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DESIGN OF A MODULAR DIGITAL COMPUTER SYSTEM

FINAL SUMMARY REPORT

CENTRAL CONTROL ELEMENT

AUTOMATICALLY RECONFIGURABLE MODULAR COMPUTER

One cybj1a:ve of the ARMS (Automatically Reconfigurable Modular System)

spanecraft compute::, developed by Hughes Aircraft Company for NASA, is to

provide the capability to choose to maximize reliability through the use of

redundancy and switchable spare modules or to maximize processing capacity

by reconfiguration to provide multi-computing. Moreoever ARMS must be able

to switch from one mode to another as a function of real time requirements,

with no hardware changes, at a reasonable cost in power, weight, and volume.

A CCE (Central Control Element) module to control this reconfiguration is the

subject of this new technology disclosure. The CCE is a simplified imple-

mentation of the BOSS (Block Organizer and System Scheduler) mv;ule referred

to but not described in this disclosure.

This logic has been implemented and breadboarded un der NASA Contract

NAS8-27926 for the George C. Marshall Sp«ce Flight Center, Huntsville, Alabama.

It represents a "substantial advance in the state of the art" in that past
computer designs have allowed redundant processing, or multi-computing but

not both in the same computer with real-time mode switching. This new approach
allows using the same hardware for either reliability enhancement, speed en-

hancement, or for a combination of both rather than for just one of these

functions. This could prove very useful and cost-effective in a space mission

or in other applications having some high reliability tasks and some other

period of peak computation load during the computer's period of operation.

The ARMS computer controlled by the CCE consists of multiple memories

and CPE's (Central Processing Elements), one or more IOP's (Input/Output

Processors) and a 14aintenance/Status Panel. These modules are standard

computer building blocks with the exception of vipv it interface logic as
described in our previous New Technology Report. Each module contains in-

ternal detection logic utilizing redundancy and error detecting and cor-

recting codes in keeping with standard techniques used in many modern computers.
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Thus CCE and interface logic concepts implemenred in ARMS could also be applied

to other general purpose commuters needing ARMS attributes. ARMS modules can

be configured for simplex, duplex, redundant or triply modular redundant (TMR)
operation.

M&S Computing, Inc., of ftntsville, Alabama, a subcontractor to Hughes

Aircraft Company of this contract, was responsible for ARMS software develop-

ment. No new technology was discovered in the course of this subcontract.

THE ARMMS COMPUTER

Any computer system justifies the cost of its Oevelopment to the degree that

it provides new capabilities or allows earlier ones to be satisfied at reduced

cost. The Automatically Reconfigurable Modular Multiprocessor System (ARKMS)

is primarily oriented toward providing the following new capabilities for
	 f i

spaceborne computers for application in the 1980 to 1985 time period.

1. To provide a modular computer system which is responsive to many

mission types and phases.

2. To achieve through modularity a higher computing capability than

previously available for spaceborn application. A target of several

million instructions per second has been chosen.

3. To provide the capability to choose to maximize reliability through

the use of redundancy or to maximize processing capacity through

multiprocessing. This multi-mode capability must be dynamic, that

is, a given system may alternate from one mode to another as a

function of realtime requirements.

4. To maximize reliability in all applications through the incorporation

of fault detection and recovery features and through the use of high

reliability components,

The first consideration of any ARDDIS design tradeoff is to avoid

compromising these 'basic objectives. However,, continuous concern must be

maintained for the practical requirements of implementation.

.....,ma"
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ARMMS is an outgrowth and extension of two NASA development programs,

the MSFC Space Ultrareliable Modular Computer (SUMO) and the ERC Modular

Computer.

AM24S consists of a grouping of Central Processor Elements (CPE's), 1/0

Processor (IOP's), Memory Modules, and a Block Organizer and System Scheduler

(BOSS) module that will execute software routines for data and I/O schedul-

ing, interrupt processing, system test, repair, and configuration, and power

and clock switching and distribution. The IOP's and CPE's, and BOSS are

connected to the memory modules by 4 pairs of buses as shown in Figure 1.

One of the to„aghest challenges ARMMS faces is rapid reliable reconfiguration

at a reasonable cost in power, volume, and complexity. A system of processor

and memory interface logic that accomplishes this is the subject of this new

technology disclosure.

INTERMODULE INTERFACE APPROACH

An intermodule interface has been designed that allows any CPE, IOP, or

BOSS module to address any non-protected memory page. It allows any combi-

nation of simplex, duplex, or TMR streams with any combination of relative

priorities to coexist with minimum bus contention, providing that no more 	 j

than 4 CPE's, 4 IOP's, and BOSS are involved simultaneously.. Volatile storage

defining a module's role in ARMMS has been minimized and can be coded such

that transients cannot cause an undetected change in the module's status.

The interface allows all modules of a class (CPE, Memory, etc.) to be

virtually identical. Interface gate complexity and module-to-module inter-

connections have been minimized.
i

Whenever a stream is formed, BOSS sends each processor module involved

a stream status code defining all bus connections within the stream and

that stream's priority. (Mce assigned to a stream, a processor always uses
I

the pair of buses specified by the stream status code for communication to

and from memory, eliminating bus contention among processors of a given type.

