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ANALYTICAL STUDY OF INTERIOR NOISE

CONTROL BY FUSELAGE DESIGN TECHNIQUES
ON HIGH-SPEED, PROPELLER-DRIVEN AIRCRAFT

J. D. Revell and F. J. Balena

Lockheed-California Company, Burbank, California

L. R. Koval, Consultant

Rolla, Missouri

SUMMARY

This summary follows the arrangement of the report.

Method of Analysis
(Section i)

pb_ective - The objective of this study is to determine the minimum

weight of fuselage sidewall configurations which would provide an interior
noise level of 80 dBA for high-speed, propeller-driven aircraft at cruise

conditions. Estimates of the mass penalties associated with these configura-
tions are needed to support system studies of fuel-efficient advanced

turboprop-powered aircraft such as those based on the Hamilton Standard prop-
fan concept.

Approach - A structural-dynamics based analytical method is employed to
compute the transmission loss of the outer wall structure. This method is

based on theory developed by Professor L. R. Koval and a modification of the

well-known method of Cockburn and Jolly supported by further work at Lockheed.

Appendixes A through F describe the method of analysis employed.

To evaluate the mass penalties for noise control, three aircraft pre-
liminary designs were studied, each with a different fuselage diameter. The

largest is a 4-engine, wide-body aircraft. This is the design evolved by

Lockheed in the RECAT study of 1977. The other two aircraft represent a
narrow-body transport and a small business aircraft. All three aircraft were

defined by the Lockheed Advanced Design Department per current design prac-
tice. Thus, the noise-reduction designs are modifications of realistic base-
line aircraft.

Two kinds of noise-reduction designs are investigated:

• "Add-On" Noise-Reduction Desisns in which modifications of the base-
line fuselage structural design are not permitted - the application

of non-load-supporting material to provide added damping and mass is
permitted.



• "Advanced" Noise-Reduction Designs in which modifications of the base-

line fuselage structural design are permitted

The advanced aluminum and advanced composite designs have higher stiff-

ness and higher mass outer-wall structures than their respective baselines. _
Structural mass is increased in the process of achieving higher stiffness
and the added structural mass is considered as part of the acoustic treatment

mass penalty. Thus, the same baseline reference is used for both the add-on
and advanced noise-reduction designs. The composite baseline aircraft struc-
tures have the same stiffness as their aluminum counterparts, but surface

densities are about thirty percent less.

The exterior noise environments employed are those estimated for an

8-bladed propfan-powered aircraft at 9144 m (B0 000 ft) and at a flight Mach
number of 0.8. These estimates are based on Hamilton Standard performance

and noise design charts which estimate the characteristics of a fully developed

propfan.

Structural Configuration
(Section 2)

In this section, details of the outer wall structure are described for

the baseline and stiffened aluminum and the baseline and stiffened composite

structures. The baseline structures are used unchanged for the add-on design

studies. Although composite structures represent advanced materials technol-

ogy, the baseline composite structure which is used for the add-on design
studies is not referred to as advanced. The aluminum and composite design

studies are thus consistent in that their baseline structures are used for

the add-on design studies and stiffened structures are used for the advanced
studies.

Acoustical Treatment Mass Penalties for the Recommended

Noise-Reduction Designs
(Section 3)

In this section, axial distributions of the required total wall surface

density are shown for each of the three aircraft. Above the floor, the total
wall surface density is assumed to be constant in the circumferential direc-

tion. The penalty surface density values, increments above the trimmed base-
line, are then integrated over the entire treatment area to obtain the total

acoustical treatment mass penalty. Acoustical treatment mass penalty in this
context refers to mass added to outer wall structures as well as the interior

trim. The treatment weight penalties are expressed in kilograms (pounds) and

as percentages of the takeoff gross weight (TOGW) of the trimmed baseline
aircraft defined in this study.



The add-on noise reduction (NR) penalties for the aluminum aircraft

range from 2.3% of TOGW for the wide-body, to 1.7% for the business aircraft.

The wide-body aircraft has the same TOGW as was defined in the RECAT study
of 1977. The baseline composite aircraft have outer-wall surface densities

- which are 30% less than their aluminum counterparts, but have the same outer-

wall stiffness. Add-on nolse-reduction penalties for the composite aircraft
range from 2.5% of TOGW for the wlde-body to 1.8% for the small business air-
craft. The baseline composite aircraft TOGWs are assumed to be the same as for

the aluminum aircraft of the same type, even though their outer wall surface

densities are not the same. It is noted that an aircraft designed with maxi-

mum use of composites would require a smaller TOGW for the same payload vs

range capacity; however, data for the required reslzlng of the study aircraft
is not available.

The advanced aluminum structures provide reductions in the noise-control

penalties when compared to the add-on noise control configurations. The

noise-reduction penalties for all three advanced aluminum aircraft are approxi-
mately 1.5% of TOGW relative to their respective baseline values. It is
noted that the weight increases associated with the advanced structures are

included in the calculated noise-control penalties. The advanced composite

noise-reduction designs also used part of the penalty mass to provide higher
stiffness outer walls than the baseline composite structures. When an

advanced composite structure is combined with the correct trim-panel mass
for optimum double wall design, the total weight penalties are 1.0% TOGW

for the wide-body, 1.4% for the narrow-body and 0.74% for the business
aircraft.

The results presented above have implications for the further develop-
ment of high-speed turboprop aircraft. The add-on acoustic treatment mass

penalties are about the same as those which were previously estimated in
system studies for fuel-efficlent, turboprop-powered aircraft in 1977 (i.e.,

the RECAT study of Reference I). The advanced design treatment penalties
are significantly lower than the add-on penalties due to a more efficient

use of penalty mass. These results are lower than the 2.5% of TOGW penalty
estimated during the earlier RECAT study and thus support its estimated eco-

nomic benefits. The 1977 RECAT study estimated the following advantages for
propfan versus turbofan aircraft,

• 17 percent lower block fuel consumption

• 7 percent lower DOC.

The present study is the first attempt to calculate the treatment pen-
alties necessary to achieve an interior noise level of 80 dBA using a sophis-
ticated structural dynamics approach.

INTRODUCTION

The growing worldwide concern for the shortage of petroleum and the
attendant rapid price increase have stimulated increased effort to reduce

aircraft fuel consumption, which now constitutes over 40 percent of the



direct operating costs of an aircraft. One promising approach to more effi-

cient aircraft propulsion is a new turboprop engine based on the known high
efficiency of propellers and modern propeller design methods. The new con-
cept includes an all-new propeller with 8 to I0 highly swept blades and is

referred to as a propfan. The propfan has been estimated to be 20% more

efficient than comparable, advanced-technology turbofan engines (reference I),

when cruising at 0.80 Mach number at 9144 m (30 000 ft) altitude at stage
lengths of 1500 miles.

Passenger surveys conducted by commercial airlines (reference 2) show

that a quiet interior is important and that current jet aircraft interior

noise levels are a desirable goal. Propfan propellers produce intense acous-

tic pressure levels at the blade passage frequency and its low-order harmonics.
Most of the total power output from a propeller is concentrated in a few

relatively low-frequency components. However, jet aircraft fuselage sidewalls

are designed to attenuate broadband boundary layer excitation, and special

attention is needed to ensure that the propfan sidewall will adequately
attenuate propeller noise.

The system studies in references 1 and 3 used preliminary design esti-
mates of the acoustical treatment requirements and provided similar results.

Reference 1 used simple double-wall mass law theory and assessed a weight
penalty of 2368 kg (5200 ib) or 2.4% of the takeoff gross weight (TOGW) of

a 98 641 kg (217 466 ib) wide-body aircraft designed to carry 200 passengers
for 2778 km (1500 n.mi). The methodology was suspected of being too optimis-

tic with regard to the required surface density of the treatment mass; however,

a conservatively large treatment area was used for nine nolse-control seg-
ments centered about the propeller disc plane of the inboard engine.

As shown in reference i, a substantial mass penalty is required in order
to achieve an 80 dBA interior noise goal. However, the propfan-powered air--

craft still retained a significant net advantage, relative to a turbofan,

of about 17% in block fuel consumption and 7% in direct operating cost (DOC).
The approximate nature of the initial RECAT system studies required a more

sophisticated analysis of propfan aircraft interior noise and the mass pen-

alty required to obtain a level of 80 dBA. This program and a companion
study reported in reference 4 were initiated to provide a more detailed and

in-depth analysis of propfan interior noise and to recommend suitable noise-

reduction designs. The approach used for this program considered two dif-
ferent approaches; (I) "add-on" noise-reduction designs and (2) "advanced"

noise-reduction designs. For the add-on designs, it is assumed that the

addition of acoustical treatment materials does not result in significant •

increases in structural stiffness or load-carrying capability. In the
advanced noise-reduction designs, it is assumed that the outer-shell struc-

ture could be stiffened significantly if that were beneficial. Add-on and

advanced noise-reduction design studies were conducted on both aluminum

and composite wide-body, narrow-body and business aircraft.

This study was supported by Professor Leslie R. Koval, of Rolla,

Missouri, in a consulting capacity.



LIST OF SYMBOLS

English
Symbols Units

a cylindricalshellor fuselageradius; m (ft)
also frame spacing(AppendixE only)

A area m2 (ft2)

coefficientsof shell impedance N/m3 Ib/ft3)
Aij4 equations(AppendixC)

Am coefficientof the Fourierexpansion N/m2 (psf)
of scatteredexternalacoustic
pressure

b acoustic propagation constant for m-I (ft-I)

fiberglass blanket; stringer spacing
(Appendix E only)

B coefficient of the Fourier expansion N/m 2 (psf)

m of the radially inward transmitted
sound pressure wave in the interior

of a cylindrical shell

B number of propeller blades

c acoustic wave propagation speed m/sec (ft/sec)

d spacing between inner wall (trim m (in)

panel) and outer wall of fuselage

shell; also fiberglass blanket
thickness

D Eh3/12(l-v 2) plate modulus of fuse- N-m (ib-m)

lage skin also diameter (of fuselage,

propeller, etc.)

e base of Naperian logarithm, 2.71828

E Young's modulus of elasticity N/m 2 (psi)

E ratio of stiffness, El, of outer wall
to baselinestiffnessvalue
(AppendicesH and I)

f frequencyof sound wave Hz



English
Symbols Units

F general functional dependence

g acceleration of gravity m/sec 2 (ft/sec 2)

G shear modulus of elasticity N/m 2 (psi)

h skin or cylindrical shell thickness m (in)

(i)
H

= J + -]Ym' Hankel function of the first kindm m
of order, m

Hm(2) = Jm - JYm' Hankel function of the second kind
of order, m

i index

I moment of inertia of skin or m4 (in4)
stiffener

j =_-I imaginary number

J torsional moment of inertia of m4 (in4)
stiffener

J Bessel function of the first kindm
of order, m

k wave number m-I (it-I)

K volume coefficient of elasticity of N/m 2 (psi)
air (Appendix E)

i length in general sense m (it)

L, Lf length of fuselage m (it)

linear differential operators for N/m 3 (15 ft-3)
Lij shell theory (Appendix C)

_y stringer spacing (Appendices H and I) m (it)

£x frame spacing (Appendices H and I) m (it)

Lt length of acoustical treatment m (it)



English

Symbols Units

m number of circumferential half wave

lengths of vibrating shell

m number of axial half wave lengths

(in Appendix D only)

m mass or surface density (Appendixes C kg/m 2 (psf)

and E only); _ is used elsewhere

M Mach number of flow

n number of axial half wave lengths of

vibrating shell

n number of half wave lengths in the

circumferential direction (Appendix D

only)

NR noise reduction dB

P fluid static pressure N/m 2 (psf)

P(ax, cir) (axial circumferential) skin load per N/n (ib/in)
unit length due to cabin pressure
differential

Pi amplitude of incident external N/m 2 (psf)
acoustic pressure wave

Qa acoustical cross sectional absorption

coefficient (Koval theory)

r radial coordinate m (ft)

r non-dimensional acoustic resistance

R I acoustic resistance per unit depth N sec/m 4 •
(ib sec/ft 4)

t time sec

TL transmission loss dB

u, v, w axial, circumferential, and radial m (in)

shell displacements



English

Symbols Units

VT tangential or blade tip speed m/sec (ft/sec)

W weight of aircraft treatment mass kg (Ib)

(Um, Vm, Wm) Fourier components of shell m (in)
displacement

x, r, _ cylindrical coordinates m (ft)

y = a_ circumferential arc length m (ft)

Y blanket porosity

Y Bessel function of the second kind
m

of order, m

N Sec (psf)

