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ABSTRACT

The current theme of our research is the recovery of information

about the three-dimensional structure and physical characteristics of

surfaces depicted in an image. This information is directly necessary

for many vision appli.cati.ons, including terrain modeling, remote

s,ensing, navigation, manipulation, and obstacle avoidance. It is also a

prerequ site for general-purpose vision systems capable of human-level

performance in such tasks as object recognition and scene description.
i
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Work has focused on two complementary problems: (1) basic

techniques for inferring *hree-dimensional surface shape from two-

dimensional. images and`

	

	 g	 (2) means for integrating the result-s of

different techniques to obtain a globally consistent surface

description. In the past year, a technique was developed for

constraining surface orientation along image contours that correspond to

surface boundaries. We have also developed a means for interpolating

surface orientation estimates from a variety of sources into smooth

surfaces--a major integration problem. A computational model, based on

these techniques, was proposed for inferring the three-dimensional

surface structure depicted in a line drawing.
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1I INTRODUCTION

Surface perception plays a fundamental Vole in early visual

processing, both in humans and machines [1, 21. An explicit
=representation of surface structure is directly necessary for many low-

level visual functions involved in applications such as terrain

modeling, remote sensing, navigation, manipulation, and obstacle

avoidance. It is also a prerequisite for general-purpose vision'systems

capable of human-level performance in tasks such as object recognition

and scene description,

Work on surface perception has focused on two complementary

problems basic techniques for inferring three-dimensional scene

structure from two-dimensional images, and means for integrating the

results of different techniques to obtain a globally consistent surface

description.

Information about surfaces comes from various sources:. stereopsis,

motion parallax, texture 3radient, shading, and contour shape, to name a

few. Information may be provided in terms of absolute or relative

values of orientation or range, depending upon the nature of the source.

Moreover, different techniques for extracting this information are valid

in different parts of the scene. For example, inferring shape from

shading is difficult on a highly textured surface or in areas of complex

illumination, while stereo information is not available in textureless

areas nor areas visible only from one viewpoint. Thus, in general,

evidence is incomplete, may be quite sparse (as in line drawings), and

subject to noise, which leads to ambiguity.

i



Any attempt to derive globally consistent surface descriptions from

these diverse local sources must therefore address the following basic

computational problems:

(t) Interpolating sparse data

(2) Smoothing noisy data

(3) Deciding which techniques are applitxble in which parts
of the scene

(4) Integrating different types of data from different
sources

(5) Deciding the location and physical type of boundaries.

In the past year we have made important contributions in both the

technique and integration aspects of surface perception. We have

studied the use of contour shape as a source of information about the

conformation, of surfaces and their boundaries in space. This work has

led to	 theory for the, three-dimensional interpretation of line

drawings such as Figure I. Line drawings depict intensity

discontinuities at surface boundaries, which, in many cases, are the

primary source of surface information available in an image; i.e., in
areas of shadow, complex (secondary) illumination, or specular surfaces

where analytic photometry is inappropriate. Understanding how line

drawings convey three-dimensionality is thus of fundamental importance.

A major integration problem in lino drawing interpretation, and in

surface perception generally, involves interpolating smooth surfaces

from sparse, possibly conflicting boundary conditions. We have

'aevel.oped a solution: for an important, special case: the interpolation

of surfaces that are locally spherical or cylindrical from initial
orientation values and constraints on orientation. The method produces

essentially exact reconstructions when applied to spherical and
cylindrical test cases and, for other smooth surfaces, produces results

that seem in reasonable agreement with human perception.

Our work on line drawing interpretation and surface interpolation

is an integral part of an ambitious program of basic vision research at

SRI, which is jointly supported by NASA, AREA, and NSF.

2
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II LINE DRAWING INTERPRETATION

our objective is the development of a computer model for

interpreting two-dimensional line drawings, such as Figure 1, as three-

dimensional surfaces and surfa(.se boundaries. Specifically, given a

perspectively correct line drawing depicting discontinuiti6s of smooth

surfaces, w;i, desire arrays containing values for orientation and

relative range at each ;point on the implied surfaces. The

interpretation of line drawings as three-dimensional surfaces is

distinct from earlier work on interpretation in terms of object models

[3-6] and more fundamental. No knowledge of plants is required to

understand the three-dimensional structure of Figure 3, as can be

demonstrated by looking at the arbitrary surfaces depicted when portions

of leaves are viewed out of context (e.g., through a mask).

A. Nature of the Problem

The central problem in perceiving line drawings is one of

ambiguity: in theory, each two-dimensional line in the image

corresponds to a possible projection of an infinitude of three-

dimensional space curves (see figure 2). Yet people ere not aware of

this massive ambiguity. When asked to provide a three-dimensional

interpretation of an ellipse, the overwhelming response is a tilted

circle, not some bizarrely twisting curve (or even a discontinuous one)

that has the same image. What assumptions about the scene and the

imaging process are invoked to constrain this unique interpretation?



FIGURE 1 LINE DRAWING OF A THREE-DIMENSIONAL SCENE

Surface and boundary structure are distinctly perceived
despite the ambiguity Inherent In the Imaging process,



FIGURE 2 THREE-DIMENSIONAL CONFORMATION OF LINES DEPICTED IN A
LINE DRAWING IS INHERENTLY AMBIGUOUS
All of the space curves in this figure project into an ellipse In the image plane,
but they are not all equally likely interpretations,

1I
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D, Nature of the Solution....E 

We observe that although all

fundamentally alike, two distinct

depicted; extremal boundaries (e.g.,

surface turns smoothly away from

boundaries (e.g., the edges of the

terminate or intersect. Each type pi

three-dimensional interpretation.

the lines in Figure 1 look

types of scene event are

the sides of the vase) where a

the viewer, and discontinuity

leaves) where smooth surfaces

^ovides different constraints on

At an extremal boundary, the surface orientation can be inferred

exactly; at every point along the boundary, orientation is normal to the

line of sight and to the tangent to the curve in the image Ill.