For redundancy, each processor can output on a choice of two buses. This

choice is made by BOSS command. To reduce bus contention between processors

of different types, a hierarchy is established such that 1/0 and BOSS modules

can inhibit CPE modules from starting a new memory access cycle when the 	 '"?
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former modules require access to a memory bus. Similarly, BOSS (but not CPE)

modules can inhibit I/O modules' bus access. Once any module has been granted

access, it will continue to have it until transfer of the word involved has

been completed. Usually, only processors using buses needed by other processors

are inhibited, except that all processors operating synchronously in a duplex 	 i

or TMR stream are inhibited if one or more processors in the stream are in- 	 ]

hibited ensuring maivtyenance of synchronization between these processors.

Modeling indicates that speed lost due to bus contention between processors

of different types should be less than 3% exclusive of memory contention losses

that are independent of the interface design.

BOSS assigns each memory module a page address and a high, middle, or low
Y

bus response assignment in case of memory accessible by a TMR stream (or a

high or low assignment for access by a duplex stream). Memory page size will
E

equal memory module size. All memory modules assigned to a given page output

on the same bus when accessed by a simplex stream or on different buses accord-
ing to their bus response assignment when accessed by duplex or TMR streams.

Examples are shown in Figures 2 and 3. All duplex or TMR stream processors

receive memory outputs on all buses assigned to that stream. Each processor

access request contains a page address and a bus priority code. Processors

will continue to request access until it is granted or until they are temporarily

inhibited by other processor's desire to access.

The assignment codes discussed above require 6 bits from BOSS to memories,

and 9 bits from BOSS to processors, plus extra bits for error detection coding.

Each module input interface includes voting and fault detection coding logic.

These interfaces can be implemented at an estimated complexity of 1000 gates

per module.

The ARMMS priority structure will involve both hardware and software

elements. The hardware recognizes a minimum of 16 different priority levels.

The software then selects different subsets of these 16 as program requirements

dictate. The highest hardware priority goes to BOSS, since the efficiency of

the rest of the system depends on BOSS completing its tasks efficiently. The

second highest priority is a special TMR CPE mode used only ir. the event of an

error in one of three TMR channels to ensure completion of the TMR task with

maximum speed prior to initiating diagnostic tests on the stream. The next

seven priorities are for 1/0 streams on the assumption that the timing of

external events happening and mass data transfers is more difficult to control

44 	 Waffiahm"
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than the timing within processing streams and, hence, IOP memory access

requests should be given higher priorities than CPE access requests. The seven

lowest priorities are for CPE's. Different numbers of arrangements of priori-

ties could be easily implemented if required.

So long as BOSS, I/0, and CPE programs are mostly segregated into

different memory pages, all 3 types or programs should be able to be executed

simultaneously with minimal bus or memory contention. When these programs

wish to access the same memory page, the internal logic design of the memory
access logic will tend toward letting the streams access the memory a word

at a time in turn, since each processor will release the memory temporarily

between access requests, letting the next higher priority stream gain access

for one word. This results in all contending streams slowing down, but none

stopping entirely. Obviously, this does not preclude the need for designing

the software to minimize memory contention if ARMMS is to perform efficiently

as a multiprocessor.

The seven priority levels available for normal I/O and CPE scheduling are

ordered in descending priority as shown in Table I, allowing the 14 modes listed

in the table. The logic allows any of the combinations listed for CPE's to be

used simultaneously with any of the combinations listed for IOP's. Note that

the choices allow for any combination of relative priorities between streams

of differing criticality, and that the software system can change the priority

assignment of a given stream at will; also, that combinations such as 2 duplex
IO streams and a simplex plus a TMR processing stream are allowed. If IOP's

and CPE's are to be tied together in the concept of "full processing stream"

via software, both processor types could be given either the same CPE or the

same IOP priority assignment by BOSS. Otherwise, BOSS assigns IOP's only I/O

priority codes and CPE's only CPE priority codes, and the hardware provides

for complete independence of the I/O and processing streams subject only to

software restrictions.

In order to access data from memory, a processor must provide a 4-bit page

address to select one of 16 memory pages, a 4-bit priority request to allow

the given memory page to choose the highest priority stream's request and

determine if the correct number of processors agreed on this request, the number

being determined by the priority's mode (simplex, duplex, or TMR), a 3-bit 2 out

of 3 coded Read/Write/Transfer request, and a 13-bit word address to select one

of up to 8,192 words in a memory module. The first 8 of these 24 bits must be
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present for a memory to make a decision as to whether or not to grant the request.

In addition, a sync or "access request" signal must be present to tell the memory

that it is supposed to be making such a determination if these 8 bits are to be

transmitted ;)u lines that can also carry word addresses and data that might

otherwise be confused with page and priority information. The processor to

memory bus must be at least 8 bits wide plus the access request line and any

desired parity lines in order to function efficiently.

