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1 1.0 SUMMARY

i An analytical model has been developed to predict the trans-
mission of propeller nois_ into the cabin of a high-speed

_ propeller-driven airplane. The model is then used to determine

J the noise control treatments required to achieve a goal of an

interior A-weighted sound level of 80 dB for three study air-

planes with different fuselage diameters but with a common

cruise Mach number of 0.8 at an altitude of 30,000 ft.

I
The analytical model describes the excitation in terms of a

propagating pressure field with a pressure amplitude which

decays rapidly with distance. The fuselage structure is re-

presented as a series of curved, orthotropic plates with

in-plane loads, the orthotropic characteristics resulting from

the effects of smearing out the stiffness and mass of the
I
J longitudinal and circumferential stiffeners. Finally, the

receiving cavity or cabin is basically a rectangular parallel-

piped with 'deformed' curved surfaces. Sound transmission

into the cabin is then calculated using the concept of acous-

_:__ tic power flow with allowance being made for resonant and non-

J resonant response. The influence of the cabin sidewall treat-

_.L. ment is introduced as an additional transmission loss experi-
J
! enced by the transmitted power. Sound absorption in the

cabin results in power dissipation losses which balance the

I net inflow of acoustic power.

_~

Three baseline aircraft with-wide-body, narrow-body and small-

diameter fuselages, respectively, are selected based on exist-

ing airplane designs, and the analytical model is used to
v calculate the propeller noise levels in the passenger cabin.

It is found that noise reductions of about 25 dB, in the fre-

i quency range of _30-230 Hz, are required to achieve the goal of



80 dBA. Noise reduction methods are investigated in the form i

of either add-on treatments, which can be applied to existing

fuselage structures, or advanced techniques, which require !

changes to the primary structures. For the add-on methods,

only a double-wall sidewall with a heavy, limp trim panel _

isolated from the fuselage structure is found to give the _

required noise reduction. No advanced technique is found

which, on its own, can provide the required additional 25 dB

transmission loss over the frequency range of interest .....

The elements of the analytical model are presented without

direct validation. Such validation is, of course, highly I

desirable and the design and performance of validation experi- !

ments is discussed. All the test methods considered have -_

disadvantages but laboratory tests using a loud speaker with a

directional horn and a model fuselage structure in the form

of a cylinder are recommended for validation of the basic I

analytical model and its use in predictions for add-on noise

control treatments. Tests on present-day propeller-powered

aircraft could be performed but they would not be directly

applicable in terms of validating the predictions for the high- _]

speed aircraft powered by the high-speed propfan concept for a

propeller. -!



2.0 INTRODUCTION

2.1 Noise Control Study

As part of an overall program to develop aircraft with improved

fuel efficiency, consideration has been given to the design

of high-speed propeller-driven aircraft. Preliminary studies

[i, 2, 3] have shown that significant fuel savings can be

achieved by these aircraft but, at the same time, several

i problem areas were identified. One potentially severe problem

is that of high interior noise levels in the passenger compart-

ments. In order to explore this problem more fully, a study

was initiated to develop an analytical model for the trans-

mission of propeller noise into an airplane fuselage. The

model is then to be used to explore potential noise control

methods for three study aircraft of different fuselage dia-

meters. The noise control techniques could be add-on treatments

which would be applied to current day conventional fuselage

structures, or advanced noise control methods which involve

design changes to the primary structure.

The development and application of such an analytical model is

presented in this report. A general overview of the study is

provided in this section, while in Section 3 the development

of the analytical model is described. The model is applied

_ to three study aircraft whose aerodynamic, structural, and

" acoustic characteristics are presented in Section 4. Then the

_- analytical idealization used to describe the structure of the

fuselages for the three aircraft is presented in Section 5.

The following three sections discuss the application of the

analytical model to the baseline airplanes (Section 6) and

explore the potential of add-on (Section 7) and advanced noise

! , control treatments (Section 8). Finally, Section 9 considers

J

i



the feasibility and design of experiments to validate the

analytical model and the predictions for the baseline airplanes.

The title of this study refers to high-speed propeller-driven

aircraft. However, the implicit ass.umption is that a speci- -_

fied propeller, called a "propfan" in the relevant technical !J

literature (see, for example, [I]) will be considered as the

propulsive agent. The name propfan will be used in this !

report to identify the high-speed propeller.

2.2 General Characteristics of Analytical Model

The basic concept of the analytical model is that of power

flow, and the cabin noise levels are estimated by means of a

series of power balance equations which equate transmitted and _

dissipated acoustic energy. The model uses as a starting

point the analytical study performed for the acoustic environ-

men_ in the payload bay of the space shuttle orbiter vehicle

at lift-off [4] and the analytical model considers both
!

resonant and non-resonant response in one-third octave fre-

quency bands Resonant response occurs when the transmitting --_• i

structural modes, or the receiving cavity acoustic modes have !

resonance frequencies in the frequency band of interest. Non-

resonant response is associated with modes whose resonance

frequencies lie outside the frequency band of interest. The

relative importance of resonant and non-resonant response in

a given frequency band will depend on a number of factors, one

of the most important being the number of modes with frequencies r_

within that band. For example, if there are few or no acoustic

H_
modes with resonance frequencies within the band of interest, i
then non-resonant acoustic response may be an important factor

J



J
in determining the total acoustic power flow in that band.

_- Thus it might be anticipated that non-resonant response might

i be of particular importance at low frequencies. On the other

hand, power flow from non-resonant structural modes may control

] the fuselage noise reduction when the radiation efficiency of
resonant structural modes is very low.

I

The analytical model incorporates various simplifications and

F- assumptions in order to provide an engineering prediction tool

i which does not require too extensive computation requirements.

One such simplification involves the division of structural and

acoustic response into low and high frequency regimes. At very

low frequencies there are few modes in a given frequency band

and individual modes must be considered when calculating struc-

tural response and coupling between structure and acoustic

i- cavity. Then as modes in a given frequency bandwidth accumu-
J

late as frequency increases, some approximations can be made

7 for the expressions for modal coupling. Finally, at high fre-
i quencies it is impractical to consider modal response on a

mode-by-mode basis and recourse is had to a modification of
_F
i the method of statistical energy analysis.

I
i

/
2.3 Application of the Model to Propeller Aircraft

I The analytical model has been developed in a general sense so

that it can be applied to propeller noise fields where the

i excitation is discrete frequency in character and has strong
spatial decay of the pressure amplitude, as well as to cases

I_ where the excitation is broad-band and homogeneous, such as
the space shuttle. However when the model is applied to the

present study aircraft certain assumptions are made to reduce



the computational requirements without causing significant

adverse effects on the accuracy of the calculations. These

assumptions will be discussed at the appropriate place in

this report, but some of the more important ones are mentioned

in this section. _

In the analytical model for noise transmission into a propeller-

driven airplane, resonant and non-resonant response is con-

sidered in both low and high frequency regimes. However, as

will be discussed later, it is found that the acoustic power

flow is dominated by resonant response. Furthermore, because

the modal density is high, only the high frequency idealization -_
L

is used for power flow calculations.

One assumption concerns the size of the structural unit to be 1

considered as a noise transmitting element. While it is

possible that the fuselage structure can be considered as a 1

single unit, it is feasible to break the fuselage down into

several smaller units. Parametric studies in Section 4 will -_
• 1

show that above a certain size, the calculated acoustic power

flow will be essentially independent of the dimensions of the

structural unit. This is due, to a large extent, to the rapid

spatial decay of the amplitude of the excitation pressure

field. Several advantages are obtained by this segmentation

of the structure, including the ability to estimate the spatial

variation of sound level inside the passenger cabin. Utilizing i

the concept of structural units, the fuselage is divided into

several elements in the longitudinal direction, In the
t

circumferential direction it is assumed that noise transmission

through the floor can be neglected and that the transmitting -_

structure can be considered as a floor-to-floor or a floor-to- I

ceiling unit, depending on fuselage diameter.



{ In terms of frequency regime, it is assumed that, when the

modal bandwidth is greater than the separation between modes

I for the (cabin) acoustic volume, the various high frequency

approximations can be used. Then the acoustic radiation into

I the volume can be described using a modified statistical energy
J

analysis approach.

The basic analytical model estimates noise transmission through

a single wall structure into a receiving cavity. However a

_- typical airplane fuselage contains a sidewall treatment which

will provide thermal and acoustic control. This sidewall

treatment can be idealized as a double wall system, the outeri

panel being the skin of the fuselage structure. The space

i between the two panels is filled with insulation material

such as glass fiber batts. The assumption is made in this analy-

_ cal model that the additional transmission loss provided by thenoise control treatment can be modeled as an extra transmission

coefficient which is applied directly to the calculated power
J
[ flow through the untreated fuselage structure. Whilst this

assumption is not strictly valid [5], the errors associated with

] _ the assumption are not large and the simplifications to the
analytical model are significant.

<
In applying the analytical model to an excitation field such

as is generated by a propeller, consideration has to be given
C
I to the uncertainties which arise due to the dominance of dis-

crete frequency components in the excitation spectrum. This

_ is particularly important when the modal densities for the

structure and receiving volume are low. In such cases the

_" accuracy of the predicted resonance frequencies becomes critical
in determining the accuracy of the predicted noise levels,

and therefore statistical evaluations of the predicted noise

-7-



reduction are introduced. An approach which provides confi- _

dence limits for the predictions is presented in the description

of the analytical model. -_

2.4 Study Aircraft Computations _

Following development of the analytical model to predict

propeller noise transmission into the interior of an airplane _i

fuselage, various computations are made for the three study

aircraft• i_

As a first step the external excitation pressure field has to

be defined and this is accomplished on the basis of existing, i

albeit sparse, analytical and empirical information. This

i_formation refers to both high speed (propfan) and general _• I
aviation propellers. The propfan data were obtained from a

prediction procedure for sound pressure level provided by the -_I

Hamilton Standard Division of United Technologies. This

procedure [6] permits estimation of the spatial distribution

of the sound pressure level under free field conditions, pro- I

vided that the propfan performance characteristics are known

orhave been previously estimated. Propfan performance charac- <

teristics were estimated using Hamilton Standard procedures [7].

While there are several methods for predicting propfan noise, i
J

some of which predict higher levels [i], the Hamilton Standard

procedure results from continuing investigation of propfan --_

characteristics and thus it seemed appropriate to use it for

this study. These free-fleld noise levels were converted to

blocked surface pressures, as described in Section 4.6. General

aviation propeller noise data [8,9] are used to infer trace

velocity properties for the pressure field It is recog- !

nized that the operating conditions for a general aviation

i



propeller are significantly different from those of a propfan

but, in the absence of alternative data, the general aviation

propeller measurements can be used as a preliminary model.

When more data are forthcoming for the propfan, the analytical

I model can be brought up-to-date if need be.
J

_ Prior to calculating the noise transmission into the passenger
1
j cabin, the fuselage structure is idealized into equivalent

orthotropic panels by smearing out the assumed structural

! characteristics for the different study aircraft. In addition,

a transmission loss spectrum is provided for the baseline side-

i-- wall. Absorption spectra are assumed for the cabin interior.

These acoustic absorption spectra are based on empirical data

..... for conventional interior sidewall and trim configurations WithI •

this information the longitudinal spatial variation of the cabin

!-_ sound level can be calculated, and the noise reductions deter-
i mined to reach the goal of a maximum level of 80 dB(A).

The next step in the computation process is to utilize the

analytical model for a variety of add-on noise control methods

_ to determine treatments which can provide the required noise

J reductions. These add-on treatments have to be such that they

can be applied to existing conventional (baseline) fuselage

structures without modification to the load-bearing character-

istics of the structures. From the different concepts investi-

I gated, only the double wall with a heavy, limp interior trim

panel appears to have the potential of achieving the large noise

_ reductions required at the low frequencies associated with

propfan excitation.

In order to perform computations for the advanced noise con-

trol concepts, where it is assumed that such concepts involve

_ modifications to the fuselage primary structure, it is necessaryI



to calculate the structural response for each of the new

structures. For each new structure, calculations are per-

formed to determine the characteristics of the equivalent -_

orthotropic panels and these characteristics are used to com-

pute the noise transmission. Within the scope of the analysis, _

no primary structure was identified which could provide the

noise reductions required to meet the 80 db(A) criterion.

2.5 Experimental Verification

In the development of any analytical model it is always ad-

visable to perform experimental validation of the model.

Such validation provides confirmation that the assumptions

introduced into the analytical model are valid for the specific

cases to which the model is applied. The validation also

provides confidence in the accuracy of the analytical model.

Several validation experiments were performed on the analytical

model for the space shuttle payload bay acoustic environment

[i0, ii]. Since that model provided a basis for the present

analytical model for propeller-driven aircraft there is some

confidence that the present model will provide reliable pre-

dictions. Even so, consideration should be given to obtaining

direct verification of the propeller noise transmission model.

Model verification did not form a part of the study reported

herein, but the study did include an assessment of the im ....
i

portant parameters in the model and recommendations for

prospective verification experiments.

The choioe of experiment depends to some extent on the actual

objective of the tests. If the objective is to confirm the _

specific noise reductions predicted for the three study

-I0-



airplanes, then the experiments should be designed to model

_ the important parameters of those study aircraft. Alterna-

_i tively, if the objective is to validate the analytical model

under more arbitrary conditions, an existing propeller-driven

j airplane could be selected, the analytical model used to pre-

dict the noise transmission into that aircraft and an experi-

i ment devised to confirm those predictions. It should be borne

in mind, however, that if the test conditions differ radically

! from those corresponding to the study aircraft, the validation
of the analytical model may be performed for a situation un-

_ representative of propfan operations.

The evaluation of potential test procedures discussed in

I Section 9 includes both of the above objectives although the

emphasis is placed on the validation of the analytical model

- s applied to the study aircraft. This emphasis is chosen
because it allows the analytical model to be tested under

-- conditions appropriate to the subject under consideration --

high-speed, propeller-drlven aircraft.
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3. ANALYTICAL MODEL

3.1 Power Balance Approach i

The basic concept of the analytical model is that of the balance _-_

of acoustic power flow from the exterior of a bounding surface to

an interior-contained volume. This approach has recently been _ ]

developed by Pope and Wilby [4] for application in the acoustic I

modeling of the payload bay of the Space Shuttle orbiter vehicle. __

The first step in the analysis considers the vibrational response

of the fuselage structure to the external pressure field. The

model takes into account the external pressure field in terms of

level distribution over the fuselage surface, spectrum shape, and i
\

spatial correlation. It describes the structure in terms of the

mode shapes of equivalent orthotropic panels, including frequency-
!

dependent effects of skin and stringer and frame stiffnesses

and masses, pressurization, and curvature. The coupling between

the external pressure field and the fuselage vibrational response

is formulated in terms of modal joint acceptances.

, !

The second step considers the power radiated by the fuselage

structure into the cabin. Acoustic power is radiated into the _t

volume by the structural modes, and the power is accepted by the

acoustic modes of the volume. Resonant and nonresonant response "_

of the structure and volume are considered in the analysis, resonant

response being that for which the participating modes have resonance _

frequencies within the frequency band of interest. Nonresonant (

structural response can be either mass-controlled (resonance fre-

quencies below the band of interest) or stiffness-controlled

(resonance frequencies above the band). However, for present pur-

poses, the stiffne'ss-controlled response is excluded, as the

-12-



radiation efficiencies of stiffness-controlled modes are low

compared with those of resonant and mass-controlled modes (Eq. (61)).
1
(

The final step determines the space-averaged sound pressure levels

_ in the interior volume by equating the net inflow of acoustic!,
power to that which is absorbed within the interior space. The

,_ model accounts for any transmission of acoustic power from the
J interior back to the exterior of the fuselage.

I

The following sections present a detailed derivation of these acoustic

power flow equations, with particular emphasis placed on the

! following developments which have specific application to propeller
noise:

i

i. Transmission of discrete tones through a structural element

into a cavity;
I

2. Estimates for the mean and standard deviation of the acoustic

power flow; and

i 3. Closed-form solutions for the coupling between a nonhomogeneous
excitation and the fuselage vibration response.

7

3.2 General Formulation

I
In the general formulation, the transmitting structural system is

assumed to cover a cavity which has absorbing walls as the interior

) surfaces. The frequency range considered is sufficiently wide to

assure that the cavity possesses at least one mode which is resonant
)

i in the frequency band of interest. The transmitting structure is

assumed to have modes resonant below and within (or simply within)

i the band of interest.

._ -13-
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The transmitting structural system will respond to excitation by i

an external random pressure field according to the relation

f , o(_,,_)_ pi(_,,_)]d_, . (l)

o /
G(_,_';_) is the Green's function for the structure, PT(_')

respresents the external exciting pressure, and P$(_') the induced __

interior pressure on the structure. Mathematically WT(_,_) , i
0 --, i --,

PT(X,_), PT(X ,_) are Fourier transforms of truncated records (in

time) of length T and are related to the spectral components of

the random.displacements and pressures,
: -_

The induced interior field is related to the displacement response

of the structure by <'I

= -oil, j" (2)

where Gp(_,_' ;m) is the Green's function for the interior space.

The external driving field is given by

P_(_',_) = Pb_T(_', _) + Pe_2 I G_.(_,_';_)WT(_,_)dx (3)

where PbZT(_',_) is the transform of the blocked pressure, -_
G°(_,_';_) is the exterior field Green's function (source point
P
on the structure), and the integral represents the radiated pressure

field. The ambient densi%ies in the interior and exterior spaces are i

given by Pi and Pe' respectively, and the associated speeds of

sound are ci and ce.

-14-



,. 3.2.1 Structural Response

i These coupled integral equations can be reduced to a system of

simultaneous algebraic equations to obtain the modal response _rt

j of the transmitting structure [12]:

= _F rI_ [- YrMr + _2(Pil_r + peJrr)]_rT +. _2 (Pilrs + peJrS)_sT Pb_T
s_r

_- (4)
I

! In Eq. (4) external and internal acoustical coupling of structual

modes is described by the intermodal coupling coefficients defined

!J o(_,_,;m)or(_,)os(_)dx, d_,}

Y-i jrs(_) = Gp

(5)

Irs(_) = f!Gp(_,x';_)_r(_ )_S(x)d_, d_.
/ !

! rr
Pb_T (_) is the generalized blocked force

1 rr (_,,_)_r(x')dx', (6)
• _Pb_ T = J Pb_ T -

! . _r(_) is the eigenfunction of mode r, Mr is the modal mass, and

_ Yr is a receptance given by

Y = _[1 - (_/_r)2-in r] (T)

where qr and _r are the modal loss factor and resonance frequency,

respectively.i



-D
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The matrix form of Eq. (4) is

[ars]{_rT} = {_F rpb_T},

and has the solution

- r }, _
{_rT ) = [_rt]{-FPb£T

from which the displacement response of the structure is obtained:

- r t (_). (8) i_WT(X,_) = _ @r(_)_rt pb£ T
r,t

/
The one-sided cross-power spectral density for the displacement at

points x,x' is given by the relation

Sw(X,_';_) = Iim(2/T)(I/2_)WT(_)WT(_'), (9) -_I

and, from Eq. (8)

Z , r ff -- ,2"' _)Sw(_,_, ;_) _- _rt_£n _ (_)_£(_') Sp(X" ;
r,t,£,n !

× @t(_,,)_n(_,,, )d_" dx"' , (I0) 1

where S (_",_"';_) is the one-sided cross-power spectral density -m
P

of the exterior blocked pressure, i.e.

-,, * ,_). (ii)
(x",P";_):1_n(2/_)(I/2_)Pb_T(x,_)Pbgr(_"' " iSp T_

(
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/ 3.2.2 Power Radiated into the Cavity

The one-sided cross-power spectral density between pressure at

position x and velocity at x' is

SPiv(_,_';_) = lim (2/T)_/2w)P$(_,_)W_(_',_). (12)
T _

Equation (2)yields

SPiv(_,_,;_) = _iPi_3/ Gp(X,_";_)Sw(X",x';_)d_".

I
I
i

Let _'. _. Then, the spectral density of power radiated is ob-

.r tained by integrating SPiv(_,_ ;_) over the transmitting area; i.e.
/

_- wint -
i rad (_) =/ SPiv(x,x ;_)dx. (13)
,f

F_- This quantity is complex, and the real part is the real power.

._ From above,.

_ wint(o_) i 3!/G (_,_,;_)Sw(X',X;oO)d_' d_. (14)/ rad" = - Pi_ p

Using Eq. (I0), this becomesi

i W int -- --
_ rad(_) = -iPi_3 _rt_n f_ /_ Gp (x,_';_)_r(x)

r,t,_,n x x'

f- x ,_(x')dxd_' / f Sp(_",_"' ;_)¢t(_,,)
i x"'

I_. x ¢n(_,,,)d_"d_"' . (15)
I
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Now introduce the intermodal coupling coefficients Ir_(_) to !

obtain _
I

rW_ald(m)=. iPima_t ---*_rt_nIr£(_)f_ Sp(_,_' ;m)_t(_)_n(_')d_d_'. (16)
r,t ,£ ,n

If the cross terms for the external and internal acoustic coupling

coefficients for the structural modes can be neglected, Eq. (16)

reduces to:

wint(e_=-rad", iPi_3 _ Irr(_)rr zffSp (_'_';_)@r(_)@r(_')d_d_'"
r JMrYr- _Z(PeJ + Pilrr)J (17)

The assumption of negligible coupling of the structural modes by

• . Irs 0 for r # s) is equivalentthe radiated sound field (i e , =

to the assumption of weak coupling between the structure and the

cavity• Justification for this assumption is given in [4], where

it is pointed out that the assumption does not preclude well-

coupled modes that occur when acoustic and structural modes have

resonance frequencies closely spaced relative to the modal band-

widths. The assumption that the cross terms for the external

• . jrs 0 for r _ s)coupling coefficient can be neglected (i e , =

is adopted in [4] for a homogeneous excitation field. It is

assumed now that the cross terms will also be negligible for the

present inhomogeneous pressure field.

The cavity Green's function is

ap([,[' = _ k )SSSyn([)dv (18)
n

.18-



! where yn(_) is the complex mode shape, and the complex eigenvalue
is

i
"i

-kn = kn - i<n. (19)

J

/ The acoustic surface admittance of the cavity walls is

9

! B = _ - i_ = Pici/z

! where _ is the normalized conductance and _ is the normalized

susceptance of the wall. z is the inner surface's specific acoustic

impedance, that is, the ratio of pressure to normal velocity at the

wall,

__ z = p/v.

Analysis is confined to the case IB << I. Then

, ¢-n(_) __Cn(_),

which is real. With the normalization such that

t [*_dV" = V/_:n,
g_
;

where V is the volume of the cavity and a is mode dependent, the
n

F_ Joint intermodal coefficient in Eq. (18) becomes

- Irr(_) !!E SnCn(_) Cn(_' )
= $r(x)@r(x')dx dx',

I V('_ 2 - k 2 )
( n n

._ which reduces to the form

Irr(_) - A2 _ <an£n k2) f2(n,r), (20)
v

t n

IY -19-



where the function f(n,r) is the coupling factor between the

structure and the cavity.

i

f(n,r) - I f Cn(_)_r(_)d_.A --_

The spectrum of real power flowing inwardly can now be written:

[Wrad,_)] 2PiwaA2 _nkn_n f2(n_r)
V i_- ka[_"' iMYr .w2(peJrr+ Pilrr)la -_(-

× C_,x';_)¢rcx)¢r(_')dxdx' C21)

where Cp(X,_';m) is the real part of Sp(_,x";_); i.e. the co-spectrum
or co-spectral density function of the exterior blocked pressure,
and 1

Now kn = mn/Ci and <n = _nnn/2Ci [4] where nn is the loss factor J

of the acoustic mode with resonance frequency _n" Thus,

= m2- 2 2
knKn Nn n/ ci

and

[g2 _ k2 2 __ i - -- + nn In m2 • (23)
n

-20-



i

The band-limited input power, for a bandwidth A_, is

[wint (_)] f_ wint (_)d_
ReL rad" = Re rad "

_-_ Then, under the assumption that the radiation loss factor is
i

i relatively small [4], the term in Irr can be neglected, and

f
JM Y - _2(PeJrr + Pilrr)j2 -_ MrJYr j2r r

! = M2_ [(Ir r (x)2 _2r'! _]
'

where qr is now defined as the sum of the structure's dissipative
and external radiation loss factors.

i

The band-limited power flow into the volume becomes
I

v[Wr_ ] PiCiw_ A/_ _nnn

.... Re (_)

n

/

r.... f _n,r)!/Cp(_,_' ;_),r(_),r(_,)dx'd_' ,j

_- r rL\ _/ rj
I
i

It is clear then that, in general, calculation of the band-limited

! power flow into the volume requires estimates of both acoustic and
structural resonance frequencies and mode shapes and their respec-

l tive loss factors, together with a model for the excitation co-

spectral density function.

?
(
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3.2.3 Power Absorbed by Cavity Walls

When calculating the acoustic power absorbed by the interior

surfaces of the fuselage cabin, it will be assumed that the

surfaces are locally reacting. Then, the motion at one portion ._

of the surface is dependent only on the acoustic pressure incident •

on that portion. This assumption is valid for the llmp, absorptive

surfaces envisaged for the cabin sidewall treatments.

From [4], the acoustic power absorbed by the walls is given by

the general relationship

Wabs PiCi _w n
n w

where Aw is the absorbing area of wall w, _w is the wall conductance, __

<p_> is the space-averaged, mean square pressure in the volume V

due to the response of the nth acoustic mode, and aw is a modal
n

factor. On an acoustic mode-by-mode basis, this becomes [4]

wint V <Pn> p a q b r c
abs PiCi n=p,q,r _-

where it is assumed that the volume is approximately rectangular

in shape, with dimensions (a,b,c). The wall conductances are now

denoted by _x+" _x-" etc; and _p, Sq, _r are modal participation
factors with values of I or 2 depending on mode order.

Equation (25) requires a knowledge of the wall conductances before

the absorbed power can be calculated. Such information

is not readily available in practice, although values of the

-22-



! absorption coefficients are often known or can be estimated.

Therefore, it is necessary to convert Eq. (25) into a form

1 that incorporates the absorption coefficient _ rather than the

conductance _. Following the approach used in [4], the conver-

! sion has been accomplished by modeling the low-frequency absorp-
!

tion characteristics of the volume in such a manner that the

1 relationship maps into the correct form at high frequencies. The
_ rate at which the formulation approaches the high frequency value

_- is comparable to the accumulation of modes in the volume. The

/ resulting equation is

i W_ut~ _ [(_x+Ax+ + _x_Ax_)Fx + (_y+Ay+ + O,y_Ay.)F y + (az+Az+ + _z Az )Fz ]"• abs 2PiCi _ - -

(26)

7 where Fx-_ NI n_ s Pn
_r ' Nn is the number of acoustic modes, andJ n

qn n

the assumption is made that the exterior input and interior coupling

rl-- are complex enough to assure that the modal responses differ little

i2 : <pn >. In the high-frequency regime,from the mean, so that <p > Nn

_• where there are many o.blique modes, the average conductance is about
one-elghth of the aver_age absorption coefficient [13.

ix 3.3 Representations for the External Pressure Field

•2(m) can be introduced to quantify theA Joint acceptance function Jr

the coupling between the external pressure field and the rth

structural mode. The function can be defined as

I _xT So(_,_,_)@r(_)@r(_,)d_ d_ , (27)
Jr (u) = A S'

PXo

-23-



where S (_) is the one-sided power spectral density of the _
PXo

exterior blocked pressure field at a reference location X , As
o _

before, Sp(_,_';_) is the cross-power spectral density of the
exterior blocked pressure, defined by Eq. (11) or by

_) If Rp(_,_';T)e -i_T dT r

where Rp(_,_';T) is the average cross-correlation of the blocked
pressure over the exterior. 1

._/2

--- ;T) = lira I pb_(X',t) pbE(x',t + T)dt.Rp(X,X' T._
T/2 _

3.3.1 Homogeneous Exterior Pressure Field ,_

For a homogeneous pressure field, such as is normally observed

beneath a turbulent boundary layer or in the far field of a jet

(provided the structural element considered is not too large), the

following form of S (_,x';_) is found to represent the measured 4
P

data quite accurately.

Sp(_,_';m) = Sp(_;m) = Sp(m)e -ckl_l e ik_ (28)

where _ : _'- _, c is the correlation decay parameter, k is the

excitation trace wavenumber, and reference location Xo is arbitrary I

because of the assumption of homogeneity.

The co-spectrum is

Cp(g;m) = Sp(m) e-Ckl_]cos kg . (29) --

-24-
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i Both the cross-spectral density function and the co-spectrum can

_m be assumed to be separable in directions parallel and perpendicular

,I to the direction of propagation

, 3 3 2 Non-homogeneous Exterior Pressure Fields

I White _ has shown that estimates of the Joint acceptance can be
made for a pressure field whose power spectral density varies

_ smoothly over the structural mode shape. The assumptions that the

_i co-spectrum is homogeneous and that the spectral density is

_ moderately uniform over the surface were made.
J
i

In general, strong variations in excitation co-spectrum can occurc _
/

i over the surface of the transmitting structure. Consider the

situation where a periodic point source is located at P, adjacent

i to the (x,y) plane as shown in Figure i. An expression is re-
quired for the cross-power spectral density of the pressure field

over the two-dimenslonal (x,y) plane. (_,Yo) is located at a

! distance d from P, such that the line joining (Xo,Yo) to P is

perpendicular to the (x,y) plane.

The pressure at points away from P varies inversely with r, the

radial distance from P; i.e.

I.... p(_,t+ Tx) - d p(_o,t)
! o rx

xii where To = - - d ,

x' : (rxTo , - d)/c, and

- == (x- Xo) + (y - YO) 2 .

-25-
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\,)._ iSingle Periodic
p Source at P _

r

FIGURE 1. PERIODIC SOURCE LOCATED ADJACENT !
TO (x,y) PLANE



i The cross-correlation of the pressures at x and _' can be written

< 1 -
! Rp(_,_';T) = lim _ p(x,t)p(x',t + T)dtT_
f-- T/2

{ d X

where .p(x,t.) = (1_- Xol 2 + d2)½P(X°' t - To)

and p(x',t + T) d p(Xo, t + "r "rx'
< (Ix' - _ol 2 + d2)½ o

If p(Xo,t) is periodic with period T and frequency _ : 2w/T °! o 0 '
f the above equations become

_- Tt O X

f-_-- ToR (x x' _ x x'
I-- P , ;T) = q(_,_') o p(Xo,z)p(Xo,z + T + To - o )dz

,To _TX
2 o (30)

I where q(_,_') = d2/[(l_ - Xo[2+ d2)(Ix , - X--QI2 + d2)] ½ .

C

ib_o z_- With p(Xo,z) = cm e , we find
,i b=-_

O

I £-2- -ib_ z

_ 1 ] O 1cb p(Xo,z)e dz = -- FPxo(b_ o).- To T To
O

I --_-

_- Then, on substitution into Eq. (30),
(

-27"



T+TX_TX!_ I" 2 ibm°o( 0 °)

q(X,_' )

Rp(X,X';T) = T2 Fpx o(b_0o) e . (31) --_
o b=--_ i

The cross-power spectral density follows, on transforming and
X X'

substituting for T and T , as
O o

-D

OO

Sp(X,X';_) = 2q(x,x')_T2 _ ei_° [(IX-X°12+d2)½ (]_'-X°12+d2)½]/c _-_
o b=-_o i

_b

× bL0o) 12 6(_0 - b_0o) (32) i

oo

where 6(m) = 7r_1 f -icotdt
,.-- e . ,-,

_co \

The co-spectrum is

Cp(X,X';OJ) = q(x,x') cos Ix'- Xol z + d2) 9 - (IF_ Xol 2 + d _) <p_{o(b_o)> (
b:l

x 6(_0-b_0 o) (33)

where <Pxo(bmo)> is the mean square pressure at Xo attributable

to the b th harmonic. _I

The co-spectrum (Eq. (33)) is a complicated function of observer '_
\

positions relative to source position but depends on the ampli-

tude of the pressure field relative to that at refererence position Xo.



_ The function q(x,x') expresses the spatial decay of the power

spectral density between the observer positions _ and _' and the

_ reference point Xo.

Considerable effort has been expended in the literature to define

! the function q(_,_') and coherence and phase relationships (cor-

relation functions) for such excitations as jet noise [15,16]. In

general, an approximation approach has been followed using the

homogeneous cross power spectral density function of Sec. 3.3.1, where

_ S (_) has been obtained by averaging the measured data over thei P
structural area of concern and where average values of k and c

_ have been selected. This is valid where the spatial variation

in power spectral density is small, but it is likely to be in-

creasingly inaccurate as the spatial variation becomes more severe.

i For example, contrast a point excitation with a homogeneous excita-

tion. The inclusion of the spatial distribution function q(_,_')
Y

permits a more realistic and precise modeling of the coupling
(

between the nonhomogeneous excitation and the fuselage response

to be performed.