A discontinuity boundary, by contrast, does not directly constrain

surface orientation. However, its Local two-dimensional curvature in

the image does provide a statistical constraint on the local plane of

the corresponding three-dimensional space curve, and thus relative at, }z

along the curve. Moreover, the surface normal at each point along the

boundary is then, constrained to be orthogonal to the three-dimensional

tangent in the plane of the space curve, leaving only one degree of

freedom unknown; i.e., the surface normal is hinged to the tangent, free

to swing about it as shown in Figure 3.

The ability to infer 3-D surface structure from extremal and

discontinuity boundaries suggests a three-step model for line drawing

interpretation, analogous to those involved in our intrinsic image mode"

[11s line sorting, boundary interpretation, and surface interpolation.

Each line is first classified according to the type of surface ooundary

it represents (i.e., 3xtremal versus discontinuity). Surface .contours

arr. interpreted as throo-dimensional space curves, providing relative 3-

D distances along each curve; local surface normals are assigned along

the extremal boundaries. Finally, three-dimensional surfaces consistent

with these boundary conditions are constructed by interpolation.

The following two sections elaborate two key elements of the above

model.	 The first deals with the problem of inferring the three-



FIGURE 3 AN ABSTRACT THREE-DIMENSIONAL SURFACE CONVEYED
BY A LINE DRAWING

Note that surface orientation is constrained to one degree of freedom
along discontinuity boundaries.

dimensional conformation of a discontinuity boundary from its image

contour. The second presents an approach for interpolating smooth

surfaces consistent with orient"intion constraints along boundaries.

I
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III INTERPRETATION OF DISCONTINUITY BOUNDARIES

To recover the three-dimensional conformation of a surface

discontlnuitY	 boundary	 f roiii	 its	 image,	 we	 invoke	 two
assump ^;ions; surface e ►iiootbness and general position. The smoothness

assumption implies that the space curve bounding a surface will also be

smooth. The assumption that the scene is viewed from a general position

implies that a smooth curve in the image results from a smooth curve in

space, and not from an accident of viewpoint. In F18are P, for example)

the sharply ruceding curve projects into a smooth ellipse froit ► only ono

viewpoint. Thus, such a curve would be a highly improbable three-

dimensional interpretation of 
an 

ellipse.

The problem now is to determine which smooth sp44e curve is most

likely. For the special case of a wire curved in space, which can be
regarded, as a thin, ribbon-like surface, we conjectured that, of all

projectively-equivalent space curves, humans perceive that curve having
the most uniform curvature and the least torsion (71; i.e., they
perceive the space curve that is smoothest and most planar. The ellipse

in Figure 2 is thus al ►imst universally perceived as a tilted circle.

Consistent findings were reported in recent work by Witkin [8] at MIT on
human interpretation of -the orientation of planar closed curves.

A.	 Computational Models

The smoothness or a space curve is expressed quantitatively in

terms of intrinsic obaraoteris ties such as differential curvature (k)

and torsion (t), as well as vectors givin8 intrinsic axes of the

curve: tangent ( 111), principal' normal (N), and binor ►tial (B).	 k is
defined as the reciprocal of the radius of the osculating circle at each

point on the curve. N is the vector froiD the center of curvature normal
to the tangent. 13, the vector cross product of T and X, defines the
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I

a

normal to the plane of curve. Torsion t is the spatial derivative of
a,the "binormal and expressos the degree to which the curve twists out of a

plane.	 For further details, 	 see any standard	 toxt on vector	 {
differential geometry', such as 19).

An obvious measure for the smoothness of a space curve is
uniformity of curvature. Thus, one might see p the space curve
corresponding to a given image curve for which the integral of Ic' (the
spatial derivative of Q was minimum. '.Chic alone, however, is
insufficient, :since the integral of k' could be made ar l4tr drily small
by stretching out the space curve so that It approaches a twisting
straight line (see Figure 4)• Uniformity of curvature also does not
indicate whether a circular are in the image should correspond to a I_D
circular are or to part of a helix.	 A necessary aduitional. constraint

I
in bath oases is that the space curve corresponding to a given image
ourve should be as planar as posoible, or more precisoly, that the
integral of its torsion should also be minimized.

t

FIGURE 4 AN INTERPRETATION THAT MAXIMIZES UNIFORMITY OF

CURVATURE



z

Integral 1 expresses both the smoothness and planarity of a apace

curve in terms of a single, locally computed differential measure

d(kB)/ds. To interpret an image curve, it is thus necessary to find the

projectively equivalent space curve that minimizes this integral.

;(kB/ds) 2dof( 2 + k2t,,),i ,	
M

J.;	 J

Intuitively, minimizing (t) corresponds -to * ' finding the three

dimensional, projection of an image curve that most closely approximates

a planar, circular arc, for which k' and t are both everywhere zero.

A computer model of this recovery theory was implemented to test

its competence. The program accepts a description of an input curve as

a sequence of two-dimensional image coordinates. 	 Each input point, in

conjunction with an assumed center of projection, defines a ray in space

along which the corresponding space curve point is constrained to lie

(Figure 5). The program can adjust the distance associated with each

space curve point by sliding it along its ray like a bead on a wire.

From the resulting 3-D coordinates, it can compute local estimates for

curvature k, intrinsic axes,;jT, N, and B, and the smoothness measure

d (kB) /ds.

An iterative optimization procedure was used to determine the

configuration of points that minimized the integral in Equation 1. The

optimization proceeded by independently adjusting each space curve point

to minimize d(kB)/ds_l,ocally. (Note that local perturbations of z have

only local effects on curvature and torsion.)