In addition to data lines, if the buses are less than a full word wide

the memory to processor bus must contain a dedicated memory response line to

signal the processor that the first bits of address have been accepted and

the processor is to continue the transmission to completion. If a processor

does not receive this response signal, it will continue to transfer the first

bits of the address to the memory interface until either the processor is

inhibited by another processor or the memory responds to the data. Since only

one processor can use the bus at a given time, all requests and responses are

unambiguous.

Three additional lines are required in connection with the memory buses

at the processors only. Each processor receives inhibit lines from each of

the other two classes of processors and sends an inhibit to these other two

classes, describing each processor's bus activity. In addition, an I/O busy

line may be required from IOP to CPE in the event of several CPE's wishing to

access a given IOP simultaneously. This will depend on the details of the

IOP's and is shown for completeness. Note that the BOSS module receives the

IOP's Memory Access Request as an inhibit rather than the IOP's normal inhibit

line which does go to the CPE. This is because the IOP's memory access request

line will not go true until all buses needed by the IOP have been cleared of

traffic and, hence, this line will inhibit BOSS only in the event that the IOP

can gain access to the memory through use of free buses or inhibiting CPE's,

maintaining BOSS priority over the IOP. The information to be transferred to

or from a memory by processors is summarized in Figure 4, assuming a 32-bit

data word plus 7 error correction code bits and a 13-bit bus width.

INTERFACE LOGIC DETAILED DESIGN

Within each processor (BOSS, CPE, or IOP) is an access request network

that will request memory access whenever an appropriate bit appears in the

\=	 ...	 -.,. ^..... .w-s .,tea..-.__.	 -.v.. ...x ...	 ...	 .. ..	 ,F
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processor's microprogram, subject to the inhibitions (BOSSINH, etc.) from other

processors. Figure S shows a gate level drawing for this logic in the case of

the CPE module. Logic for IOP and BOSS is similar and is shown in Figures 6

and 7. The choice of inhibiting factors is controlled by the Stream Assign-

ment Register in the CPE or by hardware connections in BOSS and IOP, with BOSS

having highest priority to memory, IOP middle priority,, and CPE lowest priority.

The logic also correlates memory responses (MEMRES) to its access request

(MEMREQ) and, when a response from the correct memory modules occurs, sets a

flip-flop (AGF) allowing the access to go to completion and inhibiting other

access to the bus until the cycle is comylette.as signaled by a second micro-

program bit within the processor. IOP and BOSS access con c,	logic differs

from that of the CPE only in that an Access Request Flip-Floe is incorporated

(ARF) which locks out lower priority modules from accessing memory while these

higher priority modules are requesting memory access. All modules can lock

out others while they are actually accessing memory instead of merely request-

ing it.

Figure 8 gives a detailed view of the logic within each memory module's

access control block. Figures 9 and In show the same logic at a gate level.

As the data comes in on each bus, buses whose access request lines are true

and have page addresses agreeing with a memory module's page address (PGID)

will be tested for access to the memory registers. The 16 priorities, (Ai..Pi)

are decoded and applied to the request detection and priority ordering logic.

If this circuit detects the correct number of requests of the highest priority

present at the time of the test (BOSS ... CPE SMPLXD) and the memory is not

already in use (DS 1 ... DS4-0), the memory responds (RS 1WMEM RES) on the buses

assigned to the processor generating the request and gates the response

decision into the Response and Criticality fields of the Assignment Holding

Register and to the voting logic to allow the voted data to go to the memory

registers and to set up the proper output bus paths for the memories' data

input in the case of a Read. When the cycle is complete,the Response and

Criticality fields of the Assignment Holding Register are cleared, and the

memory is ready for the next access. The bus output mode field determines

which of 3 TMR buses a memory module will output in TMR according to an

assignment from BOSS.

Each module contains voting logic which will vote any combination of 3,

compare any combination of 2, or transfer any one bus's inputs to an appropriate

"^:
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module register, signaling any disagreements to the module's status/command

network which will interrupt BOSS as appropriate, in processor modules, the

voter paths are controlled by the Stream Assignment Register, while in memory

modules they are under the control of the Response and Criticality fields of

the Memory Assignment Holding Register. This logic allows for maximum soft-

ware flexibility in the ARMMS configuration process with a moderate amount of

hardware.

Figure 11 shows 3 simple circuits for interfacing with bused data. The

first allows masking of "stuck on 0" failures in the duplex and TMR modes on

the assumption that the transmitting module was designed to transmit "O" when

it had detected an internal failure. This circuit could then be followed by

error detection or correction logic. This circuit also allows straight -through

transmission of simplex data. The second circuit is a basic voter for use in

TMR only. It does not allow error detection; only correction. The first and

second circuits could be used together for a full simplex, duplex, TMR capa-

bility. The last circuit provides a fault detection add-on, for TMR only, that

signals a fault when no combination of 3 bus inputs agree. The principal ad-

vantage in this circuit is that while it detects faults, it does not say which

bus was at fault.

Figure 12 shows the voter/switch used in baseline ARMMS. It incorporates

all the features of the three circuits discussed above, plus allowing .fault

isolation to a specific bus, This circuit normally allows ORing together any

enabled bus signals as in the first circuit above. Simultaneously, it votes

on the enabled (DS i ) data inputs in TMR and generates a fault signal (FLTi)

for any enabled bus input that disagrees with other enabled inputs. This

fault signal is output to the module's fault control logic and is used to

prevent that bus's data from passing through the data-ORing section of the

voter switch.

