6, an additional 20% increase would bring the heat

matched combined-cycle to zero ROT. Therefore, the probable continued

steep increase in oil prices needs to be carefully considered in deciding

on the implementation of an ofl-fired cogeneration system.

A more complete understanding of these cost sensitivities can be

seen by comparing the capital cost versus levelized annual energy cost

plot shown in Figure 10-7. This is the same plot for cogeneration systems

matched to a medium petroleum refinery as shown in Figure 10-2 except only

a few are shown and, for these, the effect of increasing the fuel, power

and capital cost by 25% over the base is indicated. Now it becomes clear

what the effect of these cost increases have on these cogeneration sys-

tems relative to both the coal- and oil-fired nocogeneration base cases.

10-22
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For instance, in the match of the steam turbine AFB with the liquid-

fired nocogeneration as a base, when a line is drawn connecting the base

costs from point A to point C and its slope is compared with the ROI

protractor, its ROI is found to he about 55% which agrees with the base

cost (0 percent change from groundrule cost) shown in Figure 10-5 and

10-6. When the cost of the AFB coal fuel is increased 25%, the change

in ROI is found by drawing the line A-N and comparing its slope to the

ROI protractor to give an ROI = 42 which again agrees with the results

shown in Figures 10-5 and 10-6.

The much higher sensitivity to an oil cost increase shown in Figure

10-6 by the heat matched oil-fired combined-cycle, with the base case of

a liquid-fired nocogen can also be understood by noting in Figure 10-7

the change in slope (and resulting decrease in ROI)of lines A-I and P-R.

The decrease in sensitivity of the power matched combined-cycle can be

seen by noting the smaller change in slopes of the lines A-G and P-0.

Using these plots, a wide range of contingencies can be easily in-

vestigated. Examples of cost sensitivities for other processes are shown

in Volume 5, Section 9.



Section 11

NATIONAL CONSIDERATIONS

The plant basis results described in Sections 9 and 10 were extended

to a national level representative of all US industry to provide a measure

of comparison between energy conversion systems. The resulting national

savings of fuel energy, emissions and levelized annual energy costs are

presented in this section.

METHODOLOGY

The yearly rate of national savings of fuel, emissions, and capital

costs were computed for the year 1990 assuming that each of the energy

conversion systems were available and implemented beginning in 1985.

These national savings were calculated for both heat and power matches.

A basic assumption affecting the amount of total savings possible was

that cogeneration could only be employed in new plan ets, by capacity ad-

dition to existing plants, or where replacement of old unserviceable

industrial boilers was assumed necessary. Figure 11-1 displays the re-

lationship between the yearly amount of fuel energy that cogeneration can

be applied to and the total yearly amount of energy used by industry, The

top line in the figure represents the total yearly rate of energy con-

sumption by industry. The portion of energy consumption rate between the

top line and the horizontal dashed line represents the increase in the

rate of energy consumption from the 1985 base year due to increased in-

dustrial capacity. The portion of energy consumption rate between the

horizontal dashed line and the lower solid line represents the difference

from the 1985 base year attributed to the replacement of old unserviceable

boilers. The amount of fuel energy considered here is all of that con-

sumed by industry and utilities in producing the steam and hot water and

power required by industrial processes. The total yearly rate of fuel
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Figure 11-1. Potential Industrial Fuel Use for Process Heat and Power
Generation Applicable to Cogeneration

The rate of replacement of old unserviceable industrial boilers was
assumed to occur in a compound manner such that the total industrial
capacity in 1985 was replaced in thirty years. This results in a compound

annual replacement rate of 2.338%.. The rate of increase in energy con-

sumption varied by industry. The average annual rate of increase in

energy consumption for all CTAS processes was 2.7%.

