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ABSTRACT

This report su ► iarizes research accomplishments achieved under NASA

Grant NSG-1312. Robustness properties of sampla-data LQ regulators are do-

rived which show that there regulators have fundamentally  inferior uncertainty

tolerances when compared to their continuous-time counterparts. Now results

are also presented 
in 

stability theory, multivariable frequency domain

analysis, TQG robustness, and mathematical representations of hybrid systems,
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1. INTRODUCTION

Over the past several years, MIT's Laboratory for Information and Decision

Systems (LIDS) has 'been conducting research for NASA on the properties of mul.--

tivariable digital control systems. These types of systems are becoming in-

creasingly important as small, powerful, flight-qualified digital computers

take over the burden of control law implementation in various NASA vehicles

and other control system applications. Examples include the shuttle orbiter,

the HIMAT and E-SC DFnW aircraft, satellites such as ATS-6, various proposed

large space systems, and many more.

The overall goal of the research program has been to evolve improved de-

sign methods for multivariable digital control laws. Research effort was

concentrated initially on the primary available synthesis tool - namely the

sample-data (discrete -time) Linear-Quadratic (LQ) regulator problem (Athans,

11. Various properties of this problem formulation were studied, and key

features of its solution were investigated. In the latter category, the basic

robustness properties of sample-data LQ solutions were studied under the spe-

cific NASA research grant NSG-1312. Research findings attributable to this

grant are summarized in this report.

We will use the term "robustness" qualitatively to describe the ability

of control, system designs to maintain stability and performance in the face

of plant uncertainties. The larger the level of uncertainties which can be

tolerated, the more robust a design is considered to be. in real-life appli-

cations, robustness properties are among the most important features of control.

designs. This is true whether the designs are achieved with classical or

modern synthesis methods, and whether they are implemented in analog or

1
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dikjital fashion, In each case, the actual plant being controlled will invari-

ably differ from the design model, thus necessitating a healthy measure of

uncertainty tolerance. Furthor discussion of engineering motivations for

robustness can be found in a tutorial paper by Steins prepared in part under

the NSG-1312 grant (2).

The report summarizes our robustness research in the form of seven

short. topical sections, Each .auction describes A major research area, briefly

summarizes the principal findings and their significance, and cites published

papers and/or appendices for further details, The major areas are the fol-

lowing;

Section 2 - Generalized Stability Theory

Section 3 - Robustness Guarantees for Sample Data Regulators

Section 4 - Frequency Domain Interpretations

Section 5 - System Specific Robustness Properties

Section 6 - Compensated Sample-Data Filters

Section 7 - LQG Robustness Properties

Section 8 - Hybrid System Descriptions

Three appendices are included to provide supporting details and derivations

for topics where published manuscripts are not yet available.
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2. OLNB AIRED STABILITY THEORY

Since stability is the foremost essential feature of feedback systems,

its robustness properties with respect to plant uncertainties received

primary research investigation. The major theoretical tools used for these

investigations include the classical Nyquist ar,d Lyapunov stability theories

as well as a more abstract and general interpretation, of stability due to

Ssfonov. The latter was developed in part tinder the present grant.

Stability as Topological 5e2aration

In 5afonov"s interpretation, the stability property of a feedback system

is viewed in an abstract yet elegantly simple way. The system is stable if

its feedback and feedforwa.rd elements are appropriately separated in the func-

tion spaces on which they are defined. This notion is illustrated conceptually

in Figure 1. Part A of this figure shows a standard feedback system with

feedforward element C and feedback element Ti. These elements are viewed quiteN	 N

abstractly as "relations between their respective input functions and output

function. This simply means that if we let X and y denote the function spaces

to which the points (functions) x and y belong, then and H awe subsets of

the Cartesian product X x Y. Part B of Figure 1 shows this interpretation

schematically. X is represented as the real line (one axis), y is another

real line (the second axis), and X x Y is the plane. a and Hare then two

subsets of the plane.

It follows frori thi-a abstract view of G and T1, that all solutions of
eV	 N

their feedback interconnection in Part A must be common points of the two

subsets in Part B. Moreover, if it is known that these two subsets are

separated Such that (in the absence of disturbances and initial. conditions)

3
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Fiqure 1. Safonov Stability Theory
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they only Have zero functions in common ► as represented by the paint

(0 1 0) r X x Y, then the feaftack system must be stable.

Thies simple statement of separation is the essence of Safonov's stability

theory. Formally, of course, the theory requires much more elaboration and

mathematical machinery. The function spaces X and Y must be extended

inner product spaces, relations G and I must account for disturbances and

initial conditions through functional dependences of their own, and this notion

of separation must be properly quantified. These formal developments are car-

ried out in Safonov's Ph.D. thesis [3, part 21 and in reference [43, Only

the major ideas needed to quantify separation are ;Further discussed below.

SeEarating Functionals, Sectors, and the Multivariable Circle Criterion

The Xey idea which mares the above stability interpretation useful as a

stability analysis tool is the concept of "separating functionals." These

allow us to test whether the feedback system's elements indeed have only the

origin in common. Very simply, a separating functional is any scalar valued

function-of-functions d(x,y) defined on the Cartesian product space X x Y,

whose sign separates this space into two regions. One region consists of

all the points (pairs of functions) for which

d(x,Y) < 0 ,	 (1)

and the other region consists of points

d (X, Y) > 0,	 (2)

with d(x,y) = 0 obviously forming the boundary. In terms of such separating

functionals, a feedback system is stable if its two elements G and H satisfy
I

5



M	 d(xfy)	 TIN,Y)
(3)

for all (x,y) corroopondinq to Qj pj

4 (X t y)	 0

(4)
for All (x,y) ,̂orrosponding tj It.

Hk;r* ri(x,y) is a i)oxitivo definite radially unbounded scalar functional which

ir, iMpOMed 
to 

aVVUr(J A tPOITACell roquiroment that the subsets In rigure I grow

"wiffioiently far apart" as x and/or y. get. large.

Safonov has shown W [3) and (41 that the notion of stability as topologi-

cal scparation and estaWitAiLd via separating functi;,,nals is quite general

indeed. For fkxamjde, th(t olas ,.Jcal ntability thoory of Lyapunov call Le d,--rived

by appropriate ohnices of t-'. 'I and d(41. Similarly, the SISO conic sector

	

. W	 .

stability rnsult oi♦ Mamt^m [51, and hence its corollaries -- the Popov, circle,

passivity, and small-grain ritabili.ty criteria -- can also be derived from this

perspective. In file-L, Saf-onov has invented spocific kinds of separating

	

functionals which goneralize	 concept of conic sectors and lead to a

general multivari : ibla vw,rsion of the cirole Grit onion,

Safonov's goneralized conic sectors, slmply called "sectors, ," are defined

to be regions of the spaco X x Y which are bas"I on the following specific

separating functionals:

g (IS,Y) - F(x,y_) 1:1 ", F Y + F	 F

A111 - -12
X,
- -21 

x	 r 
22

X>

-

Here F and 
~ 1.
W arcs operators mapping Y into a third function space,, Z,

11	 '*' 

F 12 and F'2 are operators inappiiiq X into Z, and <*,*> denotes an inner product

defined on Z. Then the "Suctor of F" is the set of points (x,y) for which

(5)
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0 . (6)

It follows from our previous interpretation of stability that the feedback system

of Figure 1 will be stable if the subset of points corresponding to P is inside0%0

the sector of some functional P while the subset of points corresponding to -G

is strictly outside that sector. Here 
the 

words "strictly outside" are used

to imply the same kind ir, increasing separation with increasing E and/or Y as

was used in Condition M above.

in terms of this definition, the SISO conic sectors of Zames are simply

the sectors of special functionals P in the form.1

F	 FF1011 	 21

Z12

p22 	
(C

where c and r are scalars called the "center" and "radius" of the conic sector,

respectively. These types of regions were used by Zames (51 to establish

stability conditions which include the circle criterion [61 as a special case.

The more general sectors were used by Safonov in [4) and [7] to prove a more

general multivariable version of the circle criterion.

without going into the derivations or formality in detail, the multivariable

circle criterion was developed for a linear dynamic operator as the feedforward

element, G, and a nonlinear dynamic operator as the feedback element, H. Sup-

pose H lies inside the generalized conic sector defined byP.-Id

r (x, Y) = <Y - (4x - RX, y - Zx + T^ >	 (8)

7
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I.e., ' F̀ ll - X21 o I ' 1 12	 ^. '.k, end '2	
-^ • ^+, where the multivariable

center and radius, C. and	 aru themselves linear dynamic operators, ,and where

<. , . > denote n the st arsda td inn • - product on extended L2 function  sipace (i.e.,
T

<a,b>T	 I aT (t)b(t)dt, 1/z). Then, according to the topological separation
— —	 0
concept, the feedback system will be stable if all points corrualondinq to .G.

fall outside the: a eetor of F, or equivalently, if for all point y x w ,c. wo have

0< P N.y) - <x-s v- Z, Y'cry-+ 12V
(9)

Y 11 2 - 114V I 12

Usinq Parseval's theorem, the last expression can lxr transformed into the

frequency domait: to clot the followinq sufficient stability criterion:

0 < (I - CG(- jw)) T 11 - CG(jw)) - RG(-jw) TRG(jw)	 for all w	 (10)

As a technical detail, it should he noted that the application of Parseval's

theorem in the last step requires that the systems definrd by tranr,fer functions

G(I - CG) -1 and F must be themselves stable. This can be established by a

separate Nyquist encirclement count or by explicit calculation of roots. For

the vector radius, Rstability is usually imjAised by assumption. FurtherAwo

details and other equivalent forms of (10) can be found in Safonov's thesis

(3) and in the F s^fonov/Athans gaper (7). It is tarticularly intereatinq to

note that (10) can be expressed in terms of singular values to get. the stability

robustness conditions of Doyle (13).

Some Comments on significance

Aside from the obvious significance of the .above results as a "global"

theory encompa:csinq various previous stability results as special caries, the

8



topological voparatlon and sector concepts of Safonov have two specific fea-

tures which make them invaluable for the research objectives of the current

study. First, the abstraot treatment of the two olementsE and i makes no

assumption about the underlying nature of these relations, e.g., whether they

represent continuous or discrete devices. Bence, the stability results apply

Equally well to analog and digital control system analysis. Second, by their

very nature, the results face up to the robustness equations. Stability is

not assessed for specific system elements C ana 'H  but for a whole class of

elements covered by the possible points within a sector. A feedback system

which is stable for nominal elements H e Sector (F), G e Sector (F) will
0	 "0

remain stable for all perturbed olemcnts i1 withir that sector. Hence, the

'"site" of the sector, as measured, for example, by the magnitude of its

radius, R, becomes an immediate indicator of the degree of robustness of the

system. The utility of both of These features becomes evident below.

9



3. ROBUSTNESS GUARANTEES FOR SAMPLE DATA REGULATORS

For the research objectives of the NSG-1312 grant, we are specifically

interested in discrete time or sample data representations of linear dynamic

systems in the following form:

xk+l - AX  
+ Buk 	(11)

uk = -Gxk	(12)

Here xk denotes the usual n-dimensional state vector corresponding to continuous

system states sampled at discrete instants of time, u  is an m-vector of controls

which is constant over each sample interval, and A, B, G are matrices of appro-

priate dimension. We assume that the feedback gain G is obtained by solving

a sample-data linear-quadratic regulator problem, end that it therefore satis-

fies the well known discrete time Riccati equations [1]:

G = (R + BTKB)-1BTKA
	

(13)

K = (A - BG) TK (A - BG) + Q + GTRG .
	 (14)

Under mild assumptions on A, B, Q and R, the resulting closed loop system is,

of course, stable and can be made to exhibit desirable dynamic properties through

appropriate manipulations of Q and R. The research question at hand is to quan--

tify the extent to which these properties -- stability in particular -- will

be maintained as the true system description in (11) - (12) deviates from the

design model used to compute G in (13) - (14).

The stability theory summarized in Section 2 proves ideally suited to this

research task. We note first that equations (11) - (12) provide very specific

rrccGEuMG PAVE bLMK NOT
	 11



iI

forms for the general input-output reliations a, F1 considered earlier. The

feed forward relation, 	 for instanco, can bc^ taken to be the (nominally)*

algebraic maj?

(15)
(A - 13G)

and II wqn be taken as a V111tivariablo delay oporator

Y	 I-Ix

{y k+l ' 'kr	
k = 0,1,.,., 

with 
yo = OT

Both are operators on 
the (oxtendad) function space of n-dimensional sequences

with inner product

T T
< X, Y-> 	E Xk y k 

V T	 (17)
k-1

Using (17) in SaZonov's definition of sectors, it is then a simple matter to

show that the points (pairs of sequencos) corresponding to H fall into sectors

defined by

re	 <P1/2Y 	
1/2 

X, P 
1/2 

Y- + P 1/2x> 

/2for any positive definite symmutric matrix P
1	

Thiz is true because (18)

evaluated at points satisfying (16) becomes

It	

T	 T T
x Px	 X Px,

-x 
T 

Px
T
 < 0 V TIr 
	 -

It 'then follows immediately that tho foodback system (11) - (12) will D,,; stable

12



whenever the sequences (x,y,) corresponding to (15) fall strictly outside the

sector defined by (18). The entire complement of Sector (F) thus forms the

permissible range of plant variations which do not compromise stability.

Robustness of State FeqdbaSk

The above observations lead to the following fundamental result on the

inherent robustness of sainple-dat ► state feediack:

Let G be an arbitrary state feedback gain matrix which stabilizes
the nominal design model (i.e., A - BG is stable). Define P to be
the solution of the following steady state Lyapunov equation

P - (A - BG) 
T 
P(A - BG) + S ,	 S - ST > 0	 (20)

Then the feedback system (11) - (12) remains stable for all perturbed
systems 4 - PG, where 0 and § are perturbed matrices or even non-
linear dynamic operators, provided that the points (vjy) corresponding
to

W = P1/2 (A - BG) v	 (21)

fall strictly inside the conic sector

E(Y' W) = <w - P1/2v,  w + P 1/20	 (22)

More sim I
nly, the system remains stable whenev jj2 the perturbed system

matrix j1/2(; - BG) lies within the bounds A 	 This is illustrated
schematically in Figure 2.

To prove this result, it is only necessary to show that the sector conditions

(21) - (22) imply that all points (j,j corresponding to A - BG are strictly

outsides some sector of the form (18). To do this, we note that in the feedback

interconnection of E and R, the input of E corresponds to I E I and the output

of a corresponds to x E V1/2w.  Then

<W - P1/2v, K + P1/2v>  < 0

=> k* 1/2 x P1/2 P1/2x + P1/2Y>  _< 0

=> <P1/2y P1/2x,
 P1/2 + P

1/2x>  > 0	
Q.E.D.

13
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Figure 2. Sector of Stable State Feedback Systems



This is strictly a formal development, of course. A rigorous proof again re-

quires the mathematics of extended function spares, operators which are func-

tionally dependent on disturbances, etc. Such proofs are developed in detail

in Safonov's thesis (3, part IV].

Robustness of optimal Regulators

The above robustness result for sample-data state feedback applies directly

to optimal regulators as well because these are known to satisfy the Riccati

equation (14). Note that with G fixed, this equation is a Lyapunov equation

like (20) with a specific choice of S. Hence, we can conclude directly that

the LQ-regulator (11) - (12) remains stable for all perturbed operators A - BG

such that

F(w,v) = <w K1/2v, w + K1/2v> < 0

(23)

for all points (w,v) such that w = X1/2 (A - BG)v

Here again, the perturbed system A - BG can consist of perturbed matrices A andw w

B,\ or the matrices may themselves be nonlinear dynamic operators. This ig

evidently a very general robustness condition with various special applications_,

Gain and Phase Margins

Two particularly meaningful applications concern the regulator's robust-

Bess with respect to specific perturbations such as gain changes, phase changer,

or nonlinearities in the control channels. These manifest themselves as per-

turbed operator, of the form

A - BG = A - BNG 	 (24)
4	 N	 4

i:	

where N is a m x m nonlinear dynamic system nominally equal to identity. If we

15
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assume -that N and the weighting matrix, R in (13) are both diagonal, then it

is shown in [3) that the robustness condition (23) is satisfied wlienever all

diagonal elements of N satisfy

f (4,xj. ) - <1q, - (ci + r 
i )X i t w i - 

(0 
i 
+ r i ) X? ' < 0

for

a 1
r 	 2a.

I

a i ^Rii/ (Rii + 
'max (BTKB)

and all (w ► y ) such that w w N iiXi
	

(25)

This condition requires that the points of each N11 must lie in a conic

sector with center c i rind radius ri , both defined by the weighting matrix

elements R..13. and by the Hiccati matrix K. If Nii is a pure algebraic gain or-
algebraic nonlinearity, for example, this requires that

C. - r. <	 < c. +
1	

3- - 

vk 	
,- I

N (V

+ a	 v k
	 a
	 (26)

for all k = 1, 2 .... Likewise, if N11_ is a stable linear dynamic system, say

L., then we must haveI



< (L - c )ji - riji , (Li - ci)v- + r ,,Z,> i 0

c

I%>	 (Li (a	 ) - 0 
1 — . i

	

V W

	

JwA i l 2 < r2
	

(27)

where Li (z) is the z-transform of the operator Li . This constraint confines

L	 P'^ . jwAL
i 

( z), when evaluated at z	 I to lie within a circle with center c i 
and ra-

dius r i' Given that Li (z)  is nominally unity, it can therefore be perturbed

in pure gain from c	 r i . 1/(I+a) to c 
i 

+ 
r i = 1/(I,a 

i ) 
and is pure phase

by

1C1 < 2 sin-1 (a i /2)
	

(28)

Those then are the guaranteed gain and phase margins of the sample-data regu-

lator. Note that they apply individually or in any combination to the m con-

trol channels.

Significance

The significance of the above margins can be be appreciated by noting that

the scalars a 
i in (25) - (27) are approximately unity. Their deviation from

LO is controlled by the quantity X max (B T 
Ka) in (26) which is known to tend

to zero as sample intervals A tend to zero (B -* 0 while K -* const). Hence

the a i 
I s approach unity from bolow and

Gain Margins -)- 1/2 to -140

Phase Margins -a ±60 clog.

17



These limits are precisely the stability margins enjoyed by the continuous time

linear-quadratic regulator (83. The sample-data regulator, however, achieves

these margins only asymptotically as sample rates got large. For all finite

rates, it has fundamentally poorer margins.

