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1.0	 INTRODUCTION

The ocean tides, with ^their principal semidiurnal and diurnal

periods and their varying geometric patterns, act as sources for de-

forming the earth's crust and mantle.	 Understanding these deformations
4

has importance for geodesy, geodynamics and oceanography. 	 Moreover,
inform6 ion about the interior of the earth may be obtained through the

magnitude and frequency dependence of the response of the solid earth

to the tidal forces. 	 The tide of the solid earth is composed of
y{

two basic responses; (1) a body tide due to the yielding of the earth
to direct forces of the sun and moon and (2) a "load" tide produced by

a! surface forces from the time varying ocean tides.	 It is difficult to

distinguish between these two response, because their time dependence

is similar, being driven by the same ultimate force.	 However, the nat-

ure of the driving force of the "body tide" is well understood, while

the knowledge of the deep ocean tides through global numerical modeling
u

is a recent advancement (Perkins and Accad (1969), Hendershott (1972),

Zahel	 (1977), Estes (1977), Schwiderski	 (1978),	 Parke (1978)).	 The body

tide varies in a ,relatively smooth nature over the earth's surface, de-

pending principally on averaged overall elastic properties while the

k load tide is complicated by discontinuities of the surface load at

coastal	 boundaries and by local ocean tide circulation (e.g. amphi-

dromes and anti-amphidromes). 	 Moreover, the displacement of the load

aide is appreciable only in the crust and upper mantle, while the body

tide has relatively large amplitude through most of the earth's

interior.	 The load tide response then depends more on local crustal

properties so that variations in near surface earth structure will be
more reflected in the load tide.

f

The response of the solid earth to ocean loading may be evaluated
by convolution of a model_ for the ocean tide over the global ocean

with appropriate Green's functions which are derived from models of

the earth's interior. In the present study, ocean tide models are

used together with the Green's functions calculated by Farrell (1972)

1



in terms of a layered spherically symmetric Gutenberg-Bullen earth

model to calculate global values of horizontal and vertical crustal

displacement, gravity perturbation and strain at the earth's surface.

Recent global ocean tide models differ in detail and the accuracy

with which the tides may be predicted from these models is uncertain.

However, a measure of a model's overall accuracy may be provided by

its agreement with recent astronomical calculations for the lunar

acceleration and the rate of energy loss, which 	 are simply related to

the amplitude and phase of the (2,2) tesseral harmonic of the tidal

elevation.	 Goad and Douglas (1977) have analyzed 	 perturbations in

satellite orbits which are also proportional to the low order harmonics

1	 and obtained values which show very close agreement with	 the astronomical

values and the values calculated from the 	 M2	models of Schwiderski

(1978) and Estes (1977).	 Although this provides some confidence in

these two numerical	 M2	models, it must be pointed out that close

^	 !	 agreement with the (2,2) harmonic in a tidal model does not necessarily
u

}	 imply a correct model of the tides in specific regions. 	 Tide solutions l

computed from Laplace's Tidal Equations fall into two groups; those
x

constrained to agree with coastal observations and those which employ

no data or constraints.	 The Estes (1977) tide models selected for

the present study are of the second category and provide solutions

for `the	 M21 S2 , N2 1 K2 ► Kl , Ol	and	 P l	constituents integrated at

.30 spacial resolution.	 The effects of ocean loading and self-gravitation

have been included in, , deriving the	 M2	model.	 These models are

reasonable candidates for the global calculations of earth response

for inland regions and open ocean areas, which are sensitive to the

large scale effects of mid ocean tides.	 However, for coastal areas

where the response is strongly influenced by local water tides, a

model which provides a finer spacial resolution and incorporates coastal

data constraints, such as a regional empirical model or the global

Schwiderki	 (1978) model will provide greater accuracy to the convolution

computation.