The program was tested using input coordinates synthesized frou

known 3-D space curves so that results could be readily evaluated.

Correct 3-D interpretations were produced for simple open and closed

curves such as an ellipse, which was interpreted as a tilted circle, and

a trapezoid, which was interpreted as a tilted rectangle. However,

convergence was slow and somewhat dependent on the initial choice of z-

values. For example, the program had difficulty converging to the

"tilted-circle" interpretation of an ellipse if started either with all

10
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FIGURE 5 AN ITERATIVE PROCEDURE FOR DETERMINING THE OPTIMAL SPACE CURVE
CORRESPONDING TO A GIVEN LINE DRAWING
Projective rays constrain the three-dimensional position associated with each image
print to one degree of freedom,
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z-valuos in a plane parallel to the imago plane or all randomized to be

highly nonplanar. k

To overcome these deficiencies, we experimented vi:`th an alternative
approach based on el lipse fitting that involve.. "-ina=ne local constraints.

Mathematically, a smooth space curve can be locally approximated by area
of circles. Circular area project as elliptic area in an image. We

already know that an ellipse in the image corresponds to a circle in

three-dimensional space; the plane of the circle is obtained by rotating

the plane of the ellipse about its major axis by an angle equal to cos-I

(minor axis/major axis). The relative depth at paints along a surface

contour can thus be determined, in principle, by locally fitting an

ellipse (fivep ( points suffice to fit a general conic) and then projecting
the local curve fragment back onto the plane of the corresponding

circular arc of space curve. Assuming orthographic projection, a simple

linear equation results, relating differential depth along the curve to
differential changes in its image coordinates, as shown in Equation 2:

(2)
dz = adx + bay

The ellipse-fitting method yielded correct 3-D interpretations for

ideal image data but, not surprisingly, broke down due to large fitting

errors when small amounts of quantization noise were added.

Two other possible solutions art currently under consideration: a

hierarchical, approach in which gross orientation is first determined

from large fragments of an :image curve; and a two-dimensional approachr

in which refinement of boundary interpretations is integrated with the

process of interpolating smooth surfaces over the interior regions. 11e

second alternative is appealing on several grounds. first, it avoids

explicit segmentation of the image curve, into smoothly curved.

fragments, a process likely to be both expensive and error prone.

Second, it allows boundary smoothing to propagate across surfaces so

Zat each boundary point is refined by every other, not just those

immediately adjacent. Promising preliminary results with integrated

boundary refinement and surface interpolation are reported in

Section IV.

12
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IV :SURFACE INTERPOLATION

Given constraints on orientation along extremal and discontinuity

boundaries,	 the next, problem is to interpolate smooth surfaces

consistent with these boundary conditions. The problem of surface

interpolation is not peculiar to contour interpretation, but is

fundamental to surface reconstruction, since data are generally not

available at every point in the image. We have implemented a solution

for an important case: the interpolation of approximately uniformly

curved surfaces from initial orientation values and constraints on

orientation.

The approach exploits an observation that components of the unit

normal vary linearly across the images of surfaces of uniform curvature.

An array of simple parallel processes performing iterative local

averaging of the normal components at neighboring points can thus
a

recover an orientation array from sparse orientation estimates along

extremal boundaries. Experiments on spherical and cylindrical test

cases produced essentially exact reconstructions, even when boundary

values were extremely sparse or only partially constrained. Results for

arbitrary smooth surfaces seem in reasonable agreement with human

perception.

13
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V	 COMPUTATIONAL PRINCIPLES

z

We	 begin with a	 precise definition of	 the surface reconstry;ct on

problem in terms of input and output.

The input is assumed to be in the fora: of sparse arrays, containing

local estimates	 of surface range and	 orientation, in a viewer-centered

coordinate frame.	 In practice, the estimates may be clustered where the.

information is obtainable, such as along curves corresponding to surface

boundaries.	 In	 general, they	 are subject	 to error	 and may	 be	 only

partially constrained.	 For example, given a three-dimensional boundary,

the	 surface normals	 are	 only	 constrained	 to be	 'orthogonal	 to	 the

?	 boundary elements.	 We also assume that the location	 and nature of all

surface boundaries are known, since they give rise to discontinuities of

range	 or orientation.	 This	 last condition is required	 in the current

implementation	 and is	 intended	 to	 be	 relaxed	 at a	 later date	 to

accommodate imperfect boundary detection.

The	 desired output	 is simply filled	 arrays of	 range and surface

orientation	 representing the	 most likely surfaces	 consistent with the

input data.	 Refinement	 of hypothesized surface discontinuities is also

desired.	 These output arrays	 are analogous to our intrinsic images [1]

or Marr's 2.5D sketch [2].

For any given set of input data, an infinitude of possible surfaces

can	 be found to fit	 arbitrarily well. 	 Which of	 these is best depends

upon assumptions about the nature of surfaces in the world and the image

formation process. 	 Ad hoc	 smoothing and interpolation schemes that are

not rooted	 in these	 assumptions lead 	 to incorrect	 results in	 simple

cases.	 For example,	 given a	 few points on	 the surface	 of a sphere,

iterative	 local averaging Do, 11] 	 of range values will	 not recover a

spherical surface.

14



A.	 Assumptions  About Surfaces''

The principal, assumption we make about physical surfacos>is that

range and orientation are continuous over them. We further assume that

each point on the surface is essentially indistinguishable from

neighboring points. Thus, in the absence of evidence to the contrary,

it follows that local surface characteristics must vary as smoothly as

possible and that the total variation i6 minimal over the surface.