A second important dist f.notion between sample-data and continuous-time mar-

gins is that the latter are independent of plant and cost matrices. They are

a consequence of optimality alonQ. In the sample data case, the parameters a

depend on plant data (through R and B T KB) and hence the margins are no longer

global plant-independent guarantees.

Similar results as these apply to sample-data Kalman filters and to non-

linear systems linearized about various operating points (x,y) as well. These

additional results of 'Che N"QG-131^4 grant are fully developed in Reference (3).

18



4. FRE2U NCY DOMAIN INTERPROTATIONS

Both the continuous time margins In f8l and the sample data margins above

were de-veloped with relatively sophisticated mathematical machinery. This tends

to make the results less accessible to practicing engineers than desirable.

To overcome this problem, we have attempted under NSG-1312 to develop simple

frequency domain explanations, These Nave proven quite useful in communicating

the results and are briefly summarized below.

The Continuous-Time Case

The robustness properties of LQ-regulators can be viewed as mule variable

generalizations of single-input froquency domain results dating back to Kalman.

For the single-input case, Kalman proved that the return difference

A	 T	 - 1T(s) M 1 + g ^SX - A) b of an optimal controller satisfies [91

IT(JW)I' > 1	 (29)

at all frequencies, W. Hence, the loop transfer Ainction 0 
0 

(S)	 T (sT - A)-1b

lies outside of a unit circle centered at (-I # JO) in the complex plane. This

is illustrated in Figure 3 below-,

Unit circle	
I m G(jw)

B,
Typical Nyquist	

"'11>I
diagram of GO(S)	 Of 01

a

2 ^o) w t
- ,O1
	

Re G(jw)

1% D Af I

Figure 3, Optimal Nyquist Diagram
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The (-6 to + ()* db) -gain and +60 d(Iree phase tolorancex than follow from the

Nyquiot Stability Theorem applia4 to this geometry, Recall that the nominal

system is stable. Hance, its encirclement count of the (-1, 0) point in correct

and will remain correct for all perturbations G - G 0
 
+ C6G which do not cause

the now Nyquist diagram to pass through (-1 1 0) for some 0 < e < ;* , if we

consider perturbations which are pure gain changes only, for example, then

G -X00  
and it is clear than the system remains ntabla for all et except when

00 falls on the real axis for soma w, i.e., G0 M _QG + JO, In that case, the

tolerable e range is < c	 Since a is guaranteed to be greater than or

equal to 2.0 (Point A), the gain margin result follows. Similarly, if we

consider pure phase changes such that G - 
a Je a 

0 
it follows that the system re-

mains stable for all c unless 1( 01 - 1. In that case, the Points B and B I are

the worst locations for G0  and the iGO deg. phase margin property follows.

Xn terms of the multivariable generalization, it can be shown that the

matrix version 
of 

the optimal return difference also satisfies an inequality,

namely

[I + G(-jW)] T [I + G' (jW) ] > I
	

(30)

This inequality implies that the loop transfer	
A

matrix G I (s) = R1/2G(s) R_1/2

lies outside of a unit ball centered at (-I,j2) in the m-dimensional space of

complex numbers. The (-6 to + oo db)-gain or tGO degree phase tolerances for

each control channel then follow from the geometry of this ball. We again in-

voke Nyquist's Stability Theorem which now requires that the function

det[i: + VOW] encircle the origin a requisite number of times. This number

is correct for the nominal system and will romain correct as long as I + GI(jw)

remains nonsingular. This is assured as long as

20
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(I * G' )v ^ A	 (31)

for all unit vectors v. However, from (34), we have that

I(' + G')vI > IVI	 (33)

This means that G'v lies outside of a ball centered at -v with radius IVI,

Projected onto any planor the geometry of this ball looks just like Pigure 3

and hence the allowable perturbations in G' follow from the same geometric

arguments.

The Discrete Time Casa

The analogous property to (29) for optimal sample data systems is

11 + G(z)1 2 >	 i	 s at e^Wp ^	 (33)

r*b Kb

where r is the (scalar) control weight, K is the Riccati

matrix and A is sample time.

This condition implies that G(z), like G(s), lies outside of a circle centered

at (-1 , JO), but with radius ) .l = Cr/(r+bxKb)) 1/2 less than unity. Fence, from

the Nyquist stability Theorem and the geometry of this smaller circle, it is

clear that gain increases by factors greater than 1/(1-p), gain decreases by

factors greater than 1/(l+}a), or phase changes less than i6O degrees could

produce instability. Moreover, the radius parameterli f and hence the margins,

are plant-specific because they depend on K and b.

This same argument carries over to multivariable problems where the return

difference can be shown to )satisfy



C 
	

-(I + G' (r)	 R_lf R 12_	 r	 z	 a w,t	 (34)

with R ► R + RTKB

and G' (z) W Rl/2U (s) R-1/2

Here the loop transfer function G I (z) is seen to lie outside of an 11ellipsoidal

ball" with minimum radius

u	 Ixmin R(R:l/2R R-1/2 ) l`l/2

less than unity. As above t the margin properties follow from the geometry of

this ball.

As in Section 3, the radius of the ball above is seen to approach unity

as B XD approaches zero. Hance, the continuous time margins and plant inde-

pendent robustness guarantees are recovered Asymptotically As sample rates

tend to infinity.
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5. SYSTEM SPECIFIC ROBUSTNES3 PROPERTIES

As we observed abovar, the robustness properties of continuous time ^2-

regulators are quite profound theoretically. They hold with no mention of

i the actual plant being controlled or its performance index. The margins ors
i

f

	

	 a consequence of optimality alonel All that is needed are the usual oxistence

and uniqueness assumptions for LQ controls. Moreover, we have shown by counter

examples that the margins are the broadest which can be auhievod without

Zurther reference to particular system characteristics (10).

These observations do not mean, of courso, that it is useless to look for

broader plant-specific tolerance bounds. in many design problems, for example,

it may well be important to increase the 50% gain reduction tolerance (a6 db)

all the way to 100% (i.e. open loop) in order to achieve system reliability.

Results which indicate that this is possible for specific problem s have been

derived by Wong, Athans and Stein (10) in part under tier NSG-1312 grant. A

particular result from [10) is that tolerable gain reductions can be bounded by

A > 1/2[i - R1/2GTQ-1GR1/2 ) -1 (Q invertible)	 (36)

where A -w ding (yi ,...Ym) is a diagonal pure gain perturbation in the control

channels.

In specific examples, these lower bounds have been shown to be equal to

the system ' s linear critical, gain, which means that they achieve the broadest

tolerance region possible for the example. Note that the bounds also provide,

for the first timer an explicit relationship between gain margins and quadratic

weights.

le	 Analogous plant} -spacifi.c robustness properties for discrete -time systems

23



were developed wholly under NSG-1312 and are documented in detail in a draft

manuscript included Appendix A.

i
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G.	 COMPENSATED SAMPLE-DATA Ii ILTERS

We remarked in Section 3 that the robustness results achieved via SafonoV

stability theory apply to Kalman filter designs as well as to regulators. This

connection is explored fully in (3]. Under NSG-1312 
we also explored ways to

enhance the resulting inherent filter robustness by dynamic,41ly compensating

the filters so as to remove estimation biases. The details of this work are

reported in a paper by Lee and Athans [11).

The basic premise of this paper is that the residual process of a discrete-

time filter will e%hibit low frequency biases whenever modeling errors and

slowly varying inputs are present simultaneously. These biases can be modeled

approximately as random walk processes. They can be observed by monitoring the

residuals, and hence, they can be estimated by an auxiliary filter which uses

the residuals as its "measurement`" sequence. When the auxiliary and original

filters are combined, they generate a 2n + in dimensional composite system which

is effectively immune to unmodeled low frequency error mechanisms. Derivations

and examples of this compensation procedure are given in (111.

25
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7. L G ROBUSTNESS PROPERTIES

As discussed in Sections 3 and a, our robustness results for sample-data

LQ regulators show that the very act of sampling seems to impose a loss of

uncertainty tolerance (less gain margin, less phase margin, etc.) when compared

with continuous time LQ-regulators. This "loss of robustness" in discrete

regulators is also exhibited by continuous time regulators with state estima-

tion. Hence, the possibility that there may exist common underlying reasons

or at least useful interrelations between these two phenomena motivated

further studies of the LQG continuous time case.

Results of these further studies are described in detail in a draft V,-
script included in Appendix B. Highlights of these results are briefly reviewed

here. First, the most basic discovery is that LQG-regulators have no guaranteed

uncertainty tolerances whatsoever. This was established directly by a small

design example due to Doyle (12) which produces a technically legitimate LQG-

regulator with arbitrarily small tolerance for gain uncertainty (gain perturba-

tion of ± e, with e arbitrarily small, cause ,instability). The main signifi-

cance of this example is that it shows LQG robustness to be a design-specific

property. For the research effort, it meant that instead of looking for

global guarantees, we should seek out generic design situations in which

tolerances are likely to be good or poor. For the latter, we should devise

adjustment procedures to improve robustness. The following results along

these lines have been developed.

1.	 Margin recovery with "adapted Kalman filters"

If the Kalman filter in an LQG-implementation receives the
correct control signal (e.g., as altered by gain uncertainties)
the LQG controller has gain margins equivalent to the full



state case. This result is stated and proven as Proposition,
1 in Appendix B. it is also proven in a more abstract setting
in 131.

2,	 Asymptotie Margin_Aecove, ,I

Full-state gain margins can be recovered asymptotically as
the following ratio tends to infinity:

min -xT(A+H0CT)x

xTx=l

max -xT(A+BGTO)x

xTX=I

Here, A,B,C are the system dynamics, input and output matrices,
and Gp and H0 are the controller and filter gain matrices re-
spectively.

3. Asymptotic Margin Recover 11

Full-state gain margins can be recovered asymptotically if
the process noise covariance, ^, in the Kalman filter design
tends to infinity in the following special manner:

0 `} ^ 2BBT r ^2 } °O

Here ^2 
denotes a scalar.

The two asymptotic recovery results are stated and proven as
Propositions 2 and 4 in the appendix. They serve the important
function of providing ways to adjust LQG design parameters in
design situations where nominal model-motivated parameters pro-
duce excessively sensitive controllers.

4. General Gain Margin Bounds

74QG systems are stable for the following range of control
gain variations:

G  = G 
0

with a- T < A < X+ Z

+_ 1+l/ 0

X` © max E1-1/x0 , 1/X+1

Here A is a diagonal matrix, w 0 > 0 is a scalar which can be

(36)

(37)

(38)

(39)
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made small by proper selection of design parameters, xO > 0
is a scalar which 

can 
be brought close to unity. Hence, this

result also provides a systematic way to improve gain margins
of an LQG-design. It is stated and 1)r---(.,n as Proposition 3.

More detailed statements, proofs, and discussions of these results aro

provided 
in 

Appendix B. In addition, further research directions are also

outlined there which are worthy of continued research effort.
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8. HYBRID SYSTEM DESCRIPTIONS

We have now seen that sample data LQ-regulators are fundamentally inferior

to their continuous-time counterparts in the sense that their robustness

properties are not as good. They share this inferiority to some extent with

continuous LPG regulators, but the latter can recover their robustness losses

at least asymptotically by appropriate filter redesign. The only way that

sample-data regulators can recover these losses is apparently to increase the

sample rate arbitrarily.

Motivated by these apparent limitations of the existing sample data LQ

synthesis methodology, the research effort under NSG-1312 was re-directed

toward more fundamental issues of digitally-implemented control systems. The

first task of the redirected effort was to find a mathematical representation

which properly captures both the continuous-time (analog) and the discrete-

time (digital) processes which occur side by side in a digital control system.

Such a representation was developed in what we call the "hybrid operator

model" of the control process. This model provides an analog input-output

view of the control process which explicitly includes sampling operations,

digital calculations, hold operations, and continuous plant evolutions. The

structure of this operator is summarized briefly below and in more detail in

Appendix C. The latter is a draft manuscript of A. Kostovetsky's Master's

thesis prepared under the research grant.

An immediate application of the hybrid operator is to explain the common

use of prefilters in practical digital control systems. Simple norm calcula-

tions in Appendix C show that the hybrid operator will have unbounded gain (in

an appropriate function space sense) as the sampling process tends toward the

31



ideal impulsive sampling normally assumed in sample-data theory. Physically,

this means that it provides arbitrary amplification for certain inputs (e.g.,

noise). Non-impulsive sampling, as obtained with pre-filters, bounds this

amplification.

The second task of the redirected research made use of the hybrid opera-

tar model to answer the following very basic approximation question: How well

can digitally-implemented control laws mimic analog ones? More specifically,

if samplers, holds and digital algorithms are all selected to best approximate

a given linear, time-invariant analog system, how good can the approximation

be? The answer to this question is elegantly simple and profound. The digitally-

implemented system can exactly duplicate the impulse response matrix, G(t-0),

of the analog system at all points in the t, 6-plane except on a strip of width

T (sample time) along the main diagonal (t=O). Inside this strip, the hybrid

system's impulse response must be zero on various triangular segments. We have

accordingly named this region of approximation the "triangle strip." Details

of the optimal sampling, hold, and digital function for this approximation are

again summarized below and derived in detail in Appendix C.

The significance of the above approximation result is that it provides a

simple and clear picture of the basic limitations inherent in digitally-

implemented controls. Such controls are fundamentally inferior to their

analog counterparts because they cannot utilize all the input data in the

triangle strip. This limits bandwidth, restricts performance, and precludes

robustness guarantees such as those enjoyed by the continuous-time LQ regulator.

The precise quantitative way in which these limitations manifest themselves,

however, is not yet understood and provides basic motivation for continued

research efforts.

32
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t ice,. systems

We will consider digital control systems which can be represented by the

block diagram of Figure 4. The three main functions associated with the con-

troller block in this diagram are:

1. The samplin2 o oration which converts M-dimensional analog
inputs u(t) on the interval (k-Z)T<t<kT into N-dimensional
discrete samples k,

2. the digital . algorithm which converts the N-dimensional se-
quences ^k into L-dimensional sequences nk , k-0 1 1,..., and

3. the hold operation which converts the L-dimensional sequences
nk into k-dimensional analog functions v(t) on the interval
kT<t< (%+I)T.

The system's sample time will be designated by the symbol T. These three

functions will be assumed to have the forms

I

J 

ft
f (0)u(6)d6k	

(k-1)

k
nk -	 pkk^k

kT

1) 
f0(@-WaMd8

(k-
(40)

(41)

	

v 	 = gk (t)nk 	g0(t-kT) nk
	 (42)

The first of these equations is a simple analog convolution operation with

weighting function (impulse response) f0 (X). This could be the weighting

function of an analog prefilter, an approximate impulsive sample, or various

other vector valued input averaging operations. Some examples are given in

Appendix C. The second equation is a standard digital, convolution with coef-

	

ficients 
pkk	

The third is a generalized output hold operation with weighting

function g0 (a). This could be a simple constant to represent the common
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"zero-order-hold," but in general it will be selected to achieve broader goals.

Some examples are again given in the appendix. Note that the controller is

completely characterized by the two matrix-valued functions f 0 (X), 90 (X) and

by the coefficient mate .cas "kV

H,, pbrid Erato *: Representation

Given the above deso:i.pti.on of a digitally-implemented controller, it is

straightforward (Appendix C, Section 2) to write its input-output operator

representat Wn, G, in the terms of an impulse response matrix, G(t, g ). That is,
h

v - GU	 (43)
M_

where v and u denotes functions on [0 0-) related by the convolution

t
V (t)	 J	

G(t,e)u(0)de	 (44)
0

with

k
G(t,e) = g0 (t-kT) L DkRfO (e_P"r)	 (45)

X=l

Here k is understood to be the largest integer less than or equal to t/T. We

will refer to this input-output description of the controller as "the hybrid

operator model" or simply as the "hybrid controller." Note that it is a time-

varying linear dynamic system characterized by g 0 , f0 , and DkV

22timal Hybrid Approximation

Consider now the problem of finding a hybrid operator model G(go'fo'Dkt)

to approximate a continuous-time linear dynamic control law with impulse response

matrix

35



a(t,0) 
= CeA(t-0)B ,
	 (46)

where A I D, and C are given system matrices,

Let the approximation criterion be to minimize

j _ E lim ^ ./ ^1 v(t) "' v(t) 1 2dt t	 (47)
0	 1

where v(t) and v(t) are the outputs of the hybrid and pure analog controllers

respectively, when excited by the same white noise input. Then it is shown in

Appendix C, Section 4, that the optimal approximating hybrid controller has

the following sampling function:

f  (k ) = e^
AX B	 (48)

Its corresponding hold function is

90 (X) _= Cem 1	 (49)

and the digital algorithm is

d	 = M
k 
d = 

eA'T (k--R ) .

's2	 R	
(50)

Moreover, these parameters cause (40) to duplicate (46) exactly everywhere ex-

cept on the "triangle strap" of Figure 5. Note that the sampling and hold

functions (48) - (49) of this optimal hybrid approximation are themselves

n-th order dynamic systems, where n is the dimension of A. Hence, the overall

hybrid controller can be visualized as shown in Figure 6.

As indicated earlier, the significance of the above result is not the op-

timal structure in Figure 6 itself (after all, the sampling and hold functions

are quite complex, each literally duplicating the analog system), but rather

36
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Figure 5. Triangle Strip
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r

F
j	 the fact that the inhurent hybrid system limitation, nro so simply and clearly

displayed by the triangle strip in Figure 5. It follows from this figure that

they minimum approximation error is given by the error operator

(G-^) ra 	(51.)

where G-6 has the impulse response representation

t
e (t) .* f c (t^-Q) u O WO	 (52)

^r

Qualitatively therefore, the hybrid system suffers an inherent time varying

"data lapse" with a maximum duration of T seconds (average T/2), and with data

weighting propoertional to the desired impulse response, G. Bence, both the

nominal function G and the sample time T contribute to the significance of

the error. Small errors are assured if 5(1) is small over the whole interval

0<<T!C and u(Q) is relatively "smooth." These observations are given further

interpretation later.

Extensions and a2lications

Two additional research results are developed in Appendix C which aemon-

strate the utility of the hybrid operator model. one result deals with con-

strained optimization of criterion (47), subject to fixed sample and bold struc-

tures, and the second deals with error bounds for exprei;sion (51).

