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ABSTRACT

The current theme of our research is the recovety of information
about the three-dimensional structure and physical characteristics of
surfaces depicted in an image. This information is directly necessary
for many vision applications, including terrain modeling, remote
aénsing, navigation, manipulaﬁi$n, and obstacle avoidance., It is also a
ﬁ%ereqniaite for general-purpdge vision systems capable of human-level
performance in such tasks as object recognition and scene description.

Work has focused on two complementary problems: (1) basic
techniques for inferring fhree-dimensional surface shape from two-
dimensional images and (2) means for integrating the ‘resul%s of
different techniques to obtain a globally consistent surface
description. In the past year, a technique was developed for
constraining surface orientation along image contours that correspond to
surface boundaries. We have also developed a means for interpolating
surface orientation estimates from a variety of sources into smooth
surfaces--a major integration problem. A computational model, based on
these techniques, was proposed for inferring +the three-dimensional

surface structure depicted in a line drawing.
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I  INTRODUCTION

Surface perception plays a fundamental role in early visual
processing, both in humans and machines [1, 2]. An explicit
representation of surface structure is directly necessary for many low-
level visual functions involved in applications such as terrain
modeling, remote sensing, navigation, manipulation, and obstacle
avoidance. It is also a prerequisite for general-purpose vision systems
capable of human-level performance in tasks such as object recognition

and scene description.

WOrk on surface perception has focused on two complementary
problems: basie  techniques for inferring three-dimensional scene
structure from two-dimensional images, and means for integréting the
resulis of different techniques to obtain a globally consistent surface

description.

Information about surfaces comes from various sources: stereopsis,
motion parallax, textuvre gradient, shading, and contour shape, to name a
few. Information may be - provided in terms of absolute or relative
values of orientation or range, depending upon the nature of the source.
Moreover, different techniques for extracting this information are valid
in different parts of the scene. For example, inferring shape from
shadingﬁis difficult on a highly textured surface or in areas of complex
illumin&tion, while stereo information is not available in textureless
areas nor areas visible only from one viewpoint. Thus, in general,
evidence is incomplete, may be quite sparse (as in line drawings), and

subject to noise, which leads to ambiguity.
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Any attempt to derive éiobally consistent surface descriptions from
these diverse local sources must therefore address the following basie
computational problems:

(1) Interpolating sparse data
(2) Smoothing noisy data

(3) Deciding which techniques are appliveble in which parts
of the scene :

(4) Integrating different types of data from different
gources , _

(5) Deciding the location and physical type of boundaries.

In the past year we have made important contributions in both the
technique and integration aspects of surface perception. We have
studied the use of contour shape as a source of information about the
conformation of surfaces and their boundaries in space. This work has
led to = theory for the three-dimensional interpretation of line
drawings such as Figure 1. Iine drawings depict intensity
discontinuities at surface boundaries, which, in many cases, are the
primary source of surface information available in an image: i.e., in
areas of shadow, complex (secondary) illumination, or specular surfaces
where analytic photometry is inappropriate. Understanding how 1line
drawings convey three-dimensionality is thus of fundamental importance.

A major integration problem in line drawing interpretation, and in
surface perneption generally, involves interpolating Vsmooth surfaces
from sparse, possibly contlicting boundary conditions. We Thave
‘developed a solution for an important special case: the interpolation
of surfaces that are locally spherical or cylindrical from initial
orientation values and constraints on orientation. The method produces
essentially exact reconstructions when applied t0 spherical and
cylindrical test cases and, for other smooth surfaces, produces results

that seem in reasonable agreement with human perception.

Our  work on line drawing interpretation and surface interpolation
is an integral part of an ambitious program of basic vision research at
SRI, which is jointly supported by NASA, ARFA, and NSF.
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IT LINE DRAWING INTERPRETATION

Our objective dis the development of a computer model for
interpreting two-dimensional line drawings, such as Figure 1, as three-
dimensional surfaces and surface boundaries. Specifically, given a
perspectively correct line drawing depicting discontinuities of smooth
surfaces, vy desire arrays containing values for orientation and
relative range at each point on:- the implied surfaces. The
interpretation of line drawings as three-dimensional surfaces is
distinct from earlier work on interpretation in terms of object models
[3-6] and more fundamental. No knowledge of plants is required to
understand the three-dimensional structure of Figure 1, @s can be
demonstrated by looking at the arbitrary surfaces depicted when portions

of leaves are viewed out of context (e.g., through a mask),

A. Nature of the Problem

The central problem in perceiving line drawings is one of
ambiguity: in theory, each two-dimensional 1line in the image
corresponds to a possible projection of an infinitude of three-
dimensional space curves (see Figure 2). Yet people ere not aware of
this massive ambiguity. When gasked +to provide a three-dimensional
interpretation of an ellipse, the overwhelming response is a tilted
circle, not some bizarrely twisting curve (or even a discontinuous one)
that has the same image. What assumptions about the scene and the

imaging process are invoked to constrain this unique interpretation?
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FIGURE 1 LINE DRAWING OF A THREE-DIMENSIONAL SCENE

Surface and boundary structure are distinctly perceived
despite the ambiguity inherent in the irmaging process,
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FIGURE 2 THREE-DIMENSIONAL CONFORMATION OF LINES DEPICTED IN A
LINE DRAWING 1S INHERENTLY AMBIGUOUS

All of the space curves in this figure project into an eflipse in the image plane,
but they are not all equally likely interpietations.
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B. Nature of the Solution

We obeserve that although all the lines in Figure 1 1look
fundamentally alike, two distinct types of scene event are
depicted: extremal boundaries (e.g., the sides of the vase) where a
surface turns smoothly away from the viewor, and discontinuity
boundaries (e.g., the edges of the leaves) where smooth surfaces
terminate or intersect. Each type provides different constraints on
three-dimensional interpretation.