Z acoustical impedance m-_ (ft/sec)

Greek

Letters Units

acousticalabsorptioncoefficient

Y fluid specific heat ratio

determinant in shell impedance N3/m 9 (ib3/ft 9)
expressed in Appendix C

_p differential pressure across cabin N/m 2 (psf)
wall

_y propeller tip to fuselage wall m (ft)
clearance

= I; m = 0

_m = 2; m a i

damping loss factor

8 angle of the incident wave vector rad (deg)
relative to surface

8 angle of the incident wave vector rad (deg)
relative to the direction normal to

the surface (Appendix E only)
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Greek
Letters Units

wave length m (it)

v Poisson's ratio

p bulk density of fluid, shell, etc. k_3 (Ib/ft3)
m

kg (psi)surface density of side wall elements, -_-
m

r acoustic transmission coefficient

circumferential or azimuth cylindrical rad (deg)
coordinate, also refracted angle of

incidence within porous blanket

(Appendix E)

X non-dlmensional acoustical reactance

rotational frequency of blade rad/sec

B_ blade passage frequency rad/sec

Superscripts and Subscripts

1 pertains to properties of external
flow or outer wall

2 pertains to trim panels and to fluid

properties inside cabin; also I, 2,
3 ... n refers to locations within

multilayer noise control treatment

(Appendix E only)

a "acoustical or atmospheric

B or BLKT refers to blanket properties

BL Base llne value

c Refers to impedance of the contents of
the shell (internal fluid and "add-on"

layers)

C coincidence frequency



Superscripts and Subscripts

e external (sound wave, impedance, etc.)

f pertains to fuselage

i pertains to an axial segment of the
acoustical treatment

€

i refers to incident sound wave

I refers to incident sound wave

L longitudinal (elastic wave speed, CL)

m circumferential wave number index

(except Appendix D); axial wave number

index (Appendix D only)

n circumferential wave number index

(Appendix D only); also the number of

add-on treatment layers (Appendix E
only)

p panel properties

R ring frequency

r pertains to radial components (of wave
number, displacement, etc.)

t refers to acoustical treatment; also

to propeller blade tip (speed, etc.)

tr trace property (wave length, etc.

Appendix A)

T refers to transmitted sound waves

(Appendix E)

x axial component (of wave numbers, etc.)

frame spacing (Appendixes H and I)

, y tangential component, stringer spacing
Appendixes H and I

z component normal to wall

(--) eg E, _x, _y ratio of outer wall struc-
tural quantity to its baseline value

(Appendixes H and I)
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i. INTERIOR NOISE PREDICTION METHOD

Thissectionis a briefsynopsisof thevariousassumptionsand analyt-
icaltechniqueswhichare explainedmore fullyin AppendixA, and supported
by AppendixesC, D, E, and F.

i.i Objective

The objective of this study is to determine efficient fuselage sidewall

noise-control designs which would achieve an interior noise level of 80 dBA

for hlgh-speed, propeller-driven aircraft cruising at 0.8 Mach number and at

an altitude of 9144 m (30 000 ft). Also, estimates of the required penalty

mass increments for these noise-control designs are needed to support air-

craft system design studies for potentially fuel-efficient advanced turboprop-

powered aircraft. Two system design studies are documented in references 1
and 3.

The above-mentioned study results are desired for three aircraft which
are characterized by different fuselage diameters. Results are desired for
add-on noise-reduction designs wherein the strength and stiffness of the basic
outer-wall structure is unaltered, and also for advanced noise-reduction
design, where the outer wall structure stiffness may be altered.

1.2 Approach

The analytical method employed in this study is based on the structural

dynamics of cylindrical shells and upon the use of the best available mathe-

matical models for the performance of noise-control devices in the form of

acoustical impedance.

1.3 Aircraft Configuration

To facilitate the study, three aircraft are defined at a preliminary

design level of refinement. They are described as a wide-body, a narrow-

body, and a small business aircraft., Their design and configuration charac-

teristics are specified by the various tables and figures appearing in

Appendix A. The wide-body aircraft selected for this study is the

200-passenger, 2798-km (1500-n.mi.), propfan airplane developed during the
Lockheed RECAT study of reference I. This design, which incorporates

four wing-mounted turbo-shaft engines (P&WA STS 476) and the 8-bladed
Hamilton Standard propfan, was optimized during the RECAT study for minimum

fuel usage for the design mission. The narrow-body and business aircraft

are representative of previous Lockheed preliminary designs of turbofan-

powered airplanes applicable to the short-haul market. Each design was

sized for minimum fuel usage and incorporates propfan propulsion. Prelimi-

nary values for required engine power, propfan diameter, and gross weight
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have been established as shown in table i. The aircraft gross weights do

not reflect any additional acoustical treatment weight required to maintain
acceptable interior noise levels with the propfan.

For each aircraft, an axial exterior noise signature is defined based upon
propfan data from Hamilton Standard (reference 5). The axial distribution of

the exterior overall sound pressure level (OASPL) is specified in Appendix A.

The circumferential distribution is assumed to be a Fourier-Bessel expansion
of an incident plane wave as defined by Smith in reference 6. For the 2-engine

narrow-body and small business aircraft, a nominal propeller-tip-to-fuselage

clearance of 0.8 diameter is selected as recommended by Hamilton Standard in

reference 5. For the design conditions described by figures and tables in
Appendix A, a peak external OASPL of 134 dB is estimated. The propeller-tip-

to-fuselage clearance for the 4-engine wide-body aircraft are selected at

1.2 diameters for the inboard engine and 2.3 diameters for the outboard
engine. As shown graphically in Appendix A, the peak noise level is reduced

by 2 dB based upon increments relative to the peak noise level for a tip
clearance of 0.8 diameters.

The transmission loss (TL) predictions for the outer wall structures

used in this study are based on Koval's theory for sound transmission into

a cylindrical shell (reference 7). In Koval's mathematical model, the TL
of the shell depends strongly upon the angle of incidence of the sound waves

as they impinge upon the shell at a known angle with respect to the axis of
the fuselage.

Data in Appendix A describes the variation of angle of incidence with

distance from the propeller disc plane. For the convenience of parametric

studies, the fuselage in the region around the propeller disc plane is sub-
divided into seven segments which are described in Appendix A. For each
segment, nominal uniform levels of external OASPL are assumed. Also, the

effects of variation of the angle of incidence along each segment are averaged.
The peak noise region is Segment 4, and results of the effects of changing

various fuselage sidewall design parameters upon the interior noise of Seg-
ment 4 are shown in Appendixes G and H.

1.4 Propeller Noise Harmonic Spectra

In addition to defining the distributions of external OASPL it is nec-

essary to define the spectral distributions of sound pressure level of the

tones which occur at multiples of the blade-passage frequency (BPF). Three
different distributions are shown in Appendix A.

• The first distribution is the current estimate for _he propfan from
reference 5

• The second distribution postulates a 3-dB-per-harmonic decrease of
the tone SPL

12



TABLE i. - AIRCRAFT DESIGN AND MISSION CHARACTERISTICS

Wide-body Narrow-body SmallAircraft

Range km (n.mi) 2,778(1,500) 1,852(1,000) 5,741(3,100)

No.Pax 200 100 16

CruiseSpeed 0.BM 0.BM 0.8M

InitialCruiseAltitude m (ft) 9,144(30,000) 9,144(30,000) 9,144(30,000)

FieldLength m (ft) 2,134(7,000) 1,524(5,000) 1,524(5,000)

FuselageDiameter m (ft) 6.12(19.8) 3.91(12.8) 2.24(7.3)

FuselageLength m (ft) 47.5 (155.8) 30.0(98.58) 17.6(57.67)

SeatPitch m (ft) .864(2.8) .864(2.8) .864 (3.2)

SeatingArrangement 8 - Abreast 6 - Abreast 2 - Abreast

TOGW Kgm(Ibm) 98,641(217,468) 40,823(90,000)' 14,515(32,000)
Propulsion STS476 STS476 STS476

PropfanDiameter m (ft) 3.84(12.6) 3.78(12.4) 2.19(7.2)

Numberof Blades 8 8 8

Tip Speed (m/s(ft/s) 244(800) 244(800) 244(800)

PowerLoading kW/m2 (hp/ft2) 293(37.1) 242(30.8) 224(28.3)

No.Engines 4 2 2

CruiseThrust N/engine(Ib/engine) 14,813(3,330) 13,345(3,000) 4,182(940)

BladePassageFrequency (Hz) 162 164 283

PropellerEfficiency 0.837 0.852 0.854

SeaLevelStaticThrust 0.26 0.27 0.27
TakeoffGrossWeight

MaximumPowerkW(hp)atSLS (SLS)/engine) 6,609(8,863) 4,549(6,100) 1,566(2,100)

SeaLevelStaticThrust N/engine(Ib/engine) 62,876(14,135) 55,249(12,420) 19,2i6 (4,320)



• The third distribution assumes I0 equal tones each I0 dB lower than
the OASPL.

Most of the study results shown pertain to the first spectrum since it was

considered the most realistic and it usually required larger acoustic treat-

ment weights to meet the 80-dBA interior noise goal.

1.5 Procedure for Calculating Noise Reduction

The interior of the cabin is assumed to be a semireverberant environ-

ment with an average diffuse absorption coefficient postulated for all of the

interior surfaces. Appendix A contains a curve of absorption coefficient

versus frequency, and the simple equation relating noise reduction to the

sidewall transmission coefficient and the absorption coefficient. The absorp-

tion coefficient schedule assumed in this study is considered to be nearly
minimum values for a commercial transport aircraft.

1.6 Procedure for Calculating Transmission Loss (TL)

Appendix A describes the means by which the transmission loss of the

treated fuselage is calculated by a synthesis of Koval's shell TL theory
(reference 7) and the methods of Cockburn and Jolly (reference 8), Beranek

and Work (reference 9) and others (references I0 to 14) for computing the
incremental TL due to various sidewall add-on acoustical impedance elements.

Koval's shell theory (reference 7) includes infllght effects of external

flow and cabin pressurization and is an extension of the approach of

P. W. Smith (reference 6). A mathematical outline of Koval's theory is given

in Appendix C, and Appendix D contains a critique of the present use of ref_
erence 7 for semimonocoque structures, especially the assumption wherein the

stiffeners are "smeared" into the skin of an equivalent orthotroplc but
monocoque shell.

In Appendix D it is shown, based upon more recent work of Koval (ref-

erences 15 and 16) that the smeared stiffener approximation gives a reason-

able approximation to discrete stiffener results at excitation frequencies

below the ring frequency which is relevant to propfan noise. Experimental
data given in Appendix F show that the present methodology may be somewhat
conservative at low frequencies for angles near normal incidence.

The analytical method for evaluating the performance of add-on noise-

control impedance elements is described in Appendix E. This method is sup-
ported by test data for flat multilayer panels as shown in Appendix F. The

use of flat panel data is considered a good approximation for this study,
since the relevant acoustic wave lengths are large compared to the double-
wall depth and the panel dimensions.
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1.7 Damping Loss Factor Assumptions

For the baseline structure a damping loss factor of 6% is assumed through-

out this study. Whenever a viscoelastic damping treatment is added to the
outer-wall structure, it is assumed that the damping loss can be increased

according to the schedule shown in Appendix G in connection with add-on noise-
reduction results. For example, when the outer-wall surface density attains

19.5 kg/m 2 (4 psf), the loss factor is assumed to be 14%. The damping sched-

ule assumed in this study is considered reasonable based upon unpublished

Lockheed studies using the methods of references 17 and 18.

2. STRUCTURAL CONFIGURATION

2.1 Baseline Aluminum Structures

Aluminum baseline structures are defined for each of the three aircraft

sizes on the basis of strength design considerations. The constructions are

of a conventional semimonocoque type. Appendix B contains tables of all of

the section property data needed for detailed design, weight analysis, and
construction.

In order to calculate treatment mass penalties, it is necessary to know

the baseline (zero penalty) surface densities for each aircraft. Table 2

shows the baseline surface density data which have been derived from the data

in Appendix B.

2.2 Baseline Composite Orthogrid Structure

Appendix B shows sketches and dimensions of the composite strength-

designed orthogrid structures designed for this study. These turn out to
have essentially the same outer-wall stiffness as their aluminum counterparts;

however, the outer-wall surface densities were smaller by factors ranging
from 32 to 41% for the three aircraft. As a simplifying and somewhat conser-

vative assumption, it was decided to use the same section properties and

Young's modulus values as are used for the aluminum structure, but the

density of the composite structure is assumed to be 70% of the aluminum

density. These assumptions yield as baseline surface densities the values

shown in table 3. These surface densities are the proper zero penalty

reference values for a truly all-composite fuselage.