A sumilary of total industrial energy consumption is given in Table

11-1 for all CTAS processes for the industry groups they represent and

for all of US industry, The energy consumption projections include

energy for process steam, hot water, direct or sensible heat and fuel

energy consumed at a utility to provide for industrial electric power
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Table 11.1

NATIONAL FUEL ENERGY SAYINGS DATA WE

* Total Direct + Indirect
i 	 Fue l Ener	 112V.

New capacity +
Process/Sector Scale Factors,, MM Replacement,

- ^SCCoft M l ?. 1
2011 1101 1084 96 168 31,44
2026 0082 .101 80 101 16.20
2046 1153 .119 141 159 23.0
2063 1372 1.052 lie 162 27.38
2082 .111 .079 120 190 34.49

20 .099 .046 1688 2372 403.02

2260 .721 .608 75 75 9.19

22 .069 .081 435 435 53.28

2421 1316 1252 300 400 67.0
2436 .361 6529 150 275 $1.93
2492 .178 1380 100 172 32.05

24 .079 .046 1093 1684 30010

2621 .2 .118 .107 454 784 146.05
2621 .4 .149 .127 441 950 182.6
2621-6 .118 .107 69 128 24.21
2521-7 1078 .152 110 205 3806
2621-8 1123 .105 191 419 80.61

26 .113 .064 1457 2864 543.7

2812 .041 .055 240 300 47.95
2813 .041 .041 33 66 12.61
2819-1 .046 .061 76 135 25.33
2819 . 2 .036 .022 229 405 75.93
2021 .2 .063 .139 110 160 27.93
2821 . 3 2.012 2 6A 38, 60 10.92
2822 ,022 .030 9 13 2.28
2824-1 1082 .109 $5 7$ 15.19
2824-2 .041 .054 20 25 4.0
2865 . 1 .140 .419 65 90 15.4
2866 . 2 .004 .004 10 15 2.67
2865-3 .066 .139 45 60 10.05
2865-4 .403 1.422 45 65 11.38
2869. 1 .108 .299 0 0 0
2069-2 .0403 .040 750 1100 194.16
2869-3 .108 .299 6 11 2.07
2869-4 .140 .419 24 30 4.79
2873 .207 .674 250 305 47.7
2870 .036 .025 48 60 9.59
2895 .021 .029 20 24 317

28 .096 .183 2321 3357 586.3

2911.1 .179 1206 580 630 87,18
2911-2 .173 .184 870 950 12815
2911.3 .166 .154 1250 1200 163.0

29 .186 .155 2887 3058 404,9

32 0 0 1945 2115

3312-1 ,028 .028 643 835 137.0
3325-1 1016 .016 3539 4596 756,0
3325-4 .020 .020 414 538 8810
3331-1 .002 .002 518 9.3 1.7
3331-2 .002 1002 7.8 12.4 2,26
3331-3 1002 .002 518 9.3 1.70
3331-4 ,013 .013 15.5 24.8 4,53
3331-5 .016 .016 38.8 62.0 11,31
3331-6 ,014 .014 23,3 37.2 6.79
3334-1 .015 .015 49.2 86.4 16,18
3334-2 .059 1059 197 346 64,86
3334-3 ,074 .074 246 432 80.56

33 .369 .495 6960 9381 1557.0

TOTAL NATIONAL 19901 29858 4548.0

NOTE, Direct + Indirect Nocogeneration fuel rnargy refers to industrial fuel consumption for
direct process heat ( sensible), steam, hot water, and the fuel consumed at autility to
provide for the process electric power needs. Utility conversion efficiency was assumed
to be 33% for this data.
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required. Total fuel use is given for the year 1955 and for 2000, That
part of the increase due to adding capacity and replacing old plants which