At an extremal boundary, the surface orientation can be inferred
exactly; at every point along the boundary, orientation is normal to the
line of sight and to the tangent to the curve in the image [1].

A discontinuity boundary, by contrast, does not directly constrain
surface orientation. However, dits local two-dimensicnal curvature in
the image does provide a statistical constraint on the local plane »of
the vorresponding three-dimensional space curve, and thus reiative de, %
along the curve. Moreover, the surface normal at each point along the
boundary is then constrained to be orthogonal to the three-dimensional
rangent in the plane of the space curve, leaving only one degree of
freedom unknown; i.e., the surface normal is hinged to the tangent, free
to swing about it as shewn in Figure 3.

The ability to infer 3-D surface structure from extremal and
discontinuity boundaries suggests a three-step model for line drawing
interpretation, analogous to those involved in our intrinsic image model
[1]: 1ine sorting, boundary interpretation, and surface interpolation.
Each line is first classified according to the type of surface voundary
it represents (i.e., 2xtremal versus discontinuity). Surface contours
are interpreted as thrmé~dimensional space curves, providing relative 3~
D distances along each curve; local surface normals are assigned along
the extremal boundaries. Finally, three-dimensional surfaces consistent

with these boundary conditions are constructed by interpolaticn.

The following two sections elaborate two key elements of the above
model. The first deals with the problem of inferring the three-
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| FIGURE 3 AN ABSTRACT THREE-DIMENSIONAL SURFACE CONVEYED
‘ BY A LINE DRAWING

- Note that surface orientation is constrained to one degree of freedom
% along discontinuity boundaries,

dimensional conformation of a discontinuity boundary from its image
contour. - The second presents an approach for interpolating smooth

surfaces consistent with orient:tion constraints along boundaries.
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IIT  INTERPRETATION OF DISCONTINUITY BOUNDARIES

To  recover the three-dimensional conformation of a surface
diacon@yﬁuity houndary n’fxom its imaga, we invoke two
aaaumpﬁiona: surface smoothness and general position. The smoothness
asaumpgian implies that the space curve bounding a surface will almo be
smooth. ‘the assumption that the scene is viewed from o general position
implies that a smooth curve in the image resulta from a smooth curve in
space, and not from an accident of viewpoint. In Fiéure #, for exampls,
the sharply receding curve projects into a smooth ellipse from only one
viewpoint. fThus, such a curve would be a highly dmprobable three-
dimensional interpretation of an ellipse.

The problem now is to determine which smooth spide curve is most
likely. Tor the special case of a wire curved in gpace, which can be
regarded as a thin, ridbon-like surface, we conjectured that, of all
projectively-equivalent space curves, humans perceive that curve having
the most uniform curvature and the least torsion [7]; i.e., they
perceive the space curve that is smoothest and most planar. The ellipse
in Tigure 2 is 4%hus almost universally perceived as a tilted circle.
Consiatent findings were reported in recent work by Witkin [8] at MIT on
human interpretation of the orientation of planar closed curves.

A. computational Models

The smoothness of a sapace curve is expressed quanﬁitatively in
terms of intrinsic characteristics such as diffevential curvature (k)
and torsion (%), as well as vectors giving intrinsic axes of the
curve: tangent (1), principaly normal (N), and binormal (B). k is
defined as the reciprocal of the radius of the osculating circle at each
point on the curve. N is the vector from the center of curvature normal
to the tangentQ B, the vector cross product of T and N, defines the
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normal to the plane of ourve. Torsion t is . the spatial derivative of
the binormal and expresses the degree to which the curve twists out of a
plane. For fﬁrther details, see any standard text on vector
differential geometry, such as [9].

An  obvious measure for the smoothness of a space curve is
uniformity .of curvature. Thus, one mnight seek the apace curve
corresponding to a given image curve for which the integral of k' (the
spatial derivative of k) was minimum. This alone, however, is

ingufficient, since the integral of k' could be made arbitrarily small .

by stretching out the space curve so that 1t approaches a twisting
straight line (see Figure 4). Uniformity of curvature also does not
indicate whether a circular arc in the image should correspond to a %=D
circular are or to part of a helix. A necessary add¢itional constraint
in both cases is that the space curve corrasponding to a glven image
surve should be as planar as possidble, or more precisely, that the
integral of its torsion should also be mininized.

1

FIGURE 4 AN INTERPRETATION THAT MAXIMIZES UNIFORMITY OF
CURVATURE
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Integral 1 expresses both the smoothness and planarity of a space v 3
curve in terms c¢f a ningle, locally computed differential measure ,
d(kB)/ds. To interpret an image curve, it is thus necessary to find the >
projectively equivalent space curve that minimizes thia integral.

- ~ | . (1) |
| ﬁ(kB/ds)st = ﬁk? + k27 |
\?f*,\, ! i ;

Intuitively, minimizing (1) corresponds to'' finding the three-
i dimensional projection of an image curve that most closely approximates
: a planar, circular arc, for which k' and t are both everywhere zero.