_- On the other hand, few measurements have been made of the cross
E

! power spectral density function of tonal nonhomogeneous pressure

fields. From the available data [8,9], it can be argued that the

r following is an appropriate general formulation of the cross power

spectral density for use in near-field and far-field applications.

The selected function is

/ Sp(X - Xo, _' - Xo; b%) = ql(_- Xo)ql(_' - XO)Rp(_; b_ o) <plo(b_)>

_ Where ql(_ - Xo) represents the spatial variation in tonal rms

pressure over the structure surface; Rp(_;b%) is a homogeneous

l

-29-
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correlation function for the excitation [see Section 3 3 1 ] and _

= x'- x; defined by

-ck(b'_ O) I_1
Rp(_;bm o) = e cos[k(bmo)_] ;

D
and k(b_ o) is the excitation trace wavenumber at frequency b_o, I

averaged over some appropriate spatial extent.

Often the excitation coherence will be close to unity (i.e. c -- 0),

as observed in the propagation direction in model tests for plane J
• 1

waves propagating over a structure [17] and on the Aero Commander

fuselage [8,9]measuring circumferentially in the plane of rotation

of the propeller.

At present, values of c and k(b_o) , and the nature of ql(x - Xo), 1

have to be estimated empirically• Ray acoustics, recent Hamilton

Standard test data, and Hamilton Standard prediction methodology I

can be used to this end. For example, Hamilton Standard theoreti-

cal data [6] can be used to estimate the function ql(x - Xo): it '_,
is found that an exponential function describes the predicted

spatial variation in power spectral density with fair accuracy _
I

in both the axial and circumferential directions• Then, considering

for example --_

!

ql(_- XO) = e-alx-_°l, ,--.
f
l

a joint acceptance function for the nonhomogeneous field can be

defined at frequency b_ ° in the form I

Jr(b_o).2 _ A21 / !e-al_-Xo_-al_'-_Ole-ClX'-_lcos[k(b%) (x, - _) ]or(_)or(x,)d_d_ , . /
X X v (34) ,-

I
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i This expression is separable in the appropriate coordinate direc-

tions and may be evaluated for various mode shape functions.

i Furthermore, Xo may coincide with the edge of a structural member

or it may be located at an arbitrary position on the structural
V
i surface. A general derivation is presented in Appendix A. The

form of joint acceptance and the dependence on coherence,

_ amplitude decay rate, and wavenumber matching between excitation

! and response is discussed in Sect_n 3.6.

We note that, from say Eq. (27)

! f f Cp(_,_,;o_)q2r(x)q2r(x,)d_d_, _ 22, = A jr(U) <plo(bmo)> _(_ - b_o) (35)
x x' b=l

3.4 Tona] Power Flow Equation
g-
!

The preceding analysis of the power flow into a cavity has placed

r- no restrictions on whether the structural or cavity response is

resonant or nonresonant. Application of the analysis to typical

baseline aircraft (to be discussed later in Section 6) indicates

that the modal density of the acoustic cavity formed by the air-(

plane cabin is sufficiently high that the power inflow is dominated

I by resonant response of the cavity. Thus, Eq. (24) for the power

inflow can be simplified, from a computational standpoint, by con-

{- sidering only resonant response of the cavity. This is achieved

i in Eq. (24) by performing the summation for cavity modes of order n

_--- only over those modes that lie within the bandwith A_ of interest, '

( as denoted by the summation limit n_A_. Then Eq. (24) becomes,

with substitition of Eq. (35),

f



tw > oin (u) = _ <Pxo _2
r r _2 _ [

r

f2 (n,r)

m 2 i - + D

n _ n _nj I

'-3

2

ivci 3 2 )>

b. _o Mr_ i _2 + nr
r

Snnn f2 (n,r)

x _oi_ + nn ._2 i 2
naA_ n _n

where _ = b_o' _b z _n since both lie in A_ and

[ ]Win( _ - ReLWrad<_) •

}

The summation over excitation harmonies is also limited to those

harmonics lying in A_ (i.e. bsA_).

The bandwidth A_ can be chosen such that only one harmonic of the

excitation lies within A_. Then Eq. (36) becomes !

\

_D
!
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I r PiA cbb
L
Win(m) - V <Pxo r<:i r]?-: Am r M2m4 mb

i r r[\ I - _ + n

('-'- f2 (n r)
( _n0n

_ n_Am m2 1 mb + 2z rlnn mn

! where mb_Am.(

#- 3.5 Power Flow Statistics

? The power flow equation presented in Eq. (37) is based on a mode-

( by-mode calculation of the response of the structure and cavity to

an excitation at a given frequency. This is feasible from a compu-

! tional point of view where there are relatively small numbers of

structural and acoustic modes in the frequency band of interest,

I but the computational requirements become excessive when the number

of modes is large. Thus, for the present study the power flow

< equations are considered for three frequency regimes. These regimes

are defined in terms of modal overlap, which is essentially the

ratio of modal bandwidth to modal separation for either the structure

( or the cavity as the case may be.

l At low acoustic modal density and loss factor, such that the modal

overlap is much less than unity, the cavity response depends

< intimately on the cavity resonance frequencies and loss factorsC
and on the excitation frequency. The exact result given by Eq. (37)

should be used for calculation of the power radiated into the volume;

! approximations for the modal admittance should not be made.

<

I--
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The high-frequency case is one in which the modal overlap is

high for both the structure and the cavity. However, there can be

intermediate frequency regimes where the modal overlap is high q

for either the structure or the cavity but not for both. Consider,

for example, the case with a high acoustic modal overlap. This

situation is one in which a tone of frequency _b drives a group
of acoustic cavity modes contained in a narrow frequency band A_.

Then, with a modal overlap of approximately unity, it becomes !

appropriate, for computational efficiency and because of a lack of

precision in mode shape and resonance frequency predictions, to )
seek solutions to the power flow analysis which are statistical

in nature. Of particular interest is the expected value of the _I

power radiated into the cavity E[Win(_h)] and the corresponding

variance _2[Win(_b)].

3.5.1 Expected Value of Power Flow into Cavity with High Modal ,_
Overlap

The power radiated into the cavity depends on the acoustic modal j

admittances as well as the interior coupling parameters f2(n,r),

mode normalization constants Sn' and loss factors _n" On assuming

an average acoustic loss factor _n and an average product of f2(n,r)

and _n' <_n f2(n'r)>' the expected value of the internally-radiated

acoustic power may be written as !

2

PiA_c "_b 2 y Jr(_b ) f2(n,r)>
E[Win( b)]- V M$'I'Yr(mb)I2  h<Snr

x ] (38)
2 2 --I

) ]where G(mb,_ n) = - _-T + Dn .
neA_ n



I

I Thus, as the modal overlap increases, one seeks an estimate for the

modal admittance which is independent of the precise modal details,

i so that the internal coupling becomes a function of modal overlap
(

(and hence modal density and average loss factor) only. In the

case of high acoustic modal overlap, there is interest in the

expected value of the above modal admittance function G(_b,_ n) for

fixed values of 0_n(nsA_) as _b samples in the band A_. This is

! equivalent to the expected value of G for fixed _b' where the

<-, _ 's are distributed in frequency according to their distribution
i n
( functions for an ensemble of (slightly) different cavities.

[-- -- I

Nowlfg(_b,_n) = - _-F + _ ,
¢- n

, s[a(%,_n)] = Ei ,an
n

i = _ E[g(_ b,an)]
r- n-g-A
J

= Nnsaa E[g(ab )] (39)'an

E

where N is the number of acoustic modes resonant in Aa. Then,
.... nsA_

assuming that _b and _ are statistically independent, that the! n
probability density of ab in Aa is (Aa) -I, and that the probability

density of _ in A_ can be derived from the acoustic modal density,
< n

it can be shown that (see Appendix B)

/
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p_

_c _
E[g(_ b ,_n )]

2nn&_

where _ is the center frequency of band A_, and
C

E[G(_b,_n)] = nh(_b)_ . (40) I
2nn

I

This expected value for the acoustic admittance of a group of

resonant acoustic modes can be substituted into Eq. (38) to give

2 )

2 _ Jr(_b ) <e f2(n,r)>_Pi_A4ci <p2 (_b)> ..... I"2'nn(_b nE[Win(%)] = 2V Xo M$1Yr(_b) Ir

(41)

- E f2(n'r)"where <s f2(n r)> i Sn i
n ' NnEA_ n !

Thus, the expected value of the band-limited power flow into a _
i

group of acoustic modes from a tonal excitation depends only on

the acoustic modal density of the acoustic modes and is independent
of the acoustic loss factor. ]

It may be shown, see Appendix C, that

_{V rev
f2(n,r)> = 2(_b)nn(_b) <Sn _ Jr

i

rev

2(_ b) is the joint acceptance for the structure exposed )where Jr

to a reverberant pressure field. On substitution, Eq. (41) becomes
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rev

"2(mb)_ _im;A_ Jr_(mb)Jr
T E[Win(mb)] 2wci <P_co(mb)>_ z ' • (42)Am M2IYr(mb) 1f r r

!

Additional results, for the power flow from resonant structural
F
[ modes (i.e. modes whose resonant frequencies mr lie with%n the

analysis bandwidth Am) and the power flow from mass-controlled

! modes (mr < Am), may be easily derived. These are presented in
Section 3.5.3.

3.5.2 Variance of Power Flow into Cavity with High Modal Overlap

g--

f Calculation of the variance for the internally-radiated acoustic

power (with high modal overlap in the cavity) requires calculation

,,f of the average modal acoustic admittance function G(mb,mn) , where

by definition [C.1]

C

I
-- E[G2(mb,mn)] - E2[G(mb,mn)] (43)ft.

;

and E[G(mb,mn)] has been already derived.

Now

r_ E[G2(mb,_0n ) ] -- E g(mb,m n)

' _ n)]= E[g2(mb,m
[
( nsAm

(-- as mb and m are statistically independentI n "

<
(
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EEgi(% ,_n) "1 8_'nA_ (44)
)

Then, from Eqs. (40), (43), and (44) -_

N _ c --'

ai[G(_b,_n)] = nsA_!oqna_ 2_nA_ "(45)

n--3- I

7
!

_c =2<<1.--n (_b) -- for "n (45a)

n 8_ n

Thus, the variance is inversely proportional to the cube of the _D

band-averaged acoustic loss factor and directly proportional to

the acoustic modal density.

Of interest is the normalized standard error m or the coefficientr
of variation, defined as _D

a[Win(_b) ]

mr = EEWin(b) ] . (46) ',

From Eqs. (38), (40), and (45a),

sr [2_n nn(Ob)_b] 2
o
'i

where _nnn(_b)Ob is the modal overlap term for the cabin acoustic field.

Thus, the standard error decreases as acoustic modal density and

loss factor increase.
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i 3.5.3 High Frequency Formulation

i When the modal overlap is high for both acoustic and structural
modes, a high-frequency solution can be found for the acoustic

_i power inflow.

3. 5. 3.1 High-Frequency Acoustic Power Flow via Resonant StructuralModes

Adapting Eq. (42), the power inflow from resonant structural modes

is given by

F r rev

•2( j2
I pi_bA4 2 _-_ Jr (_.b) r(_b ) (47)

< (_b)> E 2., " m2 2

!I-_, E[Win('_b)]-_o_P_o r__;_$rq, IL£ )1-_ +
rev

2 2 •

I With jr(rob) and jr(_b) set equal to band-averaged values <J2(_b)>Pr

_- and <jr(_b)>R, respectively, where the subscript P is used to
i denote that the joint acceptance is based on a progressive excita-

tion field,
F

_" _ 2 (OOb)> r r((_b)>R m_ 2
E[Win(_b )] 2wc z. <Pzo M2r E m - _--_r+ n

I (48)

I- Using an approach similar to that used in Section 3.5.1,

E l _- + 2 ) __
r nr = nr(_b -

r _ ' 2qr
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where _r is the band-averaged structural loss factor and nr(_ n) _i
is the structural modal density.

Hence,

PiA_b-2-, nr(_b) <Jr(_b)>P<Jr(_b)>R _
E[Win(mb)] = _ <Pxo_mb)> _-- • (49)

<--I

It may be shown [4] that the band-averaged radiation resistance
<Rint>

rad can be calculated as

2 0i _2A2
<Rrad > _ <j2C. r(_)>R (5O) I

I

which leads, on substitution in Eq. (49), to the alternative

representation for E[Win(_b)] as -

= _A 2 <j 2 <Rint>

E[Win(_b)] _ <P2xo(_b )> nr(_b ) r(_b)>P2-- tad . (51) -
Mrq r

r--

The normalized standard error is found to be the sum of the

normalized standard errors inherent in the structural modeling

and in the coupling to the cabin acoustic field, viz.

sr = [2_r nr(_b)_b]-½+[2_nn_n(_b)mb ]-½

where _r nr(_b)mb is the modal overlap term for the structure.

3.5.3.2 High-Frequency , Nonresonant Acoustic Power Flow

It is assumed here that, as there is a large number of modes with

resonance frequencies below the band of interest, only these modes

will be considered for nonresonant power flow calculation. This



i restriction is made because, in general, these mass-controlled

modes are more efficient acoustic radiators than are stiffness-
F
i controlled modes.

I- If it is further assumed that for these mass-controlled modes

_ >> _r'2 then from Eq. (7)

1yr (mb)]2 _b '

(
Substituting in Eq. (42)

F_
i rev

! piAg jr(mb)j 2

r(_b )E[Win(_b)]_ 2 (_b) > . (52)2_c. <Pxo M 2
i l r<A_ r

_ The net acoustic power flowing from outside to inside from non-
J_

! resonant, mass-controlled modes is then

_- rev

Pi A_ _ Jr( b)Jr(mb [jr(%)]Irev 2'I )> -
- r<A_ r<Am

where the second term represents the acoustic power flow from the

_" cavity to the exterior via nonresonant structural modes.

i-- 3.5.4 Net Power Flow.i

The high-frequency approximations developed in Section 3.5.2 and

3.5.3.1 provide estimates of the power flowing from the outside to
the inside of the cavity. However, in order to obtain an estimate

of the net inflow of acoustic power, the outward power flow from

the cavity to the exterior has also to be taken into account.

It may be shown [4] that the analogous result for the acoustic

power re-radiated from the fuselage due to excitation from the

acoustic field inside the cavity is given by
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72 nr(_b) <ReXt>rad
- )>' (53)

E[Wout (rob)] 2 pi_ M r
r--

2(_b)> is the induced interior space-averaged mean squarewhere <Pi

pressure attributable to the bth harmonic.

The net acoustic power flowing from outside to inside from resonant

structural modes is then obtained by combining Eqs. (51) and (53)

I< <Rint> 1 _-

n (_b) <j2 (_b)>p i
= _A2 2 ( > r r rad

2 _rE[Wnet(_b)] _b PXo _b ) Mr

w2 <Rext>
nr (_b ) rad

- 2Pi_M r <p_(_b)> (54)

or, similarly, by combining Eqs. (42) and (_3).

3.5.5 Summary of Power Balance Equations

The preceding analysis has developed the acoustic power flow

equations for a simple cavity in a rather general manner, although

emphasis has been placed on high-frequency approximations that are

appropriate to the baseline airplanes considered in this study.

In addition, an excitation field with discrete frequency components

and spatially-decaying amplitude has been included as a representa-

tion of a propeller noise field.

Power flow equations have been developed for three frequency

regimes--a low-frequency regime where the modal overla p is low

for both the structure and the cavity, a high-frequency regime

where the modal overlap is high for structure and cavity, and an
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intermediate regime where the modal overlap is low for the
!

structure and high for the cavity. In the low-frequency regime,

_- the power flow equation, Eq. (37), represents the net inflow

I into the cavity. However, when approximations are introduced

for the high acoustic modal overlap case, power outflow has to

I be considered separately, Eq. (53), because Eqs. (42), (51), and

(52) give estimates of the gross rather than net power inflow.

f
As shown in Section 2, the net power inflow has to be balanced

_ by the power absorbed in the cavity. Equation (26) has been

developed to provide an estimate of the power absorbed by the

f- surfaces of the cavity (or cabin). In addition, acoustic power

is absorbed by non-bounding surfaces such as seats, passengers,

and service structures. The power absorbed by such items is

t <p_>

Wab s - _PiC i _ _jAj
i J

_ where _. is the statistical absorption coefficient associated with

area AjJand <p_> is the mean square pressure in the cabin interior.

In a more general situation, the cabin volume might be compased

of a series of subvolumes, either coupled directly or partitioned
by barriers. Such a situation was followed in the analysis so

that noise control methods such as partitioning of the cabin

i volume could be considered.

Equations (26), (37), (42), and (51) through (54) constitute the

basic analytical model. However, these must be supplemented with

? information regarding cabin shape, excitation field, interiorii

absorption, and sidewall configuration. The joint acceptances,

! interior coupling factors, and structure and_volume resonance

frequencies; allowed<wavenumbers, structural loss factors, radia-

l- tion resistances, and modal densities must be estimated for the
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airplane configurations under study. The following sections

address these items.

3.6 Joint Acceptances

3 6 1 Genera 1
• " I

The joint acceptance function describes the coupling between the i

excitation field and the structure, and in the present analysis

it is defined, for a single harmonic at frequency _b' by Eq. (27)
)

.2(_Ob) _ i !x_ - --
Jr A2 <p_(o(. b,)>, Cp(X,X';_b)_r(7)_r(_ ')dxdx' 1!

2 (_b)>, respectivelywhere A is the panel area, Cp(X,_' ;oJb) and <Pxo '
are the co-spectrum and mean square pressure at Xo for the b th

harmonic of the nonhomogeneous excitation field, and _r(_) is the

shape of the rth structural mode.

In order to evaluate the joint acceptance, it is necessary to
have representations for the excitation field and the structural )

mode shapes. For the present model, two excitation fields are
[

encountered, one being a nonhomogeneouS propagating acoustic field j

generated by the propeller and the other a diffuse acoustic field

associated with the interior acoustic field of the cabin. The !

fuselage structure is composed of curved panels whose boundary

conditions will probably lie between fixed and simply supported.
i

Mode shapes are complicated by variations in skin thickness and

the presence of stiffeners, windows, etc. As it is not possible _
I

to account for the detailed forms of the mode shapes, the slmpli- !

fying assumption is made that the structural modes can be represented _
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by sine functions such as are simply-supported
associated with

boundary conditions and rectangular plates. Experimental and

analytical data for stiffened cylinders [18] and for the Space

Shuttle [4] support this approach. In any case, the precise mode

_- shape used in the representation is probably not too critical.
l For example, joint acceptances have been calculated for rectangular

_ panels using mode shapes associated with simply-supported and
clamped boundary conditions. The excitation consisted of propa-

gating waves in one case EIg] and a subsonic turbulent boundary

i_ layer in another [20]. At coincidence, the joint acceptance

was 0.5 to 2.5 dB higher for the simply-supported panel than for

I- the clamped panel. Off-coincidence differences between the
results were less than ±2.5 dB. More significant is the representa-

tion for the excitation field.
J
(

3.6.2 Nonhomogeneous Propagating Acoustic Field
I

As discussed in Section 3.3.2 and in Appendix A, the strong spatial

decay in mean square pressure away from the location of peak
intensity is represented in this analysis by an exponential ampli-

- tude decay function in the expression for Cp(_,_''_ ) so that• 'b

Cp(_,_,;_b ) e-al_'_°, = e cosEk( - _)]<p_o(_b)>

(55)
where a is a pressure amplitude decay rate parameter,

c is a correlation decay factor, and
1

k is the wavenumber at frequency _b"

It is assumed that Cp(_,_';_b) is separable in the longitudinal
and transverse directions; i.e.
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Cp(_,_' ;to b) = Cpx(X,X' ;tOb_ Cpy(y,y' ;o_b) <Pxo2 (_Ob)>

where

-axlx-xol -axlx'-xol -Cxx
Cpx(X,X';¢ b) = e e e cos kx_ , -_

 ayfy-Yol-ayly'-Yol-ck
Cpy(y,y' ;_b ) = e e e Y y cos ky_ , !

= X v -- X,

n = Y' - y, and

Xo = (Xo,Yo).

When a and a are zero, the pressure field corresponds to that of
x y

fully'developed turbulent flow (c and c both greater than zero). !
x y

For such a case, the effects of variations in (Cx,Cy) on the joint
acceptance have been investigated in detail elsewhere [IT. Of

concern here is the dependence of the joint acceptance on varia-

tions in (ax,ay) , in particular for a coherent excitation, i.e.
!

(Cx,C) close to zero. Some simple calculations have been performedY

to demonstrate the influence of (ax,ay).

Figure 2 illustrates the effects of variations in a on the one-X

dimensional joint acceptance for the fourth mode of a 10m long I
i

beam when c = 0. The ratio of excitation to structural wave-
X

<< excita-
number (kx/k m) varies from 10 -I (structure wavelength _m

tion wavelength _x ) to 10 2 (excitation wavelength << structure
wavelength). Maximum and minimum values of j2 occur for a andmm x

c x both zero, corresponding to plane waves propagating over the

beam length with no amplitude decay. However, as a takesX
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FIGURE 2. VARIATION IN JOINT ACCEPTANCE WITH kx/k m AND

AMPLITUDE DECAY CONSTANT ax,FOR m=4 AND Cx=0



increasingly higher values, the joint acceptance depends less -I

strongly on the matching between structural and acoustic wave- i

lengths: the strong oscillations in j2, as kx/k m varies, are damped -_
Iby the presence of significant spatial amplitude decay. It is

clear that neglect of this spatial amplitude decay may lead to

significant errors in response predictions.

Figure 3 shows the dependence of the modal joint acceptance on -]

kx/k m for various mode orders for a 10m long beam and for constant

i

a x. When the excitation wavelength is much greater than the

structural wavelength (kx/k m << I) in the presence of strong

amplitude decay, j2 is inversely proportional to m 2. When

•2 is proportional to (km/kxi_ and inversely propor-kx/k m >> i, Jmm
tional to m 2. This is in agreement with the limits derived In

Appendix A.

For the present study , values for the spatial decay coefficient s -I

(ax,ay) , for the coherence coefficients (Cx,Cy) , and for the

average trace wavespeeds (Ux,_y) [or, alternatively, trace wave-
numbers (kx,ky)] were estimated from the Hamilton Standard pre-
diction procedure [6], Aero-Commander tests [7,8], and ray acoustics,

as is explained in more detail in Section 5.

3.6.3 Reverberant Acoustic Fields -_
J

--7
The reverberant field joint acceptance is required both for calcu- 1

J
lation of the acoustic power flow from the reverberant acoustic

field inside the cavity (cabin) out through the fuselage structure

(Eq. (53), and for calculation of the high-frequency internal !

radiation ratio [Eq. (52)].
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--7

Equation (27) is again used to compute the reverberant field

joint acceptance. The representation for the co-spectrum of

pressure field, in this case considered to be homogeneous over

the fuselage surface, is well established [2_ and is given by

2 (_b)> (56)Cp(_'_';_b) = Cpx(_'_b) Cpy(_'_b) <Pxo

where Cpx(_,_ b) = sin (k_)/k_,

Cpy(_,_ b) = sin (k_)/kn, _I

2 (_b) > is independent of Xo for a homogeneous reverberant
and <Pxo

acoustic field.

Then, the joint acceptance for reverberant excitation is estimated

with [22] :
l

rev J
.2

Jm (_) = ll(m) + 12(m) + 13(m)

ll(m ) _ 2wmkLxl [Cin (kLx + m_) - Cin[mw - kLx ]]

i
12(m) - [Si (kL + mw) - Si (mw- kL )]2kL x x

x

i - (-I) m cos kL Ix

I3(m) = (m_)_.....(khx)2 • (57) F

Similarly,

rev

j_ (_) = ll(n ) + 12(n ) + 13(n ) I

]
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J where ll(n) , 12(n) , and 13(n) are given by the above equations
with n replacing m and L replacing L . Si and Cin are the sine

f_ y x
and cosine integrals _3].

3.7 Internal Couplin 9
J

[- At very low frequencies, the acoustic power flow depends intimately
on the modal characteristics of both fuselage structure and cabin

volume. Then, detailed modal resonance frequencies and mode

• shapes are required to enable precise calculations to be carried

out. In practice, computational efficiency requires the use of

I . approximations in the description of both the cabin shape and
its furnishings. For example, in the analytical model, the cabin

volume is represented as a rectangular parallelepiped whose sur-

L _ faces can be deformed as shown in Figure 4(a) to represent the

curvature of the sidewall and ceiling trim panels.

This approach provides a more realistic model than either a

B cylindrical or an unmodified rectangular model, as can be Judged

by inspection of typical fuselage cabin cross sections (Figure 15).
7-

The analytical model assumes that the surfaces in the cabin arei

locally reacting, so that response of a given point on a surface

F- will depend on the acoustic pressures at that point only. Thisi
is a reasonable assumption, since many surfaces in an airplane

cabin are composed of materials such as carpets, thin plasticI
cloth backed by foam, and fiberglass-filled honeycomb with a

perforated trim cover--which are locally reacting. The basic

development of the perturbation method for the calculation of the

cabin modes and resonance frequencies has been developed in [4].

I
The resulting power inflow is calculated via the internal coupling

i factor f(n,r), which is discussed in detail below. At high
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FIGURE 4(a). PARALLELEPIPED WITH THREE DEFORMED
SURFACES TO ILLUSTRATE REPRESENTATION
OF FUSELAGE CABIN
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FIGURE 4(b). SIMPLIFIED REPRESENTATION OF RELATIONSHIP
BETWEEN VIBRATING STRUCTURE AND CABIN



frequencies, where the power inflow depends only on acoustic
I

modal density and where the cabin acoustic field tends to be

F_ diffuse, the internal coupling is formulated in terms of thei
'! radiation resistances of the fuselage structural elements, as

c- demonstrated in Section 3.5.
J

3.7.1 Internal Coupling Factor

!
The coupling of the fuselage vibration modes is expressed by the

I internal coupling factor f(n,r), defined in Eq. (21) as

1 (58)i f(n,r) = _ _r(_)d_t

i where _r(x) represents the structural mode shape for mode of

I , order r, and In(_) is the cabin mode shape for mode of order n.
The area of the structure that is radiating into the cabin is

ii
' _ denoted by A.

f-
I The general situation considered in the analytical model is shown

diagrammatically for the (x,z) plane in Figure 4(b)o The figure

I shows a volume of length L exposed to a structural mode that

extends over a small portion L of the structural length L. Thisx
'_- represents the limited spatial extent of the structure responseI

to a localized or nonhomogeneous excitation.

C--
I

1 The associated values of the coupling parameter in the x direction

are given by the following relations [4], where the structural

I mode shapes are modeled with _m(_) = sin kmX and the acoustic
mode shape is modeled by the zeroth order eigenfunction for the

._' deformed volume viz. _p(X) = cos The acoustic mode shapeskpX.
and the coupling parameter are assumed separable in the x and y

_- directions, as has been assumed for the structural mode shapes and

! the joint acceptance function. In particular,

i ,

-53-



--%
I
[

,.-q_
t
i

I
f(n,r) = f(pq,mn) = f(p,m) f(q,n) !

where, for the x direction, }

d_+d _,

I sin k x cos kp(X - d)dx (59) If(p,m) = Z m ' "

--%

which yields i

'fpm if km _ kp (59a) i'i

f(p,m) = pm if k = k
_f m P __

I
I

where

[cos Wcd(m- _) - cos 7(1 + Cd)(m- I<) --_

fpm = cos wcdm L 2@(m- K')
I

cos Wcd(m + K) - cos w(l + Cd)(m + <)] _ !+ 2w(m + K)
i

[sin 7(1 + Cd)(m- K) - sin _cd(m - _)
- sin wcdmL '2w(m- ]<) '_ r

sin w(l + Cd)•(m + <) - sin Wcd(m + K) i
+ 2_(m + _) , (59b) i

,j

fpm cos WCd K[sin2"_(l + cd)_ - sin2_cdK] -]= L 2_K /

- sin WCd_ + 2wK
(59c) -':

]



For the particular case of d = 0, then cd 0,

_ I - cos _(m- K) i - cos w(m + _)
fpm (m- _) + (m + _)

J
I

Lx = d/L .and fpm = O. Also, K = kp /_ and cd x

For the transverse axis,

I { fqn if k _ k

: n q
f(q,n) =

[ fqn if kn kq

i

where f and fqn are given by Eqs. (59b) and (59c) for f and
qn pm

fpm, respectively, with appropriate variable changes [4].

I
The factor f2(n,r) is synonymous with the joint acceptance function

that couples the external pressure field to the structure. Values
4

of f2(n,r) are nondimensional, positive numbers that are less than

_- unity. Typical results are presented in [4].

Th_s internal coupling factor is used only at low frequencies.

l When the acoustic modal overlap is much greater than zero, the

approximation (Section 3.5.1)

~ <.2(_bn (rob) <s f2(n,r)> 3 Jr )>R

n n w2c i

allows calculation of the interior coupling from band-averaged

T- values of the joint acceptance of the structural modes. This is

I _ always the case for the study airplanes.
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3.7.2 Radiation Resistances

The radiation resistance of a structural system is determined

by the relationship

Rra d = PiciA_rad , (60)

where _rad is the radiation efficiency, and A is the surface area i

of the structure. Using reciprocity, it can be shown that [24]
f

_ 2A m2 <J2(m)> (61)_rad _ c _ r

where < > indicates an average over the modes resonant in the
r _

,I
band of concern, i

3.8 Test Conditions on Allowed Structural Wavenumbers

To calculate the required joint acceptances and internal coupling

factors, structural bending wavenumbers (or mode numbers) must be

selected for each analysis frequency band A_. The selection is
[

simple in the case of isotropic flat rectangular panels since, I

for such panels, curves of constant frequency are (approximately)

curves Of constant bending wavenumber. If the structure is

orthotropic or curved, or has pressurization stresses (as is the

case for the study airplanes), the determination of allowable i

values of k and k must be done with a frequency test, either
m n

_mn _A_ _:_

or

<A_
_mn <{

whichever is required. _
I



The effects of curvature and pressurization and of the orthotropic

properties of a structure over a frequency band are translated into

_ the model by a set of resonance frequencies and corresponding wave-

numbers for that band. It is the composite set for each band A_

which is important. Imprecision, in the sense that a few modes

may be classified wrongly, is unimportant. The estimate for input

power will depend on the properties of the whole group rather than

1 the specifics of a few individual classifications. If the modes

can be classified approximately correctly as a group, then the

_- desired result will be obtained in the input power calculation.

The simple joint acceptances and internal coupling terms are

entirely supported by general classification of modes. Equations

_! for the prediction of resonance frequencies for the fuselage

_ structures are discussed in detail in Section 3.8.1 below.
i

The analysis bandwidth for calculation of resonant and nonresonant

J power flow is chosen to be sufficiently wide that at least several,!

but less than i00, structural modes are resonant within the computa-

T tional bandwidth. At low frequencies, bandwidths are typically

1/2 or 1/3 octave, while as structural modes accumulate with

J- increase of frequency, the bandwidth rapidly decreases (a 1/30

i octave bandwidth is typical at high frequencies).

_ 3.8.1 Resonance Frequency Equations

Ii The basic resonance frequency equation used for prediction purposes

was derived by Mikulas and McElman [25] and is shown in Figure 5

i with the addition of a term due to pressurization. Figure 28

shows the representation of a typical structural element. Other

changes to the formulation were made to allow for boundary condi-

I tions other than simply supported. Use of the equation is described

_- in Section 4.1.
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FIGURE 5. MIKgLAS' FREQUENCY EQUATION FOR A SIMPLY-SUPPORTED STIFFENED CYLINDER
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J
'_ 3.9 Sidewall Representation

I 3.9.1 General

The analytical model predicts the bare fuselage noise reduction

by equating the net acoustic power inflow from resonant and non-

i resonant structural modes to the power that is absorbed within the
cabin interior. The model examines the modal response of the fuse-

r lage structure and of the cabin and calculates the coupling between4

,i , the two systems to arrive at the internal noise levels and hence

-_ the noise reduction for the bare fuselage. In [5], the additional

,!j transmission loss provided by the sidewall treatment was calculated

assuming infinite panel conditions and the results showed reasonably

I with test data for finite panels. Although thegood agreement

present analytical model calculates the power flow through finite

structural panels in order to include both resonant and nonresonant

structural response, it is assumed, on the basis of the above evi-

dence and for simplicity, that the infinite panel approach can be
" used to calculate the additional transmission loss provided by the

sidewall treatments. The infinite panel model for the sidewall

noise transmission is discussed in this section.

_ Figure 6 shows a simplified representation of the sidewall acoustic

power flow. The external pressure field, characterized by incidence

I angle and intensity, acts on the airplane skin (element i). The

acoustic power flow WI2 from the skin to the cabin interior

_ (element 3)when no sidewall (element 2) exists, is calculated
i
Ii

L from a knowledge of the bare fuselage transmission coefficient,

_ and the transmitted power is then equated to the power absorbed

I j within the cabin Wab s to find the resulting internal
diffuse

acoustic pressure <p_>. The presence of the add-on sidewall

I acoustic treatment acts to reduce the acoustic power inflow to an



I"------'12 JPec e IPiC i
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FIGURE 6. POWER BALANCE REPRESENTATION OF SIDEWALL ACOUSTICS



amount TsWI2. In general the transmission coefficient of the add-
on sidewall acoustic treatment T cannot be calculated from a con-

i sideration of the sidewall treatment in isolation, but rather a

knowledge of the bare fuselage impedance is required as well.