Range and orientation are both defined with reference to a viewer-

centered coordinate system, and so they cannot directly be the criteria

for evaluating the intrinsic smoothness of hypothetical surfaces. The

simplest appropriate measures involve the rate of change of orientation

over the surface; principal curvatures (k1, k2), Gaussian (total.)

curvature (kl*k2), mean curvature (kt+k2), and variations upon them all

reflect this rate of change [g]. Two reasonable definitions of

smoothness of a surface are uniformity of some appropriate measure of

curvature [71, or minimality of integrated squared curvature 181.

Uniformity can be defined as minimal variance or minimal integrated

magnitude of gradient.

The choice of a measure and how to employ it (e.g., minimize the

measure or its derivative) depends, in general, upon the nature of the

process that gave rise to the surface. For example, surfaces formed by

elastic membranes (e.g., soap fi'^ms) are constrained to minimum energy

configurations characterized by minimum area and zero mean curvature

[12]; surfaces formed by bending sheets of inelastic material (e.g.,

paper or sheet metal) are characterized by zero Gaussian curvature [133;

surfaces formed by many machining eperatioft6 (e.g., planes, cylinders,

and spheres) have constant principal curvatures.

We are not prepared, at this point, to maintain that any of these

measures is inherently superior, particularly because of various close

relationships that exist between them. We note, for example, that

minimizing the integrated square of mean curvature is equivalent to

minimizing the sum of integrated squares of principal curvatures and the

15
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integrated Gaussian curvature, G, as shown by

2	 2	 2
k1 + k2) •da - k1 .da	 k2 .da + 2 kt*k2.da

f 2	 2
Jk1 .da + f 2 .da + f .da

We also note that making curvature uniform by minimizing its variance of

any measure over a surface is equivalent to minimizing total squared

curvature, if the integral of curvature is constant. This follows from

the well-known fact that for any function, f(x),

2
Variance of f	 f f-fbar) .dx

`f

2	 2
f .dx	 ff dx] / DX

On any developable surface for which Gaussian curvature, G, is
f

everywhere zero, and on a surface for which orientation is known

everywhere at its boundary (e.g., the boundary is extremal), the

integral of G is its integrated square are equivalent.

By itself, however, uniformity of Gaussian curvature is not

sufficiently constraining. Any developable surface is perfectly uniform

by this criterion, so considerable ambiguity remains, as is evident in

Figure 6, where all the developable surfaces satisfy the same boundary

conditions. Thus a secondary constraint, such as uniformity of mean

curvature, is required to find the smoothest developable surface.

In this paper we focus on surfaces with reasonably uniform
curvature--surfaces that are locally spherical or cylindrical. We shall

demand exact reconstructions for spherical and cylindrical test cases

and intuitively reasonable reconstructions for other smooth surfaces.

In particular, given surface orientations defined around a circular

outline, corresponding to the extremal boundary of a sphere, or along

two parallel lines, corresponding to the extremal boundary of a right

circular cylinder, we require interpolation to yield the correct

16
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FIGURE 6 SURFACF-.S WITH ZERO GAUSSIAN CURVATURE
SATISFYING COMMON BOUNDARY CONDITIONS

spherical or cylindrical su*face, with uniform (Gaussian, mean, and

principal) curvature. These c,sses are important because they require

reconstructions that are symmetric in three dimensions and independent

of viewpoint. Many simple interpolation techniques fail this test,

producing surfaces that are too flat or too peaked. Given good

performance on the test cases, we can expect reasonable performance in

general.
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YI A RECONMUUTION ALGORITHM

Although in principle correct reconstruction for our tout cases can

be obtained in many ways, the complexity of the interpolation process
depends critically upon the representation. For example, representing

surface orientation in terms of gradient space leads to difflculties
because gradient varies very nonlinearly across the image of a smooth
surface, becoming infinite at extremal boundaries. We shall now propose

an approach that leads to elegantly simple interpolation for our test

Cases.

A.	 Coordinate Frames

Given an image plane, we shall assume a right-handed Cartesian
coordinate system with x and y- axes lying in the plane (see Figure 7).
We also assume orthogonal projection in the direction of the z-axis.
Each image point (x,y) has an associated range, Z(x,y) the
corresponding scene point is thus specified by ( x, Yr Z(x,YY) )•

N

SURFACE

FIG0RE-.7 COORDINATE FRAME

18
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Each image point also has an associated unit vector that specifies the
local surface orientation at the corresponding scene point:

N(x,y)	 ( Nx (x, y), Ny (xv y), Nz(x, y) )	 •

Since N is normal to the surface Z,

Nx/Nz . - dZ/dx

and	 Ny/If z - - dZ/dy

(The derivatives dZ/dx and dZ/dy correspond to p and q when the surface

normal is represented in gradient space form, (P,q,-1)•)

Differentiating Equation (5), we obtain

2
d(Nx/Nz)/dy = - d Z/dy.dx

2
(6)

and	 d(Ny/Nz)/dx - - d Z/dx.dy

For a smooth surface, the terms on the right of (4) are equal., hence

d(Nx/Nz) /dy - d(Ny/Nz)/dx	 (7)

Finally, since N is a unit vector,

2	 2	 2
Nx + NY, + Nz	 _ '1	 (8)

B.	 Semicircle

Let us begin by considering a two-dimensional version of surface

reconstruction. In Figure 8 observe that the unit normal to a

semicircular surface cross section is everywhere aligned with the

radius. It therefore follows that triangles OPQ and PST are similar,

4

i

3



x AXIS

f

E

and so

fi

E	 OP	 Ott s QP	 _	 PS	 PT ^, TS	 (9)

But vector OP in the radius vector (x,z), and PS is the unit normal

vector (Nx, Nz) 	 Moreover, the length OP in constant (equal to fit), and
s	 the length PS is also constant (equal to unity). hence,