occurs between 1985 and 1990 is also given. Values are given for each of

the 4-digit SIC codes that were considered in CTAS and the total use for

each of the 2-digit SIC codes considered. The fuel use shown for the 2-

digit industries includes the 4-digit industries shown and all other 4-digit

industries in that category, These seven sectors account for over 75% of

the total national industrial energy use. The eighth sector considered,

SIC 32 (stone, clay and glass), accounts for another 7% but uses no steam

and so is not included here,

The ECS configurations studied in CTAS were only capable of supplying

heat in the form of steam or hot water, The industrial energy consumption

data of Table 11-1 includes fuel energy for direct or sensible heat that

cannot be supplied by the CTAS ECS's and that fuel energy must be excluded

from the projected national fuel energy savings. Scale factors, M, given

in Table 11-1 were developed in order to convert the savings determined for

each of the processes when matched to an ECS into a national savings poten-

tial for that ECS. They were developed to be applied directly to the fuel

energy savings ratio and the national fuel energy consumed by each CTAS

process. The scale factors take into account the processes not covered by

CTAS, the power to heat ratio of these processes and the amount of fuel

energy that must be excluded because of use in direct heating applications.

The use and derivation of the scaling factors is summarized in Volume V.

NATIONAL FUEL ENERGY SAVER

The type of fuel used for the cogeneration systems in these calcu-

lations was assumed to be coal or coal-derived liquids wherever possible.

The state-of-the-art gas turbine and state-of-the-art diesel were assumed

to burn petroleum-derived fuel. Utility fuel displaced here was assumed

to be coal.

National fuel energy saved by fuel type for selected energy conversion

systems is summarized in Figures 11-2 and 11-3. Neat match cases are pre-

sented in Figure 11-2 and the power match cases are presented in Figure 11-3.
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The fuel energy saved for the year 1990. is given in units of quads/year,

where a quad is defined as 101 ' Btu. The oil and gas used by the state-

of-the-art gas turbine and diesel are shown as negative savings, The

savings for each ECS type assumes that each ECS is used exclusively wherever

it is technically suitable in cogeneration systems, With the advanced sys.

tems utilizing residual and distillate fuels it is assumed that these fuels

will be derived from coal in 1990, It was assumed that the current gas
turbine and diesel systems using residual fuel would continue to require

petroleum derived residual in 1990. The utility fuel is assumed to be coal

or coal derived fuels.

For the heat match cases the distillate-fired molten carbonate fuel

cell shows the highest fuel energy savings. For the residual fueled
systems the advanced gas turbine shows higher fuel savings than the state-
of-the-art gas turbine or diesel. For coal fueled systems, the integrated

coal gasifier molten carbonate fuel cell and the pressurized fluidized bed-

steam turbine show a fuel savings of more than 50% above the state-of=the

art steam turbine with flue gas desulfurization.

For the power matched case the pressurized fluidized bed-steam turbine

saves the most fuel. The residual fuel-fired advanced gas turbine gives

slightly more fuel energy savings than the state-of-the-art gas turbine or

diesel, but not as much as the residual fueled steam turbine.

In comparing Figure 11-2 with 11-5, it is apparent that more fuel

energy can be saved in all cases for heat matches than for power matches.

In the heat match cases much more power is generated than used by industry

and the excess is exported and sold to the utility. Therefore, if maximum

benefits are to be obtained, it will be necessary to make provisions for
exporting and selling power to the utilities. An alternative to this
could be utility ownership of the cogeneration plant. The effect of this

export power on utilities was not examined but some of the factors to be
considered are the effects on the utility load factor, peaking, inter-
mediate and baseload power requirements, standby power, growth rates,

and above all, economics.
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NATIONAL EMISSIONS SAVED

The national emissions saved were calculated in a somewhat simliar

manner. The emission savings were calculated on a per plant basis and

ratioed to a 2-digit SIC level and to a national level based on appropri-
ate conversions from the fuel energy saved ratios, scale factors and

total national energy consumption.

The national emissions saved per year in 1990 for the selected ECS's
are given in Figure 11-4 for the heat matches and in Figure 11-5 for the

power matches. The emissions saved for the year 1990 are given in units

of million tons/year.