!J
Calculation of the additional noise reduction provided by the

_, add-on sidewall structure consequently involves (i) calculation

_! of the noise reduction of the bare (infinite panel) fuselage struc-

..... ture, (2) calculation of the noise reduction provided by the
I

j treated fuselage infinite panel representation, and (3) subtraction

of the bare fuselage noise reduction from that of the treated fuse-

lage to find the noise reduction for the add-on sidewall structure.

Allowance must also be made for any changes in absorption coefficient,

which may result from sidewall changes.

The noise reduction for the untreated bare fuselage, for a diffuse

I interior acorstic field, can be expressed as [5]

<Pe> (S_)u PeCe (62)
] NR = I0 log <p_> -- I0 loglo ATp Pici

where <pe > characterizes the level of the external blocked pressure

field on the fuselage surface,

<p_> is the mean-square sound pressure in the cabin,

I (S_) U is the absorption in the untreated cabin, and

j T is the bare fuselage transmission coefficient.
p

_ Two symbols, S and A, are used for area to distinguish between
transmitting area A and absorbing area S.
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From a similar expression for the noise reduction for the treated f

fuselage (including the acoustic sidewall), the additional noise

reduction provided by the add-on sidewall is [5] _

ANR= l0log - l0log (63) (

where Ts = TS2/T p is the transmission coefficient of the add-on

sidewall acoustic treatment, I

Ts2 is the transmission coefficient of the treated fuselage _
structure, andz

the subscript T refers to the treated cabin interior. -7

Expressions for calculation of the transmission coefficents Ts2 '

and Tp and the interior absorption coefficients c_'-T are, therefore,

required. Sections (3.9.2) and (3.9.3) derive relations for Ts2 9

and Tp, respectively, while empirical data are used for absorption

coefficients _T, although reliable analytical models are available [5]. _
E
/

3.9.2 $idewal] Transmission

{
The transmission coefficient T of a structure can be defined with

respect to the blocked pressure field as [5] _
i

PlCl (64) ._'
TI = P202 P + Pr P202

where for massive structures and incident plane waves, the blocked !

pressure Pl is approximately equal to the sum of the incident (p) ,_reflected (pr) pressures.



I

I Figures 7 and 8 present the model of a double-wall sidewall structure]

whose transmission characteristics are of interest in this study.

_ The untreated fuselage is shown als0.

Acoustic plane waves are assumed incident on the exterior of the

! structure and reflected and transmitted as determined by the

_, various impedances present. The medium on the interior side of the
I
I

structure is assumed to extend to infinity with an acoustic

r, impedance of pc. Of interest is the transmission coefficient T

and the noise attenuation across individual media or layered com-

binations of such media when aligned in series. From expressions

I _ for the pressure ratios across boundaries between adjacent media

and the pressure ratios across the media themselves, it is possible

_ to derive expressions for the transmission coefficient across a
complex series of layered media. Fundamental to this analysis are

_-_ expressions for the characteristic impedance of the various media

and for the impedance looking into a finite depth medium whose

propagation and attenuation characteristics may be simply defined.

I

It is now possible to derive expressions for the characteristic

I_ impedance and propagation constant b of a medium andZo porous

the impedance of a stiffened, pressurized and curved panel.

?
Following [5], expressions for Zo and b for a porous material are

determined empirically from only the material flow resistivity. Forexample, empirical relationships exist for determining b for

semi-rigid fibrous materials. Thus

Zo _ jK b and b = _ + j_ (65)_y •F_

_; where, following [47]
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_-_ Pt (= Pl )
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I°,, •Ol_pP P,_2

J
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J
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= (_/c)[0.189(pf/Rl)-0"595 ]
(66)

= (_/c![l + 0. 0978( pf/Rl )-0"700] (67) ...._i
, 1

K is the complex compressibility of the gas in the porous
I

material ( _ atmospheric pressure), (

f is the frequency (_/2w),

Y is the porosity of the porous material, _-_
I

c is the speed of sound in the gas in the porous material,

p is the density of the gas in the porous material, and
i

R I is the flow resistivity of the porous material !,

(0.01 _ pf/R I _ I in general).

The effects of variations in material density are reflected in

changes in material flow resistivity. Bies and Hansen _6] have

recently extended the empirical relationships for _ and B to values

of pf/R I much less than 0.01. -3

It should be noted that this model does not consider mechanical

transmission through the material fibers, such flanking of the

acoustic path providing a limit to the noise reduction of a double-

wall sidewall.

From results such as [27], the impedance of an infinite stiffened,

curved and pressurized fuselage structure for a sound wave incident

at an angle _ relative to the normal and at azimuthal angle _ rela-

tive to the x-axis, as shown in Figure 7, can be written as

Zp(e,¢)=   l[Xn+ j(1 - - x)] (68)

where
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F _

f=- _ = Nx sln 2 02[cos2 _ + 2 sin2_]/(_ic_), and

N = Ap R/2 (Ap acts positively outwards).
x

A = D cos4_ + 2Dxy cos2¢ sin2_ + D sin4€_ x Y

n is the structural loss factor,

! k = _/c,

.... D is the bending rigidity of the structure in section per-

) x is the y-axis bending
I pendicular to the x-axis, Dy

_ rigidity, and Dxy the cross rigidity given by

(DxV x + D v + 4D k)_ Y,Y
f- Dxy 2}

_-- v and v are the Poisson's ratios for the two axes, and
1 x y

Gh 3
Dk = 1--TT--

where G is the modulus of rigidity for ,shear stresses and

I h is the plate thickness.

f_ The effect of n is only important near the coincidence frequency.
f

Then, the transmission coefficient Tp(= T i) across the untreated

panel is given by Eq. (64) as

,"_ __=1 (.P2C2)_ Pl[ 2 " = (_P2c2) Z2z + Zp (69)! Plcl   TaEAT D lCl 2

I__ where z2 = P2C2/COS 62 and Zp is given by Eq. (68).



(

The transmission coefficient TS2 across the treated sidewall is (

given by

I

2 " !

IP2P3P4"Ps"P6 (7o)

The terms in Eqs (69) and (70) are given by• I

Pl _ z2 + Zp

P2 z2

z2 = Z_2 coth(Jk2£ cos e2 + _2 )

, P2C2 [

_2 = c°th-1(z3/Z02) and Z02 - cos 82

02 = sin-1(c 2 sin 01/cI) (Snell's Law)

P2 cosh(Jk2_ cos e2 + 92 ) !

P3 cosh _2

P3 _ z3

P4 z4 _!

= = ' coth(b4d cos 04 + _4 )z3 J_3 + z4 and z4 Z04 -_

J Kb 4
Z04 - _y and Z_ -- Z04/cos 84

b4 = _4 + J'B4 and c4 = _/B 4

04 = sin-1(c 4 sin 82/c2) and _4 = c°th-1(z5/Z04)



P4 _ cosh(b4d cos e4 + @4 ) and P5 _ z5
P5 cosh _4, P6 z6

_ where z5 = J_U5 + z6' z6 = _6c6/c°s e6' and 86 = sin-1(c 6 sin e4/c4).
/

Then, the transmission coefficient of the add-on acoustic treatment

_" T (= Ts2/TML) is defined ass

J
Ts2 UNTREATED

T - - (71)
s TML /Pn-lh

] ' \ Pn /TREATED
l !

_- =
! where Pn Pt' and the added transmission loss of the sidewall is

found from

).... ATL = -i0 lOgl0 Ts. (72)

In summary, the treated fuselage acoustic power flow into theU
/ cabin interior is found by multiplying the bare fuselage acoustic

power flow into the cabin, calculated from Eqs. (51) and (52), by

I the transmission coefficient of the add-on acoustic treatment T s'
computed using the above equations. The flow diagram for computa-

_ tion, shown in Sea. indicates the in3.11, stage the calculation

procedure when this multiplication is carried out.

! 3.10 Interior Acoustics

F-

! 3.10.1 Spatial Variation of Interior NOise Levels

1 In order to generate a nonhomogeneous structural response to the

nonhomogeneous excitation pressure field, the computation method



I

L
t

j....

I

divides the fuselage structure into various elements located along

the fuselage length. Resulting computations of the net acoustic

power inflow produce a nonhomogeneous distribution of power inflow 4

varying in much the same way as the excitation level varies over

the fuselage exterior surface. Since it is desired to calculate i

the maximum noise level developed inside the airplane cabin, ac-

count must be taken of this monhomogeneity in structural response '-

and power radiation in calculations of the internal noise levels.

An imaging technique is used to calculate the variation in interior

noise levels. Each of the radiating structural elements is repre-

sented as a point source mounted in the fuselage, located at the

element center, and considered to radiate into the cabin volume.

The contribution of each point source to the local pressure level

along the cabin centerline is calculated by adding to the direct

radiation from the point source itself, the contributions from all

the image sources that are associated with reflections from the

various bounding surfaces of the airplane interior (walls, ceiling,

floor).

The local intensity is the sum of the local intensities produced

by each fuselage element (i.e., image-source array). The level

variation along the fuselage interior is averaged to determine the

space-average mean square pressure, which is also the basic output

of analytical model already presented (Section 3.5). The local

levels are adjusted at each frequency by adding the difference

between the space-average noise levels calculated by the power

flow and the image-source array models, respectively; thus, the

space-average noise levels at each frequency calculated by the

image array and the power flow model are equal. The differences

in space-average spectrum levels between the two calculation schemes

are less than 1.0 dB in most cases and result mainly from a certain

coarseness in the representation of the image field.
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) 3 I0 2 Image Array Formulation

/-4
I
J Figure 9 shows the image array used to model the radiation pattern

from a point source located at S in the sidewall. For model

/ simplicity, the cabin fuselage is assumed to be rectangular. For

example, the image (1,1) shown in Figure 9 represents the con-

t_ tribution from that ray which travels via the indirect path in-

volving two reflections, one each from opposite wall and ceiling.

_" Equation (73) below expresses the dependence of the local center-
/
. . line intensity on distance from the source, on the absorption

;.... coefficients of each of the bounding surfaces (the sidewalls are

I considered identical), and on the paths by which the sound waves

can travel from source to observer position [28].

Io - - Wj + w c 8 W72J "

•_ J B,¥:-_[R2+ (_H)2+ (21BIw- _ _J /j
T- (_,y#o) (73)
! Here I° is the acoustic intensity at observer position O,

[
<po> is the observed mean-square pressure at the observer

position,

I

Wj_ is the power radiated by the jth structural element

_ (considered to radiate as a point source),

[" _w,_c.,_f.are absorption coefficient for sZdewalls, ceiling,
and floor, respectively,

R is the axial distance between observer 0 and jth

[i-_- source location S,
I':

H,W are the mean height and mean width of the cabin,
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V
! p,q,r are indices determining the path taken by acoustic

__ ray from source to receiver, defined by
J
i - 1 for8 > 0 q = + 1)/2

P = I for y odd_ -28 for 8 < 0 r = (q - I)
i

q = r = ¥/2 for y even or zero.

(-- 3.11 Computational Procedures
/

The analytical model was computerized to automate the calculationsT....

i of the noise levels developed in propfan-powered study airplanes

An outline of the overall computational procedure, with details of

I how the various components of the analytical model are assembled

together within the computer programs, is presented in this section.

Figure I0 presents a flow diagram of the computational processes.

i- The various computational phases and the associated input require-

! ments are linked together; references to appropriate sections of

_ the report text and/or relevant equations are included; locations

where important decisions must be made are indicated.

computing prediction system in fact consists of five inter-
The

dependent computer programs. Four of these organize acoustic and

i- structural data and perform preliminary calculations, the results
of which are used as input to a main computer program for final

- calculation of the cabin interior noise levels.

It should be noted that, while the effects of changes to the struc-

I ture require that all programs be run, changes to the sidewall trans-

mission characteristics and to the cabin interior can use data stored

on existing input files generated by previous (baseline) computer
runs.
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INPUTS OPERATION TEXT REFERENCES
(Computed or Empirical)

/

Select Structural Representation: L

Fuselage Configuration Sections 4.5.1, 4.5,21 4.5.3
Structural Segmentation

Structural Properties and Damping
Characteristics Section 3.8. !

as per Figure 6 _-'_

i

Excitation Characterlst]cs: _ ,I /

Spatial Variation
Trace Velocities
Coherence "_'-_

(inboard and Outboard Propellers) Frequency-Dependent Model for Structure:Calculate Structural Resonance I Sections 3.8, 5.1

Frequencies& Classlfy Modes I

Sections 4.3, 4.6 [
[

Calculate Band-Averaged
ResponseFunctions:

Joint Acceptances, Modal Densities Sections 316, 5.5 t 5.6
Radiation Efficiencles, LossFactors /

Cabin Properties and Determination High and I

Dimensions Low Frequency Regimes
(Tables 1 and 3) Using Modal Overlap Criterion

Section 3.7

Calculation Cabin Acoustic Resonance

Frequencies and internal Coupling i
Factors far Each Frequency /

Sidewall TransmissionLoss Resonantand Non-Resonant, Section 3.5.3
(Figure 20) Spatial Variation (Equations (51) and (52))Along Cabin Length

i

Cabin Absorption Formulate Power Balance Equatlon: _'_

• Section 3.5,5 i'
(Figure 21) Equate Wnet and Wabs (Equations (52), (54) and (2_ /

Solve for Internal I
Space-Averaged SPL I

Compute Axial I IVariation in SPL Section 3.10I (Equation (73))

Z
l Compute Space-Average & Axial I -'hVariation in A-Weighted SPL J

FIGURE I0. FLOW DIAGRAM FOR COMPUTATION OF INTERNAL NOISE LEVELS FOR STUDY AIRPLANES (



1 4 0 BASELINE AIRCRAFT

J The previous section described development of the analytical
I

model which is to be applied to the design of fuselage side-

walls for the baseline propfan-powered study aircraft such that
l

the interior noise levels will meet an 80-dB criterion for

_-_ the average A-weighted sound level during cruise. The fuselage

sidewalls of the study aircraft are to be designed to have

_. minimum surface weight density and high sound transmission
Is loss. Two concepts are to be considered for reducing low-

frequency propfan noise through modification of the fuselage

sidewall design: (I) add-on noise control features wherein

nonstructural noise-control elements are to be added to the

ii- conventional sidewall structure, and (2) advanced noise

control designs wherein the materials and the basic structural

_- configuration of the baseline aircraft could be modified to

I obtain higher sound transmission loss and hence lower interior

noise levels than could be obtained by add-on designs, possibly,

! at a lower total weight penalty.

i Because the effectiveness of add-on or advanced acoustical
treatment depends on the characteristics of the fuselage

T structure to which the additional acoustical treatment isapplied, it was necessary to select baseline aircraft that

would allow meaningful assessments of the application of the

! _ analytical method. The study required that three baseline

aircraft be selected, namely a wide-body aircraft, a narrow-

1 body aircraft, and a small-diameter aircraft. The fuselage<
diameters were to be as follows:

Airplane Fuselage Diameter

Wide-body 4.88 to 6.10 m (16 to 20 ft]

T Narrow-body 3.05 to 3.96 m (i0 to 13 ft_
Small-diameter 1.83 to 2.44 m ( 6 to 8 ft]
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It was considered desirable, as well as acceptable, that the

baseline study aircraft should be derived from aircraft that

were already designed or flying. This section presents the

general requirements for the existing-design aircraft as well I

as the baseline study aircraft. The process of designing the

propfans to power the baseline study aircraft is then described, i

This is followed by a description of the relevant structural

characteristics of the baseline study aircraft, and a dis-

cussion of the acoustical characteristics of the_fuselage

sidewall and interior. Finally_ the properties of the ex-

terior noise field are presented.

4.1 Study Requirements

In addition to the requirement to have fuselage diameters in I

the range described above, the baseline aircraft were to have

•wing-mounted engines,

•an initial-crulse altitude of 9000 m (30,-000 ft)and
I

•a cruise Mach number of 0.8. i

Also, the wide-body and narrow-body aircraft were to be able j

to carry at least 50 passengers over a range of at least 805 km

(500 mi]. --_
, ]

f
[

The propfans were to be designed using data developed by the

Hamilton Standard Division of United Technologies Corporation,

[ 7 ].. The fuselages of each of the three baseline study air-

craft were to have structural characteristics compatible with
cruising at the specified cruise altitude. The structures of

the three baseline study aircraft were expected to have some

differences because of the different design approaches used by

the manufacturers of the existing design aircraft to achieve
i

fail'safe structural requirements.
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_, 4.2 Choice of Existing-Design Aircraft

! The following three aircraft were selected as being able to

meet the general study requirements outlined above. They were

the McDonnell Douglas DC-10-30 for the wide-body aircraft, the

! Boeing 707-320B for the narrow-body aircraft, and an aircraft

_- having the fuselage of a Grumman Gulfstream I, but modified
for high-speed subsonic cruise with a swept wing similar to

that on a Gulfstream II instead of the unswept wing on the

! Gulfstream I.

[_ Each of the three existing-design aircraft meet all the re-

quirements for initial cruise altitude, cruise Mach number,

payload, and range E48,49]. Also, each aircraft has a fuselagestructure capable of carrying all design loads, which there-

fore forms a realistic fuselage design for a baseline study
I
I aircraft.

Each of the existing-design aircraft was modified, conceptually,

to accept the propfan propulsion system. The DC-10 is powered

by three turbofan engines - one on each wing, supported below

the wing from a pylon, and one mounted through the vertical

stabilizer. The aft fuselage of the DC-10 was modified to

I eliminate the center engine. The two wing engines were re-

placed by propfans, and an extra two propfans were added to

the wings. The 707 had the four turbofan engines replaced by
four propfans. The small-diameter airplane used two propfans

_ located approximately at the spanwise wing station where the

propellers are mounted on the straight wings used with the

_ Grumman Gulfstream I aircraft. All aircraft are low wing

I designs. The propfans were installed such that the center of

thrust was above the wing rather than below the wing as it is

for the 707 and the wing-mounted engines on the DC-10.
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Four propfans, two on each wing, were used tO power the wide-

body aircraft. Conceptually, it would have been feasible to

have used more than four engines. That would have reduced the

diameter of each of the propfans, and, if the inboard engine

location had remained fixed, the propeller tip clearance would

have increased. Then, the exterior noise field impinging on

the outside of the widebody fuselage would have been reduced

somewhat. However, more than four propfans was not considered

practical.

4.3 Pr.oPfanSizing Ana,lysis

Previous studies [i, 2, 3] have considered the selection of

propfans to optimize a given aircraft mission. In those

studies, considerations were given to aerodynamic, mechanical

and economic factors in producing an optimum propfan design

for a specified mission. For the study here, however, it

was not feasible to conduct such an analysis since the prop-

fans were to be installed, conceptually, on existing-design
J

aircraft. Therefore, the approach used to size the propfans i

for the three baseline study aircraft proceeded from a defini-

tion of the total thrust required to propel the aircraft at

the desired cruise Mach number and initial cruise altitude.

Values for total installed thrust per airplane, obtained on i

the basis of previous analyses, are listed below.

Installed Net Cruise Thrust
Airplane Per Airplane _

Wide-body 133.45 kN (30,000 ib)

Narrow-body 71.17 kN (16,000 ib) !

Small-diameter 22.24 kN ( 5,000 ib)

i
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_ These values of total net thrust per airplane, coupled with

the number of propfans per airplane, defined the net thrust

] to be produced by each propfan.

! The Hamilton Standard data in [ 7 ] describe performance char-
[
t

acteristics for propfans having 6, 8, or I0 blades. For a

< propfan producing a given net thrust, a study of the perform-

! ance data in [ 7 ] indicated that the smallest-diameter prop-

_ fan would be one having the largest number of blades. Since
! data were only available for 6, 8, or i0 blades, propfans

designed for the three baseline study aircraft were based on

S prop fans having i0 blades.

_- The next design parameter that was selected was the operating

tip speed of the propfan. The tip rotational speed Vrot, was

_ chosen to be 243.84 m/s (800 ftls) . This tip speed would be
l

used during takeoff to minimize the noise level at the Appen-

- dix C noise-measurement location for noise certification under

Part 36 of the Federal Aviation Regulations. That same tlp

speed would be used during cruise.

With specifications for(l) the installed net thrust per

propfan, (2) the number of propfans per airplane, (•3) the cruise

tip speed, and (4) the number of blades per propfan, it was

necessary only to select one more design parameter in order<
I to calculate the rest of the propfan characteristics.

1 That design parameter was the cruise power loading P/D 2 where

{ P is the power supplied to the propfan and D is the propfan

diameter. From the studies that had been previously con-

i ducted of propfan installations (see Refs. i , 2,3), and from

discussions with personnel at Hamilton Standard, it wasC



decided to select a P/D 2 ratio of 280 kW/m 2 or 35 SHP/ft 2 I

where SHP is the propfan shaft horsepower. The same value of

power loading was assumed to apply to the propfans for each _i
i

of the three baseline study aircraft; it would permit fuel-

efficient cruise at the specified cruise altitude and cruise
Mach number.

F_

It was further assumed that the atmospheric conditions at the _

design cruise altitude would be those of an International

Standard Atmosphere - namely a density ratio of 0o/0 -- 2.6686 _'

and a speed of sound c -- 303.2m/s where 00 is the density of
the air at sea level and o is the density at 9014.4.m. For a . ._

cruise Mach number of 0.8, this assumption gave an airspeed,

Va, of 242.58 m/s. The helical tip Mach number was then

Mhel Vrot a

Propfans on each study aircraft were powered by turbofan _
I

engines operated as turboshaft engines to provide shaft power !

through a reduction gearbox. The turboshaft engines pro-
duced some jet thrust to augment the thrust produced by the !

propfans. Previous analyses had indicated that the jet thrust

was about i0 percent of the total propfan thrust. Those anal-

yses had also indicated that the sum of the drag resulting

from flow around the nacelle and the gearbox, and the drag

resulting from interference effects between the wing and the

nacelle and gearbox, was about 6 to 8 percent of the total

propfan thrust. Therefore, it was assumed that the jet thrust

was approximately equal to the sum of the nacelledrag and

the wing/nacelle interference drag. With this assumption, the L

net installed thrust from the propfan equalled the net

uninstalled thrust, Fn, u.
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i The propfan performance analyses in [ 7 ] are based on the

generalized non-dimensional parameters used for analyzing the

performance of propellers. The parameters are: the power

coefficient, Cp, the advance ratio J, and the thrust co-

efficient Cp. A net efficiency parameter, nnet, is also
defined.

J The propfan design process consisted of the following steps:

i. Determine the advance ratio J;

2. Determine the power coefficient Cp;

_ 3. From Cp and J, find the thrust coefficient

J CF and the net efficiency nnet;

?- 4. From the thrust coefficient and the net thrust,

find propfan diameter;, and

5. Find propfan rotational speed from the ND product

and propfan diameter/

The analysis was carried out only for the design cruise Mach

! number of 0.8 at the design cruise altitude, for propfans

having i0 blades.

l
I

Advance ratio is defined as

! J = Va/(Vrot/_) = 3.13 for present conditions;

9"-

I Propfan power coefficient Cp is defined as

1 Cp = power/pn_D 5

[ and can be related to propfan design parameters by

Cp = (P/D 2) (p0/p) / [5.671 (ND/1000) 3]
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where P is in kW, D is in m, N is in rev/min, and P0 is 1.225 i
kg/m 3.

!

The ND product is, i

ND = 60Vrot/_ = 4657 m/min, for present conditions. _ l

Using P/D 2 = 280 kW/m 2, the power coefficient for the propfans

is then

Cp = i. 30.

Propfan performance data from Table VII of [7_ were used to "

develop the design chart shown in Figure Ii which relates

power coefficient, advance ratio, thrust coefficient, and net

propulsive efficiency. Entering the design chart at a power

coefficient of 1.30 and interpolating at the advance ratio -_!

of 3.13 giv@s an uninstalled net thrust coefficient Of 0.355

with a net propulsive efficiency of 0.85, the efficiency para- -i

meter being defined as

= J CF /Cp i_net
n,u

An efficiency parameter of 0.85 is compatible with values that i

were used in previous propfan design studies and is close to,

but does not equal, the maximum-possible efficiency for the

design advance ratio 3.13. The maximum net efficiency accord-

ing to the data in [ 7 ] would be slightly higher than 0.85. "_

To achieve more efficiency, however, would require operating

the propfan at a lower power coefficient which would mean a

lower thrust coefficient and hence a larger propfan diameter

in order to provide the same net thrust.
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I

Propfan diameter was determined from the net thrust coefficient

CF with
n -_

CF = net thrust/pn2D 4
n

where net thrust is in newtons, and p, n, and D have the units

stated above.

The equation for Cp can now be written as
n

Cp = (Fn) (p0/p)/E340.28(ND/1000)2D 2]
n

where P is the net thrust in newtons required per propfan,n

and other parameters have units specified earlier.

From previously given net thrusts per aircraft, the installed

net thrusts per propfan are:

Wide-body: 33,362 N (7500 ib)

Narrow-body: 17,793 N (4000 Ib)

Small-diameter: ll,120 N (2500 ib)

Then, on substituting values for p0/p and the ND product, the

propfan diameter D can be calculated for each value of net

thrust. Rotational speed N is found from ND/D = 4657/D.

4.4 Characteristics of Baseline Aircraft

The baseline study aircraft were designed by placing the

propfans on the wings at appropriate locations. For wide-body

aircraft, the inboard propfans were placed at the same wing

station at which the wing engines are currently installed on

the DC-10-30. The outboard engines were placed at an
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( appropriate location farther outboard. For the narrow-body

aircraft, the propfans were placed at the same stations as the

! existing locations for the wing engines. For the small-

diameter aircraft, engines were installed approximately at

i the same wing stations that the propellers are installed for
the Grumman Gulfstream I aircraft, but on the swept wing.

_ Results of the propfan sizing study for the three baseline

study aircraft are shown in Table i. Each of the aircraft

i meets the general study requirements described earlier. The

data in Table i indicate that the ratio of propfan diameter
Ii

J to fuselage diameter is approximately equal to, or somewhat

greater than, I. _

On the two larger airplanes, tip clearances range from 0.4

propfan diameters for the inboard propfan of the wide-body

aircraft to 2.7 propfan diameters for the outboard propfan on

the narrow-body airplane. Tip clearance for the small dia-

meter airplane is 0.3 propfan diameters.

_ The sweep of the wings for the wide-body and narrow-body air-

i planes means that the outboard propfans, even though they are

significantly farther outboard, could cause the exterior noise

! field to be spread over an extensive region of the fuselage

and hence eliminate the option of using localized noise control

I
i methods in a particular area of the cabin (as is discussed in

Section 7.0). Localized procedures used in the past on pro-

[ peller-powered airplanes have located coat closets in the
(

regions of the plane of the propeller in order to put a com-

patible cabin furnishing in the region of highest noise levels.



Table I.

PERFORMANCEPARAMETERS FOR

PROPFAN-POWEREDBASELINE

STUDY AIRPLANES

Study Airplane

Parameter Wide-body Narrow-body Small-diameter

Design range, km (n, mi) 7400 (4000) 6900 (3700) 6670 (3600)

Maximum takeoff weight, kg 252,000 148,000 30,000

(Ib) (555,000) (327,000) (66,000)

Typical number of psgr seats 270 145 18

' Fuselage diameter, _ m (ft) 6 02 (19 75) 3.76 (12 33) 2.44 (8 0)

. Fuselage length, m (ft) 52.0 (170.5) 45.7 (150.0) 21.7 (71.3)

Number of propfans 4 4 2

Net cruise thrust per propfan,

Fn, N (Ib) 33,362 (7500)17,793 (4000) 11,120 (2500)

Propfan diameter, D, m (ft) 5.83 (19.1) 4.25 (14.0) 3.37 (!i.i)

Propfan diam./fuselage diam. 0.97 1.13 1.38

Propfan rotational speed, N, rpm 799 1096 1384

Power required per propfan,

P, kW (hp) 9517 (.12,762) 5058 (6782) 3172 (.4254)

Blade-passage frequency, fb' Hz 133 183 231

Inboard tip clearance, r/D 0.4 1.3 0.3

Outboard tip clearance, r/D 1.8 2.7 ---



i The data in Table i also show the power required per propfan and

indicate that it ranges from approximately i0 megawatts per

i propfan for the wide-body airplane to 3.2 megawatts for the

small-diameter airplane. The table also lists the maximum
r--

i takeoff gross weights and design ranges for the three airplanes.

' Typical numbers of passenger seats are given for mixed-class

I- configurations for the wide-body and narrow-body airplanes;

! the small-diameter airplane would have 18 seats in a typical

_ business/executive-jet arrangement.

Table 2 lists the values of performance parameters that are

common to each of the three baseline study airplanes. The
i

values in Table 2 were either derived as indicated above, or

were specified as part of the study requirements. Figures

i 12, 13, and 14 show the three baseline study airplanes and

illustrate the relative fuselage and propfan diameters, the
I

I placement of the propfans on the wings and the clearances

between the fuselage and the propfans. Note that, although

I the design of the propfans and the installation on the air-
craft is considered to be reasonably realistic, the airplane

re-
i designs were not developed as a result of a detailed design
I

study and thus are somewhat conceptual. However, the designs

are considered realistic enough to provide suitable baseline
i aircraft for development an_ initial application of the

_- analytical model.



I

I

Table 2.

PERFORMANCEPARAMETERS COMMON
TO EACH BASELINE STUDY AIRPLANE I

Initial cruise altitude, m (ft) 9014.4 (30,000)

Cruise Mach number, M 0.80

Cruise airspeed, Va,m/s (.knots) 242.58 (_471.6) -4

Speed of sound, c, m/s (knots) 303.23 (589.5)

Density ratio, p0/p 2.6686

Number of propfan blades i0

Propfan tip rotational speed,

Vrot, m/s (ft/s) 243.84 (800) _I

Propfan helical tip Mach number, Mhe I 1.13 !

Propfan power loading, kW/D 2 (SHP/D 2) 280 (35) _

Propfan advance ratio, J 3.13 !

Propfan power coefficient, C 1.30P
Propfan uninstalled net thrust 0.355

coefficient, CF
n,u _.

Propfan net propulsive efficiency, nne t 0.85

I
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FIGURE 12. BASELINE WIDE-BODIED AIRPLANE



FIGURE 13. BASELINE NARROW-BODIED AIRPLANE



FIGURE 14o BASELINE SMALL-DIAMETER AIRPLANE



Figure 15 illustrates typical seat arrangements and cabin

interior contours for the three study aircraft. The wide-body

and narrow-body seating arrangements are fairly easy to define

as there is little variation among commercial aircraft. The

wide-body aircraft has two aisles in a flrst-class and coach- --

class configuration whereas the narrow-body aircraft has a

single aisle.

Seating arrangements for the small-diameter fuselage are less

easy to define as there are many configurations used in

current business/executive jet aircraft. However, there will

be a single aisle down the center of the aircraft, as shown

in the fuselage cross-section.

4.5 Baseline Fuselage Designs

4.5.1 General Considerations

The fuselage structures of the three baseline aircraft are of

conventional skin-stringer-frame construction, an example of !

which is given in Figure 16. The figure shows longitudinal

stiffeners, or stringers, with hat sections and circumferential

stiffeners, or frames, with zee sections. The frames are

coupled to the skin by shear ties, and to the stringers by

clips. Fail-safe straps or doublers are bonded to the skin F

at the frame locations to provide local reinforcing of the --I

skin. These four structure elements -- skin, doubler, i

stringer, and frame -- are all taken into account in the

descriptions of the baseline structures, j

Other parameters to be considered are fuselage radius, cabin

windows, and in-plane stresses in the skin. These stresses I

result from the cabin pressurization and fuselage bending --

1
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(a) CABIN CROSS-SECTION

- NARROW-BODY SMALL BODY

WIDE-BODY

(b) CABIN PLAN VIEW,.

\

i i-M
I WIDE-BODY

, I
| NARROW BODY !

FIGURE 15o TYPICAL PASSENGER CABIN ARRANGEMENTS FOR
THE STUDY AIRPLANES



' Frame-to-Sk in .....
Shear Ties

Zee Frame

Hat Section
Stringers

Skin

Fail-Safe Strap-.Frame-to- Stringer
Clips Bondedto Skin

FIGURE 16. TYPICAL SKIN-STRINGER-FRAME CONSTRUCTION
FOR CONVENTIONAL FUSELAGES
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i
loads, and form a complicated distribution with tensile

stresses on the upper portion of the fuselage and compressional
I stresses on the lower portion. An example of such a stress

,_ distribution is given in [29] for the Boeing 747.