Constrained Optimization

This result provides optimal approximating hybrid operators which best

match a given analog system when the sampling and/or hold circuits arc pre-

specified to take certain (simple) fixed forms. The major results are as

follows:
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.W

Let
G(t,k)) . 5(t)9(6)

with either	 (i)	 5(t1+t2)	 H(t1 )M(t2 )	 or

(ii)	 5(t1+t2)	 a(t1)9(t2)

Fixed Sampler Result (using property (i)):

f0 (X) given, yields

90 W TM) and

DkQ M(kT)d, with

r Ilf-0d'R^. ,f0S(X+TZ)f0(X)a
	 fo(X) fT(X)&J

..T 

Fixed Hold Result (using property ii):

90 (X)given, yields

f 
0 

M = 8(X) and

DkQ = Mka(TQ) with

K L ./ T 90 (^ ) g0 (%) ^] _1 f T g0 (X) H (X+ kT) dX]
0	 0

Fixed Sampler and Fixed Hold Result:

f0
 M, 

g0 (X) both given, yields

DkQ = MkdQ with Mk and d  as defined in (16) and (17) 	 (57)

These expressions define optimal digital algorithms and sample or hold functions
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under various fixed structure assumptions. In general, their approximation

errors will no longer be zero outside the triangle strip. The nature and

significance of these added errors remain to be evaluated.

An interesting application of formulas (55) is carried out in Appendix A
x

for the desired nominal system

G(t,8) = eA(t-n) M (eAt ) (e-A4)	
(5g)

with a fixed, nearly impulsive; sampling operation

:'I	 -6<1<o
E 

f0 (X) _	 (59)

0	 elsewhere

The optimal hold is found to be

90 (X) = eAt	 (60)

and the corresponding digital algorithm is

DkZ = eAk( -Q r 0)

	

	 e-AX	 (61)J -E

The fact to note here is that DkP, tends to zero as a becomes small. This is

counterintuitive, at first, until we recall that impulsive sampling yields in-

finite function space norms. 
DM. 

must tend to zero in order to-preserve a

finita-gain hybrid approximation of G. This again highlights the weaknesses

associated with pure sample data system representation and with impulsive

sampling assumptions.

Error Bounds

The second additional line of research in Appendix C deals with bounds

for the inherent approximation errors of the optimal hybrid operator in Figure 6.
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This research is motivated by the practical desire to include hybrid operators

within the class of systems which can be handled by the stability robustness

theory of Safonov, Doyle, Sandell, and Stein (3,13,14,15), One of the basic

results of this theory is the following; A nominally stable feedback system

with nominal return difference operator I + G remains utable under additive

perturbations G + AG if the perturbations satisfy (141
M	 M

II(I+G)
-l

I) IIA011 < 1	 (62)

This is a special version of equation (9) in section 2. If G and AG are time

invariant linear systems with transfer functions G(s) and AG(s), condition (62)

is also often written in the form [3,61

a[x+G(Jw)l < E[AG(7w)l	 for all w	 (63)

where ar and o denote maximum and minimum singular values of their respective

matrices.

These stability-robustness results are relevant to our present study of

hybrid systems because they ,provide a way to assess the consequences of hybrid

approximation errors. Specifically, if we think,of G as 0 (the nominal analog

system being approximated) and AG as the approximation error operator due to

digi-al implementation, (equation (51)) then (62) and (63) provide a way to

assess the impact of hybrid approximations on the stability property. In this

sense, hybrid errors play exactly the same role as other uncertainties which

are associated with the nominal analog system. In fact, if other uncertainties

are "large" compared with AG of (51), then the internal digital nature of thew

hybrid controller becomes inconsequential. Moreover, it should then be pos-

sible to relax (simplify) some of its parameters (samples, holds, sample rates,
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etc.) at the expense of increasing AG. Clearly, simple tight bounds for ,IAG'I

will play a critical role. in making these analyses and simplifications possible.

To date, only the following conservative bound is available for AG

(Appendix G, Section 5):

JAGII < max a[G(0) ]'r	 (64)
o<O<T

This bound is merely the maximum singular value of G(t-0) on the interval

kT<O<t, scaled by T. The T-dependence makes it anmcidiately useful, as . a coarse

selection criterion for maximum tolerable sample periods. it tends to be con-

servative, however. A third order hybrid controller illustration in Appendix G,

for example, violates (62) with (64) at T=0.3G sec. Actual instability does not

occur until T reaches 0.54 sec. Another limitation of (64) is that it does not

provide frequency dependent bounds for use in (63). Much tighter bounds should

be possible if the frequency content of signals is taken into account. This

question forms an important area for future researcl&.
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9.	 CONCLUSIONS

This report has summarized research accomplishments achieved under NASA

Research Grant NSG-1312, The overall objectives of this research were to

analyze the basic robustness properties of linear-quadratic sample-data regu-

lators and to explore the suitability of these regulators as tools for digital

control system design.

The major conclusion of the research is that sample-data LQ regulators

are fundamentally inferior to their continuous time counterparts in the sense

that their robustness properties are not as good. They share this limitation

with continuous LQG designs. In both cases, however, the continuous time

properties can be recovered asymptotically by increasing sample rates and by

filter redesign, respectively. The research also accomplished important new

developments in stability theory, multivariable frequency domain analysis, and

mathematical representation of digitally implemented (hybrid) control systems.
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APPENDIX A

ROBUSTNESS OF LQ-OPTIMAL SAMPLED-DATA CONTROL SYSTEM:
A SUMMARY OF NEW RESULTS

P. K. Wong
M. Athans

This appendix presents the discrete time version of the continuous-time

feedback robustness results for LQ-design reported in [10] (Theorems 1 and 2)

and docurients a new result for robustness of sampled-data control systems

under LQ-design to changes in the sampling rate (Theorem 3).

A.	 Sampled-data System
x e Iltn

Given the system x Ax + Bu	 u e 
I?	 (Al)

We have the following sampled-data model (see Fig. 1):

x (k+1)A ` AAxkA + B
AukA	 (A2)

r
where

A A eAA
A

BA = MAB	 (A3)

0 

A	 \
MA q f eATd^i)

= A-
1 
(e, AA -  1) if A 1 exists

A = sampling period	 (AQ

1	 ,
= sampling rate

1



I
	

x.Y►x +Bu

	 x 	 xkQ

zero l" I order	 digital
hold
	

'kA

Figure 1

Deftnition

AA is discrete-time-sense (DT) ratable if

1A i.(AA )) < 1	 V eigenvalues A i of AA	 (A5)

The following (Lyapunov) results will be of use in deriving the results

for the rest of the report:
i

Discrete-time Stability The orem (Lyapunov):

Suppose 3 K> 0 and Q> 0 such that

K = ATKA Q

Then A is (DT)-stable.

For the rest of Section A of this report, the notation A. and B. shall

be used to denote general discrete-time system parameters i.e., they need

not satisfy (A3) the results of Theorems 1 and 2 are valid for any linear

discrete-time system, not just those which are sampled-data system models.

2
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L_Q-design WT) - Summary of known results

Problem

Emin E ( xy+1 x3:*^, ^'k R'u^c ) Ix j	 (Q, > o , R > 0)	 (AO)
{U k.km0	

...

S. t. to xk,1,1 * AAxk + MOB uk	 ( AA, B A) stabll zable

Q	 A detectable	 (A7)

Result

uk G 
A 

x W)

GQ - (R + BQK IIA) 
-1 

BpKAAA (A9)

KQ = AQ
{KA

- KABA (R + BQKABA ) -1BQKA) AA + Q (A10)

<—>	
K 

( AA + BAG A) TKA ( AA + BAGA) 	 + Q +GA RAGe (All)

<->	 KA AQTCAAA + Q - GQ(R + BQKABA )GT (Al2)

<—>	 111-A = A^
T

KAAA + QA - MEGA (R + B^
T

KAB) G^T MA (A13)

where KA = MAKAMA (A19)

QA 	M^QAMA (Al5)

<—>KQ = (AA + BGQMA) ^ KA (AA + BG?A ) + QA + M^GOGQMA (A16)

In what follows we shall assume that Q > 0	 (A17)

Theorem 1 (Discrete-time LQ=-gain margin property)

( AA + BA A V is stable (DT) if:

(GQQ-1	 -1_1 + 
ATRA > (.AT - I) (R + BQKABQ) (,A - 1)	 (A18)

3 1



I

or equivalently,

1 (GAQ lGA )
-1 

+ t R(BaKQHa) -1R + R} >

( AT - I - R (BAKABQ) 
-
1 (B^KABA) (A - T - (BAKABA ) -I

 
R }	 (u9)

1

Remark

From equation (A19), in Theorem 1 it is obvious that there is both an

u22er bound as well as a lower bound on the values of the admissible A.

This is most transparently demonstrated in the case when there is only a

single control-input, so that A becomes a scalar in this cases

Corollary 1.1

(for the case of a single-control input LQ-design)

[AA + bA a
_SA

is (DT) -stable if
J

(1 + m) -^w + r (1 + m), < q < (l + m) ± m w + r, (l +) (A20)

where	 m 
A

b^TKQbQ

w0 9AQlg0	 A

0
Theorem i can be re-,stated in s different way which shows explicitly

the range of admissible A , by simply generalizing the above 'ignaeo-rooting'

procedure used for the single-input case to the multi-input situation:

Corollary 1.2

(AA + BA 11Ge) is (DT) -stable V

4

9
AX-

	 --'°"



(I + W^ 1 R) 	 (M
i

) 
h
r", (Wh) -4

for all) S ET S. t. 0 <F. <x

whero

M,	 4
[(OT -1 G

A 
) -1 + R WQl'R + R]

A 
(B T BA)

"A	 A"A

The,,, orem2 (General Discreto-time LQ Gain Robustness)

(A
A 

+ B
A 
(rG

T
^ + 6GT)) is DT-stnble V 6G e R(Q_'G 

A 
and r e 3R 

MxM

such that

6GTC16G < [ 
WA + (WA (X-F) + R) 2-2, ((Z-r.

 T 
)WA + R)I_l

where

A T -1 	
-3. + 

T
z = (G^Q G6 )	 P RF - (1-FT) (W. + R) (1°F) > 0

and

A

"A -- BA
KAB 

A
	 (A22)

to

Remark

Theorem 2 is the discrete-time version of Corollary 2.1 in Wong, Stein

and Athans for the continuous case. Unlike the continuous-time result, the

discrete-time version is much more complicated and is probably of little

computational usefulness.

B. s2aling"time Robustness of j2:Lesi2rj

Given the system x = AX + Bu
	

(BI)

I
5



Suppose we sample the system state at rate (^/A), The equivalent

sampled-data modal of the system iss

' (k+l) A 
* 

AANA 
+ 

BAukA	 (82)

AA w eAA

BA 
N MAD =

QA a AT 
dT ) B

0

If we choose a discrete -time LQ-design to stabilize the sampled data

model (82), then the closed-loop system (A. + 11 4G^
T
) is stable, where % is

the optimal gain computed for the sampled-data model when the sampling rate

is 
1
/A and for the cost-wo ,ghtings Q and R.

Suppose now we change the sampling rate to( +A,) s the corresponding

sampled-data model becomes

x 
(k+l) (A+A l) " AA+A ' Xk (A+A r) + 

BA+A' 
uk (Q+A')	 (B3)

If we do not change the gains G^ computed previously, the new closed-

loop system at the new sampling rate becomes

(AA+A' + BA+A' GA)
	 (BO

which of course is not necessarily stable. The problem we want to pose is:

for what range of A' would (84) remain stable?

We have the ,following sufficiency result:

Theorem 3 (Sampling-rate robustness of LQ-design)

(AA+A' + BA+A ' GQ) is stable if

6
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' .. C4A 
T 
4 1 (KA7Q) I I + (OA4 1 + MA, 

M
C )I- I r	 ALI '	 -1 )

'A	
A	 'A RGT

4 (a
	+ 114 1 mA

T	 T	 T	 -1>	 ^Mil)
	 (R + 5P'A"A) G

Remark

MA 1 14;1 W (I   ate!)(:C , 
4AA ) -1 if A7 1 exists

Remark

Xt is not obvious what physical interpretation can be made of the

expression (135)1 some numerical examplos will 
be 

worked out to gain insight

into the meaning of (B5) in future research,

Remark

The case when A' % A (i.e. doubling of sampling period) is a particu-

larly simple spacial case of Theorem 3:

Corollaa ( Robustness to doubling of sampling period)

(A2 + D G 
rp ) is (DT) -stable if2 A

A 
T 

AA	 A 
T 
A	 T (ems*	

T
+	 a + 

(a 
+ I) 

G A 
RG A (0 + 1) > 2 

G A 
M + BAIIk BA) %	 (BG)

0

APPENDIX

Proof of Theorem 1

The proof of Theorem I follows immediately from Theorem 2, as (A21) is

automatically satisfied for SG S O f and we need only to ensure that (A22)

T
holds, but (AlB) is just (1122) Ly substituting A = 'r . To show that (AIG)

is equivalent to (A19), we just have to "complete square" by appropriately

factoring A.	 0

7



i

(algebraic details; let GQQGA - Wo, %KABA = M

Then (Al8) M W-1 + ATRA - IAT (R+M)A - (R+M)A AT (R+M) + (R+M)] > 0

M W-1 + AT (R+M) + (R+M)A - (R+M) - ATMA > 0

<-> W01 - (R+M) - (pTMA - AT(R+M) + (R+14)A) > 0

<.> W-1 - (R+M) + (R+M)M 1 (R+M) - [ATM - (R+M) ]M
-1 

IMA - (R+M) ] > 0

W 1 - (R+M) + RM-1R + 2R + M - [A
T 

- (I + RM 1 ) ]MIA - (I+M -1R) ] > 00

<—> W-1 + R + 101 1R > IAT - (I + RM-1 )]MIA - (Iq,M 1 R) ]

Proof of Corollary 1.2'

The proof utilizes the following lemma:

Lemma 0

(HT IHTM2H < Ml Where Ml > 0, M2 > 0)

{HT IHT = + mhkN2)
-1 , V 0 < A < I}

Proof

HT ±M1AL (M Z) 1

HTM2H = MAM < MiM	 MlJ.

Proof of dorollary,2.1:

Let J = A- (I + WA1R) in the above lenana and substituting appropriately

for M1 , M2.

to

8
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Proof of Theorem 2

(Assume without: loss of generality that [GASol is of full rank in what

follows)

We have

KA - AAKAAA + 9 » GA (It + AKAnA ) GA 	(2.1)
So ly

"A - (AA 'M 
A 

(T'GA + SGT ) ) 'AKA {AA + DA (EGA + SGT)) + Q	
(2.2)

where

Q Q Q - GA (R + WA ) GQ .. [( GATT + SG) BQKAAA + AQKAB A (FGT + 8 G  I

(GATT 
+ S G) B

A AAA
(FGT + 6G x)

- G
A 

[R+ WA + V WZIGT

(G [r
. 

A^SG 7 + [A^
A	

xeA + F 'A	 KQsAF + SGW!"A)

(SG [B?Ie A] + [ASK?B $ Gfi)

SG W AS Gtr

Q - G
A 
[R+ WA + FTWAF]GT

+ G A [FT (R + w A) G A - FTW ASGT) + [G A (R+C4 A)F - dG WoF^GT

+ SG(R + WA) GT + G
A 

(R + WA ) SG' - 6GAW A6 GT

+ 
G G

^[T'T (lt + W
A) 

+ (P + WA) F - (R + W
A)	

FT WQF^ GA

+G A[R + W A .. FWASGT+ SG[R+WA^- WAF]GQ

SGAWASGT

= Q + [GA 6 G] FTRr - ( FT-I) (R + w A) tF-.T)	 R- tz'^--z)W4
	 GT

_W	 SGTR -- wQ{FTC)	
Q (2.3)

f^ M

9



Since > 0, we have

T> 0 <—>	 +	 fGa SGI M G^ Q- > 0

ISGT

T	 T<—> G'6	 + Q-' IG A 6G) M G	 Q-1 )[G, 6G A) > 0

1 ISG I	 [ 6GT I

(see Lemma 1 in Appendix of Wong, Stein, Athans)

X 1 0 
+ X 

1 0	 M X 1 0 1 > 0

0 X 
2. 	[ 

0 X 
21	

0 X 

2.

A T -1where	 X, G^Q G 
A

A T -1X 2 = 6G Q 6G and 6G e R(Q- G A

X 1 + XlMJXI	 XlM.12X2
> 0

X 2 M 21 X I	 X 2 M 2 X 
2 

+ X 2.

<—> IX, + XlMlXl > 0	

-1X 2 
+ X 2 {M 2 - 

M 21 X 1 (X imixi + xi), 
X 1 M 

12 X 2 
> 0

(2.8) <==> X-1 + M > 0
1	 1

T -1	 T	 T
z	 G^Q 

CA) 
+ F Rr-	 (.F - 1) U'R + Wd (F-I) > 0

10

(2.4)

(2.5)

(2.6)

(2-7)

(2,8)

(2.9)

(2.10)



(2, 9) and (2.10)

<:> X2 + x2 {M2 - M21Z~1M12}x2 > 0

<--> xZl
 + {M2 M21Z-1M

12
I > 0

> x;, l + {-wo .. (R + wA (I -r)) Z-1 (R + (z-rm ) WA )) > 0
4

<° > x21 > {wA	 (R + wA (z-r)) Z- I  (R + (x--rm)VI  > 0

x2 < [wA + (R + t (x-r)) z-I (R + (i -rT )wA ) ]	 (2.11)

Thus we have shown that

(2,10) and (2. 17.) <__>

	

	 > 0 w> ( "A + PA (r GA+ 	 6GT>) is stable (DT)

from (2.2)

Q.E.D.

Proof of Theorem 3

The proof of Theorem 3 is facilitated by the following lemmas:

Lemma 1	 AA commutes with MA , and M ,,j V A and A'

Proof	 A,	 Al

0AAf eATdT f eATdr eAA
O	 o

eAA `
f
 eATd"C 1^	 re-AL1^ J	 (JeAt IT) = 	eATdT e-^^

o	 /	 i	 o	 0

fo 

A l

 e'dT)
-1
 e

7.1



Lemma 2

(AA + BAGI ) is stable <—> (AA + B G MA ) is stable.