2.3 Definitions of Noise Reduction Concepts

The noise reduction approaches considered in this study include acous-

tical treatments that could conceivably be added on to currently existing

fuselage structures (add-on), and those that would involve completely new

fuselage designs (advanced).
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TABLE 2. - BASELINE SURFACE DENSITY DATA FOR STRENGTH-DESIGNED
ALUMINUM AIRCRAFT

Wide-body Narrow-body BusinessAircraft

Component kg/m2 (psf) kg/m2 (psf) kg/m2 (psf)

0uterWall 9.18 (1.88) 6.25 (1.28) 4.68 (0.96)

Fiberglas
Blanket 0.73 (0.15) 0.73 (0.15) 0.49 (0.10) '

BaselineTrim
Panel 1.61 (0.33) 1.61 (0.33) 1.61 (0.33)

TotalWall 11.52 (2.36) 10.69 (1.76) 6.78 (1.39)

TABLE 3. - BASELINE SURFACE DENSITY DATA FOR AN ALL-COMPOSITE
STRENGTH-DESIGNED ORTHOGRID STRUCTURE

Wide-body Narrow-body BusinessAircraft

Component kg/m2 (psf) kg/m2 (psf) kg/m2 (psf)

0uterWall 6.39 (1.31) 4.35 (0.89) 3.27 (0.67)

FiberglasBlanket 0.73 (0.15) 0.73 (0.15) 0.49 (0.10)
BaselineTrim
Panel 1.61 (0.33) 1.61 (0.33) 1.61) (0.33)

TotalWall 8.73 (1.79) 6.69 (1.37) 5.37 (1.10)

2.3.1 Add-on noise-reductlon design concept.- In add-on treatments, it

is assumed that the surface density and structural damping of the outer wall
can be increased, but not the stiffness. Increases in outer wall stiffness

are examined in the advanced concepts study but could be implemented in an

add-on fashion if that were feasible. Thus, the "llmp-wall" approach pro-
posed in the RECAT study (reference I), which essentially involved the use

of only mass and damping to increase TL, is an add-on approach. Appendix G,
describes the add-on elements and the side wall design.

2.3.2 Advanced noise-reduction concepts.- Advanced nolse-control methods

explore the potential benefits not only of mass optimization and damping but
also of significant increases in stiffness. The advanced configurations con-
sidered in this study are designated as advanced aluminum and advanced com-
posite concepts. Both designs have increased outer-wall stiffness and

increased outer-wall mass compared to their respective baselines. Structural
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weight is increasedin the process of increasingstiffness,and the added
structural weight is consideredas part of the acoustictreatmentmass pen-
alty. Thus, the same baseline referenceis used for both the add-on and
advancednoise-reductlondesigns. Although the compositebaseline aircraft
structureshave the same stiffnesslevel and TOGW as their aluminumcounter-
parts, their surfacedensitiesare 30% less.

2.4 Effects of Add-On Elements in Advanced Noise-Reduction Concepts

For each combination of outer-wall mass and stiffness which is asso-

ciated with the various advanced noise-reduction designs, it is necessary
to select the trim-panel mass required to achieve the desired interior noise

goal. Efficiency comparisons can then be made on the basis of_finding the
least total wall surface density which will provide an interior noise level
of 80 dBA. Appendixes G and H contain such results for add-on and advanced
designs.

3. ACOUSTICAL TREATMENT MASS PENALTIES OF

RECOMMENDED NOISE-REDUCTION DESIGNS

3.1 Aluminum Add-On Noise Reduction Designs

Appendix I tabulates add-on design characteristics for the three air-

craft, and figures I, 2 and 3 show the axial distribution of total wall sur-

face density to achieve an interior noise level of 80 dBA for the 4-engine

wide-body, 2-engine narrow-body, and small business aircraft, respectively.

These mass distribution results are derived from parametric optimization
studies of the effects of varying outer wall and trim-panel mass in a double-

wall configuration as described in Appendix G. The exterior noise signatures
described in Appendix A were initially used to select the outer-wall and

trim-panel surface densities required to obtain an interior noise level of

80 dBA. This was felt to be an overly conservative approach, which results

in an excessive penalty mass. An alternate approach is presented here
wherein the local exterior noise level is used to select the local surface

density required to achieve 80 dBA. Thus, the total wall surface density
is continuously varied to account for the local exterior noise level varia-

tion in lieu of a constant surface density for an entire segment. This is

accomplished using the previously derived parametric studies of Appendix G.

The change in external OASPL (the difference between the assumed segment
design levels and the directivity curves of Appendix A) can be used to select

a new double wall configuration since the parametric study results in
Appendix G are plotted versus change in interior noise level at constant

exterior OASPL. These results are equivalent to plotting required surface

density versus external OASPL at constant interior noise level. Therefore,

a local decrease of external OASPL permits a decrease of surface density
comparable to allowing the interior noise to increase by the same amount.
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Figure 1 shows the effect of the extended external noise signature asso-

clated with the 4-englne, wlde-body aircraft configuration. Notice that the

optimum outer-wall surface density if 19.5 kg/m 2 (4 psi) within Segment 4 as

is discussed in Appendix G. In the lower noise regions, it is better to
retain the baseline outer-wall mass value and use the treatment penalty mass

in the form of increased trim panel mass. These results generally reflect

the fact that the best performance is achieved in an add-on, double-wall

design when both the trim panel and outer-wall mass are equal. Thus the

higher external noise levels of segment 4 cannot be as efficiently attenuated

by a simple add-on approach as is done in the other segments.

A comparison between the 4-engine aircraft results of figure 1 and those

for the 2-engine aircraft in figures 2 and 3 demonstrates the beneficial

effects of reduced propeller tip clearances. Reduced tip clearances result

in external noise signatures with more limited axial extent and shallower
grazing angles of incidence at locations away from the propeller disc plane

(see Appendix A). No attempt was made to optimize the tip clearance for the

2-englne aircraft, although some improvements were made for the 4-engine
aircraft.

Table 4 shows a summary of the acoustical treatment penalty mass require-

ments for conventional aluminum aircraft. These penalties include treatment
of 60% of the sidewall circumference (the fraction above the floor). This

assumption is less conservative than was used in reference I, where full cir-

cumferential treatment was assumed; however, the current assumptions are

considered justifiable by virtue of a better prediction methodology. The

wide-body weight penalty is 2283 kg (5033 ib) which is remarkably close to

the value 2368 kg (5220 ib) given on p 2-2 of reference i. The present study

resulted in higher surface density values of 35 kg/m 2 (7.2 psi) in the peak

noise region combined with a smaller treatment area compared to the results

of reference i. In reference I, lower peak surface density values of about

22 kg/m2 (4.5 psi) combined with a conservatively larger treatment area to

give a nearly equal penalty. The treatment penalties shown in table 4 range

from 1.7% to 2.5% of the gross weights of the aircraft involved.

The results of table 4 are considered encouraging in that the acoustical

treatment penalty requirements for cabin noise control are comparable to or
less than the values estimated in the RECAT study, reference i. Therefore,

the estimated 17% net savings in fuel consumption, shown in reference i for

the propfan-powered aircraft, relative to comparable turbofan-powered air-

craft still appears to be valid. This conclusion is based upon the present

assessment of add-on noise-control technology and it is one of the major

conclusions of the present study.

3.2 Composite Add-On Noise-Reduction Designs

This outer-wall structural concept is a potential candidate if designers

select an all-composite fuselage on the basis of nonacoustlcal considerations.
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TABLE 4. - SUMMARY OF ADD-ON ACOUSTIC TREATMENT MASS PENALTIES

I. ADD-ON NOISE CONTROL DESIGNS

• OUTER WALL STIFFNESS = BASELINE VALUE
• OPTIMUM OUTER WALL MASS

• FLIGHT CONDITIONS -- 9144 m (30,000 ft), M = 0.8, Vt = 244 mh (800 ft/sec), 8 BLADES
• 60% OF SIDEWALL PERIMETER TREATED (ABOVE FLOOR ONLY) ,

ALUMINUM AIRCRAFT
BASELINE

TAKEOFF OUTER WALL BLADE
TYPE GROSS FUSELAGE PROP SURFACE PASSAGE MASS / % \

NO. ENG. WEIGHT DIAMETER DIAMETER DENSITY FREQUENCY PENALTY _TOGW/
TOGW

kg (Ib) m (ft) m (ft) kg/m2 ( PSF) Hz kg Ib %
WB/4 98 461 (217 466) 6.10 (20.00) 3.84 (12.6) 9.17 (1.88) 162 2 283 (5 033) 2.31

NB/2 40 823 (90 000) 3.90 (12.80) 3.78 (12.4) 6.25 (1.28) 164 742 (1.635) 1.82

SBA/2 14515 (32000) 2.23 (7.33) 2.19 (7.2) 4.68(0.96) 283 250 (551) 1.72

An all composite aircraft designed for the same mission requirements would

be considerably lighter in weight and have resized powerplants. Complete

redesigns of the composite aircraft are considered beyond the scope of this
study; therefore, the composite aircraft are assumed to have the same TOGW

as their aluminum counterparts. The outer-wall stiffness of the three

different-sized aircraft are essentially unchanged from their aluminum

counterparts; however, the baseline outer-wall surface densities are approxi-

mately 70% of the baseline surface densities of the corresponding aluminum

aircraft. The results are important because they indicate what may result
in regard to noise reduction penalties if acoustical design requirements are
not incorporated initially into the structural design. The available noise

reduction tools are, in this case, restricted to outer-wall mass and damping
treatments, trim panel mass variations, and other interior nonstructural
modifications.

The mass penalty results are summarized in table 5. They are higher
than the aluminum add-on penalties shown in table 4 by amounts ranging from

0.16% TOGW for the wide-body to 0.11% TOGW for the small business aircraft.

The mass penalty increases are 7% for the wlde-body, 16% for the narrow-
body and 7% for the small business aircraft. These slight increases are

due to the fact that the total surface density in the peak region is about

the same as for the aluminum add-on designs shown in figures I, 2 and 3,
but the baseline surface densities for the composite aircraft are 30% lower
than for the aluminum aircraft.
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TABLE 5. - ACOUSTICAL TREATMENT MASS PENALTIES FOR ADD-ON
COMPOSITE STRUCTURAL DESIGNS

o-1
Baseline

Outerwall Blade

Takeoff Fuselage Propeller Surface Passage
Aircraft GrossWeight Diameter Diameter Density Frequency Mass %

No.Engines kg(Ib) m (ft) m (ft) kg/m2 (psf) Hz Penalty TOGW

WB/4 98,641 (217,466) 6.1 (19.8) 3.84 (12.6) 6.39 (1.31) 162 2441 (5,381) 2,47

NB/2 40,823(90,000) 3.9 (12.8) 3.78 (12.4) 4.34 (0.89) 164 860 (1,895) 2.11

SBA/2 14,515 (32,000) 2.23 i(7.33) 2.19 (7.2) 3.27 (0.67) 283 266 (586) 1.83

NOTES:

(1) Baselineouterwallstiffnessissameasthatof thealuminumbaselinestructure.

(2) Baselineouterwallsurfacedensityis70percentofaluminumbaselinesurfacedensity.

(3) OuterwallsurfacedensityincreasedinSegment4 onlyto 19.5kg/m2 (4 psf)for80 dBArequirement.

(4) Remainderof noisecontrolpenaltymassrepresentsincreasedtrimpanelsurfacedensity.

3.3 High Stiffness Advanced Noise-Reduction Designs

The results discussed here pertain to benefits to be obtained by further

increases of outer-wall stiffness, which may be achievable using aluminum,

and for a possible all-composite material, orthogrid fuselage design in the

future. A preliminary design study determined the section properties required

to achieve higher-stiffness, outer-wall structures for each aircraft size

for both aluminum and graphite/epoxy structures. The weight increases asso-
ciated with increases in outer-wall stiffness were calculated and these rela-

tionships are shown in figures 4 and 5. In ach case, the baseline outer-wall

stiffnesses are equal for the aluminum and composite aircraft; however, the

baseline surface densities vary for the 3 different aircraft sizes according

to table 2 for aluminum aircraft and table 3 for the all-composite aircraft.

The baseline section properties are described in Appendix B for aluminum, and

the composite properties are the same except the outer wall bulk density is
70% of the aluminum value.