4.5.2 Baseline Structures

[-
Baseline structures for the three study airplanes were defined

on the basis of existing technology and typical characteristics

of current-day aircraft of comparable size. Dimensions and

shapes for the stringers, frames and doublers for the study

aircraft are shown in Figures 17, 18, and 19 for the wlde-body,

narrow-body, and small-dlameter fuselages respectively. All

. airplanes are assumed to have hat-sectlon stringers. The two

larger diameter fuselages have zee-section frames, and the

_ small-diameter fuselage has cee-section frames. All fuselages
are assumed to have doublers beneath the frames, although

shear ties are included only in the wide-body fuselage. Skin

I thickness is assumed to be constant for the wlde-body and

__ small-diameter fuselages, but, since some aircraft have a

skin whose thickness varies along the length of the cabin, a

varying skin thickness was assumed for the narrow-body baseline

! structure.

i_ Characteristics of the baseline fuselages, including skinthickness, frame and stringer spacing, cabin pressure differ-

ential, and material properties of the structure are listed

I in Table 3.

I_-" In order to reduce the complexity of the analytical model, the

i structure is assumed to be uniform in construction throughout

the region above the cabin floor (acoustic power flow through

-9 5-



(a) FORWAROOF OUTBOARDPROPELLER

J
!

SKIN THICKNESS: 1.78 mm FRAME r

STRINGER
-4 8

20.7 112.8
III---III _

i._ _--_5.2.6

1.27

(b) AFTOF OUTBOARDPROPELLER FRAME

4.1

SKIN THICKNESS: 1.78mm T e--__22.9I8.1 -STRINGER "-_ _ 1_8 -i
20.7 115.I

•15.7_ 5.4 I
1.78 -_

1 I ',, I _____2o.3
T _

1.27

All O_mensionsin mm \ --
\

\

FIGURE 17. STRUCTURAL DETAILS FOR BASELINE
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FIGURE 19. STRUCTURAL DETAILS FOR BASELINE
SMALL DIAMETER FUSELAGE

-98-

_q



TABLE 3

CHARACTERISTICS OF BASELINE FUSELAGES

" WIDE NARROW SMALL
AIRPLANE BODY BODY DIAMETER

FUSELAGE DIAMETER (m) 6.02 3.76 2.44

CABIN LENGTH (m) 41.45 34.00 10.06

CABIN WIDTH (m) 5.72 3.55 2.18

CABIN HEIGHT (m) 2.44 2.31 1.76

SKIN THICKNESS (mm) 1.78 1.02 to 3.05 1.02

FRAME SPACING (m) 0.508 0.508 0.330

STRINGER SPACING (m) 0.183 0.229 0.127
I

CABIN PRESSURE DIFFERENTIAL (N/m 2) 5.515 x 105 5.515 x l0 s 5.515 x 105

MATERIAL Aluminum Aluminum Aluminum

YOUNG'S MODULUS E (N/m 2) 7.2 x I0 I° 7.2 x i0 I° 7.2 x I0 I°

DENSITY (kg/m 3) 2770 2770 2770



the structure beneath the floor is assumed to be negligible
J

in the analytical model). This means that the analytical model

does not take into account circumferential variations in

skin thickness, stringer spacing, or frame depth. Furthermore,

the model excludes windows and window cut-outs. A more-

detailed representation of the sidewall structure in the analy-

tical model is not feasible within this study.

4.5.3 In-plane loads

The fuselage structure is subjected to in-plane tensile/com-

pressional loads Nx and Ny, in the axial and circumferential

directions respectively, and to Shear loads Nxy. The two
J

main contributors to these loads are pressurization and body-

bending forces. If the fuselage radius is R and the pressure

differential is ap, then the cabin pressurization loads intro-

duce contributions of 0.5 R.Ap and R.ap to Nx and Ny respect-
ively, the shear load contribution being zero. In all calcu-

lations the fuselage pressure differential was chosen to be

55.1kPa (8 p.s.i.). Body-bending loads vary with airplane

flight conditions and with axial and circumferential location

on the fuselage. Also, they will be affected by the weight of

the aircraft. At some locations the loads will be positive

(tensile) whereas at other locations they will be negative j

(compressional).

Because of the variation in the magnitude of the body-bending

loads, the influence of these loads on structural response
{

has been neglected in the present analytical model. Pressuriza- I

tion loads have been included as being indicative of an average

value throughout the fuselage structure. In any case, results I

presented in Section 6.0 indicate that in-plane loads are not
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! important at low frequencies, which are critical from a noise

control point-of-view, because of the effects of the frames

and stringers.

Circumferential pressurization stresses in the fuselage skin
will be relieved to some extent by the frames and doublers.

Typical average values for the percentage of nominal loop stress

accepted by the skin lie in the range of 75 to 80%. However,

the analytical model assumes that the full pressurization loads

are carried by the skin since the effect on calculated panel

resonance frequencies is small.

k 4.5.4 Noise Control Treatment

i ,

Two properties of the noise control treatment have to be

defined for the baseline airplanes. The first is the trans-
F
! mission coefficient for the sidewall treatment and the second is

the acoustic absorption in the cabin.
V-
i

i The baseline transmission loss spectrum was obtained from a

review of empirical data for sidewall treatments typical of

those in present-day use. These consist mainly
sidewalls of

glass fiber batts and a trim panel. In some cases damping

tape may be used and in other cases lead-impregnated vinyl
sheets may be installed, but such items are usually introduced

for specific problems. These special treatments are excluded

I from the baseline sidewall

Much of the suitable transmission loss data is associated with

tests in laboratory facilities where the fuselage structure is
F

represented by a stiffened flat or curved panel, and where
i

the transmission loss of interest is the insertion loss provided

by the add-on treatment. It is this insertion loss which is of
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interest to the present study because the noise transmission

of the basic fuselage structure is calculated by the analytical

model.

The baseline sidewall is shown diagrammatically in Figure 20.

It is assumed that acoustic insulation material is installed

over the stringers and between the frames. Then a second

layer of the material is placed as a continuous blanket

over the top of the frames. Finally, the trim panel is in-

stalled such that there is a gap between the trim and the frame

cap, the gap being filled by the glass-fiber batt. The glass

fiber material is assumed to have a density of 9.61 kg/m 3

(0.6 ib/ft 3) and the trim panel a surface density of 1.76 kg/m 2

(0.3 Ib/ft2). The total thickness of the batts is assumed to

be 10.2 cm (4 inches) for all three study airplanes. In the

case of the narrow-body and small-diameter designs, the region

between fuselage skin panel and trim panel will be completely

filled with the glass fiber material. The wide-body airplane

will have an airgap between the batts. Installations of this

type are described in [30] for a small-diameter (Gulfstream II)

airplane, in [31] for a narrow-body (Boeing 727) airplane

and in [32] for a wide-body (DC-10) airplane. The associated

insertion loss, or additional transmission loss, associated

with the baseline installation is shown in Figure 20. The

curve is based on data such as is given in [30] and [33].

Acoustic absorption in the passenger cabin is provided by the

sidewall trim panels (including the ceiling), carpet, seats,

and other surfaces. Absorption data for materials used in air-
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craft interiors are not readily available but estimates can be

made of average absorption coefficients, or corresponding

absorption units, provided by the different items. Estimated -_

absorption coefficient spectra for typical sidewall, carpets,

and seats are given in [34], where the coefficients for the

seats are based on typical seat distributions as a function of

wall area. The absorption coefficients in [34] were obtained ._

from laboratory test data for the individual items rather than

for measurements in furnished aircraft cabins. However, there

are some unpublished data for measured space-averaged absorption

coefficients in furnished cabins and these data provide the

band of data presented in Figure 21.

Using the data in [34] and the band of measured data in

Figure 21, a series of component absorption coefficient spectra

were constructed and these are shown in Figure 22. The com-

ponent spectra were chosen so that the space-averaged absorp-

tion coefficient _, for a typical airplane cabin, would lie

roughly at the upper boundary of the measured data in Figure 21.

The calculated _ spectrum is shown in Figure 21 for comparison

with the measured values. The main difference between the

data in Figure22 and the data in [34], is in the assumed ab-

sorption coefficient for the sidewall trim. This spectrum

was modified to incorporate results of Goss [30] and to bring

the composite spectrum into agreement with the measured values

of _.

Also shown in Figure 21 is an absorption coefficient spectrum

based on reverberation measurements in a bare fuselage [35].

Since the absorption coefficient was obtained in this case

using conventional reverberation equations the value includes

the effect of noise transmission out of the fuselage interior.

-104-



1.0

0.8

= Representative._ For Baseline

- .//0.6

°< 0.4

E
>

.<

o.2 _ /_

_nge of Measured Da
Bare Fuselage[35]0

100 I000 10, 000
Frequency Hz

FIGURE 21. COMPARISON OF MEASURED AND MODEL ABSORPTION COEFFICIENTS



1.0

0.8

•_ 0.6u

Sidewall Carpet

o _ _o, ._ 0.4

Seats

mr m I --

100 1000 10,000
Frequency Hz

FIGURE 22. SOUND ABSORPTION SPECTRA ASSUMED FOR FURNISHING COMPONENTS



V

}

A typical value for the absorption coefficient for bare

_ aluminum, excluding the effects of noise transmission is 0.05,

as was used in [ 4].

!

4.6 Propeller Noise Field

_ In the development of the analytical model it was shown, in

Section 3.3, that the inhomogeneous pressure field generated

by the propeller can be described in terms of the spatial

distribution of the pressure amplitude or level, the spatial

decay of the coherence function, and the trace velocities of the

pressure field in the axial and circumferential directions.

This section will describe briefly the characteristics of the

acoustic fields used to represent the exterior pressure fields

on the three study aircraft

The basis for calculation of the spatial distribution of the

pressure level is the prediction procedure developed by

Hamilton Standard [6] Typical free-field directivity curves( i

[ 6] for the near-field pressures are shown in Figure 23 for

_- a range of tip clearances similar to those for the study air-

! planes. The available data refer to an 8-blade propeller with

_- a tip rotational Mach number of 0.7, but the general trend of

I the data can be used for the selected 10-blade propeller with

a tip rotational Mach number of 0.8.

Predicted variation of the overall sound level along the

fuselage exteriors of the three baseline aircraft are shown

in Figure 24. In calculating these surface pressure distribu-

c_ tions, it was assumed that pressure doubling (+6dB) occurred in

I the neighborhood of the plane of rotation of the propellers and

that the pressure increase was +3dB elsewhere. The curves in

r_ -I07-
i
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Figure 24 for the wide-body and narrow-body airplanes show

the double-hump characteristic associated with the two pro-

pellers on each side of the fuselage. The small-diameter

design shows only a single peak as there is only one propeller

on each wing. The predicted peak pressure level is a function
I

of propeller efficiency, tip rotational speed, cruise Mach !

number, tip clearance, altitude and number of blades. Since

all these parameters, with the exception of tip clearance, (

are the same for all the study airplanes, the peak overall

sound pressure levels shown in Figure 24 differs from airplane

to airplane as a function of tip clearance only. The peak

level is highest (146dB) on the small-diameter fuselage, 1
J

where the tip clearance is smallest (see Table i ) and is

lowest (137dB) on the narrow-body airplane where the tip _]

clearance is greatest.

The data in Figure 24 show the rapid decrease in sound level

as distance increases from a region of peak level. This

spatial decay provides values for amplitude decay parameter ax,
these values varying with position along the fuselage.

The spatial decay of sound pressure level in the circumferential

direction was estimated by first calculating the free-field dis-

tribution using Figure 25(b). Then the influence of the fuse- i

lage structure was taken into account by adding 6 dB at the

position of minimum tip clearance (location B in Figure 25(a))

decreasing to 3 dB at locations on the vertical centerline, for

example, location D in Figure 25(a). --_t

The analytical study was required to consider three different

spectrum shapes for the excitation field on each of the study

airplanes. These spectra, which refer to the relative levels

of the different harmonic components of the propeller noise

field, are shown in Figure 26. The first spectrum identified

-110-

!



D

(a)
I

F •

_- ® _ --_, _ I ___ Based on data
_' _oo _ _,_ _--_1 in Fig. 23

• _ 8",_O _

_ _ __:_ _._-,(b) o_
1- _-_ _ _-_,

•- x,-I I

_-o_ "''1 I, l Io.E_-1o ,
j, 0.0 0.5 1.0 1.5 2.0

Minimum Distance Between Propeller Tip and Structure

J

"" 1500U

1000 -
!- (c) _)

q)

> 500 -

,, _ O- i I I..L

0 10 120 30 40

Peak Sound Distance Along Cabin (m)
/ Level

FIGURE 25. CIRCUMFERENTIAL TRACE VELOCITY AND AMPLITUDE

1 VARIATION FOR INBOARD PROPELLER OF WIDE BODYAIRPLANE

!' -111-



[

0

_'_ -10 dB Flat Spectrum !

o_
_ -10 _ I

a _ _'_ I 3dB rmonlc ._i

m a_ -20 _-
._ _. _ "_ i
Oou_ Hamilton Standard
o-- SP15 Spectrum _"i-V _ L
,.,__ -30
o >
--0
>

,._1

-40
0 1 2 3 4 5 6 7 8 9 10

Harmonic Order

FIGURE 26. HARMONIC LEVELS OF EXTERNAL SOUND FIELD -'

-112-



t as the Hamilton Standard SPI5 Spectrum is obtained from [6].

The other two spectra show harmonic levels falling off much

! more slowly as harmonic order increases; in one case the

change in harmonic level being -3dB per harmonic and in the

i other case all the harmonic levels are equal. For present

purposes it was assumed that the constant harmonic level

i--_ specification was applied to the ten lowest order harmonics
i

only.

L
Pressure field coherence amd trace (or phase) velocity were

not covered by the Hamilton Standard prediction procedure [ 6 ],

and other means had to be used to obtain the required informa-
tion. One source of information was the data analysis [8, 9]

_ performed on measurements from a test program on an Aero

Commander airplane. The analysis included coherence and trace

velocity results, although the test conditions (tip clearance

J approximately 0.05D, forward speed less than 40 m/s (120 ft/sec))

differed considerably from those associated with the study

airplanes.

_ The Aero Commander data [9] show that, where there is forward

velocity of the airplane, the decay of the pressure field co-

herence for the low order harmonics is very slow in both the

longitudinal and circumferential directions. This is to be

expec'ted when the excitation consists of a series of discrete

1 frequency components. Thus, a similar slow decay of pressoure

field coherence was assumed for the study airplanes, the co-

and c of Eq. (29) (c _ (Cx,C))herence decay parameters cx Y Y
each being given a value of 0.01.

i _ The trace velocity in the longitudinal direction was estimated

on the basis of acoustic wave propagation from an effective
F-
J

_A
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source location. The source was located at 70% of the pro-

peller radius, in the effective plane of rotation of the

propeller, as shown in Figure 27. The effective plane of

rotation was used to take into account the forward motion of

the airplane. Figure 27 shows the construction of the trace
l

velocity relationship for the inboard propeller of the wide-

body airplane. The net trace velocity for the pressure field

includes the influence of flight velocity so that the trace I

velocity is subsonic on the forward region of the fuselage

and about twice the speed of sound on the aft region. Close i

to the plane of rotation of the propeller, the acoustic field

is modeled as plane waves incident normally to the fuselage,

so that the axial trace velocity tends to an infinite value.

In the circumferential direction the trace velocity is obtained

by assuming that the pressure field rotates with the propeller.

Thus, for a constant tip rotational speed, the greater the tip

clearance, the higher will be the circumferential trace velocity.

The value of the trace velocity is supersonic for all conditions
!

of interest, and, because of the model chosen, the circumfer-

ential velocity increases with distance from the propeller

plane R, as is shown in Figure 25(c) for the inboard propeller i

of the wide-body airplane. The circumferential trace velocity

in the region of the propeller plane (peak levels) is predicted !

from

Uy = _Dfo(l+2r/D)

where r/D is the tip clearance in fan diameters and f theO

blade passage frequency. Away from the propeller plane, Uy is
calculated from

Uy = 2_foR i

where R is identified in Figure 27 for the 7th element.

C
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5.0 MODEL OF STRUCTURE (

Calculation of the structural response to the propeller _

excitation pressure field requires the calculation or deter- I

mination of several functions such as joint acceptance, modal

density, radiation ratio and structural damping. These func-

tions can, in turn, be determined only after a model has been

constructed for the fuselage structure. As was discussed in
\

Section 4, one of the basic assumptions about the baseline

fuselage structure was that the construction would be the

conventional skin-stringer-frame type used in current day

aircraft. This section describes the steps taken to describe

such a structure in a form suitable for computation in the

analytical acoustic model presented in Section 3. The dis-

cussion centers on the resonant structural response, since,

as will be shown in Section 6, the power flow associated with

resonant response is significantly greater than that due to

non-resonant response.

I

5.1 General Representation

The analytical formulation in Section 3.2.2 gives the total

power flow from the external excitation field through the I

sidewal! structure into the interior, and, in the process, _

predicts a homogeneous, average level for the structural i

response. To allow for non-homogeneous spatial distributions

of the external pressure, the structural response and the I

interior noise levels, it is necessary to divide the fuselage

structure into several segments along the fuselage length.
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Then the total resonant power flow equation for N structural

f- elements can be written in the approximated form
!

N

2_AjPiCi 2 nr (
1 Win (_b) = _b_ xo - <Or(_b <_rad >j
, <P (_b)>j ,j _b ) .2 )>pj
r j=i _ nr,j

! (74)

i Eq. (74) is obtained by substitution of Eq. (60) into Eq. (51)

<- and by replacement of the modal mass Mr by the resulting value

appropriate to sinusoidal structural modes,

} i.e. Mr = _A (75)

] where A is the structural area and _ is the surface density.

Eq. (74) applies to the frequency regime where structure

and receiving cavity have sufficiently high values for the

modal overlap. The summation is performed over structural

elements j.

The choice of the size and number of the structural elements is

I.... influenced by the following points.

(i) The element dimensions should be large enough that the

! amplitude of the external pressure field decays by at
least i0 dB within the element.

(ii) The elements chosen should have structural wave number-

I-i frequency distributions characteristic of the detailed
- overall fuselage modes.

f_

!

<

-117-
f -



f
!

(iii) The total power flow into the interior must not depend

on the sizes of the elements chosen .....

The fuselage structure is idealized so that each structural '

element is assumed to be part of a pressurized cylinder, i.e.

a cylindrical plate of uniform thickness with uniformly spaced

ring stiffeners (or frames) and stringers (Figure 28). It is

assumed that no power flows into the interior from below the 1

cabin floor so that the element is not a complete cylinder.

Furthermore, when calculating resonance frequencies, it is (

assumed that the structural element has clamped boundaries.

The structural parameters used to describe the element will

vary according to the wavelengths and frequencies of the modes !

of vibration [36].
I

At low frequencies, where the structural modal wavelengths,

both axially and circumferentially, are greater than the frame

and stringer separation distances respectively, both frames

and stringers may be 'smeared-out' orthotropically over the

skin surface. The frequency equation, derived by Mikulas and I

McElman [25] and presented in Figure 5 of Section 3.8.1 (with

f
the addition of a term due to pressurization), was found during

study calculations, to give reasonable estimates for the reson-

ance frequencies of a simply-supported ring stiffened cylinder [36]. J

Mikulas' equation was then used for the resonance frequencies

of an element of a stiffened cylinder with edges clamped by

using the following changes and approximations: !

(i) For axial mode order m, the simply-supported wavelength
is replaced by the smaller clamped-clamped wavelength 1

[37], and m is replaced by (m + 0.5)/1.05

f

-118-



"_x = Frame Pitch
f-

' J.y = Stringer Pitch
R = Radiusof Curvature

(

] FIGURE 28. REPRESENTATION OF FUSELAGE STRUCTURAL
ELEMENT

\

1

/
-119-



i

I

(ii) For a complete cylinder, n is the number of circum-

ferential full wavelengths. In this analYsis ,

n is the number of circumferential half wave-

lengths, and
J

n is replaced by _ (n + 0.5)/1.05

(iii) The ratio of circumferential to axial wavenumbers I

!

becomes

i

=  __aS_R= o.5)

kmR (m + O.5)

For modes of low order m in the axial direction and low order

n in the circumferential direction, the resonance frequency

equation is dominated by the membrane stiffness term due to

curvature. Then, as n increases, the ring bending stiffness

term becomes dominant. Mikulas' equation with frames and

stringers represented as 'smeared-out' masses and stiffness, _

therefore covers regions I and II defined by Hu et al [36] .

The modal density is dependent on both bending and membrane

stiffnesses and is not very sensitive to changes in frame I

bending stiffness alone.

As frequency increases, the axial half-wavelength of the modes

becomes less than the spacing between the frames, and the

frame motion becomes small compared to the motion of the panel

between the frames. Inclusion of the frame stiffness now

results in overestimates of the panel resonance frequencies. _

Thus, in this mid-frequency region, the frame stiffness and

mass are omitted from the analytical model, and only the

stringers are 'smeared-out' over the surface. Mikulas' equa-

tions are again used to calculate the modal frequencies.

- 1.20-



In the high frequency region, both the axial and circumfer-

_ ential half-wavelengths are less than the spacing between
frames and stringers respectively, and subpanel resonances

_- occur. Only the skin stiffness and mass are included now in

the analytical model, as the panel motion is now effectively

_-_ independent of the frames and stringers.

i The frequencies at which the structural parameters are changed

are given by

i (i) The minimum value of the resonance frequency of

the subelement, of size (_xLy), clamped along two

adjacent frames, for any circumferential mode

order n with half-wavelengths greater than the

stringer pitch, using (stringer + skin) structural

parameters, and

_- (ii) The fundamental frequency of subpanel with clamped

! edges, whose size (£x_y) is given by (frame pitch

x stringer pitch), using skin structural para-

I- meters only.

The first of the above frequencies defines the boundary between

_- low and intermediate frequency regimes in the structural model-

ing, and the second frequency is the boundary between the

I- and regimes. It should be noted
intermediate high frequency

• that these panel sizes are used only in deflnlng the frequency

_- regimes for the structural modeling and are not used in calcu-

lating structural response. In calculating panel response,

_ panel dimensions LxLy are always used.

_- -121 -
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5.2 Structural Representations r

The factors to be considered in selecting the size of the

structural elements were given in Section 5.1. The discussion

in this section identifies those parameters which are influenced

by element area while Sections 5.3 to 5.5 investigate these

parameters in more detail with the objective of choosing a

minimum element size while maintaining the accuracy of the I

response calculation.

Empirical evidence suggests that, at low frequencies, the !

element size should be much larger than the frame and stringer

spacings. For example, vibration data for a Boeing 737 fuse- !,

lage structure [38] exposed to boundary layer and jet noise

excitation show that acceleration coherence can remain high i

over several adjacent panels (see Figure 29). This is true

even though the coherence coefficient of the excitation pressure _

field decays much more rapidly [38] than it does for the prop-

eller pressure field considered in the present study. __
i

In the circumferential direction, the coherence coefficient

for propeller noise maintains a high value over large separa- I

tion distances, and the amplitude decays little with distance

[9]. The structural element should, therefore, extend at

least from the cabin floor to the ceiling centerllne or,

preferably, from floor to floor. For a typical baseline air-

plane, the structural element would include 15 to 30 stringers.

This idealization in the circumferential direction cannot give

a spatial variation of sound level across the width of the i

cabin_ but gives, instead, a local average value of structural

response and interior noise level. This is considered adequate _i

because measurements at appropriate frequencies in present

day aircraft indicate that the lateral variation in cabin -_

sound level is small (less than ±2dB on an octave band basis).
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_i FIGURE29. ACCELERATION COHERENCE MEASURED ON ADJACENT
• PANELS OF BOEING 737 FUSELAGE (M = 0.78, JET

AND BOUNDARY LAYER NOISE)
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In the longitudinal direction, coherence is again high at low

frequencies, but the pressure amplitude decays rapidly with

distance. For example, the amplitude of the pressure field

predicted using [6] decreases by 20 dB or more over a distance

of i0 frame spacings on the larger baseline aircraft.

For a non-homogeneous excitation, the acoustic power flow

equation for N structural elements is given by Eq. (74).

Assume tlhat the elements are identical, with equal values 1

of generalized mass Mrj and loss factor _rj. Furthermore for

excitations involving strong spatial amplitude decay over the I
length of the structural element,

2 <Pxj(_b)>j=l >> (_b)>j_l (j = 1,2,3...) I<PXo

2 >J is the maximum pressure amplitude applied at --7where <PXo

the edge of element J . Therefore only the term involving i

element i will contribute significantly to the power inflow,

if other factors such as excitation coherence, ampl_tude !

decayrat_e and trace velocity remain constant or vary only

slightly. Hence the acoustic power flow equation may be

written in the approximate form:-

Wi n (_b)= 2_Pic i <px_(_b)>j Ajnr,J(_b) <j_(_b)_j <arad>j; j=l

_b _j _r,j (76)

The effect of element size then reduces to a consideration as _

to whether I
.2

Aj = Aj nr, j <Jr > <pj °rad>j for j = i (77) (

is independent of A..

i
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The term _Px2>jo = I is constant for different values of A_,u
since as area A. increases, the change is made such that the

J
location X of the maximum pressure always lies on one edge ofo

i the element j=l. For convenience, Eq. (77) may now be written
in the alternative form

,! 2 2

Aj = nr_JA. <Orad>j (Aj <jr>p j) (78)
i
(

The various terms on the right hand side of this equation

i will now be considered in more detail in Sections 5.3-5.5.
<

_ 5.3 Modal Density
I

For a flat plate, the modal density is given by
in

i
i

nr,j (_b) = _Aj (79)

KpC I
J

_-. where KpiS the radius of gyration of the panel. This equation

i will be approximately valid even for pressurized and stiffened

panels, provided that the value of KpiS determined for the¢

! equivalent (smeared-out) panel. From Eq. (78), it is required

that nr,j/A j for fuselage panels of various Aj , but constant
surface density and stiffener arrangement, should be independenti
of Aj, at least when the modal density is sufficiently high

_ so that several modes exist in the frequency band of interest.

Figures 30 and 31 present calculated values for n(_)/Aj for

! typical narrow-body and wide-body fuselage elements. The curves

( in both figures, are associated with the low-frequency struc-

_- tural model which includes frames, stringers and skin. For the
!
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narrow-body fuselage (Figure 30), when Ly = 7.0m (i.e. element

extends from floor to floor), the ratio n(_)/A is independent of

element length L when L is greater than approximately 4m (8X X

frames) for frequencies 100Hz and above. When L x = 2.54m (Sframes),

n(_)/A shows little change at frequenc&es above 200Hz, but at

lower frequencies the differences can be as much as ±SdB.

For the wide-body fuselage, an element of width L = 5.22mY
(i.e. extending from floor to ceiling centerline) and a length

L of at least 2.5m (5 frames) is sufficient to give a valuex

of n(_)/A which is independent of area for frequencies of 125Hz

and above (Figure 31). An element of dimensions L = 3.17m andx

L = 5.66m is satisfactory for the small-diameter fuselage
y
(Figure 31).

The modal density of the structural elements varies with

frequency (as shown in Figures 30 and 31), but it also depends

on the structural representations used in the analysis.

Figure 32 shows the modal density for a typical wide-body

fuselage element calculated using the three different struc-
I

tural representations discussed in Section 5.1. It is seen

that there is a large difference in modal density between the

low-frequency structural representation of 'smeared-out'

frames and stringers and the high-frequency structural repre-

sentation where only the skin is considered. Differences of _

this type have been observed in practice [36] .
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5.4 Joint Acceptances !

2 <j2r> p is shownThe effect of element size on the product A_
U

in Figure 33 for typical narrow-body and in Figure 34 for wide- !

body and small diameter fuselage elements, the calculations

having been performed for the low frequency structural models, i

which include frames, stringers and skin. For the narrow-body

element lengths Lx greater than 4m, Aj 2 <j_>p is independent

of A.. When the elements are much smaller than 4m, the approxi-
J

mate equation (Eq. (76)) for the power flow is no longer valid

and the contribution from adjacent elements cannot be ignored.

More importantly, At_ <j$> p is significantly underestimated
in these situations due to the preclusion of long wavelength, I

well-coupled structural modes.

Figure 34 shows that A. 2 <jr2>p is independent of Aj, for theJ
wide-body fuselage, for an element of width L = 5.22m and

Y

length Lx greater than 5.08m, and for the small diameter fuse- i

lage for an element L = 5.66m and length L greater than 3.17m.
y x

These conclusionsregarding the effect of element size on the

progressive wave joint acceptance are valid only for a strong

decaying excitation pressure amplitude. If the excitation

is a homogeneous, reverberant acoustic field_ the progressive

wave joint acceptance is replaced by the reverberant field

joint acceptance <J_>R" From Eq. (61),
i

2 2 2
Aj <Jr >R = _c i _rad/2_ (61)

Now, as will be shown in Section 5.5, the structural element

can be chosen such that ara d is independent of A_ Then i• I,

2 .. This isJshown in
Aj<Jr> R will also be independent of Aj
Figure 3i5.

• required for acoustic power flow calculations (See Section 3.6.3)°

I
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5.5 Radiation Efficiency

At low frequencies, with structural elements of sizes pre-

viously discussed (L x = 2.5 m, Ly 5m) so that they include

several frames and stringers, the radiation efficiency grad

is unity for all modes, and hence is independent of the

element area Aj. This occurs because at low frequencies the

modes are acoustically fast (and hence efficient radiators)

due to the effects of fuselage curvature, the 'smeared-out'

stiffness of the frames and stringers and, to a lesser extent,

cabin pressurization. Modal wavelengths at low frequencies

are large compared to typical frame and stringer pitch, and

the corresponding mode shapes are well represented by simple

sinusoidal functions, even though the element boundaries are

assumed clamped for resonance frequency calculation. The effect

of stiffeners is to modulate the basic mode shape with a wave-

length equal to twice the stiffener pitch. As frequency in-

creases however, the stiffeners participate less in the fuselage

motion. Then, mode shapes are determined more by subpanel prop-

erties with stiffeners acting as restraining edges. The radia-

tion properties of such 'ribbed' structures may be estimated

following Maidanik [39] or Barger et al [40]: the latter ap-

proach was adopted, from which it may be shown that, for an

isotropic free vibration field

8 . L . Xc . € + (i + 4__hh) (80)

°rad = _ _-- Arkp

where L is the sum of the total length of rib attachment to the

skin surface and one-half the total length of ribs attached to

the area edge. A is the plate area, lc = 2_ KCL/C i is the

skin critical wavelength, K is the skin radius of gyration,

h is the skin thickness, A r is the cross-sectional area of

the stiffeners, kp is the structural wavenumber at frequency
1

_, and _ = sin- (kci/kp). Since L/A is constant for a uni- -

form grid of arbitrary area the radiation ratio is independent

of the area.
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! 5 6 Loss Factorsk

For lightly damped aluminum structures, only structural damp-

! ing and acoustic radiation will contribute significantly to

the decay of vibrational energy levels. Structural energy

dissipation will be associated both with material (internal)

damping mechanisms, and with energy losses occurring at the

_ structural boundaries; of the latter mechanisms, viscous
i

damping arising from the pumping of gas within the joints can

be important in non-rigid Joints such as those occurring in

! bolted built-up structures [ 41 ]. Acoustic radiation damping

can become a significant means of energy dissipation for

! lightweight structures whose radiation ratios are high.

The overall modal loss factor _r may be expressed by the

i relation

_ nr = ni + nj + nra d = nstru c + nra d (81)

! where ni is the internal loss factor associated primarily with

material damping (which for aluminum can be considered to be

i essentially independent of frequency), nj is the loss factor

associated with dissipation at structural joints and nrg d is
_ the modal loss factor resulting from acoustic radiation

damping, nra d is given by
t
t

= Rrad/_A_ = PC_rad/_nrad (82)

where _ is the circular frequency, _ and A are the surface den-

sity and area of the structure, Rrad is the radiation resistance,
I : p and c are respectively the density of, and speed of sound in,

the fluid surrounding the structure and Ora__ is the radiation

efficiency or radiation ratio.
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For lightly damped structures, ni<10 -3, while for rigid Joints

allowing no relative motion between the component parts,

nj<n i. For lightweight structures and supersonic modes, !

= i, so that nra d can be greater than both ni and nj. This

can be particularly important for cylindrical structures as

they have supersonic modes at frequencies well below the

acoustic coincidence frequency of a flat plate with the same

thickness as the skin. The same statements are assumed valid

for band-averaged loss factors, _r, which represent the arith-

metic mean of the modal loss factors in the frequency band of

interest• The structural component nstru c of the loss factor

for an undamped bare structure, with no applied damping treat-

ments, is assumed to be 0.01 at i00 Hz and to vary inversely

with frequency [4], i.e. I

nstru c 0.01 (2_ i00/_) (83)

When the radiation loss factor (Eq. (82))is included, it can be

seen (see Figure 36) that the structural loss factor for an un-
I

damped structure is small compared with the radiation loss

factor at most frequencies of current interest. Limited experi- I

mental data is available [42] to support the calculated values

as seen in Figure 36. Also shown are the total loss factors
i

for a highly-damped structure, assuming that nstru c has a con-

stant value of 0.05, a value considered to approach the maximum

achievable value in practical fuselage structures at low fre-

quencies using proven techniques [42]. In this case the radia-

tion loss factor is no longer the most significant contribution

to the total loss factor at low frequencies.
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t q'r = q'rad + rLstruc Eq. (81)

r-_ --°---%r = rl'rad + 0.05

= _0i q'r rLrad + 0.01 (1 O)i
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5.7 Structural Idealization for Computation Purposes

The preceding discussion has described how the fuselage struc-

ture is represented as a series of structural elements (see,

for example, Figure 28). The elements extend from floor-to-

floor or floor-to-ceiling in the circumferential direction,

and divide the fuselage into several segments in the longitudi-

nal direction. The selection of these elements for the three

study airplanes is discussed in this section. In addition,

the dimensions and structural characteristics of the elements,

and the excitation characteristics associated with each element

are presented in tabular form for reference.