Proof

(AA + BAGT) stable

M MAl (AA + BAGT ) MA stable

= MOlAAMA + B 
G MA

= MAlMAAA + B GTMA 	( : AAMe = MAAA)

= AA + B G MA

Lemma 3

MA+A = M
A + AAMA I ^ MA I + 

AA I MA

Proof	
A+A'

fo-
^	 f	 f

MA+A R 

	

	

+Q eATdT = J QeATdT + (eATdT

	

 0	 33A

	= MA	 fA
+ eAA 

r
A+A'eA(T-A)dT

MA+eAAMAO

i

`

i

12
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Proof of Theorem 3

We have 
(Aa*aI 

+ Bl1+a"GQ) stable (DT)

> (Aa+
a, + B GT MA* ") stable (DA) from Lemma 2

(AA + B GA Ma+a' AA-)An"

(Aa * B GA (Ma , + M
aAa , ) A-1)

 ) A
A

. from Lemma 3

( At + 13 GA  (MA + M 	 )) A
A l "A l 	 A'

Now

(3.1)

(3.2)

<4.> K ^ AAK A + Q - MAG (R * BAK B)GAM	 I	 from (Al2)
a aaa a	 as	 as as

where IC - MT M
a	 a a a	 to (A15)

Qa - MaQQMA

$o

r	 A	 _
Ka- f "kA h B G^ (Ma + Ma , AQ 1 K

A 
[,)^ + B G

A (MA * Ma' Aal)^ + QA

= P

where

Qa + PAGARAGQP - ( PA - MQ ) GAWAGAQa	 A (P	 MA )	 (3.4)

(after some algebraic manipulation)

withWa BAKa
B

(3. 3) => AA K A = AA (A ^I. B G6P) I{ (A * B GAP) A * AA Q A
a^ v a^	 a" a	 a	 a	 a s	 a"	 a"^ a o

A

('Aa*a' 
+ 

B GAMa.^a") 
A 

KA 
(AA+A I + B GQMA+4 I )

+ AA" QAAA'	 Ac	 (.3 5

13



KA - AT KAAC - KA AQ,(KA - QA)A	 (3.6)
A

since K > 0, we have

KA - Ac .AAe > 0 wts AG is (DT) stable	 (3.7)

Thus (3.6) and (3.7) together

KA - AQ,(KA - QA)AA , > 0 —> (AQ+A , + B GQMAW ) stable

<'-> (AA+A , + BA+A ,GQ) stable

NowKA - AA,(KA - QA )AA , > 0

t"> KA AA, (KA - N i QAMA i ) AA , > 0

<—> KA - AQ,(KA - Q)AA , + AQ,MA 1PTGAR GQP MAlAA,

T-1T

	

	 QMA)GAWAG(P - MA)MAl
> AA,MA 

(P -	 AA'

KA - A^,(KA - Q)AA , + (AA , + MA ,MAI ) T GAR GQ(AA , + MA,MQI)

>	 (MA I M4 ) T GA (R + BeKABA ) GQ (MA I MA1)

14
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APPrNDIX R

ATTACHUNT 1 (of rSL-SR-535)

GAIN-MARGINS AND STABILITY ROBUa" NBSS OF LQG REGULATOR

by

Poh Kam Wong
Gunter Stein
Michael Athans

ABSTRACT

New sufficiency characterizations o° the gain-margins of the
standard full LQG (Linear-Quadratic-Gaussian) regulator design (which
incorporates a Kalman filter in the feedback loop) are presented.
These results show that full recovery of LQSF-gain margins can be
achieved either through non-divergent filter structure adaptation,
or when plant-driving noise that enters through the same channels as
the control inputs greatly dominate other noise terms. An explicit
sufficiency bound on the gain-margins of LQG-design that varies with
a ratio of quadratic forms of the filter error dynamics & the plant
dynamics is also presented. These results further clarify the recent
work of Doyle, and suggek,t potential new directions of research.
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1. Introduction

As has been demonstrated in recent research (e.g. 111,(23 and (3)

and references cited therein), the standard multivariable Linear-

Quadratic-State-Feedback regulator design (LQSF) is known to have rather

"	 robust stability properties. In particular, as has been shown in X31,

the LQSF control design has the following gain-margin property.

IF u (t) is the optimal LQSF control gain-vector, then the closed-

loop system plant under the control of u (t) remains stable for all

gain perturbations:

u* (t) r--+" A (t) u* (t)

where

al (t)	 0

A(t) _	 is such that0	
an M

A (t) > 2 (I- xol)

where	
Xo 

d (R1/2GT -1GR1/2 	
> 0, _R = diagonal matrix > 0 being

the LO cost weightings, and Ga is the

optimal gain matrix.

That is, LQsr guarantees strictly greater than - 6db. gain reduction

& infinite gain margin, regardless of the choice of cost criteria

> 0 and R diagonal > 0.

2
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Because of this and other stability robustness properties of the

LQSp (see [2),[3) for further details), there has been great interest

in the question as to whether the full Linear-Quadratic-Gaussian regu-

lator design, which employs output feedback using a Kalman f17.te,

retains any of these stability robustness properties in general and

the gain margin property (+:M) stated above in particular, in a short

paper entitled "Guaranteed margins for LQG regulators," and carrying

an abstract with the single sentence "There aren't any," J.C. Doyle

has shown through a simple counter-example that there exists no uar-

anteed gain margins independent of the choice of cost-criteria & noise

characteristics specification. in other words, design-parameter-de-

pendent characterizations of the gain-margins of full LQG- system need

to be investigated before one can evaluate the stability robustness of

the LQG-methodology.

It is the aim of this report to present preliminary results of

our research in investigat.Lng the design-parameter-dependent charac-

terization of the gain margins of LQG regulator.

The organization of this paper is as follows. In Section 2, we

state our formulation of the full LQG gain margin characterization

problem. in Section 3, some useful sufficiency results which we have

obtained are reported and their significance discussed. Finally, in,

Section 4, we present discussion on potential future research directions.

3



Notations and Definitions

AT denotes the transpose of A

R(H) denotes the range space of H

R(H) 1' denotes the orthogonal complement of R(H)

If 9 e Rnxn is positive definite (positive semidefinite), we

will writes g > 0 (g ? 0)

If 2 ? 0 and xT x > 0 for all x e R(H), x 0, we write

Q > 0J
R(H)

(i.e.. 	 the positive semidefinite matrix 9, is positive in the range

space of H) .

2. Problem Formulation

Given the linear time- invariant dynamic system (A, B, CT) such that

(A,B)	 is a stabilizable pair	 (1)

(ST #) is a detectable pair 	 (2)

,Let 
Ga 

denote the optimal LQSF-control gain for some Q > 0 and

diagonal R > 0, where

KA + ATK - MR 1BTK +.Q - 0
	

(3)

and	 GT 
A - R 

1BTK	 (4)

4
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,J

Further, let t•Co denote the optimal Kalman filter gain for some

> 0 and 0 > 0, where

AT ,^ A^	 S,2-' 
T +
	 O	 (5)

and

Then the closed-loop, full LQG-system becomes:

x	 A	 BG	 x— 
+ (noise terms) (7)

7C	 -H^ A HhCT + 3 .0

where

x(O - plant state vector

A
x(•) w filter state vector

(%;e shall ignore the external. noise terms in what follows as they are

not relevant in subsequent discussion on closed-Loop stability).

Suppose now that the optimal, feedback u '` (t)	 (t) is perturbed:

u* (t) —"AMu* (t)	 (8)

where A(t) is a diagonal matrix: for all t s to,,-)

The perturbed closed-Loop system becomes

x (t)	 A	 s A(t)GT	x

X(t)	 -Ii^C	 A + B G0+ H0	 x



Px̂ obla%a Poi what range of A(t), t 010, 00) can we guaranta• that the

purturbed system (9) is stable in the sense that

^(t)
--r0	 as t —a- oo	 ?

x(t)

Remark:

The class of perturbation (8) ,includes the class of all non-dynamic,

nonlinear functions:

ui (t)	 F--+ f  (ui (t) , t)

provided

	

	 (10)

fi (O,t) - 0

This Follows from the simple observation that, given (10), we can define

,r
f (u (t) ,t)

ai(t) Q
	 i *
	 I	 ui(t)¢ 0

A arbitrary ,	 ui(t)	 0

and
)►

L1	
(t)	 0

A O	 l

0	 m (t)

Note that the restriction of diagonality on A(t) was made in (8)

because of the natural interpretation of A(t) that follows from (10)

and (11).

6	 r

I



Remark:

We shall first oxamine the case

A(t) E A constant matrix	 (12)

in what follows. The general time-varying care of AM will be covered

by a trivial generalization of the time-constant case in a later section.

This procedure of presentation not only simplifies the proofs, but also

helps to make the methodology of analysis (simple application of LyapUnOV

theory) more transparent. With the assumption (12) given, the stability

of (9) can be investigated by examining the stability of the system matrix

AB A GT
0	

(13)

-H CT
	

A + B GT
	 T

—0	
+ 1H 

0 

C

(in the sense that (13) is stable if all its eigenvalues have negative

real parts).

Remark

In the above formulation we have assumed that the Kalman filter

structure remains fixed at the nominal design values in the face of the

control feedback perturbations. For greater generality, we can assume

that some kiiowledge of the control perturbations may be 'communicated'

to the Kalman filter design, or that the Kalman filter structure can be

adjusted to 'track' the control perturbations in some manner to be

specified. This can be incorporated into our problem formulation by

P.

7



assuming that the filter structure is of the following form:

x(t)	 (A + B A G0)x(t) + H 
0 
C (x (t) - x(t))

(14)

(A + B A Go I. H C ) x (t) - HoCTx (t)

where A	 ('adjustable') filter structure parameter

I nominally

By incorporating the assumptions in Remark 2 and 3, we therefore arrive

at the following modified problem formulation:

.LQG Stability Robustness Problem

0	 0
ror what A =	 1	 and A	 1 .

0 	 0	 a
M -	 —	 m

is the closed-loop system matrix

A	 B AG T

-H CT	A+BAGT+HCT

stable?

Results

The main results we have obtained in the direction of sufficiency

solutions to the I.QG Stability Robustness Problem as formulated in the

previous section will be presented in this section in the form of four

8



propo,,jitions. A fifth proposition generalizes the previous rasults to the

more general time-varying gain-perturbation case. 
in arriving at these

results we have utilized nothing more than simple applications of standard

Lyapunov theory. The basic results from which all the Propositions in

this section are derived. has been stated as a Lemma (Lemma 4) in the

Appendix.

our first result pertains to the special case when we have perfect

'tracking' of the gain perturbation, i.e. when we have 'communicated'

to the filter structure the exact perturbation values A, so that
A

A	 A.
I-

Proposition 1:

Xf A E A then (*) is stable for all

A >	 (I - X-
whera

AX = (R'/Y Q IG Rl/')
-^O	 --c—

i.e. The LQSF- gain margin is completely recovered.

Remark:

The condition Awn A in Proposition 1 ensures that the filter error

dynamios are 'non-divergent'. This is best seen by examinig the error

equation in detail:

9
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e X X

c3	 (A + 
It 

C + B(A - A)G0).e + D(A -A )G X	 (1G)

A
if A e: A then the 'feedback' drivingterm from the plant--state drops

out, and the extra term in the system matrix of the error dynamics

disappears.

Remark:

Since LQSF- gain margin may be wide enough to tolerate some channel

failures (see (3)), Proposition 1 guarantees that such reliability of LQSF

design remains with LQG provided corresponding change in the falter

structure is made.

Proposition 1 assures us that. full recovery of LQSF gain-margins

is guaranteed with perfect knowledge of gain perturbations ,incorporated

within the filter structure ('non-divergent' estimation, see [11,[51

for more details) . 'there is another special situation under which

sitlilarly full recovery of LQSF gain margin can be guaranteed this is

the substance of our next proposition:

P:^oppsition 2

xf
min

xxx=1 x( --LA+HaC )XI

max	 xT (^- (A+BG 
x
o) x1

X x-.l

10
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Then (*) is stable for all

i1>	 (X-X-1)

i.e. the LQSF-gain margin is recovered in the limit as the ratio

(17) tends to infinity.

While Proposition 2 demonstrates that full LQSF-gain margins are

recovered in a specific limit, it does not tell us anything about the

'rate of convergence' to gain-margin recovery, i.e. the explicit

dependence of gain margins on the ratio (17). The following Propo-

sition provides a partial answer to this question by diving an explicit

sufficient bounds on the gain margins.

Proposition 3

Suppose A X. Then (*) is stable for all A > 0 s.t.

-^ < A < a^ X	 (18)

i
where

a+ Q l + I//—w 	(1.9)
t

j

^- = max{l- ( 1/xo) , 1/X+ 	 (20)

with

w0 = max a (W0 	(21a)

W 
L 

R-1/2BTK Q 1K HFt-1/2
	 (21b)

-o	 --- -f -f
Kf(A+H T) + (A + H C T ) T Kf +Q+G^RGT= 0	 (21c)

x  = max X (X0	 (21d)

XA It1/2 GT Q- 1G R1/2	 (21e)

11



moreover, w0 satisfies the following bound:

	

)'tnax (Q+.GioMo-)	 =1 [xT (- (A+BGp) x]

'/ Ro	 ^m n^K) 
man(Q+G^

RĜ )	 .min	
xm AFH CT xT	 C (- t _CI_ —

x x^ 1

(R-1ST8)	
(22)

max

Amin (Q)	 .

Remark

The bounds on A obtained in Proposition 3 are only sufficient, and

are in general rather conservative. Moreover, they are not the tightest

possible bounds that carp be derived from our approach (they have been

essentially derived from Lemma 4 by choosing the parameter a to simplify

the solution of the bounds rather than to optimize them, which entail

much more tedious algebraic manipulations). The actual numerical compu-

tation of the parameter w  is straightforward although a hit tedious

(requiring the solution of a Lyapunov equation (21)), but perhaps of

greater theoretical significance is the simple bound on W  given in

Equation (22). Taken together, Equation (18) and Equation (22) show

that the upper bound on the gain-margin increment increases at least

linearly with the ratio

min Ix  ( (A+HGT ) x]
x x=1
ma 

[xT (- (A+EGT ) x]
x x=l —

12
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Remark

In the results presented so far, no use has actually been made of

the fact that the filter incorporated in the feedback loop is a Kalman

filter the only information of the filter we have utilized is the filter

error dynamics matrix	 11 CT) which could well have been designed"o-

by any other methods. More generally, therefore, the above results

actually apply to any full-state filter design incorporated in the control

feedback loop, and we can conjecture that similar versions of Proposition

2 and 3 apply in the case of any estimator dynamic compensator incorporated

in the feedback loop.

Remark: Note that 2 > 0 is crucial for Proposition 3 to hold.

The next Proposition, unlike the previous ones, explicitly make use

of the assumption that the filter design incorporated in the control

feedback loop is a Kalman filter. The basic question of interest is, for

what choice of the noise specification 1), E) will it be possible for the

LQSF-gain margins to be fully recovered? Proposition 4 provides one

answer.

t
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A

Pro2osition.4
T

Let A E T and suppose that 	 * c^
2
T3 B for some w > G and--

scalar 0 2 > 0, and where (D l > 0

Then as ^ 2
The gain margins of A approaches

A > z (z - xal)
	 r

i.e. full LQSF-gain margins are recovered as the plant driving

noise-terms entering directly through the control input channels becomes

greatly dominant (i.e. if B u is the control term, the noise tern w2

that gives rase to the variance 2 B =. B

rl, 

enters as B(`u + w2)).

Remark

Proposition 4 is essentially the same as Doyle', result in Doyle

j6) (where his assumptions are slightly different, and unnecessary,

from ours) but our proof technique is completely different from his

(which is a 'frequency domain' computation) and moreover our initial

motivation has been independent from his work.

The most natural interpretation of Proposition 4 is that, for those

systems whose plant driving noise- terns enter primarily through the same

channel as the control inputs (hence the form of the noise-variance term

02B = BT) themselves, recovery of LQSF-gain margins tends to be facili -

tated, with recoverry complete if these plant driving-noise terms



bccomes g oatly do:ni.nant over th y: observation chatinal noises. This makes

Sense intuitively, as Doyle pointed out, because the noise that enters

the plant through the same cshannels as the control inputs can be inter-

preted as ,perturbations on the control inputs themselves, and this will

get communicated through the mathematics into the filter design in such

a way as to provide 'hedges' for the uncertainties in the control inputs.

Remark

Although we have assumed A I in in Pxoposition 4 (as this is the

case of interest), this assumptions is actually not necessary - any
 h

finite A will do, as is obvious from the proof. Of course, this can
i
!	 only be true in the case as ^

2 ^
► 	 For large but finite ^ 2 , there can

be great differences on the gain-margi.ns depending on what value A takes.