Figure 6 shows the mass distribution comparisons between the add-on and

advanced aluminum noise-reduction designs. These results are obtained by

finding the minimum total wall surface density needed to achieve 80 dBA for

each segment. Using the sidewall design'charts in Appendixes G and H, the

_ minimum wall surface density is selected on the basis of outer-wall mass,
stiffness, loss factor, and trim panel mass. These results demonstrate the

synergistic benefit of combining optimum double-wall performance in conjunc-

tion with stiffening the outer wall under realistic conditions. Appendixes B

and I contains a more complete description of these designs.
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Table 6 summarizes the integrated acoustical treatment mass penalties
for the various aircraft sizes and for various advanced noise-reduction con-

cepts. It is seen that the use of all-composite fuselages would further

reduce the penalties to about 1% of TOGW for the 4-engine, wide-body air-
craft and 1.4% for the 2-englne, narrow-body aircraft. It is possible that

the choice of a different propeller tip clearance for the 2-englne narrow-

body aircraft could bring the results in closer agreement with the wide-

body as regards the benefits of the advanced design. q

Parametric studies of outer-wall stiffness effects for advanced noise-

reduction designs are given in Appendix H. Appendixes B and I contain descrlp-

descriptions of the advanced noise-reduction designs. It is generally found

that when the outer-wall stiffness is increased in the range of five to
tenfold, efficient noise control is achieved with small amounts of trim

panel mass.

The results of table 6 are considered encouraging in that the advanced

noise-reduction designs indicate significant mass penalty reductions relative
to the add-on results even for aluminum aircraft.

4. DESCRIPTION OF FUSELAGE SIDEWALL DESIGNS

4.1 Baseline Designs and Maximum Noise Reduction Designs

Appendix B contains descriptions of eighteen different fuselage side-

wall construction designs evolved in this study. These designs include

six baseline (strength-designed or nonacoustical) designs and twelve high
noise reduction designs calculated to provide an interior noise level of
80 dBA or less in the region of peak exterior noise near the propeller disc

plane. The various designs can be classified into six categories for each

TABLE 6. - SUMMARY OF MASS PENALTY DATA

Wide-bodyA/C Narrow-bodyA/C BusinessA/C9864kg(217466Ib) 40 823kg(90..000Ib) 14515kg(32000 Ib)

WTR
% % % -

Concept kg (Ib) TOGW kg (Ib) TOGW kg (Ib) TOGW

(1) Add-onAluminum 2283 5033 2.31 741 1635 1.82 250 551 1.72

(2) AdvancedAluminum 1523 3358 1.54 616 1357 1.51 225 445 1.55

(3) Add-onComposites 2441 5381 2.47 660 1895 2.11 266 586 1.83

(4) AdvancedComposites 1009 2225 1.02 573 1264 1.40 107 237 0,740
i
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of the three aircraft sizes (wide-body, narrow-body and small business air-
craft) as follows:

I. Baseline aluminum designs

2. Baseline composite material designs

3. Add-on aluminum noise reduction designs

4. Add-on composite noise reduction designs

5. Advanced aluminum noise reduction designs

6. Advanced composite noise reduction designs

Appendix B presents details of the sidewall construction using general-

ized dimensions, and provides the numerical values of the dimensions for

each of the side wall designs described above. Also given are dimensional

data for the skin and stiffeners for each of the designs, and the section

properties of the stiffeners.

4.2 Definition of Fuselage Side Wall "Smeared" Stiffness

Average or smeared stiffness is defined as the stiffness per unit length

of the combined section which includes a stiffener and piece of skin whose

width is equal to the spacing between stiffeners (see Appendix B). These

single element section properties are used to calculate the properties of the

combined skin and stiffener sections. Bending moments of inertia are cal-
culated about the neutral axis of the combined section and these data are

used to calculate the relative stiffness ratios. The mass increases asso-

ciated with increased outer-wall stiffness are consistent with the mass-

versus-stiffness ratio plots presented in figures 4 and 5. The composite

advanced noise-reduction designs use high modulus material only for the

flanges of the frames and stringers whereas the modulus of the webs and

skin remain at the baseline values. The inner flange modulus is increased

as much as 2.5 times the baseline value by the addition of high modulus,

uniaxial fibers to the inner flange.

Stiffener torsional constants were not changed from the baseline values

when the advanced aluminum and advanced composite aircraft were analyzed.

The actual values did change -- occasionally higher or lower than the base-

line values. This occurred because the detail design of the advanced air-
craft was not finalized when the noise-reduction calculations were performed.

This is not considered significant since within the framework of Koval's

smeared stiffener analysis, the torsion constant has only a minor effect on
the shell impedance.
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4.3 Axial Variations of Sidewall Design Characteristics

The fuselage side wall construction details described above represent
two extremes I) the baseline design, having a zero penalty mass, and 2) the

maximum noise-reduction design. For fuselage locations which are close to

the propeller plane but not exactly at the peak external noise location, a

lesser amount of side wall modification is required. For the add-on noise-
reduction designs, figures 1 through 3 indicate the axial distributions of

• Total sidewall surface density

• Total outer-wall surface density

Appendix I gives the axial distribution of noise control parameters for each

of the six add-on designs, three aluminum and three composite outer-wall
structures, including

• Total side-wall density

• Total outer-wall surface density

• Surface density of outer-wall viscoelastic damping treatment added

• Thickness of the viscoelastic damping layer

• Damping loss factor

• Trim panel surface density

Appendix I describes the axial variation of the noise control parameters for

each of the six advanced noise-reduction designs, including

• Relative stiffness level of the outer wall compared to the baseline
stiffness

• Relative stiffener spacing compared to the baseline structure

• Total outer-wall surface density including the effects of stiffener
spacing changes

• Trim panel surface density

• Total side-wall surface density
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APPENDIX A

METHODOLOGY AND ASSUMPTIONS

AI. EXTERIOR NOISE SIGNATURES AND

AIRCRAFT DESIGN DESCRIPTION

The fuselage wall in the vicinity of the propeller disc plane was divided

into five segments of varying length as shown in figures 7 and 8 and table 7.

Segment lengths and exterior noise levels were selected to represent the esti-
mated noise signatures derived from the Hamilton Standard data of reference 5.

Seven segments were originally selected but the propeller noise levels at seg-
ments i and 2 (forward of the propeller,disc plane) were low enough to be ig-

nored. For the 2-engine aircraft, the normalized propeller tip clearance_y/D

is 0.8, and the propeller disc plane is the reference location_x/D = 0. The

segment OASPL's selected for the 2-engine aircraft are very conservative as
sho_m in figure 7 except for segment 4, where the 134 dB peak exterior noise
level is the selected segment design level. The directivity data derived from

reference 5 for the 4-engine, wide-body aircraft are shown_in figure 8. Nor-
malized propeIler--tp_ip-ciearances (_-y/D) of 1.2 and 2.3 were used for the in-
board and outboard propellers, respectively. As the engines move outboard on

the wing they also move aft and the axial locations of the inboard and out-

board propeller disc planes are -0.27 _X/D and -l.01_X/D. The segment design

levels are shown in figure 8, where the peak noise level of 132 dB is selected

for segment 4. This is lower than the peak level for the 2-engine aircraft

because the inboard engine is further outboard; however, the exterior noise

signature is shown to be more extensive in the axial direction due to the
outboard engine contribution. The segment boundaries and exterior noise
levels are listed in table 7.

Interior noise calculations are performed for each segment as though it

represented the entire fuselage. The segment exterior noise level and range

of angle of incidence are considered typical and the fuselage is designed to
achieve an interior noise level of 80 dBA. Segment noise reduction is a

function of angle of incidence and is obtained by an antllogarithmic summa-

tion and average of the noise reduction calculated at several specific angles

of incidence within the segment. For the peak noise region of segment 4, the

range of incidence angle is quite large, and fifteen equally spaced angles
of incidence are used to obtain segment noise reduction. The range of inci-

dence angles within each segment is given in table 7, and incidence angle is

given as a function of axial position in figure 9. Koval's theory (refer-
ence 7) _redicts that the low-frequency sound waves are attenuated less as

the angle of incidence approaches normal incidence. Thus, there are optimum

propeller tip clearances which minimize the combined effect of the more

intense inboard propeller noise signature and the greater axial extent of

the outboard propeller's directivity. The optimum propeller tip clearance

is a _y/d of 1.2 for the inboard engine of the 4-engine, wide-body aircraft.

A trade-off study between intensity and directivity is also possible for the

2-engine aircraft; however, schedule time did not permit tip clearance opti-
mization studies for the 2-engine aircraft.
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o TABLE 7. - FUSELAGE SEGMENT PROPERTIES

A. Two-EngineAircraft
LocalGrazeAngleof Incident

Average SoundWaveFrom:
PropellerTip Clear. Position _OASPLFor InboardProp OutboardProp

(__._y_ (__ Segment (X- XIB) Segment*
_-D-)IB _,-'D-)OS No. O Location d8 Bad (Deg) Red (Deg)

0.8 N/A 3 1.42 ForwardEdge,Seg.3 -10 2.63 (151) N/A
0.47 Aft Edge, Seg.3 2.10 (120)

4 0.47 ForwardEdge,Seg.4 0 2.10 (120)
0 InboardEnginePro- 1.57 (90)

pellerDiscPlane
-1_23 Aft Edge, Seg.4 0.58 (33)

5 -1.23 ForwardEdge,Seg.5 -10 0.58 (33)
-2.18 Aft Edge, Seg.5 0.35 (20.2)

6 -2.18 ForwardEdge,Seg.6 -20 0.35 (20.2)
-2.48 Aft Edge, Seg.6 0.31 (17.8)

7 -2.48 ForwardEdge,Seg.7 -30 0.31 (17.8)
-2.78 Aft Edge, Seg.7 0.28 (16.1)

B. Four-EngineWide-BodyAircraft

1.2 2.3 3 1.42 ForwardEdge,Seg.3 -10 2.44 (140) 2.12 (127)
0.47 Aft Edge, Seg.3

4 0.47 ForwardEdge,Seg.4 - 2 1.94 (111) 1.77 (102)
-0.27 InboardDiscPlane 1.39 (77) 1.45 (83)
-1.012 OutboardDiscPlane 0.87 (49.9) 1.16 (66.2)
-1.23 Aft Edge, Seg.4 0.77 (44.3) 1.08 (61.9)

5 -1.23 ForwardEdge,Seg.5 - 7 0.77 (44.3) 1.08 (61.9)
-2.18 Aft Edge, Seg.5 0.50 (28.8) 0.81 (46.5)

6 -2.18 ForwardEdge,Seg.6 -12 0.50 (28.8) 0.81 (46.5)
-2.48 Aft Edge, Seg.6 0.45 (25.8) 0.75 (42.8)

7 -2.48 ForwardEdge,Seg.7 -15 0.45 (25.8) 0.75 (42.8)
-2.78 Aft Edge, Seg.7 0.41 (23.3) 0.69 (39.6)

NOTE:*

(1)AOASPL= 0ASPL- 134db
(2) Segments1and2forwardof thosedescribedinthistablearefoundnotto requireacoustictreatmentandthereforeareomittedfromthisreport.
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Figure 9. - Angle of incidence versus axial position.

It is noted that the segment noise levels discussed above are, in general,
much higher than those provided by Hamilton Standard, and would lead to an ex-

cessively conservative amount of acoustical treatment. The segment levels

were employed in order to simplify the analysis in deriving the wall surface

density versus interior noise-level relationships discussed in Appendix G.
In the final analysis, the required surface density was adjusted downward to
account for the noise-level differential between the segment levels and the

continually varying levels provided by Hamilton Standard. This approach is
described in Section 3.1.

Table I itemizes the design characteristics of the three aircraft selected

for this study. Figures i0, ii and 12 show the general arrangements of the

wide-body, narrow-body, and business aircraft, respectively. The wide-body

aircraft design used in this study is the _ame one derived in the RECAT study
of reference I. This similarity allows a direct comparison of the acoustical

treatment penalties of the current study with the preliminary design estimates
of reference i. The other two aircraft used for this study are possible com-

mercial aircraft candidates using narrow-body and small business aircraft di-

ameters. The number and sizing of propellers is related to each aircraft mis-

sion. The business aircraft is a long-range version of the Lockheed JetStar and

has a propeller loading design value SHP/D2 = 223 kW/m2 (28.3 HP/Sq ft), only
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CHARACTERISTICS WING HORIZ VERT

BASIC TOTAL

AREA (m 2) 185 209 26.4 24.2
ASPECT RATIO (%) 10 5 1.6
SPAN (m) 43.2 11.5 6.2
ROOT CHORD (m) 6.6 7.8 3.5 6.0
TIP CHORD (m) 2.0 1.1 1.8
MAC (m) 4.7 2.5 4,3
TAPER RATIO 0.3 0,3 0.3
SWEEP (rad) 0,44 A 0,44 0.56
T/C ROOT (%) 14 _ 10 10
T/C TIP (%) 11 8 8

,i_AT BL 3.0 m
I

POWER PLANT: PRATT & WHITNEY STS 476 3,84 m HAMILTON
REMATCHED TURBOSHAFT ENGINE STANDARD PROPELLER
SLS THRUST 62 872N (6609 kW)

°m On
• 4 I_ROPFANS

• 200PAX fOOOOOOOOE_.._OQoQO 0 _', _._14.1m

• MACH08 __ J_,,• ,,,Skm I'_- I 1(3 I _ _,_...-- ..-. rad

Figure 10. - General arrangement - wide body,

TAKE-OFF GROSS WEIGHT - 41 730 kg _._

(" POWER PLANT (2) // -_1PRATT_WHITNEYsTs476
SCALED TO 4549 kw ; I !