A computer model of this recovery theory was implemented to test
its competence. The progra& accepts a description of an input curve as
‘ a sequence of two-dimensional image coordinates. Bach input point, in
' conjunction with an assumed center of projection, defines a ray in space

~along which the corresponding space curve point is constrained to lie
(Figure 5). The program can adjust the distance associated with each

B L

space curve point by sliding it along its ray like a bead on a wire.
From the resulting 3-D coordinates, it can compute local estimates for
curvature k, intrinsic axes;T, N, and B, and the smoothness measure
a(kB) /as. ”

\‘\:‘r\ i
’ An iterative optimization procedure was used to determine the

configuration of points that minimized the integral in Equation 1. The

optimization proceeded by independently adjusting each space curve point
to minimize d(kB)/ds locally. (Note that local perturbations of z have

only local effects on curvature and torsion.)

The program was tested using input coordinates synthesized from
known 3-D space curves so that results could be readily evaluated.
| Correct 3-D interpretations were produced for simple open and closed
curves such as an ellipse, which was interpreted as a tilted circle, and
a trapezoid, which was interpreted as a tilted rectangle. However,
convergence was slow and somewhat dependent on the initial choice of z-
values. For example, the program had difficdlty converging to the
"tilted-circle" interpretation of an ellipse if started either with all

10

Lk diait i e




FIGURE &

AN ITERATIVE PROCEDURE FOR DETERMINING THE OPTIMAL SPACE CURVE
CORRESPONDING TO A GIVEN LINE DRAWING

Projective rays constrain the three-dimensional position associated with each image
pLint to one degree of freedom,

"
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z=-values in a plane parallel to the image plane or all randomized to be
highly nonplanar.

To overcome these deficlencies, we experimented with an alternative
approach based on ellipse fitting that involveﬁfﬁgra local constraints.
Mathematically, a smooth space curve can be locally approximated by arcs
of circles. Circular arcs project as elliptic ares in an image. We
already“ know that an ellipse in the image corresponds to a circle in
three-dimensional space; the plane of the circle is obtained by rotating
the plane of the ellipse about its major axis by an angle equal to cos=1
(minor axis/major axis). The relative depth at points along a surface
contour can thus be determined, in principle, by 1locally fitting an
ellipse (five points suffice to fit a general conic) and then projecting
the local curve fragment back onto +the plane of the corresponding
circular arc of space curve. Assuming orthographic projection, a simple
linear equation results, relat@ng differential depth along the curve to
differential changes in its image coordinates, as shown in Equation 2:

(2)
dz = adx + bdy

The ellipse-fitting method yielded correct 3-D interpretations for
ideal image data but, not surprisingly, broke down due to large fitting
errors when small amounts of quantization noise were added.

Two other possible solutions ard currently under consideration: a
hierarchical approach in which gross orientation is first determined
from large fragments of an image curve; and a two-dimensional approach,
in which refinement of boundary interpretations is integrated with the
process of interpolating smooth surfaces over the interior regions. fhe
gecond alternative is appealing on éeveral grounds. First, it avoids
explicit segmentation of the dimage curve, into smoothly curved
fragments, a process likely to be both expensive and ~error - prone.

Second, it allows Boundary smoothing - to propagate across surfaces so

‘tiat each boundary point is refined by every other, not just. those

immediately ad jacent. Promising preliminary results wifh integrated
\boundary refinement = and surface = interpolation are reported in

Section IV.

12
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IV SURFACE INTERPOLATION
Given pconstraints on orientation along extremel and discontinuity
boundaries, the next problem is %o interpolate smooth surfaces
consistent with these boundary conditions. The problem of surface

interpolation is not peculiar to contour interpretation, but is “

fundamental to surface reconstruction, since data are generally not
available at every point in the image. We have implemented a séiutiOn
for an important case: the »interpolation of approximately uniformly
curved surfaces from initiai orientation values and constraints on

orientation.

The approach exploits an obgervation that components of the unit
normal vary linearly across the images of surfaces of uniform curvature.
An array of simple parallel processes performing iterative local
averaging of the normal c&mponents at neighboring points can thus
recover an orientation array from sparse orientation estimates along
extremal boundaries. Experiments on spherical and cylindrical test
cases produced essentially exact reconstructions, even when boundary
values were extremely sparse or only partially constrained. Results for
arbitrary smooth surfaces seem in reasonable agreement with human

perception.

13
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V  COMPUTATIONAL PRINCIPLES

We Dbegin with a precise definition of the surface reconstr%ction

X

problem in terms of input and output.

The input is assumed to be in the form of sparse arrays, containing
local estimates of surface range and orientation, in a viewer-centered

coordinate frame. In practice, the estimates may be clustered where the

information is obtainable, such as along curves corresponding to surface
boundaries. In general, they are subject to error and may be only
partially constrained. For example, given a three-dimensional boundary,
the surface normals are only constrained to be ‘orthogonal to the
boundary elements. We also assume that the location and nature of all
surface.boundaries are known, since they give rise to discontinuities of
range or orientation. This 1last condition is required in the current
implementation and is intended to be relaxed at a later date to

accommodate imperfect boundary detection.

The desired output is simply filled arrays of range and surface
orientation representing the most likely surfaces consistent with the
input data. Refinement of hypothesized surface discontinuities is also
desired. These output arrays are analogous to our intrinsic images [1]
or Marr's 2.5D sketch [2].

For any given set of input data, an infinitude of possible surfaces
can be found to fit arbitrarily well. Which of these is best depends
upon assumptions about the nature of surfaces in the world and the image

formation process. Ad hoc smonthing and interpolation schemes that are

not rooted in these assumptions lead to incorrect results in simple-

cages. For example, given a few points on the surface of a sphere,
iterative local averaging [10, 11] of range values will mnot recover a

spherical surface.