As with fuel energy saved, more emissions are saved with heat matches,

than with power matches. Diesel engines as currently used without emis-
sion scrubbing equipment were assumed in this study. As expected, the

emissions of NO  would increase significantly unless NO  scrubbers are

used to bring their level of NO  emissions down to that required by law.

Several systems would increase the level of particulate emissions

They are state-of-the-art diesel burning petroleum derived residual, and

the advanced diesel and gas turbine burning coal derived residual. All

s ystems save SO 2 emissions.

It should be pointed out that cogeneration in general saves emissions

on an area basis but that on-site emissions are usually increased simply

due to the increased use of fuel on site.

LEVELIZED ANNUAL ENERGY COST SAVINGS

Up to this point the fuel energy and emission savings have been shown

for all systems without regard for economics. One of the economic factors

discussed in Section 10 is the levelized annual energy cost (LAEC).

Levelized annual energy cost saving (LAECS) is the difference between
that cost with cogeneration and the cost without cogeneration. A posi-

tive saving occurs when the LAEC of cogeneration is less than nocogeneration.

Many of the matches between particular industries and ECS's result

in large savings in fuel use. The totals of all these fuel savings for

11-7
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each ECS was given in Figures 11-2 and 11-3. Of those matches, however,

many of them had a higher annual energy cost than without cogeneration

because of the cost of equipment or the cost of operation. The potential
national fuel energy savings shown in Figures 11-6 and 11-7, For heat and
power matches, are based on only matches that result in a levelized annual

charge for energy that is no greater than that for the nocogeneration case

(LAECS,ZO). The levelized annual energy cost savings that result from

these matches are given in Figures 11-8 and 11-9 for the heat and power

matches, respectively.

The potential national fuel savings of many of the advanced systems

with higher capital costs are significantly reduced when it is stipulated

that there must be a positive levelized annual energy cost savings (com-

pare figures 11-2 with 11-6 or 11-3 with 11-7). Of the advanced coal

fueled systems in heat matches, the PFB-steam turbine and the AFB-steam

turbine both save more fuel energy than the state-of-the-art boiler-M

steam turbine. Of the advanced residual fueled systems, the airy-cooled

gas turbine and the combined-cycle save the most fuel in heat matches.

For the power matched case, the coal-fueled advanced AFB-boiler

steam turbine saves more fuel energy than the state-of-the-art boiler-

FGD steam turbine. Of the residual fueled advanced systems, the advanced

air-cooled gas turbine and the combined-cycle save the most fuel energy.

The results presented in this section are applicable to US industry

as a whole. To understand why the national results came out as they did

requires knowledge of the characteristics of the steam and electric power

demand of the national population of industrial processes. It was shown

in Section 9 that the process power to heat ratio significantly influences

the fluel energy savings realizeable. The process power to heat ratio also

influences the economic choice of energy conversion system for a given

fuel type and process temperature. All of the energy conversion systems

studied were employed in the production of steam and electric power.

Therefore, a distribution of national industrial fuel energy consumption

for steam and electric power versus power to heat ratio gives insight

as to the potential national impact of various cogeneration technologies.
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Table 11-2 presents the distribution and cumulative percent of energy

consumption rate for CTAS processes for steam and electric power. The

energy consumption rate is only that attributable to new capacity pro-

jected to be installed between 1985 and 1990 ana replacement of capacity

in existence in 1985 at a 2.3% rate. The table shows that 74.68% of the

energy is consumed by industrial processes with a power to heat ratio of

0.25 or less. Also, note that 65.87% of the energy is consumed by indus-

trial processes with power to heat ratios between 0.1 and 0.25. Energy

conversion systems that have good performance, fuel flexibility, and

economics when applied to industrial processes with power to heat ratios

from 0.1 to 0.25, will have the largest impact on fuel energy and emission

savings from a national implementation standpoint.

