NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
FINAL REPORT

A STUDY OF POULTRY PROCESSING PLANT NOISE CHARACTERISTICS AND POTENTIAL NOISE CONTROL TECHNIQUES

Prepared by
J. C. Wyvill
A. D. Jape
L. J. Moriarty
R. D. Atkins
R. A. Cassanova, Project Director

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio
Research Grant No. NSG 3228

and
Georgia Department of Agriculture
Atlanta, Georgia
Research Project A—2028–006

GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment Station
Atlanta, Georgia 30332

(NASA-CR-163119) A STUDY OF POULTRY PROCESSING PLANT NOISE CHARACTERISTICS AND POTENTIAL NOISE CONTROL TECHNIQUES Final Report (Georgia Inst. of Tech.) 170 p
HC A08/ME A01
CSCL 13B G3/45 18100

Unclas
1980
ERRATA SHEET

For

A STUDY OF POULTRY PROCESSING PLANT NOISE CHARACTERISTICS AND POTENTIAL NOISE CONTROL TECHNIQUES

1. On page 17 the equation should read:
 \[\alpha_{SAB} = \frac{4}{5} \left[\frac{1}{\text{antilog} \left(\frac{L_p - L_w}{10} - 0.06 \right)} \right] \]

2. On page 20, the equation should read:
 \[\alpha_{SAB} = \frac{.161 V}{TS} \]

3. On page 20, in Table 7, the value of \(\alpha_{SAB} \) for the Central Soya plant should be .068

4. On page 20, the note at the bottom of the page should also contain the following comment:
 "The constant (.161) was obtained from the following calculation:
 \[\left[\frac{4 \times 60}{4.34 \times (343.5)} \right] \]
 The factor of 4 in this calculation represents the initial energy absorption of room surfaces in a diffuse reverberant field. Since non-diffuse conditions existed at Central Soya the factor of 4 was reduced to 2 (see page 17) and this constant similarly was halved on calculations for that plant."

5. On page 28, the note at the bottom of the page should read:
 "Reference 2, page 228. Note that due to the non-diffuse conditions at the Central Soya plant, a factor of 2 rather than 4 was used for it (see page 17)."

6. On page 9, the equation should read:
 \[L_p = 10 \log \left(\sum S_i \left(\text{antilog} \frac{L_{pi}}{10} \right) \right) \]
A STUDY OF POULTRY PROCESSING PLANT NOISE CHARACTERISTICS AND POTENTIAL NOISE CONTROL TECHNIQUES

Final Report

for

Research Grant No. NSG 3228
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

and

Research Project A-2028-006
Georgia Department of Agriculture
Atlanta, Georgia

Prepared by
J. C. Wyvill
A. D. Jape
L. J. Moriarty
R. D. Atkins

R. A. Cassanova, Project Director

GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment Station
Atlanta, Georgia 30332
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>v</td>
</tr>
<tr>
<td>PERSPECTIVE</td>
<td>1</td>
</tr>
<tr>
<td>THE GENERAL ENVIRONMENT</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>2</td>
</tr>
<tr>
<td>Noise Contour Development</td>
<td>2</td>
</tr>
<tr>
<td>The Noise Environment</td>
<td>8</td>
</tr>
<tr>
<td>REVERBERATION EVALUATION</td>
<td>9</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Direct/Reverberant Field Test</td>
<td>9</td>
</tr>
<tr>
<td>Qualifying the Source</td>
<td>9</td>
</tr>
<tr>
<td>The Field Test</td>
<td>12</td>
</tr>
<tr>
<td>Defining the Reverberant Environment</td>
<td>17</td>
</tr>
<tr>
<td>Reverberant Field Decay Test</td>
<td>19</td>
</tr>
<tr>
<td>SOURCE EVALUATION</td>
<td>24</td>
</tr>
<tr>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td>Sound Power Estimates</td>
<td>24</td>
</tr>
<tr>
<td>Source Contribution Assessment</td>
<td>25</td>
</tr>
<tr>
<td>THE PROBLEM IDENTIFIED</td>
<td>28</td>
</tr>
<tr>
<td>POTENTIAL SOLUTIONS</td>
<td>30</td>
</tr>
<tr>
<td>Source Solutions</td>
<td>30</td>
</tr>
<tr>
<td>Room Acoustic Solutions</td>
<td>31</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>32</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>34</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>A-1</td>
</tr>
<tr>
<td>Measurement and Analysis Equipment</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>B-1</td>
</tr>
<tr>
<td>General Plant Environment Data</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont'd)

<table>
<thead>
<tr>
<th>APPENDIX C</th>
<th>C-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octave Band Analysis of Direct/Reverberant Field Test</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX D</th>
<th>D-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Analysis of Individual Source Contribution Characteristics</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Location of Measurement Points in Central Soya Plant</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Location of Measurement Points in Tip Top Plant</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Measurement Equipment Set-up</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Noise Contours for Central Soya Plant</td>
<td>6</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Noise Contours for Tip Top Plant</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Speaker Directivity Pattern</td>
<td>10</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Location of Measurement Points for Direct/Reverberant Test, Central Soya Plant</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Location of Measurement Points for Direct/Reverberant Test, Tip Top Plant</td>
<td>14</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Direct/Reverberant Noise Fields for Test Speaker, Central Soya Plant</td>
<td>15</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Direct/Reverberant Noise Fields for Test Speaker, Tip Top Plant</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Time History of Reverberant Noise Field Decay, Central Soya Plant</td>
<td>21</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Time History of Reverberant Noise Field Decay, Tip Top Plant</td>
<td>22</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Source Contribution A-Weighted Sound Pressure Levels Measured at a Single Point in the Plant</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 - Sound Pressure Levels Used to Calculate Speaker Sound Power Output 11
Table 2 - Sound Power Levels Calculated for Test Speaker ... 12
Table 3 - Measured Sound Pressure Levels (dB) ... 18
Table 4 - Source Directivity Factors for Tip Top Measurement Point Used to Calculate Surface Absorption Coefficients ... 18
Table 5 - Estimated Surface Absorption Coefficients ... 19
Table 6 - Room Statistics for Reverberant Field Decay Test ... 20
Table 7 - Estimated Broadband Surface Absorption Coefficient Using Pistol Shot 20
Table 8 - Estimated Sound Power Outputs of Major Sources ... 25
Table 9 - Surface Areas Estimated for Total Evisceration Area in Each Plant .. 28
ACKNOWLEDGMENT

While this effort reflects the concerns of an industry, its completion depended on the dedication of a few. We would especially like to thank Mr. Jim Buruss, Jr., of Tip Top Poultry and Mr. John Norris of Central Soya of Athens, Inc., for their coordination and assistance in gathering data; Mr. Chet Austin of Tip Top Poultry and Terry Walden of Central Soya Poultry for the cooperation and use of their respective plants in studying this problem; and Mr. Abit Massey of the Georgia Poultry Federation, without whom this study might never have occurred.
PERSPECTIVE

Poultry processing noise is a problem for which ready solutions are difficult. Efforts by plant personnel to quiet noise sources have met with little success and noise levels remain high, often exceeding shift duration exposure limits established by OSHA.