14
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A. Assumptions About Surfaces

The principal assumption we make about physical surfaces is that
range and orientation are continuous over them. We further aasﬁhe that
each point on the surface is essentially indistinguishable from
neighboring points. Thus, in the absence of evidence to the contrary,
it follows +that local surface characteristics must vary as smoothly as
possible and that the total variation i& minimel over the surface.
Range and orientation are both defined with reference to a viewer-
centered coordinate system, and so they cannot directly be the criteria
for evaluating the intrinsic smoothness of hypothetical surfaces. The
simplest appropriate measures involve the rate of change of orientation
over the surface; principal curvatures (ki, k2), Gaussian (total)
curvature (k1*k2), mean curvature (ki+k2), and variations upon them all
reflect this rate of change [9]. 'Two reasonable definitions of
smoothness of a surface are uniformity of some appropriate measure of
curvature [7], or minimality of integrated squared curvature [8].
Uniformity can be defined as minima)l variance or minimal integrated

maénitude of gradient.

The choice of a measure and how to employ it (e.g., minimize the
measure or its derivative) depands, in general, upon the nature of the
process that gave rise to the sugﬁaca. For example, surfaces formed by
elastic membranes (e.g., soap f;ﬁhs) are constrained to minimum energy
configurations characterized by'hinimum area and 2zero mean curvature
{12]; surfaces formed by bending sheets of inelastic material (e.g.,
paper or sheet metal) are characterized by zero Gaussian curvature [13};
surfaces formed by many machining overations (e.g., planes, cylinders,

and spheres) have constant principal curvatures.-

We are notvprepared, at this point, to maintain that any of these
measures 1is inherently superior, particularly because of various close

relationships that exist between them. We note, for example, that

- minimizing the integrated square of mean curvature is equivalent to

minimizing the sum of integrated squares of principal curvatures and the

15
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integrated Gaussian curvature, G, as shown by:

2 2 2
-/(‘ki + k2) .da -ﬁd .da +/;c2 .da + ?/;:1’1:2,(3& -
= (3)
2 2 ‘
; -ﬁc1 -da *ﬁa Oda + gﬁcda

We also note that making curvature uniform by minimizing its variance of
any measure over a surface is equivalent to minimizing total squared
curvature, if the integral of curvature is constant. This follows from
the well-known fact that for any function, f(x),

2
Variance of f = ﬁt‘-fbar) .dx

2 2
-ff dx - [ Jf.ax] / Dx

On any developable surface for which Gaussian curvature, G, is
everywhere zero, and on a surface for which orientation is known
everywhere at its boundary (e.g., the boundary is extremal), 4the
integral of G is its integrated square are equivalent.

By itself, however, uniformity of Gaussian curvature is not
sufficiently constraining. Any developable surface is perfectly uniform
by this criterion, so considerable ambiguity remains, as is evident in
Figure 6, where all the developable surfaces asatisfy the same boundary
conditions. Thus a secondary constraint, such as uniformity of mean
curvature, is required to find the smoothest developable éurface.

In this paper we focus on surfaces with reasonably uniform
curvature--gurfaces that are locally spherical or cylindrical. We shall
demand exact reconstructiéns for spherical and c¢ylindrical test cases
and dintuitively reasonable reconstructions for other smooth surfaces.
In particular, given surface orientations’ defined around a ec¢ircular
outline, corresponding to the extremal:boundary of a sphere, or along
two parallel lines, corresponding to the extremal boundary of a right
circular cylinder, we require interpolation +to yield +the correct

16
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IMAGE

FIGURE 6 SURFACS WITH ZERO GAUSSIAN CURVATURE
SATISFYING COMMON BOUNDARY CONDITIONS

spherical or cylindrical surface, with uniform (Gaussian,

mean, and
principal) ourvature.

These csses are important because they require

reconstru¢tions that are symmetric in three dimensions and independent

of viewpoint. Many simple interpdlation techniques fail +this test,

producing surfaces that are too flat or too peaked. Given good

performance on the test cases, we can expect reasonable performance in
general.

17
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VI A RECONSTRUCTION ALGORITHM

Although in principle correct reconstruction for our test cases can
be obtained in many ways, the complexity of the interpolation process
depends critically upon‘the representation. For example, representing
surface orientation in terms of gradient space leads to difficulties
hecause gradient varies very nonlinearly‘across the image of a smooth
surface, becoming infinite at extremal boundaries. We shall now propose
an approach that leads to elegantly simple interpolation for our test

cages,

A. Coordinate Frames

Given an image plane, we shall assume a right-handed Cartesian
coordinate system with x- and y- axes lying in the plane (see Figure 7).
We also assume orthogonal projection in the direction of the z-axis.
Each image point (x,y) has an associated range, 2Z(x,y); the
corresponding scene point is thus specified by ( x, y, Z(x,y) ).

SURFACE

18
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Each image point also has an associated unit vector thet specifies the
local surface orientation at the corresponding scene point:

Nx,y) = ( Nx(x,y), Ny(x,y), Na(x,¥) )
Since N is normzl to the surface Z,

Nx/Nz = = d2/dx '5)
(5
and Ny/Nz = = a2/dy .

(The derivatives dZ/dx and d2/dy correspond to p and q vhen the surface
normal is represented in gradient space form, (p,q,-1).)

Differentiating Equation (5), we obtain

2
d(Nx/Nz)/dy = - 4 Z/dy.dx
(6)

2
and d(Ny/Nz)/dx = - a4 Z/dx.dy .