Example 1

To illustrate the above propositions, consider the following single

state, single control and single output :systems

A -a> 0, B 	 CT -C

9 q	 R ^

The regulator design is:

a
k = 2 l	

,7
L +-(1/p]	 (Riccati matrix)

b

a
go	 b 1 + 1 4. {1/T11 (optimal. gains)=	

L	
J
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2
xo	 ^	 J * r)	

(R1./2 
2,0121. 6.0Go Rl/2)

a + bgo -	 ( i + 1/r) ) a	 (closed loop dynamics) ,

	

where n Q a2/qb2 	Also, by duality, the filter design is

S-
2 [1 + 3 ) + /nf	 (covariance matrix)

c

hp	 [1 +1 * llnx l	 (filter gains)

a + hoc - - ( V 1 ++ l	 a	 (error dynamics)

	where of 
M 

a2/^c7 	Then the Kff matrix of equation (21) is given by

Kf —

 

	 ^1 + [n +	 + n ] 2

	

2a Fl + ^	
(.

a2

and wa of (19) is

fo= v/qrb
	 2 (1.+xo)

2a 1 + ^c2
a

	

^, _	 b 
I,+xo	

1

	

q1	 C	 2 +nf

16
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I

	

It wo I(S t. q,	 to hr; Imch that

b5> .!! ),
q	

( 

>	
2

U. e. a wide band regulator)'

(i. e. a wide band rogulaLor)

Then

2
0

q (b

IR	

0

and x + I
0

so	
+ CIb

0	 2

and we have
2

2+ < <1•M 
Cqb

or
IC2

'c
< 2

c

qb 
2	

rclb

Tho following repro.scntative values of 
+ 

and X- as a function of
(^c2

2	 are illustrative:
gu

2
_ 

=LC :	 < <l	 I/loo 1/16 1/4 1 4 1G 100 >>1

qb 2

x*
	

-1	 11/10	 5/4	 3/2	 2	 3	 5	 11	 00

1	 -1	 10/11 4/5	 2/3 1/2 1/3 1/5 1/11 0

17



The results presented so far have been restricted to the case

of control perturbations of the form,-

r-•- A u*
 (t)	 for All t c(Oo c*)	 (24)

where A is a constant matrix. We now consider the more general case

when the perturbations are given as time-varyingi

	

u 
* 
(t) ►-	 A(t)u* (t)	 t e [0 ' ^O)	 (25)

Aa it turns out, the extension of our results in the previous

section to the more general case (25) is trivially simple:

Proposition 5

if for each t s[O, co) point-wiseo the functions A(t) and A(t)

As ►tiofies the conditions on A and A in any of the previous Propositions, then

that proposition holds for the time-varying perturbations {A(t), t e (0,00)j,
and	 t C (U,00)



Recall that, 
in 

qu-neral, if	 t 12 Et 
11 

t2)) is such that for each

t E; Et Vt2 I MILa	 , ^(W ha&I-- all its eigenvialuos with negative real

parts, it still need Noll, be true that

W M 2E M

is stable (in the sense that x(t) -)- 0 as t	 Thus one cannot

'prove' Proposition 5 by arguing that, if

A	 13 A W
A	 0	 is a stable matrix

A W	
_1 '1 ^1 	 A + 

13 A (t)
e
  + 

11 CT

 -0

(all eigenvalues have negative real parts) for each t C[0, 0*) pointwise ) then

x (t) - A (t) K (t) ,	 t CE0100)

is stable (X- (t) -)- 0 as t -} w ) . The fact that Proposition 5 nevertheless

does hold is because of the guaranteed existence of a single Lyapunov

matrix for all t C [ 0 , °') .

Romark

The perturbation class {A(t), t CCO,-)) can be trivially extended

to the more general one of {A(Wt), u* (T),	 t e[o,-)) which

incorporates dependence on x(-) and u* (.).

19



Future n*search Directions

Several areas 
of 

potentially fruitful research are readily sug-

gested by the preliminary results we have obtained so far. we shall

briefly list some of theme below, not necessarily in any order of

suggested priority.

1. Determining the I rate Of convergence' to LQSF-gain margin

recovery by the noise specification

1 
+ ^ 

2B
 -ft. 9	 as ^ 

2 
varies

Although Proposition 4 land Doyle) has suggested the
desirability of using noise specification of the above
form for gain-margin consideration, that result, like
Proposition 2, is a limit characterization that provides
no clues as to tho bohavior of the gain-margins as ^ 2
varies. An explicit sufficiency bounding solution si-
milar in form to that of Proposition 3 which can
demonstrate the dependence of some sufficient gain
margins bounding on ^ 2 will be highly useful in prac-
tical design. Since the proof of Proposition 4 uses
a procedure closely similar to that of Proposition 2
and 3 0 it appears that such a sufficiency bounding can
be similarly derived for Proposition 4. We have not
had sufficient time to investigate this,

2. As noted, the sufficiency bounds in Proposition 3 are
not the tightest possible that can be derived from
Lemma A. A more careful effort in optimizing the
bounds by exhausting al). the free variables provided
by Lemma 4 may lead to significantly tighter bounds.

20



3, Proj)Qsition 2 and 3 haves 	 out that, 
p
urely Irom

the gain-margin maximization point of view, those filters

that have largo ratios

mill [_4 (b,+UoQ:)A)

M	 (P
max [-a' (,B+D_0

o
 )ZI

tend to be better. The following question therefore
arisoss is there a simple way to classify the set of
all possible design parameters

(2 1 R, 4) 1 0)

into those combinations that have the property (P)
and those that tend to be otherwise?

4. We have introduced the parameter ^ into our formulation
as it provides a natural interpretation of how a filter
might adapts its structure to minimiza'divergence'.

The actual implementational consideration of thisgain-
perturbation tracking' concept may lead to practical
design significance (e.g. how to modify filter struc-
ture when -there ir, control channel failure to

g.iarantee stability of TQG system. The parilmeter

A tells us what needs to be changed).

5. Extension to dincret(i-time system, similar to what
has been done for the LQSF case [5).

(j?)

21



G. Application of results (especially Proposition 3 and 4)
to some real physical systems (e.g. aircraft) to study
the actual behavior of gain-margin bounds as ^ 2 orT

(&+UOC—)	 are varied.

10
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APPENDIX

The following lemmas will be useful in the proof's of the propositions

in this paper.

Lemma 1

If 
V 

E Rnxn , M2 E Rat are symmetric and H E Rnm is arbitrary,

then

in > 0

=> M + M Hbi HTM > 0
F	 (M + M HM HTM ) > 0	

"-1 i1—^2— ;^l
1	 1 2......1	

R(I^)

i
Proof	 •

See [2) ► Lemma 1 proof.

Lemma 2

-1
If Q^ > 0 and 22 > Q2 1Q

1 
212

Then

2.1	 212
> 0

521 a-2

Proof

See any standard Linear Algebra text,

s

f
O
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Lemma 3

^f	 T 
-'H 	 -1 -1 -1

H (Ml h 2; ) fi	 [M2 ! (H i . I,;I) j

where !2 > 0 and the inverses defined in the equation exist.

Proof

T -1	 T --1	 --1	 - 	 T -1 -1 T -1H (Ml ,} HM2H ) H ► II {M1 - M1 Ii 
(M-2i+ 

H Mi H) H M, }H

T -1	 T -1	 -1	 T -1 -1 T -1R (11 Ml II) -(H Ml N) (_2 + Ii Ml H) { { M1 H)

[ M2 . (I' M, 1H) 
-1 ) -1

Lemma 44

(*) is stable for R > OAand A diagonal if there exists a matrix L > 0

and a matrix p > 0 for which the following conditions hold:

(i) 211 - (x + Q + )pl > 0 <=> A >	 ((z^L) -- Xol)

(ii) Q > Ga l/2 [1 + Xol)-1R1
/2GTo

(iii.)	 > Go [LR + (A- L) R1/2 [211 - (x •FL) + X-1 -1 R1/2 (A-L ) }GT--0	 0

+	 KB (A-•A) 2 (L x) -1 
FiTK

where

K(A + H0CT) + (A + HeC^^)
T
 K + Q=	 0

a
Proof of Lemma 4

We have 

H-X	

A	 BAG

	
Ix

 o	
(Al)

 _

	

-Ii Grr	 A + H GT -• BAG- 

Let	 e x-x



Then (Al.) <=>	 x	 J1 + MGM	 BA"'	 .X

.-	

—	
(43)

III

n	 zl (A-A) G^	 A H 1-1^G^ + 13 (1-A) G^'

The matrix A can be rewritten as

A + 13G 'IV BG3 B (A-I) G^j n ( A-I) G 

0 A + 11
0

C^ * s (11-n) G B (1-A) G 

M

%, a

Since	 is a stable
-A-o matrix, for every Q > 0 there exists a K > 0

such that

'
o _ 0_

by Lyapunov Theorem.

If we choose

A-

Q + G RGT

0, 


0
G RGT

_o___° > 0
o Q

(AQ

V

(A5)

(A6)

(whero	 > 0 is to be specified s.t. (AG) holds)

K 0
Then (n5) -> ,K

	

	
(A7)

0 K

25.



where K > 0 is the unique solution to the Riccati equation:

KA + ATX - KBR-1
BK 

+ Q. - 0	 (AD)

and K > 0 is the unique solution to the Lyapunov equation:

K(A+HC) + (+Iio^ 
TT

A	 K+	 0	 (A9)

Further, from W), we have

KC,Ao + BA) + (-A +$A)TK+dg=Q	 (A10)

where

89.	 ( 6A + 6ATK)	 (All)

4
so from Lyapunov theorem, we know that (A o + 6A) is stable if

ag, > 0	 (Al2)

Given the choice of Q as in (A6) and the corresponding form of K as

in (.A7), we get (with R diagonal)

Q + G (2A-I)RGT 	 G RAGT + G (A-A)BTK
._ . p	 _ 0	 _0--0 -0 ._

8Q - 
G0RAG0 + KB (A-^A) GQ	 Q, + ga (A-A) BTK + j CA-A) G0	

(A13)

From Lemma 2, the condition (P.6) is equivalent to;

Q + G RGT > 0	 (which is true from definition of ,Q)

M14)
Q 

> 
G RG 

+ GoR-Ga)~1GaR-Go

26



A	
-1 

R 
1/2 T	

(from Lemma 3)
It

	

Since (A14)	 P.

	

whore	
x 

A 
(LJ/2GT -1 1/2	

(AlG)

0	 .02 qoa

what remains to be proved is that the conditions in Lemma 4 are sufficient

for 62 > 0. Now, from (A13), we have for any diagonal L

+ G (2A- (I+L) RG^	 G R(A-L )G T-0-	 -0
T	 1 T^

G	 G RLGT - KB(A-Â ) 2 (LR) B K
0	 "Q___o

G T	 BT^
LR[GT , G + Cli_^A-A^)0	 0 -.0

+	 (A17)
GO+ KB (A"A)R_1L- 1-

If L > 0, then the second term of (A17) is positive semidefinite, so if

the first term of (A17) is > 0, then it will follow that SQ > 0. But

sufficient conditions for the first term of (117) to be > 0 are as follows

(from Lemma 2):

+ G
0 
(2A- (I^-L)) 

11GT > 0

> G0
	 0	 ___O	 -0
(A- W RG T [a + G (2A- (.14^.L) RG T F 	 T

1 GAR (A-L ) G 

	

+ G LR 
T	

2- (LR) _lB T 
A

	

0 -0	 -  Y-

and (A18) <=> A 
>1&)
	 -Z)- QI+ 	- 	 (after applying Lemma 1)2 - 

while, (A19) <=>

(A18)

(A19)

(A20)

1	 T9 > G
0 (LR + (A-L ) R

1/2 [2A-(I+L) + X_ I- 1 R1/2 (L-L) )G-	 -0	 -0
1 V,KB (A-A) 

2 
(.TR) - B K

(after applying Lemma. 3)



Lemma 5

LOL A be a stable matrix, > Op and K > 0 be the unique solution

to the Lyapunov equation

M + i'K'	 0

then

Amax
Amax M
	

T2 min Ix (-A)xl

Xy o

T
x X, .1

Amin()
min	

>	
T2 max Ex (-A)xl

X^o

X 
T 

-x-,--

Proof

We have

+

"

xT (-R) +Ti) x x
T 

QX	 V X^O, x
T 
x=l

x 
T j (_ ) + (_A)Tj)x 

{ Amax	 v X^R, x 
T 
x=l

Now chose x4 0 such that

Amax (-K)

a

28



n

Than

T

	

max 
M	

max

Now

Tmin
	 X (-A) x < 

T
X

2yo

x 
T 
X-I

Sn

ax
2X 

max 
(K) min x A)

	

x	
m

x xl
or

Amax
a

	

mx 
(K) <	

T -
2 min fX (,-A)xl

2510

x 
T 
X=I

Similarly, we can write

	

+	 T-
A) K) x > 

X min 
(Q)

and choose x /00 x l	 s.t.

Kx X Wxmin

T
Then	 2X min (K) Ex' A)x > X min(Q)

and
X min (Q)

	

X 
Mill 

(K) >	

2 max [x 
T

X/O

x X=l

X^O

x 
T 
x=1



Lemma 6

Lat

A	 A	 -1/2 T -1	 -1/2
w M X	 (a ) tm 

)'max
 (R	 a sta

0	 max 0

ISt (A  ,. f, C^) + (A ,, 1, C T ) 11' Y + Q
	G RG T - 0

Nvi hh

Than

X	
T

4/07, 
o 

< X 
min 

(K)

sM,n

	

rzr

max l 
tXT(-(A+BG T )x)	 Xmax (R 

-1 
B 
T 

B
-	 0-- 	 — —

	min (x T (_ (A+H CT) x) 	A min LQ)

x Tx-1

IN

Proof of LeFuuz-a 6

We have

(A+11 CT)
(A+Ff c 

T IT 
Ke	 Q + G RG

K [_ ('A^+BG 
T 
H +0 (A+BG T

T K G RGT

so from Lemma 5

X	 (Q+G RG

max (K f ) < 
-max	

T
0 0

2 min (x (- (A+'Li 
0 

CT )) x]

X	 (Q+G RG T )
> Min _0___o

min	
2 max [X T (- (A-^BG 

T 
x

X/O	
0

T
X x-



ana honve

,

	

mklx	 (A+BGT)

Amax (2 h9 Jl% ) a X . -

,. 

l	
0

max	
T	

r	 A•Hi - - T
	 min M -

Rr,	 mi n 	(

	

min -0-0 	 m
X X-1 ^{

We also have

(,)o	 Xm,	 -1	 -1/2Ix (R71/2 T
.RR

XMaX (K	
-1 T

.fR Ef)XMaX (BR 11

<A

max (E,2),MaX(q-l),maX(,71BT)•

[X	 -'X	
(,^-IBT B)

max (Ed ]'[Xmin (9I)] max — — —

maxrw <	 (K
o	 max

min

This and the bound on	
f ) 

establish the tiamma.

Proof of KEOPosition I

if A A then by letting L = al, a > 0 the conditions in Lemma 4 becomes

M ,	 A > I M.+a)	 1)2	 -0

1/2	 - 1 -1 1/2
Ui) , 	 > G R (I + X	 R G

-0- - -0	 0

G>	 {C4R + R 
1/2 

(A-ax) [ zk- u+a) i + x- 
1 

]
-1 (L 0^1)!11/2 T

2. -0	 -0	 9-^

By choosing Q sufficiently large (positive definite) and by letting

a -)- 0, conditions (ii)' & (iii)' are always satisfied while condition

M	 A > 1 (1 - X-
-o 

1 ) .
2 — 

0
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Proof 
of 

Prot)osition 2

A A
	 TT, e t Q - 6 LQ V, 

ORUO 
whore 0 > 0 In chosen such that condition

(ii) of Lemma 4 1-., sittisfied, i.o.

	

+ G 
0 RG 
T 

Q A1/2
 
[L + X-11-

1  
R 
1/2 G T	 (A23)0	 —0	 — —0

AThen X - ^t > 0

whero K f is thri uniq"a Lyaqunov solution of

+ H C7	 +	 1.1
Ma

T
c- )

T+ GIf + Q	 —ON W 0	 (A24)

'Let Tj - Q1, Ct > 0.	 Condition
(III)

in Lemma 4 then becomes

no	 0 .. 11	 ^ 2 -1 TMQ	 (A-A) it B

12 T+ G (0-a) R - R	 (A-ax) 211- (14a) I + X
0 
I (A..C11) R / )G > 0
 WS)

A sufficient conditions for (A25) to hold is therefore;

> k( _^) 2 R71 I"CX

0-a) I - (A-ax) [2A- (.i+a) i + x
-1 

I -I (A-ax) > o0	 — — —

The condition Q > 0 and Lemma I can now be used to show that

(A26) <=> 
(IC 

1/2
B T Kr 1

1C - 
1/2 

_1 >

	

	 A 
)2

A (A A

or

(W C I >	 (A-A)2
0

A sufficient condition for (A29) is

>

0

(A26)

(A27)

(A28)

(A29)

(AsO)



whort^ 
cd0 

A 
X 
max 

(w t0 }	 if wo now take

4

	

^` -Wo , a - 1/0	 (A31)

Then (A3 O) becomes

	

I — X(A-A) 
2	

(7132)

But from Lemma of

Tin 
I-x 

T 
(A+fj cm) x)

varies as A -̂A"—tl -	 0	 (A33)
,Vw7	 max	 T (	

T0	 T	 I-x A+BG 
0 

X]

4z

so if this ratio tends to infinity than (A-A) 2 may become arbitrarily

large.

Moreover, from (A31) , a -)- 0 and Ar , so the conditions (A23)

and (A27) a:rn Satisfied for all A s.t.2 Ai- (I+a),l 4. x- 	 is finite.
0

The only remaining condition of Lemma 4 is condition (i) ► which 'tends

to;
A >	 (1+oo i - X- 1 )	 0 A > .1 (1 - X- 1)

n
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Proof of Propoeition 3

rrom the proof of Proposition 2, Lhe followinq conditions are

sufficient for (*) to be stablot

(8) A >	 U+W I - -
0

^_ I )	 (A34)- 

W_ I
	

A 2
(b)	 >	 (A-A)	 (A35)

-0	 01 

(0 (R-COI > ^A-qj) MA o (l+WT + V,_l]_l(A_qV	 (A36)

	

+ G, RG^") > G R 
1/2 

(1 z 
-1 

1 
-1 

R 1/2 
G 

Ir	
(.A37)

To simplify tho proof consider first the case AwX1, X > 0, and
A

A * 1, It we choose Ot a, then conditions W- (c) become

I >	 X	 WS)0

(b)	 W 
-I >
	

1)

0	
1	 (A39)

(c) ,	0 > X	 (A40)

SuMdent conditions for W'-(W to hold are:

X > (3,	 where 
x0 

A 
max X (X

0
	 (A4 1)

0

W <	 Whercs W ^ max X W	 (A42)
0	 2	 0	 0

To find the upper bound X of given (A40),(A41),(A42) and (107), set

0 M X +	 (A43)

Then 0142) yieide
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W	 (A44)

+	 >	 (A4S)+
wo

We utill need to chock that (A37) is satisfied, i.e.