STANOARDSEAT,NO2.-80_MIX_o _ _ _--_l

4-- 6 ABREAST / _
/3a8mmA \\\ I I

f F_L...-_ 3.02 m _'-f_._

+__.6.24 m --_

•'= 26.86 m =,

I! -1_--_ 8"6;"l-_1m4m"-_ _'--'_" - 0"56 m'_'l=_

Figure II. - General arrangement - narrow-body.

33



AREA,m2,IW,NGI.OR,ZVERTI
I ASPECTRATIO110 I 57 1.75I
I SPAN (m) 119"3 I 7.27 13.15 I
IROOTCRORD(m)I 2"97 I 1.83 I 2"67 I "
I TIPCHORD(m) I 0.89 I 0.73 I 0'93 I
I TAPER RATIO |0.30 0.40 I 0,35 I

,MAO,m,,211 I'1I SWEEP(tad) I 0"44 I 0.44

TAKE-OFF GROSSWEIGHT - 14 575 kg

POWERPLANT (2)
PRATT & WHITNEY STS476 SCALEDTO 1566kw

STANDARD SEATING16PASSENGERSAT0.86mPIT(_H-2ABREAST1.76mV, Ill I

/ 2.19 m DIA

0.658m _ 0.61t m 4-3.8051n.--_ J._/.'J_ ,,.,-I.

...... %--"-- t-
l= _ 5.89m _ 0.21rad17,6m

Figure 12. - General arrangement - business aircraft.

slightly lower than that for the narrowfbody aircraft. Both of these aircraft
have propfan diameters which are nearly equal to their fuselage diameters. A

higher propeller power loading, 293 kW/m 2 (37.1HP/sq ft) is used for the
4-engine wide-body whose propfan diameter is only 60% of its fuselage diameter.

It should be noted that the required propeller diameter is proportional to the

square root of the required thrust or aircraft TOGW, and if the wlde-body had

only two engines, then its propfan diameter would be nearly equal to its
fuselage diameter.

A2. PROPELLER HARMONIC DISTRIBUTIONS ASSUMED FOR

EXTERNAL ACOUSTIC PRESSURE DISTRIBUTION

Figure 13 displays the three kinds of propeller noise harmonic spectrum
assumptions employed by this study. They include:

• Spectrum i - the estimated spectrum for the propfan according to

reference )_

• Spectrum 2 - a 3-dB-per harmonic decreasing spectrum

• Spectrum 3 - a flat spectrum of i0 tones including the blade
passage fundamental tone.

C
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Figure 13. - Relative tone SPL versus harmonic number for the three

propeller harmonic spectra employed in study.
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The harmonics are all expressed as tone SPL increments relative to the local

external OASPL. The first spectrum is currently considered most realistic.

The third spectrum is typical of earlier high-sPeed propeller noise predic-

tions, and the second spectrum represents an intermediate case.

Because the interior noise objective of the study is expressed in dBA,

figure 14 is included for the convenience of the reader, with the frequencies
of the first three tones indicated for each of the three study aircraft.

Figure 15 shows the A-welghted external free-field sound pressure resulting
from spectrum 1 for each of the three study aircraft. The results show the

cumulative A-welghted sum as more propeller harmonics are included. Figure 14
shows that because of the high blade-passage frequencies associated with

multibladed propfans, their external noise signatures have a relatively higher

A-welghted SPL than do conventional propellers for a given OASPL level. On
the other hand, many add-on noise-control elements perform better at high

frequencies, so that the net effect of increased blade passage frequency

upon the interior noise for a highly treated cabin Wall is not immediately
obvious. The preliminary double wall mass law predictions of reference 1

showed that the higher blade-passage frequency was beneficial to that concept
of noise control.

5
SMALL BUS AIRCRA'FT

0 B .

_ -10

- /_ -15

BPF

/ 0 , _

I " I I

WB & NB AIRCRAFT

-25 I

-30 /
100 1000 10,000

FREQUENCY IN HERTZ

Figure 14. - A-weighting correction versus frequency.
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Figure 15. - Cumulative A-weighted external sound pressure versus

number of propeller harmonics included, Spectrum i.

A3. CALCULATION OF TREATED CYLINDER NOISE REDUCTION;
INTERIOR ACOUSTICAL ABSORPTION

Figure 16 describes the approximate relationship between noise reduction

and transmission loss which is used in this study and the assumed schedule of

diffuse absorption coefficients achievable in the cabin versus frequency. As
the average absorption coefficient increases, the difference between noise

reduction (NR) and transmission loss (TL) decreases. If the average absorp-

tion coefficient were equal to 1.0, and r is small, then NR would be equal to

TL. By simply equating the acoustic energy flux through the cabin wall to

the energy absorbed throughout the cabin interior, it can be shown that the

noise reduction, NR, is given by the following equation which is used through-
out this study:

I_) _ (i)
NR = l0 loglo = i0 log (I +-_-)

_Pint !

where T is the sidewall transmission coefficient, and _ is the average absorp-
tion coefficient of all the interior absorbers when referred to the trans-

mitting surface area of the sidewall.
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Figure 16. - Effect of absorption on noise reduction.

Equation (i) is subject to two limitations. First, the above relation-

ship is employed in lieu of attempting to delineate the interior cavity
acoustical modes, which could be done for a well-deflned geometry such as
a purely cylindrical cavity. Here a typical commercial aircraft interior

is considered to be an extremely complex spatial configuration of acoustical
absorbers. The seats are the major contributors to the total amount of inte-

rior absorption for a typical commercial aircraft. Equation (I), in effect,
transfers all of that absorption to the sidewalls, ignoring the details of

the multiple reflections of individually transmitted sound rays.

A second approximate aspect of equation (i) is pertinent to the analysis
of baseline aircraft when subjected to a localized hlgh-lntenslty exterior

noise source, such as is the case near the propeller disc plane. In this

case, there will exist a strong gradient along the axis of the fuselage of
the flux of acoustical energy through the cabin wall. If equation (I)is

applied locally, as is done in the current study, then the locally predicted
interior noise levels have an axial distribution which mirrors the distribu-

tion of the energy flux through the wall using the local values of energy
flux and absorption coefficient. A more accurate result would be obtained

by writing an ordinary differential equation describing the axial flow of

the acoustical energy within the cabin. Solutions of this energy flux
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differential equation tend to allow interior acoustical energy to flow

towards absorption material located in regions which are not adjacent to

the peak noise transmission region. The resulting equilibrium distribution

of the interior SPL would tend to display the following features in compari-

son to results from equation (i):

• Lower SPL values adjacent to the propeller disc plane region. The
net noise-reductlon values are closer to TL values than is shown

in Figure 16.

• Higher local values of SPL in regions further away from the

propeller disc region.

• Less severe axial gradients of interior SPL.

The errors due to neglect of the axial flow of accoustical energy flux

are expected to be small in the present study for the high-noise-reduction

designs since acoustical material is applied in proportion to the local re-

quirements of equation (i). The result of this acoustical treatment procedure

will be to produce a nearly uniform energy flux through the cabin wall over

the entire length of the cabin, and hence, the axial gradients of interior
SPL will be minimal for the treated aircraft.

The assumed distribution of acoustical absorption coefficient versus

frequency as shown in figure 16 is taken directly from a computer test case

for the method of Cockburn and Jolly (reference 8). Table IV, p 328 of

reference 8 gives data which can be used to estimate the effects of certain

items such as carpets, etc. Independent calculations indicate that the

schedule of absorption used in this study, as shown in figure 16, is con-

servative and could be improved upon in the project design phase of a new

commercial aircraft. The main reason for employing a low schedule of absorp-

tion values is to leave the designer some margin for improvement of the inte-

rior noise levels, even after the structural design of the aircraft has been

frozen through release of drawings and by major financial commitments for
tooling.

A4. TREATED CYLINDER TRANSMISSION LOSS

AN OUTLINE OF THE ANALYTICAL PROCEDURE

A4.1 General Outline

The sound transmission losses (STLs) of acoustically treated stiffened

cylinders are obtained by combining component losses in a systematic manner.

This is a previously unpublished, structural-dynamics-based technique devel-

oped at Lockheed, and it provides a significent improvement in prediction

methodology when compared to the preliminary design methods which were used
in the RECAT study (reference i). Justification for the method used here is

based partly on existing test data presented in Appendix F, and by discussions
given in Appendixes A through E.
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An acoustically treated stiffened cylinder is analyzed as follows
(figures 17, 18 and 19):

i. Calculate the STL of a small flat skin panel bounded by stiffeners
per Cockburn and Jolly (reference 8).

2. Calculate the STL of an untreated stiffened cylinder using Koval's

(reference 7) smeared stiffness approach - see Appendix C.

3. Calculate the STL of a small flat skin panel with the desired
acoustic treatments per Beranek and Work (reference 9) and Cockburn
and Jolly (reference 8). Errors detected in reference 8 are noted

in Appendix E.

4. The STL of a stiffened but untreated cylinder is then defined as
the lower envelope of i. and 2. above.

5. The STL increment due to the added acoustic treatment was obtained

by subtracting I. from 3. above.

6. Treated cylinder STL was then obtained by adding 4. and 5. above.

The total configuration STL and the interior absorption coefficient data are

then used to calculate a noise reduction for each segment of the aircraft

fuselage as described previously in Section A3. The exterior noise spectrum
for each segment is then reduced by the calculated noise reduction and an

interior noise spectrum is obtained. The calculated interior noise at the

propeller fundamental and the first nine harmonics are weighted and summed
to obtain the A-weighted overall interior noise.

Section A4 describes the propeller harmonic distributions assumed for

this study. Transmission loss calculations were performed for the 7 fuse-
lage segments discussed in Section A1 and the interior noise was determined

for 3 harmonic distributions of the propeller noise for each segment. For
most configurations 6 trim panel surface densities were used; therefore, a

single computer run involved 6 trim panel weights times 7 fuselage segments
times 3 propeller harmonic distributions for a total of 126 cases.

Appendix C contains a mathematical outline of Koval's methodology

(reference 7), which is described qualitatively below. Appendix D contains

a critique by Professor Koval of limitations of the theory, especially of
the smeared-stiffener concept, in light of his more recent work.

A4.2 Description of Koval's Theory

The fol!owing is a brief physical description of Koval's theory of
noise transmission into a cylindrical shell under flight conditions.

Figure 20 shows the geometry of the idealization by Koval (reference 7)

in which oblique plane acoustic traveling waves are convected parallel to the
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cylinderaxis by a high-speedsubsonicflow with Mach number,M. The sound
waves impingeupon the fuselageat an obliquegrazingangle of incidence,8.
The amplitudeof the incidentpressurewave has a prescribedamplitude,Pi'
which is assumed to be known in the current study from the data in figures7

_ and 8 and reference5. The externalsound pressurefield is governedby the
convectedwave equationwhich determinesthe componentsof the wave humber
along the axial and radialdirectionsin terms of the frequency,Mach number,

and the acousticpropagationspeed,Cl, in the externalfield.

The presence of the cylindercauses a reflectedor scatteredwave field
to be set up in the externalfluid which radiatesenergy externally. The
surfaceof the shell deforms in accordanceto the structuraldynamic equations
of motion of a cylindricalshell. This causes a sound wave to be transmitted
into the interiorof the cabin. The interioracoustic field is governedby
the ordinarywave equationbased upon fluid propertiesdesignatedwith a
subscript2.

In reference7, Koval assumesthat the interiorsound field is that
associatedwith a radiallyinward travelingwave, followingthe approachof
P. W. Smith (reference6). This assumesthat there is some mechanisminside
the cabin which can absorb the acousticalenergy flux associatedwith such
waves. The presentstudy accountsfor the semireverberantincreaseof inte-
rior noise in the manner alreadydescribedin SectionA3.