For a smooth surface, the terms on the right of (4) are equal, hence

d(Nx/Nz)/dy = d(Ny/Nz)/dx . (7)

Finally, since N is a unit vector,

2 2 2
Nx +Ny + Nz =1 (8)

B. Semicircle

Let us begin by consi&ering a two-dimensional' version of surface
reconstruction. In TFigure 8 observe that the unit normal to a
semicircular surface cross section is everywhere aligned with the
radius. It therefore follows that triangles OPQ and PST are similar,

19

H
i
K 3
: 1
5 ]
§
i
i
;
é
|
i
|
i
]
|
3
¢
L
k'
o F



. mmmwrm'm

S

and so
OP:0Q: QP = PS:Pr:;?8 . (9)

But vector OP is the radius vecotor (x,z), and PS is the unit normal
vector (Nx,Nz). Moreover, the length OP is constant (equal to R), and
the length PS is also constant (equal to unity). Hence,

Nx = x/R and Nz = z/R . (10)
z AXIS
A
N N,
R !
gl
\ d X AXIS
X

FIGURE 8 LINEAR VARIATION OF N ACROSS A SEMICIRCLE

c. Sphere

- Now consider a three-dimensional spherical surface, as shown in
Figure 9. Again the radius and normal vectors are aligned, and so from
gimilar figures we have

Nx = x/R Ny = y/R and Nz = z/R . (11)

The poinf to note is that Nx and Ny are both linear functions of x
unit length.

20
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" FIGURE® LINEAR VARIATION OF N ON A SPHERE

D. Cylinder

The case of the right circular cylinder is only a little more
complex, In Figure 10 observe a cylinder of radius R centered upon a
iine in the x-y plane, inclined at an angle A to the x axis. Let d be
the distence of point (x,y,0) from the axis of the cylinder. Then

i

d = y-COS A - x.Sin A (12)

and z = R - 4 . (13)

Let Nd be the component of vector N parallel +to the x-y plane; it
is clearly perpendicular to the axis of +the cylinder. Now, since a

cross section of the cylinder is analogous to our first, two-

dimensional, case,

N = d4/R . (14)
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FIGURE 10 LINEAR VARIATION OF N ON A CYLINDER
Taking components of Nd parallel to the x and y axes,
Nx = Nd.Sin A and Ny = -Nd.Cos A . (15)
Substituting in this equation for Nd, and theh for 4,

Nx

and Ny

{b) 4

(16)
-(y.Cos A - x.5in A).Cos A/R .

Observe that as for the sphere, Nx and Ny are linear functions of x

and y, and that Nz can be derived from Nx and Ny.
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* VII  INTERPOLATING SPHERICAL AND CYLINDRICAL SURFACES

From the preceding section, we can see that to interpolate values
for the normal vector, on spherical and c¢ylindrical surfaces, between
points where its value is known, we need only determine the linear
functions that describe the components Nx and Ny. This can be done
simply from known values at any three noncollinear iboints. The
resulting functions can be used to predict precisely values of erénd
Ny, and hence Nz also, over the entire surface. The vector field
produced is guaranteed to satisfy +the integrability constraint of
Equation 7, as may be verified by substituting for Nx, Ny, and Nz from
Equations 11 or 16 (for the sphere or cylinder, respectively) and 8.
Finally, the orientation field can be integrated to recover range

values.

For the special test cases, becaus¢ of the global nature of the
linearity of Nx and Ny, it is possible to interpolate between given
boundary values, treating Nx and Ny as essentially independent
variables. While, in general, the integrability constraint should not
be ignored, in ©practice, since complex surfaces can often be
approximated 1locally by spheres or cylinders, this constraint is wesak

and its omission does not result in significant errors.
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VIIT A COMPUTATIONAL MODEL

We have implemented a model that uses parallel local operations to
derive the orientation and range over aﬁguff&ce from boundary values.
It exploits the linearity and separability results for the test cases

and extends them to arbitrary smooth surfaces.

The overall system organization is a Bsubset of the array stack
architecture first proposed in [1]. It consists conceptually of two
primary arrays, one for range and the other for surface normal vectors,
which are in registration with each other (and with the input image).
Values at each point within an array are constrained by local processes
that maintain sgoothness and by processes that operate between arrays to
maintain the differential/integral relationshii. In general, we must be
able to insert initial boundary values ’ sparsely in both range and
orientation arrays and have the system relax ¢to fill in consistent
intervening values. At present we know how to handle the restricted

case where only orientation is initially specified.
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IX  THE INTERPOLATION PROCESS

At each point in the orientation array we can imagine a process
that is attempting to make the two observsble components of the normal,
Nx and Ny, each vary as linearly as possible. The process looks at the
values of Nx (or Ny) in a small patch surrounding the point and attempts
to infer the linear function, f = ax + by + ¢, that best models Nx
locally. It then tries to relax the value for the point to reduce the
supposed error.

There are numerous ways to implement such a process, and we shall
describe some of the ones with which we have experimented. One of the
simplest 1is to perform a local least-squares fit, deriving the three
parameters a, b, and ¢. The function f is then used to estimate a
corrected value for the central point. The 1least-syuares fitting
process is equivalent to taking weighted averages of the values in the
patch, using three different sets of weights:

2 x Nx , Z y Mx , iZNx. . (17)
1

i i i i i1
The three parameters of f are given by three linear combinations of
these three averages.

If we are careful to use a symmetric patch with its origin at the
point in question, the sets of weights and the linear combinations are
particularly simple--the three sums in Equation (17) correspond,

respectively, to

> . 2y 2
a%* X, b* Y, c* 1 . (18)

i i 4 i
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Equations (17) and (18) can be readily solved for a, b, and c; but note
that under the above assumptions, £(0,0)=c, so computation of a and b is
unnecessary for updating the central point, unless derivatives are also
of interest.