+	 G CST )   -- R 1/2 (.1 + x -1 ]- I R1/2 GT	 (A46)o —or , 	—0	 -	 —0

It can be shown, abboiL with some amount of algebraic manipulations

by applying Lemma I and 3 1 thnt a sufficient condition for (A46) is:

2

+ >	 (A47)
(I+X 0

2

N

"'ince	 0< 1. and X+ > 1, (A47) is satisfied.(1s0) —0  ) 

To find a lower bound X-of X, we first find the lower bound X1

given by equation (W). We have

03	 (A48)

It can be shown, after some algebraic manipulation, that X - = I/X (A49)•
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Since a must also oat isfies the lower bound given by (A41) r we.. therefore

have

max ^ U .. ^--) Xe	 (A50)
0

"Ira have thus ohown that (*) is stable for all A - XI (and A I) such

that

X.. < a <1 X+ 	(A51)

where X+ is defined by (A45) and X.. by (ASO). The generalization to

the case

I < A < X + I
	

(A52)

for general diagonal A is obtained by replacing cho.rce of L s aI by

a general L > 0 as provided by Lemma 4. We shall omit the details of

the proof of this as it is straightforward (albeit tedious). •
Proof of Proposition 4

Consider the Kalman filter 'Riccati equation:

(A + HoCT ) T + (A + HoCT)y + L C 
2-1

CTL	 = 0 (A53)

(A + 110CT) T
	

-^ + ^^ 1 (A + I;oCT) +	 c Q
_1 C

T + 1-1 D - 0	 (A54)

If we let	 Q
	

0(CQ-1CT + r-1 ^D Y'l )	 in Lemma 4 (such that Condition (ii) holds)

then
K = OK,^ 1 (A55)

and Condition (iii) in Lemma 4 becomes
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0 1/2 V., 	 2 1 T I
I	 MIR	 'G	 n	 1c, BwO c

W11(wo	 lottinq	 tai, kx > 0

m va + (A-oq^)	 (A57)

A
(A58)

+

(A56)

G Rl/' M11"/ ) CIT) +

2 a7l
> 0

Ct	 ) z	 (7159)x	 '. 
(=> 01	 0)

if WL, teaks: (t U 1/fl , and let	 in such a way that

2	
A 

2
to  in t1w ;Limit; (A59) is satisfied for all (A-A) and A

1	
- -finite and Condition (4.1) of Lemma (4) tends t	 io; A > 	 (I - X01)

n

Prool of Proposition 5

By Lyapunov theorom, thedynamic sysh_.-m

z -
x = AMJK(t), t o[O ' co), ;:M given, finite	 (AGO)

i_n, stablo ('(t)	 is V	 if 'thore emists a positive function s.t.

I

v(- )>

Pv 	 C)	 to U[0, w) ancl . - M satisfying (AGO)
d

If we now consider t1w function

(7161)

(AG2)
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IT
X	 x x Ix	 where K is the Lyapunov matrix 	

(A63)

as datined 
in 

(A5

then
(1) tj > 0	 0	 since K > 0

and
(2) n	 -:T	 -T	 (AG4)^ 

X x x X x

-T -T
6A	 fix (A K + K A) x	 (where A	 .1.	 as de ned inA 

—0

equation (A4))

--T
x (from (Al2))	 (A65)

< 0	 x 0 since 6,0. is guaranteed to be > 0

in each of the propositions I to 5,

according to Lemma 4.

Hence, il satisfies the stability theorem.

Proposition 5 is proved.
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ABSTRACT

The purpose of this thesis was to investigate some inherent properties
of hybrid systems. These systems include both continuous in time and discrete
parts and have a particular importance in design and implementation of various
digital control algorithms. in particular, problems of hybrid approximation
for continuous "nominal" system and robustness of hybrid systems are studied.

The robustness problem for general control systems has been studied by
M. Safonov but his results cannot be applied directly to hybrid systems in
order to determine a critical value of the sampling interval which assu,ies
the system robustness. The problem is investigated in the thesis as well.

The practical t1iree-dimensional control system is shown in order to
illustrate the general relationships obtained for hybrid systems.
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INTRODUCTION

The subject of this thesis is investigation of some properties of hybrid

systems. Such systems include both continuous (plant) and discrete (digital

computer) parts. Inherent properties of hybrid structures are of particular

interest when designing digital and analog devices to be used in closed-loop

systems (control systems, for instance).

The first section provides a general description of hybrid systems, their

components and introduces some notations.

in the second section a continuous time representation is shown for the

hybrid system. Examples given in the section explain general features of a

hybrid structure.

The third section of the thesis deals with properties of the induced

norm of the hybrid operator. Both lower and upper bounds for that norm are

derived. They dependence on the sampling averaging interval is clarified as

well as their impulse-like behavior.

A hybrid approximation of continuous operators is considered in the

fourth section. An optimal approximation criterion is discussed and inter-

preted. The optimal coefficients of the hybrid approximation are derived for

a sufficiently large class of linear continuous operators. Possible structural

simplifications both in sampler and hold circuits are discussed and the opti-

mal approximation for these situations are derived. Some examples are shown

in the end of the section.

The fifth section of the thesis deals with the robustness problem for

hybrid systems. This problem has been solved in general for various control

systems but either for continuous or for discrete case. Those results are

used to develop an appropriate sufficient stability conditions for hybrid

1
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systems, The approach suggested for this purpose provides the value of

sampling rate which preserves stability of a nominal. continuous time system.

The last section describes an example of the concepts and methods de-

veloped in previous sections. A three-dimensional single input-single output

closed loop control system is considered. A sampling rates which assures

stability of the corresponded hybrid system is ;found by the suggested method.

The optimal approximation hybrid system is constructed and compared with

alternate hybrid system. To compare their performance when subject to noise,

both systems have been simulated on a computer. Results of the simulation

are discussed.

2



SECT ION I

HYBRID SYSTEMS

consider two gteneral linear operatorx

t
v(t)	

Of 
G(toO)u(0)d

k

vX (t) E 0 kz(t)r1z	 (1.2)

tol

where u(13}, v (t) r, Z' Vk (t) are vectors of dimensions M, N, L, N, respectively,

G (t,O) 
is an NxM matrix and G %z (t) is an LxM matrix.

The operator (1,I) represents a physical continuous time system, while

(1.2) is a system which includes both digital and analog components. Systems

of this type will be called "hybrid systems". Usually, tbey have the follow-

inq structure.

U( 19 )- IANALOG,/DIGITAL	 DIGITALDIGITAL	 yk(t)CONVERSI ON

	

	/ANALOGCOMPUTERVERSIOCONVERSION

Fiv. I Hybrid sysLem

AS seen in the Fig. 1, both input and output of a hybrid system are

continous time signals. Such systems may be connected directly with various

continuous time plants for different purposes.

3



A hybrid system consists of throe parts ., sampler, computer and hold

circuit.

A) Sam,216 is a device which converts a nalog signals to a sequence

of numbers (vector-valued) getting to a computer.

^°	 '11kuce^
SAMPLER	 COMPUTER

Fig. 2. Saiapling operation

The input signal )AM) is averaged in some way over time interval. T eo

that each T seconds a new value of 
9A 

gets to the computer. This opera -

tion over a single time interval. from ( k-1) T to LT may be represented as

ZT

(k^l)
3 

T k
f (0)u(0)d0	 (1.3)R 

where fk (0) is a certain matrix valued function, u(0) and k are vectors.

We define f k (0) so that

fk ( 0 ) = 0 if 0 0 ET (k-1), TX) .

b) Digital Computer. This block performs transformation of input

	

sequence {^ k), k = 1,2,... into output sequence {n K}, K	 0,1... . In case

of linear realizable system it may be written as

4
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V-O T	 X F 8

rig. 3. sampling

k
nk - FD, ,R	 (1.4)

Rol

where R is an L-vector, n  is an L1-vector, and DkR is an L1xL matrix

sequence.

C) Hold circuit. The input of this device is the sequence N k ) which

can be multiplied by some continuous fu,iction gk (t) over each interval

[kT , (k*1) T) to produce the ultimate output of the hybrid system v  (0

v  (t) - gk (t)	 nk

whore gk (t) is a NxLI matrix and is also defined to be zero outside the

interval [kT, ( k+l)T).

Finally, the overall hybrid system which transforms u(0) to v  (t) may

be presented in the form

5



where

k

''k 
{t) m 9

k 
{t

^k S{, k
	 0,1..
	 (1.5)

Jul

77k

t

ZT

f u

kT	 ( k +I )T

Fig. 4. 11old operation.

6



SECTION 2

Hybrid Operator Representation

In this section we show how the hybrid system may be presented in a

continuous time operator form. This representation allows us to investigate

some specific norm properties of general hybrid operators and also is help-

ful in applying methods of continuous time systems to hybrid controllers.

The transformation (1.5) may be written in a continuous time form

V(t) -	 G(t,8)u(6)de	 (2.1)

if we introduce the function

k

C(t,O)	 gk (t) fill) kZfR,(^)	
(2.2)

R=1

and let k ft—rl be in the integer part of T . This is verified by using ex-

pression (2.2) in the formula (2.1). we have

t	 k

!L7 k9,
+ D 9)fQ(6)u(5)d00

0	 =1

k 

fk
k ) DkQ 	 £

Q 
(0)u(e)de

R,=1	
0

k	 R,T	
(2.3)

gk (t) FaDkk ff z 
(0)  u(0)d8

R=1 	(k-1)T

k

_ 
gk (t) EDkJ - v

k (t), k = 0,1...

k=1

7
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The result chows that any hybrid operator (1.5) may be presented in a

form (2.1) with a weighting function(2.2) . Also, one can see from the expres-

sion (2.2) that the hybrid operator is inherently factorized into two factors:

one depends only on t, the other only on 0.

Usually, shifted versions of the same function are used both to sampling

and hold devices, i.e.

gm (t) - g0 (t -MT)

(2.9)

fA (a) - f0(0 -kT)

where m and t are arbitrary integers, and g 0 W and f0 (N) are given sample

and hold functions.

Dx^a .

Consider the folloGing example of a scalar hybrid system

	

l	 -^;<a <0
E

Sampler:	 f OW

	

0	 otherwise

Computer: Dkk _ uk-k

Hold:	 90(N)	 l.,	 0 < X < T

Formula (1, 5) yields for G (t 00)

};

G(t,$) = ^uk^QCk
=1

8

(2.5)

(2.6)

.4



8

whom
0

fu(0)do
-C

I

Fig. B. Oporator G(t,o)

Vig. 5 shows a oLmict-uro or the function G(t,O). In this particular

case fulwtions q 0 (N ) all d f 0 W are stiown in vii, G. They reprosont so called

" I zvro ordor bol(I II and approximate ll impulsivo SwIlpling", respectively

Allothol' Ilossiblo ON2l,111I)IO of Ct samplinq function is

;C	 (2.7)

whoro
LIT

9



I

T	 0

Fig. 6. Example of Sampling and Hold Functions

X

This is called exponentially weighted sampling and also approximates impulsive

sampling for Ot sufficiently largo,

a I %, %

pig. 7. Exponentially Weighted Sampling

in more general situation functions f 0 (X)  and g 0 W are not necessarily

scalars. For example, the samples might be

10
f 0 (X) =

( f 20 W

10

..	 a .......	 ..^.	 ..	 ..	 ^	 .	 . .. .,ter



-T

whero f 10 
W and f 20 (N) aro scalar functions shown OR rig, S.

rig. B. Hxamj,,)la of Multivariable Sampling

	

i
I	 -T < x < 0
. 

	

f	 othorwise

(2,8)

< < 0

20 W	
0	 Othorwise

In this caso £&n samplos the average value ad  samples the average slope

of 'the input function. Similarly, thm hold circuit may have the for

	

9 0 W	 (g 10	 W , #00(}))

where q 10 (X) and q20 W are, for example

11



1 0 	0<x  < T

910 W - 

00 otherwise

YX. 0 < X < T

920 
W - 10, otherwise

(2.9)

Fig. 9. Example of Multivariable Hold

Here, g 10 is a zero ordr,r hold and g20 is an ideal first order hold. The

computer can then command both the level and the slope of the output function.

12
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SZCTION 3

Moran Xnequalities for Hybrid Operators

Now we establish upper and lower bounds for induced norm of the hybrid

operator.

A norm of operator G is defined as [2)

Gul

IIG11 s Suzy 
l I... l

GU 
l

I1	
(3.1)

u

where hull is a Euclidean norm of a vector function

W
hull , = f u (0 )u(0)d0	 (3.2)

v

In the case of our hybrid operator we have

k

(Gu) (t)	 (t)	
IDX91C	

(3.3)
^l

where

^T

f^(0)u(0)d4

with gk (t), D 	 fQ(0) are matrices and 0 is L,u(0) is M dimensional vectors.

For such operators we can write

z
II G I 1

2 
= SUP	

cu 2	
(3.4)

u lul l

r+

SUP 2 , r (Gu) T (Gu)dt

u	 11uI 1
13



coo	 CO	 (k+l)T
f(Gu)

T
(Gu)dt W	 (Gu)T(Gu)dt

0	 k*o0 KT

(X+l)T	 k	 k
.^	

f tr [90t) TDk& 	) ^;mDngkMIC
k-0 W 	 m=1

(3.5)

Define

(k+ ) T

!ak 
Q f	 9k (t) 9k (t) dt.

kT

Then,

	

CO	 k	 k

i
I IGUI1

2 
_	 tr [ek	 FD^tt m TFkA

k=Q	 =1 n1=1

	

CO	 k	 k

<F tr [d k)TEtr[D mkDkk)
k=0 	m=1

	

00	 k	 k

< Fa tr [A k) •	 tr [DkQ Dom) tr [gMER]
k=0	 414 m=1

Due to properties of a trace, we have

(3.6)

(3.7)

(tr[^m 1 ) 2 ` I'^m112	 II,911	
(3.8)

and

14



tram T) < litM 11 - 11till, z — (3.9)

so,

	

I I GU I 12 <
tr [A	 Ft.,tDT

D"mj '.11 (3.10)
k-0	 R-1 M-1

Properties of matrix traces used in (3.7) -(3.10) are given in Appendix IX.

Nantities trtA
k
 I and 

tr[DT 
D 

)MT 
I are independent of u(0). Further in%z 

this section we will restrict ourselves to the sampling function

e p 	 -C<	 0
f0 W 	 (3.11)

0	 otherwise

---liere p is a constant LxM matrix in order to obtain a simple rasult. Howevero

as e+ 0 the result is still true no matter what the shape of the function

f
0 
(X) is inside the interval L-C, 0) .

Under these assumptions, we get

sup	 sup	 J	 f0(8 -,rP.)U(e)d
u	

u 112	 u Hu	
0

	

sup	 L
u 11 u 11'	 V-, 2": V. 

P ijuj (0) Cie

14	 M	 TQ	 2

	

sup	 pig f uj (0) dO	 <

u Ilu	 j-1

	

M
L 

M is

/ T&	 2

	

sup	 P  (j uj (0) dO <
u T, u 17 —F ;X t_c

15



L M	 Tk

pu
p ....? .....	

. 1 ..t	 C P	
u (0) do

1I 112
	 i^l .I 	 it - c

(3.12)
2	 ra	 x

sup	 u (8) d0
U	 I Iu I I,,,

where r * max max pij.
i 3

The expression (3.12) may be simplifted because

M	 TA	 M	 0

a	 "1 -e

0

1 u
T (© - TZ)u (o-Tt)da

-e

(3.13)

Then,
0

fu t(8-TZ)u(0^-Tk) dO

SUP ^ 00	 zo.	 (3.14)

u 

f Tu(a)u(6)a(4)
0

for Y,- 1,2, ...	 Therefore, for the hybrid operator norm we have from (3.10)

oa	 k

	

1: k	
A2

III < ^tx[^kl 	 E
tr[p'kQkm) r 

M	
(3.15)

k-0	 k-1 m-1

(3.15)
and



Ifl{ <-	 (3.1.6)Y

We note that

00	 k	 k

A . Etr[A,) ErjD kz D,

is not necessarily finite. One could conceiv e sequences A  and DkR so that

the upper mound of the hybrid operator is infinite

In order to obtain a lower bound for the induced norm o f the hybrid

operator we may seloot any particular input u(6) and consider the corresponding

value of

1GUII
H ull

as a Lower bound of the operator norm.

we select

0 X-C <8<T

U(0) u

0 1 otherwise

where 0 is a constant M-vector.

Then, for (Gu) (t) we obtain

k

(Gu) (t) ffi k(t) E Okz tR
Q,Wj

where

TR	 'p (i , L. 1.

ffz(0)u(@)d©

CR..E	
^0, 

otherwise

(3.17)

17



and therefore,

k

( yGu) (t)	 (gk (t) EDWI] PR
 - gk WD kOpo
	

(3.18)

kul

11 u1 I 	^» 2: tr(Qk) 	 tr(Dko Dk0) ' 11 P 11	 (3.19)
kwo

M

CCuCC ' f uT (0)u(0)dO	 11 $112
	

(3,20)

0

Then,

Gu 2. "2
A

	

11GII > 2	 (3.21)
CC U I1	 r

The conclusion of this analysis is th,*,tt the norm of a hybrid operator

with interval sampling becomes unbounced as the interval sampling becomes un-

bounded as the interval vanishes (tends toward impulsive sampling). This

means that the impulsive sampling has this specific norm property in spite

of the fact it is widely used as a simplest modal of the sampling operation (l)

18	 Fig. 10. worm bounds for the Hybrid Operator

i
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SECTION 4

Hybrid Approximation of Continuous Operator*

As we have shown in Section 2 the hybrid operator in general, may be

represented in A form

G(t f e) W 
g 0 

(t:-vr I ENJO(0 -TZ )	 (4.1)
1-1

where k is the integer part of t and

t

f
k

A

9 0 (t -XT) Epkzf0 (^-

0	 Z•1

k

g0
 
(t-kT)	

D %Z	 f0 (0 
-TZ) u (0) do

k

g 0 
(t-kT) 
EOkR^R,(4.2)
t-1

The problem of optimal approximation of a continuous time linear operator

6(t,O) by the hybrid operator G(t,O) may be formulated as follows:

rind the structure of a hybrid system, i.e. matrices g0
 
(X) ► D kZ I f0 W

such that

T	 t

j - lim	 dttr I (G ( t	F(t	
T 

(G (t,	 F(t, e) ) I dO	 (4.3)

T4^ 
T f f

19



is minimized,

Physically we can interprot the criterion as a mean square deviation of

signals v(t) and vk (t) produced by the nominal and hybrid systems, provided

that both area driven by the same white noise process.