Nx	 x/H	 and	 NZ	 z/R	 00)
i

x AXIS

N

FIGURE 8 LINEAR VARIATION OF N ACROSS A SEMICIRCLE

C.	 Sphere

Now consider a three-dimensional spherical surface, as shown in

Figure 9. Again the radius and normal vectors are aligned, and so from

similar figures we have

Nx : x/R	 NY	 Y/R	 and	 Nz - z/R	 (11)

P

The point to note is that Nx and NY are both linear functions of x

unit length.
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FIGURE 9 LINEAR VARIATION OF N ON A SPHERE

a

D.	 Cylinder

7

The case of the right circular cylinder is only a little more

complex. In Fipre 10 observe a cylinder of radius R centered upon a

line in the x-y plane, inclined at an angle A to the x axis. Let d be

the distance of point (x,y,0) from the axis of the cylinder. Then

d	 y.Cos A - x.Sin A	 (12)

2	 2	 2
and	 2	 = R - d	 .	 (13)

Let Nd be the component of vector N parallel to the x-y plane; it

is clearly perpendicular to the axis of the cylinder. Now, since a

cross section of the cylinder is analogous to our first, two-

dimensional, case,

Nd = d/R	 (14)
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FIGURE 10 LINEAR VARIATION OF N ON A CYLINDER

Taking components of Nd parallel to the x and y axes,

Nx R Nd.Sin A	 and	 Ny - -Nd-Cos A	 (15)

Substituting in this equation for Nd, and then for d,

Nx .	 (y.Cos A - x.Sin A).Sin A/R
(16)

and	 Ny = -(y.Cos A - x.Sin A).Cos A/R

Observe that as for the sphere, Nx and Ny are linear functions of x

and y, and that Nz can be derived from Nx and Ny.

c:

22
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VII INTERPOLATING SPHERICAL AND CYLINDRICAL SURFACES

From the preceding section, we can see that to interpolate values

for the normal vector, on spherical and cylindrical surfaces, between

points where its value is known, we need only determine the linear 	 +
3

functions that describe the components Nx and Ny. This can be done

simply from known values at any three noncollinear points. The

resulting functions can be used to predict precisely values of Nx and
i

Ny, and hence Nz also, over the entire surface. The vector field

produced is guaranteed to satisfy the integrability constraint of

Equation 7, as may be verified by substituting for Nx, Ny, and Nz from
ih

Equations 11 or 16 (for the sphere or cylinder, respectively) and S.

Finally, the orientation field can be integrated to recover range

values.

For the special test cases, because of the global nature of the

linearity of Nx and Ny, it is possible to interpolate between given

boundary values, treating Nx and Ny as essentially independent

variables. While, in general, the integrability constraint should not

be ignored, in practice, since complex surfaces can often be

approximated locally by spheres or cylinders, this constraint is weak

and its omission does not result in significant errors.



VIII	 A COMPUTATIONAL MODEL

We have implemented a	 model that uses parallel local operations to	 1
derive	 the orientation and 	 range over a smlif ce	 from boundary values.
It	 exploits the linearity	 and separability results for	 the test cases

and extends them to arbitrary smooth surfaces.
j

The overall	 system organization	 is a	 subset of	 the array	 stack

architecture	 first proposed	 in [1).	 It consists	 conceptually of two

primary arrays, one for range	 and the other for surface normal vectors,

which	 are in registration with 	 each other (and with	 the input image).

Values at each point within 	 an array are constrained by local processes

that maintain smoothness and by processes that operate between arrays to

maintain the differential/integral relationship. 	 In general, we must be

able to	 insert	 initial	 boundary value s- sparsely 	 in both	 range	 and

orientation arrays 	 and have	 the	 system relax	 to fill	 in	 consistent

intervening	 values.	 At	 present we know	 how to	 handle the restricted

case where only orientation is initially specified.
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IX THE INTERPOLATION PROCESS

4

At each point in the orientation array we can imagine a process

	

that is attempting to make the two observable components of the normal, 	 p'	 9

Nx and Ny, each vary as linearly as possible. The process looks at the
k

values of Nx (or Ny) in a small patch surrounding the point and attempts

to infer the linear function, f - ax + by + c, that best models Nx

locally. It then tries to relax the value for the point; to reduce the
a

supposed error.

There are numerous ways to implement such a process, and we shall

describe some of the ones with which we have experimented. One of the

simplest is to perform a local least-squares fit, deriving the three

parameters a, b, and c.	 The function f is then used to estimate a
j

corrected value for the central point. The least-squares fitting

process is equivalent to taking weighted averages of the values in the

patch, using three different sets of weights:

	

x Nx ,	 y Nx ,	 Nx	 (17)
i	 i i	 i	 i 3

3

j

The three parameters of f are given by three linear combinations of

these three averages.

If we are careful io use a symmetric patch with its origin at the

point in question, the sets of weights and the linear combinations are

particularly simple--the three sums in Equation (17) correspond,

respectively, to

	

2,	 2
a*	 x ►	 b*	 y s	 c*	 1	 (18)

I	 i	 i	 i	 i
t

^5



i	 -

Equations (17) and (18) can be readily solved for a, b, and c; but note

that under the above assumptions, f(0,0)-c, so computation of a and b is

unnecessary for updating the central point, unless derivatives are also
ii	

of interest.
r

An alternative approach follows from the fact that a linear

function satisfies the equation

	

02 f = 0	 (19)
i

Numerical solution of this equation, subject to boundary

conditions, is well known. 2 operator may be discretely approximated

by the operator

-1'
—1 4 —1

s —1

Applying this operator at a point in the image leads to an equation of
the form

4Nx - Nx - Nx	 Nx - Nx = 0	 ,	 (20)

	

0	 1	 2	 3	 4

and hence, rewriting,

Nx = (Nx + Nx + Nx + Nx )/4	 (21)

	

0	 1	 2_	 3	 4

Equation (21) is used in a relaxation process that iteratively

replaces the value of NxO at each point by the average of its neighbors.