An alternative approach follows from the fact that a linear
function satisfies the equation

V2f = 0 . (19)

Numerical solution of +this equation, subject to  boundary

conditions, is well known. 2 operator may be discretely approximated
by the operator ‘

-1
"'1 4 "'1 .
-1

Applying this operator at a point in the image leads to an equation of

the form

4Nx -Nx -Nx -Nx -~Nx = 0 , (20)
0 1 2 3 4

and hence, rewriting,

Nx = (§x + Nx +Nx +Nx)/4 . (21)
0 1 2 3 4

Equation (21) is used in a relaxation process that iteratively
replaces the value of Nxy at each point by the average of its neighbors.
Although the underlying +theory is different from least-squares fitting,
the +two methods lead to essentially the same discrete numerical

implementation.

The iterative 1local averaging approach works well in the interior
regions of a surface, but difficultles arise near surface boundaries
where orientation is permitted to be discontinuous. Care must be taken

to ensure that the patch under consideration does not ' fall across the
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boundary; otherwise estimation of the parameters will Ye in error. On
the other hand, it is necessary to be able to estimate values right up
to the boundary, which may, for example, result from another surface
occluding the one we are attempting to reconstruct.

The least-squares method is applicable to any shape of patch, which
we can simply truncate at the boundary. However, the linear combination
used to compute each parameter depends upon the particular shape, so we
must either precompute the coefficients for all possible patches (256
for a3 x 3 area) or resort to inverting a 3 x 3 matrjx to derive them
for each particular patch. Neither of these is attractive.

The above disadvantages can be overcome by decomposing the two-
dimensional fitting pfocesa into several one-dimensional fits. We do
this by considering a set of line segments passing through the central
point, as shown in Figure 11. Along each line we fit a function,
f =‘éx + ¢, to the data values, and thus determine a corrected value for
the point. The independent estimates produced from the set of ‘line
segments can then be averaged. If the line segments are each symmetric
about the central point, then the corrected central value is again
simply the average of the values along <the 1line. The principal
advantage of the decomposition is that we can discard line segments that
overlap a boundary, and often at least one is 1left to provide a
corrected value. We would prefer to use short symmetric line segments,
since they form a compact operator, but in order to get into corners we
need also to resort to one-sided segments (which effectively extrapolate
the central value). We have implemented a scheme that uses the compact
symmetric operator when it can, and an asymmetric operator when this is
not possible (see Figure 12).

We have experimented with a rather different technique for coping

with boundary discontinuities, which is of interest because it involves™

multiple interrelated arrays of information. For each component of the

orientatién vector we introduce two auxiliary arrays containing
i

estima@ésh of its gradient in +the x and y directions. For surfaces of

unifqyﬂ éurvature, such as the sphere and cylinder, these gradients will
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FIGURE 11 SYMMETRIC LINEAR INTERPOLATION OPERATORS

FIGURE 12 ASYMMETRIC LINEAR INTERPOLATION OPERATORS

he constant over the surface; and for others, we assume they will be
slowly varying. To reconstruct the components of the normal, we first
compute its derivatives, then locally average the derivatives, and

finally reintegrate them to obtain updated orientation estimates.

Derivatives at a point are estimated by considering line segments
through the point parallel to the axes. We again fit a linear function-
-but now we record its slope, rather than its intercept, and insert it
in the appropriate gradient array. In the interior of a region we may
use a symmetric line segment, and near boundaries, a one-sided segment,
as before. The gradient arrays are smoothed by an opefator that forms a
veighted average over a patch, which may easily be truncated at ‘a

R

<
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' a»poundary- (To form the average over an arbitrarily-shaped patch, it is
only necessary to compute the sum of weighted values of points within
the patch and the sum of the weights, and then divide the former by the
latter.) A corrected orientation value c&n be computed from a

neighboring value by adding (or subtracting) the appropriate gradient.
Each neighboring point not separated by a boundary produces such an
estimate, and all the estimates are averaged.

Y

29

PTG Ve M X T 2 8T

e



s

X  ESTIMATION OF SURFACE RANGE

The process of integrating orientation values to obtain estimates
of range 2 is véry similar to that used in reintegrating orientation
gradients. We again use a relaxation technique, and iteratively compute
estimates for 2 from neighboring values and the 1local surface
orientation. Here we need orientationn expressed as d2/dx and dZ/dy,
which are obtained from Nx and Ny by Equation 5. At least one absolute
value of 2 must be provided to serve as a constant of integration.
Providing more than one initial Z value constrains the surface to pass
through the specified points; but since the inverse path from 2 to N has

" not yet been implemented, the resulting range surface is not guaranteed

to0 be consistent with the orientations.

=
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XI  EXPERIMENTAL RESULTS

An  interactive system was implemented in MAINSAIL [14] to~

experiment with and evaluate the various interpolation algorithms
discussed above. This system includes facilities for generating quadric
surface test cases, selecting interpolation options, and plotting error
distiributions.

A. Test Cases

How well do each of the ahove interpolation techniques reconstruct
the test surfaces? To answer this, we performed a series of experiments
in which the correct values of Nx and Ny were fixed along the extremal
boundaries of a sphere or cylinder, as shown in Figure 13. The surface
orientations reconatructed from these boundary conditions were compared
with those of ideal spherical or cylindrical surfaces generated
analytically.

(a) {b)

FIGURE 13 SP“ERICAL AND CYLINDRICAL TEST CASES

The first set of experiments involved a sphere of radius 7 centered
in a 17 x 17 interpolation array. Wevdeliberately used a coarse grid to
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test the accuracy of the reconstruction under difficult conditions. (A
coarse grid also haes the experimental advantage of minimizing the number
of iterations needed for convergence.) Correct values for Nx and Ny
were fixed at points in the array falling Just ingide ¢the circular
extremal boundary of the sphere. Table 1 summarizes the resﬁlts for
this test case, using various interpolation opéiatora.