2
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The results of the global calculations for crustal displacements,.

gravity anomalies and strains caused by ocean loading are presented

in the form of corange and cotidal charts. The phases described by
a

the cotidal contours are relative to the Greenwich meridian, and are

?r	 expressed in hours instead of angular measurement. Hour values are

obtained by dividing the phase expressed in degrees by 15 degrees

per solar hour. In addition, a software package has been developed
which will evaluate the vertical displacement due to loading by the

principal tidal constituents and the solid earth tide as a function

of geographic position and time as specified by user imput,

r^

,r
u^
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2.0 EARTH RESPONSE TO OCEAN LOADING

The calculation of the earth deformation due to surface mass loads

closely follows the Green's function approac l-"of Longman (1964) and

Farra l ('1972). Farrell has integrated the e4uations of motion for a

self-gravitating elastic spherical earth using a Gutenberg-Buller A

earth model and produced load Love numbers hn , In , and kn to

high order n . The elastic earth response then reduces to a convoluti

of the ocean tide with the Greoil's function over the global ocean,

R(^^a^t) s JJR2 E(^'^artt) pGf(y)dW	 (1)

where

coey - sin+sin¢' + cos W80'cos(a-a')

and g(^,a;t) denotes the ocean tide and R is the mean radius of

the earth. Here G f(y) represents the point load Green's function

transformed to an earth-fixed coordinate system and R represents the

appropriate response. The total tide is approximated as a sum of con-

stituent tides

E(w;t) = F Ci (0VX t)	 (2)
i

where

Ei(¢,a,t) _ A i (t, X) COSEC i ( t- t0)-*i(o ) *E i l	 l3)

and constituents i = (M2 1 S21 N21 K2 1 K l , 0 1 , P 1 ) are available

from global numerical models. 	 Here to is January 0, 1900 and the
i

phase function ^ is relative to the lunar passage at Greenwich of the \,}

5
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the ficticious moon for the particular constituent. The frequencies

a i and constant phases e i are presented in Table I. The total

u'	 response is then

(4)

II
r	 ,,

where

I

Ri(#,X;t) = P iG cos[ai(t-to)+Cif+QiG sinrai(t-to) +eiJ
f	 f

M	 and

P i G 	 1
1 

R^pAi($' ► ')eos^V^i(^'^1i')^Gf(Y)sin¢'d¢'da'
i	

_,f

Q iG (OM	
ffR

2
PA i ( "^^')sin[^i (^' ► a')]Gf(Y),3 n^'d^ "d '

t
f

In terms of amplitude A i and phase A i , the response to the iyh
constituent is

Ai (^, X ) aos[a i (t-to )	 p i + ci]

where

Ai(W) = P^ + Qi

I,	 Gf	 Gf

f	 _,

Qi
G

tan-. 	 f
-,a	

P i

Gf

(5)

(6)

(7)

(8)

,
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The appropriate Green's functions for the augmented potential and

surface vertical and horizontal displacements at an angular distance

Y (spherical earth) from a point load at the pole per unit of loading

mass are

t'(Y) 
^	 kn Pn(cosy)
e n-0

lg )

0
U-(Y)M	

ho Pn(cosY)
Me n 0

eP (coca)

Me n=1 n
	 ay

where Me is the mass of the earth, R is the mean earth radius and

g is the acceleration of gravity at the surface. Here primes on the

Greens function denote that they are in a symmetric point load coordinate

system. The Green's function for the differential gravity acceleration

as given by Farrell (1972) is

G-(Y) = M	
(n+2hn-(n+l)kn) 	 Pn (cony)	 (10)

Me n=0

Here G I (y) represents the difference between g the acceleration of
gravity at the earth's surface, and the acceleration on the deformed

surface after application of the ocean load. Following Farrell, we

break the acceleration Green's function into direct, or Newtonian

acceleration _r

G --Ny ) = M	 n Pn (cosy)	 (11)M
e n=0

and elastic acceleration

8
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G' E(Y) " G'(y)•G'N(Y)
a

n
- n0

[2hn-(n+1)kn^ Pn(cOe7)	 (12)

u	 As pointed out by Pekeris (1938), equation (10) aplies to gravity	 s
measurements made at a point below the tidal loading sheet. For points

above the sea, the increaso in gravity caused by crossing the loading

sheet from below

-4,r Gp

must be added to equation (i;) which results in

«x	
V(Y) = M	 (2hn-(n+1)(l+kn)]

e n-0

The correction term of equation (13) may be written

_ 3p g R
.,	 p

where p denotes the density of sea water and p the mean density

of the earth. For gravity measurements on the coast this correction

is important. However, for inland measurements where there is no

ocean tide the correction term is zero. Pekeris (1978) also points

out that in evaluating the Newtonian acceleration Green's function of

equation (11), Ferrell (1972) has omitted the delta function from the

expression

«
n Pn (x) - -	 1	 + 6(1-x)

n= 0	 2

9

(13)