The division of the fuselage structure into a series of elements

was determined to some extent by the amplitude decay of the

excitation pressure field for each study airplane in both the

longitudinal and circumferential direction. Element sizes

were selected for each airplane on the basis of sensitivity

calculations similar to those presented in Section 5.1 - 5.5

for the wide-body airplane.

Location of the boundaries between adjacent segments was

selected in the first place on the basis of the location of

peak sound level from the inboard propeller. For computation

reasons it was desired to have this peak level occur on the

boundary between two structure elements, as is indicated in

Figures 37 through 39 which show schematic sideviews of the

structural segmentation. Thus, for example, the peak sound

level associated with the inboard propeller of the narrow-body
/

airplane (Figure 38) occurs on the boundary between structure

elements 3 and 4. Similarly, a second boundary between ele- _i

merits was selected to correspond with the peak sound levels

associated with the outboard propeller (Figures 37 and 38).

)
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Location of Peak Excitation Pressure
Element ,_
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Having defined these boundaries, and, having determined

acceptable element sizes from parametric analyses in Sections

5.1 - 5.5, the segmentation of the fuselage could be completed

The resulting divisions for bhe three airplanes are shown in

Figures 37 through 39 and associated segment locations, dimen-

sions and excitation characteristics are given in Tables 4

through 6. For convenience, element locations are given in

terms of the distance of the upstream edge of the element from

the forward pressure bulkhead of the cabin.

7
The selection of the location of peak sound level as the factor

determining element boundaries allows the excitation field

for a given element to be described in terms of a monotoni-

cally-decaying pressure amplitude with a mean trace velocity

either upstream or downstream. This representation reduces

the complexity of the analytical model.
I

Structural data for the three baseline study airplanes, as I

required for the calculation of acoustic power flow into the

fuselage interior, are presented in Table 7. These data are

also applicable to the baseline airplanes with add-on noise

control.

i

'--7
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Table 4

I Structural Segmentation Details: Wide-body
I

L Element Element NoI
i Ill ,,-',"

Descriptors
1 2 3 4 5 6 7

I

Location of up
stz_eam edge of ele-

I ment, re forward
bulkhead (m) 0_0 7.11 14.21 19.29 24.37 29.45 34.53 _

Element dimensionsL (m) 7.105 7.105 5.08 5.08 5.08 5.08 6.92
X

L (m) 5.2271 5.227! 5.227 5.227 5.227 5.227 5.227[ y
]

Location of maxi-
hum excitation
level re forward
bulkhead (m) 19.29

Amplitude Decay
Rates

[
a L 5.77 5.87 3.77 3.56 3.50 3.50 4.77
X X

V L 1.15 1,15 1.15 I 015 1.15 1.15 1.15
1 ay Y I,

1, ......... ,, , , .....

Trace Velocities

I (m/s)
1 Ux 68. 83. 260. 745. 574. 556. 55Z.

U 1390. 851. 498. 498. 780. 1153. 1626.
Y

Coherence Decays ' '
c :c_k 0.01 0.01 0.01 0.01 0_01 0.01 0.01
X X x

c :c'k 0.01 0.01 0.01 0.01 0.01 0.01 0.01
J y y y

_-- . .

l
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Tabl e 5

Structural Segmentation Details: Narrow-body
J
r

Element Element No.

Descriptors ......
1 2 3 4 5 6 I

Location of upstream }
edge of element, re
forward bulkhead (m) 0.0 5.08 10.16 15.24 20.32 25.40

Element dimensions

Lx (m) 5.08 5.08 5.08 5.08 5.08 8.60

L (m) 7.00 7.00 7.00 7.00 7.00 7.00
Y

Location of maximum
excitation level re

forward bulkhead (m) 15.24

Amplitude Decay Rates

axL x 3.12 3.12 2.51 1.98 1.98 3.35

a L 0,70 0.70 0.70 ! 0.70 0.70 0.70

Trace Velocities (m/s) I
U 95. 148. 553. 1038. 633. 572.
X

U 1703. 1241. 926. 926. L241. [880.
y

r

Coherence Decays

c =c'k 0.01 0.01 0.01 0.01 0.01 0.01 -_
X X x I

c =c'k 0.01 0.01 0.01 0.01 0.01 0.01
Y YY

!
i

/
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Table 6

r- Structural Segmentation Details: Small diameter

Element Element No.

_ Descriptors i 2 3

i-I ......
,5

Location of upstream edge
of element, re forward

i bulkhead (m) 0.0 3.73 6.90

Element dimensions

L (m) 3.73 3.165 3.165X

L (m) 5.66 5.66 5.66
Y

i

Location of maximum ex-
_ citation level re forward

! bulkhead (m) 3 731

Amplitude Decay Rates

a L 5.71 4.50 4.71
X X

i r a L 1.79 1.79 1.79yy

I
i Trace Velocities (m/s)

Ux 145. 658. 560.

Uy 473. 451. 791._t

Coherence Decays
c =c'k 0.01 0.01 0.01
x X X

I_' Cy=C_k_Y 0.01 0.01 0.01
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Table 7 I
,!

Structural Data for Typical Element of

Baseline Airplanes
!

.................. , . j

Baseline Aircraft Wide Narrow Small]

I

Element No. (in propeller plane) 4 4 4
Frame Spacing _ m .5080 .5080 .3302 I
Stringer Spacin_ _ m .1829 .2286 .1270 J

Y

Skin ::-i
Thickness h mm 1.7780 3.0 1.016
Mass/unit area ph kg/m 2 4.8006 8.100 2.7432

Bending stiffness, D,Dx,Dy , N.m 38.133 183.18 7.1151
Torsional stiffness, Dk, N.m 12.584 60.45 2.3480
Wave speed, c L m/sec 5491.1 5491.1 5491.1

Stringer (smeared out over !__I
width _)

Equivalent thickness, As/_ mm .9882 .4006 .4064
Mass/unit area Y

PAs/_ kg/m 2 2.6680 1.0817 1.0973

Bending stiffness,E__s/_y_ N.m 6510.05 4338.9 687.23
Torsional stiffness,

GsJs/_ N.m 19.388 2.3164 3.8956 J
Centroid to skin Y

middle surface _ -.01583 -.01855 -.00744

Bending stiffness, D x s N.m 18,549 13,410 1,895.2 ]!
(skin & stringers)

Frame(smeared out over width £x )

Equivalent thickness Ar/_ m 1.0448 .6012 .3716
Mass/Unlt area pA /_ kg/m 2 2.8209 1.6233 1.0034
Bending stiffness_ x ]

m I /_ N.m 174,872 53 956 20,213
Torsional stiffn_s_ x

G Jr/_ N.m 24 510 8.1609 1 2314
Centroid to skin r x " " i

middle surface _ -.05468 -.03921 -.03911
S

Bending stiffness D N.m 323,420 110,780 51,237

(skin & frames) Y !

Stiffener Cross-sectional Area m 2 2734xi07 3 .1579xi0 -3 .7136xZ0 -_

Ari b = (Ash + A _y)/(_ + _ )x r x y !
,_..... ...

L
L

J
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6.0 NOISE LEVELS IN BASELINE AIRPLANES

i As a first step in the analysis of the interior noise levels

in the three study airplanes, interior noise levels were calcu-

lated for the three airplanes with bare interiors and with

baseline sidewall treatment. The results of the calculations

-- are presented in this section for the three different excita-

tion spectral shapes described in Section 4.6. Subsequent

_ sections will present the results of applying the analytical

model to add-on and advanced noise control concepts. The

information presented in this section shows axial distribu-

tions of fuselage acoustic power in-flow, axial distributions

of interior overall noise levels, resonant and non-resonant

contributions to the total acoustic power flow, and low-order

harmonic levels. Finally the required noise reductions for

the baseline study airplane to achieve the criterion of 80 dB

maximum interior A-weighted noise leVel are presented.

F--

I 6.1 Hamilton Standard Excitation Spectrum

The major part of the discussion in this section will be

concerned with analytical results obtained using the excita-

tion spectrum defined in the Hamilton Standard prediction

procedure [6], since this spectrum is associated with the

highest predicted interior sound levels.

6.1.I Acoustic Power Flow into Fuselage

The calculated acoustic power flow into the baseline airplane

interior for the two lowest order harmonics and for each study

airplane is shown in Figure 40: here the airplane fuselages

-147-



WIDE BODY _
120

110 - 33 Hz

A
100 -

90-

_ 266 Hz

8o- / \
_ 70
Io 10 20 30 40
'- DistancelAIong Cabin (m)
"_ 120 -

"lJ

" 110 - NARROW BODY
D

u /\o
100 - / \

•- \ 183 Hz
o

< 90-
Im

o 70
" 10 20 30

Distance Along Cabin (m)

3: 120r

o
Q.

li)

Z 110 SMALL DIAMETER --
i

100

90 231 Hz

80 462 Hz

70 I
2 4 6 8 10

Distance Along Cabin (m) --

FIGURE 40. VARIATION OF POWER FLOW INTO THE CABIN ALONG

CABIN LENGTH (Fuselages Furnished With Baseline I
Sidewall Treatments: Frequencies Correspond to Fundamental r ;
and Second Harmonic of Propfan Blade Fuselage Frequency)

14.8-
J



are each lined with the baseline sidewall treatments. It is

clear that, while maximum transmission occurs in the region
f=--,

i of maximum excitation level, the power flow is distributed

over a considerable portion of the fuselage length. This

is due, for the wide-body and narrow-body fuselages, to the

influence of the outboard propellers whose directivities have

_ less pronounced effects than do the inboard propellers. The

contributions of the inboard and outboard propellers are in-

_ dicated separately. In general it is seen that fuselage

sections extending from just forward of the inboard propeller

_ plane of maximum excitation level to well-rear of the outboard

i propeller plane excitation level requireof maximum will

acoustic treatment to achieve significant reductions in

! acoustic power flow.

_- Further it will not be possible to confine the acoustic power

_ _ flow to a small element of the enclosed cabin by partitioning

the cabin space. This conclusion follows from the fact that

( the calculated power flow distribution is a direct indication

of the noise transmission distribution through the sidewall

l irrespective of any subsequent distribution of energy within

the cabin.

! Spectra of the net calculated power flow through the baseline

fuselage of each of the study airplanes (Eqs. (51) and (52))

_ are shown in Figure 41 Also shown in the figure are the contri-

butions associated with resonant and non-resonant transmission

through the fuselage structure. At higher frequencies where the

effects of frames are not included in the structural representa-

tions, the structural resonant modes become less efficient

( radiators so that the resonant power approaches that of the

mass-controlled non-resonant modes. The calculations clearlyiI

]
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]
i indicate however, that over the frequency range of interest,

resonant transmission controls the acousticpower flow.

I
6.1.2 Interior Noise Levels

! Having calculated the power inflow, through each of the fuse-

lage sections, it is now possible, by means of the imaging

! procedure outlined in Section 3.10 to calculate the variation

of sound level along the length of the cabin.

Prior to Considering each particular study airplane, the

effect of variations in interior absorption coefficient on

the axial variation in interior sound levels is examined.

Figure 42 shows, for the narrow-body airplane, the axial

sound level variation for two different values of absorption
coefficient for the case where a single panel element (number 4)

T is radiating into the cabin interior. _= 0.05 corresponds
essentially to a bare fuselage structure while _ = 0.75 would

_ be considered the maximum achievable value in the study air-
_ planes° The smaller the value of _, the more diffuse the

internal sound field. Some unpublished empirical data is

I available to support these calculations. For example, Figure 43

presents a comparison of calculated and measured variations in

I cabin sound levels for a small diameter propeller-driven air-
\,

craft: good agreement is found between measured data and

_i calculations using the image source array model.

Figure 44 shows the calculated axial variation of cabin A-weighted<
<i interior noise levels for the study airplanes, where the baseline

fuselage structures have been used. Results for the bare fuse-

add-on sidewall treatment for the Hamiltonlage and baseline

Standard excitation spectra [6] are presented. Maximum noise

levels of the treated baseline fuselage are between 5 and i0 dB
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( lower than for the bare fuselage. That the effect of the

baseline sidewall and associated increased interior absorption

I is so small results because the A-weighted interior noise

levels are in general controlled by the excitation level at

the propeller blade passage frequency, where the transmission

loss provided by the baseline sidewall is small, particularly

_ for the larger diameter fuselage. The axial variation for the
bare fuselage is notably less than that for the baseline

treated fuselage, a result of the decreased absorption present
in the bare fuselage.

It is clear that conventional airplane sidewall and fuselage

designs are inadequate to achieve the design criteria (i.e.,

80 dB_)maximum internal noise level) in the study airplanes.
Therefore substantial improvement will be required in the

fuselage/sidewall noise reduction.

Cabin noise spectra at the location of maximum calculated dB_)
i

_ levels for each study airplane for bare and baseline fuselages ,
and for the Hamilton Standard excitation spectra [6] are pre-

I_ sented in Figure 45. For each airplane, the propeller funda-mental dominates the internal A-weighted noise level, as well

Ii as the interior noise spectra. Baseline sidewall treatmentsprovide minimal noise reduction for these low-frequency ex-

citations, but are increasingly effective as harmonic order r

increases.

Table 8 presents a summary of the minimum noise reductions

required for the baseline structures to achieve the design

goal of 80 dB(A): these minima have been assessed at the

propeller fundamental frequencies since it is at these low

frequencies that it is most difficult to achieve high noise

reductions.
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TABLE 8.

MINIMUM ADDITIONAL NOISE REDUCTION REQUIRED FOR BASELINE STRUCTURE

Baseline Structure Wide-Body Narrow-Body Small Diameter
l

Maximum Cabin dBA level 105.5 104.9 108.1

'. Frequency of Fundamental, Hz 133 183 231

Sound pressure level at fundamental 120.8 116.5 117.4
frequency, dB

Sound pressure level at fundamental 95.5 91.8 89.5

frequency to meet 80 dBA goal, dB

Minimum Noise Reduction required 25.3 24.7 27.9
at Fundamental Frequency, dB

L
I



J

Limited experimental evidence from current commercial aviation

airplanes exists to support the above conclusions. In Figure

46 are shown comparisons between calculated baseline noise I

reductions for each of the study airplanes with empirical data

for narrow-body fuselages, where noise reduction is taken to i

be the difference between peak excitation levels and the maxi-

mum internal noise levels. The current predictions agree well _

with the range of data, lending some confidence to the analyti-

cal predictions.

6.1.3 Error Analysis

For the study airplanes of interest, Table 9 and Figure 47

show the expected error limits involved in the computation; -_

these estimates result only from modeling of the fuselage I

structures and the coupling with the cabin volume, and do not

include such errors as may result from inaccuracies in the I

description of the excitation pressure field.

Following the approach outlined in Section 3.5.3, the normal-

ized standard error in calculations of the net acoustic power

flow can be derived as

r = _ _rnr(_b)_b]_-½+ [2_nnnn(_b )_b ]-_ _

The upper and lower bound 2_ limits for 95_ confidence in <_-

power flow calculations are calculated as i0 logl0 (l+2s)r

and i0 log10 (l-2s r) above and below the expected value of

the power flow. These error limits should be interpreted as

follows: at any time, the actual value of the acoustic

power flow is expected to fall within the noted limits 95%

of the time such a check is made.
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.

Table 9.

J
Calculated error limits for the

.... acoustic power flow into airplane cabins

Upper Limit Lower Limit

Harmonic Order l 2 3 i 2 3

Wide-Body +2,7 +2,1 +1,1 -8.5 -4,2 -1,5

_-_ Narrow-Body +2.3 .+0,9 +0.9 -4.9 -1.1 -1.2
Small-Diameter +2,3 +0,8 +0.6 -5.2 -1.0 -0.7

,
I

'2_ corresponds to 2_ limits on the acoustic power flow.

i _ 6.2 Alternative Excitation Spectra

I_ The calculated axial variation in cabin A-weighted interior

noise levels for the study airplanes, with baseline fuselage

I and sidewal! structures, but with alternative excitation
spectra, are presented in Figure 48, and the corresponding

[i cabin noise spectra at the location of maximum dB(A) level areshown in Figure 49. The differences in maximum dB(A) noise

level between different spectra for each of the airplanes

!_ (Figure 48) result from changes in the level of the funda-

mental relative to the SPI5 baseline excitation, as shown

_ directly in Figure 49. Errors in estimation of the funda-
mental of the excitation spectrum are directly reflected as

errors in the A-weighted interior noise levels.

Since the Hamilton Standard spectrum represents the state-of-

the-art prediction and also leads to the most conservative

-161-



EXCITATION SPECTRA I

Hamilton Standard SP15
-3 dB/Harmonic

.... 10dB Flat

110

100_.. '_-_ - = i
90 " _ °_ "

.... i

Deslgn Crlter ia80 ........

o_ WiDEBODY
70, I .....

1)_- 0 10 20 30 40
"' Distance Along Cabin (m)"o

"_ 110 ...... -_
> I
_) _,

,..I

•-_ !
Design Criteria _

_i 80 ..... , ,

NARROW BODY i
I J IIII J_ I II IIII

0 10 20 30
Distance Along Cabin (m)

110 .__

90 .......

Design Criteria , _

SMALL DIAMETER
70 , f ,

0 2 4 6 8 10
Distance Along Cabin(m) _1

t

FIGURE 4.8. AXIAL VARIATION OF CABIN A-WEIGHTED SOUND
LEVEL FOR DIFFERENT EXCITATION SPECTRA
(BASELINE STRUCTURE, TRANSMISSION LOSS AND
ABSORPTION)

-162-



110 EXCITATIONSPECTRA _
"i-? _,_ -'-'-Hamilton Standard SP15

-----3 dB Harmonic
' 100 .... 10 dB Flat

i 9o

I 80 _WIDE BODY ,,\_. .......

I ' I

•• IO0 200 500 I000 2000
Frequency in Hz

T-_ 120 ......
I"

o 110 ......%, ......

"_ 10o ......

i _- 90 .......

--NARROW BODY-80 _ ...........

_ 70100 200 500 1000 2000
Frequency in Hz

120

'. II0 .....

100 ...........

90 ., '_%" ......
"%

" 80 -- SMALL DIAMETER

70
1 10 200 500 1000 2000

Frequency in Hz

FIGURE 49. CABIN SPECTRA AT LOCATION OF MAXIMUM SOUND,
LEVEL FOR DIFFERENT EXCITATION SPECTRA

-163-



(i.e., highest) interior noise estimates, all subsequent

calculations will be performed using this spectrum model for

the excitation. I

6 3 Conclusions• !

Clearly, substantial increases in the transmission loss of

fuselage/sidewall structure are required for each of the study

airplanes to achieve the design A-weighted noise level of 80 dB

maximum anywhere within the airplane cabin. The required I

increases in airplane sidewall noise reduction vary between

24 and 28 dB at the fundamental excitation frequency, signi- i

ficantly greater than the noise reductions provided by the

baseline sidewall fuselage structures, typical of conventional

airplanes, particularly for the larger diameter aircraft which

are driven by slower, larger diameter propellers. _
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_, 7. ADD-ON NOISE REDUCTION METHODS

! 7.1 General

The range of add-on noise contro! treatments available for con-

sideration in the analytical model includes variations of the

sidewall transmission coefficient, variations to the internal
l
_ absorption coefficient, increased damping and stiffness of the

c primary structure by add-on means, and optimizing the location
1
( of interior furnishings such as galleys and lavatories. Followinga

series of preliminary calculations of the structural character-

! istics and of the baseline interior noise levels, it is apparent<

that certain approaches would not provide significant increases

_ in the fuselage noise reduction. For example, at low frequency,J
the "smeared" properties of the fuselage structure are dominated

_ by the major stiffeners (frames, stringers) so that the adhesion

of honeycomb panels to subpanel elements would produce little

_ change in "smeared" stiffness and mass characteristics of the• structure. Consequently, the associated changes in fuselage

noise reduction would be small. Partitioning of the cabin volume

_ and, similarly, placement of galleys, lavatories, etc. at

particular fuselage locations close to the areas of peak excita-

) tion pressure levels, are also of little benefit for noise control
because of the large extent of the fuselage structural area aft of

__ forward propeller plane that transmits significant levels of

acoustic power into the cabin interior.

Thus, efforts have been concentrated on those add-on methods of

noise control for which it is clear that substantial increases in

fuselage noise reduction would be possible. These include
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I. optimizing the low-frequency absorption coefficients;

2. increasing the structural loss factor of the fuselage at

low frequencies by the addition of patches of damping material

to the skin and stiffeners; and

3. upgrading the noise reducti0n of add-on sidewall treatment
by construction of a limp-mass double wall system.

The results of computations for these add-on treatments are now

presented.

7.2 Maximizing the Interior Absorption Coefficients

Baseline absorption coefficients for the various study airframes

are discussed in Section 4.5. At low frequencies, the absorption _
1

coefficients are generally less than 0.3 so that there is some

potential for increasing the absorption at these frequencies. The
I

improvements would be practical only on sidewall and ceiling sur-

faces where significant cavity depth exists, although the use of

relatively massive trim panels in a double-wall configuration will (

tend to limit the increases in sidewall absorption coefficients.

For modeling purposes, however, changes in interior absorption

are assumed to occur only on the sidewall surfaces. The maximum

absorption considered practical is shown in Figure 50 together with

baseline data. The effects of this change in cabin absorption on ._

cabin A-weighted sound levels are shown in Figure 51 for each of i

the study aircraft. At the location of maximum internal sound

level, reductions of only I to 2 dB are produced, while away

from this location the benefits of increased sidewall absorption

are somewhat greater with changes in space-average A-weighted
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FIGURE 50. SOUND ABSORPTION SPECTRA ASSUMED FOR FURNISHING
COMPONENTS
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F
noise levels varying between 2 and 4 dB. The reason that

_ the peak levels change by such Small amounts is due to the• dominance of the direct contribution of sidewall radiation.

The reverberant level contributions to local A-weighted sound

some 3 to dB below the direct field levels.
levels lie 4

f- It is concluded that maximizing interior absorption coeffi-

! cients will lead to only small decreases in interior noise

levels, insufficient to achieve the 80 dB A-weighted interior

sound level criterion.

P
i 7.3 Increased Structural Damping

It has been shown, in Section 5.6 and, in particular, Figure

_ 36, that the low frequency structural total loss factors for the

baseline aircraft are mainly determined by radiation losses.

_J The application of damping treatments to the fuselage struc-

ture must therefore be quite extensive to be at all effective

in increasing the total low frequency structural loss factors.

In practice this is not an easily accomplished task, particu-

_ larly since at low frequencies the add-on treatment must be

applied to stiffening members rather than to the skin alone,

_ When damping treatments are applied to the fuselage skin,

increased structural loss factors and increased fuselage noise

reduction are produced only at frequencies of the order of,

! and above, the fundamental resonance frequencies of the sub-

panel elements (bounded by frames and stringers), as shown

in Figure 52 taken from [35]
I °

When damping treatments are applied to stringers in stringer~
I panel structures, using constrained layer techniques, the

structure component, of the total loss factor can be

nstruc '
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h

! increased, by conventional techniques, to values in the range

_ 0.05 to 0.i0 [42]. If similar treatments are applied to the

l fuselage frames as well, it is probable that values of nstru c
of 0.05 will be possible at low frequencies, where the

F
I frame stiffness influences the fuselage response and acoustic

power flow. Taking this value nstru c = 0.05 for all frequen-

cies, the total loss factor for the fuselage structure has
I

been calculated for the three study airplanes and the result-

_-_ ing values are given by the upper curves in Figure 36.

These values of total structural loss factor were then used

to estimate the probable maximum effect of add-on damping

treatment on interior sound levels for each of the study

airplanes. A typical spectral result is shown in Figure 53

for the narrow-body airplane, where results are compared for

the baseline airplane and the airplane with anticipated maxi-

mum structural loss factor. Results showing the effect of

_ increased structural damping on the maximum A-weighted levels

I for each of the study airplanes are also shown in Figure 53.

It is clear that, at best, add-on damping treatments will

provide only small noise reductions (3 to 5 dB) relative to

baseline levels, and that add-on damping treatments of them-

selves will not provide the noise reduction required to

achieve the design interior sound level criterion. Further,

the combination of add-on damping treatments and tuned in-

terior absorption, whose effects are essentially additive, will

achieve interior sound levels only 5 to 7 dB lower than those

of the baseline airplanes.

7.4 Double-Wall Sidewall Configurations

A preliminary investigation of add-on sidewall treatments by use

of the analytical model indicated that large decreases in cabin

sound level can be achieved by means of double-wall structures
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/

! which have fundamental resonance frequencies well below the

fundamental excitation frequency. The lowering of the double-
'l

i wall resonance frequency can be accompl_shed either by increasing

the cavity depth Z or by increasing the_ trim panel surface

_ density _2 (see Section 3.9 for nomenclature definitions) Thei

presence of porous material within the cavity of the double wall

I is important to damp both the double-wall resonance and theI
airgap resonances which occur at frequencies where the airgap

(.... depth is approximately equal to an acoustic half-wavelength. On

! the other hand, the use of a single layer of glass fibers,

_ either alone or in combination with light-weight septa were

! shown in [5] to provide insignificant increases in sidewall trans-

mission loss at the low frequencies characteristic of the prop-

/ fan fundamental blade passage frequencies.

_ Sample calculations, using the model presented in Section 3.9,
have been performed to show the estimated transmission losses

_ associated with different double wall systems where a limp

) trim panel was added to each of the baseline fuselage struc-

tures. The calculations were performed both for an empty air

I space between the two walls and for a space filled with porous

material. The depth of the airgap was taken to be 127mm (5 in),

a value which is typical of the maximum depth acceptable in

current day commercial aircraft. Resulting transmission loss

spectra for the wide-body fuselage are compared in Figure 54
i

for two values of the trim panel surface density _2 (2.0 and

8.0 kg/m 2, or 0.41 and 1.64 ib/ft 2) and with porous material

having characteristics similar to those of PFI05AA glass fibers

and a bulk density of 9.6 kg/m 3. The results for other study

airplane fuselage structures are essentially identical with those

presented. The curves in Figure 54 show that the effect of increas-

ing _2 from 2.0 to 8.0 kg/m2 is to increase the sidewall transmission
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! loss by about 12 dB, or by 6 dB per doubling of _2. The
/

d0uble-wall resonance frequency decreases in accordance with

i the frequency equation given in Figure 54 . At frequencies

just above the double-wall resonance frequency, the effect of

j the porous material in the air space is small, at least for

moderate values of flow resistance R I. As R I increases, the

i analysis predicts substantial increases in sidewall trans-

mission loss, even at the double-wall resonance frequency.

_ However, it is possible that at these high values of R I the

assumption that there is no structureborne transmission

_ through the material fibers is no longer valid. In all cases

! the calculations assume that the trim panel is highly damped,

or limp, and that there is no mechanical flanking path

_- through the trim panel supports.

_ Figure 54 also contains the sidewall empirical transmission

! loss spectrum (Figure 20) assumed for the baseline treatment.

The baseline properties (_ = 102 mm, _2 = 1.76 kg/m 2) are
similar to those for the lighter weight of the two analytical

model sidewalls, yet the transmission losses are significantly

J lower. This difference between laboratory data and analytical

predictions has been attributed [5] to the effects of flanking

_ paths is, as yet, no confirmatory
but there evidence. Little

information is available on the vibration transmission through

_ presently-used trim panel mounts, but, on the basis of [34],
J mounts with very low transmissibility will be required if the

_ 80 dB(A) goal is to be achieved.
[

It has been shown in Section 6 that, in order to achieve the

1 80 dB(A) criteria, noise reductions of about 25 dB relative to

the baseline sidewall treatment will be required at the funda-

_ mental blade passage frequency for each airplane. This increase

in transmission loss is greater thanthe values shown in

Figure 54 at corresponding frequencies. In fact, calculated
I
I
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-Z
values of _2, required to achieve the extra noise reduction,

range from 15 to 35 kg/m 2, depending on airplane type. Figure 55

shows a representative set of transmission loss curves calculated

for the range of values of _2 required to satisfy the design

criterion.

Since the acoustic power inflow varies along the length of the

fuselage (see Figure 40), the additional noise reduction required I

to meet the interior noise criterion will also vary. This will

result in a sidewall installation whose weight varies along the I

length of the cabin. Figure 56 shows the predicted variation in

sidewall treatment surface weight, calculated for the structural
I

element idealization described in Section 5.7. In practice the

variation in treatment weight will follow a smoother distribution _

along the cabin length but the total weight penalties will be !

similar. The data in Figure 56 show that well forward and well

aft of the propeller planes, the sidewall treatment weights are i

similar to those of the baseline aircraft although, as indicated

in Figure 54, the analytical model sidewall is more effective

in reducing noise transmission. The main weight increases

occur near the propeller plane of rotation. --i

Total weight penalties associated with the additional sidewall
J

treatments are listed in Table iO. It is assumed that the i

sidewall treatments are applied only to the region above the

floor line, although in practice some acoustic treatment will be

required below the floor, and are applied uniformly in the

circumferential direction above the floor. Since there is

some circumferential variation in the external pressure field t

it is possible that some reduction in treatment weight might be

achievable. However, the effect on total weight penalty will _

be small, and will be counteracted by the omissio n of under-

floor treatment in the calculations. !
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il TABLE 10

Predicted Weight Increase, relative to Baseline

{-_ Aircraft, to achieve 80 dB A-Weighted Sound Level Criterion

Airplane Payload
, Airplane Weight Weight Additional S_dewall Weight

% Take-Off % Payload
_ (kg) Weight Weight
I

........

Wide-Body 252,000 47,500 1,890 0.75 4.0

Narrow-Body 148,000 24,500 1,090 0.74 4.5i
J

Small-Diameter 30,000 2,350 450 i. 51 19.0

....

_ From this analysis it is apparent that, at least for the ideal-
(

ized double-wall system, the required reductions in cabin noise

_ level can be achieved. However, in order to achieve these
I exceptionally high transmission losses at low frequencies it is

imperative that there be no structural flanking paths across the

trim panel mounts or through the porous material in the cavity.

The practicality of achieving this vibration-isolated double-

wall system in an airplane environment has to be proven.

_ 7.5 Summary
(

Add-on treatments considered in this study included double walls

I (with and without glass fiber batts), damping, skin panel stiff-

ness, absorption in the cabin, and cabin partitions. Only the

double wall with batts can provide the required noise reductions

at low frequencies. Cabin partitions have no benefit because

of the spatial extent of the power inflow, and add-on stiffness

to the panel has little effect at low frequencies because the

power inflow is determined by stringer and frame characteristics.
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Large increases in cabin absorpt{on or structural damping

result in only small reductions in peak cabin noise level.

Furthermore the damping material has to be applied to the frames
I

and stringers, and practical methods of accomplishing this have

yet to be developed.

The add-on sidewall treatments developed for the three study

airplanes are summarized in Appendix D. Detailed optimization

studies to minimize weight were not performed because the

weights associated with increased damping treatments would be _
I

speculative and the predicted noise reductions are small. How-

ever, when practical methods of increasing the structural damp- _D

ing and cabin absorption at low frequencies have been developed,

optimization studies can be performed, combining double walls,
<

add-on damping and increased absorption techniques. The pre- I

dicted noise reduction and weight penalties will, of course,

depend on the external pressure field characteristics, the

results presented in Section 7 and Appendix D referring to the

pressure spectrum shape (SPI5 Spectrum of Figure 26) given by

current prediction procedures. For a given overall level,

this spectrum shape resulted in higher interior noise levels,

and larger weight penalties, than did the other two study spectra.

i i
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i 8.0 ADVANCED NOISE REDUCTION METHODS

( In the present context, advanced noise reduction methods are
those methods which involve modification to the fuselage

primary structure It is unlikely that such changes could be!

made as retrofit modifications to existing structures. Instead,

they would be incorporated in new fuselage designs, and, as

such, they would have to undergo the usual pre-certification

testing before being placed in passenger service. The testing

I could be extensive if the new structures are significantly

different from present-day aluminum skin-stringer-frame con-

I figurations. Because of the anticipated long lead time asso-
ciated with the introduction of advanced noise reduction

_ methods, they have been given less emphasis in the present
study than have the add-on noise reduction methods.