The results on the spherical test case are almost uniformly good.
In all cases, except gradient smoothing, the maximum absolute error is
below one percent after 100 iterations ( 1.0 < Nx, Ny < 1.0). On any
cross section through the sphere, the maximum error occurs approximately
a quarter of the way in from both boundary points, the error being zero
at the boundary points and also on the symmetry axis half way between
them. We conclude that 8-connected, uniformly weighted averaging and 8-
way linear interpolation/extrapolation are superior in terms of speed of
convergence, with the 1linear operator preferred because of its
advantages at boundaries and corners. These conclusions generalize to
all the test cases we have studied to date. Thus, for brevity, the
experimental results that follow are reported only for the 8-way linear

operator.

The second set of experiments involved a cylinder of radius 6,
centered in an 8 x 8 interpolation array. Again, correct values for Nx
and Ny were fixed at points in the array falling just inside the
parallel lines representing the extremal boundaries of the cylinder.
With the cylinder oriented parallel to the X or Y axis, the maximum
absolute error in Nx or Ny after 50 iterations was .018 and the RMS
average error .01 . After 100 iterations, the absolute error dropped to
.0004 and the RMS average to .0002. When the major axis of the cylinder
was inclined 60 degrees to the X-axis, the errors look much higher: .12
absolute and .03 RMS after 50 iterations; .108 absolute and .0% RMS
after 100 iterations; .09 absolute and .02 RMS after 300 iterations.
However, the errorful orientations were concentrated solely in the upper

‘right and 1lower left corners of the array, where the cylinder boundary
is effectively occluded by the array edge. Extrapolation of values from
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INTERPOLATION RESULTS FOR SPHERICAL TEST CASE

Operator

Uniformly Weighted
Average over 4-
connected 3x3 patch

Uniformly Weighted
Average over 8-
connected 3x% patch

V2 over a 4-
connected 3x3 patch

8-way linear interpolation/
extrapolation (see Figure 11)

4-way linear interpolation/
extrapolation (just parallel
to x and y axes)

Gradient smoothing over a
4~connected 3x3 patch

Gradient smoothing over an
8-connected 3x3 patch

Table

## Tterations

50
100

50
100

50
100

50
100

Max. Abs. Error Average (RMS) error

1

(Nx, NY)

.0007
»0000006

006
»00006

004
»00002

.03
001

40
+26
«10

o13
003
u001

(Nx, Ny)

.0003
0000003

«003
.00003

.002
00001

.01
.0007

19
12
005

.05
.01
.0005
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the central region, where the orientationo are very accurate, into these
partially occluded corners accounts for the slow rate of convergence.

After 1,000 iterations, however, orientations are highly accurate
throughout the array.

B. Other Zmooth Surfaces

Given that orientations for uriformly curved surfacesm can be
accurately reconstructed, the obvious next question is how well the
algorithms perform on other surfaces for which curvature is not globally
uniform. A simple case to consider is that of an elliptical boundary.
However, we immediately run into the problem of what is to be taken as
the "correct" reconstruction. When people are asked what solid surface
they perceive, they usualiy report either an elongated object or a squat
object, roughly corresponding to a solid of revolution about the major
or minor axis, respectively. The elongated object is preferred, and one
car argue that it is more plausible on the grounds of general viewpoint
‘a fat, squat object looks elongated only from a narrow range of
viewpoints). When presented with initial orientations for an elliptical
extremal boundary (Figure 14), our algorithms reconstruct an elongated
object, with approximately uniform curvature about the major axis.
They, in effect, reconstruct a generalized cylinder [15], but without
explicitly invoking processes to find the axis of symmetry or matching
the opposite boundaries.

FIGURE 14 ELLIPTICAL TEST CASE
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In a representative experiment, initial values for Nx and Nfiwere

‘fix9d inside an elliptic-shaped extremal boundary (major axis 15, minor

axis 5). The reconstructed orientatfons were then compared with the
orientations of the solid of revolution generated when the ellipse is
rotated about its major axis. The resulting errors after 50 iterations
werg:ﬂvfor Nx, .02 maximum absoluyg:error and .?06 average RMS error;
and~forﬁyy, .005 maximum absolute and JOO2 RMS.

Q

. Occluding Boundaries

We also wish to know how well the reconstruction process performs
when the orientation is not known at all boundary points. In
particular, when the surface of interest is occluded by unother object,
the occluding boundary provides no constraints. In such cases, the
orientation at the boundary must be inferred from +that of neighboring

points, just 1like at any other interior points of the surface. The 8-

B way linear operator will correctly handle these situations, singg it

takes care to avoid interpolating across boundaries. We take advantage
of this ability by treating the borders of the orientation array as
occluding boundaries, so that we may deal with objects that extend out
of the image; For example, spherical surface orientations were
correctly recovered from the partially visible boundary shown in Figure
15. The case of the tilted cylinder discussed above is a second

example. }f‘

A\, _/

FIGURE 16 TEST CASE WITH OCCLUDING BOUNDARIES
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Experiments with occluded boundaries raised the question of just
how little boundary information suffices to effect recovery. We
experimented with a limiting case in which we attempted to reconstruct
surface orientation of a sphere from just four initial boundary values
at the corners of the arrays. This corresponds to the image of a large
sphere whose boundaryrdircqmscribea the squaxe array (see Figure 16).
The resulting surface orientations produced from these extremely sparse
initial conditions weYe as agcurate as when all the¢e boundary
orientations are given, but more iterations were required. For example,
fixing the Nx and Ny orientations at the corners of a 17 x 17 square
array to the values for a sphere of radius 12, the maximum absolute
error of the rg?onstructed interior orientations after 400 iterations

was less than ” 5.

