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SUMMARY

This paper describes the design of a control system using linear-quadratic-—
regulator (LQR) control law theory for time invariant systems in conjunction
with an "incremental gradient" procedure. The incremental gradient technique
is used to reduce the full-state feedback controller design, generated by the
LOR algorithm, to a realizable controller design. With a realizable controller,
the feedback gains are based only on the available system outputs instead of
being based on the full-state outputs as with the LQOR approach. The controller
design is for a remotely piloted research vehicle (RPRV) stability augmentation
system., 1Included in the design are methods for accounting for noisy measure-
ments, discrete controls with zero-order-hold (zZOH) outputs, and computational
delay errors. Results from simulation studies of the response of the RPRV to
a step in the elevator and frequency analysis techniques are included to illus-
trate the abnormalities and their influence on the final controller design.

INTRODUCTION

This paper describes the use of linear—quadratic regulator (LQR) theory
for time invariant systems to design a stability augmentation system (SAS)
for a remotely piloted research vehicle (RPRV). Classical control theory based
designs for this aircraft have had marginal results, partly because of the
design problem having multiple inputs and partly because of the controller
having to be implemented with a digital computer. This paper designs a SAS for
an RPRV with a design methodology that accounts for noisy measurements, discrete
controls with zero-order-hold (ZOH) outputs, and computational delay errors.

There has been considerable attention in the past to the use of LQR theory
for the design of control systems. (See refs. 1 to 3.) 1In general, these
designs require the full state to be measured or reconstructed from the avail-
able outputs and used in the control system. Although it may be theoretically
possible to obtain the full state, more often than not, as the complexity of
the problem increases, the ability to obtain the full state becomes impossible;
for example, the active control flutter models are of the order of 100 states.

Recently, there has been a methodology developed (ref. 4) that retains the
generality of quadratic optimization while resulting in a control system that
is realizable. The term realizable is used here to mean a control system that
employs feedback gains only on the available outputs, instead of being based on
the full state as with the LQR approach.

The design process is divided into two stages. The first step is identical
with the LOR procedure. The designer, in an iterative process, adjusts the cost
functions until the desired closed-loop control system response is obtained.
Once this objective is achieved, the design is reduced to a realizable form with
the use of an "incremental gradient" procedure. This procedure can be regarded
as a two-point boundary-value problem in the gain state space, the initial



conditions being the LQR algorithm gains and the terminal conditions being
the desired controller configuration, that is, with gains on inaccessible
states equal to zero.

SYMBOLS
A system matrix
A defined in equation (A10)
Ay,Ap dummy variable
2z sensor output, normal acceleration, g
App rigid-body system matrix (eq. (4))
B control input matrix (eq. (5))
D control response matrix
E statistical expectation
E defined in equation (A11)
Gq control input matrix
Gy disturbance input matrix
H state response matrix
J,3 quadratic performance indices
j =¥
K state optimal feedback gain matrix
K* (A) defined by equation (A18)
K1(A) gains on selected measurements
Ko gains on eliminated measurements
M measurement matrix
P Lagrange multipliers
(o] symmetric weighting matrix
6 defined in equation (A12)
q aircraft pitch rate, rad/sec



¥

ds

r2

sensor output, q, rad/sec
control weighting matrix
response covariance matrix
design response vector

augmented design response vector

measurement response vector

rms(x) = {?[(x - E(x))2]}1/2

S

t

tr

Laplace transform

time, sec

matrix trace

control input vector (eq. (2))

aircraft perturbation from steady-state velocity, m/s
sensor output, v, m/s

state covariance matrix

rigid body state vector (eq. (4))

system state wvector

gust state

z transform

aircraft perturbation in angle of attack, rad

sensor output, angle of attack, rad

canard position, rad

canard command, rad

elevator position, positive for trailing edge down, rad
elevator command, rad

inboard flap position, rad

inboard flap command, rad



S¢o outboard flap position, rad

8fo,c outboard flap command, rad

n unit variance white noise vector
n1,n2 elements of vector

0 aircraft perturbation in pitch angle, rad
Og sensor output, 0O, rad

p ’ scalar design parameter

g real part of eigenvalue

T time constant

$ phase angle, deg

w frequency of input signal

Wg sampling frequency, rad/sec

Dots over symbols denote derivatives with respect to time.

A primed symbol denotes a transpose.