! Since the fuselage frames determine the fuselage stiffness at

low frequencies, modification to the frames was one of the

important advanced noise reduction methods explored in the

study. Also changes were made to the skin thickness. Varia-

tions to the stringer stiffness were not considered in this
(

phase of the study as the effects would lie between those due

_- to the frames and the skin. However, some indication of theeffect of stringer stiffness can be seen in Figure 86 in

Section 9.5. Factors considered in the study of advanced

I noise control included frame spacing and stiffness, skin thick-[

ness, and the use of honeycomb panels. The calculations were

! performed using the baseline acoustic sidewall system as pre-
sented in Section 4.5.4.

I
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8 1 Variations in Frame Parameters• _i

8.1.1 Frame Stiffness

The effects of doubling the frame bending stiffness parameter,

Erlr/Eh , are shown in Figure 57. (This parameter gives the
frame stiffness normalized with respect to the skin parameters.)

The figure compares harmonic levels for the cabin sound levels
i

at the location of maximum A-weighted level, using baseline 1

calculations as reference. Data for each study airplane show
c

that the increased frame stiffness results in reductions in i

cabin sound level, but the changes are small (0 to 3 dB).

The structural changes represented by this doubling of frame

stiffness could be achieved either by the use of composite _ [

materials in the frame construction or by redesign of the con- 1

ventional frame cross-section to increase the frame modulus of

inertia It, while keeping the radius of gyration _r and cross- i
sectional area A constant.

r -
!

Structural dimensions and fuselage parameters associated with

the doubling of frame stiffness are listed in Tables ii through

13 for each of the study airplanes. (

8.1.2 Frame Spacing t

A second approach considered was that of maintaining the frame _

stiffness equal to that of the baseline configuration, but

doubling the number of frames by halving the frame spacing.

Structural dimensions and fuselage parameters associated with

this modification are given in Tables II through 13 for the

three study airplanes, and the changes in harmonic sound level

are plotted in Figure 57 for the three lowest order harmonics.
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Table II

FUSELAGE DETAILS FOR ADVANCED NOISE CONTROL STRUCTURES: WIDE BODY

2x 1/2 2x ' 4x
Frame Frame Ski n Skin Honeycomb

,Description Baseline E Pitch Thickness Thickness Skin

Element Number 4 4 4 4 4 4

Frame Spacing _x (m) 0.5080 0.5080 0.2540 0.5080 0.5080 0.5080

Stringer Spacing _y (m) 0.1829 0.1829 0.1829 0.1829 0.1829 -

Skin

Thickness (mm) 1.778 1.778 1.778 3.556 7.112 34.408*

Mass/Unit Area (kg/m 2) 4.8006 4.8006 4.8006 9.6012 19.202 5.7472

Bending Stiffness D (N-m) 38.133 38.133 38.133 305.06 2440.5 13.012

i Torsional Stiffness Dk(N.m ) 12.584 12.584 12.584 100.67 805.36 17.474
r

oo Stringer

, Mass/Unit Area _As/ly (kg/m2) 2.6680 2.6680 2.6680 2.6680 2.6680 -

Bending Parameter Esls/D!y 170.72 170.72 170.72 21 340 2.6675 -

Membrane Parameter EsAs/Ehly 0.5558 0.5558 0.5558 0.2779 0.1389 -

Torsional Parameter GsJs/Dly 0.5084 0.5084 0.5084 _ 0.06355 0.007944 -
Centroid Z (m) -0.01583 -0.01583 -0.01583 -0.01672 -0.01850 -

S

Frame

Mas---_Unit Area pAr/i x (kg/m2) 2.8209 2.8209 5.6417 2.8209 2.8209 1.3807

Bending Parameter Erlr/Dl x 4585.9 9171.7 9171.7 573.23 71.654 4.1835

Membrane Parameter ErAr/Ehl x 0.5876 1.1752 1.1752 0.2938 0.1469 0.3157

Torsional Parameter GrJr/Dl x 0.6427 1.2855 1.2855 0.08034 0.010043 0.000673

Centroid Z- (m) -0.05468 -0.005468-0 05468 -0 05557 -0 05735 -0 03817
r " " " "

Ari b x i03 (m2) 0.2734 0.2734 0.3273 0.2734 0.2734 -

*Equivalent skin thickness based on radius of gyratmon.



Table 12

FUSELAGEDETAILS FOR ADVANCEDNOISE CONTROLSTRUCTURES: NARROWBODY

2x I/2 2x 4x
Frame Frame Skin Ski n Honeycomb

_, Description Baseline E Pitch Thickness Thickness Skin .

Element Number 4 4 4 4 4 4

Frame Spacing _x (m) 0.5080 0.5080 0.2540 0.5080 0.5080 0.5080

Stringer Spacing _y (m) 0.2286 0.2286 0.2286 0.2286 0.2286 -

Skin

Thickness (ram) 3.0 3.0 3.0 6.0 12.0 23.326*

Mass/Unit Area (kg/m2) 8.100 8.100 8.100 16.200 32.400 5.0195

Bending Stiffness D (N-m) 183.18 183.18 183.18 1465.4 11,723 5610.7

Torsional Stiffness Dk (N-m) 60.45 60.45 60.45 483.6 3868.7 6.4379
I

co Stringer

Mass/Unit Area PAs/ly (kg/m2) 1.0817 1.0817 1 0817 1.0817 1 0817
| • • m

Bending Parameter Esls/Dly 23.687 23.687 23.687 2.9608 0.3701 -

Membrane Parameter EsAs/Ehly 0.1335 0.1335 0.1335 0.06677 0.03338 -

Torsional Parameter GsJs/Dly 0.01264 0.01264 0.01264 0.001581 0.000198 -

Centroid Zs (m) -0.01855 -0.01855 -0.01855 -0.02005 -0.02305 -

Frame

Mas---a_unitArea PAr/I x (kg/m2) 1.6233 1.6233 3.2467 1.6233 1.6233 1.2389

Bending Parameter Erlr/Dl x 294.55 589.10 589.10 36.819 4.6023 6.6599

Membrane Parameter ErAr/Ehl x 0.2004 0.4008 0.4008 0.1002 0.05010 0.3019

Torsional Parameter GrJr/Dl x 0.04455 0.08910 0.8910 0.005569 0.000696 0.001397

Centroid Z--r (m) -0.03921 -0.03921 -0.03921 -0.04071 -0.04371 -0.03698

Ari b x 103 (m2) 0.1579 0.1579 0.1929 0.1579 0.1579 -

•Equivalent skin thickness based on radius of gyration.



Table 13

FUSELAGE DETAILS FOR ADVANCED NOISE CONTROL STRUCTURES: SMALL DIAMETER

2x I/2 2x 4x
HoneycombFrame Frame Skin Ski n

Description Baseline E .... Pitch Thickness Thickness Skin

Element Number 2

Frame Spacing A (m) 0.3302 0.3302 0.1651 0.3302 0.3302 0.3302x

Stringer Spacing Zy (m) 0.1270 0.1270 0.1270 0.1270 0.1270 -

Skin
Thickness (mm) 1.016 1.016 1.016 2.032 4.064 22.886*

Mass/Unit Area (kg/m 2) 2.7432 2.7432 2.7432 5.4864 10.9728 3.6695

iBending Stiffness D (N-m) 7.1151 7.1151 7.1151 56.921 455.37 3624.5

, i Torsional Stiffness Dk (N-m) 2.3480 2.3480 2.3480 18.784 150.27 5.0663

co Stringer

, Mass/Unit Area PAs/ly (kg/m2) 1.0973 1.0973 1.0973 1.0973 1.0973 -

Bending Parameter Esls/Dly 96.588 96.588 96.588 12.074 1.5092 -

Membrane Parameter EsAs/Ehly 0.4000 0.4000 0.4000 0.2000 0.i000 -

Torsional Parameter GsJs/Dly 0.4947 0.4947 0.4947 0.06184 0.007730 -
Centroid Z (m) -0.00744 -0.00744 -0.00744 -0.00795 -0.00897 -

S

Frame

Mass/Unit Area PAr/i x (kg/m2) 1.0034 1.0034 2.0068 1.0034 1.0034 1.0889

Bending Parameter Erlr/Dl x 2840.9 5681.7 5681.7 355.11 44.388 4.5981

Membrane Parameter ErAr/Ehl x 0.3658 0.7315 0.7315 0.1829 0.09144 0.3954
0.4066 0.8132 0.8132 0.05083 0.006353 0.001011Torsional Parameter GrJr/Dl x

Centroid Z (m) -0.03911 -0.03911 0.03911 -0.03962 -0.04064 -0.02500r

Ari b x i0 _ (m2) 0.07136 0.07136 0.08252 0.07136 0.07136 -

*Equivalent skin thickness based on radius of gyration.
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_ It is seen that this method produces only small changes in

harmonic level, and in some cases the sound level increases

I rather than decreases.

I 8.2 Variation in Fuselage Skin Thickness

_ Two situations were considered with regard to skin thickness.

! First, the skin thickness was doubled with respect to the

_ baseline configuration. Then the thickness was doubled againso that it was four times the baseline value. The resulting

fuselage details for the three study airplanes are tabulated

in Tables ii through 13

Changes in harmonic sound level associated with the doubled and

! quadrupled skin thicknesses are shown in Figure 58 for the

three lowest-order harmonics and the three study airplanes.
I
, The spectra correspond to the location in the cabin with the

highest A-weighted sound level.

! In general an increase in skin thickness results in a decrease

in harmonic level for the cabin sound spectra. However, only

! in the case of the narrow-bodied airplane, which has a rela-

tively thick skin in the baseline configuration, does the noise

_ reduction exceed 3 dB for either the first order (fundamental)

harmonic or the A-weighted sound level. As the skin thickness

_ increases within the range considered, it is found that the

structural modal density at low frequencies increases but, at

[-_ the same time, the band-averaged joint acceptance decreases.
The increase in modal density occurs because, at these fre-

quencies, the fuselage stiffness is dominated by the fram_characteristics and the increase in skin thickness is observed

mainly as an increase in structural mass.
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These changes in modal density and joint acceptance essenti-

ally cancel each other for the wide-body and small diameter
I cases and the resulting noise reduction is small. Por the

narrow-body airplane, however, the baseline skin mass is rela-

tively large so that the cabin noise levels are more sensitive

to further increases in skin thickness.

8.3 Honeycomb Skin Panels

/ During recent years there have been several investigations

concerned with the use of honeycomb panels for fuselage primary

! structures, although no such structures have yet been intro-

duced for passenger-carrying aircraft. One advantage of honey-

_- comb construction is that fuselage stiffness characteristics

can be maintained whilst reducing the total weight of the

fuselage. However, the noise transmission characteristics of
the honeycomb panels, when exposed to typical fuselage exterior

pressure fields, have not been explored. Consequently honey-
I comb skin panels were included in this analysis of advanced

noise control methods.

It was not possible, within the scope of this program to de-

velop an analytical model for noise transmission, to derive

general design characteristics for honeycomb fuselage struc-

tures. Thus, reference was made to available structural in-

vestigations In particular honeycomb structures were designed(

on the basis of fuselage configurations presented in [29]. The

_- honeycomb structures have ring frames with the same pitch asI
for the corresponding baseline study aircraft, but no stringers

I- are used. A typical panel configuration is shown in F_gure 59,

I and dimensions are listed in Table 14. Structural character-

_ istics are presented in Tables ii through 13.L



TABLE 14: DIMENSIONS FOR HONEYCOMB STRUCTURES

a3

a1

a4 _11111111 ' h. iT
h

P

WIDE-BODY NARROW-BODY SMALL-DIAMETER
o FUSELAGE FUSELAGE FUSELAGE!

CORE THICKNESS h (mm) 19.05 12.70 12.70
C

FACE PLATE THICKNESS h (mm) 0.81 0.76 0.51
P

FRAME THICKNESS hf (mm) 1.40 1.40 1.02

FRAME DEPTH a I (mm) 101.6 88.9 63.5

FLANGE LENGTH a2 (mm) 31.75 25.40 . 20.32

FLANGE LENGTH a 3 (mm) 25.4 25.4 20.32

WEB-HONEYCOMB SEPARATION a 4 (mm) 6.35 6.35 6.35

FRAME SPACING (m) 0.508 0.508 0.330
I I ' III •
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Predicted spectra associated with the cabin maximum A-weighted

sound levels for each study airplane with honeycomb structure

are presented in Figure 58. It is seen that, for the selected

structures, there is a general, although small, increase in

sound level relative to the baseline configuration. Inspection

of the analysis indicates that the noise increase is due to the

decrease in smeared-out mass of the structure. Thus, the use

of llght-welght fuselage structures with bending and membrane _<

stiffness parameters equivalent to those of conventional struc-

tures, and with similar fuselage loss factors will lead in

general to increases in interior sound_levels. Optimization of

honeycomb structures With respect to noise transmission will

require extensive use of the analytical model and development of

dynamic models more suitable for honeycomb structures.

8.4 Summary

The results of the study of advanced noise control methods

presented in this section are summarized in Table 15 and " --i!
Figure 60 in terms of changes in A-welghted sound level and

the surface mass density of the structural element which trans- _i
mits the major fraction of the acoustic power inflow. The 1

total mass per unit area is quoted in the table, and the change

in surface density, relative to the baseline structure, is

shown in the figure. In all cases it is assumed that the

sidewall treatment is the same as that for the corresponding (

baseline study airplane.

In general the decrease in the A-weighted interior noise level

is proportional to the increase in the mass surface density ___

of the structure. A 3 dB decrease in noise level is produced i

approximately by a 3 dB (doubling) increase in mass density of

the fuselage structure independent of whether the mass addition
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! TABLE 15
z---

! SUMMARYOF NOISE REDUCTIONS ACHIEVED WITH

ADVANCED CONCEPTS

.......... L

Wide Body Narrow B0dy ] Small Diam.

!_ Structure Mass/ Max.Cabin Mass/ Max.Cabin Mass/ Max.Cabin
i Unit Area dBA Unit Ares dBA Unit Are_ dBA

'i , , .......

_ Baseline 9.46 105.5 i0.29 104.9 4 84 i08.1
! .... '

I 2 x Frame Stiffness 9.46 I04.1 10.29 104.7 4.84 104.2

Half Frsme Pitch 11.05 102.9 13. ii 106.0 5.85 106.4

( 2 x Skin Thickness 16.2 104.4 15.09 102.2 7.59 106.6
4 x Skin Thickness 29.7 101.9 24.69 97.6 13.07 104.2

i HoneycombSkin 6.26 108.1 7.13 108.8 4.76 107.8
i lill I ii i il] iiii i I iiiii

Mass/Unit Area (kg/m 2) Includes Skin, Stringers and Frames For

! the Structural Elements For Which the Input Power is a Maximum.

I
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_ occurs as a result of increasing the number of stiffening ring

_ frames, or as a result of increasing the skin thickness. There

! are, of course, some exceptions to this general trend. For

example, a 4 dB reduction in noise level is predicted for the

small diameter airplane when the frame stiffness is doubled,

yet this method does not increase the structural mass.

I From this analysis of advanced noise control concepts it is

_ apparent that it will be difficult to achieve the required
noise reductions by means of these methods alone. Whilst a

more extensive parametric analysis is required than was possible

i under this study, it is anticipated that add-on noise reductioni
methods will have to be used with the advanced concepts in

T order to meet the 80 dB(A) goal for interior noise levels. An
optimization procedure will be required to perform the analysis.



9.0 REQUIREMENTS FoR EXPERIMENTAL VERIF CATION OF
ANALYTICAL MODEL

9.1 Introduction

The analytical model developed in Section 3 has been used to

evaluate the various add-on and advanced noise control methods

described in Sections 7 and 8. However, it is advisable that

the analytical model undergo some form of experimental valida-

tion just as was done for a similar analytical model of the

acoustic environment in the Space Shuttle orbiter payload

bay [I0, 4]. The key questions to be answered in the valida-

tion of the present analytical model are:

(i) Does the analytical model adequately predict

the response of the fuselage structure to a

convected pressure field with a rapidly decay-

ing amplitude?

(ii) Does the analytical model adequately predict

the sound levels in the interior of a fuselage

with a sidewall treatment typical of present-

day turbofan aircraft?

(iii) Can the add-on sidewall treatments provide the _

high noise reductions predicted by the analyti- I

cal model at low frequencies?

and
(iv) Does the analytical model adequately predict

the noise reductions provided by different

fuselage structure designs? _

Practical questions concerned with the design of validation

tests revolve around several key steps: construction of a

model fuselage which adequately simulates the full-scale

propfan airplane; simulation of the propfan excitation;
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and definition of the experimental measurements and procedures!
to be followed to answer the above questions.

! In this section, criteria for adequate simulation of typical

- propfan airplane configurations are discussed in detail. In

i Section 9.2, sensitivity studies are conducted to demonstrate the

importance of excitation, structural, and cabin variables on the

measured noise reduction. Alternative excitation simulation

methods are reviewed in Section 9.3, bearing in mind the criteria
r--
i developed in Section 9,2 for achieving the above test program ob-
i

jectives. Section 9.4 presents detailed recommendations, resulting

_ from the preceding discussion, for the proposed test program.

! Excitation and fuselage models, and measurement and data analysis

procedures are outlined. The relationship between experimenter

1 and analyst is discussed in detail. Validation using flight tests

with an existing propeller-driven airplane is discussed in

Section 9.5.

F- 9.2 Sensitivity Studies

The planning of a model test study requires the selection of an

! appropriately constructed and scaled test model. Fundamental to

correct model selection is an understanding of the sensitivity

1 of the calculated noise reduction (and the parameters such as

_ s)<J >P' _' nr' _r' T to variations of the characteristics of the

__ excitation and the structural and sidewall configurations from the

prototype propfan airplane designs. In this section, scaling laws

_- are presented which show how the characteristics of the excitation,
structure, sidewall acoustic treatment, and interior acoustics

depend on the size and material selection in the model fuseiage
relative to the propfan prototype. Approximate limits within

which critical parameters must be maintained, are presented for

guidance in the practical selection of a scale model experiment.
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9.2.1 Model Scaling

The Mikulas resonance-frequency equation (Section 3.8.1), _

which smears out the mass and stiffness characteristics of

frames and stringers over the skin surface, has been used to

predict the wavenumber-frequency distribution for the struc- _

tures of the various study airplanes. The equations were

modified to include the effects of cabin pressurization, f

The contributions of the skin and stiffener masses and stiff-

ness are clearly represented in the equations (Figure 5) in
f

a series of non-dlmensional groups which can be readily varied

independently to quantify the influence of each component in

the prediction of fuselage wavenumber-frequency distributions.

Correct scaling implies that the test model fuselage has the

same non-dimensional wavenumber-frequency distribution as the

prototype fuselage. The resonance frequencies v of the --_mn

model fuselage, when non-dimensionalized by the theoretical

cylindrical fuselage ring frequency, must remain constant for _

all vibration modes. The Mikulas equation (Figure 5), both !

sides of which are non-dimensional, can be written in abbre-

viated form, as

2 h _ r E I E A

Vmn e = function r r, __r r, __r , ,.. (84)
4 2 E_ h R

h3R D_x x

(all non-dimensional groups are listed in Figure 5). Here

h is the skin thickness, h e is the thickness of the equiva-

lent orthotropic panel (i.e. skin plus smeared-out stiffeners)

and Vmn = _mn/mr where _r = CL/R and cL is the longitudi_al

wavespeed in the skin. It is assumed in the following sections

that the skin and stiffeners are of the same material.



For v to be constant for model and full-scale fuselagesmn

requires a dimensionally-scaled model where h/h, h/R and he/R

I are maintained constant. Then the non-dimensional groups on

the right hand side oT Eq.(84) must be maintained constant,
V-

which requires that all dimensions are scaled to maintain ther

same ratio with the fuselage radius. Dimensionally-scaled

_ models, in which all dimensions are changed in the same ratio,
will maintain the same non-dimensional wavenumber-frequency

F distribution according as

_mns/_mnf = Rf/R s

using the same material or, more generally, a material with the

same compressional wavespeed cL for both model and full-scale

fuselages, and where _mns is the (m,n)th resonance frequency of

the model cylindrical fuselage of radius R ; subscript f refers

to the full-scale fuselage. Thus, for example, use of a half-

scale test model requires that measurements be carried out at

_ twice the excitation frequency of the full-scale fuselage.
F

By analogy with uniform axisymetric circular cylinders, the

non-dimensional modal density N(v) is given by N(v) =

n(_b)_r/(L_/K) , when _ is the effective radius of gyration of
c the stiffened cylindrical fuselage. Lx/_ is constant for a

dimensionally-scaled model fuselage so that n(_)_ r must also

be constant for model and full-scale fuselages when evaluated

at the scaled excitation frequency if N(v) is to be constant.

_] Figure _i shows that n(_b)/R is constant for model and

full-scale structures when correctly scaled dimensionally;

minor variations occur due to band-width computation proce-dures at low frequencies. In performing this analysis, it

is assumed that the model and full-scale fuselage structures

are constructed of the same material, more particularly, mat-

erials with the same value of eL . Detailed examination of the
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)
resonant modes used in computations show that an essentially

_- identical wavenumber-frequency distribution is produced forI
r
i

a correctly scaled model fuselage when evaluated at frequency

(_b/_r)"

9.2.2 Noise Reduction Scaling

The high frequency formulation (Section 3.5.4) is used ex-

clusively for all study airplanes. For baseline aircraft

where Wout(_) can be neglected in comparison with Wabs(m) ,

the fuselage noise reduction can be calculated, from Eqs.

(26) and (54), as

! NR(_b) : l0 log <Pxo (85)I0 2
<Pi(_b)>

where

7- _I

2(_b)> _(Pici ) A [nr(_b)_r]<Jr(_b)>p <_rad > TsI <Pxo =
2

f- <Pi(_b)> _O _r_2_S _r
(_6)

r-

The excitation frequency is denoted in Eq.(86) by _b' where

it is implicitly assumed, from Section 9.2.1, that the ratio

(mb/m r) is the same for model and full-scale conditions. Thus
i

when it is stated that some function, say ¢(mb ), is the same

for model and full-scale conditions, what is really implied

is that ¢(_b/_r) remains constant. An equivalent approach

is to specify that ¢(_b ) is constant for constant harmonic
order b.
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As will be shown, parameters contained within the I I brackets !

are all non-dimenslonal, depending only on non-dimensional

groups which are, or can be, maintained constant in scale

model testing. The terms preceding the I I brackets deter-

mine the dependence of the noise reduction on dimensiona_ material,

and frequency changes: these, if any, must be clearly defined if

model acoustic tests are to be properly interpreted and used _

for full-scale noise reduction predictions. The variables on

which the important parameters determining the structural

response of, and acoustic radiation from, the fuselage depend,

are briefly reviewed.

I
For simplicity, the following discussion will present numerical

examples based only on the wide-body fuselage structure, but

similar conclusions can be drawn for other aircraft. Also,

the discussion is limited to the three lowest order harmonics

since these dominate the interior noise levels, i

9.2.2.1 Scaling of the external acoustic excitation i
J

The excitation is described by its cross spectral density
_7

function which depends on the pressure amplitude decay rate

parameters (axLx, ayLy), the excitation coherence parameters

(Cx,Cy) and the non-dimensional excitation trace wavenumber

(kxR , kyR). Each must be maintained constant between model
and full-scale fuselage to maintain correct excitation scaling.

For example, for a half-scale model fuselage, the pressure

amplitude decay (in dB/m) for the fuselage model will be twice

that for the full-scale fuselage since the model is half as

= axfLxf/Lxs. Thelong as the full-scale fuselage: i.e. axs

coherence decay parameters (Cx,Cy) can be written as

= c' (_) where c' is a constant The Strouhal numberCx X X "

e_/U x willXbe constant if the trace velocity U x is constant,
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,, since, as determined earlier, length scales (.such as _) vary

inversely with frequency. (The selection of c is somewhat
X

I arbitrary on account of a lack of experimental data ) Further,I

as will be shown, the sensitivity of the joint acceptance to

i variations in (Cx,Cy) is weak when(Cx,C ) are small. For

constant trace velocities (Ux,Uy) in th_ axial and circumfer-

V ential directions respectively, (kxR,kyR) will be constant for

i a scale model since _bR will be maintained constant. Further-

more it is imperative from the point-of-view of excitation

i source directivity, that the acoustic wavenumber _uR/Ce be
maintained constant. These various requirements are consistent

Jl with each other and with the structural scaling requirements
l

_- 9.2.2.2 Band-averaged joint acceptance <j2(mb)>p:I r

The band-averaged joint acceptance for a progressive waveexcitation is calculated for a group of resonant structural

modes by summing the individual joint acceptance functions
I
i at the analysis-band center frequency and then dividing by

the number of modes. The variables, on which the modal joint
7
J acceptances depend, are given by

2 F kxR k R 1
Jmm(mb ) : function _k-_ --_) (m,n) (axLx,ayLy) (cx c ), knR ' , , , y J

R k• = _ Y' = _ (m,n) is the struc-' k R n_U '
where kmR m_Ux n y

tural mode order, (km,k n) the structural modal wave numbers,

and (kx,ky) the excitation wavenumbers. If (axLx,ayLy) ,

(Cx,Cy) and (Ux,Uy) remain constant, as required to correctly
simulate the excitation characteristics on a test model, and

the model is also dimensionally scaled, (m,n) (kxR/kmR) and
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(kyR/knR) will also be maintained constant at the scaled -I_
excitation frequencies and correct simulation of the Joint

acceptances of the full-scale propfan will be achieved. !

Figure 61 presents calculations of the band-averaged joint

acceptance for full-scale and half-scale fuselage elements _

for the wide body study airplane for in-flight pressurization .... _!

conditions. The model and excitation have been scaled in __

accordance with the previous discussion: it is clear that i

<J_(_b)>p_ is constant for constant harmonic order b.

9.2.2.3 Band-averaged radiation efficiency <°rad >: !

The band-averaged radiation efficiency (or radiation ratio)

<arad > depends on the individual modal radiation efficiencies,

which themselves are functions of mode order, relative struc-
J

tural and acoustic wavespeeds, and structure dimensions; i.e,

.L, k c<arad > = function [(m,n), (kciR/kmnR), kcl iR]

where kciR = _bR/Ci . A correctly scaled model will preserve J
the same non-dimensional wavenumber-frequency distribution I

for model and full-scale structures while kciL and kc_R will
also be constant at the new model-scale test frequencies. !

Thus <_rad > will remain constant for correctly-scaled model

fuselage structures. This is also shown in Figure 61.

9.2.2.4 Band-Averaged Structural Loss Factor _r:

The band-averaged structural loss factor _r depends on strum-

tural dissipation associated with factors such as joint fric-

tion, gas pumping, and applied damping treatments, as well as

on radiation damping forces. Thus

_r = _struc + _rad
f

r
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where, as discussed in Section 5•6 , nstru c depends essenti-

_ ally on the structural mode order, provided the joint details
J
! are similar and the frequency change is not too great, while

the acoustic radiation loss factor nrad depends on both struc-

tural surface density and radiation ratio: i.e.,

- = <o /_b_I qrad PiCi rad >

where _is the surface density of the fuselage structure• Since

! j dimenslonally-scaled models will maintain (m,n), _b b. Vmn amd

<Orad > constant at the new modal test frequency then nrad, nstruc.
I
! and consequently nr, will all be malntained, constant_.

j 9.2.2.5 Sidewall Transmission Coefficient TS:
t

The sidewall transmission coefficient T of a double-wall
P--_' S

I structure, is essentially a function of the acoustic and

double-wall resonance wavenumbers, non-dimensionalized with

] respect to cavity depth _, as well as the attenuation and

waveflumber parameters for the medium in the double-wall

I cavity. Thus,

Ts = function [kci_ - __ci, kdw_, _, 8_]t
If each of these non-dimensional parameters is maintained

_-_ " will be
! constant between model and full-scale fuselages, Ts

constant.

! _ The non-dimensional acoustic wavenumber kci_ will be held con-

stant for constant ci since _ is constant for a dimensionally-

_° scaled model fuselage.
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The double-wall, non-dimensional resonance wavenumber kdw_ is

given, approximately, by
1/2 i

( p_(pl+p2))/ ikdw_ =
_IP2

(87)

=(p_ + o! )1/2Plhl P2h2

where _i, _2 are the material densities for the fuselage and , {
trim panels respectively: hz, h2 are the corresponding panel _

thicknesses, p is the density of the cavity medium. Then if

the materials are the same for model and fullscale panels, _

the model and fullscale values of kdw _ will be the same when
i

_,hl, and h 2 are all scaled in proportion to radius R. The

attenuation parameter a_ where a is attenuation per unit dis-

tance (dB/m) in the porous medium (see Section 3.9.2), may be !
written non-dimenslonally as

_ = k_ 0°564 kX/(-77) (88)

while the porous material wavenumber parameter B_, where
6 = 2_/(acoustic wavelength in the material), can be written

non-dimensionally as

{= k_ i + 0.?5 _/_;_---6_ (89)

Maintaining the acoustic wavenumber k_ and the non-dimensional

flow resistance (Rl_/PC) constant will ensure _ and B_ _/
are properly scaled and maintained constant. [ _

Consequently the double-wall sidewall transmission coefficient

and the add-on sidewall transmission loss will be the same for

}



model and full-scale fuselage configurations. The requirement
/

I that the flow resistance Rlg remain constant for the model

- sidewall implies a change in flow resistivity RI: this can be

achieved by changing either the material density _m or the

material fiber diameter d since Rl_Pml'53/d2 [26]. Changes

! in Pm are most easily arranged by compressing standard porous

material samples, although there will be a small increase in

1 the total weight of the material. Such an increase will be

small compared with the double-wall mass, and will not cause

_ a significant change in the noise reduction provided by the
$

_ , wall panels, provided that the mechanical stiffness of the

layer is not so high that it invalidates the acoustic modeling.

Detailed calculations, as seen in Figure 62 for full-(curve (a))

and half-scale (curve (b)) models where m (kZ) remains constant
F'_ S

• for kdw£ and RI£ constant, verify the scaling arguments. If

RI£ is not scaled correctly, _ (k£) will not be correctlyF-- S

scaled as shown by curve (c) in Figure 62.

_- 9.2.2.6 Interior Acoustics:
i

The acoustic modal overlap of the cabin volume _ expressed by

: Rn nn

I _(_b ) S kb2
2

8_

must be kept constant to ensure correct scaling of the side-

I wall radiation characteristics. In a dimensionally-scaled! 2}

model, kbS _ (_R)(kbL!will remain constant. Then, to keep

i the modal overlap unchanged, the absorption coefficient of
• the various surfaces must be the same for the model and pro-

T totype fuselages. In the above equation, kb = _b/Ci.
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FIGURE 62. PREDICTED ADDITIONAL SIDEWALL TRANSMISSION

LOSS t FULL AND HALF-SCALE FUSELAGE MODELS q

)
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! _ The absorption coefficient depends essentially on sidewall

characteristics since the bulk of the cabin absorption ls
f_

provided by the bounding surfaces: for example,

_! _(_b ) = function kb_ , _A__,mb__ ,J

PiCi PiCl

4 , all terms of which are non-dimensional and remain constant

_-_ for a dimensionally-scaled model (P2 is the interior trim-i
I panel surface density). Thus _ will be constant if TS remains

constant, since the same non-dimensional parameters are in-

h volved in both cases.
\

F_ In practice, the cabin length L may be shorter than dimensional

_: scaling would allow: additlonal absorption can then be added

_, to non-radiating surfaces so that _n(_b ) remains constant.

9.2.2.7 Summary:

J Referring to Eq. (86) for the fuselage noise reductlon, it has

been shown that, for a dimensionally-scaled model and ex-f_
q

! citation, the terms inside the { } brackets will be equal to

those for the full-scale fuselage. The change in noise reduction

J from full-scale to model-scale then reduces to

_'_ NRfulI-NR = 101og PiCi )s As _bf _rf Sf
scale i z " _ " -- " _

PiCi) f Af _bs _rs _s ! Ss

' (.90)
= lOlog 2 Ps_ . "y, 10 PiCi)f

for a dimensienally-se_led model, where, according to the
r-,
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i
analytical model, subscripts s and f refer to model-scale !

and fullscale conditions, respectively.

r
Thus, the measured noise reduction on a dimensionally-scaled

test model will be essentially equal to that measured on a r_

full-scale fuselage at the same non-dimensional frequency

provided the excitation has been properly scaled.

i

9.2.3 Effects of variations in excitation and structural

characteristics. (
\

In a practical model test situation it may not be feasible

and/or economic to construct a fully-scaled test model: for

example, exact simulation of stiffener details would be a

relatively expensive task. Thus it is necessary to know the q
magnitude of the errors produced in noise reduction calcula-

tions or, more directly_ in the parameters shown in Eq. (86)

on which the noise reduction depends, when other than complete

simulation exists. The most important of these parameters r

are the band-averaged joint acceptance, the structural modal

density and radiation resistance, and the sidewall trans-

mission coefficient.