To prove this wo note that the two system responses are:

ftv (t) 	 G (t, a (0) dO
U

vk (t) X IG(t0)u(e)do

Then]

vk (t) - v 	 .	 (G(t,O) ,. G(t ► O)1u(0)de	 (4.4)

[(vk (t) -v(t)) (vk, M - v(t)) T] M

t
r V(G(t,0) - FNIO))u(0)d0	 uT(W) (G(t,W)	 G(t,(d)) TdW a

E	 de do) (G(tIe) - G(t,0)){G(t,(o)	 G(t, w))mlu(0)uT(w)

d0ft (G(t,0) - I (t,0)) (G(t, w) - C(tIW))E[U(0)UT(4d)^

t
f(G(t t O)  - F(t,O)) (G(t,0) - G(t,e))Td4

4

(4.$)

20



A natural measure of total deviation between two time variant random

vectors is

T

j	 E[lim	 tr[(vk(t) - v(t)) (v k (t) - v(t)) TIdt	 (4.6)
T+00 

T f 
Subsituting (4.5) into (4.G) we obtain the criterion (4.3)

Perfectly matched hold

Suppose now that the nominal continuous operator is such that

6(to e ) = H(t)6(6)	 (4.7)

where H(t) satisfies a functional equation

H(t1 + t2 )	 H(tl )	 M(t2 )	 (4.8)

for some matrix M(t) of dimension KxK. We can then look for optimal a pproxi-

mation matrices in the form

Dkz = 
Mk • d 

where tITe Mk I s are KxK and d.'s are KxL matrices.

The hybrid operator (4.1) then takes the form

k

G(t,0) = 
g0

(t kT)Mk E d 
k 
f (e-T SC)

R=1

and we can identify g 0 (t-kT) and Mk as

9  (t-kT) -- H (t - kT)

Mk = M(kT)

(4.9)

21



This identification means that the t-dopendant factor of the nQmiijAl

operator may be duplicated exactly by the hybrid system for all t. Now cAi.

Now call,	 0,	 0 > kT

k

	

S (0) -I dzf0(0-TZ),	 0 S kT

and substitute into the criterion (4.3) .

T

f
vI - lien; dt 	 trC(S(0) - S(0)) T IIT (t)Ii(t)(S(0) - s(0) )]d©

T+. 0
	 0

T	 t

1imm f d t	 trU^(t)S(t)(S(0)s(0))(S(0)-S(0))TIdO
V°	

0

T	 kT

trClian	 J FIT (t) Ii (t)dt	 (S0 - S ( 0 )) (S (()) - S (0) ) TdO +T 	 f
0	 0

t
+ i

r
S(0) S T (0)d0}]

N	 (k+1 T	 k.	 QT

trCl.im	 FI T (t)Ii(t)dt	 (S(0) - g ( 0 ) (S(0) - S(0) ) Td0j +i

N40
k-0	 T	 Q-] R-1)T

N	 (k+1)T

1 i N	 t  [	 HT (t) H (t) dt
N-►^

k=0	 T

k	 QT

Ef	 (s(0) - s(0)) (S(0) - S(0)) Td0) +	 C^.11)

Z=1 (Q-1) T

where

N	
ftrWin N ^ 	 IIT(t)EI(t)di	 ^ s(0)S(0)Td07

22	 N-wa
k7- 0 kT	 kT

-64



N
j - i = J

-
tm	 r[Bk	 t (S(0) - '9(0)) (S(0) - '9(0))'dO)N Et E

It.b"t 0	 -z-1 (t
whery

(1-,* OT
13 k A	 (t) Tf (t) d t	 (4.12)

Since each term of this doublo gum

tT

VT	 -tr(B
k	(s(0) - S(0))  (S(0) -:F(0) 'dO	 (4,13)

depends only on its own matrix of coefficients d and not on other d m (OP.)

it, Cali be minimized indopondontly over d 	 It corresponds to a single

square optimization shown on Fig. 11.

XT

i ., 'tr[13 k f (S(0)9(0) - 2S(0)'S2 (0) 4- 19(0)T(0))dO

(9,-l) T

S(0) - d 'eO (O-TS;)	 I-or T (Z-1) < 0 < TX

30
0	 T.1

kT

8

4

rig. 11 Optimization Square	 23
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So,	
kT

ikk -tr [Bk f (dkf0 (0 -Tk) f^ (0 -Tk) d  -

(k-1)T

(4.14)

- 2dkf0 ( 0 -Tk)V (0) 	 S(0)S (0))d0)

introduce following notations

XT

Fk	 f	 f4 (0 -TR,) fQ (0-Tk)d0'^	 (4.1.5)

kTA f	 S(0)fT( O -TR) d0

(k-1)T

Then,

Tk

ikk = tr (Bk (dkPkdk - 2dtok + f 8 (b) S (0) d0

T (k-1)

Using formulas IA and 7B of Appendix, we come to the equation

aDdk =

k	 B  (dAF0 - k ) = 0	 (4.16)

and

dR = 
^kF01	 (4.17)

if FO and B  are invertible. This implies that the optimal, hybrid operator

approximation is

k

G(t,0) = 90 
(t kT)Mk 

f Okp01f0(
0 -Tk) 	 (4.18)

k=1
e

24



where

9d (-kT)	 Mk	 Et (t)

Consider now the special case

U(t,e) _ CeA( t`e )B

where A is NxN matrix. Then (4.7)-x(4.8) amply that

H(t) - CeAt

F(0) - e-AGB

and from (4.9)

M	 eMIT
k

5
0 

(t-kT) - C eA (t-kT)

Suppose, we also define

f0(e)	
a-AeB

Then, for 
F  

and ^, we obtain by definition (4.15)

	

Q	 0	 T
F	 0 fo (0) fo (Q ) dO 	 = 0 e-AO BBT e -A @dG

	

0 f
_T	 _T

	

RT	 p

f
s(e)J (e-Tk)de f 8(e+TZ)f Wde

	

( Q -1)T	 -^

e-ATR 
f 

Ce-AO Bj
erATe dO M e

-ATlZF
C

_T

(4 19)

(4.2(?)

(4.21)

(4.22)

(4.'23)

(4.24)
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F 0 is full rank if (A jB) is controllable [ 11 . The formula (9.17) yields:

d^	
,-1 ^ e-ATR,	

(4,25)

and the corresponding value of i kR anti, consequently J-J, is zero..

For the hybrid operator we then have

k

G (t, 0) - g0 (t-k )Mk EdQfO (0-'r P')

R-1

k
GeAte-ATk0AkTFe-Mke-AOeATJZ B	 (4.26)

A-1
k	 c 8A (t- 0) a,	 0 < kTGeAtje -AO 1Q 

(0)	 (9.27 )

Q^l	
0	 otherwise

The function 1 P, (0) is defined as

( L-1)T < 0 < TZ

0,	 otherwise

The output of the hybrid system is

t

(Gu) (t)	 fG (t, e ) u (0 ) d6

kT

_ f 0 0A(t-0) Bu(0)d0 =

0

kT

f r(t,0)u(0)d0
G

26

(4.28)

a.._	 w



e

,rip
2

G-G=

This result means that a continuous time linear time invariant nominal

operator may be exactly approximated by choosing appropriate sampling and

hold structures, except for an inherent sampling error in the "triangle strip".

This is illustrated in Fig. 12.

Fig. 12. The "triangle strip"

Note that the optimal sampling and hold circuits required by (4.22)

and (4.23) are themselves multivariable linear systems of order N. The sampler

takes the form

zC
RT-8)

9z =	 e 
A(	

Bu(0)d6

( -l) T

which has the block diagram in Fig. 13.

The hold circuit has the block diagram in the Fig. 14.
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V(t)

I.C. = 0 at t =(l-1) r

ut8) 
B

sampled
at t = rl
/=192.04.

A

Fig. 13. Optimal Sampler

at t = kr

Fig. 14. Optimal Hold

Those circuits can be simplified by fixing the matrices f 0 (X) and g0 (1) and

using formula (4.15) to provide optimal value of matrices d. given the fixed

analog structures.
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Example

a) nominal system:

G(t,e) . eA(t-e)

b) exact match of hold, i.e.

90 (t) "` H (t) % ceAt

M	
eAkr

k

C)	 u(6)	 fy(e)

(4.29)

(4.30)

where y(e) is a scalar function of time. f is a constant L-vector.

1	 -E <e<0
d)	 fO(6)

0	 otherwise

where 1 is an LxL identity matrix. How we can apply formula (4.17) to ob-

tain an optimal but not exact approximation of the nominal continuous operator.

0

FO = f f O (e) f0( e)de = e 1	 (4.31)
^T

0

f	 0
-T

0
e-ATR 

f e

-Ae 1 
de

E
-E

0

d Q- ^F O1 - e-AT k f e'Ae de

-E

(4.32)

(4.33)
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The simplified sampler structure for this cas^ is .shown in Fig. 15.

I.C. = 0 Cat t = TI-6

	

yt )A9	 k -Art
8	 17kl e' d9 , Z e^	 Hold

et
sampled
at t--TI

Fig. 15. Simplified Sampler

This is equivalent to the structure on Fig. 16.

I,C,=O at t =tf-i

rte)	 E,^	 0 -A9	 k -Art
£

D
7'k' f e d8- Z e ^^	 HoldB

-f	 e ` t	
71ksampled

at t= Tt

Fig. 16. Sampler of Reduced Dimension

Note that if a goes to zero with finite T pk a 0 1 which means that the

impulsive sampling produces signals which should be neglected under the optimal

hybrid approximation. This result is natural since the optimal approximation
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Approximation Eras designed to match outputs of two systems subject to the

same white noise, But the impulsive sampling leads to an infinite mean

square deviation between the two samples, so the y output should be supporesseld

by choosing d k so that lim dR = 0 in the optimal hybrid approximation.
e+O

Instead of the N-dimensional sampling circuit in Fig. 13 we now have a

one-dimensional integrator in rig. 16.

The formula (4.17) provides an "optimal" computational procedure (con-

volution) given an optimal hold circuit structure perfectly matched outside:

the "triangle strip"'.

Perfectly matched sampler

Consider now the dual case when the sampling operation is perfectly

matched outside the "triangle strip" but the hold structure is unknown and

to be determined.

Similar to the above case we suppose 9(0) is such that

S(01. 4. 0 2 ) R d(01) . S (02)

where 9(0) is a KxM matrix.

Then,

NO) 13;(e-Tk TX) = d(kk)s(0-'rk)

(4.36)

(4.37)

Since the functions fa (8-Tk) of the sum

k
S 	 Ede,) 0 -r k)

R=1

do not overlap (by definition) , we can make the following identifications

d3^ c d (kk)

f  (0 -TZ) = S (0 -TQ) ] 
k 

(0) (4.38)
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Then, H(8) - S(0) for all 8 < kr. Now we can go back to the general criterion

(4.3)1

T

	

a 0 lim T 	dt	 tr of(t)' (@) - W(t)f(e))T{H(t)s(0)-N(t) T(@)))d@ ^*
T+C*	

tl

	+ lim T	 dt	 tr(S (8) (H(t)^-lH(t ))T(H (r)-N(b))s(0)Id9
T+

lam 1	 dt	 tr[s(8)f (6) (H(t)-H (t))T(11(t)-E1(t)) Ido
T•W T y

(4,39)

li-M	 at tr(	 S(t^)5(@)d@ •

• (H(t) - N(t))T(H(t) - H(t))I + a-

T	 t

	J 	 lim T	 dt tr [	 s (8) s (@) (H (t) -if(t) ) T (H (t) -H (t>) I d@

	

T►W	
kT

00	 (k+1) C	 k

-j = 1 im T	 J	 dt Etr JCZ (H (t) H(t)	 (H (t) - H(t))l

	

T-114P	 k0 kT	 k=l

(4,40)

	CR Q	
S (@) S (@) d@ is a KxK inatxix . As before t each component of

,-l)

the sum over k depends only on value of (H(t) - H(t))T(H(t) - N(t)) on interval

kT < t < (k+l)T. So, we can minimize each term separately.
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(k+l}'	 k

a 	 dtEtr(C(tl}-11(t))T(!l(t ) - f1 (t})) '"^

kT	 xx1

k	 (k+
l)T

w trECZ 
J	 (H(t)-H(t)) (Ii(t)-H(t))dtl -

R.'"I	 k'C

k	 (k+l)T

tr (C,	 (Ii (t) _It (t) ) T (N(t) -tt(t)dt)	 (4.91)

Rl	 ICC

k

ECrkZ
x•i

This implies that quantity

(k+1)T

ikZ - tr (CZ	
(tt (t) -t^ (t) ) T (H (t) -T (t) ) dt]	 (4.92)

T

is to be minimized by choosing H(t).

Suppose we look for H(t) in the foxm

Fl (t-kr) s 9  (t-XT) 
0 	

(4.43)

where g0 (t-kT) and e  are NxbI and YK matrices, respectively. Than,

(k+1)T

jkR -tx (C it 	 (t-KT) g (t-kT) ek -
kT

- 2ek9T (t -kT)H (t) 4 IIT (t)H(t))dt)	 (4.44)

Introduce two matrices

T	 r	 gQ (t-k ) g Q (c-k ) dt	 gp (t ) g 0 (t) dt
o^kc	 o (4.45)

Q (k+3.)T T	 T4)k =	 f gp (t-kt) ^T (t) dt -	 g0 (t) H (t+k ) dt	 33
kT	 o

VP ,= _ ....



AkTe  w e (4.51)

Now,

(k+l ),r T,
jkt - tr[C 

(eiT0ak 
2ek k+	 it Mi (t)dt) )

k`c

31
2TOekGZ -2*kCk o 0	 (4.47)

(sacs formulas IA and ZS of Appendix) . Since CR is arbitrary, i.e. independent

of hold.device characteristics, we conclude

e	 T 1k O k

if T-1 exists.

For the specific case where

90 (t) " C@ At

(4.43)

g(t) 0 CeAt

we have be definition (4.45)

T T
TO	 eA t CTCeAtdt

k	
eATt CTC aAtehkTdt TOeAkT	 (4.50)

The matrix TO is full rank if (A,C) is observable 11). Formula (4.48) then

yields
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This result is expected; it corresponds to the case of exact approx {,nation of

hold device and has been derived before using simpler considerations (formula

4.21).

The general c—se

In general, both the samplingrnd the hold dervices may not be matched

perfectly outside the "triangle strip".

Given a desired structure for these circuits, i.e. functions f0(@ -TZ)

and g 0 (t-k ), we might then be interested in determining a computational

procedure (matrices d  and e k ) which provides an optimal (in the above sense)

hybrid approximation of a nominal. system.

So, we have for the sampler and hold, respectively

k

SO) =Edyfp(e-TR)
R,=1

	

H(t-kT) = 90 (t--kT) ek	 (9.52)

The criterion (4.3) is

T	 t	 k

J = lim T	 dt 
f 

tr[(g 0 (t-kT)ek^dkf0 (6-kk) - H(t)S(6))T
T-4-	 OJJJJ	

k=1

k

•

	

90(t-kT)ekEdmf0 (0-'r9)	 H(t)S(6))]dO

m=.1

T ft;
	

k.

 m T	 dt 	 tr[ (Efp(0-TR)dRekg^(t-kT)
T^

0	 0	 R=1

'k

-^^ T (0) H T (t))	 g(t -kT)ek^dmf0(e -Tm) - H (t)9(6))]de =

m=1	
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k

lim 
T	

dt	 tr[	 iT -TI). d.ekgo(t-kT)go(t-kT)ek
k^1 mw

k

• dmf0 (0- Tm) - 27 (0)H (t)g 0 (t-kT)ek^dmf0 (e- TO +
M-1

+ S (6)tt'WIff WS(0)1d0

Consider the sum

k k

tr[ f0 (0-T!Z)drkekg0(t-kT)g 0 (t-kT) • ekdmf0(e-Tm)

M-1 -1

k	 k	 (4.54)

a^	 tr[f0(0 -Tm) . f0(O -TWzekg^o(t-kT)g0(t-kJ0ekdm]
M-1

Due to the definition (Fig. 3) of functions f 0 (0) we can write

fo 0-Tm)f0 (0 -TR) = fQ(0 -TPfo(0 -Tk) `ink	
(4.55)

Then (4.54) takes the form

t
tr[f0 (e-Tk)f0(0-Tk)dkekgo t-rkT)g0(t-Wekdt)

R-1

and for J we have

N	 k

J 1im 
N E

Etr[FOd^ekTQekdp -

k=0 
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z£dR'uk 	 J l, J ^^(0)tl^(t^)^(t)(t^)ci0a +
	

(4.56)

0	 u	 .l

where as bo oro, I is

(4.57)

7 = lim	 dt	 trC(1.1(t)S(E)) ^. 1(t)S(Q))^1^^(11(t)S(())	 CI (t)'6(6)
T4

The quantity J -- J is to be minbuized by choosing matrices e  and dR . We can

now introduce a new matrix of Computer coefficients

DkP, = ekd k
	 (4.an)

its dimension is L IxL. With this definition, J - J again breaks clown into

independent optimization squares with costs

ikA ^ tr CI'0Dk.^',1' ODkk - '4VkOO	 (4. ag)

^Dk,9. = 
2^t,ODk l?' O .. 2^1k ^ 	 0	 (4.60)

kR,

and

Dk91
	 41, 0 1 

111k^eo
	 (4.61)

The overall optimal hybrid operator now is
k

G(t,0)	 0(t.-k")	 Dket)(0` R,)	 (4.6`x)

.l

where g0 (t: •-k) and f 0 (0-TQ) reprosrnt simplified sampling and hold struoL°ures..

The saxnplification means dither lower diinonsion of analoV circuits or saanpli-

.£ied feedback loops or both.
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The optimal hybrid system is shown in Fig. 17.

LIM Convolution	 Ik	 Vk(t)
fo(9) 0 u(9+V) _ 	

pk,*
,tgo(t-kT) 

"17k
,t	 l s 1	 'qk

sampled	 output

at t = T,	 at t = Tk

Fig. 17. Optimal Hybrid Approximation.
General Case.

Example

Single input-single output system. Suppose,

M G(t,A) = GeA(t-8)f	 (4.63)

where A is NxN matrix, f and CT and N-vectors. Let f 0 (X) and g0 M be chosen

in the form

X (a)	 I ,

f0(^>
0

1

90 W
0

-T<a<0
otherwise

0 < a < T

otherwise

(4.64)

where x(9) is a scalar function.
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Then t

ti{t)	 CeAt t	 '(4)	 -A6 . f

0

r0 f
K 2 (6 ) de - I

-T

TO=T

T
e-ATR	 a -AO f x

(0)d0

U
T

^k 
a C 

f e

Atdt , eATk . -CA -1 (I - eAT )e 
AT

0

pk-C T-l^k

T
1 --------I CA-1(I a-AT )	 a -AT (k-0 •	 eAex (0) d • f	 (4.66)T T

x2 (e) d0
U

The expression (4.66) of optimal scalar sequence of coefficients is to be
I

used in the digital computer of Fig. 17.

i
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SECTION 5

Robustness of Hybrid Systems

In Section 4 we have shown how continuous time linear operators may be

approximated by a hybrid system. If this approximation takes place in a

feedback loop of a closed loop control system, the stability and performance

properties will degrade somewhat due to errors of approximation.