Much of the problem can be traced to the recent transition of the industry to mechanization. Since World War II the production of poultry meat products has grown rapidly from the small family-type operation to large volume processing plants. The processing functions in the 1940's and early 1950's were primarily manual, with only a few machines being used to reduce physical exertion or to improve production efficiency. As the demand for poultry products grew and competition forced the development of more efficient, labor-saving methods, various manual operations were replaced by mechanical devices.

In spite of the improvements which have taken place, poultry processing remains labor intensive, with large numbers of people now being exposed to high noise levels. Requirements of the Poultry Products Inspection Act of 1959 increase the difficulty of controlling noise by requiring rigid cleanability standards for all surfaces in the plant, which preclude the use of many sound-absorbing and vibration-dampening materials. So frustrated has the industry become that in a 1976 meeting sponsored by the National Science Foundation, excessive noise in poultry processing plants was identified by industry representatives as a major problem for which workable solutions do not exist.

Under the joint sponsorship of the National Aeronautics and Space Administration and the Georgia Department of Agriculture, this study was conducted to evaluate the extent, cause, and potential solution to this noise problem.
THE GENERAL ENVIRONMENT

Introduction

In order to characterize the environment in a typical poultry processing plant, noise contours were developed for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration area of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift.

Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. Plant personnel worked in 8-hour shifts with 1/2 hour for lunch.

Data Acquisition

The measurement procedure used to gather contour data on the general environment consisted of taking readings in a grid pattern laid out for the evisceration area. Unfortunately the congestion of machinery and personnel sometimes prevented readings from being taken in certain areas of the plant. Figures 1 and 2 show the placement of microphones for measurements in the two plants.

To speed record taking, three microphones were attached, three feet apart, to an aluminum bar mounted on a tripod (see Figure 3). This allowed three measurements to be taken at one time. All measurements were tape recorded to allow level and frequency analysis in the laboratory. Additional readings, using a hand-held sound level meter, were taken in inaccessible areas. A complete list of the equipment used and the general arrangement of equipment for data gathering and analysis are presented in Appendix A.

Noise Contour Development

All observed noise levels were recorded, by grid position, on a plot of each plant. These levels were A-weighted and time-averaged over a two-minute interval. On each plot, lines of constant noise level were then drawn. The resulting contours are presented in Figures 4 and 5. Appendix B provides time histories and frequency analysis of selected data points observed throughout each plant.
FIG. 3 MEASUREMENT EQUIPMENT SET-UP
The Noise Environment

The noise contours display specific information about the noise environment. For instance, in the plot for the Central Soya plant (Figure 4) there are only three areas of the plant where the noise contours converge. Within these areas the apparent sources of noise are the lung guns, a component of the chiller, a circulating fan, and a source from the picking area. Because there are two hock cutters immediately on the other side of the wall in the picking area which are exposed to the evisceration area through conveyor portals in the wall, it is probable that they are contributing substantially to the noise coming from the picking area.

The contours also provide information on the type of noise fields throughout the plant. Since the surfaces of the plant were composed of hard materials, it is probable that a reverberant noise field exists throughout much of the plant. Since this plant is irregular in shape, having one dimension many times that of another, it is expected that the reverberant noise field will not be uniform in level, but rather will decay in level with increasing distance from those sources contributing to it.* The noise field observed in Figure 4 does exhibit a continual but gradual decrease in levels well below the free field rate of 6 dB/doubling distance with increasing distance from the primary noise source areas. Consequently, it is probable that much of the noise field being observed is predominantly reverberant.

The noise contours for the Tip Top plant (Figure 5) indicate six areas of the plant where the noise contours converge. Within these areas, the apparent sources of noise are the lung guns, a component of the chiller, an air jet on the spray wash station, the hock cutter, the gizzard peelers, and an exhaust fan. Furthermore, this plant also appears to have much of its noise field dominated by reverberant noise, as evidenced by those areas of uniform level throughout much of the plant. Because this plant is more symmetrical than the other, a uniform reverberant field should be expected.

In comparing the two plants, only three identified sources are similar: the lung guns, chiller component, and hock cutter. Both plants also appear to have much of their noise field dominated by reverberant noise. Because the frequency spectra observed throughout both plants were extremely similar (see Appendix B), it would appear that both plants have a similar reverberant noise environment as defined by major contributing sources and absorption characteristics.

*Reference 1, page 4-13.
REVERBERATION EVALUATION

Introduction

Since the noise environment observed in both plants was thought to be substantially influenced by reverberation, a series of tests were performed to quantify the reverberant environment within each plant.

Direct/Reverberant Field Test

The first method used to evaluate reverberation entailed introducing a source of known response characteristics into each plant and observing the resultant noise field. Since any observed noise field is a combination of direct and reflected noise levels and the direct noise field of the source was known, the reverberant noise field was subsequently determined.

Qualifying the Source. The source selected for use in the direct/reverberant field tests was a 12-inch paper speaker, which received a white noise input signal boosted at maximum gain through a 30-watt amplifier. To observe the speaker's output response, it was placed in an anechoic chamber on the Georgia Tech campus. Figure 6 displays the measured directivity characteristics observed for one plane of the speaker's response. The frequency response data were obtained through octave band filtering of the measured broadband response characteristics.

To complete the characterization of the speaker's response, the sound power output related to each response curve was calculated. Since each response pattern was symmetrical about the perpendicular axis to the speaker, it was assumed that the three dimensional response pattern would essentially bear the same characteristics observed in Figure 6 in any plane rotated about this perpendicular axis. Using coordinates for the midpoint of 10 equilateral triangles forming the surface of a hemisphere around the front of the source, the average sound pressure level over the hemisphere was calculated, using the following formula:

\[
\bar{L}_p = 10 \log \left(\frac{\sum_i S_i (\text{Antilog } 10^{\bar{L}_{pi}})}{2 \pi r^2} \right) *
\]

Where

\(\bar{L}_p \) = space averaged sound pressure level
\(S_i \) = surface area of \(i^{th} \) segment

*Reference 2, page 152.
Fig. 6 Speaker Directivity Pattern *

* Observed at a radius of 1.83 meters from center of speaker
L_{pi} = \text{sound pressure level at the midpoint of } i^{th} \text{ segment}
\quad r = \text{radius of hemisphere (meters)}

Table 1 presents the ten values of L_{pi} used in the calculation. Si was 2.1 square meters for each triangle and r = 1.83 meters.