Consider first the effects of pressurization loads. Figures

61 and 63 show that for the wide body fuselage and for fre-

quencies below the subpanel resonance frequency, <jr2(_b)>p, j_

n(_b)/R and <_rad > do not depend significantly on whether
full-scale pressurization loads are simulated in the model

scale test. This is true because the frames and stringers
<

have high bending stiffness relative to the induced in-plane

(pressurization) membrane stiffness. Similar results are found

for the other study aircraft, as seen in Figures 64 and 65.
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Thus there is little need to pressurize a test model fuselage

if one is concerned only with low frequency noise reduction,

for example, at the lower three harmonics which are of present I
1

concern•

Of interest now is the accuracy with which the excitation

characteristics, (a ,a ), (Ux,Uy) and (Cx,Cy) must be modeled.

UConsider the dependence of the band-averaged Joint acceptance

on the amplitude decay rate parameter (ax,ay). Figure 66
shows, for the wide-body airplane (baseline structure, ele- --_

,. [

ment 4), the dependence of <j2 . _r>p on variations in (ax,a .) fory

a range of harmonic order, (Ux,Uy) and (Cx,Cy) being kept
constant. The dependence is marked, as predicted by Eq. _.9) _

.2
of Appendix A. The values of <jr>p_ relative to the baseline

estimate are shown in Figure 67 for different values of (ax,ay).

It is clear that close simulation of (ax,ay) is most important;

for an accuracy of ±i dB in <jr>p and_ hence, in structural

response and noise reduction simulation, (ax,ay) must be
modeled with an accuracy of ±10% However, as shown in _--_• L

Figure 66 for situations involving strong decay in the pressure

amplitude, simulation of (Cx,Cy) need not be very precise. }

, !
.2

Figure 68 shows the dependence of <j.r>p on variations in trace

velocities (Ux,Uy) for the wide body aircraft: it is clear t!

that close simulation of Ux, and Uy is imperative, and limits

of ±10g are suggested as reasonable• A similar strong '_I

dependence on the variation in Ux,Uy is found for the other
study aircraft, although the errors do not follow any general

pattern since basic structural differences exist between

different study aircraft. -_
i

_L
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The effects of incorrectly scaling frame, stringer, and skin

parameters are now discussed. Consider first the situation

where the frame bending stiffness, expressed by the term

(Erlr/D_x) (see Figure 5), is not simulated correctly, while _ I
all other parameters remain constant. Figure 69 shows the

2

variations in <arad >, n(_ b) and <jr>p for the widebody air- _

plane which result from variations in the baseline frame i

bending stiffness. Small variations in <Orad > occur since the
modes are still supersonic for all cases tested. The effects

of the modal density and joint acceptance are important only
!

for the case where the baseline frame bending stiffness is 1

doubled. It seems that the frame stiffness and spacing should

be fairly closely scaled, within ±20% of the dimensionally

scaled values. On the other hand, as seen in Figure 70 the

errors introduced by improperly modeling the frame membrane _

stiffness are small even for changes in (ErAr/Eh_) to 50% of

baseline values. Likewise, the radius of gyration of the

frame about the skin and the combined frame and stringer

torsional stiffness parameter both appear to have only minor

influences on either parameter.

j_

Variations in stringer stiffnesses for the widebody airplane i

are shown in Figures 71 and 72 . The stringer bending stiff-

ness, membrane stiffness and radius of gyration are most im-

portant in the intermediate or mid-frequency structural regime

(where only the stringers and skin properties are considered). I
However, from Figure 72, it is clear that stringers must be _ !

included in the test model for good simulation of n(_b) , even
at low frequencies, although it appears that precise dimensional !

scaling As not necessary.
f
I

Variations in the wide-body skin thickness produce substantial

changes in response parameters in the mid- and high frequency

J
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regimes where only stringer and skin properties are included

in the fuselage model. Increases in <grad > , n(_ b_and <j2r>p

_! occur due to increases in skin thickness, as seen in Figure 73.

Similar trends occur for the other study aircraft. These

i increases are counterbalanced to some extent by increases in

the 'smeared out' fuselage surface density, but increases in

_" skin thickness can lead to decreases in the fuselage noise
reduction (see Figures 58 and 60 ). Since the fuselage noise

_- reduction, at least for the excitation spectrum given by the

_I. Hamilton Standard prediction procedure-J6 ], depends on the

lower order harmonics and since at these frequencies the

I noise reduction of the study airplanes is controlled to a

large extent by stiffener properties, precise simulation of

i the full-scale skin thickness is not necessary: variations

of ±25% from dimenslonally-scaled values would seem to be

acceptable.

The discussion in Section 5.1 shows that panel curvature con-

i trols the wavenumber-frequency distribution of the fuselage

structure at low frequencies. Figure 74 shows the effect

I on the various parameters of interest of using a flat panel

to _imulate a curved panel. Thus, it is clear that flat test

i panels are not appropriate as model structures at low fre-
quencies.

Io-_.

i The area of the test fuselage should be large enough that

strong decay in the pressure amplitude occurs between the

peak location and the panel boundaries. As shown in Figures

30 and 33 , and as discussed in Section 5.2, significant

_ underestimates of the panel modal density parameter, n(_m)/A

/ and Joint acceptance parameter, A2< "2jr>p, result from using

too_small a panel area. The criterion suggested by Eq. (A.9)

J

J
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of Appendix A, that L >a -I and L >a -I_ must be used in
x x y y

selecting appropriate panel dimensions both circumferentially

and axially over the fuselage surface. Thus, while the analy- i
tical model does not of itself require a cylindrical test

section, it does require that the panel elements have the _

correct curvature and have dimensions which satisfy the decay

rate criterion. Correct simulation of the fuselage structural <_

response and associated noise reduction will require in general

a model fuselage which extends circumferentially from floor to

floor. ,.. (

9.2.4 Sujmmary of Practical Model Simulation Requirements i

The parametric studies in Sections 9.2.2 and 9.2.3 have pro- _

duced requirements for the design of validation tests for the {

analytical model. These requirements can now be summarized

for easy reference. It is also important at the same time to (

reiterate the assumptions which formed the basis for the
_D

requirements. !

Firstly, it was assumed that the tests will attempt to model

as closely as possible a fullscale baseline fuselage structure i

and sidewall treatment, so that it will not be necessary to

perform extensive analytical work to complement the measure- I

ments. Secondly, since the noise control problems are most

severe for the low order harmonics, emphasis is given to the

simulation of the fullscale conditions at the model scale

frequencies associated with the low order harmonics _

Requirements for the model are as follows:-
t

Excitation: Trace velocities and amplitude decay rates 1

should be simulated closely (within an accuracy

of ±I0%). Coherence decay can be simulated less I

f
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d accurately. (Note that, without superimposing

i_ a mean airflow, the trace velocity will be• supersonic, i.e. it will represent only that

_ portion of the pressure field which is in

! the plane of rotation or downstream of the

propeller. This is the region of high acoustic

I transmission).
!,

Structure: The structure should be curved and have frames

,_ and stringers. The structure should extend from

floor to floor, and be at least two fuselage

, diameters long. The stiffness, mass and spacing

of the frames and stringers should be simulated

I closely, (within an accuracy of ±20_). Simula-

tion of skin mass is less important (an accuracy

_ of 125%). In-plane loads due to fuselage

pressurization need not be simulated.

! Sidewall Simulation of the add-on sidewall treatment is}
Treatment :

most important. Structural flanking must be avoided.

Cabin The model overlap of the acoustic space should

Spaces: be simulated closely. However, details of the

cabin space, such as location of absorption, and

shape of furnishings and passengers, are of low

importance: the length need not be scaled provided

that the absorption is scaled.
f

/

9.3 Candidate Noise Sources

! The analysis performed in Section 9.2 indicated that the noise

transmission through the fuselage structure was strongly depend-

ent on the trace velocity and spatial decay of the excitationJ
field. Thus the selected model sound source should be capable



of representing these properties fairly accurately. It should I

be noted that the analytical model does not distinguish between

a trace velocity associated with the propagation of acoustic (
waves and a trace velocity associated with forward motion of

the fuselage. Thus it is not necessary to introduce mean flow

over the model structure, although if the mean flow is zero it

will not be possible to model the subsonic trace velocities

which occur over the forward regions of the baseline airplanes.

These regions are, however, of lesser importance in terms of
noise transmission.

Several alternative noise sources have potential for use in
I

simulation of the excitation. Propeller noise sources include \

the various model propfans, and full or model-scale propellers,

either operated statically or in the presence of air flow,

such as provided by a wind-tunnel or by in-flight conditions.

Electro-acoustic sources, such as a single or an array of ' (

suitable loudspeakers, have found application as simulation

devices in some verification programs [i0]. The arguments for i
\

candidate sources are reviewed herein.

9.3.1 Model Propfan

A model propfan has been used in NASA Lewis/Hamilton

Standard test programs. The model has the correct geometry

and number of blades (at least as far ar the current state of _

technology is concerned) and would be operated at scaled rpm

to maintain correct tip Mach number. It could be operated

alongside a small model fuselage in a wind tunnel, although to • I,

reach a flow Mach number of 0.8 it is probable that a test L

section without acoustic treatment (and with attendant data i

interpretation problems) would have to be used. Tunnels with
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I acoustically treated test sections generally operate at Mach

numbers no greater than 0.35. It should be noted thatF

) the simulation of propfan performance by overspeeding the model

propfan to achieve the helical tip Mach number associated with

cruise conditions does not necessarily simulate propfan
acoustics correctly. It has been claimed that such a situation

i does not correctly simulate pressure amplitude, and that it
< will not simulate directivity and trace velocities either.

I Firstly, the main disadvantage of the model propfan is that,

to maintain the correct ratio of fuselage diameter to propeller

) diameter, the model fuselage would be very small thereby making
<

it very difficult to scale the fuselage structure and acoustic

_ treatment. For example, considering the narrow-body airplane,
)
< (D/¢ = 1.13 and r/D = 1.8) use of the SR-3 model propfan [43]

_-- with D _ 0.622m requires that the model fuselage be 0.55m or

! 21.5 inches in diameter. Then, maintaining the ratio of add-on

sidewall treatment depth _ to fuselage diameter, _/¢ =0.042,

i the model fuselage would require a sidewall depth of 6.3mm and!

an associated flow resistance for the porous infill in excess

i_ of 106 mks rayls/m. Such scaling of the sidewall is impractical}
Furthermore, effects of the measurement processes, such as the

! presence of a microphone array in the cabin volume, or (light-
J weight) accelerometers on the model skin, might lead to

erroneous results.

)
Secondly, even though the propeller and fuselage would be small,

7_

it would still be difficult to install both of them in a wind

tunnel test section (open or closed) with a representative

i distance between propeller tip and fuselage, and with adequate
clearance between tunnel wall (or shear layer) on one hand, and

_-_

]
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propeller tip and fuselage wall on the other• For example, I

using the above example with D/¢ = 1.13, r/D = 1.8 and

D = 0 622m, and assuming a shear-layer thickness of 150mm, it

is clear that only half the model fuselage can be immersed

within the open jet flow of the anechoic flow facility at

NSRDC, Carderock [44], as shown in Figure 75. (The maximum 1

flow Mach Number of the tunnel is M o ~ 0.2). Larger fuselage

models compound the problem. A similar situation exists with i

the United Technologies facility [45], where M o = 0.35 can be

achieved

9.3.2 General Aviation Prbpeller I

Use of a general aviation propeller in conjunction with a _
model fuselage has the advantage that the noise mechanisms 1

show certain sim_ilarities with those of the propfan. However,

it is anticipated that there will be several problems associated

with a test configuration of this type, one problem being the

general inflexibility in matching the model characteristics i_

with those for the baseline airplanes.

If a fullscale propeller is used with a model fuselage, the

combination of propeller and fuselage would be too large for

any wind tunnel test section except the large, low speed

tunnels which could not reproduce a forward Mach number of 0.8.

Consequently, the tests would have to be performed under static
\

conditions.

The longitudinal spatial variations of external sound pressure

level predicted for the three study aircraft can be compared

with measured variations for general aviation aircraft, as (

shown in Figure 76. It is seen that for a given tip clearance,

r/D, the rate of change of sound level predicted for the propfan _
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COMPARISON OF PROPFAN PREDICTIONS AND i
GENERAL AVIATION MEASUREMENTS



! under cruise conditions is much greater than that for the (model

_ test) general aviation propeller under static conditions.

A comparison of pressure field trace velocities also shows

significant differences between the propfan predictions and

general aviation measurements (Figure 77), although in this

i_ case only one set of data is available for general aviation
propellers. At large seParation distances the differences

between trace velocities for propfan and general aviation pro-

pellets are associated mainly with the contribution from

forward motion, whereas at small separation distances the

1 controlling parameter is tip clearance. The circumferentialJ
trace velocity is also a function of tip clearance.

l From this brief comparison it is seen that a general aviation

propeller under static conditions cannot reproduce simultaneously

I both sound level spatial decay and pressure field trace velocity --

two parameters which are considered to be important in the

_ analytical model.

Another problem is associated with the values of the blade

f passage frequencies. If the rotational tip Mach number is

maintained at 0.8 for the general aviation propeller then the

1 blade passage frequency will be too low (because of the small

number of blades). Consequently the required scaled fre-

_ quencies for the propfan blade harmonics will have to be
J

modeled by higher-order harmonics of the general aviation

propeller. Since harmonic level decreases as harmonic order

_i increases, the higher order harmonics will be lower in level

_ and could create a signal-to-noise ratio problem for the high

transmission loss tests. The higher order harmonics may also

have different directivity patterns.

F

f
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'j
c This brief discussion has identified several important differ-

ences between the pressure field of a fullscale general aviation

propeller and the desired field for the model propfan. These

differences are sufficiently important that the general aviation

propeller is not recommended as a model source for direct model-

ing of the baseline aircraft conditions. It could be used,

_ however, as a noise source in a test to validate the analytical

model for general aviation conditions.

! 9.3.3 Electro-acoustic source

An electro-acoustic source, such as an electro-magnetic driver

coupled to an acoustic horn offers great flexibility in fre-

_-_ quency content of the excitation. Also, by suitable choice of

horn characteristics and orientation, the source can be used

i_ to represent pressure field trace velocities in longitudinal

I and circumferential directions, and sound level spatial varia-

tion over the model surface.

Figure 78 presents the directivity required of an electro-

r- acoustic source used to simulate the propfan directivity, for

1 each of the study airplanes. The Hamilton Standard method

[ 6] was used to construct the curve. Comparison with the

directivity of a point source, located to develop the required

pressure field trace velocities of the model fuselage surface

_ shows that an omni-directional source is not adequate. Strong

longitudinal directivity is required.

1 Ray acoustics has been used to determine the propfan trace

wavenumbers (see Section 4.6) and is also used to determine

the position of the electro-acoustic source. Figure 79

presents a polar plot of the required directivity for the
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electro-acoustic source for inboard-propeller simulation for

each study airplane. In order to provid e representative

dimensions, the figure also shows the location of a narrow-body

panel. It is clear that the electro-acoustic source must have

pronounced longitudinal directivity.

Figure 80 shows the predicted variation in circumferential levels

for an electro-acoustic source, assumed to have point-source !
radiation characteristics in the circumferential direction,

(X is the centerofthe electro-acoustic source). The propfan

acoustic decay rate is much smaller in the circumferential

direction than in the longitudinal direction, and is well

approximated by a point source. Thus the electro-acoustic I

source should have little circumferential directivity.
J

A long, flat horn, aligned so that the horn axis is perpendi-

cular to the model surface, will produce such a pressure field

spatial variation. The horn width will be approximately two !

acoustic wavelengths long at the lowest model test frequency,

and the depth will be quite narrow. Possibly two horns will be i

required depending on the frequency range to be tested. An

alternative configuration would involve a line array of several

closelY-spaced point sources, aligned parallel to the model

fuselage axis. An electro-acoustic source (or, for that matter

a general aviation propeller) under conditions of zero forward

motion could not model the subsonic trace velocity predicted
1

for the fuselage region well forward of the propeller plane of !

rotation. However, calculations using the analytical model

indicate that this forward region is of low importance in terms (

of noise transmission and can be omitted from the validation

process for the analytical model, i
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9 4 Validation Experiments with a Model Fuselage J" , ' 1

9.4.1 General t

Sections 9.2 and 9.3 presented an investigation of the exclta-

tion, structure and cabin parameters affecting the design of 1

experiments for validation of the analytical model and assocl-

ated noise control predictions. It was assumed in the investi-

gation that the performer of the validation tests would not

have ready access to the computer program developed for the
, J

analytical model. Thus, the design of the model and experiment

would be carried out in a manner such that the prop-fan air-

plane conditions could be adequately simulated. Analytical 1

results available from the present study could then be used

directly for comparison With the experimental data. 1

It is recognized that the separation of experimenter and

analyst imposes severe constraints on the validation process.

Tn contrast, verification of a similar model for the payload

bay acoustic environment of the Space Shuttle orbiter vehicle !

[4,10] was achieved by close collaboration between the ex-

perimenter and analyst. With the Space Shuttle experience !

in mind, care has been taken in the planning of the proposed

test program to minimize problems associated with a possible

lack of access to the computer program for the analytical

mode i. -D

In this section a detailed description is presented for a

model test program that would provide experimental validation i

of the analytical model and its use in the prediction of prop-

fan interior noise control. Problems discussed include the

test configuration (size and number of test models, test en-

vironment), excitation details (frequency content, orientation,
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spectrum shape), error assessment as it relates to comparisons

between experiment and predictions, required measurements, and

,_ data acquisition methods.

1 9.4.2 Model Test Configurations

_ The most straight forward test program would be the validation

! of the analytical model only for the case of add-on noise

control treatments. This could probably be accomplished with

J the use of only one structural model. On the other hand, if

the predictions are to be validated for both add-on and

i advanced noise control methods, several structural models will

be required, with at least two incorporating the advanced

_ noise control concepts.

The requirements for accurate simulation of the noise trans-

i mission into a prop-fan airplane under cruise conditions have

been identified in section 9.2.4 and in section 9.3, While

practical experimental design will force various compromises
to be made, it is argued that good simulation of full-scale

fuselages representative of the baseline airplanes is feasible

i and that the use of an electro-acoustic loudspeaker source

would enable adequate simulation of the major characteristicsof prop-fan acoustics in the region of maximum transmission

of acoustic power through the airplane fuselage.
7

Figure 81 shows a sketch of the end view of the recommended

I test configuration for the evaluation of the analytical model
for the baseline structure and the add-on noise control

_ treatments. The model consists of a complete cylinder which

1 is lined with appropriate sidewall treatment. The cylinder

is elevated on supports and located in an essentially anechoic

?
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environment. The acoustic source, a loudspeaker, is located

approximately 1.5 model fuselage diameters from the skin

! surface and part way between the cylinder ends. The structure

of the cylinder would be of skin-stringer-frame construction

_ aluminum material. The dimensions theusing of structural

items would be scaled with respect to cylinder diameter as

i indicated in sections 9.2 and 9.3.

The diameter of the model fuselage is approximately half that

? for the narrow-body study airplane, i.e. 2m. Such a scaling

allows for convenient measurement of the various important

! physical quantitites and does not introduce significant con-
struction difficulties which, if the test model is built to

too small a scale, might change the physics of the noise

transmission. The length of the model fuselage is selected

to be between 2 and 3 model diameters, to ensure adequate

! decay of the pressure amplitude over the model length and to

allow the peak excitation amplitude to be located away from

Ii the model boundaries. The model length, while not scaled in

proportion to the fuselage radius, is also required to give

sufficient modal overlap for the acoustic modes. Care is
required to position the interior absorptive material to simu-

- late a longer cabin volume: additional absorption will be
required on the test model forward and aft bulkheads. End

caps will be required on the test model and the caps will have
to have high transmission loss characteristics so that there

are no flanking paths when the high transmission loss treat-
_.

! ments are tested on the sidewall. The tests proposed will not
t

require pressurization of the model. Thus the end caps will

! not have to withstand pressurization loads. The caps should
be removable to allow for introduction of the various noise

control treatments to the model cabin space. No simulation
of the cabin furnishings is considered necessary.
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In order to achieve the correct spatial variation for the !

exterior pressure field, the noise source will be located at

some position between the two planes defined by the end caps, i

and the directivity of the source will be such that there is

a propagating pressure field over the model. It should not

be necessary to provide extension sections to the test cylln-

der to correct for diffraction at the ends of the structure.

However, the test chamber should be treated with absorptive

material so that the propagating pressure field over the

model surface is not contaminated unduly_by any reverberant

field in the chamber.

Add-on treatments tested in the model cylinder would concen-

trate on double-wall systems with porous material in the

space between the walls. All the parameters of interest would i

be scaled as required from the analysis in Sections 9.2 and

9.3. Special consideration should be given to the identifi- 1

cation and elimination of flanking paths. Other noise control
4

treatments could be tested although only the double-wall was i (

found_ analytically, to achieve the noise reductions required

to meet the 80 dB goal for A-weighted interior sound level.

It is possible, in principle, to construct scale models for

any of the advanced noise control methods although, in prac-

tice, there may be difficulties in achieving the correct

scaling for the more exotic designs. Structures which involve _

modifications to conventional aluminum skin-stringer-frame

construction should follow the same scaling laws as for the

baseline structure. Composite structures will probably need

some additional analysis to determine the most appropriate

scaling procedure. 1
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The specific choice of test hardware for the advanced concepts

is less well defined than in the case of add-on treatments. How-

ever, potential candidates include those discussed in Section 8:

a) Additional ring frames on the baseline model

b) Frames with increased stiffness achieved by

redesign of the frame cross-section

I c) Increased skin thickness

d) Extensive damping treatment

ff e) Composite (honeycomb) skin with ring frames (with!
and without additional damping).

It should be noted that the noise control concepts listed above

have been investigated using the analytical model and in no

case did the predicted noise reduction approach the required

reduction of 25 dB for the A-weighted level. Thus validation

! of the analytical model in this case has the somewhat negative
result of confirming that the noise control approach is not

very effective.

The model test structure recommended for validation of the

analytical model predictions for the baseline structures and
the add-0n noise control treatments is in the form of a

cylinder with end plates. However, this type of model could
be extremely expensive for tests of advanced type structures,

unless these structures could be formed as modifications to

I the baslc skln-strlnger-frame cyiinder_ An alternative

r approach would be the use of large curved panels rather than

complete cylinders. These panels would be placed in one wall

of an enclosure, which could be constructed as a wooden double-

I wall with high transmission loss material in the space between

the walls. The cost of construction for the advanced struc-

1 tures would then be reduced.
!



4
The use of test items should not have a large impact on the !

validation of the analytical model since it is assumed when

making the noise transmission predictions in Sections 6 through

8 that the fuselage structures can be represented as curved

panels rather than a complete cylinder. The use of curved _.J

panels in the test program would mean that the above assumption I

could not be verified, but all other assumptions in the analy- ,_

tlcal model could be validated, i

!

9°4.3 Basic Measurements ..

Two sets of measurements should be made for the validation

tests. One set, basic measurements, represents the minimum I

requirements for validation. The second set, diagnostic

measurements, will provide the additional information required

to fully understand the reliability and accuracy of the analy-

tical model.

The basic measurements involve the exterior and interior
f

sound levels. The exterior measurements ensure that the

correct excitation is being used and the interior measurements

indicate whether or not the 80 dB(A) goal is achieved. Exterior

data required to describe the excitation field will include

the variation of sound level in the longitudinal and circum- I
ferential directions, and the coherence and phase of the

pressure field in the two directions. _D
I

In the case of the interior sound levels, the following

measurement procedure is recommended:

a) Determine space average sound levels from a series

of fixed microphones or from microphone traverses. Micro- 1

phone locations can be associated with equal volumes for

ease in space averaging.
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i b) Measure sound level gradients in radial and axial

directions to obtain estimates of spatial variation.

c) For given microphone locations, measure sound levels

as excitation frequency changes by small amounts. Calcu-

late deviation for sound levels.

The recommendation to measure both space-average and spatial

• gradients for the interior sound levels is based on experience

from other validation programs. Factors to be considered

._ include:
a) the model test cavity may not be fully representative

of the airplane cabin shape and contents;
/

b) a detailed analytical representation of the cavity is

not possible within the accuracy of the present analy-
( tical model; and

c) the analytical model predicts space-averaged levels

and then estimates the distribution along the cabin using

imaging methods.

! Space-averaging has the advantage that inaccuracies in predic-

tions of the detailed modal response of the cavity are

smeared-out. However, even space-averaging has to be performed

keeping in mind that the measured value has, for practical

I reasons, to be based on a finite number of measurement loca-

tions. Statistical analysis has to be performed to relate

_- the measured value to the expected value. This can be done,i
for example, by means of standard deviation and confidence

i limits.
I
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9,4.4 Diagnostic Measurements

It frequently happens that, when experimental data are com-

pared with an analytical model, deficiencies are found in I

the model. Improvements will then be required to improve the

accuracy of the model, but usually these improvements can be

made only if there are adequate diagnostic measurements to

supplement the basic data It is recommended that diagnostic• i
measurements be made during the validation tests• These addi-

tional measurements will relate directly to various outputs

of the analytical model so that appropriate corrections can

be made to the model.

Measurements recommended for this diagnostic phase of the

validation tests i_clude the following items, which describe

the structural response, and structural and acoustic damping.

• Structural response:

Spatial variation of model vibration

Flexural wavelengths (by means of coherence measurements)

Modal density (by means of point force excitation) !

Standard deviation of response as excitation fre-

quency is varied slightly _i

• Structural Damping:

Total loss factors for the structure (by means of

vibration decay measurements)

Radiation loss factors (by relating vibration r_

.response to radiated acoustic power

• Acoustic Damping:
i

Acoustic loss factors (.from acoustic decay

measurements)

I
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9.4.5 Performance of the Validation Tests

In terms of the basic validation tests, the experimenter

could simulate an exterior spectrum shape and then measure

! . the A-welghted sound level in the model cabin. However,
the resulting overall noise reduction would depend on the

_ selected spectrum shape, and a coarse test of this type is

! not recommended for the validation of the analytical model.

_ Instead, it is recommended that the tests be conducted on an
i individual frequency (harmonic) basis, The noise levels or

noise reductions would be measured, and compared with the

! analytical predictions on a frequency by frequency basis.

Only then can the analytical model be subjected to an appro-

priate validation process.

This individual harmonic approach has several other advantages.

! Firstly, the tests can be performed and the model validated

without concern as to the spectrum shape which will be gener-

I ated by the final propfan in actual cruise conditions.design

Secondly, if a noise source is used which enables the sound

1 level to be adjusted at a given frequency, then slgnal-to-
noise ratio problems at higher frequencies will be minimized.

The proposed electro-acoustlc source provides this control of

I the excitation characteristics.

I The proposed tests include the following excitation conditions:
(i) Perform the tests at the model frequencies of

_k interest for the three baseline aircraft used in the
analysis.

_ (ii) Repeat at several frequencies either side of each

i frequency used in (i) in order to obtain a measure of

_- the statistical variation about the mean. The number of
}
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frequencies used will be determined by the measured stan- -

dard deviation and the desired confidence limits. (Various

tests on airplane fuselages have shown that the noise re- i
duction characteristics can change rapidly as frequency

changes.) The statistical analysis is discussed briefly
I

in Section 9.4.7. !

(iii) Narrow-band noise, centered at given harmonic fre-

quencies to be used for comparison with (i) and (ii).

The first step in the validation tests will be to ensure that

the excitation pressure field satisfie_ the model requirements

in terms of spatial variation in sound level, coherence and

phase (or trace) velocity. Subsequent steps in the test

program would then be concerned with measurement of interior

sound levels or structural response -- with adequate care

being taken to ensure that the excitation pressure field

characteristics remain unchanged.

9.4.6 Instrumentation Requirements
!

The instrumentation requirements for signal generation, data

acquisition and data reduction are associated with the use

of discrete frequency and narrowband noise. Typical schematic

diagrams are shown in Figures 82 and 83, where both on-line

and recorded data options are included. The use of on-line

data acquisition and reduction will probably be the selected

approach for many of the tests performed for the validation.

Figure 82 shows potential signal generation and data acquisi-

tion systems. The excitation signal is generated as a dis-

crete frequency or narrowband noise and used as input to a

loudspeaker. The signal can also be recorded for future
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reference. In the initial set-up tests, when the loudspeaker
i

is being located so that it generates the required noise

field_ flush_mounted microphones would be placed on the test i

structure to measure pressure amplitude and cross-spectral

density. The microphones would be arranged in a cruciform

array, with 12 to 20 locations selected to adequately define I

the pressure field characteristics. A reference microphone

would be used to monitor sound levels from test to test. I

These microphones would be, typically, 6mm (0.25 inch) in

diameter.

The microphone array inside the model fuselage would consist
r

of 8 to 12 microphones positioned, for example, at fixed I

positions in the model cross-sectlon, but capable of being

moved in the longitudinal direction. The number of measured !

axes would be determined from an initial examination of the

measured data and from the required measurement accuracy.

Locations in the cross-sectlonal plane would be selected so

that the areas associated with each microphone were equal.

The structural response would be measured by an array of

accelerometers attached to the interior surface of the model !

fuselage shell. These accelerometers would measure the

spatial characteristics of the fuselage vibration. I
J

A typical schematic for data reduction is shown in Figure 83.

Spectral analysis is straightforward since the basic filter-

ing is performed by the signal generation system. The analysis

consists of measuring the level of the discrete frequency or I

narrowband acoustic signal for the excitation of the interior

pressure fields. Cross-spectral data reduction requires, for i

example, a_multi-function digital signal processor. Signal i

i
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decay measurements, to be used in the estimation of structural [

and acoustic loss factors, requires the use of a decay meter

(or a level recorder if the decay is not too rapid), i

9.4.7 Data Reliability _i

Two factors have to be considered under the heading of data

reliability. One factor, data repeatability, is important

because of the use of discrete frequency excitation. The

second factor, data accuracy, is concerned with the comparison

between measured and predicted results.

Because of the use of discrete frequency excitation, micro- i

phone location may be critical in achieving data repeatability

when there is a small number of modes. This problem is allevi- !

ated by performing space-averaging of the measured sound levels

in the cabin and by the fact that, in the frequency range of _
!

interest, there is high modal overlap for the acoustic modes.

The situation will become somewhat more severe when spatial --

gradients are measured for the interior sound field at a given

frequency of excitation. Thus, repeat measurements should be

made for a given test condition, and allowances made when I

comparing spatial gradients for different sidewall configura-

tions. I

The proposed tests include discrete frequency excitation at

several frequencies on either side of a given frequency of

interest. One purpose of this variation in frequency is to
f

allow for uncertainties in the prediction of structural and I

cavity resonance frequencies. By the same token, the data,

when averaged over frequency, will show improved repeatability I
from test to test.

!
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The comparison between measured and predicted sound levels or

noise reductions will have to be made on a statistical basis.

The importance of such an approach was evident
in the valida-

tion of the Space Shuttle payload bay acoustic model [ii], a

_ situation for which the excitation was broadband in nature and
fairly uniform in level. Instead of comparing only the average

measured and calculated noise levels, consideration was also
given to the variability of the measurement used to make the

comparison. Since both the exterior and interior average

sound levels were based on a finite number of sample measure-

ments, it followed that the computed estimates would be

V- subject to random errors. These errors were taken into con-

sideration by computing the variances for the measured levels

_ and then constructing confidence limits such as those shown
in Figure 84. A similar approach should be followed for the

propfan validation tests.

9.5 Aircraft TeSts

9.5.1 Applicability of Aircraft Tests

The discussion in Sections 9.2 and 9.3 has concentrated on the

[- design of scale model tests which could be used to validate
results from the analytical model. The tests were envisaged

as providing answers to the questions posed in Section 9.1.An alternative approach is that of using an existing airplane

and performing either ground or flight tests to measure the

noise transmission into the fuselage. The question now arises -

- can the use of an existing propeller-driven airplane provide

.... data which will validate the analytical predictions for the
propfan-powered study airplanes? If the answer to the question

I-- is negative, then airplane tests can be discarded unless it
can be shown that they would serve an alternative, but still

- useful, evaluation of the analytical model.
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_ In order to answer the above question regarding the direct
applicability of airplane tests, consider first the relevant

characteristics of the three aircraft considered in the analyti-

cal model development. The aircraft are low-wlnged and have

two or four propellers, with the Dlane of rotation for all the

propellers intersecting the passenger cabin sidewall. The

propeller diameter is equal to, or greater than the corres-

diameter, the propeller has i0 blades and aponding fuselage

tip rotational Mach number of 0.8, the separation distance

between propeller tip and fuselage structure is greater than
0.3D where D is the propeller diameter_ the fuselage diameter

is greater than 2.44m (8 feet), and the airplane Mach numberis 0.8.

is airplane at the present time which meetsObviously there no

all these requirements, although there are some aircraft which

_ meet some of the requirements. Two such airplanes are the
Lockheed Electra/P3 and the Swearingen Metroliner. They are

both low,wing, turboprop aircraft; other typical characteris-

, tics are listed in Table 16.