The extent to which such errors effect stability has been investigated

in general by Safonov [3]. Sufficient stability conditions for continuous

and sampled data systems have been established. In reference I41, simpler

:frequency domain conditions have been derived for linear time invariant tystems

subject to additive errors of various kinds. A block diagram of these systems

Is shown on Fig. 16. Lis a nominal time invariant operator, and AL is a

perturbation or error, time invariant as well.

Then, according to [ 4), the system remains stable if

(T(ItL(jW)) > O'(AL(jw))
	

(5.1)

Here L(JW) and AL(jW) are transfer functions of L and AL, and F(A), a(A) denote

maximum and minimum singular values of A.

40	 Fig. 18. Feedback Loop with Perturbations.

a



Figure 18 may be viewed as a general diagram for than spec ..^.. ^c control

system shown in Fig. 19,

X(t)	 ZW p 	 YM

VM	 G

Fig. 19. Control System

Here P and G are time invariant continuous matrix convolution operators. That

is

(t
Y(t• ) = (Pz) (t) - J P(t--A)z(X)dX	 (5.2)

0
and

t

V (t) = f G(t-,X)Y(^)d
0

P usually represents the "plant" to be controlled, and G is the ideal continuous

time controller designed to regulate P. This system can also be drawn as in

Fig. 20.

It has overall operator PG:

t

(PGz) (t)	 f PG (t-e) z (0) d6	 (5.3)

0

41



VM

Fig. 20. Control System

t

P37(t)	 f F(t-8)P(0)d8	 (5.4)

0

is main a time invariant matrix convolution operator. our objective in

-this section will be to examine the effect on stability caused by approximating

the operator. G7 with a hybrid system, i.e. what halipens if we use a digitally

implemented controller? The tool 1.)r this ana.',.ysis will be the stability

robustness condition (5.1). Unfortunately, the condition (5.1) cannot be

applied directly to the approximated system because a hybrid system is inherently

time-variant in nature. This follows, for example, from errors in the "triangle

strip", as discussed in Section 2.

However, if we construct a time-invariant "bounding operator" W with

property

I I w 
u 

11 1 IIAGUII	 Vu
	

(5.5)

where AG = 37-G , then stability condition (5.1) may be applied in a form

a(I+P_G(jW)) > F(W(JW))F(P(JW))	 (5.6)

.0
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for all m > 0, where WQw) denotes a matrix of Fourier tra.nsfr- .: of W(0) .

We note from Fig. 10 that an optimal unconstrained hybrid approximation

of a linear time-invariant operator satisfies

G(t,0) - G(t,0)	 for all t > 0 and 0 < 0 < kT

and

G(t, 0) -0	 for kC<0<t
	

(5.7)

Therefore,

0	 if	 0<0<kT
AG -	 (5.8)

G(t,0)	 if	 kT < 0 < t

i.e, AG # 0 only inside the"triangle strip".

The approach may be suggested to cc.istruct the operator W for general

multivariable systems. This approach provides a rather conservative upper

bound for IIAGII.

For (AGu)(t) we have

t

(AGu) (t)

	

	 G(t-X)u(X)dX	 (5.9)
T

t

I I ( AGU) (t) I I<	 I I G (t-X ) u (a ) I I dX <

t

	

< f crCG(t—a))IIu(^)IIdX	 (5.10)

kT

t< c f I lu(a) I Ids,

kT

where G 
d 
max o[G(0)),	 43
ot0<,r



Z)- (A) Is A Maximum Sinqul ►r valuo of A. Than,
00

I I AGU I 12	 f I I (AGU) (t) 112 dt
0

00	 (k+' )T
(t) I 1 2d <f

k-0 RT

00 (k+l)	 t

E

C2	 U	 dX dt <	
(5.11)

x-0 W	 fT
/(k+l) T

C 
2 T 

3 
u M d X 2 <

k-0	 kT

< C2 T 
211UI12

Hence?

I JAGUI I :< CTI lull	 (5.12)

This approach provides general but conservative stability condition

a'(1+n-G&)) > Tc 'F(P(jW))	 (5.13)

where constant C is defined by (5.12). This means that the curve a(I+P_G(jW))

is to be compared with a certain level Tca)? dw) , as long as it is strictly

above that level the system's stability with G replacing Eis assured,

In the next section we shall explore a particular three-dimensional

single input-single output control system and this approach to the robustness

problem will be appl$ed.
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SECTION 6

A Hybrid control System Lxample

xn this section we consider a threes d:4nensional single input - single

output control system

	

0	 1	 0	 q

	

k(t) . 0	 0	 1x (t) + 0 u NO	 (6.1)

	

0	 0	 0	 1

with feedback control law

U ( t)	 (W3 2W
2
0 2W x (t)	 (6.2)

with loo 1 sec -1 . The system may be drawn as shown in.Fig. 2.1

u{t) x Ax+ Bu	 Y 

y = K x	 I

Fig. 21. Control System Example

where A and B are given in (6.1) and

	K = -(1 2 2)	 (6.3)

The control law (6.2) for system (6.1) minimizes a cost function

(xTQx + 
u2 ) 

dt
	

(6.4)

45
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where

1 0 0

0 0 0

0 0

Lot this systom ropresont tho nominal design operator 	 discussed in

previous soctions with P a l. Then

(0 1 0

	

(1 2 2) a 0	
0	

0
0 0 (l

AOFor	 wo. can got a closed form expression (since A3 0):

aAO'	 0	 1	 0

0 0 1

Therefore
2

02

(1 2 2)	 1	 (t	 6	 0	 (6,7)

	

0 0 1	 1

2
T + 20 + 2-

For the left band part of the stability inequality (5.1) we have

G(jW)	 K(IjW - A) -I B

	

ju)	 -1	 0	 -1 (0

	

(1 2 2) 0	 j w	 -1	
0	

(6.8)
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So,

(W) " (1+ 230) -- 2W2)*
	 (6110)

W

rind

all + c3 ow) ) - 11 + c ow) I i

I1 +G(jW)1
2
w- 	 2+	 Z2

 ) 2
WIT)	 w

The rig r 22 shows the O(w)

(5.11)

'n w

Fig. 22. Dependence cF(w).

Since P - 1, the right hand part of the criterion (5.1) for this example

is independent of W. We can rewrite the condition (5.1) in a form

min Il + G (Jw) 1 > ci
W

with, as can be seen from the expression (6.11)0

min l l + F(jW) I -1	 (6.13)
W

According to (5.13), therefore, we have 	
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1>c $0 T MAX

OWT

(G.141

2	 ^2
T max 2+ 20 R	 T	 + 2T + 2

0<8 <T

So # the stability condition is

2
l 5 'C 2 + 2T + 2	 ^^«^ a)

The critical value for T then is

2
fir
2 .Tor	

+2T + 2 =1	 {	 )
or

Tor 
* 0 # 36 sec

This number should be interpreted as a sample time T or which is sufficio 4f,1 °

small to guarantee stability of the control system when the contiguous opera-

tor G is replaced by an optimal hybrid approximation G.

An implementation of the resulting closed loop control system is shown

in Pig. 23.

It is clear from this figure that

Y(t)
	 Ke

A(t-kT) TIk	
(s.^.7)

6	

1

whence

k

n OA k Ee 
UTg

k
Al

k

W EIBIIIT 

(k- t)
Q

zM1

and

(6118)
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I,C,= 0 at t =TV-i)	 1. C. = +Ik at tzkr

00=0 	
8	 ^k= eA(k .t)	

K

	

sampled	 output

	

at t = Tl	 at t a kT	 j
k

L	 SAMPLER	 COMPUTER	 HOLD

Fig. 23. Feedback Control System with 'Hybrid Operator

RT

F R	 eA(TR-6)Bu(0)do

-1)T

Hence we can rewrite (6.17) as

A (t-tk) f^(kT-^)y(t) = Ke 	 e	 Bu(N)da

0

kT

= K f eA(t-X)Bu(a)dX

0

(6.19)

(6.20)

The only difference between this expression and the continuous operator

G is in integration limit. This indicates that G and G coincide exactly

outside the "triangle strip" within which they hybrid operator equals to

zero. This property has been discussed in Section 4.

A discrete time equation for the closed Loop beh—vior of the approximated

system in Fig. 23 can be written as follows: 	 49



Tj 
k 

w 0 AT nk-1 + &k

k-" By (0) dO
	

(6,21)

y(0) - Ke A (0 (k-l) T) 
nk-1

Diane 0

n k us e AT

Tk
 eA (Tk- 0) BKeA (e- (k-1) T ) dO	

Ink-1
(k_l)

	 (6.22)

Therefore * the evolution of n k 
corresponds to discrete system with

transition matrix

T

e 
AT

- fe 
A (t-X) 

BKe AX (6.23)

0

This matrix can. 	 evaluated analytically in order to obtain its character-

istic equation

L'. T4 T 2 T3 T4
6	 3 24 2 3 12

2
1
	

T2
3

T	
T2 T 3

T4
(T) 2 6 T - 2-4	 (6.24)

11	
T 2 T

-2T
2

2T T
3

Eigenvalues of the matrix (6.24) have been computed for different T.

Its values indicate that the system looses its stability whc;n T = 0.54 sec.

This compares quite favorably with Llit-, sufficient stability sound,
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77k

Outp

at t=

rrom the viewpoint of closed loop stability, the hybrid approximation

G is not neoessarily a good one. This is evident when we exam-Ina an

alternates 	 approximation which duplivatos closed loop rather than open

loop behavior outside the "triangle strip". This can be clone by changing the

hold device as followst

Vig. 24. Hold Device To Approximate Closed
Loop System.

Note that this "hold" generates exactly the smite output signal Y(t) as the

continuous closed loop system under deterministic assumptions. This out-

put is

y(t) - Ke (A
-BK) (t-M) 

x (W)
	

(6.25)

Xn order to find a transition matrix of the corresponding discrete system,

wo write

., L
1) k
	

,^T T1 

k-1	 k 51



Tk

fO

A (TX-X) 
BKO 

(A-By ) X 
'n 
k-1 dX
	 (6.2G)

T (k-1)

Tlk M ^ 2 
M n 

k-1

This leads to the transition matrix

T

^2 W - se AT
	 f 

0 
A ('r -X) ;13Ke (A-'K) XdX	 (6.27)

0

Using the identity IY A in the Appendix, (6.27) may be simplified to

^ 2
 (T) - e (A-BK) T
	

(6.28)

This result is natural because the systeja (6.25) was constructed to exhibit

exactly the same closed loop behavior as the continuous one under determi-

nistic assumptions. Therefore, this system must remain stable for all T.

In order to compare performances of systems (6.17) and (6.25) in noisy

situations, both approximations were examined for white noise inputs 'V(t)

with intensity matrix

0 0 0

IV =0	 0	 0	 (6.29)

(0 0 1 )

inserted at point E Z in Fig. 23.

Convariance matrices of discrete systems (6.22) and (6.26) propogate

according to the Lyaljunov equation

k+l
(

	

(1)	 Mp
k

1)
1 

( 'r ) + IV M
I 

(6.30)

	

P ( 2)
	

2 (T) P 
(2) 

2 (T) 
+ I%) 

M
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where IV (T) is intensity matrix of noise accumulated on the sample interval

T.

T
V	 e	 Vag	

d^f
0

2

T
	 ^.	 X	 0	 0 0 1 0	 U

0	 1	 X	 0	 0

f

0 X 1.	 0 dX

0 0	 0	 1	 0	 0 1 ^2 1

5
T4	 T3

20	 6	 6

`t 4	T3	 T2 (6.31)
$	 3	 2

T2T 3

T6	 2

and where PM 	 denote the state covariance of the two systems

P( i) = E[Y) nU)T) ► 	 i= 1,2 (6.32)

Then, assuming steady state behavior of both systems we can solve

matrix equation	 (6.30) to obtain P (l) and P(2).

P (1)	 (T)P(1)^l(T)	 + Iv(T)

j (6.33)

P (Z)	 _ ^ 2 (T )	 P( 2 )d^2(T )	 * Iv(T)
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..111 _(21

0.8

0.6

0.4

0.2

0 Uz	 (A T

We used diagonal

formance. The results

performance (smaller v,

25, for values of P (1)

terms of the matrices P  to compare systems per-

indicate that the first system (6.22) has a bettor

ariance of state variables). it is shown in Fig.

and Pj)2

P11	 P22	 P33

x	 xx	 x	 z^	 z	 xx

	

0.2251	 0.3292	 7.124.10-2	 9.101.1Q-2
	

0.3025	 0.3327 T-0.2 sea

	

0.3237	 0.8633	 5.062.10-2	 3.425.10-2	 0.3759	 0.4579 T=0.4 sea

Pig. 25. Comparison of Two Discrete Systems Performance

This result may be interpreted in the following way. As we know from

Section 4 the approximation used for the first system minimizes the cost
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criterion (4.1) which minimizes mean square deviation between .,a outputs of

the nominal and the hybrid system when they subjected to the same white

noise process. Therefore, all other hybrid systems yield a greater value of

cost function against this criterion.
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LIST OF USED SYMBOL$ AND TIMIR DIMENSIONS

'C, t, a scalars

k,k integer variables

O (t, 8) r G(t8) -	 NxM	 matrices

i(t) - NxK matrix

H(t) - NxK matrix

s (8) , SO) - KxM	 matrices

M (t) , Mk 	- KxK	 matrices

V (t) , Vk (t) - N	 vectors

u(6) - M vector

f(e) - LxN matrix

tl - L vector

d 
	 - KXL matrix

e 
	 - LixK matrix

g(t) ^- NxLl matrix

F - LxL matrix

^t 
- KxL matrix

nk -
L1 vector

T - L.xLx matrix

^k - LixK matrix

Dkk
- LixL matrix

B 
	 - KxK matrix

C  - KxK matrix

are,Ak .A,,A2 r -	 scalar parameters
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OI, C I Akt ,, A2 F ;, - scalar parameters

y(e) - scalar function

A - NxN matrix

p - LxM matrix

$ - M vector
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conclusions

The general representation of the hybrid operator in a continuous time

form is obtained in the first section of the thesis.

Bath lower and upper for the hybrid operator are established and their

dependence on sampling interval E is clarified. Different types of sampling

are discussed,

A general approach for hybrid approximation of a continuous time in

variazft multivariable systems is suggested with particular type of minimization

Fcriterion. This criterion is physically interpreted. Also some examples are

considered in details, The formula for optimal computer coefficients is de-

rived to provide a minimum value of criterion given fixed sampler and hold

structures. This may lead to simplified analog circuits. Schemes for imple-

mentation are drawn:

A robustness problem for hybrid systems is formulated and investigated.

A robustness condition for continuous systems is applied to the hybrid operator

and the critical sampling interval value is found. This value guarantees the

robustness of the hybrid approximating system.

All these concept., and methods are illustrated on the three-dimensional

control system. A numerical simulation has been performed and results in-

terpreted. They indicate a consistency of the found critical value of sampling

interval with its exact value.

Directions for Further Investigations

1. In order to get a better understanding of processes in hybrid

systems one would investigate how does the fixation of functions f 0 W and

9 0 W affect the quality of hybrid approximation and the robustness of the

approximated system.
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2, As mentioned in Section 4# the bounding operator for	 pro-

vides a rather* conservative sufficient stability condition and, consequently,

relatively small value of cr y A batter, la gs restrictive time invariant

operator could be possibly found in order to obtain more precisa value for

Tor'
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APPENDIX

This Appendix brings together some mathematical formulas and their

derivations which are used in various sections of the thesis. The ,include

identities for matrix trAces and their derivatives, trace inequalities,

inequalities for integrals and sums, one matrix identity used in the example.

1. Differeentriatim of Traces.

identity;

	

E`tr ECiTTS) - 2TEC
	

(A)

where C and 'T' are square symmetric matrices.

Proof:

tr (CETTE)	 (CF.x) 
ij 

(TH)

- F U 2: 1: C iOj)jj.% i

	

i	 j	 k	 to

	

tr [GI T TT3] f..I	 E

	

$EP
8 

A	 ^	
CikTjm(CjkSmi^&iq

k m

	

Bmiaj P6kq)
^r	

CikjjnEjk'i4 +
Ui j k

U C i4 jmEllii&j T?
tll

60	 xjVE CgOjk
hr CigET'I&i -

k	 (i	 m



WETip 
(CET) qj + E

C iq (TE) pi.i	 i

(CZ TT) qp + (T ) 
A x 

(ETZC) 
pq

CorollAry:

11 tr [ETET) , 2ZT

Proof: put C xT and transpose both parts of the idenity (A):

aET tr [E'TE) vo 2ETT

Call now ET * E' ,

8E 1 br WTE'Tj x 2E'T

which proves (b).

Identity:

DE tr[CETIP] - ^C
	

(C)

Proof

Cr[CET^) 
^Cij FaEkiq)ki

j	 k

Ecipb-iEkj
k
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TI-t tr [CW T1 
EEE-`ij*ki6kP6iq Mvq	 .i

"J:Ciq̂ pi . 
0C)pq

i

II. Properties of traces.

A) tr (A+B) w tr (A) + tr (B)

B) tr (^ Wdt) w Jt;r [A(t))dt

C) tr (A)	 tr (AT)

D) tr (A s B) < tr (A) • tr (B)

B) tr (A+B) w tr (B•A)

Flare A and B are square matrices.

III, Inequalities [6)

n	 ri

01'i	 < n  	 ai	 (A)
i#1	 ice].

2
f (s)dx	 < (f-a) 1 ,f2 W dx,	 (B)

(ia	 a

IV. Matrix identity

(T) - eAT	 eA(T-X)
BKe

(A-BK) XdA 	 e(A-BK)T	
(A)
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Proof's differentiate both parts with respect to Tx

a) left hand pant

T
AeAT - f AeA (T A) 

BKe (
A -BK) X  -

0

- BKe (A-BK) T - A^ (T) - BKe (A-BK) T

b) right hand part

( A -BK) 
a (A-BK) T

If we now suppose

(T) = e (A-BK)T

then we come to the true equality I=I. So, the formula (A) is proved.
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