<table>
<thead>
<tr>
<th>Point</th>
<th>250 Hz</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
<th>Broad-band</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71.8</td>
<td>77.8</td>
<td>78.0</td>
<td>74.8</td>
<td>76.0</td>
<td>83.0</td>
</tr>
<tr>
<td>2</td>
<td>75.0</td>
<td>81.0</td>
<td>81.2</td>
<td>76.5</td>
<td>82.3</td>
<td>87.6</td>
</tr>
<tr>
<td>3</td>
<td>71.8</td>
<td>77.8</td>
<td>78.0</td>
<td>74.8</td>
<td>76.0</td>
<td>83.0</td>
</tr>
<tr>
<td>4</td>
<td>71.8</td>
<td>77.8</td>
<td>78.0</td>
<td>74.8</td>
<td>76.0</td>
<td>83.0</td>
</tr>
<tr>
<td>5</td>
<td>75.0</td>
<td>81.0</td>
<td>81.2</td>
<td>76.5</td>
<td>82.3</td>
<td>87.6</td>
</tr>
<tr>
<td>6</td>
<td>72.2</td>
<td>77.8</td>
<td>77.4</td>
<td>73.4</td>
<td>75.0</td>
<td>82.8</td>
</tr>
<tr>
<td>7</td>
<td>72.2</td>
<td>77.8</td>
<td>77.4</td>
<td>73.4</td>
<td>75.0</td>
<td>82.8</td>
</tr>
<tr>
<td>8</td>
<td>75.5</td>
<td>81.0</td>
<td>81.5</td>
<td>76.2</td>
<td>82.6</td>
<td>87.6</td>
</tr>
<tr>
<td>9</td>
<td>72.2</td>
<td>77.8</td>
<td>77.4</td>
<td>73.4</td>
<td>75.0</td>
<td>82.8</td>
</tr>
<tr>
<td>10</td>
<td>78.6</td>
<td>83.0</td>
<td>85.7</td>
<td>91.7</td>
<td>96.0</td>
<td>98.2</td>
</tr>
</tbody>
</table>

The sound power level was then determined using the following formula:

L_{w} = \bar{L}_{p} + 20 \log r + 10 \log 2 \pi *

where

L_{w} = \text{sound power level} \\
\bar{L}_{p} = \text{space averaged sound pressure level} \\
r = \text{radius of hemisphere (meters)}

Table 2 contains the calculated values of sound power output for the speaker.

*Reference 2, page 155.
Table 2
SOUND POWER LEVELS CALCULATED FOR TEST SPEAKER

<table>
<thead>
<tr>
<th>Octave Band</th>
<th>Lw (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>87.50</td>
</tr>
<tr>
<td>500</td>
<td>92.99</td>
</tr>
<tr>
<td>1000</td>
<td>93.78</td>
</tr>
<tr>
<td>2000</td>
<td>95.72</td>
</tr>
<tr>
<td>4000</td>
<td>99.99</td>
</tr>
<tr>
<td>broadband</td>
<td>103.03</td>
</tr>
</tbody>
</table>

The Field Test. The source was then taken to each plant and positioned as shown in Figures 7 and 8. The speaker was placed on the floor of the plant facing the ceiling for both tests. With the source powered, measurements were taken at one-foot intervals on either side of the speaker in a single plane. Additional spot readings outside that plane were taken at several locations near the source to establish the level variation for the entire area surrounding the speaker (see Figures 7 and 8 for the location of all measurement points).

Figures 9 and 10 display the broadband levels observed in the measurement plane for each plant. It should be noted that an accident occurred during the Tip Top plant testing in which the speaker was sprayed with water prior to the measurements on the right hand side of the speaker. This appears to have reduced the response output of the speaker to some extent. Appendix C contains the results of octave band filtering of each of the measured values.

Since the measurement points intersected the directivity pattern of the speaker, the direct field levels were determined based on the following calculations:

\[L_p = L_{pe} - 20 \log \frac{r}{r_0} \]

Where

- \(L_p \) = direct field sound pressure level for the measurement point
- \(L_{pe} \) = sound pressure level obtained from the speaker directivity pattern for the angle corresponding to the measurement point.
- \(r \) = distance from speaker to measurement point (meters)
FIG. 7 LOCATION OF MEASUREMENT POINTS FOR DIRECT-REVERBERANT TEST
CENTRAL SOYA PLANT

NOTE: SMALL PRINT INDICATES NOISE LEVEL (dB.)
FIG. 8 LOCATION OF MEASUREMENT POINTS FOR DIRECT-REVERBERANT TEST TIP TOP PLANT

Legend

XX.X → Sound Pressure Level
○ → Position
XX → Position No.
Fig. 9 Direct/Reverberant Noise Fields for Test Speaker

CENTRAL SOYA PLANT
Fig. 10 Direct/Reverberant Noise Fields for Test Speaker
TIP TOP PLANT
ro = distance from speaker at which Lpe
was measured (meters)

From these figures, it is apparent that the overall level observed at distances beyond a few feet from the source are substantially influenced by the reverberant noise field. However, the reverberant field in the Central Soya plant does not appear to be uniform in level to the left of the speaker, but rather decays at a rate of approximately 3dB/doubling of distance from the source. This phenomenon has been observed by others for rooms in which one dimension is more than five times that of another.* For the Central Soya plant, the room length of 51.2 meters is nearly ten times the ceiling height of 5.5 meters. This is not true of the Tip Top plant where the largest dimension is roughly four times that of the smallest.

Defining the Reverberant Environment

The information obtained from the direct/reverberant field test was used to calculate the average surface absorption coefficient for each plant, using the following equation:

\[
\alpha_{SAB} = \frac{4}{S} \left[\text{antilog} \left(\frac{L_p - L_w - Q_\omega}{10} \right) \right]^{**}
\]

Where

- \(\alpha_{SAB} \) = average sabine surface absorption coefficient
- \(S \) = surface area of the room (meters\(^2\))
- \(L_p \) = measured sound pressure level (dB)
- \(L_w \) = calculated source sound power level (dB)
- \(Q_\omega \) = directivity factor of the source
- \(r \) = distance of measurement point from the source (meters)

In order to make this calculation, the sound pressure level measured at a distance of nine feet was used for the Tip Top plant. For the Central Soya plant, since the reverberant noise field was not uniform in level, the nine foot reading was attenuated at a rate of 3 dB/doubling of distance from the source to the picking room wall, and the resulting reverberant field levels were space averaged. The corresponding direct field contribution for the equation at this equivalent distance from the source was estimated to be small and was therefore neglected in the calculation for this plant. Table 3 presents the \(L_p \) values used in the calculation of surface absorption coefficient for each plant.