s
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FIGURE 16 TEST CASE WITH SPARSE BOUNDARY CONDITIONS

i‘,\ N
D. Qualitative Boundary Conditions

In all the above experiments, boundary conditions were provided by
specifying exact orientations at all unoccluded points along extremal
boundaries.  The values of Nx and Ny at there points were initially
inserted in the arrays and were held fixed through all iterations. 1In a
complete visual system it is necessary to derive these values from thg
shape of extremal boundaries in the image. In principle, this can b;

done easily, since the surface normal at each point is constrained to be
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orthogonal to both the tungent to the boundary and to the line of sight.
(For orthogonal projection, the normal must thus be parallel to the
image plane.) In a spatially quantized image, the accurate
determination of tangent is difficult, particularly when the object is
rot very large compared Yo the quantization grid.

One way to overcome this problem is to introduce the notion of
qualitative, partially-constraining boundary conditions. We can, for
example, constrain the surface normals along a /ﬁﬁﬁhtized extremal
boundary to be approximately parallel to the image plane and point
outward across the boundary. We then rely on the '%erative process to
reconstruct exact values for the normals at pointS on the boundary,
treating them just like interior points. To implement this approach, we
introduce a step that at each iteration checks the orientation at
boundary points. For each boundary element adjacent to the point, we
check that the surface normal has a component directed outward across
it. If it does not, the value of Nx or "Ny is modified appropriately.
The value of Nz is also checked to be close to zero, and vector N is
nermalized to ensure it remains a unit vector. This process was applied
to the spherical, cylindrical, and elliptical test cases, and was found
to yield orientation values accurate to ten percent, f&r both interior
and  boundary points, after only 100 iterations. The principal
limitation on accuracy appears to be the coarse quantization grid being

used.
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XII  DISCUSSION

Interpolating smooth surfaces from boundary conditions is a
ubiquité&g problem in early visual processing [1, 2, 8, 15-23]. We
describdﬁ a solution for an important special case: the interpolation
of surfaces that are locally spherical or cylindrical, given initial
orientation values and constraints on oiientation. Our principal
contributions are: the observation that components of the unit normal
vary linearly on surfaces of uniform curvature; the development of a
number of parallel computational techniques for surface reconstruction
exploiting this observation; and the clarification of some of the
conditions under which surfaces can be reconstructed from incomplete

information.

The ability to handle sparse or partially constrained initial
conditions is important in a reconstruction algorithm because often
nothing else is obtainable. Line drawing interpretation is the obvious
example, since surface orientation is constrained only along boundaries
and, in the case of surface discontinuities, is constrained only to be
orthogonal to a three-dimensional line segment; photometric constraints
yield families of normals at most points on a smooth surface, not unique
values; even direct range measurement 1{echniques (e.g., stereo, motion
parallax, and laser range-finders) may yield data that has gaps and is

noisy.

Experimentation is continuing to determine how well the
reconstruction technique perfofms for arbitrary smooth surfaces, both in
absolute terms and relative to human perception. Simultaneously, we are
investigating other interpolation operators that reflect measures of
curvature ”appropriate to different surface types, such as soap films.
We are also extending’ the program to deal with a wider range of

reconstruction problems, including, specifically, reconstruction from
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noisy range values and from partially constrained normals along
intersection edges, mentioned in the preceding paragraph. These
extensions will require properly integrating surface orientation and
range (which mu:y require making the integrability condition of Equation
7 explicit), and smoothing noisy, and possibly inconsistent, data.
Ultimately, a general vision system will need the ability to add and
delete hypothesized discontinuities so that surfaces and boundaries ¢ n
be simultaneously refined.

Although the reconstruction process” we have described is
conceptually parallel, there are inhereﬁf limitations on how fast
information can propagate across the image. Thus, convergence gspeed is
of practical concern. VUsing larger operators increases the effective
velocity of propagation but can impair precision where shall features
are involved. What seems to be required is a scheme that combines
multiple sizes of operators in a hierarchical organization, where
initial estimates provided by the larger operators are refined by the
smaller ones. We are studying a number of theoretical queations raised
by a hierarchical approach to surface reconstruction, including the
effects of operator size on speed and accuracy, and the key question of
how information propagates between levels of the hierarchy.
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XIIT  CONCLUSIONS

Surface perception plays a fundamental role in early visual
processing and is a prerequisite for virtually any sophisticated visual
task. Two important contributions have been made toward a computational
theory of surface perception: ”

* Computational techniques for inferring surface orientation

along extremal ©boundaries and three-dimensional boundary

conformation along surface discontinuities, as depicted in
line drawings. '

* A computational technique for interpolating smooth surfaces

from sparse, noisy constraints on orientation.

A comrutational model of 1line drawipg interpretation has been
proposed to NASA as the subject of follow-on research. Some important
open problems include: classification of 1ines into the type of
physical boundary each represents (extremal or discontinuity boundary),
recovery of 3-D space curves from noisy image c¢urves, surface
interpolation from orientation constraints along discontinuity
boundaries, and the initial extraction of line drawings from gray-level
imagery. The significance of the proposed research 1lies in its
potential for explaining surface perception without recourse to analytic
photometry and idealized models of lighting and surface reflectance.
Dependence on such models is a critical flaw in many curront approaches
to  surface perception (e.g., [1, 18, 19, 23]) that limits their

applicability in real scenes.
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