Koval's theory computesthe mechanicalimpedanceof the cylindrical
shell and the acousticalterminationimpedanceof the interiorfluid based
on the radiallyinward travelingwave field describedin terms of Hankel
functionsof the first kind.

The boundaryconditionssatisfiedin Koval's theory requirethe following
principles:

• Matching of axial wave number componentsbetween the applied external
acousticpressurefield, the scatteredpressure field, the deformation
of the shell, and the sound pressure field transmittedto uhe interior

• Matching of radial displacementsof the fluid particle and the shell
at the surfaceof the shell

• Writing of a force balance equationin the radial directionacross
the outer shell surfaceusing appropriateimpedanceexpressions.

A4.3 Justification for Selection of Koval's Approach

Koval's theory in reference 7 pertains to monocoque shells and in the
present application requires smearing of the stiffeners to produce an equiv"

alent orthotropic, monocoque cylindrical shell. Experimental discussion in
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Appendix F, and more recent theoretical work by Koval discussed in Appendix D,

shows that this is still a reasonably good engineering approximation when

used in conjunction with Cockburn and Jolly as in our present theory.

The noteworthy advantages of Koval's theory are as follows:

• It provides a rational structural dynamic theory with which to

systematically evaluate many important factors affecting noise
control, such as stiffness, panel dimensions, skin thickness,

stiffener properties, shell diameter and length, pressurization,
damping loss factor, and mass additions to the outer wall of the

fuselage. Investigation of such complex effects is beyond the
scope of preliminary design studies such as reference i.

• Koval's use of the impedance approach allows easy generalization for
inclusion of add-on noise-control elements by modification of the
termination impedance.

• Koval's theory has already been recently generalized without great
computational effort to include discrete stiffener effects. Inclusion

of floor effects will require more computational effort.

• The theory provides a good representation of the flow field convection

of the applied acoustic pressure field, and also of the reflection or

scattering of the incident acoustic pressure waves including the
effects of the deformation (mobility) of the shell.

• Experience has shown that the computational costs are very reasonable

for investigating the effects of a very large number of parameters.

A5. METHOD FOR CALCULATING THE TRANSMISSION LOSS
FOR ADDED ACOUSTIC TREATMENTS

e

A5.1 General Outline

The sound transmission losses (STL) of acoustically treated aircraft

structures are obtained by determining the STLs of the untreated cylinder and
added treatment separately. This process is described in Section A4, and also

in Appendixes C and E. Partial experimental verification for each prediction

technique using existing data is given in Appendix F. At present no experi-
mental verification is available for the STL of a fuselage structure with the
very heavy acoustical treatments of the kind required to meet the current
study goal.

A significant part of the STL of acoustically treated aircraft structures
is provided by the material added to the basic structure. The most common

additions are in the form of damping tiles or tape, fiberglass blankets,
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septa and decorative trim panels. In addition, the effects of the absorption

of sound by carpeting, seats, ceiling panels, and passengers is evaluated in
the manner described in Section A3.

A5.2 Basis for Treatment Layer Characteristics
Prediction Method

Beranek (references 9, i0, and ii) derived the characteristic impedance

expression for porous materials and he showed how multilayered treatments

could be combined analytically to obtain total configuration impedance

expressions. Beranek's method was incorporated into a prediction method

by Cockburn and Jolly (reference 8) for aircraft interior noise prediction.

The basic approach of the Cockburn and Jolly method was followed and modifi-

cations or corrections were applied where appropriate. Appendix E contains

the equations as used in this study and also includes the original Cockburn

and Jolly equations for reference. Mulholland, Price and Parbrook (refer-
ence 12) developed the means whereby the Beranek and Work method of refer-

ence 9 could be applied for oblique angles of incidence. When the changes

suggested by Mulholland, et al., were applied, the resulting impedance

expressions for porous materials and airspaces subjected to obliquely

incident sound were in agreement with Beranek's earlier investigation of

reference i0. Koval has derived a previously unpublished expression for

the STL of a panel subjected to obliquely incident sound with an external

airflow. These results are given in Appendix E. His derivation defined
the transmission coefficient as the ratio of the transmitted over the inci-

dent pressure. Beranek's derivation did not include an external airflow
and defined the transmission coefficient as the ratio of the transmitted

over the surface pressure instead of the incident pressure.
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APPENDIX B

STRUCTURAL CONFIGURATIONS AND SIDEWALL DESIGN DESCRIPTIONS

BI. SIDEWALL CONSTRUCTION DETAILS

Figure 21 describes the aircraft sidewall construction details using

generalized dimensions. Table 8 provides the key to Figure 21, giving specific

data fo_ 18 different sidewall designs including 6 baseline nonacoustical

designs and 12 high noise reduction designs. These designs are in groups of

S, one each for the wide-body, narrow-body and small business aircraft. The

designs are classified as follows:

(I) Baseline aluminum designs used in regions of the fuselage not

impacted by propeller noise reduction requirements.

(2) Baseline composite material designs used in regions of the fuselage

not impacted by propeller noise reduction requirements.

(3) Aluminum aircraft with add-on hlgh-nolse reduction designs for the

corresponding peak external noise locations.

(4) Composite aircraft with add-on noise reduction designs for the peak
external noise locations.

(5) Aluminum aircraft with advanced noise reduction designs for the

peak external noise locations.

(6) Composite aircraft with advanced noise reduction designs for the
peak external noise locations.

B2. SECTION PROPERTIES AND DIMENSIONAL DATA OF STIFFENERS

Tables 9 through 12 provide the section properties and figures 22

through 34 show the dimensions of the stiffeners used in the 18 sidewall

designs described above.

B3. DISCUSSION OF STRUCTURAL DESIGNS

For the wide-body and narrow-body designs, the stiffeners were equal in

area and equally spaced. The design of the small business aircraft included

frames at 50.8 cm (20 in.) spacing and intercostals at 16.9 cm (6.67 in.)
between frames. Since a constant stiffener spacing and equal cross sectional

area stiffeners are more convenient for analysis, the small business aircraft
frames and intercostals were modified. In one configuration, the mass and

stiffness of the intercostals were absorbed by the frame. A second con-

figuration, and the one used for the small business aircraft study, had the

46



intercostals and frames equal in area with a 16.9 cm (6.67 in) spacing. The

averaged or smeared stiffnesses of the small business aircraft configurations

were equal to that of the baseline structure. A summary of the baseline

structural arrangements and properties of the cylinders, frames, and stringers
_ are given in table 9. The internal and external environments assumed for the

analyses are also tabulated.

The design of the composite structure reflects new design concepts and

manufacturing techniques developed at Lockheed. Ingenious manufacturing
techniques make possible the interlocking of orthogonal stiffeners into a

continuous structure referred to as orthogrid. The orthogrid concept, depicted
in figure 26, consists of elements arranged parallel and normal to the longi-

tudinal axis with alternating layers of syntactic resin and graphite. A pre-

liminary design of the composite wlde-body structure is shown in figure 35. A
composite replication of the aluminum structure for all three aircraft results

in equally stiff structures with surface density values which are 66, 67, and

65 percent of the aluminum baseline for the wide-body, narrow-body, and

business aircraft, respectively. Increased stiffness can be achieved by in-
creasing the section modulus or Young's modulus of the skin and stiffeners.

Figures 4 and 5 of Section 3 show the variation of stiffness as a function of

outer wall mass for the three study aircraft. Results in Section 3.2 show the

noise-control merits of such stiffened outer wall designs when combined with
an optimum double wall design.

Appendix H shows results of parametric studies which help to define the
optimum outer wall stiffness level both for advanced aluminum and advanced

composite structures. Appendix I describes the axial variation on the various

sidewall noise reduction design parameters for both the add-on and the ad-

vanced noise reduction designs.
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TABLE 8. - KEY TO FUSELAGE SIDEWALL DIMENSIONAL DATA FOR VARIOUS NOISE REDUCTION

DESIGNS FOR PEAK NOISE REGION

I

.- .=- >

g'/mbolsusedinFigure21

j 1x ly d dBikt dAo h hVE °lstru c a2 aV E

KG KG KG Fig. ]'able

No. A(C Material Concept CM ((o._ CM (In.) CM tin.) CM ((n.) CM ((n.) CM (In.) CM (In.) SqM PSF SqM PSF SqM PSF No. No.

1 WB Aluminum' Baseline 50.8 (20) 21.6 (8.5) 15.2 (8) 7.62 (3) 7.62 13) 0.173 (0.068) 0 9.17 (1.88) 1.61 (0.33) 0 22 9

2 N8 Aluminum Baseline 48.3 (19) 15.2 (8) 15.2 (6) 7.62 (3) 7.62 (3) 0.144 (0.045) 0 6.25 (1.28) 1.61 (0.33) 0 23 9

3 SBA Aluminum Baseline !16.9 (6.67) 58.4 (23) 10.2 (4) 5.08 (2) 5.08 (3) 0.081 (0.032) 0 4.68 (0.98) 1.61 (0.33) 0 24,25 9
4 WB Composite Baseline 50.8 (20) 21.8 (8.5) 15.2 (6) 7.62 (3) 7.62 (3) 0.203 (0.080) 0 6.39 (1.31) 1.61 (0.33) 0 26 9

5 NB Composite Baseline 148.3 (19) 15.2 (8) 15.2 (8) 7.62 (3) 7.62 (3) 0.127 (0.050) 0 4.35 (0.89) 1.61 (0.33) 0 27 9
6 SBA Composite Baseline ! 16.9 (6.67) 58.4 (23) 10.2 (4) 5.08 (2) 5.08 (2) 0.102 (0.040 0 3.27 (0.67) 1.61 (0.33) 0 28 9

1 WB AtL=minum AJd-0nNRDesign i50.8 (20) 21.8 (8.5) 15.2 (6) 7.62 (3) 6.88 (2.71) 0.173 (0.068) 0.747 (0.294) 9.17 (1.88) 14.6 (3.0) 10.4 (2.12) 22 9
8 N8 Aluminum Add-0nNR Design 48.3 (19) 15.2 (6) 15.2 (8) 7.62 (3) 6.85 (2.62) 0.114 (0.045) 0.960 (0.378) 6.25 (1.28) 13.4 (2.75) 13.3 (2.72) 23 9

9 SBA Aluminum Add-OnNRDesign 116.9 (8.87) 58.4 (23) 10.2 (4) 5.08 (2) 6.55 (2.58) 0.081 (0.032) 1.072 (0.422) 4.68 (0.96) 9.03 (1.85) 14.8 (3.04) 24.25 9

10 WB Aluminum AdvancedNR Design 50.8 (20) 21.S (8.5) 15.2 (6) 7.62 (3) 7.62 (3) 0.241 (0.095) 0 15.6 (3.2) 12.2 (2.5) 0 29 11

11 N8 Aluminum AdvancedNR Design !24.1 (9.5) 7.82 (3) 15.2 (6) 7.82 (3) 7.82 (3) 0.152 (0.060) 0 ! 12.7 (2.6) 13.2 (2.7) 0 30 11

12 SBA Atuminum AdvancedNR Design 8.46 (3.33) 29.2 (11.5) 10.2 (4) 5.08 (2) 5.08 (2) 0.178 (0.070) 0 12.2 (2.5) 13.2 (2.7) 0 31 11

13 W8 Composite AdvancedNR Design :25.4 (10) 10.8 (4.25) 15.2 (6) 7.62 (3) I 7.62 (3) 0.218 (0.085) 0 10.4 (2.13) 7.81 (1.8) 0 32 12

14 fib I Composite AdvancedNR Design 10 24.1 (9.5) 7.62 (3) 15.2 (5) 7.02 (3) ; 7.62 (3) 0.178 (0.070) O 9.52 (1.95) 14.6 (3.3) O 33 1215 SBA I Composite AdvancedNR Design 10 8.46 (3.33) 29.2 (11.5) 10.2 (4) 5.08 (2) 5.08 (2) 0.203 (0.080) 0 8.0 (1.64) 6.83 (I.4) 0 34 12

18 WB Compos)to Add-OnNBDesign 1 50.8 (20) 21.6 (8.5) 15.2 (6) 7.62 (3) 7.62 (3) 0.203 (0.080) 0.95 10,374) 6,4 (1.31) 14.6 (3.0) 13.1 (2.69) 26 10

17 NB Composite Add-0nNR Design I 48.3 (19) 15.2 (8.0) 15.2 (8) 7.82 (3) 7.62 (3) 0.127 (0.050) 1.10 (0.432) 4.34 (0.89) 12.2 (2.5) 15.2 (3.11) 27 10