PROBLEM STATEMENT

The problem considered in this report consists of the design of a stability
augmentation system (SAS) for a 0.44-scale model of an advanced fighter remotely
piloted research vehicle (RPRV). The RPRV is launched from the wing of a B-52
airplane, controlled from the ground station by a digital computer, and backed
up by a chase airplane which is capable of safely returning the RPRV to base.
This advanced fighter configuration has 10 independently controlled aerodynamic
surfaces which are grouped into 5 longitudinal controls (that is, controls that
produce motions in the vertical plane of the aircraft) and 5 lateral controls
(that is, horizontal-motion-producing controls). Because of its aerodynamic
design, the vehicle is longitudinally unstable for a large part of its subsonic
flight envelope. The purpose of this paper is to design a SAS that will sta-
bilize the RPRV longitudinally and provide adequate flying characteristics.
Since the design methodology is the same for each flight condition, only the
longitudinal equation of motion for one flight condition is presented. The
control must be implemented on a ground computer with sensor information being
received and control commands being transmitted at a rate of 50 Hz. This sam-
pling rate is fixed for the problem and is not considered a design variable.
The time required to receive the data, to calculate the command, and to trans-
mit the command to the RPRV is approximately the time of 1 cycle; thus, a
1-cycle delay (20 ms) is assumed between receiving the sensor signal and
transmitting the control command. For the design model, sensors were assumed
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to have sufficient bandwidth to permit them to be modeled with a unity transfer
function. Sensor noise was modeled by shaping white noise through a first-
order low-pass filter. Estimated sensor noise parameters, based on aircraft
flight records (ref. 5), are given in table I. The use of sensor noise
characteristics based on flight data was deemed more appropriate since it
includes the effects of instrument noise, aeroelastic effects, turbulence
effects, engine vibration, etc., and would represent the worst-case situation.

The design of the SAS for the entire flight envelope requires that the
nonlinear equations of motion be linearized about several flight conditions,
the design process applied at each of the conditions, and some procedure be
defined for changing the control system parameters as a function of the flight
condition.

The linearized equations of motion in the longitudinal plane for the
rigid body states of the RPRV in level flight at an altitude of 30 480 km
(10 000 ft) and a Mach number of 0.9 are

v) -0.0451 -67.62 -74.31 -105.4 |[v]
o 0 -2.498 0.987 -0.0008 ] |qo
dt|q -0.0060 72.41 -3.803 0.0012|iq
o] Lo 0 1. 0 1ty
[ 7.579 -4.859 0.2274 -0.8891| 5 |
~0.3469 -0.1864 0.0092 -0.0341| |64
+ ()
-85.36 -49.03 17.11 ~11.80 ||6¢
L O 0 0 0 ] |1Sfo

where v is the perturbation from the steady-state velocity in meters per
second; o 1is the perturbation in angle of attack in radians; q is the pitch
rate in radians per second; 6 is the perturbation in pitch angle in radians;
Ser OSfir 68gr and &g, are the elevator, inboard flap, canard, and outboard
flap position in radians. The fifth longitudinal command, the speed brake, was
omitted because of its ineffectiveness, as compared with the other controls.
The open-loop pole locations are shown in figure 1. The control actuators are
represented by first-order 40-radian actuators with unity static gain. By com-
bining the rigid-body states with the actuator states, the basic RPRV equations
of motion can be written as

X = AX + Gqu (2)

r2 = Mx (3)



In these equations, x is the system state vector with the following

definitions:
v 7 Velocity, m/s
a Angle of attack, rad
q Pitch rate, rad/sec
0 Pitch angle, rad
*T Se Actuator position, rad
8¢y Actuator position, rad
8¢ Actuator position, rad
Sso Actuator position, rad

u 1is the control input vector with the following definitions:
Ge,c Elevator command, rad

S¢i,c | Flaps-inboard command, rad

sc,c Canard command, rad

Flaps-outboard command, rad

Gfo,c

and rop is the measurement response vector with the following definitions:

Vg Velocity, m/s
Og Angle of attack, rad
ds Pitch rate, rad/sec
Og Pitch angle, rad

2T ay Normal acceleration, g
8¢y Actuator position, rad
8¢ Actuator position, rad
_§f°_4 Actuator position, rad



The system matrix A, the control input matrix Gq, and measurement matrix M
are
Matrix A