*Reference 1, page 4-13.

**Reference 2, page 228. Note that the factor of 4 was derived for diffuse conditions. Since non-diffuse conditions were observed in the Central Soya Plant, a factor of 2 was used for it.
Table 3
MEASURED SOUND PRESSURE LEVELS (dB)

<table>
<thead>
<tr>
<th>Central Soya Plant(^a)</th>
<th>Tip Top Plant(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octave Band</td>
<td>Octave Band</td>
</tr>
<tr>
<td>250 Hz</td>
<td>72.9</td>
</tr>
<tr>
<td>500 Hz</td>
<td>73.9</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>76.9</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>77.9</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>76.9</td>
</tr>
<tr>
<td>Broadband</td>
<td>83.9</td>
</tr>
<tr>
<td>250 Hz</td>
<td>80.7</td>
</tr>
<tr>
<td>500 Hz</td>
<td>82.0</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>84.8</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>85.0</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>85.8</td>
</tr>
<tr>
<td>Broadband</td>
<td>91.1</td>
</tr>
</tbody>
</table>

\(^a\) Space averaged level for reverberant field.

\(^b\) Measured at nine feet from the source.

Since the equation called for a measure of the directivity of the speaker to determine the direct field contribution, the following procedure was used to calculate this value. The sound pressure level at the measurement point which would be provided by a nondirectional source was calculated using the total sound power output of the source. This sound pressure level was then compared to the sound pressure level actually provided by the direct sound field at the measurement point. The ratio of the actual direct level to that level which would have been provided by a nondirectional source defined the directivity factor (\(Q_e\)). Table 4 presents calculated values for the Tip Top plant measurement point where the direct field entered into the calculation.

Table 4
SOURCE DIRECTIVITY FACTORS FOR TIP TOP MEASUREMENT POINT USED TO CALCULATE SURFACE ABSORPTION COEFFICIENTS

<table>
<thead>
<tr>
<th>Octave Band</th>
<th>(Q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Hz</td>
<td>.879</td>
</tr>
<tr>
<td>500 Hz</td>
<td>.767</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>.611</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>.225</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>.383</td>
</tr>
<tr>
<td>Broadband</td>
<td>.315</td>
</tr>
</tbody>
</table>

*Reference 2, page 159.
The final input to the calculation was the total surface area of the test room. For the Central Soya plant the test area was defined as the total evisceration area. However, for the Tip Top plant, the wall in the middle of the evisceration area provided an effective barrier for containing sound and, therefore, was used to define one wall of the test area. The total surface area of the Central Soya plant test area was calculated to be 1834 square meters and that for the Tip Top plant test area was calculated to be 627 square meters.

Using these inputs, the average surface absorption coefficient for each plant was calculated and is presented in Table 5.

<table>
<thead>
<tr>
<th>Octave Band</th>
<th>Central Soya Plant</th>
<th>Tip Top Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Hz</td>
<td>.031</td>
<td>.032</td>
</tr>
<tr>
<td>500 Hz</td>
<td>.088</td>
<td>.089</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>.053</td>
<td>.053</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>.066</td>
<td>.077</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>.222</td>
<td>.187</td>
</tr>
<tr>
<td>Broadband</td>
<td>.089</td>
<td>.104</td>
</tr>
</tbody>
</table>

Table 5

ESTIMATED SURFACE ABSORPTION COEFFICIENTS\(^a/\)

\(^a/\) Values include any contribution from atmospheric absorption as well.

It should be noted that there were some energy losses during testing attributable to openings in some of the surface boundaries defining the test areas. Furthermore, no allowance was made in the calculations for nonsurface absorption such as by air, a factor which had approximately a 15% impact on the surface absorption coefficient calculated for the 4000 Hz octave band. However, it is believed that the coefficients in Table 5 reasonably approximate the absorptive qualities of the test rooms.

Reverberant Field Decay Test

The second test used to confirm the values obtained from the direct/reverberant test consisted of exciting each plant with noise, then terminating the source of the noise and measuring the time needed for the noise level in the room to decay 60 decibels.
This decay time provided yet another measure of the average absorption coefficient for surfaces in the test area, through the following equation:

\[\alpha_{SAB} = \frac{161V}{TS} \]

Where

\[\alpha_{SAP} = \text{Average sabine absorption coefficient} \]
\[S = \text{Total room surface area (meters}^2) \]
\[V = \text{Total room volume (meters}^3) \]
\[T = \text{Reverberation decay time (seconds)} \]

Each plant was excited with noise from a 22 caliber, blank pistol for the test. This source provided sufficient sound power to thoroughly excite the test area but unfortunately provided only broadband comparative values. It was positioned at the location of the speaker in Figures 7 and 8 and was pointed toward the ceiling. Measurements were taken 10 feet from the source. Figures 11 and 12 show the time history of the measured decay rate of the sound field in each plant following the pistol shot. The full 60 dB reverberant decay time was determined from these figures, using straight line extrapolation. These values were then inserted into the above equation, using the room statistics for each test area given in Table 6.

<table>
<thead>
<tr>
<th>Table 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM STATISTICS FOR REVERBERANT FIELD DECAY TEST</td>
</tr>
<tr>
<td>Central Soya Plant</td>
</tr>
<tr>
<td>[V = 3110 \text{ m}^3]</td>
</tr>
<tr>
<td>[S = 1834 \text{ m}^2]</td>
</tr>
</tbody>
</table>

With these inputs, the average broadband surface absorption coefficient for each plant was calculated and is presented in Table 7.

<table>
<thead>
<tr>
<th>Table 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATED BROADBAND SURFACE ABSORPTION COEFFICIENT USING PISTOL SHOT</td>
</tr>
<tr>
<td>Central Soya Plant</td>
</tr>
<tr>
<td>Tip Top Plant</td>
</tr>
</tbody>
</table>

This calculation also produced values which include any contribution from atmosphere absorption. Source: Reference 2, page 238.
Fig. 12 Time History of Reverberant Noise Field Decay

TIP TOP PLANT

ΔT = 2.35 sec
The values in Table 7 are reasonably close to the broadband values shown in Table 5, thereby confirming these values. Due to the non-diffuse conditions existing in the Central Soya Plant, the decay curve for it seems to exhibit some non-linearity which was not accounted for in the straight-line extrapolation. This may explain part of the difference between the absorption coefficient determined for it by this method and that determined by the direct/reverberant field method.
SOURCE EVALUATION

Introduction

Observations made earlier of the general environment indicated only a few major sources were distinguishable above the general din. In order to complete an assessment of the poultry noise problem, a study of these noise sources was performed.