(14)

(15)



and thus a term

T io - f
	

(16)

should be added to the gravity perturbation. Again, this term con-

. tributes only over ocean areas. `similarly, expressions may be obtained

for the Green's functions of the non-zero elements of the strain tensor

at the earth's surface, As pointed,autt by Farrell ( 1972), these

Green's functions are slowly convergent series and must be summed to

large values of n

The summed values for the Green's functions as a function of

angle have been taken from tables given by Farrell (1972), where
values are available for U', V', G' and S I , and. S' is the

IYY
strain tensor. The other dia!,ional components of the strain tensor
(off-diagonals are zero for the symmetric point to'ad coordinate
system, with load at the pole;, for which the Green's functions are

derived) are calculated from

I

SYY a a + cote a.

as
Srr	 ,. o 

a (SYY+SXX)

where x(a) and u(a) are the Lame parameters at the top layer of

the earth model. Here y is colatitude and a longitude in the

symmetric point load coordinates. To evaluate the convolutions for

the earth response of equation (1), it must be realized that the

primed Green's functions described above are with respect to the

symmetric point load coordinate system, and to resolve components of

vector and tensor quantities appropriate transformations must be

applied. Let (¢,X) be the latitude and longitude of the point of

evaluation for the convolution and (0 1 ,a') be the latitude and

10
rn
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longitude of the water column being considerei

let r , e, denote the unit vectors in the

r, e, X at the point of evaluation (where e

Then the Green's functions for the horizontal

and 9 directions, respectively, are

i as the load. Moreover,

direction of increasing

is the co-latitude).

displacement in the e

(1g)

(19)

Ve(y) x V'(y)cosa

VX(y) z V`WBina

where

Cosa siri 
sin0oaX

cos#sinY

sina
cos^'sir^^ k=^')

sing

and as before

cosy = sinosino' + cos¢cos ¢'cos(a-a')

(20)

sing = 1

E

u	 Similar expressions for the radial displacement and strain tensor components

are

}	 11{



U(Y) R U'(Y)

R
Srr	 srr.

(21)

Se8 s coa2a S o + Bin 2a Sad

S
x8
	 .-- sinacosa (S -SIO

YY Ax

S sZn2a S  + 0082  S,

The computation for the response convolutions of equation (1) is

performed at each 3°x3° equal-angular grid point over the surface of

the globe using the Estes (1977) 3 0 resolution models. Cotidal and

corange charts for the principal constituents are presented in Figures

1-7. Numerically, the quadrature is evaluated as the sum of near zone

and far zone contributions. The far zone is defined as the collective

region of 3000 surface areas whose centers are greater than 30 from 11^

the point of evaluation. Since the tide models define values only at

equal-angular 3°0 0 grid points, the tide amplitude and phase are

considered constant within each 3 000 surface area element. The far

zone contribut-ions to equation (1) are then obtained by summing the

individual area elements with the Green's function evaluated at the

central angle between the center of the element and the point of

evaluation. In the near zone, the Green's functions change so rapidly

that the elements of surface area are evaluated on a graduated scale

from ^ ° x 1 0 0 ° to 1^0° x 110 ° as the integration proceeds away
from the point of evaluation. Again, the tide amplitude and phase

are considered constant within each 3°x3° surface area.
r r

The computation for the earth response is greatly influence.' y

the near zone contribution in most ocean and coastal areas. In, 	 e

open ocean areas the Estes (1977) tide models and the assumptir o

12



constant tidal amplitude and phase within a 3 000 surface av-a,r

are adequate. However, near coastal zones the calculations suffer

from the fact that the global numerical tide models used are theoretical

solutions of the Laplace Tidal Equafiions for the open ocean areas of

depths greater than approximately 500 meters and the solutions contain

no data. Moreover, the 3 0 approximation to coastline geometry is

course, Accurate near{ zone values for coastal regions should be ob-

tained from more detailed regional tide models or from finer spacial

resolution global models, such as the M2 model developed by

Schwiderski (1978), that have incorporated coastal tide observations

into the solution to more precisely represent the real near shore

variation. Because of these considerations, the calculations pre-

sented in this study for regions within 1" to 3 0 of coastlines should
I

	

	
be viewed qualitatively in the transition from open ocean to inland

areas. Note also that the tide models used in the calculations pre-

;	 y	 dice.only to 81" north latitude, and the tide is assumed to be zero

above this limit. The responses evaluated in the north polar regions

then are only the far zone contributions. Near zone contributions

should be computed from a special pole tide model.