Table 11-2

DISTRIBUTION OF CTAS PROCESS ENERGY CONSUMPTION RATE FOR STEAM AND ELECTRIC

POWER IN 1990

Process Ratio-^ -: of Power to Heat
% of CTAS Process

Energy For

Btu hr
Kw

----^-------
10	 hr.

Steam a Electric
Power

Cumulative

Btu/hr Btu %

0 - 0.05 0 -	 14.7 6.18 6.18

0,05 - 0.1 14.7 -	 29.3 2,63 8.81

0.1 - 0,15 29.3 -	 44.0 39.97 48.78

0.15 - 0.20 44 .0 -	 58.6 11.50 60,28

0.20 - 0.25 58.6 -	 73.3 14.40 74.68

0.25 - 0,30 73.3 -	 87,9 2.09 76.77

0.30 - 0.60 87.9 -	 175.8 5.28 82.05

0.60 -	 1.0 175.8 - 293.0 0192 82.97

1.0 -	 1.5 293.0 - 439,0 11.12 94.09

> 1.5 > 439.5 5.91 100.00

Note: Energy consumption rate data used to compile this table is for that
attributable to the production of process steam and electric power

for CTAS processes due to new capacity and replacement capacity (at
2.338% (a 30-year replacement rate) of that in place in 1985) for

the period 1985 - 1990.
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Consideration of the characteristics of US industrial energy demand

for steam and electric power corroborates the national results presented

in this section. The PFB-steam turbine and the AFB-steam turbine exhibit

the highest national fuel energy savings because they perform well and

have good economics in low power to heat ratio applications (since about

75% of US industrial energy required for steam and electric power is re-

quired by industry with power to heat ratios from 0 to 0.25). The higher

power to heat ratio ECS's (gas turbine and combined-cycle) perform well

when employed to supply heat and power to higher power to heat ratio in-

dustries. These systems have a lesser national impact because the pro-

portion of energy consumed by US industry over the higher power to heat

ratio range is less (about 25% of US industrial energy for steam and

electric power is required at power to heat ratios greater than 0.25).
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Section 12

RESULTS AND OBSERVATIONS

BACKGROUND

The objective of the Cogeneration Technology Alternatives Study

(CTAS) is to determine the advantages of advanced relative to current

industrial cogeneration systems and to evaluate and compare the advanced

technologies in order to identify those justifying major research and

development effort.

In CTAS the performance, emission, and cost characteristics of ad-

vanced technology cogeneration steam turbine-fluidized bed boiler, open

and closed-cycle gas turbines, combined-cycle, thermionic, stirling,

diesel, phosphoric acid fuel cell, and molten carbonate fuel cell energy

conversion systems (ECS's) judged to be available in the 1985 to 2000

year time frame were consistently defined for comparison with Currently

available steam turbine-boilers, open-cycle gas turbines, and diesels.

These ECS's were matched to the electric power or steam requirements of

over 50 specific industrial processes selected from the food; paper and

pulp; chemical; petroleum refining; stone, clay and glass; and primary

metals groups. The resulting cogeneration systems were evaluated for

their fuel, emissions, and cost of energy saved compared to both a coal-

fired or residual-fired boiler nocogeneration system defined for each

industrial process. In addition, the return on investment to the indus-

trial owner was calculated using the nocogeneration system as a base case..

These data permitted a comparison of advanced technology and currently

available ECS's in a wide range of specific industrial process and their

relative advantages with and without the export of power to the utility

grid.

12-1
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To determine the effect on comparison of systems of the national fuel

consumption and growth rates of the various industrial processes together

with their distribution of power to heat ratios, process steam temperatures

and load factors, each ECS was assumed implemented without competition and

its national fuel savings, emissions reduction, and energy cost savings

estimated. In this calculation it was assumed that the total savings pos-

sible were due to implementing the cogeneration ECS in new plants added

because of needed growth incapacity, or to replace old unserviceable

process boilers in the period from 1985 to 1990. National fuel savings,

emissions reduction, and energy cost savings were compared for advanced

and currently available cogeneration systems to determine those advanced

systems which indicated the greatest potential benefit,

To achieve the level of performance estimated for these attractive

advanced technology systems, the significant advanced developments re-

quired were identified.