The intermodule interface circuits described have a gate delay of 17,

including 5 in the voter switch, 2 in the processor access control logic, and

10 in the memory access control logic. This amounts to a 51 nsec propagation

delay, assuming a 3 nsec average delay per gate for LSI silicon-on-sapphire

CMOS logic. For a 10 MHz data bus transfer clock rate, this would leave 49

nsec for bus driver, receiver and transmission delays.
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Central Control Element (CCE). The Central Control Element distributes power

and clock signals to other ARMS modules and coordinates ARMS reconfiguration

either due to new assignments from the maintenance /status panel or in response
to fault interrupts from other ARMS modules. In order to minimize costs the
breadboard CCE does not include redundancy that could be implemented in a

flight version. For maximum reliability a TMR CCE with voting between the
parts on all outputs would be desirable.

The CCE consists of individual status controllers for each ARMS module to
be controlled fault correlation logic, an overall program initiator and re-

configuration controller, switching logic for power supplied to other modules,
a crystal controlled central clock source, and external interrupt routing logic.
The CCE has no internal processing or main memory bus access capabilities but

is capable of utilizing CPE software or hardware to Enhance its own hardwired

capabilities by means of interrupts. A block diagram of the CCE is shown in
Figure 13. The following is a description of the specific enbodiment of the
CCE used in the ARMS breadboard:	 '

CPE Module Status Controller. One CPE module status controller is required for

each of the 4 CPE modules in the ARMS breadboard. Each controller keeps track

of the CPE's status (spare, active normal, active abnormal, failed) outputting

a stream assignment bit corresponding to that CPE's hardwired processor (to

memory)'bus. Together the 4 CPE module status controllers provide a 12 bit

stream assignment to all CPE's identifying which CPE's are active and which

are passive. When the CCE is powered initially, each CPE module status controller

places its CPE in the spare state. A signal from the maintenance/status panel

causes one or more of these controllers to place their CPE's in the "active

normal" state. If a fault interrupt from either a CPE or a memory module

indicates that a specific CPE may have failed that CPE's status controller is

placed in the "active abnormal" state. Figure 14 shows the various states that

a module status controller may take on.

If the CPE is operating in the simplex mode when the fault was detected,

or if it is operating in the duplex mode and the fault is detected by a memory

module without being internally detected within the CPE, the CPE module status

controller causes the Program Initiator and Reconfiguration Controller (PIRG)

logic discussed in the next section to issue a stop CPE interrupt immediately,

If the CPE is operating in the TMR mode when the fault was detected, or if it
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is operating in the duplex-mode and the fault it internally detected Within the

CPE, the controller issues a stop CPE interrupt immediately following a receipt

of a CPE available /rollback pace signal from the CPE, or after a prescribed time
interval, whichever is shorter. Once in the "active abnormal" state one of the

following events occurs in the CPE module status controller:

(a) If the CPE issues a CPE available/rollback pace signal prior to

receipt of another fault interrupt concerning this CPE the status

controller returns the CPE to the "active normal" state.

(b) If another fault interrupt concerning the CPE is received prior to

receipt of the CPE's available /rollback pace signal the controller

enters the failure pending state. From this state the reconfiguration

controller either replaces the faulty module if it has sufficient

priority and a spare is available, transferring its assignment to

the spare CPE and causing the CPE module status controller to place

its CPE in the failed state, or otherwise the reconfiguration

controller returns the CPE module status controller to the active

abnormal state. Thus modules that cannot be immediately replaced

continue to be retried, and ARMS continues to operate in the presence

of maskab le failures.

Fault interrupts from IOP or main memory modules cause issuance of a stop

CPE interrupt immediately if the CPE is operating in the simplex mode or im-

mediately following receipt of a CPE available/rollback pace signal from the

CPE if the CPE is operating in the duplex or TMR mode. The CPE module status

controller remains in the active normal state during this operation in the absence

of a fault interrupt placing blame on the CPE. The CPE module status controller

also issues stop CPE interrupts prior to any external command update of assign-

ments from the maintenance/status panel or due to an emergency such as an im-

pending power failure.

IOP Module Status Controller. The IOP module status controller design require-

ments are similar to those for the CPE module status controller with the

following exceptions:

(a) A stop IOP interrupt will not be issued unless the IOP does not

stop within a prescribed time interval after all CPEs have halted.

(b) An IOP will not be returned to the "active normal" state from the
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'"active abnormal" state unless all active. CPEs issue CPE available/

rollback pace signals prior to the receipt of another fault interrupt'

concerning this IOP.

Main Memory Module Status Controller. One again memory module status controller

will be required for each of the 4 main memory modules in the ARMS breadboard.

These controller's design requirements will be similar to those for the CPE

module status controller with the following exceptions:
(a) A stop memory interrupt is not required.