2.1 Crustal1 Displacements

j

	

	 The vertical response due to ocean loading by constituent "i"

as given by equation (7) is

i (^^^:t)	 Au(Cg^) Gosui(tto) 

where the amplitudes and phases are calculated by convolution with the

Green's function from equation (g)

B f(Y) - V(Y)

Corange and cotidal :naps for constituents M 2 , S2 , N2 , K2 ,, K1 , Q l and

f	 P1 are presented in Figures 8 throug h 14, As indicated previously, the
4

phases are with respect to lunar passage of Greenwich. Horizontal

responses

13
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Vei 
(+*Xt)

VXi (^,X,t)

calculated from the Green ' s functions of equation ( 18) were evaluated

only for the M2 tide and are presented in figures 15 and 16.

The vertical response exhibits a spacial behavior over the oceans

which resembles the structure of the constituent tidal heights. The

greatest amplitudes are on the order of 5 cm. in the region of the mid-

Pacific anti -amphidrome predicted by the M 2 model, while over con-

tinental areas the calculated load response is generally less than 1 cm,

and decreases with distance from the coasts. Horizontal displacements

are an order of magnitude smaller than the vertical displacements and

exhibit a more complex structure,

2.2 Gravitx Perturbations

The measurement of gravitational acceleration is the resultant

of components

9 , 91 + 92 + 93 + 94	 (22)

where gl represents the acceleration on a rigid earth, 9 2 represents

the contribution from a swinetric, oceanless, elastic earth, 93

represents the contribution from oce^n tides, and 94 is the response

of regional anomalous geologi-c structure. 'The components gl and 92

are the larger terms and havo essentially the same phase, while the

terms93 and 94 may differ considerably from other terms with

respect to phase.

Modern gravimeters are c,foabla of detecting theg 3 and 94 con-

tributions with limited precision, and it is now clearly established

that earth tidal gravity parameters for both coastal and inland measure-

ments are sensitive to the regional and global ocean tides. A

1^1

14



comparison of accurately measured patterns of tidal gravity spacial
variation within continental regions with model calculations Will

?	 offer the ability to distinguish between tide models and establish

their levels of precision. In fact, Kuo, et al. (1970) attempt to
indirectly map the ocean tides by solving the inverse problem of the

response of tidal gravity to ocean tide loading. The accuracy of

data will be greatly improved with the use of a new type of super-

'	 conducting gravimeter (Warburton, ►w ,a1,(1975)". Presently measure-
ments using this instrument are available only at La Jolla and Pinon

Flat, California.

Calculations of tidal gravity at specified stations using

available tide models and the comparison of results with observations

have been performed by several authors. In particular, Robinson (1974)

'	 compared the observed relative gravimetric factors of M2 and 01 at

several stations in the southeastern United States using five different

published global M, models. Wilson (1978) has extended the analysis

using additional ocean tide models and a model for the Gulf of Mexico.

w	 Bretreger and Mather (1978) have analysed tidal gravity measurements

n	 in Australia using a ten-parameter response model and global M 2 tide

models. However, only Kagan and Polyakov (1977) using an 
M2 

model

by Gordeyev, et al (1976) have performed calculations over the entire

F

	 earth to present a global picture of variation.

'	 The amplitude of the gravimetric factor

a=1 -	 k + h

4

where k and h are love numbers, is the ratio of tidal gravity at

a point on the earth to the theoretical amplitude on a rigid earth.

ThQ local epoch of a measurement is the phase difference between the

observed gravity and theoretical gravity. In the absence of ocean

loading the value of the gravimetric factor would be approximatly 1.16.

The correction Od is defined by vectorial addition of the ocean
load gravity vector to the theoretical gravity

15
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otal gragjt`J	
10cean load gravity

MeaSO'red ^
Local Epoch	

Phase of ocean. tidal gravity

.sir rr	 srrr^r r^—rr

Oceanless Theoretical gravity

where the 94 contribution

the theoretical gravity has

ocean tidal gravity in this

the theorretical gravity. Ti

theoretical gravity and the

is assumed negligible for gravity and

zero phase lag. Note that the phase of the

diagram is with respect to the phase of

ie relation between the local phase of .