1~Column 2-Column 3-Column 4-Column 5-Column 6—Column 7-Column 8~Column

1-Row ~0.4508E-01 -0.6762E+02 -0.7431E+02 -0.1054E+03 0,3032E+03 -0.1944E+03 0.9094E+01 -0.3556E+02

2-Row .2142E~04 -.2498E+01 .9870E+00 -.7683E-03 ~,1388E+02 -.7456E-01 .3703E+00 -.1362E+01
3-Row -.6060E-3 .7241E+02 -.3803E+01 .1187E-02 ~.3414E+04 -.1961E+04 .6843E+03  -.4722E+03
4~-Row O 0 .1000E+01 0 . 0 0 0 0
5-Row O 0 0 0 ~.4000E+02 0 0 0
6~-Row 0 0 0 0 0 -.4000E+02 © o]
7~Row 0 0 0 0 0 0 -.4000E+02 0
8-Row O 0 0 0 0 0 0 -.4000E+02
Matrix G

1-Column 2-Column 3-Column 4-Column
1-Row 0 1] 0 0
2-Row 0 0 0 G
3-Row 0 0 0 0
4-Row 0 0 0 0
5-Row .1000E+01 0 0 0
6—Row 0 .1000E+01 0 0
7-Row 0 0 .1000E+01 0
8-Row 0 0 0 .1000E+01
Matrix M

1-Column 2-Column 3-Column 4-Column 5~-Column 6—Column 7-Column 8-Column

1 -Row 0.3040E+00 0 0 0 0 0 0 0
2-Row 0 .1000E+01 0 0 0 0 0 0
3-Row 0 0 .1000E+01 0 0 0 0 0
4-Row 0 0 0 0.1000E+01 0 0 0 0
5-Row .1969E-05 ~.7533E+02 -.3930E+00 .1406E-03 -.4185E+03 -,2249E+03 J1117E+02 -.4108E+02
6—Row 0 0 0 1] 0 .4000E+02 O 0
7-Row 1] 0 0 0 0 0 .4000E+02 0
8—-Row [¢] ] [¢] [¢] 0 0 0 .4000E+02

As stated previously, the control system is to be implemented with a digital
computer. Two approaches to synthesizing the discrete control system to be used
in the computer can be taken: discrete digital synthesis or the conversion
of a continuous design. Although the design methodology has a direct analogy
for the discrete equations and could be used to design a discrete controller,
the conversion of a continuous design to a discrete controller was used for this
report.

DESIGN RESPONSE SELECTION
The cost function used in this design was formulated from the rate of the

implicit model following error response. If the rigid body (subscript RB) and
the implicit model (subscript m) equations are given by

Xgrg = ARpXRp + Bu 4)



Xm = ApXp + Bu (5)

then the rate of residual can be defined as

d
£ = EE(XRB - Xp) (6)

and is given by

L1 = ARBXRB — An¥m (7)
Assuming that the rigid body and model states are close together

Xy ~ XRB (8)

yields

t] = (Ags - Anp)%RB (9)

The implicit model was chosen so that the short-period response had a critical
damping ratio of 0.707 and a natural frequency of 3 rad/sec. The implicit
phugoid model retained the RPRV's natural frequency (0.15 rad/sec), but had an
increased critical damping ratio of 0.7. These values can be compared with the
open~-loop pole locations in figure 1.

The objective is to find an implicit model of similar form except that the
roots of the characteristic equation result in these performance specifications.
Extracting the short-period approximation from equation (1) (that is, assuming
the velocity constant) and dropping the 6 equation yields

i) -2.498 0.987|| o
- (10)

9 rp 72.41 -3.803|(| g RB
If the elements of the a equation are assumed to be identical in both

the model and vehicle, then the remaining terms of the model can be specified.
This requires the solution of the following equation:



s + 2.498 -0.987
= 52 + 2(0.707)3s + 32 (11)
—A~| s - A2

Performing the required calculations for Ay and A, results in the following
short-period implicit model:

a -2.498 0.987 a
= (12)

9 -4,.703 -1.745 A

An identical procedure can be used to calculate the phugoid implicit model

v -8.02 -105.41 v
= (13)

0lm 0 0 0|

By using this implicit model for the short-period and phugoid motion and enforc-
ing the kinematic constraint that the pitch angle 0 is equal to the integral
of the pitch rate q, it follows directly from equation (9) that the design
responses are

_v_‘
_ 7.98 0.001  -0.002 0.005(|a
rp = (14)
0 77.11 -2.06 0 q
9

DESIGN EXAMPLES

Several design models are presented and discussed to illustrate the dif-
ferent controller designs generated by each design model and to gain insight
as to why the form of the final design model was chosen. The details of the
methodology for the method used in this report are given in the appendix. The
design process begins with the basic airplane as described by equations (2)
and (3) augmented with the elevator being driven with filtered zero mean
Gaussian noise. The elevator was chosen for the injection of the noise because
it produced sufficient root mean square (rms) levels on all the states. Expe-~
rience has shown that if the injected noise does not excite the system suffi-
ciently, the incremental gradient procedure may not converge.