(b) A main memory module will not require stream assignment status bits
but will require page address and output bus assignments. The output

bus assignment determines if a memory module will transfer data to

CPEs or IOPs on the lower, (middle), or upper numbered memory (to

processor) bus paired with the processor (to memory) buses to which
accese was granted. An "essential/non-essential" memory status bit

is also required internal t^ the main a;emory module status controller

to determine the proper mex6 ry replacement algorithm for the recon-

figuration controller in response to a memory fault interrupt. An

essential memory contains programs and important data the loss of

which could disable a stream. A non-essential memory contains

working storage and other contents the loss of which would not disable

a stream.

(c) A main memory will not be returned to the "active normal" state
from the "active abnormal" state unless all active CPEs issue CPE

available/rollback pace signals prior to the receipt of another

fault interrupt from this memory.

Program Initiator and Reconfiguration Controller. The program initiator and

reconfiguration controller (PIRC) restarts the ARMS CPEs initially, or if they

have been stopped for any reason, and controls the transfer of status assign-

ments between individual module status controllers when ARMS reconfiguration

is required.

The program initiator logic is activated whenever a load request is re-

ceived from the maintenance/status panel, any faults are detected, or CPE.

available/rollback pace signals are not received from all CPEs within an

a
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interval timed by the PIRG logic. The various states that the PI1tC logic can

assume are shown in Figure 15. Once activated, the program initiator logic

issues stop interrupts to the CPEs as discussed in the previous section, issues

a panic halt signal to all CPRs and IOP, waits for CPE available/rollback pace

signals from all CPEs and an 'iOP available signal to stabilise in the available
states, and °hen takes one of the following actions in descending priority:

(a) In the case of an essential memory failure in the duplex or TMR mode

the program initiator logic issues a clear memory itt"trrupt to the

questionable memory, forcing its output to "0" pending completion

of initialization, followed by an initialize memory i.terrupt, along

with control information specifying the memory page to be initialized,

to the highest priority CPEs. These CPEs enter a program that alter-

nately reads from and then writes into every word in that memory page

duplicating data from the good memory(s) into the newly assigned
memory. All zero output conditions from the memory being initialized

shall be Considered to be normal until this operation is completed as

signaled by a rollback pace signal from the CPE in question. Upon

receipt of this signal the program initiator logic issues start

interrupts to any remaining active CPEs if more than one processing

stream is used in ARMS and restores the newly initialized memory to

normal operation. Upon completion the memory initialization program

automatically returns to the appropriate rollback point of the

program in progress at the time of the interrupt.

(b) in the case of any other failure the program initiator logic issues

start CPE interrupts to all active CPEs causing them to return to

the appropriate rollback point(s) for the program(s) in progress at

the time of the interrupt.

Figure 16 shows the PIRC logic necessary to respond to CPE rollback pace

signals and to issue the interrupts discussed above. The reconfiguration

controller controls the transfer of status assignments between individual

module status controllers in response to commands from the breadboard's

maintenance/status panel or to any of the individual module status controllers

entering the failure pending state. Transfers of status assignments from

failed active modules to newly activated spare modules occur once the program

initiator logic verifies that the IOP and all CPEs are available (i.e., stopped)

and prior to issurance of any interrupts by the program initiator logic with

the following restrictions;

w	 _
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(a) only one module of any given type can be replaced at a time and a

spare module of that type must be available. For example, one

memory plus one CPE may be replace j but not two CPEs at one time.
If two CPEs did fail at once, one would be retried a second time

and if it still malfunctioned and an additional spare CPE was

available it would then be replaced.

(b) Essential main memory modules optcrating in simplex cannot be re-

placed by spares since no mechanism for initializing them is

available. A permanent failure in such a memory module requires

outside intervention for correction.

The logic for transferring assignments between status controllers is shown

in Figure 17.

Fault Correlation Logic, The fault correlation logic allows the CCE to maxi-

mize the probability of correctly isolating a fault to a specific ARMS module

within limitations dictated by a reasonable level of hardwired logic cotr°''^xity

and allows the CCE to determine that certain faults are maskable so that

critical programs can continue to completion. The CCE correlates received

fault interrupts from each CPE, IOP, and main memory module with appropriate

status information from their status controllers as shown in Figure 18.

Many CPE and IOP faults may be isolated due to fault interrupts from

the module in question. Single memory module fault interrupts indicate

failures within the interrupting memory. In duplex and TMR modes simultaneous

fault interrupts from two or more memories can isolate a failure to a CPE or

IOP module whose identify is encoded in the interrupt. In the duplex mode

these interrupts may only isolate the fault to one of two CPEs or IOPs in

the absence of a direct fault interrupt from the offending module. lowever,

an arbitrary replacement of one of these modules provides 50% probability

of success in cases that f:therwise would result in an ARMS system failure.

In simplex mode detecF;abve faults (other than maskable single bit failures

within main memory modules) result in immediate rollback or replacement of the

offending module. In the absen^e of a fault interrupt from the CPE or IOP the

fault is blamed on non-essential memories or on the CPE or IOP accessing; an

essential memory in the case of an ambiguous fault. If a fault is unambiguously

isolatable to an essential memory the fault is insolvable since no mechanism
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e,xisto for initializing a spare in this mode. Some faults may be undetectable

in simpler mode.