Sound Power Estimates

Using the information contained in the contours of Figures 4 and 5, an estimate was made of the A-weighted sound power output of all distinguishable noise sources. The technique used involved observing that contour line which was within 2 to 6 feet of the apparent acoustical center of the source, calculating the area encircled by the contour line, determining the radius of a circle with an equivalent area to that enclosed by the contour, and assuming a symmetrical hemispherical contour in the vertical plane. These inputs were then applied to the following equation:

\[L_w = L_{pH} + 20 \log r + 10 \log 2 \pi^* \]

Where

- \(L_w \) = estimated A weighted sound power output
- \(L_{pH} \) = A-weighted sound pressure level of the observed contour line
- \(r \) = radius of circle with equivalent area to that encircled by the contour line.

The selection of 2 to 6 feet was made because contour lines closer than 2 feet typically will be in the near field of the source, while those farther than 6 feet typically will reflect significant reverberant noise field contributions. Unfortunately, certain contour lines within these distance limits were still unduly influenced by contributions from either the reverberant environment or another nearby source. Consequently, any source whose contour pattern appeared to be significantly influenced by activities other than from the direct noise field of that source was listed as having a sound power output which was not determinable from the contour data.

Applying the information contained in the contour plots, the values in Table 8 were developed.

*Reference 2, page 155.
Table 8
ESTIMATED SOUND POWER OUTPUTS OF MAJOR SOURCES

<table>
<thead>
<tr>
<th>Central Soya Plant</th>
<th>Tip Top Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung Guns</td>
<td>108.2dBA</td>
</tr>
<tr>
<td>Chillers</td>
<td>not determinable</td>
</tr>
<tr>
<td>Fan</td>
<td>94.7dBA</td>
</tr>
<tr>
<td>Hock Cutters</td>
<td>103.9dBA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>109.7dBA</td>
</tr>
</tbody>
</table>

From these estimates, it appears that the top three noise sources in both plants are the lung guns, a chiller component, and hock cutters. The data in the Central Soya plant, however, need qualifying. The chiller component was positioned so that the lung guns masked much of its observable contribution. However, it is apparent in Figure 4 that a large contribution is coming from the chiller area as noted by the presence of a local increase in sound pressure level in the area immediately between the lung guns and the gizzard peelers. Since the gizzard peelers are apparently not producing that intense a signal, only an item on the chillers appears capable of being the second source. Also the hock cutters in the Central Soya plant were positioned in the picking room such that the combination of their outputs and the reverberant field associated with the pickers could have resulted in observed sound pressure levels more intense than those associated with the direct field of just the hock cutters. These two points are made so that the reader can apply caution when liberally interpreting the benefits of source sound power reduction in the Central Soya plant.

Source Contribution Assessment

As a means of evaluating the contribution of all sources to a locally observed sound pressure level in the noise contour of Figures 4 and 5, a microphone was located at point 6B, channel 2, in the Central Soya plant (see Figure 1) and point 53, channel 2, in the Tip Top plant (see Figure 2). With all sources turned off in each plant, individual sources were turned on and off one at a time. Figure 13 presents the A-weighted sound pressure levels observed for each source tested in each plant. Appendix D provides frequency contribution information about each source in addition to a comparison of the combined frequency spectra of all sources tested to that observed at
Fig. 13 Source Contribution A-Weighted Sound Pressure Level at a Single Point in Each Plant

HOCK CUTTER
CHILLERS
VENT CUTTERS
GIZZARD MACHINE
SPRAY WASHER
CIRCULATING FANS
SHACKLE LINES
PICKERS
VACUUM PUMP
NECK CUTTERS
AIR BLAST DRYER
SHACKLE LINE FOOT REMOVER
WASTE VACUUM
EXHAUST FANS
HANGING CONVEYOR

Sound Pressure Level (dBA)

= TIP TOP POULTRY (pt. 53, ch 2)
= CENTRAL SOYA POULTRY (pt. 6B, ch 2)
that point in each plant under normal operating conditions. It should be noted at this time that a few major sources were not operated in each plant because of difficulties encountered at the time of testing.

These findings provide information which must be interpreted cautiously. For instance, the measurement point was close to some sources and far away from others implying care be taken in comparing source levels. Also, many of the sources were operated under conditions not typical to normal usage, such as the chillers, which were operated without ice or water, and the neck cutter, which lacked animal fat from the chickens to prevent an uncharacteristic whine.

This analysis, however, does provide some insight into the hurdles which can arise from keying reduction efforts on only one source, by displaying how the contributions of other sources can become significant even though they are currently masked during normal conditions.
THE PROBLEM IDENTIFIED

Using the data from the previous sections, an analysis was performed to determine if essentially all of the noise levels currently observed in each plant were directly and indirectly the result of only the few "major" sources identified. Since the direct effects were observable in the contour plot, only the indirect effects or the contribution of these sources to the reverberant field needed analysis. To perform the analysis, the following equation was used:

\[L_{pr} = L_w + 10 \log \left(\frac{4}{S} \right) a_{SAB} \]

Where
- \(L_{pr} \) = sound pressure level of the reverberant field
- \(L_w \) = sound power output of major noise sources
- \(S \) = surface area of evisceration area
- \(a_{SAB} \) = average broadband surface absorption coefficient

In this calculation, the values of \(a_{SAB} \) utilized were those for broadband noise from Table 5. Using the surface area values contained in Table 9, the calculations were performed.

<table>
<thead>
<tr>
<th>Table 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE AREAS ESTIMATED FOR TOTAL EVISCERATION AREA IN EACH PLANT</td>
</tr>
<tr>
<td>Central Soya Plant</td>
</tr>
<tr>
<td>1834 m²</td>
</tr>
</tbody>
</table>

The calculations yielded the following results:

Central Soya Plant
\[L_{pr} = 90.6 \text{ dBA} \]

Tip Top Plant
\[L_{pr} = 90.7 \text{dBA} \]

These values were reasonably close to the A-weighted sound pressure levels observed in the reverberant field of each plant per Figures 4 and 5:

*Reference 2, page 228. Note that due to non-diffuse conditions, a factor of 2 rather than 4 was used (see page 17).
Central Soya Plant
Lpr = 90.4dBA (space averaged)

Tip Top Plant
Lpr = Between 90 and 91dBA

Therefore, it appears that the reverberant noise field in these plants is currently powered by only those few "major" noise sources identified in the contour plots.