Although the underlying theory is different from least-squares fitting,

the two methods lead to essentially the same discrete numerical

implementation.

The iterative local averaging approach works well in the interior

regions of a surface, but difficulties arise near surface boundaries

where orientation is permitted to be discontinuous. Care must be taken

to ensure that the patch under consideration does not fall across the
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boundary; otherwise estimation of the parameters will be in error. On

the other hand, it is necessary to be able to estimate values right up
to the boundary, which may, for example, result from another surface

occluding the one we are attempting to reconstruct.

The least-squares method is applicable to any shape of patch, which
we can simply truncate at the boundary. However, the linear combination
used to compute each parameter depends upon the particular shape, so we

must either precompute the coefficients for all possible patches (256

for a 3 x 3 area) or resort to inverting a 3 x 3 matrix to derive them
for each particular patch. Neither of these is attractive.

The above disadvantages can be overcome by decomposing the two-

dimensional fitting process into several one-dimensional. fits. We do

this by considering a set of line segments passing through the central
point, as shown in Figure 11. Along each line we fit a function,

f ax + c, to the data values, and thus determine a corrected value for
the point. The independent estimates produced from the set of dine

segments can then be averaged. If the line segmente are each symmetric

about the central point, then the corrected central value is again
simply the average of the values along the line. The principal

advantage of the decomposition is that we can discard line segments that

overlap a boundary, and often at least one is left to provide a

corrected value. We would prefer to use short symmetric line segments,

since they form a compact operator, but in carder to get into corners we

need also to resort to one-sided segments (which effectively extrapolate

the central value). We have implemented a scheme that uses the compact

symmetric operator when it can, and an asymmetric operator when this is

not possible (see- Figure 12).

We have experimented with a rather different technique for coping

with boundary discontinuities, which is of interest because it involves"

multiple intArrelated arrays of information. For each component of the

orientation vector we introduce two auxiliary arrays containing

estimates of its gradient in the x and y directions. For surfaces of

uniform curvature, such as the sphere and cylinder, these gradients will

27



FIGURE 11 SYMMETRIC LINEAR INTERPOLATION OPERATORS

FIGURE 12 ASYMMETRIC LINEAR INTERPOLATION OPERATORS

tae constant over the surface; and for others, we assume they will be

slowly varying. To reconstruct the components of the normal, we first

compute its derivatives, then locally average the derivatives, and

finally reintegrate them to obtain updated orientation estimates.

Derivatives at a point are estimated by considering line segments

through the point parallel to the axes. We again fit a linear function-

-but now we record its slope, rather than its intercept, and insert it

in the appropriate gradient array. In the interior of a region we may

use a symmetric line segment, and near boundaries, a one-sided segment,

as before. The gradient arrays are smoothed by an operator that forms a

weighted average over a patch, which may easily be truncated at a

28
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---boundary• (To form the average over an arbitrarily- shaped patch,,it is
only necessary to compute the sum of weighted values of points within
the patch and the sum of the weights, and then divide the former by the
batter.) A corrected orientation value can be computed from a
neighboring value by adding (or subtracting) the appropriate gradient.
Each neighboring point not separated by a boundary produces such an

estimate, and all the estimates are averaged.

e

j
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X ESTIMATION QE SURFACE RANGE

The process of integrating orientation values to obtain estimates

of range Z is very similar to that used in reintegrating orientation
gradients. We again use a relaxation technique, and iteratively compute

estimates for Z from neighboring values and the local surface

orientation. Here we need orientations expressed as dZ/dx and dZ/dy,
which are obtained from Nx and Ny by Equation 5. At least one absolute
value of Z must be provided to serve as a constant of ,,integration.

Providing more than one initial Z value constrains the surface to pass
through the specified points; but since the inverse path from Z to N has
not yet been implemented, the resulting range surface is not guaranteed

to be consistent with the orientations.



XI EXPERIMENTAL RESULTS
F

}

An interactive system was implemented in MAINSAIL (141 to

experiment with and evaluate the various interpolation algorithms

discussed above. This system includes facilities for generating quadric
surface test cases, selecting interpolation options, and plotting error
distributions.

i

A.	 Test Cases
/	

S
How well do each of the above interpolation techniques reconstruct

the test surfaces? To answer this, we performed a series of experiments

in which the correct values of Nx and Ny were fixed along the extremal
boundaries of a sphere or cylinder, as shown in Figure 13. The surface {

I orientations reconstructed from these boundary conditions were compared

with those of ideal spherical or cylindrical surfaces generated

analytically.

1

18)	 IbI

FIGURE 13 SPHERICAL AND CYLINDRICAL TEST CASES

The first set of experiments involved a sphere of radius 7 centered
in a 17 x 17 interpolation array. We deliberately used a coarse grid to
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test the accuracy of the reconstruction under difficult conditions. (A

coarse grid also has the experimental advantage of minimizing the number

of iterations needed for vonvergence.) Correct values for Nx and Ny

were fixed at points in the array falling just inside the circular

extremal boundary of the sphere. Table 1 summarizes the results for

this test case, using various interpolation operators.

The results on the spherical test case are almost uniformly good.

In all cases, except gradient smoothing, the maximum absolute error is

below one percent after 100 iterations ( 1.0 < Nx. Ny < 1.0). On any

cross section through the sphere, the maximum error occurs approximately

a quarter of the way in from both boundary points, the error being zero

at the boundary points and also on the symmetry axis half way between

them. We conclude that 8-connected, uniformly weighted averaging and 8-

way linear interpolation/extrapolation are superior in terms of speed of

convergence, with the linear operator preferred because of its

advantages at boundaries and corners. These conclusions generalize to

all the test cases we have studied to date. Thus, for brevity, the

experimental results that follow are reported only for the 8-way linear

operator.