Greenwich chase is

Local Phase = Greenwich Phase + mX

where x is the east longitude of the measurement point and m is the

order of the tide. (2 for semidiurnal and l for diurnal tides). The ampli-

tude of the ocean load gravity in ugal is obtained from the amplitude

(e61 multiplied by the amplitude of the theoretical gravity of the rigid

earth.

The ocean loading gravity perturbations for the M 2 and O1 tides

are calculated from the Green's function of equations (11) and (12)

for the Newtonian and elastic contributions and are presented in

figures 17 through 20. Here the calculation for the Newtonian term

neglects the delta function pointed out by P.ekeris (1978). For coastal

and ocean areas the additional term given by equation (16) may be

evaluated from the ocean tide maps given in Figures 1 through 7.

Moreover, for measurements evaluated at coastal and ocean points

above the tide sheet, the correction term given by equation (15) must

be added to obtain the total gravity perturbations. The amplitude

and.phases of the gravity perturbations, as with the horizontal

crustal deviations, exhibits a spacial behavior which resembles the

tide structure. This supports the suggestion that the complexity of

the ocean tidal gravity is due to the complexity of the global tide

rather than the response of the earth to the ocean tidal loading.

16
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The responses are on the order of one ugal over continental regions

and decrease with distance from the coasts. Values measured by
Warburton, et. al. (1975) at Pinon Flat for the 01 and M2 tidal

s
gravity components using the superconducting gravimeter are in
reasonable agreement with the calculations presented in Figures 17

through 20. However, their measurements on the coast at La Jolla
(on the order of 100 km. distance from Pinon Flat) are substantially

greater than the results shown in Figures 17 through 20. This is

most likely a consequence of the inadequate precision in modeling the

near zone ocean tide at the coasts as discussed in Section 2.0.

2.3 . Strains

A comparison of precise tidal strain observations with model
predictions could provide insight into the nature of the earth and

its structure. However, obtaining accurate measurements of tidal

strains is considerably more complicated than for tidal gravity:

!.Jhile 94 from equation (22) is considered negligible for tidal

g ravity, tidal strain measurements are very sensitive to local topo-

graphic and geologic anomolous influences. A basic understanding of the

ocean tidal loading strains and the local influences could have a great

impact on the field of techtonic geophysics. In particular, Young and

Zurn (1979) claim to have provided weak evidence that earthquakes in the

Swabian Jura are triggered by tidal shear stress. The concept that

ocean load tide strains could provide a mechanism for triggering is

feasible, as ocean loading can introduce appreciable horizontal shear

strains when loading is not laterally uniform, such as near a coastline.

The ocean loading tidal strain tensor have been evaluated for the

tide from convolution with the strain component Green's functions of

equation (21). The symmetric tensor is written

e Y1' 0	 0

S -	 0	 eee ee:
(23)

j

0	 e,e eaa

,.jl

M2

k:
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where each element varies with time as

e i ^ 49,A t) : Aci^(f,a) aosCQML(t-to) -aEij(f.a) +EM2)

Note that the tensor'has only three independent components at the free

earth surface. since

^a
err - a a	 eeo+ 

eXIN)

where a(a) and c(a) are Lame parameters at earth radius, a

The horizontal surface strain tensor may be written in the form

eee eea	 J(eee+e,'	 U

eae e,a	 0	 J(eee+ea),)

4-
(e ee-e aa )	 eel

e ea	 VeWe), ,)
(24)

a	
i(eee

-exx) 	
e.,

=-2aa err I+ e
	 e -e
e):	 -J( ee aa)

as the sum of a pure areal strain and a pure shear strain. While it is

conventional to represent the three independent components of the surface 	 °a

strain tensor by plotting the linear strain at a particular geographic
I

position as a function of azimuth on a polar diagram, we present more

detailed corange and cotidal plots of the elements err 
eee ' eae

and e., in Figures 21 through 28. Due to plotting difficulties the

tensor components are presented in separate figures over ocean areas

and land areas.	 -T

18
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The radial strain component shown in Figures 21 indicates
strains of the order of WO-10 in t 

I 
he mid-oceans and 1XIO-10 over

continents. The transitions over-coastal areas appear generally smooth.