As a result of these findings, it now becomes evident why there have been many failures in reducing overall plant noise levels. Since most efforts are focused on source quieting, only those efforts which are focused on a major source will be successful in significantly reducing noise levels, and even then the success will depend on the presence or absence of other intense noise sources. Clearly, therefore, a plant must know its major noise sources if source quieting is to be successful. On the other hand, increasing surface absorption in the plant will almost assuredly reduce noise levels in much of the plant through its impact on the reverberant noise field. But, even this solution will be limited in its overall effect by the nature of each plant's reverberant noise field and the distribution and total sound power output of sources throughout the plant.
POTENTIAL SOLUTIONS

In discussing potential solutions to the poultry processing noise problem, it should be stressed that each plant will have differing circumstances which impact their ability to effectively implement certain changes. Nonetheless, these solutions appear practical on the whole for the industry.

Source Solutions

There has been activity in the area of noise reductions at the source. Some actions have deliberately focused on noise reduction, others on productivity improvement. Here is an overview of possible solutions to reducing noise from sources in a poultry processing plant.

Lung gun noise is currently being alleviated in many plants with the use of drawing machines which also pull out lungs. Drawing machines are being widely used in broiler plants which process a relatively uniform bird size. Unfortunately, plants which process hens or a wide range of bird sizes cannot use the existing drawing machines. For these plants, there have also been studies* to baffles or shield noise from the body cavity during the lung gun operation. However, these baffled lung guns have not been used extensively because the baffles are difficult to keep clean and obstruct the view of the operator.

Efforts to quiet hock cutters have been restricted largely to isolating the machine from personnel. There are several designs of hock cutter available, but none are particularly quiet.

Chiller noise can typically be alleviated through vibration dampening. Impact noise from ice drop-off stations is often observable on ice slush chillers. This noise can be reduced through dampening of metallic surfaces in the ice delivery system, as well as by reducing the ice load through energy conservation efforts to jacket the chiller trough. Refrigerated chillers can further eliminate the need for ice altogether.

Lastly, the importance of regular and proper machinery maintenance cannot be overemphasized as a means of controlling source noise. Worn bearings, misaligned drive shafts, and improperly lubricated fittings can all turn a normally quiet machine into an unusually loud machine.

*References 4 and 5.
Room Acoustic Solutions

There has also been activity in the area of increasing the absorptive qualities of a plant.

For the most part, panels made of absorbant material, such as fiberglass or foam, have been developed.* These panels have been covered with plastic films to meet USDA requirements for use in food plants. But difficulties have occurred in the plastic film withstanding the harsh elements of most plants. Perhaps the single biggest problem is shearing of the plastic cover which renders the panel unacceptable for continued use by USDA requirements.

If a design could be developed which utilized a screen to protect the plastic film while remaining transparent to noise or if a cover could be designed of a film tough enough to withstand cleaning and other routine operations, then absorbing panels would clearly help in reducing the transmission of sound in the reverberant noise field.

*References 4 and 5.
CONCLUSION

In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, where nearly 60% of all processing personnel are stationed, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any efforts to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualities of the room.

Reducing the sound power of major sources can be accomplished either by redesign or source isolation. Studies of redesign have been performed on many items.* The lung guns in particular have had several redesigns proposed. The thrust of these designs has been to shield the sound originating in the body cavity from the suction process. However, these baffled lung guns have not been used extensively because the baffles are difficult to keep clean and obstruct the view of the operator.

Isolation of a source has also been performed on such items as pickers and in some instances hock cutters. However, as was shown in the Central Soya plant, not all isolation mediums have been totally effective.

For either source quieting or isolation to work, the technique will need to be simple and inexpensive and not substantially change the manner in which processing is currently done. Yet, for every decibel of total sound power reduction achieved, a corresponding decibel reduction in observed sound pressure level will be noticed, perhaps not uniformly, but on a space average throughout the plant. The key words here, however, are total sound power reduction. It must be remembered that other sources, which are currently unidentifiable, will begin to contribute significantly to total sound power as the levels of the current major sources are reduced. This implies that a compounding problem exists as lower and lower sound pressure levels are sought.

Increasing the absorptive qualities of the plant is also an area where some studies have been performed.** However, difficulties have arisen with both cost and durability. Still, there is optimism that a design exists which will meet all criteria. Treatment of only the ceiling areas of the two plants studied could help reduce overall sound pressure

*Reference 3.

**Reference 4 and 5.
levels approximately 5dB on average. The ceiling of the Central Soya plant contains approximately 35% of the total surface area and of the Tip Top plant contains approximately 30% of the total surface area.

However, room absorption is also limited in the total sound pressure level reduction achievable. This is because as reverberant levels decline, direct field levels from more obscure sources will begin to control local sound pressure levels. By reducing the intensity of the reverberant field, however, the potential for the current problem of the exposure by processing personnel being controlled by one or two noise sources will be reduced, which will provide both long-lasting and far-reaching benefits.
REFERENCES

5. Clean and Quiet Baffles and Panels, Owens Corning Fiberglass, Publication 1-SD-9224, 1979
Appendix A

MEASUREMENT AND ANALYSIS EQUIPMENT
EQUIPMENT USED FOR DATA ACQUISITION & ANALYSIS

Microphones: B+K Precision condenser-type acoustic transducers were used for all sound pressure level measurements.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Cartridge Type</th>
<th>Serial No.</th>
<th>Preamp. Type</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4165</td>
<td>775332</td>
<td>2619</td>
<td>748130</td>
</tr>
<tr>
<td>2</td>
<td>4165</td>
<td>750790</td>
<td>2619</td>
<td>748145</td>
</tr>
<tr>
<td>3</td>
<td>4165</td>
<td>708529</td>
<td>2619</td>
<td>748110</td>
</tr>
<tr>
<td>4</td>
<td>4165</td>
<td>732743</td>
<td>2619</td>
<td>748132</td>
</tr>
</tbody>
</table>

Power Supply to Pre-Amplifier: Two type 2807 B+K twin channel power supplies.

Tape Recorder: Hewlett-Packard type 3964A Instrumentation Tape Recorder.

Power Source for Field Use: All microphones and tape recorders were operated from a TRIPP-LITE 400-watt inverter that was powered from a 12-volt automobile battery. The use of the inverter was necessary to make the data-gathering equipment more portable and to reduce the problems encountered with voltage fluctuations and power line noise that were present in some of the plants where we acquired data.

Sound Source: The source for the reverberation time was a .22 caliber blank pistol.

The source for the direct field/reverberent field comparison was a B+K type 4205 white noise generator connected to a Bogen 30-watt power amplifier. The power amplifier drove a 12-inch paper loudspeaker that was mounted in an 18-inch square wooden box.