Basic Design Model

In the full-state feedback LQR solution, the characteristics of the noise
process do not affect the resultant gains. However, in the reduced state
feedback case, the calculated gains are dependent on these characteristics
(that is, the eigenvalues of the shaping filter with respect to the eigenvalues
of the open-loop system). Since the design objective of this controller is a
stability augmentation system, it is only necessary to place the eigenvalues
of the noise filter outside a circle which is centered at the origin and which
encloses the eigenvalues of the open-loop systems that are important. An
additional constraint in solving the Riccati equation (eq. (A9)) requires that
the initial eigenvalues be stable; therefore, the location of the noise filter
pole was chosen on the negative real axis at 50 radians. However, if the design
objective were gust alleviation, the gust filter would be based on an approxi-
mation of atmospheric turbulence. The rms output of the noise was arbitrarily
adjusted to 0.1 radian. The structure of the basic design model is illustrated

in figure 2.

By using the design response as defined by equation (14) with the matrix R
(eq. (A16)) equal to the identity matrix, full-state feedback gains were calcu-
lated for several values of p. These results are presented in figure 3. The
asymptotic behavior of the roots approaching Butterworth patterns is illustrated
as p approaches zero. For large values of p the cost function is equivalent
to a cost function known as the "minimum pseudo-energy." It is characterized
by reflecting all unstable eigenvalues about the imaginary axis while not dis~
turbing the stable eigenvalue locations. For a value of p of 0.5 x 108, the
unstable root at 0.5 radian has been rotated about the imaginary axis and the
damping of the phugoid has been increased to a critical damping ratio of 0.7.
The full-state feedback gains are presented in table II. Since stable eigen-
values on the real axis yield satisfactory handling qualities and since weight-
ing the control tends to minimize the control rms required to stabilize the
system, the minimum pseudo-energy was considered to be appropriate. Also,
large p values are expected to result in smaller gain values.

An interesting observation can be made by noting that for this value of
p, and in fact for any value of p, implicit model following is not achieved.
Implicit model following is never obtained because the differences between the
desired model and the plant are large enough to render equation (8) invalid.
The fact to be noted is that although the design did not minimize the cost as
it was anticipated, the control law produced was good.

By using this form of the weighting matrix and the design model as shown
in figure 2, the incremented gradient procedure was applied. The output feed-
back gains are shown in table III and the closed-loop eigenvalues can be
compared with the open-loop eigenvalues in figure 1. The unstable root at
5 radians has been rotated about the imaginary axis and the damping of the
phugoid has been increased to a critical damping ratio of 0.7. The response
of the closed-loop linear system with the basic gains to a negative 0.l1-radian
" step in the elevator command is illustrated by the time history of the pitch
rate and elevator position in figure 4(a).
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The response of the system is that of a well-damped © command system.
This is the predicted result of the response of the linear equations of motion
of an aircraft to a step in the elevator, pitch angle being feedback. This
response may not be the one that is desired for the aircraft, but it is an
acceptable response for a SAS. Control laws designed in a similar manner can
be added to modify this controller design for other control tasks, such as
pitch rate command. The pitch rate does not return to zero because the linear
equations were used in the simulation.

Figure 4 represents the time history of the response of the RPRV to a
negative step in the elevator command, with and without simulated noise being
added to the sensors. The upper half of the figure represents the response of
the vehicle to the step command with no noise added to the sensor measurements,
whereas the lower half is the response of the vehicle with noise, modeled by
first-order low-pass filters with the parameter of table I, added to the sen-
sors. In the lower left quadrant, the response of the pitch rate and elevator
position have been significantly changed by the addition of noise to each of
the sensor measurements. Since the design model did not account for the noise
on the measurement, the gains that were obtained do nothing to attenuate the
noise; thus, the response of the aircraft is undesirable in a noisy environment.