Table 16. Comparison of Study and Existing Aircraft

Propfan Lockheed Swearingen

Aircraft Baselines Electra/P3 Metroliner

I- Number of Propellers 2-4 4 2Number of Blades i0 4 3

Propeller diameter D (m) 3.37-5.83 4.11 2.49

Fuselage diameter ¢ (m) 2.44-6.02 3.45 1.73

Tip Clearance (Inbd. Prop.) 0.3D-I.3D 0.2D 0.12D

D/¢ 0.97-1.38 1.20
1.44

Tip Rotational Mach No. 0.8 0.7 0.8

I- Airplane Mach No. 0.8 0.6 0.4
Typical Cruise Alt. (m) 9140 7620 6100

i- Blade Passage Freq. (Hz) 133-231 68 96

I 257



The main differences between the baseline aircraft and the

Electra and Metroliner occur in the number of blades, tip

clearance and airplane Mach number. The number of blades (and

propeller rpm) influences the blade passage frequency, tip

clearance influences the spatial decay and trace velocities !

of the external pressure field, and airplane Mach numbers in-

fluence the pressure field longitudinal velocity. All these

parameters have been shown to be important in the analytical !

model in determining the noise reduction from exterior to in-

terior of the fuselage.

Differences in blade passage frequency can be off-set to some

extent by considering the higher order harmonics for the i

Electra or Metroliner. For example, if one selects as a

criterion, a constant value of k¢ where k is the acoustic wave I

number of the pressure field and € is the fuselage diameter,

then the blade passage frequency for a propfan airplane is

represented approximately by the third order harmonic of the

Electra or Metroliner propeller. However, the use of higher

order harmonics runs into the problem of slgnal-to-noise ratio

for the tests on high-transmission loss sidewalls, since the
I

external levels of the higher order harmonics for the subsonic !

propellers in the Electra and Metroliner will be relatively _.

low.

Trace velocities in the longitudinal direction are influenced

by tip clearance and airplane velocity. The effects of de-

creased tip clearance and decreased airplane velocity both act

to reduce the trace velocity in the region aft of the plane of J

rotation of the propeller. In addition, using Aero Commander

data [ 9 ] as a basis, the decreased tip clearance also reduces

the circumferential trace velocity. This velocity may be
L
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subsonic for the Electra and Metroliner whereas the analytical

model predicts a supersonic circumferential trace velocity.

Finally, as tip clearance decreases, the longitudinal decay

of the pressure field becomes more rapid. Thus, if one takes

the directivity patterns to be those predicted by Hamilton

Standard the longitudinal decay factors associated with the
tip clearance of the Electra and Metroliner aircraft will be

at least twice as large as those for the corresponding propfan

designs. _ It is also reasonable to expect that the small tip

- clearances will increase the spatial decay in the circumferen-

I tial direction. Typical calculations for propfan aircraft

indicate that a 50_ increase in the spatial decay factors can

produce about a 5dB change in joint acceptance. Thus the

decay parameters are important in determining noise trans-

mission and, hence, the spatial extent of noise control treat-
ment.

From the above discussion it is apparent that significant

acoustic differences exist between the baseline propfan air-

craft on one hand and present day propeller aircraft such as

the Electra and Metroliner on the other hand. Consequently,

flight tests in current aircraft would have to be viewed as

validating the model for the specific test airplane, rather

than verifying the predictions for the study aircraft. Cor-
responding calculations would have to be performed to apply

the analytical model to the particular test airplane.

Some comment is also appropriate with regard to the structure

f of the airplane fuselage, particularly that of a small-diameter

airplane such as the Metroliner. Analysis of the three study

i_ airplanes indicates that the small-diameter fuselage skin is
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thicker than it would be for a similar diameter scale model of

the wide or narrowbody fuselage. Consequently a small-diameter

fuselage does not form a completely representative scale model
!

of a larger diameter fuselage. Differences in calculated

radiation efficiency, modal density and band-averaged joint
J

acceptance are shown in Figures 85 and 86. The situation

becomes worse if the smeared-out mass of the small diameter

fuselage is reduced to that of the scale model by removal of

the stringers. Thus, if a small-diameter fuselage is used as

the test hardware, the validation cannot be considered as a

direct verification of the analytical model predictions for

the narrow or wide body fuselages. Some adjustments will be ' i_)
necessary, for example, by use of figures such as Figure 86.

There are other disadvantages in using a current airplane as

a means of validating the analytical model. The airplane

provides little or no flexibility in varying excitation fre-
|

quency, pressure decay rate or trace velocity. It would be

highly desirable to have such flexibility in order to check
!

the analytical model over a range of conditions. Also, while

a test program in an actual airplane is highly desirable as

a means of reducing interior noise levels which are trans-

mitted by a variety of paths from a variety of sources, it is

not desirable as a means of validating an analytical model

directed to a particular noise source and a particular noise

transmission path. It is recognized that the propfan air-

plane may well have numerous transmission paths, to which

noise control methods must be applied, but such noise control
J

approaches should be the subject of separate programs, or

await testing on a prototype propfan aircraft.
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I 9.5.2 Airplane Tests

I_ Although it is concluded above that airplane tests would not

validate the analytical predictions for the study aircraft, some

} useful information could be obtained from such tests. Thus it

is appropriate to review briefly the type of tests which could

be performed and the measurement procedures which should be
_, followed.

i' The simplest test would be one in which several noise control

treatments were installed in a propeller-driven airplane and

the noise reduction measured for each treatment. Such a test

gives very little information on the validity of the present

analytical model. A more useful experimental program wouldprovide information on the exterior pressure field, structural

response, and cabin noise levels for a test airplane, and the

noise reductions due to add-on treatments. Data appropriate

to these test conditions would be used in the analytical model
F-

i to predict the structural vibration and cabin noise levels.
Then the experimental and analytical results would be compared

T nd necessary modifications, if any, made to the analytical
:'' model.

] _ As the tests are concerned with propeller noise only, the test

airplane should be powered by turboprop engines, and the plane
r

i of rotation of the propellers should intersect the passenger
cabin. It might at first seem appropriate to install bulkheads

in the cabin so that the noise transmission region can be con-

[ ' trolled to a specific region of the fuselage structure. There

7 are, however, restrictions on this approach because the analy-
J
! tical model assumes high modal overlap for the acoustic modes

for all frequency bands of interest. Consequently the size of

E

c- 263

l



!

the receiving cavity cannot be made too small. This assump- I'

tion of high modal overlap also influences the choice of

propeller harmonics for the noise tests. It is probable that

the lowest order harmonics of the propeller will occur at

frequencies which do not satisfy the condition of high acoustic
modal overlap. The measurements will then have to be per-

formed for the higher order harmonics. High transmission loss

treatments should be applied to the floor.

It is known that the effect of forward motion on the noise of

subsonic propellers is to reduce the levels of the higher

order harmonics, a trend which may have an adverse effect on _

the signal-to-noise ratio when treatments with a high trans- !

mission loss are tested. One possible way of alleviating the

problem is to perform the tests under static conditions. This •

has the added advantage that the tests are more convenient to

perform but there is the disadvantage that forward motion is

not simulated in the trace velocity of the exterior pressure

field. Resolution of these arguments would probably need an
J

evaluation of the specific airplane proposed for the tests.

Assuming that the objective of the test program is a validation , !

of the analytical model as applied to the specific test air-

plane, the following measurements should be made. _ !

(i) Exterior pressure field:

Use a cruciform array of flush-mounted pressure ]

transducers to measure the spatial decay, coherence,

and phase angle parameters for the pressure field 1
i

in the longitudinal and circumferential directions.

The array would be similar to that used in the Aero

Commander tests [ 8 ], but more extensive in terms of

J



_ number of transducers and spatial extent. The

results of these measurements would be used as a

J basis for the representation of the exterior
C ,

pressure field in the analytical model;

J (ii) Structural vibration:

Analysis of the study airplanes indicates that the
r--

,I acoustic power flow is dominated by resonant re-

sponse. Thus vibration measurements -- which give

_ the response -- can be used for diagnostic purposes.
i

The vibration measurements wou_d be made using

,_ light-weight accelerometers mounted mainly on fuse-

lage skin panels in the neighborhood of high ex-

terior noise levels.

(iii) Cabin Noise Levels:

Noise levels would be measured in the cabin in the
J

_ region of high exterior sound levels. The measure-

ments would be repeated for a) bare interior (withz
! some absorption), b) baseline sidewall treatment and,

c) one or more high-transmission-loss treatments.

_ The measurement locations would be chosen such that

space-averaged levels could be calculated for an

j , appropriate cabin volume, and such that longitudinal
and radial gradients could be determined.

] The test conditions would be limited by the performance of the

selected airplane. Assuming that flight tests were performed,

I the airplane would be operated at high speed with high pro-

peller rpm. Tests would be repeated at different engine rpm,
V

! provided that rpm variations can be accomplished. To avoid

beat effects, the right and left hand propellers should be

! operated at different rpm. Measurements could be performed
'l
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with and without cabln pressure differential although the _

analysis indicates that pressure differential is not very

important for the frequency range which dominates the noise _

transmission through the sidewall. Consideration could be

given to performing certain ground, static tests for compari-

son with the flight results. !

J

1

l
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I
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I

_! I0.0 CONCLUSIONS

r_

] An analytical model has been developed to predict the sound

levels in the interior of high-speed propeller-driven aircraft.E-

,I Although the assumptions contained in the model have not yet been

validated experimentally, the analytical model has been used to

i- predict the sound levels in three study aircraft and to explore

potential noise control concepts.
F--

I
The analytical study indicates that, if the high-speed propeller-

driven aircraft have fuselage structures and cabin sidewall
I

treatments similar to those in current-day turbofan-powered air-

craft, the cabin noise levels will reach a maximum of about 105

i dB(A). These levels are about 25 dB higher than the goal of 80

dB(A). Consequently, a significant increase in cabin sidewall

transmission loss is required, and this increase has to be

achieved at relatively low frequencies (130-230 Hz) since the

I--_ cabin A-weighted sound levels are dominated by contributions at
the propeller blade passage frequency.

I-
< The noise control methods investigated in the analytical study

include add-on and advanced concepts. The add-on treatments do

] not involve changes to the fuselage primary structure whereas

the advanced concepts usually do require structural changes. Of

]- the concepts studied, only one shows the capability of achieving

the required reductions in transmission loss. This treatment

J involves the use of a double-wall system with a heavy, limp

trim panel which is isolated from fuselage vibrations. All the

I other concepts studied provided relatively small noise reduc-
J
, tions. The weight penalties associated with the double-wall

system are significant, ranging from 0.75% to 1.5 % of take-off
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gross weight, depending on fuselage diameters. In terms of !
i

passenger payload, the penalties lie in the range of 4 to 19%

of payload weight. In both cases the highest penalties are !
• J

associated with the smallest airplane.

It should be noted that an extensive weight-optimization study !

was not performed and that, by suitable combination of different
noise control treatments, the weight penalties could be reduced. )

On the other hand, it should be noted that the achievement of

the required large transmission losses in a practical situation , I

has yet to be proven, and the effects of windows and other po-

tential flanking paths have been excluded from the present
1

analytical model.

q
Experimental validation of the analytical model and the predicted 1

noise reductions is an essential part of the overall development
I

of the model. Such validation should be possible with laboratory !

tests, and experimental procedures for performing these tests are

presented in this report. !

, ,J

i
i

/
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APPENDIX A
JOINT ACCEPTANCE EXPRESSIONS FOR NON-HOMOGENEOUSPRESSURE FIELDS

The joint acceptance function describes the coupling between the

excitation field and the structure and can be defined for an exci-

tation tonal frequency as

1 (_,x' ;_)_r(_)_r(_, )d_ dx' (A l)
J$(_) - A2 <p_o(m)> -X XT

2 (_)> is the mean square pressure {where A is the panel area, <Pxo

at Xo attributable to the bth harmonic, Cp(_,x';_) is the co-

spectrum of the non-homogeneous pressure field (defined relative

to Xo), and Cr(_) is the shape of the rth mode. To evaluate this

joint acceptance function, expressions are required for the mode

shapes of the structure and for the excitation pressure field.

The excitation is represented as a convecting pressure field with

pressure amplitude decaying with distance from the location of

peak levels Xo and with spatially-decaying coherence. Exponential

forms for both amplitude and coherence decays have been modeled

to enable convenient mathematical manipulation. Then i

-al[-YoI -al['-Xol_cl[,_[I [k(m)(_' -- 2 (m)>
Cp(_,_' ;_) = e e e cos - x)]<Pxo I

(A .2) • '
where a is the amplitude decay rate, c is the coherence decay rate,

and k is the excitation wavenumber at frequency _. i{

Consider the example of a one-dimensional system in which a beam
of length L is driven to vibrate in its mth mode shape by a non-

homogeneous pressure field. In general, Xo, the location of peak

!
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pressure levels, will lie at some arbitrary point along the beam.

The expression for the joint acceptance function has been evaluated

I for such a but for present demonstration a simpler
case; purposes

case will be considered, where the maximum intensity is located at

) Xo -- O. Figure A.I describes this situation.

Y- e-alx - Xol Pressure Amplitude Decay

! _ _._.. mth Beam Mode× i...-..... "
•. • -0. ._

I O P-L
< x

_ FIGURE A.1 EXCITATION OF BEAM MODE BY
NON-HOMOGENEOUS PRESSURE
FIELD

I.... With Xo = O, the joint acceptance (one-dimensional) becomes

J ) L2 e_(_ _ I e-ax -aXe-Clef Oos[k(_)_] _m(x)._m(x )dxdx'

[:: (A.3)I

_ where _ = x' - x.

Using sinusoidal mode shapes, Jr_m(m) becomes_.-

,!
L L

; -ax x dx f 0 e-aX' -c[_[ x' dx'
j_m(m) L2 e sin km e cos(k_) sin km

0

(A.4)

! where k is the wavenumber of the structural mode.m

!
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Evaluation of j2 (_) leads to the result:
IILIII /

_...m-bLF -b sin kL- (km + k)cos kL b sin kL- (km- k)cos kL] [

Jrm1(_)2 = i_i__± ) e [ b+ + "

A'
J

b- _

/ '+ (km + k)/b+ + (km -k)/b- _)

_I(_l)me bL[-b cos kL-(k m- k)sin kL b cos kL-(km+ k)sln kL]j
• [ L- '- - + b+ ib

/ "+ b/b- - b/b+ i

+ C 'I{l e-2aLl (e-2aL_laI - _,!_k{Ie-2aL_lm\- /_ '-_iL_I_ %a , 2 a2 + km / + _I 2(a2 ¥ km) _

D' + • --,
+ _ (_l)me_dL sinkL (km k)cos (km k)cos

d+ d- [

k )/d + I
+ + (k - k)/d- (+ (kin m

....

d/d- - d/d+ I
+

!

_I(_l (-2aL)Ie _,)|k (I - e-2aL]1m, . 'e-2aL_ a la_ + _ 1
+ - "-'2a ] 2" k2m _ '"2'(a2+ k_)

where: b = a + c ,b-= b2 + (km - k)2

_ d+ d2 + (km + k)2d=a c = ....

b+=b_+(km+k)_ d-=d_+(km-k)_ -_
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k + k k -
A' = m m

d + + d -

C' = + d

! [(k + k) (k - k)J

G' = m + m

b + b-

= + k)cos kL]_' (-i) m+l e-bL[b sin kL + (kmJ

6' = (-I)m+l e-bL[b cos kL - (km + k)sin kL]

y, = (_i) m+l e-bL[b sin kL - (km - k)cos kL]

I _' = (-I) m+l e-bL[b cos kL + (k - k)sin kL]m
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Special cases: I

a) Zero amplitude and correlation decay rates: a = c = 0

[i - (-I) m cos kL]

J_m (_) = _ [I - (kikm) Z]zm

which is the well-known result, corresponding to plane acoustic

waves propagating with zero spatial decay along a beam of length

L [A.1]. !

At coincidence where k = km,

Jmm(_) -- 1/4 for all modes.

b) Zero correlation decays but a is finite: c = O, a _ O.

j2m(_) = [A,,z + B"z]/4L 2 (A.6) 1

where: }]
[!Cm.a;k k - k {a sin kL + (km+ k)oos kL a sin kL- -

A" + m (_l)me-aL (km k)eos kL= + - .
a- a a-

I

+ + _--j
a a- a i

+ a2a = + (km + I<)2 !

a-=a2+(km-l<)2. 1

1
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The action of strong amplitude decay is to dampen the oscillation

of Jmm(2 _) as k/km varies through coincident conditions (see Fig. 2).

)
Asymptotic limits can be developed for the case where strong

_ amplitude decay occurs, i.e. when I. Three examples aree-aL<<

given below:

i ,

For k >> k and k L > aL,m m

j '_.

2 _) _ I
F • Jmm ( _-_7 T. (A.7)

J

[ << k and k L > aL,For km m
<

Jmm ( _ • (A.8)1 .2 i

] For k _ k (i.e. close to coincidence)=and kL >> aL,m

_i i Z 2
2 _) = = (A 9)i Jmm( _ _ .

I
where _ is that equivalent length over which the excitation may be

considered to be of equivalent constant amplitude. A is analogous

to a correlation length for homogeneous excitations in which the
coherence decay is rapid relative to the beam length.

! REFERENCE

E A.I A. Powell, "On the Response of Structures to Random Pressures
. " Chap. 8 in Random Vibration,I and to Jet Noise in Particular,

Vol. I, ed. S. H. Crandall. Cambridge, Mass., The M.I.T.

I_- Press, 1959.
J
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APPENDIX B

EXPECTED VALUE OF THE MODAL ADMITTANCE FUNCTION g(03b,mn)

It is required to solve for the expected value of g(03b,03n), which o'_

is the expected value that g(03b,03n) takes in the frequency band

A03 as, for example, 03b varies within A03.

By definition [B.I],

E[g(03b,03n)]=;; g(03b,03n) p(03b,03n)dmbd03n (B.I)
_A03JA

where 03b and 03n are statistically independent processes, in which _n

case Eq. (B.1.) reduces to

E[g(03b,03n)] : g(03b,03n) p(03b) p(03n)d03b d03n. (B.2) !
03 _

The probability density function p(03b) describing _b in A03 is

(A03)-I[B.2]. The number of acoustic modes with frequencies 03n

below the band A03 for a rectangular volume is approximately

3
• Nn<Ao3 _ K03c

where 03 is the band center frequency and K is a constant of
C

proportionality. ;

The probability distribution function P(03n) for acoustic modes
located in the frequency band A03 may be calculated as [B.2] _!
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t

Nn - N£ Km n

,_ P(mn)Nu-N_ _m_(1+_)3-_(I -_)"
3_ m3(l_ s)3

mn c

where _m = 2sm and s<<l. Subscripts u and _ refer to the upperC

_ and lower limits of the frequency band Am.

__ By definition, the probability density of mn [B.2] is

P(0on)
_ du n _mcl

Am

Hence, _I

_- E[g(mb,mn)] = - 0o7 + _I i kmc n
' m 0O

Consider integration with respect to rob:

I

] (l-_ _ +_ dubc

<.... me(l-s)

< (I+s)2- c ](I-s)2_ I

! 0On _an-ii__n ! - tan -1 _ - for T]n<<l.

F..
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(
I

The function contained in { } brackets varies between _/2 and _, I

as _ varies between _ (i - g) and _ (I + g), with values generally
n c c

close to 7. Consequently, 1

(I+_)

() ,,
E[g(_b'_n)] = A'_ t_ccJL (i-g) 25n n

c
I

(l-g)

2q_(A_)2 _z _n n
c c(i__)

2

8 \An] 8a , on ignoring terms of order a 2 I
and above,

i

/

and so,
_b "_

E[g(_b,_n)]- 2n-hA_ •

Further, since I

E[G(_b,_n)] = Nn<A_ E[g(_b,_n)]

: "_<A_ 2_A------_
_mb

= nn(_b) 2W n as _b = _c
(

REFERENCES
!
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APPENDIX C
rev

i t-_ RELATIONSHIP BETWEEN Im[Irr(_)] AND f2(n,r), j_(_)

The expected value of the joint intermodal coefficient, which

o..• expresses the coupling between structural modes and modes of

the cavity, is defined by Eq. (20) as

[A2__nf 2 ]F E[Irr(_)] = E T ( 2 - k 2 (n,r) (C.I)
! 11 ,.

where f(n,r) = _ _n(_)_r(x)d_ is the coupling factor between

the structure and the cavity.

The imaginary part of E[Irr(_)] is required for calculation of

i_ the real power f!owing inwardly [see Eq. (17)]; thenL

n n f2(n,rIm{E[Irr(_)]} : E{Im[Irr(_)]} = E 2 2 _n k

n - k21_
n I_2

k

niinf2n;21
I i
" = E aJ2

n _ I -_--r +
] n n

_-- _c.2)

using Eqs. (22) and (23).

F
J A2c_

<_n f2(n'r)>_nE[G(m,_n)]

(c.3)

t
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i

where E[G(_,_)] is defined and derived in Section (3.5.1) i

[Eqs. (39) and (40)]: then

z <_n f2(n r)> nn(_). (C.4)E{Im[Irr(_)]} - 2V_ '

Alternatively, an approximation for Im[Irr(_)] can be obtained in
rev i

terms of jr(U), the joint acceptance function for a reverberant
pressure field. This approximation is obtained by analogy with

results from [C.I] and [C.2], as discussed in [C.3] to give i

rev !

E{im[irr(_)]} _ I m A 2 j_(_). (C.5) !
2w c i

!

Then, comparing Eqs. (C.4) and (C.5), one finds that

>
2

i _ rev wA2c i
A2_2(_) - <_n f2(n'r)> nn(_)

2_ ci Jr 2V_ i

and so I

f2(n,r) > = _2 V _(_rev
nn(_) <_n _ j ) . (C.6) '_
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O.i.L.D. Pope and R. C. Leibowitz. "Intermodal Coupling Coef-
" J Acoust.ficlents for a Fluid-Loaded Rectangular Plate, .

Soc. Am. 56, p. 414, Section III, 1974. i
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I APPENDIX D

1 FINAL SIDEWALL DESIGN UTILIZING ADD-ON TREATMENTS

I It is demonstrated in Section 7 that the only add-on treatment
_ capable of providing the noise reductions required to achieve

r the goal of an A-weighted sound level less than 80 dB is a

j double-wall system with a limp-mass inner wall. In addition,

the calculations in Section 8 do not identify any advanced

i concept which can achieve the noise reduction predicted for

the double wall. Thus it is appropriate to summarize the final

1 double-wall designs that are predicted to provide cabin noise
levels which do not exceed 80 dB(A) in the three study airplanes.

For the purposes of the investigation, three baseline air-

craft were chosen on the basis of existing technology and

! conventional fuselage construction. To some extent the choice

of airplane influences the amount of treatment required on the

1 sidewall, and this influence will be reflected in the details
i

of the three double-wall systems described in this Appendix.

I- Furthermore, certain simplifying assumptions were made, with
J
f

', • the result that noise transmission through the floor and

I- windows was neglected, as was structureborne transmission

! through the sidewall itself. It is probable that, in practice,

these paths will require some noise control treatment, or the

performance of the double-wall sidewall will be compromised.

The construction of the three sidewall systems is described

! below in terms of the different components. The sidewall is

shown schematically in Figure D.I.

I

]
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Fuselage Structure:- f
I

In all the study aircraft the fuselage structure is conventional _

aluminum skin-stringer-frame construction. For two of the

study aircraft (wlde-body and small-diameter) the skin thick-

ness is constant along the cabin length, while for the narrow-

body design the skin thickness is allowed to vary. Details of

the fuselage structure are given in Sections 4.5 and 5.7,

Figures 17 to 19, and Tables 3 and 7. The structures have no

additional damping treatment although it might be advisable to -]
1

treat the frames and stringers in order to minimize structure-

borne noise transmission through flanking paths such as the _

floor and the trim panel mounts.

Add-On Insulation:-

The add-on insulation consists of a llmp-mass trim panel, _
i

which forms the second wall of the double wall system, and _

acoustic insulating material which fills the cavity between

the fuselage skin and the trim panel. I

The trim panel is installed at a distance of at least 12.7mm _

from the fuselage skin panel, has limp-mass characteristics

such as those of lead-impregnated vinyl, and has high internal -I

damping, with a loss factor of about 0.i The damping could [

be provided by the use of visco-elastic material. A framework

may be necessary to support the trim panels, but the framework I

should be isolated from the fuselage structure so that there

is negligible structureborne noise transmission. _I_

The acoustic insulation in the cavity is a light-weight, porous

material such as glass fiber wool. The flow resistivity should 1

be approximately 50,000 mks rayls/m and the bulk density about

-286-
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i.

f-

9.6 kg/m 3. For a thickness of 127 mm, the surface density

is 1.2 kg/m 2.

The variation in surface density of the trim panel plus porous

I material along the length of the cabin is shown in Figure 56.• Since there is a uniform distribution (1.2 kg/m 2) of the porous

material, the longitudinal variation is due solely to changes

in trim panel surface density. There is a uniform circumferen-

tial distribution of porous material and trim panel surface

densities. The maximum values th_ trim panel
of surface density

are approximately 36 kg/m_for the wide-body airplane, 14 kg/m 2

I- for the narrow-body airplane, and 26 kg/m2for the small-
diameter airplane. The maximum trim panel weight for the

_ narrow-body airplane is lower than those for the other two

! aircraft because of the heavier skin panel weight in the region

of maximum exterior sound pressure level.

Good isolation of the trim panel from the fuselage structure

_- (skin, stringers, frames and floor) is
essential if the acous-

tic performance of the add-on sidewall is not to be degraded.

_ The design of vibration isolation mounts was not included inI
the present study and work is required on this topic. It is

_ possible that the low transmissibilities required at thefundamental blade passage frequencies will require the use of

_ constrained damping material on the frames and stringers,

I to increase the total damping loss factor to lie in the range

0.05 to 0.i.

Interior Furnishings:-

The acoustic absorption coefficients for the interior surfaces

and furnishings should be equal to, or greater than, the values
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shown in Figure 22. To achieve these values, the carpets, 1

seats and the surface of the trim panels will have to be
J

at least as acoustically absorptive as are the furnishings I

in current turbofan aircraft.

\

• i

k

_D

!
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_ Stringer

Limp-massTrim

I Panel

Trim Panel Mounts
c- Frame _ (vibration isolators)

,J

L

Fuselage Structure

_- (see Figures 17to 19for details)

F

Acoustic Insulation

Material
J

._ 127mm

FIGURE D.1 SCHEMATIC OF PROPOSED SIDEWALL TREATMENT

I
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APPENDIX E
LIST OF SYMBOLS

A Structural area (

Ar,A s Cross-sectional area of ring frames and
stringers, respectively I

Aj,Ax,Ay,A z Areas of absorbing walls

a,ax,ay Pressure amplitude decay rate parameter

a,b c Cavity dimensions in x,y,z directions (Figure 4(a))' C
b Propagation constant in porous material b = _+JB

C (_,_';_) Co-spectral density of exterior blocked pressure
P

Correlation decay parameters for exterior
C'Cx'Cy pressure field !

Speed of sound in air in the interior and
ci'Ce exterior media

cL Compressional wavespeed in material

D Propeller diameter; or bending rigidity of (
structure

Dx,Dy Bending rigidities of structure and skin

D Cross rigidity of structure
xy

D k = Gh3/12 I

Er,Es,E Elastic modulus for ring frame, stringer and
skin, respectively i

E[g(_b,_n)] Expected value of function g(_b,_n)
/

E[Win(_b)]A_ Expected value of the acoustic power flow into

cavity at frequency _b centered in bandA_
b

f(n,r) Internal coupling factor for structure and cavity

-290-



= mrr/Lx

Modulus of rigidity for shear stresses of
structure

External acoustic coupling factors for structural
modes (Section 3.2.1)

Internal acoustic coupling factors for structural
modes (Section 3.2.1)

Acoustic intensity at observer position,
= <p2>/p.C.

o l l

Moment of inertia of ring frame and stringer,
respectively

Torsion modulus of ring frames and stringer,
respectively

Modal admittance function at frequency wb

Cabin height

Skin thickness and effe~tive thickness respectively

Green's function for the exterior field

Green's function for the airplane cabin interior

-291-

Polar moment of inertia of ring frames and
stringers respectively

= j2(W)j2(W) Structural joint acceptance in longi
tUd~nal Rnd lateral directions for progressive
wave excitation

Complex compressibility of the porous material

Joint acceptance for reverberant field excitation

Wavenumber = w/c (k=k ,k )o x y

Structural wavenumber, where km

Complex eigenvalue for cavity

Real part of kn

Dimensions of rectangular curved structural
element

Gp(xlx' ;w)

G~(xlx' ;w)

Gr,Gs

G

J ,Jr s

k

j rs .rr
, J

j~(w)

rev
j~(w)

K

k n

L ,Lx y

r

)

r
I
I
r
r
r
I



m,n

p,q,r

R

R,S

Rrad

Rint
rad

Rext
rad

Sidewall cavity depth

Sub panel element dimensions

Frame Pitch

Stringer Pitch

Modal mass of structure

Number of axial halfwaves and number of
circumferential full waves in structure

Number of modes in band

Noise reduction = 10 log «p2>/<p~»e l

Structural and acoustic modal densities,
respectively

Fourier transform of external, interior and
blocked pressures of truncated signal of
length T, respectively

Space-averaged, band-limited, mean square pressure
in cabin volume

Space-averaged band limited mean square pressure
in volume V, for nth mode

Mode orders; also indices in image array formula
tion

Spatial distribution function for power spectral
density of the exterior blocked pressure field

Radius of curvature; or distance between source
and observer in cabin

Ring frame and stringer bending parameters,
respectively

Radiation resistance

Internally-looking radiation resistance

Externally-looking radiation resistance
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I
\

r,
1
!

r
\
I
\

r-
I,

Rl ,

Rp (x,x' ;T)

r

(Sa)

S (w)
p

S (w)
PXo

S (x x' 'W)'w ' ,

SPiv(x,x' ;w)

Win (w)
rad

[Win(w)J~w

Wj
intWabs

Flow resistivity of the porous material

Average cross-correlation of the blocked
pressure over the exterior
Distance between propeller tip and fuselage
sidewall

Absorption, in cabin interior, of absorbing
area S

Power spectral density of exterior blocked
pressure

Cross power spectral density of exterior blocked
pressure

One-sided power spectral density of exterior
blocked pressure at reference location Xo

Cross-power spectral density of panel dis
placement

-Cross-power spectral density of pressure at x
and velocity at x'
Average trace wavespeed of exterior pressure field

Volume of airplane cabin

Net power flowing through structure; or cabin
width

Fourier transform of displacement truncated
signal of length T

Spectral density of power radiated into cabin

Power inflow to acoustic structural modes
resonant in band ~w

Power radiated from jth structural element

Power absorbed on cabin surfaces
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Xo

Y

z

- -z , zr s

= Xo, Yo, is the location of peak pressure on
the structural element

Porosity of porous material

Structural receptance for mode r

Characteristic impedance of porous material,
Z = -jKb/wy, see Eq. (65), Section 3.9.2

o
Surface specific acoustic impedance (= p/v)

Infinite panel impedance, Eq. (68)

Distance from skin middle surface to centroids
of ring frame and stringer

l

ex..,ex. ,ex. ,ex. ,ex. ,ex. ,ex. fJ x y z w c
Absorption coefficients of surfaces

Surface admittances, S=s - ia. Also complex
wavenumber in porous material

£ , £ , £P q r

£ n

£ r

nr

Generalized blocked force

Defined in Eq. (26)

Frequency bandwidth

Pressure differential across cabin fuselage

= nL /mTIRx
Mode participation factors, (= l;p,q,r=o: =2; p,q,r>O)

= £ £ £P q r

Also relative error - Eq. (46) i

Separation distance in y direction (~ = y' - y)

Structural mode 10sB factor

Average value of nr over band ~w
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i

r
)

r
I.

I

I

1

r
I

r
!

\
(

Tlstruc

K,Kp

Kn

A ,A ,A, As r rs

111 ,112

V ,vx y

q; (x)
n

Acoustic mode loss factor

Average value of Tl over band
n

Radiation loss factor, = pCOrad/W11

Loss factor associated with structural dissipation
mechanisms

Radius of gyration of panel, structure

Imaginary part of k
n

Parameters used in frequency equation for
simply-supported cylind~r

Skin critical wavelength

Average mass surface density of structure

Average mass surface densities for two walls of
a double wall structure

Structural resonance frequency, non-dimensionalized
by the ring frequency

Poisson's ratio of structure, for x,y axes

Separation distance in x direction, ~ = Xl - X

Normalized surface conductances for surfaces
of cavity

Ambient densities in the interior and exterior
media

Variance of function G

Normalized susceptances of surfaces of cavity

int
Radiation efficiency, orad = Rrad/PiciA

Bare fuselage transmission coefficient

Transmission coefficient of add-on sidewall
treatment

Complex mode shape for cavity
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w

w
c

wo

w
n

< >
r

Real part of complex mode shape ~ (x) of cavityn

Mode shape, or eigenfunction, of the rth mode
of the structure

Angular frequency

= bWo ' bth harmonic of the blade passage
frequency wo

center frequency in band ~w

Angular blade passage frequency, 2rrfo

Structural mode resonance frequency; also
fuselage ring frequency

Acoustic mode resonance frequency

indicate averages over modes in band
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