The second set of experiments involved a cylinder of radius 6,

centered in an 8 x 8 interpolation array. Again, correct values for Nx

and Ny were fixed at points in the array falling just inside the

parallel lines representing the extremal boundaries of the cylinder.

With the cylinder oriented parallel to the X or X axis, the maximum

absolute error in Nx or Ny after 50 iterations was .018 and the RMS

average error .01 . After 100 iterations, the absolute error dropped to

.0004 and the RMS average to .0002. When the major axis of the cylinder

was inclined 60 degrees to the X-axis, the errors look much higher: .12

absolute and .03 RMS after 50 iterations; .108 absolute and .03 RMS

after 100 iterations; .09 absolute and .02 RMS after 300 iterations.

However, the errorful orientations were concentrated solely in the upper

'right and lower left corners of the array, where the cylinder boundary

is effectively occluded by the array edge. Extrapolation of values from
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Table i

INTERPOLATION RESULTS FOR SPHERICAL TEST CASE

Operator	 # Iterations Max. Abe. Error Average (RMS) error
( Nx,	 N.Y) (Nx, Ny)

Unifo •rmly Weighted 50
-	 _	 -	 -----------------------------------------------------------

.0165 .0075
Average over 4- 100 .0004 .0002
connected 3x3 patch

Uniformly Weighted 50 .0007 .0003
Average over 8- 100 .0000006 .0000003
connected 3x3 patch

V2 over a 4- 50 .006 -003
connected 3x3 patch 100 .00006 .00003

8-way linear interpolation/ 50 .004 .002
extrapolation (see Figure 11) 100 .00002 .00001

4-way linear interpolation/ 50 .03 .01
extrapolation Gust parallel 100 .001 .0007
to x and y axes)

Gradient smoothing over a 50 .40 .19
4-connected 3x3 patch 100 .26 .12

200 .10 .05

Gradient smoothing over an 50 .13 .05
8-connected 3x3 patch 100 .03 .01

200 .001 .0005
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the central region, where the orientationo are very accurate, into these

partially occluded corners accounts for the slow rate of convergence.

After 1,004 iterations, however, orientations are highly accurate

throughout the array.

A. Other Smooth Surfaces

Given that orientations for uniformly curved surfaoen can be

accurately r;oconstructed, the obvious next question is how well the

algorithms perform on other surfaces for which curvature is not globally

uniform. A simple case to consider is that of an elliptical boundary.

However, we immediately run into the problem of what is to be taken as

the "correct" reconstruction. When people are asked what solid surface

they perceive, they usually report either an elongated object or a squat

object, roughly corresponding to a solid of revolution about the major

or Minor axis, respectively. The elongated object is preferred, and one

cart, argue that it is more plausible on the grounds of general viewpoint

,a fat, squat object looks elongated only from a narrow range of

viewpoints). When presented with initial orientations for an elliptical

extremal boundary (Figure 14), our algorithms reconstruct an elongated

object, with approximately uniform curvature about the major axis.

They, in effect, reconstruct a generalized cylinder [151, but without

explicitly invoking processes to find the axis of symmetry or matching

the opposite boundaries.

FIGURE 14 ELLIPTICAL TEST CASE
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In a repressptative experiment, initial values for Nx and NS'f{were

,'fixtia inside an elliptic -shaped extremal boundary (major axis 15, minor

axis 5). The , .reconstructed orientations were then compared with the

orientations of the solid of revolution generated when the ellipse is
	 s:

rotated about its major axis. The resulting errors after 50 iterations

were: for Nx, .02 maximum absolute error and .:006 average RMS error;

and for ,N, .005 maximum absolute and :002 RMS.
C,,

C. Occluding Boundaries

We also wish to know how well the reconstruction process performs

when the ortentation is not known at all boundary points. In

particular, when the surface of interest iP occluded by another ob ject,

the occluding boundary provides no constraints. In such cases, the

orientation at the boundary must be inferred from that of neighboring

points, just like at any otho,-.r interior points of the surface. The 8-

way linear Operator will correctly handle these situations, since it

takes care to avoid interpolating across boundaries. We take advantage

of this ability by treating the borders of the orientation array as

occluding boundaries, so that we may deal with objects that extend out

of the image. For example, spherical surface orientations were

correctly recovered from the partially visible boundary shown in figure

15. The case of the tilted cylinder discussed above is a second

example.

FIGURE 15 TEST CASE WITH OCCLUDING BOUNDARIES

35

^	 vr`tK+.rrM .a=W.3iF:.'_ 	 <	 ^	 -.	 _ s^	 ^^^^ -.	 Pn R'°-. ._ _..	 x	 ^	 nit-arf N'^u^4^s+.^^i..Ai-+kae^,a, _y.



Experiments with occluded boundaries raised the question of just

how little boundary information suffices to effect recovery. We

experimented with a limiting case in which we attempted to reconstruct

surface orientation of a sphere from Just four initial boundary values

at the corners of the arrays. This corresponds to the image of a large

sphere whose boundary circumscribes the square array (see Figure 16).

The resulting surface orientations produced from these extremely sparse

initial conditions weve as accurate as when all the boundary

orientations are given, but more iterations were required. For example,

fixing the Nx and Ny orientations at the corners of a 17 x 17 square
r

array to the values for a sphere of radius 12, the maximum absolute

error of the reconstructed interior orientations after 400 iterations

was less than ^.,.

tF	 ^^

FIGURE 16 TEST CASE WITH SPARSE BOUNDARY CONDITIONS

D.	 Qualitative Boundary Conditions

In all the above experiments, boundary conditions were provided by

specifying exact orientations at all unoccluded points along extremal

boundaries.- The values of Nx and Ny at there points were initially

inserted in the arrays and were held fixed through all iterations. In a

complete visual system it is necessary to derive these values from the

shape of extremal boundaries in the image. In principle, this can be

done easily, since the surface normal at each point is constrained to be
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orthogonal to both the tangent to the boundary and to the line of sight.