Design Model for Noise

In order to overcome this undesirable response, or at least minimize the
effect of the noise, the design model was augmented as shown in figure 5. To
each of the output signals, filtered noise was added at an intensity level
equal to the calculated rms output of the assumed first-order filter of the
observed flight records. The resulting gains from the design process are given
in table IV. Comparing these gains with those in table III indicated an overall
reduction in magnitude, with some gains being reduced greater than others. 1In
particular, the gain of the angle-of-attack sensor Qg has been reduced sig-
nificantly. This was to be expected since the rms output of this sensor was
the largest. The most surprising result was a sign change on the normal accel-
eration a, gains. There is no logical explanation for this result. A plau-
sible reason for this difference could be in the numerical accuracy of the
gradient algorithm used in the design procedure. The eigenvalues of the closed-
loop system can be compared with the basic design in fiqgure 1. The major dif-
ference in the roots is the combining of the actuator root with a short-period
root to form an oscillatory root with a critical damping ratio of 0.7 and a
natural frequency of 30 rad/sec. This is not considered an unreasonable demand
on the actuator since it is within the response of the open-loop actuator. The
response of the pitch rate due to a step response in the elevator for this con-
trol design can be compared with the identical simulation with the gains of
table II in figure 4. The major differences between the closed-loop system
responses are (1) the apparent short-period critical damping ratio has been
decreased to about 0.7, and (2) the amount of noise transmitted by the SAS has
been reduced.

11
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Digital Implementation

Implementing control laws with a digital computer requires some form of
digital-to-analog conversion. The most widely used method is the zero-order
hold (2ZOH). The degrading effects of using a 20H are illustrated by a fre-
quency response analysis in figure 6. The general nature of the degrading
effects of the ZOH is the added phase lag in the low frequency range. In
this figure the gain and phase characteristics of a ZOH without and with dis-
crete compensation are plotted against the frequency of the input signal w
divided by the frequency of the sampler.

Hartmann, Hauge, and Hendrick (ref., 6) have proposed using the phase lead
compensator depicted in figure 6 to improve these undesirable characteristics
of the ZOH. In order to minimize these characteristics, this digital com-
pensator was implemented in the control design, and a time history analysis of
the closed-loop system was performed., The time histories did not indicate any
change with or without the compensator being in the loop. This can be attrib-
uted to good gain and phase margins that accompany full state LQR design that
have carried over to the partial state design.

In order to illustrate the effects of the compensator, a frequency analysis
was performed on the continuous closed-loop system and the discrete closed-loop
system with and without the ZOH compensator in the loop. The difference between
these systems is shown in figure 7. 1In figure 8, the frequency response of the
pitch rate g due to the system being excited with the elevator can be com-
pared for the system with the basic gains and the system with the gains that
have been designed for noisy measurements. Figure 9 compares the closed-loop
frequency response effect of using the discrete 2ZOH phase lead compensator.

This analysis indicated that the effects of the ZOH on the closed-loop
system are compensated for with the Z-domain transfer functions in figure 6,
although these effects are not very strong. It is worth noting that this
compensator for the ZOH has one major disadvantage, a pole in the left half of
the Z-plane which produces an oscillation with a period of twice the sampling
rate on the output. In this particular use, the oscillation did not produce
any undesirable effects, but that is not to say that it could be used satis-
factorily in all cases.

Design Model for Delay

The design model can be modified to account for the 1-cycle delay intro-
duced by the digital implementation by including a filter representing a Padé
approximation on the output of each actuator. This design model is shown in
figure 10 with first-order functions used to represent the delay. The design
process was repeated with several different order Padé approximations until
the introduction of a higher order delay model did not change the resulting
gains from the previous design model. For this example, the first-order
approximation shown in figure 10 was sufficient to design the control system.
These gains are presented in table V. A frequency analysis of the closed-loop
system including a 1-cycle delay with the gains in tables IV and V can be com-
pared in figure 11. As in the previous example, the differences between the
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two systems is not great, but these examples illustrate methods for including
the effects of the digital delay in the design model. 1In doing so, the result-
ing controller can be made to compensate for this delay. 1In this example, the
compensation resulted in a shift of the amplitude ratio curve to the left, or
to put it another way, the system low frequency gain was increased.