In duplex mode virtually all faults are detectable and at least those

detectable in simplex allow the program to continue to its next rollback point

and then are correctable in real-time through reconfiguration so long as spare

modules are available. In all modes ARMS breadboard is capable of continued

computation in the presence of faults so long as these faults are Maskable.

The choice between rollback and continued computation is software determined

in that it is dependent upon whether the program is stopped before or after

the progran status block is updated. If the block has been updated the next

program is executed, if not, then the present program is repeated. Programs

shall be constructed so that they can be repeated if necessary.

Power Switching Logic. The CCE distributes power to all other ARMS modules.

The power switching logic provides power to each ARMS module whose individual

status controller places it in either an "active normal", "active abnormal",

or "failure pending" state.

Crustal Controlled Block. The CCE contains a crystal controlled oscillator

providing central clock signals to all ARMS modules to assure their synchroni-

zation.

External Interrupt Logic. The CCE holds external interrupts when they are

received and routes them to the CPEs for which they were intended. When a CPE

responds to a given interrupt it sends a response to the CCE which clears the
interrupt once it receives response from a majority of the CPEs to which the

interrupt was sent. As in the case of the power and clock distribution ex-

ternal interrupts are routed through the CCE since it is the only clement in

ARMS which remains stable throughout system reconfiguration. Clock Distri-

bution and External interrupt logic is shown in Figure 19.
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CCE Technology* and Component Count. A CCE has been breadboarded out of T 2 L

small scale integrated circuit logic. For maximum reliability it should

ultimately be implemented with CMQS LSI technology. Table 2 shows Rhe number

of gates and flip-flops required by each part of the CCE. Clearly the CCE

complexity would increase for larger numbers of controlled modules but for

ARMS it contains less than 1200 equivalent gates and is simple enough to be

readily implemented on 2 or 3 ?arge scale integrated circuits if desired.
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TABLE 1.	 .ARMMS PROCESSOR PRIORITY ASSIGNMENTS

Priority Proc. Stream
Code Type Criticality

1. (Highest)	 0000 BOSS TMR

2. 0001 CPE TMR (Special)

3. 0010 To SIMPLE? A (SA)

4. 0100 10 DUPLEX A (DA)

5. 0110 10 TMR (TR)

6. 1000 10 SIMPLEX B (SB)

7. 1010 IO DUPLEX B (DB)

6. 1100 IO SIMPLEX C (SC)

9. 1110 10 SIMPLEX D (SD)

10. 0011 CPE SIMPLEX A (SA)

11. 0101 CPE DUPLEX B (DB)

12. 0111 CPE TMR (Normal) (TR)

13. 1001 CPE SIMPLEX B (SB)

14. 1011 CPS; DUPLEX B (DB)

15. 1101. CPS: SIMPLEX C (SC)

16. (Lowest)	 1111 CPE SIMPLEX D (SD)

NOTE: IN A FULL PROCESSING STREAM AN TOP MAY BE GIVEN
THE STREAM'S CPE PRIORITY CODE.

10P AND CPE STREADI.S MAX' INDEPENDENTLY HAVE THESE 14 MODES:

4 Processors

(SA, TR) or (TR, SB)

(DA, DB)

(SA, SB, DB) or

(SA, DA, SB) or

(DA, SB, SC)

(SA, ... , SD)

3 Processors

(TR)

(SA, DA) or (DA, SB)

(SA,..., SC)

2 Processors

(DA)

(SA, qB)

I ,Processor

(SA)

k,

4
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_._...:..«.ter

TABLE 2

CCE COMPONENT COUNT

Function Gates Tl ip/Flops Total
Equiv. Gate

1. CPE Status Controller 131 28 299

2. IOP Status Controller 51 8 99

3. Memory Status Controller 159 36 375

4. Program Initiator/
Reconfiguration Control 119 13 197

5. Fault Correlation 134 0 134

6. Clock Control /Distribution 14 4 38

7. Ext. Interrupt Logic 20 2 32

628 91 1,174	 I

i
i
s

t

j
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MAIN MAIN	 MAIN	 MAIN
MEMORY MEMORY	 MEMORY	 MEMORY

moss l a	 i I•
TO/FROM
MODULE
BUSES
(^) PROC TO MEM

•USES I4)

I

^o,	 PART I

BOSS PART 2

•
•

I 9OSS PART N	 I

I	 ' MEM TO PROC.
•USES (4)

i	 MVL

IOPI CPE,IOP	 CPE	 ^^•...