Analyzer: All time records and spectra were computed on a Hewlett-Packard type 5420A digital signal analyzer. The results were plotted with a Hewlett-Packard type 8972 four-color graphics plotter.

RMS Averages: All root-mean-square averages were determined with a fluke type 8010 digital multimeter.

A-Weighting: B+K Type 2203 Precision sound level meter was used to A-weight all readings. This meter was also used to take auxiliary readings in the plants.
Figure 1A
DATA ANALYSIS CONFIGURATION
A-3
Figure 2A
DATA RECORDING CONFIGURATION
Appendix B

GENERAL PLANT ENVIRONMENT DATA
GENERAL PLANT ENVIRONMENT DATA

The figures in this appendix show frequency spectra and time histories of selected measurement points observed in both plants during normal operations. While not exhaustive, these points provide an example of the frequency characteristics observed throughout the noise field. The plant name and measurement position for each graph are noted in the upper right-hand corner. These values correspond to those coordinates listed in Figures 1-B and 2-B. Both Linear and A-weighted readings are presented for each point selected.

Warning: The frequency data are presented in both a linear and logarithmic fashion. Since the analyzer used was only capable of performing constant bandwidth analysis the logarithmic presentation is merely a distorted presentation of the constant bandwidth analysis. It is presented here only for those readers who are more familiar with viewing constant percentage bandwidth outputs.

Again, it must be stressed that the logarithmic presentations are not the result of constant percentage bandwidth analysis, but merely a distorted presentation of constant bandwidth analysis.
FIG. 1B LOCATION OF MEASUREMENT POINTS IN CENTRAL SOYA
Noise Contour
Data

FREQUENCY SPECTRA CENTRAL SOYA PLANT
Central Soya Contour Data
Position 6 Row A
Channel 2
SPL 94.77 dB Linear

Figure 3B
Central Soya Contour Data
Position 6 Row A
Channel 2
SPL 94.77 dB Linear
Central Soya Contour Data
Position 6 Row A
Channel 2
SPL 93.3 dB (A)

Figure 6B
Central Soya Contour Data
Position 5 Row B
Channel 2
SPL 95.8 dB Linear

Figure 7B
Central Soya Contour Data
Position 6 Row B
Channel 2
SPL 95.7 dB (A)

Figure 9B
Central Soya Contour Data
Position 6 Row B
Channel 2
SPL 96.8 dB Linear

Figure 11B
Central Soya Contour Data
Position 7 Row B
Channel 4
SPL 96.56 dB Linear

Figure 12B
Central Soya Contour Data
Position 7 Row B
Channel 4
SPL 96.56 dB Linear

Figure 13B
Central Soya Contour Data
Position 7 Row B
Channel 4
SPL 95.1 dB (A)

Figure 15B
Central Soya Contour Data
Position 7 Row D
Channel 4
SPL 96.09 dB Linear

Figure 16B
Central Soya Contour Data
Position 7 Row B
Channel 4
SPL 96.09 dB Linear

Figure 17B
Central Soya Contour Data
Position 7 Row D
Channel 4
SPL 94.8 dB (A)

Figure 18B
Central Soya Contour Data
Position 7 Row D
Channel 4
SPL 94.8 dB (A)

Figure 19B
Central Soya Contour Data
Position 12 Row B
Channel 3
SPL 89.8 dB Linear

Figure 20B
Central Soya Contour Data
Position 12 Row B
Channel 3
SPL 89.8 dB Linear

Figure 21B
Central Soya Contour Data
Position 12 Row 3
Channel 3
SPL 88 dB (%)
Figure 23B

Central Soya Contour Data
Position 12 Row B
Channel 3
SPL 88 dB (A)
Central Soya Contour Data
Position 15 Row B
Channel 4
SPL 92.51 dB Linear
Figure 25B
Central Soya Contour Data
Position 15 Row B
Channel 4
SPL 91.1 dB (A)

Figure 26B
Central Soya Contour Data
Position 18 Row E
Channel 3
SPL 93.92 dB Linear
Central Soya Contour Data
Position 18 Row E
Channel 3
SPL 93.92 dB Linear

Figure 29B
Central Soya Contour Data
Position 18 Row E
Channel 3
SPL 92.4 dB (A)

Figure 30B
Noise Contour

Data

TIME AVERAGES

CENTRAL SOYA PLANT
Central Soya Contour Data
Time Average (RMS)
Position 6 Row A
Channel 2
SPL 94.77 dB Linear

Figure 31B
Central Soya Contour Data
Time Average (RMS)
Position 6 Row A
Channel 2
SPL 93.30 dB (A)

Figure 32B
Figure 33B

Central Soya Contour Data
Time Average (RMS)
Position 7 Row B
Channel 4
SPL 96.56 dB Linear
Central Soya Contour Data
Time Average (RMS)
Position 7 Row B
Channel 4
SPL 95.10 dB (A)
Central Soya Contour Data
Time Average (RMS)
Position 7 Row D
Channel 4
SPL 96.09 dB Linear

Figure 35B
Central Soya Contour Data
Time Average (RMS)
Position 12 Row B
Channel 3
SPL 89.80 dB Linear

Figure 37B
Central Soya Contour Data
Time Average (RMS)
Position 15 Row B
Channel 4
SPL 92.51 dB Linear

Figure 39B
Figure 40B

Central Soya Contour Data
Time Average (RMS)
Position 15 Row B
Channel 4
SPL 91.10 dB (A)
Central Soya Contour Data
Time Average (RMS)
Position 18 Row E
Channel 3
SPL 93.92 dB Linear

Figure 41B
Central Soya Contour Data
Time Average (RMS)
Position 18 Row E
Channel 3
SPL 92.40 dB (A)

Figure 42B
Noise Contour
Data

FREQUENCY SPECTRA TIP TOP PLANT
Figure 45B

TIP TOP CONTOUR DATA
Position 8 Channel 3
SPL 94.7 DBA
Figure 56B

TIP TOP CONTOUR DATA
Position 23 Channel 2
SPL 90.37 dBA
Figure 65B
Figure 68B
Figure 70B

TIP TOP CONTOUR DATA
Position 68 Channel 2
SPL 92.7 dB Linear
TIP TOP CONTOUR DATA
Position 71 Channel 2
SPL 90.7 dBA