CONCLUSIONS

This paper presented a realizable optimal control system design for an RPRV
from modern control theory design methodologies. The design methods for includ-
ing noisy measurements, discrete controllers with zero-order-hold computational
delay errors, and for finding design responses to achieve implicit model follow-
ing have been presented in a design example for a remotely piloted research
vehicle. Some important conclusions and results of this study are

1. The results of modern control theory design can be used to obtain
realizable controller designs.

2. The effects of undesirable effects (i.e., noisy measurements, etc.) can
be accounted for in the design model.

3. The robustness of LQR designs, in this example, was carried over into
the realizable design.

4. An acceptable system was obtained although model following was not
achieved.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 17, 1980
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APPENDIX

DESIGN METHODOLOGY

The theory and numerical techniques used in the design procedure are doc-
umented in references 7 to 9 and, therefore, will only be summarized here.
Given the time invariant linear system

)':=Ax+G-|u+G2n (A1)
r{ = Hx + Du (A2)
rp = Mx (A3)

where x 1is the system state vector (including rigid-body states, actuator and
servo states, sensor states, model following states, and wind states), u is
the control input vector, and 7n 1is a unit-intensity white noise vector. The
design response vector ry 1is a vector of elements that have been chosen so
that when the squares of the elements are minimized, the desired performance of
the system is obtained. The states, or linear combinations of the states, of
the system which can be measured and are to be used in the final control system
design are the elements of the measurement response vector r5. The design
methodology has two stages. 1Initially, a stabilizing control law of the form

u = Kx (A4)

is found which minimized the performance index

J = E(rq'Qrqy) = tr[QRq] (A5)

where E 1is the statistical expectation and Q 1is a symmetric weighting
matrix. The matrix Ry 1is the asymptotic response covariance matrix, defined
as

Ry = E(rqry') = (H + DR)X(H + DK)' (A6)

where X is the asymptotic state covariance matrix. The closed-loop asymp-
totic state covariance matrix is the solution to

(A + GiK)X + X(A + G1K)" + GGy' = 0 (A7)

14



APPENDIX

The full-state feedback gain matrix K is found by appending this covariance
equation to J by a Lagrange multiplier matrix P and solving for the optimal
(K,P,X) set which minimizes the augmented cost function. The resulting optimal
gains K are :

K = -(D'QD) ~1[Gy'P + D'QH] (A8)

The Lagrange multiplier matrix P 1is found by solving the matrix Riccati
equation

A'P + PA - PEP + Q = 0 (a9)
where

A =A- G[pop]-Tpgn (310)

E = Gy[Dp'oD]"1G" (a11)

0 = H'OH - H'op[D'0D]-'D'0H (A12)

Insight into how to choose the matrices H and D and weighting matrix Q
can be obtained by examining the preceding problem with the constraint

D'QH = 0 (A13)

Reformatting the problem by substituting equation (A8) into equation (A4) and
substituting the resulting equation into equation (A5) results in

J - E(rq'ry + u'Ru) (A14)
where

r = 91/ 2ux (A15)

R = D'QD (A16)

When R 1is replaced by PR, where p 1is a scalar design parameter, Harvey,
Stein, and Doyle in reference 10 have shown that as p tends to zero, the poles
of the closed-loop response matrix A - G1(R)‘1G1'P approach either (a) the
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APPENDIX

closed-loop transmission zeros that have negative real parts or the left half-
plane mirror images of the zeros in the right half-plane, or (b) they approach
infinity in multiple Butterworth patterns with different growth rates. Parti-
tioning the matrices H and D so that equation (A13) is valid allows the
elements of the Q matrix to individually control the effect of either equa-
tion (A15) or the control functions defined by the D matrix on the design.
Increasing the weight on a response function (or control function) results in
the rms of that function relative to the rms of the other functions to be
lowered. By using a set of response functions, the requirement of finding the
proper weights on the states is transformed into finding a smaller set of
weights on the response functions. These response functions may have conflict-
ing effects on each other; decreasing one particular function may tend to
increase the response of other functions. By adjusting the weights on these
functions, the performance of the design can be adjusted until a compromise
solution is obtained to the controller design.

This formulation of the LQR problem has three advantages:

(1) The problem of choosing the quadric weights is reduced to that of
finding a smaller set of design responses. These design responses may be
intuitive from the design objective.

(2) The weights on the controls R are chosen to regulate the relative
control motion with respect to each control; that is, the allowable maximum for
control uy may be different than the allowable maximum for control wuj.

(3) The scalar parameter P can be considered a gain adjustment. As p
tends to zero, the elements of the gain matrix K increase.