SYSTEM INPUT !US

SYSTEM OUTPUT BUS

Figure 1. ARMMS System Configuration



REDUNDANT CONNECTIONS	 C CONTROL FROM BOSS	 S STATUS TO BOSS

Fi-ure 2.ARMMS Processor/Memory Interconnections — 1. Processor B Access to Memory Y In Simplcx
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•

REDUNDANT CONNECTIONS	 C CONTROL FROM BOSS 	 S STATUS TO DOSS

Figure 3.ARMMS Processor/Memory Interconnections —11. Processors A, S, D Access To Memories X, Y, Z
X,Y,Z1nTMR
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BOSS INHA

BOSS MEMRQA

INTERCONNECTS
B	 C D

2	 3 4

3	 4 1
4	 1 2
1	 2 3

CPE INHA
IO MEM RQA

MEM RES A

CPC INHB

IO MEM RQB

MEM RES B

CPE INHC

IO MEM REQC

MEM RES C

CPE INHD

IO MEMRQD

MEM RES D

BOSS

STREAM ASSIGN

FIGURE 6. BOSS MODULE MEMORY ACCESS CONTROL LOGIC

COMPLEXITY 17 GATE, 2 FLIP-FLOP,#--.20 PINS

.^
	 m
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IO INHA

CPE INHA

BOSS INHA
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IO MEMRQA

CPE INHB

BOSS INHB

MEM RESB
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MEM RESC

CPE INHD
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3NNECTS

C D

3	 4

2 2	 3	 4	 1

3 3	 4	 1	 2

4 4	 1	 2	 3

ABCD
STREAM ASSGN

W

*n nre*nr

FIGURE 7 I-0 MODULE MEMORY ACCESS CONTROL LOGIC

Complexity, 17 gates, 2 flip-flop, ':20 pins
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DS
DS

BE

DUPA
10

INTERIMEDIATn
:OR7'"Y ACCESS
QUESTS

SMPLEX
CPE

:ST PRIORITY
S REOUEST)

FIGURE 10 MEMORY MODULE ACCESS CONTROL LOGIC - DETAIL II

REQUEST DETECTION AND PRIORITY ORDERING LOGIC (ONE PER MODULE)

NOTES,

1. ALL SMPLEX DECODING IS DONE AS IN "SMPLEX I0", ALL DUPLEX DECODING
AS IN "DUPA FU", AND ALL TMR DECODING AS IN " DIR(SP)CPE".

2. ANY GIVEN PRIORITY LEVEL RECEIVES INHIBITS FROM ALL HIGHER PRIORITY LEVELS.

3. SUBSCRIPTS REFER TO BUSES - I,O: C4 IS SIGNAL C FOR BUS #4, ETC,



DATA 1
BUSEN 1

DATA 2
BUSEN 2

DATA 3
BUSEN 3

DATA 4
BUSEN 4

MASKED DATA

,IT

(2) VOTING ONLY (TMR)

BUSEN 1

BUSEN 2

BUSED 3

DATA 1

BUSEN 4

VOTED DATA

IIT

FAULT TO FAULT CONTROL LOGIC

sIT

DATA 2

DATA 3

DATA 4

(1) MASKING/SWITCH ONLY (SIVYLEX, DUPLES, TMR)

3

DATA 2

DATA 3

DATA 4

(3) DETECTION ONLY (TMR - NO ISOLATION IS AN INDIVIDUAL BUS)

DATA 1

Figure 11 MODULE INTFY.--,iS VOTING, MASKING & ERROR DETECTION LOGIC
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FLT I

FLT2

Rif	 4
OUT

DATA I I I	 I	 I
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FLT3

DATA 2
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DATA 3

DS3

FLT4
DATA 4

CIS4

TMR

DATA I....DATA 4 DATA FOR EACH OF 4 BUSES
DSI,,.,DS4 BUS SELECTION LOCK OUTPUTS (RML)
TMR TMR MODE SELECT SIGNAL (I a TMR, 0 n SMPLX, DUPLX)
OUT SIGNAL OUTPUT TO DATA REGISTERS

COMPLEXITY n 25 GATESMIT 4 LINESMIT • S RAILS

Figure 12. Universal Bus Voter/Switch (one Bit Slice - 13 Required Per Module)
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FOREWORD

This report documents fabrication and test of the

ARMS Engineering Breadboard accomplished during the

fabrication and test phase of contract NASB-27926

from June 1975 through December 1979. This effort

was a follow-on to the architecture study and logic

design phases of this contract previously completed

and documented.



CONTENTS

I.	 SINGLE STRING

1. Partial Single String Fabrication

2. Single String Test

3. IOP Fabrication and Test

4. Single String Operation

II. COMPLETE SYSTEM BUILDUP

1. CPE and Memory Modules Replicated

2. Modules Installed In Cabinet

S. Memory Modules Tested

4. CPE Modules Tested

5. Duplex and TMR Operation

6. Reconfiguration

7. System Verification Remaining

6. Problems Encountered



ry
	 ...._	 .........._	 ............	 .

I - SINGLE STRING

1. Partial Single String Fabrication

A Partial Single String ARMS Engineering Breadboard (EB), as

dictated by incremental funding, was fabricated. The partial string

ARMS EB consisted of the following:

1	 Memory Module (MEN)

1	 Central Processing Element (CPE)

1 - Central Control Element (CC£)

1 - Maintenance/Status Panel and Electronics (MSPE)

These modules were assembled (IC's installed, etc.) on subassemblies

of the frames that would be installed in the cabinet at a later date.

Computer generated wiring programs were utilized to interconnect the

IC's with termi-point wiring and to also specify the subassembly inter-

connectonw. The modules were housed in a temporary test fixture for

the duration of the single string test.