This is in contrast to the e ,, an%d e	 components of Figures 22
through 25. Here the mid-ocean strains are on the order of 5xlO" 8 while
strains over continental regions are two orders of magnitude smaller.

The steep gradients occur at the shorelines, where abrupt changes in phase
are also observed. Note that the amplitudes of e,, and %, *are nearly
equal while their phases are nearly 180 0 apart. This is consistent with e rr
which is proportional to their sumo being two orders of magnitude smaller.
The e,, ' strains of Figures 26 and 27 show a comparable^magnitude to

e ee and e xx over continental areas, while tieing approximately an order

of magnifode.smaller over mid oceans. Figure 28 displays that the exo

strain generally shows a sharp increase in magnitude to the order of
WO -8 near coastlines before rapidly falling to smaller values over

land areas, Abrupt changes in phase also occur near shorelines. By
equation (24), these values show that the ocean load strain5 are
dominated by pure shear, while the areal strains are small'o"
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3.0 COMPUTER SOFTWARE FOR BODY AND LOAD TIDE RADIAL DISPLACEMENT

A computer program has been developed to evaluate the radial, dis-

placements given in Section 2.1 due to ocean loading and the total

radial displacement due to the solid earth tides (body tides) at a

user specified position on the earth for a desired time interval. The

`algorithm evaluates the contributions from the ocean tidal constituents

and the body tide individually for a one day period at one hour incre-

ments. Required input are the Modified Julian Day and the geodetic

coordinates of the point of interest.

The radial ocean loading displacements of Section 2.1 are represented

in the software in the form of spherical harmonic expansions

u i (4oX; t ) = Au(^px) cos[ai(t-to)+ ei—oi(0•a)]

{nIm [
anmcosmx+bnmsinma]Pnm(sin0)}oos(o i (t-to )+e )

(25)

+ {	 [cnmcosmX+dnmeinmA]Pnm(sinf) }ein(ci(t-to)+ ei)
n,m

where the coefficients anm, 
bnm' cnm and d

nm are obtained by a least

squares fit to degree and order twelve. These expansions provide an

accurate and compact method for evaluating the ocean loading tides.

The ,body tide elevation is given by

MdRe	 Re
n+1

U (¢,A;t)
E3

=	 h
Me	 2	 n	 RdJ2

P 
(cos)

0 	 (26)
n	 MS

F where	 Md	is `the mass of the disturbing body (Moon or Sun), Rd is the geo-

centric distance to the body and	 hn	are Love numbers.	 The angle	
0h1S

denotes the geocentric zenith angle of the moon (sun) from the point of eleva-

tion.	 The terms in the expansion fall off rapidly so only the first term

^z
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is of major significance. The radial body tide, UB i is then

evaluated as

U	 ( r;t,	
Md

(!e. 3 Re
 h? [3( 'R .-)2.1B 4	 MRZ 	d	 ^M

e d

w
where r represents the unit radius vector at the point of interest on the

earth:

r = [cos¢coSX, c084eW, 811103

where geodetic latitude, 	 , and longitude, a , are program inputs.

Ad represents the unit vector from the center of the earth in the

direction of the disturbing body;

ARd =[,u,vJ

where A/, u/, v' give the position in earth-fixed coordinates.

A

In calculating R for the moon, a true longitude and the latitude

(above the plane of the ecliptic) are derived from the Hill-Brown theory

using the Modified Julian Day.	 Brown's tables express the coordinates of

the moon as sums of periodic terms whose arguments are algebraic sums of the

multiples of Z, V, F. D, r	 See Tables II and III.

t
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TABLE 11
Ecliptic Elements

MJD Modified Julian Day
D MJD-2475020.0
61	 D*1.E•4

296,104608+13,0649924455*D+0.0006889*(D1)2
1t'	 358.475845+0.9856002670*D-0.0000112*(D1)2
F = 11.250889+13.2293504490*D-0.0002407*(D1)2
D	 350.737486+12.1907491914*D-0,0001076*(D'I)2
r	 281.220833+0.470684*D1+0.'339E-4*(D1)

23.452294-0.0035626*01-0.123E- 6*(D1)2
{	 A9 99=6904833+360.98564733*D-18040

G

E
>E

if

k	 .