RESULTS AND OBSERVATIONS

The comparison of the various cogeneration systems required that an

economic criteria for implementation by industry be established since

those systems providing the highest fuel savings often had high capital

costs and low returns on investment. Attractive cogeneration systems for

industrial ownership were identified using the following criteria: the

system would have a return on investment greater than 10% before inflation,

a capital cost which is less than two and one half times the capital cost

of the nocogeneration coal-fired process boiler and a fuel energy saved

ratio of 0.15 or greater.

In Tables 12-1 and 12-2 the intersection of an energy conversion sys-

tem with an industrial process represents a power or heat matched cogen-

eration system. Those matches meeting the above criteria are shown cross

hatched and those shown as solid black exceed the criteria by having a

fuel energy saved ratio equal to or greater than 0.25. The reason for a

cogeneration system not meeting these criteria is shown by noting which

12-2
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"0's" or "Ps" are missing from the rectangle representing the cogeneration
system match. Based on study results including Tables 12-1 and -Z, the

following observations on the various types of cogeneration systems were made:

1. The atmospheric and pressk ized fluidized bed steam turbine
systems give payoff compar	 to conventional boiler with
flue gas desulfurization-s^ am turbine systems which already
appear attractive in low and medium power over heat ratio
industrial processes.

2. Open-cycle gas turbine and combined gas turbine/steam turbine
systems are well suited to medium and high power over heat ratio
industrial processes based on the fuel prices used in CTAS.
Regenerative and steam injected gas turbines do not appear to
have as much potential as the above systems, based on GC results.
Solving low grade coal-derived fuel and NOx emission problems
should be emphasized. There is payoff in these advanced systems
for increasing firing temperatures.

3. The closed-cycle gas turbine systems studied by GB have higher
capital cost and poorer performance than the more promising
technologies,

4. Combined-cycle molten carbonate fuel cell and gas turbine/steam
turbine cycles using integrated gasifier, and heat matched to
medium and high power over heat ratio industrial processes and
exporting surplus power to the utility give high fuel savings.
Because of their high capital cost, these systems may be more
suited to utility or joint utility-industry ownership.

5. Distillate-fired fuel cells did not appear attractive because
of their poor economics due to the low effectiveness of the
cycle configurations studied by GE and the higher price of
distillate fuel.

6. The very high power over heat ratio and moderate fuel effective-
ness characteristics of diesel engines limit their industrial
cogeneration applications. Development of an open-cycle heat pump
to increase use of jacket water for additional process heat would
increase their range of potential applications

The national savings calculated by implementing each type cogeneration

energy conversion system without competition in the new plants built from

1985 to 1990 gives an index which can be used to compare the relative

potential of the various types of cogeneration energy conversion systems.

The a;solute magnitude of these savings should not be used because each

energy, conversion system was assumed to be 100% implemented but using
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these results to compare the various systems, the following observations

are made:

1. There are significant fuel, emissions, and energy cost savings
realized by pursuing development of some of the advanced tech-
nologies,

2. The greatest payoff when bath fuel energy savings and economics
are considered lies in the steam turbine systems using atmospheric

and pressurized fluidized beds. In a comparison of the national
fuel and energy cost savings for heat matched cases, the atmos-
pheric fluidized bed showed an 11% increase in fuel saved and 60%
additional savings in levelized annual energy cost savings over
steam turbine systems using conventional boilers with flue gas
desutfurization whose fuel savings were 0.84 quads/year and cost
savings $1.9 billion/year. The same comparison for the pressurized
fluidized bed showed a 73% increase in fuel savings and a 29% in-
crease in energy cost savings.