Figure 75B
TIP TOP CONTOUR DATA
Position 79 Channel 2
SPL 93.0 dB Linear

Figure 81B
Figure 83B
Appendix C

OCTAVE BAND ANALYSIS OF DIRECT/REVERBERANT FIELD TEST
OCTAVE BAND ANALYSIS OF DIRECT/REVERBERANT FIELD TEST

The broadband test data gathered in each plant during the direct/reverberant noise field test were octave band analyzed to provide an assessment of the frequency characteristics of the direct and reverberant sound fields associated with the output of the test speaker. The findings are presented in this appendix. They indicate that the reverberant sound field becomes dominant at a distance of only a few feet from the source at all frequency intervals studied.
Fig. 1C Direct/Reverberant Noise Fields for Test Speaker
TIP TOP PLANT
Fig. 2C Direct/Reverberant Noise Fields for Test Speaker
TIP TOP PLANT

500 Hz Octave Band Noise

DISTANCE FROM SOURCE (ft)

SOUND PRESSURE LEVEL (dB)

Legend
- Measured Level
- Reverberant Level
- Direct Level

WALL
Fig. 3C Direct/Reverberant Noise Fields for Test Speaker
TIP TOP PLANT
Fig. 5C Direct/Reverberant Noise Fields for Test Speaker
TIP TOP PLANT
Fig. 6C Direct/Reverberant Noise Fields for Test Speaker

CENTRAL SOYA PLANT
Fig. 7c Direct/Reverberant Noise Fields for Test Speaker

CENTRAL SOYA PLANT
Fig. 8C Direct/Reverberant Noise Fields for Test Speaker

CENTRAL SOYA PLANT

SOUND PRESSURE LEVEL (dB)

DISTANCE FROM SOURCE (ft)

Legend:
- Measured Level
- Reverberant Level
- Direct Level

1000 Hz Octave Band Noise
Fig. 9C Direct/Reverberant Noise Fields for Test Speaker

CENTRAL SOYA PLANT
Fig. 10C Direct/Reverberant Noise Fields for Test Speaker
CENTRAL SOYA PLANT
Appendix D

AN ANALYSIS OF INDIVIDUAL SOURCE CONTRIBUTION CHARACTERISTICS
AN ANALYSIS OF SOURCE FREQUENCY CHARACTERISTICS

The data gathered to evaluate the contribution of various sources to the observed sound pressure level at a point in each plant were also analyzed for frequency content. This was done to distinguish qualities about the sources which might be useful in any subsequent source abatement efforts. Unfortunately, as mentioned in the text, the data must be reviewed very carefully since the measurements were taken with some of the sources operating under conditions which were other than typical.

Regarding the Central Soya plant sources, the circulating fans are very close to being a major source in this area of the plant. While they are not always operated, when they are they could still go essentially undetected under normal operations because of their nearness to the lung guns. The spray wash station, on the other hand, shows level peaks which reach significant proportions and appear to contribute significantly to a 350Hz peak in the operating data taken at this point. The detected source of these peaks is a series of restrictor valves in the water system, valves which are commonly used throughout the industry. The neck cutter plot is not believed to be characteristic of this device because the blade rubbed on a bare plastic shield without the typical presence of animal fat from the birds to lubricate this contact. And as mentioned in the text, the chillers lacked water and ice, of which the water is probably an attenuator and the ice (through the dump cycle) a source. Figure 11D shows a comparison of the observed levels of the combined sources versus the observed level during normal operations. With the exception of the peaks in the upper frequency range caused by the neck cutter, the two spectra are reasonably similar in shape. The frequency shift of the 350Hz peak on the red plot is believed to be attributable to a higher than normal water line pressure during the individual source testing.

Regarding the Tip Top plant sources, the fans, at least in this area of the plant, are very quiet. But both the hock cutter and the chillers are intense sources which unfortunately during this test are suspected of producing noise levels not typical of those observed under normal operating conditions. Figure 22D seems to bear this out. When a comparison is made between the observed level of the combined sources versus the observed level during normal operations, the former is higher. This is probably again because the chillers were operated without water or ice and because the hock cutter was operated without birds. In addition to level differences, the two spectra also exhibit substantial differences in shape at several points, which further raise questions regarding the representativeness of the source signatures observed from these two machines.
Fig. 2D - A-Weighted Source Contribution Analysis: Chillers
CENTRAL SOYA PLANT (pt. 6B, ch.2)
Fig. 3D - A-Weighted Source Contribution Analysis: Gizzard Machine
CENTRAL SOYA PLANT (pt. 6B, ch.2)
Fig. 4D - A-Weighted Source Contribution Analysis: Spray Washer
CENTRAL SOYA PLANT (pt. 68, ch. 2)
Fig. 5D - A-Weighted Source Contribution Analysis: Shackle Lines
CENTRAL SOYA PLANT (pt. 6B, ch.2)
Fig 6D - A-Weighted Source Contribution Analysis: Vacuum Pump
Central Soya Plant (pt. 6B, ch.2)
Fig. 70 - A-Weighted Source Contribution Analysis: Neck Cutters
CENTRAL SOYA PLANT (pt. 6B, ch.2)
Fig. 9D - A-Weighted Source Contribution Analysis: Waste Vacuum CENTRAL SOYA PLANT (pt. 6B, ch.2)
Fig. 10D - A-Weighted Source Contribution Analysis: Exhaust Fans
CENTRAL SOYA PLANT (pt. 6B, ch. 2)
GREEN: Actual Operating Conditions
RED: Combined Individual Sources

Fig. 110 - A-Weighted Comparison of Combined Individual Sources vs Actual Operating Conditions
CENTRAL SOYA PLANT (pt.6B, ch.2)
Fig. 12D - A-Weighted Source Contribution Analysis: Hock Cutter
TIP TOP PLANT (pt. 53, ch.2)
Fig. 13D - A-Weighted Source Contribution Analysis: Chillers
TIP TOP PLANT (pt. 53, ch. 2)
Fig. 14D - A-Weighted Source Contribution Analysis: Vent Cutters
TIP TOP PLANT (pt. 53, ch.2)
Fig. 17D - A-Weighted Source Contribution Analysis: Circulating Fans
TIP TOP PLANT (pt. 53, ch. 2)
Fig. 18D - A-Weighted Source Contribution Analysis: Shackle Lines
TIP TOP PLANT (pt. 53, ch. 2)
Fig. 19D - A-Weighted Source Contribution Analysis: Air Blast Dryer
TIP TOP PLANT (pt. 53, ch.2)
Fig. 20D - A-Weighted Source Contribution Analysis: Shackle Line Foot Remover
TIP TOP PLANT (pt. 53, ch. 2)
Fig. 21D - A-Weighted Source Contribution Analysis: Hanging Conveyor
TIP TOP PLANT (pt. 53, ch.2)
GREEN: Actual Operating Conditions
RED: Combined Individual Sources

Fig. 22D - A-Weighted Comparison of Combined Individual Sources vs Actual Operating Conditions
TIP TOP PLANT (pt. 53, ch.2)