f

i
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Table III Development of Lunar Position

Coeff of sine in Gam ,	 Multiples of

(Seconds of arch	 t to	 F	 D T

	

22639.5	 1	 0	 0	 0	 0

	

-4586.426	 1	 0	 0	 -2.	 0

	

2369.902	 0 0	 0	 2 0

	

769.016	 2 0	 0	 0 0

-668.111 .	0	 1	 0	 0	 0

	

411.608	 0 0	 2	 0 0

	

X 211.656	 2	 0	 0	 -2	 0

	

-205..962	 1	 1	 0	 -2	 0

	

-125.1$4	 0	 0	 0	 1	 0	 x

	191.953	 1	 0	 0	 2	 0

	

-165.145	 0	 1.	 0	 -2	 0

	

147.693	 1	 1	 0	 0	 0

	

-109-667	 1	 1	 0	 0	 0

Coeff in sine in Latitude,	
m

(Seconds of arc)

	

18461.48	 0	 0	 1	 0	 0

	

1010.180	 1	 0	 1	 0	 0
	999.695	 -1	 0	 1	 0	 0

	

-623.658	 0	 0	 1	 -2	 0

	

117.262	 0	 0	 1	 2	 0

	

199.485	 -1	 0	 1	 2	 0

	

-166.577	 1	 0	 1	 -2	 0

	

61.913	 2	 0	 1	 0	 0



u

Table IV Development of sin As and coo X;

0oef. x 10 5 of cosine in coo as	 Multiples of

and of sine in sin as 	 F	 D x
F

	99972	 0 1	 0	 0 1

	

1674	 0 2	 0	 0' 1
r	 32	 0 3	 0	 0	 1

	1 	 0 4	 0	 0 1

	

2	 0	 1	 0	 1	 1
u	 -1675	 0 0	 0	 0 1

	-4	 0 -1	 0	 0	 1

	

-2	 0	 1	 0	 -1	 1

	

4	 0 0	 1	 -1	 0

	

-4	 0	 z	 -1	 1	 2

25
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r

The derived ecliptic lousar position (#M Am) is converted to inertial
coordinates

X, 0 Cos Affroom

P10 rinlmcors#mcosc - sinyinc

v' . ei,nowosc + 8i,nk0jeaetmei.nc

where c is the obliquity to the ecliptic and

AM x X O + D + r + dxm

The conversion to earth-fixed coordinates is accomplished by a matrix.

transformation

Rd

	

EF '(MRd) Inertial 	 28

where

0oso9 eine9 0

M x	 sine9 00809 0

0	 0	 l

and e9 is the Greenwich hour angle (Table IX).

The unit vector Rd in the direction of the sun is derived from
Newcomb`s theory in the same manner. The ecliptic elements, R, z`, F, D, r

	are the same as for the lunar development. 	 The solar coordinates
(coax S ,Binxs) are expressed as algebraic sums as listed in Table IV

The conversion to equatorial coordinates is

26
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A' cosAs

)i = sinAScosc

v' = sinAssine

and a final transformation to earth-fixed coordinates is applied, using

Equation (28).

A comparison of the radial body tide displacement computed by this

u	 analytic procedure and the ephemeris calculation from GEODYN is displayed in
r	 Figure 29.

If

ci

ij

i
,	 z

11

G
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t

1	 4.0 NEW TECHNOLOGY

The effort under this contract consisted of the development and pro-
gramming of techniques to numerically calculate earth response to global
semidiurnal and diurnal ocean tide models.	 Global Vertical crustal defor-

mations have been evaluated for	 M2 , S2 , N21 'K2 ,
 
Ki t O l , and Pj ocean tide

r	 r loading, while horizontal deformations have been evaluated for the M 2 tidal

load.	 Tidal gravity calculations were performed for M2 and 01 tidal loads,

and strain tensor elements were evaluated for M2 loads.	 The M2 solution used

for the ocean tide included the effects of self-gravitation and crustal

loading.

` Frequent reviews and a final survey for new technology were performed.

It is believed that the mathematical and programming techniques and

algorithms developed do not represent "reportable items," or patentable

items, within the meaning of the New Technology Clause.	 Our reviews and

f final survey found no other items which could be considered reportable

items under the New Technology Clause.

PRECEDING PACE SLANK NOT FILMEc
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