18 SBA Composite Add-0nNRDesign 1 16.9 (6.87) 58.4 123) 10.2 (4) 5.08 (2) 5.08 (3) 6.102 (0.040) 0.82 (0.324) 3.27 (0.67) 11.2 (2.3) 11.4 (2.33) 28 ltJ

Notes: (1) Vascoelasticlayerthicknessbasedonabulkdensityof 1384KG/m3 (88.4lb/ft 3)

(2) Dampinglossfactor r_= 0.06 fOrOvE = 0, andincreaseslinearityto r/= 0.2at oVE = 20.1 KG/m2 (4.12 psf)



TABLE 9. - OUTER WALL STRUCTURAL PROPERTIES BASELINE ALUMINUM

(STRENGTH DESIGNED STRUCTURE)

AircraftType

Units Wide-Body Narrow-Body BusinessA/C

Item SI English SI English SI English SI English

CYLINDRICAL SHELL

Radius m (ft) 3.05 (10.0) 1.96 (6.42) 1.14 (3.75)
Length m (ft) 35.8 (117.5) 23.0 (75.5) 10.8 (35.5)

SkinThickness cm (in) .173 (.068) .114 (.045) .0813 (.032)

Skin Bulk Density kg/m3 (Ib/in3) 2768 (.10_ 2768 (.10) 2768 (.10)

ElasticModulusSkin GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)
DampingLOSSFactor none none .06 .08 .08 .06 .08 .06

SurfaceDensitySkinplusStiffeners kg/m2 (psf) 9.17 (1.88) 6.25 (1.29) 4.68 (.969)

Ratio: (Stiffness)/(BaselineStiffness) 1.0 1.0 1.0 1.0 1.0 1,0

FRAMES

Spacing cm (in) 50.8 (20) 48.3 (19) 16.9 (6.67)

Depth cm (in) 15.2 (6) 15.2 (6) 7.62 (3)

CrossSectionalArea cm2 (in2) 4.27 (.662) 2.48 (.385) .928 (.144)

Bulk Density kg/m3 (Ib/in3) 2768 (.10) 2768 (.10) 2768 (.10)

ElasticModulusWeband outerflange GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107 )
Innerflange GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

Areacentroid(re: skin_) I crn (in) 6.49 (2.56) (6.92) (2.73) 3.85 (I.52)

2rid AreaMoment(re: Skin _) i" cm4 (in4) 297.2 (7.14) 188.6 (4.53) 21.1 (.508)
TorsionConstant cm4 (in4) .0393 (.000943) .00668 (.000161) .00204 (.0000491)

STRINGERS

Spacing cm (in) 21.6 (8.5) 15.2 (6) 58.4 (23)

Depth I cm (in) 3.43 (1.35) 3.05 (1.2) 0.35 (2.5)

CrossSectionalarea !1 cm2 (in2) 1.605 (2.49) .916 (.145) 2.03 (.315)

Bulk Density j kg/m3 (Ib/in3) 2768 (.10) 2768 (.10) 2768 (.10)
ElasticModulusWebandouter flange ' GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)
Innerflange P_; GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)
Areacentruidre: Skin Ft. i cm (in) 1.46 (.576) 1.49 (.587) 2.18 (.857)
2ridAreaMoment (re: Skin FL) _ cm4 (in4) 6.13 (.147) 3.35 (.0806) 20.6 (.494)

TorsionConstant =! cm4 (in4) .0221 (.00053) (.00725) (.000174) .0134 (.000325)

SmearedStiffnessProperties(Skin plusstiffeners, ]
with skinwidth equalto stiffenerspacing)

FRAMES i

Skinwidth l cm (in) 50.8 (20) 48.3 (10) 16.9 (6.07)

2ndAreaMoment (re: neutralaxis) i cm4 (in4) 238.3 (5.72) 151.5 (3.64) 15.61 (.375)

Neutralaxisdistanceto skin _.. cm (in) 2.21 (.8708) 2.20 (.868) 1.593 (.627)
TorsionConstant cm4 (in4) .1265 (.00304) .0307 (.000738) .00508 (.0001219

Total SectionArea cm2 (in2) 13.04 (2.022) 8.00 (I.240) 2.30 (.357)

STRINGERS

2nd AreaMoment (re: neutralaxis) cm4 (in4) 5.11 (.1228) 2.83 (.0632) 17.69 (.425)

Neutralaxisdistanceto skinFt. cm (in) .526 (.2072) .579 (.228) .693 (.273)
TorsionConstant cm4 (in4) .0592 (.00142) .01483 (.000356) .0239 (.000573)
Total SectionArea cm2 (in2) 5.34 (.827) 2.68 (.415) 6.78 (1.051)

SkinWidth cm (in) (21.6) (8.5) 15.2 (6) 58.4 (23)

A EXTERIOR FLUID ENVIRONMENT B INTERIOR CABIN ENVIRONMENT

• CruiseMach No. - 0.8 at 9144 m (30 000 ft) Altitude = CabinPressureDifferential = 45.1 kPa(6.54 psi)

• AbsoluteStaticPressureof Air = 30.1 kPa (630 psfa) a AbsoluteStaticPressure= 75.3 kPa(1572 psfa)

• Ambient Air Density=.460 kg/m3 (.0287Ib/ft3) • Speedof Sound= 344.4 m/sec(1130 ft/sec)
a Ambient Speedof Sound= 303.3 m/sac(995 ft/sec) • Air Density= .887 kg/m3 (.0554 Ib/ft3)

• Ambient Temperature:228.8°K(412°R) • AirTemperature=21.8°C(71.6°F)
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TABLE i0. - OUTER WALL STRUCTURAL PROPERTIES BASELINE COMPOSITE

(STRENGTH-DESIGN) STRUCTURE

Aircraft Type

Units Wide-Body Narrow-Body BusineSsA/C

Item SI English SI English SI English SI English

CYLINDRICAL SHELL

Radius rn (ft) 3.05 (10.0) 1.96 (6.42) 1.14 (3.75)

Length rn (ft) 35.8 (117.5) 23.0 (75.5) 10.8 (35.5)
Skin Thickness crn (in) .203 (.080) .127 (.050) .f02 (.04)

Skin Bulk Density kg/m3 (Ib/in3) 1605 (.058) 1605.6 (.058) 1605.6 (.058)

ElasticModulusSkin GN/rn2 Ipsi) 68.9 [107) 68.93 (107) 68.93 (107 )
DampingLOSS Factor none none .06 .06 .06 .06 .06 .06

SurfaceDensitySkin plusStiffeners kg/m2 (psf) 5.90 (1.25) 4.20 (.86) 3.07 (.63)

Ratio: (Stirfness)/'(BasetineSt{ffness) 1.0 1.0 1.0 1.O 1.0 1.0

FRAMES

Spacing crn (in) 50.8 (20) 46.3 (19) 16.9 (6.67)

Depth crn (in) 15.2 (6) 15.2 (6) 7.62 (3)

CrQssSectionat Area cm2 (in2i 3.99 (.619) 2.65 (.411) .941 (.1461

Bulk Density kg/rn3 (Ib/in 3) 160_ (.058) 1605.6 (.058) 1605.6 (.058)

ElasticModulusWeband outerflange GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

inner-flange GN/m 2 (psi) 68.9 (107} 68.9 (107) 68.9 (107 )

AreaCentroid distance(re: skin_) cm tin) 6.52 (2.57) 6.97 (2.75) 3.66 (1.52)

2ndArea Mnment (re: Skin _.l cm4 (in4) 291. (7.01) 213.9 (5.14) 21.6 (.519)
Torsion Constant crn4 (in4) .036 (.0008_) .00986 (.000237) .00207 (.0000498)

STRINGERS

Spacing crn (in) 21.6 (8.5) 15.2 (6) 58.4 (23)

Depth • cm (in) 3.30 (I.3) 3.30 (1.31 (6.35} (2.5)

CrossSectionalarea crn2 (in2) 2.15 (.333) 1.210 (.1875) (2.07) (.321)

Bulk Density kg/m3 (Ib/in 3) 160.= (.058) 1605.6 (.058) 1605.6 (.058)

ElasticModulus Webandouter flan_]e GN/rn2 (psi) 68.9 !107) 68.9 (107) 68.9 (107)

Innerflange GN/rn2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

AreaCentroidre: Skin Ft. cm ((n) 1.41 (.554) 1.23 (.483) 2.90 (1.14)

2ndArea Moment (re: Skin _) cm4 (in 4) 6.69 (.1608) 3.23 (.0777) 29.3 (.703)
Torsion Constant cm4 (in4) (.1493) (.0035£ .0203 (.000481) .0182 (.000438)

SMEARED .STIFFNESS?ROPERTIES (SKIN PLUS i
STIFFENER. with Skin w=dthequalto stiffenerspacing) {
.FRA_MES
Skinwidth cm (in) 50.8 (20) 48.3 (19) 16.9 6.67

2nd Area Moment re: neutral axis ern4 (in4) 244.3 (5.87) 114.8 (4.20) 16.65 (.400)

Neutralaxisdistanceto skin_ crn (in) 1.92 (.757) 2.17 (.854) 1.42 (.558)
Torsion Constant crn4 (in4) .1786 (.0042.C .0428 (.001028) .00799 (.000192)

TotalSectionarea crn2 (in2) 14.32 2.219 8.78 (1.361) 2.66 (.413)

STRINGERS

Skinwidth crn (in) 21.6 (8.5) 15.2 (6) 58.4 (23)

2nd Area Moment re: neutral axis cm4 (in4) 5.28 (.1268) 2.79 (.0670) 24.8 (.595)

Neutralaxisdistanceto skin _ cm (in) .452 (.178) .454 (.1788) .800 (.315)
TorsionConstant crn4 (in4) .210 !.0050,_ .0298 (.0007153) .0586 (.000929)

Tota_SectionArea crn2 (in2) 6.54 1.013 3.15 (.4875) 6.00 (1.24)

I ........
A EXTERIOR FLUID ENVIRONMENT B INTERIOR CABIN ENVIRONMENT

• CruiseMachNo.= 0.Bat 9144 m (30 000 ft) Altitude • CabinPressureOifferential= 45.1 kPa(6.64 psi)

e Absolute StaticPressureof Air=30.1 kPa (630 psfa) e AbsoluteStatisPressure= 75.3 kPa (1572 psfa}.

• Ambient Air Density=.460 kg/rn3 (.0287 tb/ft 3) • Speedof Sound=344.4 m/sec(1130 ft/sec)

• Ambient Speedof Sound= 303.3 nP/sec(995 ft/sec) • Air Density= .887 kg/rn3 (.0554 Ib/ft 3)

• AmbientTemperature=228.B°K(412°R) a AirTernpereture=21.B°C(71.6°F)
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TABLE II. - OUTER WALL STRUCTURAL PROPERTIES FOR ALUMINUM ADVANCED

NOISE REDUCTION DESIGNS AT PEAK NOISE LOCATION

AircraftType

Units Wide-Body Narrow-Body BusinessA/C

Item SI English SI English SI English SI English

CYLINDRICAL SHELL

Radius m (ft) 3.05 (10.0) 1.9G (6.42) 1.14 (3,75)

Length m (ft) 35.8 (117.5) 23.0 (75.5) 10.8 (35.5)
SkinThickness cm (in) .241 (.095) .152 (.060) .178 (.070)

Skin Bulk Density kg/rn3 (Ib/in3) 2768 (.10) 2768 (.10) 2768 (.10)
EtasticModulusSkin GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

DampingLOSSFactor none none .06 .06 .06 .06 .06 .06

SurfaceDensitySkin ptusStiffeners kg/m2 (psf) 15.4 (3.16) 13.0 (2.60) 11.5 (2.36)
Ratio: (Stiffness)/(BaselineStiffness) 5 5 6 6 6 6

FRAMES

Spacing cm (in) 50.8 (20) 24.1 (9.5) 8.46 (3,33)

Depth cm (in) 15.2 (G) 15.2 (6) 10.2 (4)
CrossSectionalArea cm2 (in2) 12.24 (1.897) 5.29 (.82) 1.471 (.228)

Bulk Density kg/m3 (Ib/in3) 2768 (.10) 2768 (.10) 2768 (.10)
ElasticModulusWeb andouterflange GN/m2 (psi) 68.9 (107) 68,9 (107) 68.9 (107)

Innerflange GN/rn2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

Areacentriod(re: skin Ft) cm (in) 12.51 (4.93) 12.19 (4.80) 0.14 (2.42)