The design cycle consists of forming a design response ;1, selecting the
relative control weights R, and solving equations (A8) and (A9) for several
values of the scalar parameter p. This design cycle is repeated until the
performance of the system meets the design goals.

Once the designer is satisfied with the closed-loop performance of the
system, an "incremental gradient" procedure is used in the second stage of the
design procedure to reduce the full-state feedback control system to a reduced
state or realizable control system. The full-state gain matrix represents the
starting point for the "incremental gradient" procedure and, therefore, need
not be calculated with this procedure. The initial gains can be calculated
with any procedure as long as equation (A5) is minimized and the control law
is of the form of equation (A4).

In the incremental gradient procedure, the measurement gains are written

as a function of a scalar parameter A so that

u = K*(}) x (A17)
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where

K*(X) = Kq(A) M + XK, (A18)
By assuming M has maximal rank K*(i) is defined as

K*(1) = K1(1) M + Ky (A19)
where Kq(1) is defined as

Ky (1) = RM' (MM") 7! (A20)
and K 1is the full-state feedback matrix from equation (A4) and

Ky = K[1 - M' (MM*')~ M) (A21)

The procedure determines the gain for use in equation (A17) as K*(A) which is
obtained by gradually letting A move from A =1 to A = 0 while maintaining

37

=0 (A22)
3K1 (A)

with J a quadratic performance index of the form (A5) using the control law
of equation (A17). Explicit details can be found in reference 10.
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TABLE I.- NOISE PARAMETERS
Sensor T, sec Intensity Root mean square
Vg 0.16 0.61 m/sec 1.08 m/sec
Og 0.005 0.3° 3.00°
dg 0.08 0.5 deg/sec 1.25 deg/sec
Bg 0.16 0.3° 0.359
ay 0.008 0.06g 0.47g
¢
)
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TABLE II.- FULL-STATE FEEDBACK GAINS

Vgr Qgr Ogr dss agzr Sgiv Ser Sgor Xgr
m/s rad rad rad g rad rad rad rad
Ge,c' rad -0.0012 ) 2.366 0.1130 0.0762 0.0195 | ~0.0072 0.0342 | -0.0079 0.2039
Gfi,c' rad | -0.0007 1.356 0.0647 0.0435 0.0112 | ~0.0041 0.0196 | -0,0045 0.1{;8
Gc’c, rad 0.0002 | -0.4599 | -0.0220 | -0.0115 | ~0.0038 0.0014 | -0.0067 0.0015| ~0.0397
6fo,c’ rad | -0.0002 0.3238 0.0155 0.0105 0.0027 [ -0.0010 0.0049 | -0.0017 0.0279
TABLE III.- BASIC GAINS
Vgr Qg Osr ds aze
m/sec rad rad rad/sec g
Ge,c’ rad -0.0010 2.054 0.1060 0.0668 0.0160
sfi,c' rad | -0.0006 1.777 0.0607 0.0382 0.0091
sc,c' rad 0.0002 | -0.3997 | -0.0206 | -0.0137 | -0.0031
Gfo,c' rad | -0.0001 0.2810 0.0145 0.0093 0.0022

20
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TABLE IV.—- GAINS DESIGNED FOR NOISE

Se,cr rad
Sfi’c, rad

Gc,c' rad

(Sfo’ c’ rad

TABLE

Ge,c’ rad
6fi'c’ l'ad

6c,C' rad

sfo’ c’ rad

VS’
m/sec

-0.0009
-0.0005
0.0002

-0.0001

as,
rad

0.0936
0.0530
-0.0179

0.0126

6

dgr

s’ azrs

rad rad/sec g
0.1278] 0.1440] -0.0038
0.0733] 0.0827| -0.0022
-0.0251( -0.0301 0.0007
0.0202] -0.0005

0.0175

V.- GAINS DESIGNED FOR NOISE AND DELAY

Vgr
m/sec

-0.0006
-0.0004
0.0001

-0.0001

i S

Og,
rad

0.0475

-0.0157

0.0113

0.0840

)

s’ s azr

rad rad/sec g
6;1071 0.0881} -0.0043
0.0615 0.0507| -0.0025
-0.0212 | ~-0.0194| 0.0008
0.0147 6.012§7 -0.0006
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Figure 1.~ Comparison of the roots of the characteristic equation for different
design models. Note that high frequency roots are not shown.
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Figure 2.- Basic design model.
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Figure 7.- Fredquency response models used to compare different control laws.
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