R	 (For orthogonal	 projection, the	 normal must	 thus be	 parallel to	 the

image	 plane.)	 In	 a	 spatiallyp	 y	 quantized	 image,	 the	 accurate

determination oftangent is difficult, particularly 	 when the object is

k	 not very large compared to the quantization grid.

One	 way to	 overcome this	 problem is	 to introduce	 the notion of

qualitative, partially-constraining	 boundary conditions.	 We can,	 for

example,	 constrain	 the	 surface normals	 along	 a	 tized	 extremal^qu
(

boundary to	 be approximately	 parallel	 to the	 imae 	 and	 point

outward across	 the boundary.	 We then rely on	 the 'kerative process to
areconstruct exact	 values for	 the normals	 at point	 on the	 boundary,

treating them just like interior points.	 To implement this approach, we

introduce a	 step	 that	 at each	 iteration	 checks the	 orientation	 at

boundary	 points.	 For each	 boundary element adjacent to 	 the point, we

check	 that the surface 	 normal, has a component 	 directed outward across
9

it.	 If	 it does not, the	 value of Nx or` Ny is modified appropriately.

The	 value of Nz is	 also checked to be	 close to zero, and	 vector N is

normalized to ensure it remains a unit vector. 	 This proceso was applied

to the spherical, cylindrical,	 and elliptical test cases' and was found

to yield	 orientation values accurate to ten 	 percent, for both interior

and	 boundary	 points,	 after	 only	 100	 iterations.	 The	 principal

..oarse quantization	 rid. benlimitation on accuracy appears 	 to be theq	 g	 g

used.

i

i .
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XII DISCUSSION

Interpolating smooth surfaces from boundary conditions is a

ubiquito',^^s problem in early visual processing [1, 2, 8, 15-231. We

describo'd a solution for an important special case: the interpolation

of surfaces that are locally spherical or cylindrical, given initial

orientation values and constraints on orientation. Our principal

contributions are: the observation that components of the unit normal

vary linearly on surfaces of uniform curvature; the development of a

number of parallel computational techniques for surface reconstruction

exploiting this observation; and the clarification of some of the

conditions under which surfaces can be reconstructed from incomplete

information.

The ability to handle sparse or partially constrained initial

conditions is important in a reconstruction algorithm because often

nothing else is obtainable. Line drawing interpretation is the obvious

example, since surface orientation is constrained only along boundaries

and, in the case of surface discontinuities, is constrained only to be

orthogonal to a three-dimensional line segment; photometric constraints

yield families of normals at most points on a smooth surface, not unique

values; even direct range measurement techniques (e.g., stereo, motion

parallax, and laser range-finders) may yield data that has gaps and is

noisy.

Experimentation is continuing to determine how well the

reconstruction technique performs for arbitrary smooth surfaces, both in

absolute terms and relative to human perception. Simultaneously, we are

investigating other interpolation operators that reflect measures of

curvature appropriate to different surface types, such as soap films.

We are also extending the program to -deal with a wider range of

reconstruction problems, including,, specifically, reconstruction from



1I--

noisy	 range	 values	 and	 from	 partially	 constrained	 normals	 along j

intersection	 edges,	 mentioned	 in	 the	 preceding	 paragraph.	 These a

extensions will	 require properly	 integrating surface 	 orientation	 and

range (which m Hy require	 making the integrability condition of Equation

7	 explicit), and	 smoothing	 noisy,	 and possibly	 inconsistent,	 data.'

Ultimately,	 a general vision	 system Will	 need tho ability	 to a,dd and

delete hypothesized discontinuities	 so that surfaces and boundaries c11 9

be simultaneously refined.

Although	 the	 reconstruction	 procesE, ' --	we	 have	 described	 is

conceptually	 parallel,	 there	 are inherent	 limitations	 on	 how	 fast

information can propagate across	 the image.	 Thus, convergence speed is

of	 practical concern.	 Using larger operators 	 increases the effective

velocity	 of propagation but	 can impair precision 	 where small features

are involved.	 What seems	 to be	 required is	 a scheme	 that	 combines

multiple	 sizes	 of	 operators in	 a	 hierarchical	 organization,	 where

initial	 estimates provided by	 the larger operators are	 refined by the

smaller ones.	 We are	 studying a number,of theoretical questions raised

by a	 hierarchical	 approach to	 surface reconstruction,	 including	 the

effects of operator size on	 speed and accuracy, and the key question of

how information propagates between levels of the hierarchy.

1
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XIII CONCLUSIONS

Surface perception plays a fundamental role in early visual

processing and is a prerequisite for virtually any sophisticated visual

task. Two important contributions have been made toward a computational

theory of surface perception:

Computational techniques for inferring surface orientation
along extremal boundaries and three-dimensional boundary
conformation along surface discontinuities, as depicted in
line drawings.

* A computational technique for interpolating smooth surfaces
from sparse, noisy constraints on orientation.

A comrutational model of line drawirg interpretation has been
t 

proposed to NASA as the subject of follow-on research. Some important

open problems include: classification of lines into the type of

physical boundary each represents (extremal or discontinuity boundary),

recovery of 3-D space curves from noisy image curves, surface

interpolation from orientation constraints along discontinuity

boundaries, and the initial extraction of line drawings from gray-level

imagery. The significance of the proposed research lies in its

potential for explaining surface perception without recourse to analytic

photometry and idealized models of lighting and surface reflectance.

Dependence on such models is a critical flaw in many current approaches

to	 surface perception (e.g., [1, 18, 19, 23]) 	 that limits their

applicability in real scenes.
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