3. Open-cycle gas turbines and combined cycles have less wide appli-
cation but offer significant savings. The advanced residual-
fired open-cycle gas turbine with heat recovery steam generator
and firing temperature of 2200 F was estimated to have a potential
national saving of 397-2 fuel and 27% energy cost compared to cur
rtntly available residual-fired gas turbines whose fuel savings
were 0.18 quads/year and cost savings $0.33 billions/year.

4. Fuel and energy cost savings are several times higher when the
cogeneration systems are heat matched and surplus power exported
to the utility than when the systems are power matched.

Other important observations made during the course of performing CTA5

were;

1. Comparison of the cogeneration systems which are heat matched
and usually exporting power to the utility with the power
matched systems shows the systems exporting power have a much
higher energy savings, often reaching two to five times the power
match cases. In the past, with few exceptions, cogeneration sys-
tems have been matched to the industrial process so as not to
export power because of numerous load management, reliability,
regulatory, economic and institutional reasons. A concerted ef-
fort is now underway by a number of government agencies, industries,
and utilities to overcome these impediments and it should be
encouraged if the nation is to receive the full potential of
industrial cogeneration.
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2. The economics of industrially owned cogeneration plants are very
sensitive to fuel and electric power costs or revenues. In-
creased price differentials between liquid fuels and coal would
make integrated gasifier fuel cell or combined-cycle systems
attractive for high power over heat industrial processes.

3. Almost 75% of the fuel consumed by industrial processes studied
in CTAS, which are representative of the national industrial
distribution, have power over heat ratios less than 0.25. As a
result energy conversion systems, such as the steam turbine using
the atmospheric or pressurized fluidized bed, which exhibit good
performance and economics when heat matched in the low power over
heat ratio range, give the largest national savings.

SIGNIFICANT DEVELOPMENT REQUIREMENTS

The level of performance estimated for each advanced energy conversion

system studied in CTAS was premised on the achievement of certain advanced

developments. The developments required for the most attractive conversion

systems by fuel type are shown in Table 12-3 for coal-fired ECS's and in

Table 12-4 for coal-derived liquid-fired.

Table 12-3

SIGNIFICANT DEVELOPMENTS OF MOST ATTRACTIVE ECS's
(Coal Fired)

ECS
	

SIGNIFICANT DEVELOPMENTS

Atmospheric Fluidized Bed Boiler

System and Control

Particulate Removal or Gas Turbine
Erosion Protection

Pressurized Fluidized Bed

Steam Turbine AFB

Pressurized Fluidized Bed
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Table 12-4

SIGNIFICANT DEVELOPMENTS OF MOST ATTRACTIVE ECS's
(Coal-Derived Liquid Fuel)

ECS
	

SIGNIFICANT DEVELOPMENTS

GT-HRSG, and Combined-Cycle
	

2200 F air-cooled gas turbine

NOX reduction systems

Certain developments have broad generic impact on advanced energy

conversion systems and thus merit aggressive development effort regard-

less of the particular advanced systems that are most attractive. Table

12-5 lists the most important of these developments along with the energy

k	
conversion systems requiring their development.

Table 12-5

CRITICAL DEVELOPMENTS REQUIRED FOR COGENERATION ENERGY CONVERSION
SYSTEMS

1. Fluidized Bed Combustion

Nocogeneration AFB process steam boilers
AFB power steam boilers
Gas turbine for PFB system
Helium ';eaters - Closed-cycle gas turbine

- Stirling cycle

2. NO  Reduction Systems

Advanced diesels
Coal-derived liquid-fired units

3. Fuel Gas Clean-up Systems and Coal Gasifiers

Molten carbonate fuel cell
Integrated gasifier gas and steam turbine

Gas turbine for PFB system

4. very High Temperature Air Preheaters

Thermionic boiler

Stirling cycle
Closed-cycle gas turbine 	 AFB

5. DC-AC Inverters - Cost Reductions

Thermionics
Fuel cells
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