2. SINGLE STRING TEST

The purpose of testing in a single string configuration was to ensure

logical and functional correctness of each module before the memory

and CPE modules were replicated. A partial single string test was also

compatible with funding limitations.

Testing commenced with verification of power distribution thruout the

single string and verification of panel functions necessary for CCE

testing. The entire CCE module and remaining panel functions were then

tested in minute detail so that the CCE would function for single string

testing and later for full system testing. Detail test progressed as

follows:

o Clock distribution internal to CCE and distribution to the

interface wiring for a complete system.

o Initialization operation of the module status control logic

was verified including module status logic for a complete system.

Stream page and buss assignments to the complete system were

verified.

o Operation of the Program Initiator and Reconfiguration Controller

was verified including all interrupt/response signals to the

complete system.

o Operation of the Fault Correlation Logic was verified. Each

fault interrupt was simulated and the proper response verified.

The CPE module was tested in minute detail for the reasons discussed

above and also so that it could be used as a reference later when other

CPE's were brought on line and data compared at redundant memory inter-

faces. Detailed test progressed as follows:

At
	

. ,	 --



• Scanout Ver:Jicstion

• Master clear verification

• Micro program control operation

• Registers operation

• A',U operation

• Decail verification of each instruction in the instruction

set. Various short programs and other methods of inserting

data were used to exercise the various paths, options, etc.

thru the microcode for each instruction. ROM simulators were

used in place of the PROMs so that the stored microcode could

be readily chpnged.

The Memory Module was tested in minute detail for the same reasons as

the CPE Module discussed above. Detailed test progressed as follows:

o Timing & control operation

o Integration with core memory module

o Voter switch and output multiplexer logic verification

• Fault detection logic verification

• Hamming/Parity encoder and corrector verification

As a demonstration of the fault tolerant capability, a successful,

continuous read/write operation was executed with the core memory

module logic partially disabled.

3. IOP FABRICATION AND TEST

An IOP module was fabricated and added to the single string. The IOP

module was assembled on a subassembly of the same type as the other single

E



string modules and installed in the temporary test fixture. Computer

generated wiring programs were used to automatically wire the IC's.

Wire wrap wiring was the most cost effective method of Wiring at this

point in time.

The IQF !Module was tested in minute detail. Detailed test progressed

as follows:

o Common Control operation was verified. Handshaking with

reference to CAIN', CCW, (SW, CC, & IO interrupt was tested.

o TTY channe 7 operation was verified along with the Data Terminal

Controller operation. Data transfers and IO instructions were

executed to verify the TTY interface.

e Fault Detection logic was verified..

4. SINGLE STRING OPERATION

Single string operation, was verified by loading the TTY cassette with

a short program, transferring that program from the cassette to computer

memory and from memory out to the TTY printer, The program execution

verified all 10 instructions and other instructions of the SUFIC subset.

P
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COMPLETE SYSTEM BUILDUP

1. CPE and Memory Modules Replicated

PROMS for the three additional CPE modules were blown from the

updated control prom data. Updated computer generated wiring programs

were used to automatically wire the three additional modules of each

type, CPE and Memory. The wire wrap method of wiring was used. The

additional modules were assembled on the same type of subassemblies

as the single string modules.

2. Modules Installed In Cabinet

The replicated modules along with the original single string modules

and three additional core memory modules were installed in the ARMS

EB cabinet. The backplane was wired interconnecting all modules.
I

Power wadi connected to cabinet and power distribution tested.

i
i

3. Memory Modules Tested

All three memory modules were tested in a like fashion. The

internal fault detection logic was utilized to detect fabrication

errors (misplaced IC's, wiring errors, etc.). Short programs such

as the IOP test program were run and each successive module auto-

matically compared in duplex mode against the previous module at

redundant memory interfaces.

The three additional core memories were integrated with memory

4	
modules.



The programs run also verified operation of all memory modules with

the Ior.

4. CPE Modules Tested

The approach to CPE module testing was almost identical to that of

memory module testing. All three CPE modules were tested in a like

fashion. The internal fault detection logic was utilized to detect

fabrication errors (misplaced IC's, wiring errors, etc.). 	 Short

programs such as the IOP test program were run and each successive

module automatically compared in duplex mode against the previous

module at redundant memory interfaces.

5. Duplex and TMR Operation

Duplex and TMR operations were verified by setting up in the appropriate

configuration and running a short program that input the program from

the TTY cassette to computer memory, massaged some of the data and

output the program to the TTY printer.

6. Reconfiguration

Errors were inserted at the CPE and reconfiguration verified while

single clocking thru the operation.

Dynamic reconfiguration was observed at the panel scanouts when errors

of opportunity occurred.

,.*



7. System Verification Remaining

More exhaustive verification of the ARMS capabilities could be accomplishe,

by injecting a much larger quantity and more varied range of faults.

This fault injecting would be particularly effective if accompanied

by a more thorough diagnostics program.

S. Problems Encountered

No problems of a system concept nature were encountered. The detailed

logic tests and operational tests indicated that the system, performed

as conceived.

An area of checkout where many design problems were resolved was the

GPE microcode debug. Resolution of these problems was relatively easy

because the microcode was stored in ROM simulators which facilitated

correcting the code.
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