2nd AreaMoment(re: SkinF,L) cm4 (in4) 2140 (51.4) 914.8 (22.0) 74.0 (1,778)
TorsionConstant cm4 (in4) 4.80 (.1152) .249 (.00598) .00506 (.000122)

STRINGERS

Spacing cm (in) 21.6 (8.5) 7.62 (3) 29.2 (11.5)

Depth cm (in) 6.99 (2.75) 6.60 (2.6) 8.64 (3.4)
CrossSectionalarea cm2 (in2) 1.626 (.252) .661 (.1024) 1.903 (.295)

Bulk Density kg/m3 (Ib/in3) 2768 (.10) 2768 (.10) 2768 (.10)
ElasticModulusWebandouter flange GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

Innerflange GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

Areacentroid re: Skin Ft. cm (in) 3.62 (1,426) 3.38 (1.33) 4.77 (1,877)

2rid AreaMoment (re: Skin_) crn4 (in4) 31.9 (.767) 10.81 (.260) 64.4 (1.548)
Torsion Constant cm4 (in4) .012G (.000302) .00145 3.5 x 10.5 .0102 (.000246)

SmearedStiffnessProperties(Skin PlusStiffeners,

with Skinwidth-stiffenerspacing)

FRAMES

I Skin width cm (in) 50.8 (20) 24.1 (9.5) 8.46 (3.33)

a 2ndAreaMoment (re: neutralaxis) cm4 (in4) 1182.1 (28.4) 442.9 (10.64) 45.5 (1.094)

" Neutralaxisdistanceto skin__ crn (in) 6.38 (2.51) 7.19 (2.83) 3.23 (1.271)
• Total CrossSectionalArea cm2 (in2) 2.45 (3.80) 8.97 (1.390) 2.87 (.445)

• Torsion Constant cm4 (in4) 5.03 (.1209) .277 (.00666) .0209 (.000503)

STRINGERS

e Skinwidth cm (in) 21.6 (8.5) 7.62 (3) 29.2 (11.5)

e 2ridArea Moment (re: neutralaxis) cm4 (in4) 26.9 (.645) 8,07 (.194) 52.8 1.269

• Neutralaxisdistance(re: Skin _) em (in) .983 (.387) 1,300 (.512) 1,367 (.538)
i Total CrossSectionalArea crn2 (in2) 6.83 (1.059) 1.832 (.284) 7.10 (1.100)
• TorsionConstant cm4 (in4) .1137 (.00273) .0104 (.000251) .0650 (.001561)

A EXTERIOR FLUID ENVIRONMENT B INTERIOR CABIN ENVIRONMENT

• CruiseMachNo. = 0.8 at 9144 m (30 000 ft) Altitude I CabinPressureDifferential= 45.1 kPa(6.54psi)

• AbsoluteStaticPressureof Air = 30.1 kPa(630 psfa) a AbsoluteStaticPressure=75.3kPa(1572 psfa)

• AmbientAir Density = .460 kg/rn3 (.0287 Ib/ft3) I Speedof Sound=344.4 m/sac(1130 ft/sec)

• AmbientSpeedof Sound= 303.3 m/sec(995 ft/sec) e Air Density=.887 kg/rn3 (.0554 Ib/ft 3)

e AmbientTemperature= 228.8°K (412°R) I AirTemperature= 21.8°C (71.6°F)

52



TABLE 12. - OUTER WALL STRUCTURAL PROPERTIES FOR COMPOSITE ADVANCED

NOISE REDUCTION DESIGNS AT PEAK NOISE LOCATION

Aircraft Type

Units Wide-Body Narrow-Body BusinessA/C

Item SI English SI English SI Eng?ish S[ English

CYLINDRICAL SHELL

Radius m (ft) 3.05 (10.0) 1.96 (6.42) 1.14 (3.75)

Length m (ft) 35,8 (117,5) 23.0 (75.5) 10.8 (35,5)

Skin Thickness cm (in) .216 (.085) .178 (.07) .203 {.080)

Skin Bulk Density kg/m3 (lb/in3) 1605.6 (.058) 1605.6 (.058) 1605.6 (.058)

ElasticModulusSkin GN/m2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

DampingLOSS Factor none none .06 .06 .0B .00 .06 .06

SurfaceDensitySkin plusStiffeners kg/m2 (psf) 10.4 (2.13) 9.22 (1.89) 7.05 (1.63)

Ratio: (Stiffness)/(BaselineStiffness) B 6 10 10 10 10

FRAMES

Spacing cm (in) 25.4 (10) 24.1 (9.5) 8.45 (3.33)

I Depth cm (in) 15.2 (6) 15.2 (6) 10.2 (4)
CrossSectionalArea cm2 (in2) 37.5 (.90) 5.99 (.928) 1.548 (.240)

Bulk Density kg/m3 (tb/in3) 1605.6 (.05B) 1605.6 (.058) 1605.6 L058)

ElasticModulusWebandouter flange GN/m 2 (psi) 68.9 (107) 68.9 (107) 68.9 (107)

Innerflange GN/m2 (psi) 137.8 (2 x 107) 172.3 (2.5 x 1071 137.8 (2 x 107)

Areacentroid (re: skin £t.) cm (in) 11_35 (4.47) 11.89 (4.68) 6.67 (2.63)

2nd AreaMoment (re: Skin F.t.) cm4 (in4) 906.9 (21.8) 1013.5 (24.3) 90.6 (2.18)
Torsion Constant cm4 (in4) .287 (.00690) .340 (.00817) .01068 (.000257)

STRINGERS

Spacing em (in) 10.8 (4.25) 7.62 (3) 29.2 (11.5)

Depth cm (in) 3.81 (1.5) 5.33 (2.1) 7,37 (2,9)
CrossSectionalarea cm2 (in2) 2.21 (.342) 1.123 (.174) 3.19 (.495)

Bulk Density kg/m3 (Ib/in 3) 1605.6 (.058) 1605.0 (.058) 1605.6 (.058)

ElasticModulusWebandouter flange GN/m2 (psi) 68.9 (107) 68.9 (107) 60.9 (107)

Inner flange GN/m2 (psi) 137.8 (2 x 107) 137.8 (2x 107) 137.8 (2 x 107)

Areacentroidre: Skin _. cm (in) 2.43 (.956) 2.76 {1.085) 5.42 (2.13)

2nd AreaMoment (re: Skin _) cm4 (in4) 17.64 (.424) 13.75 (.330) 114.9 (2.76)
TorsionCQnstant cm4 (in 4) .0425 (.00102) .00499 (.000112) .381 (.00916)

SmearedStiffnessProperties(Skin plusStiffeners with skin

width = stiffenerspacing) I
*Denotes that the areaandthe first andsecondarea

momentsare weightedby the ratio of modulusof

elasticityto baselinevalue

FRAMER

• 2rid AreaMoment (re: neutralaxis)* cm4 (in4) 730.5 (17.55) 201.9 (4.85) 82,5 (1,983)

• Neutrat axisdistaoceto Skin eL* cm (in) 7.95 (3.13) 2.09 (.821) 4.34 (1.708)
e Total CrossSectionalArea* cm2 (in2) 14.39 (2.23) 16.52 (2.56) 3.86 (.599)
• TorsionConstant cm4 (in4) .373 (.00895) .747 (.01795) .0344 (.000826)

e SkinWidth cm (in) 25.4 (10) 24.1 (9.5) 8.46 (3.33)

STRINGERS

z 2nd AreaMoment (re: neutralaxis)* cm4 (in4) 16.19 (.389) 14.28 (.343) 125.3 (3.01)

e Neutralaxisdistanceto Skin G cm (in) 1.69 (.667) 1.77 (.696) 2,91 (I.144)
• Total Cross-SectionalArea* cm2 (in2) 5.363 (,8312) 2.77 (.429) 11,06 (1.715)

• Torsion Constant cm4 (in4) .0787 (.00189) .0193 (.00463) .466 (.01112)

• SkinWidth cm (in) 10.8 (4.25) 7.62 (3) 29.2 (11.5)

A EXTERIOR FLUID ENVIRONMENT B INTERIOR CABIN ENVIRONMENT

e CruiseMachNo. = 0.8 at 9144 m (30 000 ft) Altitude e CabinPressureDifferential = 45,1kPa(6.54 psi)

• Absolute StaticPressureof Air = 30.1 kPa (630 psfa) e AbsoluteStatJcPressure= 75,3 kPa(1572 psfa)

o Ambient Air Density= .460 kg/m3 (.0287 Ib/ft3) = Speedof Sound= 344.4 m/sec(1130 ft/sec)
= Ambient Speedof Sound= 303.3 m/sac(995 ft/sec) I Air OensJty= .887 kg/m3 (.0554 Ib/ft 3)

z Ambient Temperature=228.8°K(412°R) e Air Temperature=21.8°C(71.6°F)
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Figure 22. - Wide-body aluminum baseline outer wall Figure 23. - Narrow-body aluminum baseline outer
_tructure details, wall structural details.
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Figure 24. - Businessaircraftaluminumbaseline Figure 25. - Businessaircraftalternate
outer wall structural details, frame configurations.
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Figure 26. - Hybrid orthogrid stiffener Figure 27. - Baseline composite narrow-body
configurations, stiffener configuration.
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Figure 28. - Baseline composite business aircraft Figure 29. - Structural details for aluminum
stiffener configuration, wide-body, advanced noise-reduction

design.
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SURFACEDENSITY= 13kg/m2 (2.6psf)

Figure 30. - Structural details for aluminum Figure 31. - Structural details for aluminum
narrow-body, advanced noise-reduction business aircraft, advanced noise-

design, reduction design.
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Figure 32. - Structural details for composite Figure 33. - Structural details for composite

wide-body, advanced noise-reduction narrow-body, advanced noise-reduction

design, design.
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Figure 34, .- Structural details for composite Figure 35. - Composite orthogrld outer wall
narrow-body, advanced noise-reduction structure derails.

deslsn.



APPENDIX C

ANALYTICAL SU_RY OF KOVAL'S THEORY OF

CYLINDRICAL SHELL NOISE TRANSMISSION

The following is a brief outline of the mathematical analysis of

- reference 20. The incident plane wave (see figure 20 of Appendix A) is

represented by

Pi = Pi exp [jut - J(klx x + klz z)] (2)

where klx = kI sin 6, klz = kl cos 6, and where kl is the wave number in the

moving external medium given by

kI = (m/Cl)/(l + MI cos 6) (3)

In this Appendix, the coordinate definitions follow Reference 4, which

differs from the remainder of this report. Expressed in cylindrical coordi-

nates, Pi is

Pi = P'I exp [j(mt - klz z)] £ gm(-j) m Jm(klr) cos m_ (4)
m=o

where klr = klx, gm = i for m = O, and em = 2 for m = I.

The scattered wave can be written in the form

Ps = exp [j(_t - klz z)] E Am Hm(2) (klr r) cos m_ (5)
m=o

where ttm(2) is the Hankel function of the second kind of integral order m. The
coefficient Am is yet to be determined.

The shell response can be represented by

w = exp [j(_ot - klz z)] E Wm cos m_ (6)
m--o
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The internal pressure field can be represented by

GO

P2 = exp [j(t0t- k2z z)] _B m H(I) (k2r r) cos m@ (7)
m=o

where (H_I) is the Hankel function of the first kind and represents, in analogy
with the classical definition of transmission loss for a flat panel, a radially
inward travelling wave which is assumed to be totally absorbed inside the cabin.

The unknowns in equations (5), (6), and (7) are determined by

• Matching radial fluid particle and transverse shell displacements
at the shell surface

• Writing a force balance equation in the radial direction, viz.,

oo

[P2 - (Pi + Ps)]r=a = _ (JmWm) zshmexp [j(mt - klz z)] , (8)
m=o

where Zsh is the modal impedance of the shell.m

These steps lead to

k2z = klz,

k2r = (_2)[i \Cl_ + MI cos 81] (9)

and appropriate expressions for A , B and W , given by equations 25, 32 andm m m
33 of reference 19.

Finally, the cylinder transmission loss (TL) can be defined as

Incident Power_TL = lO lOgl0 Absorbed Power/ (I0)

TL = i0. iogl0 _P; /
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Qato yield TL = i0 lOgl0 (ii)

where

Qa (2_m/Xlr) r c r s + r + Xm + X (12)= r mm m
m=o

rm = Re(zm), Xm = Im(zm), Xlr = klra (13)

rm = (2/_ Xlr J + (Y (14)

s =- (Jm ' + Y Ym)/[(Jm)2 + (Ynl)2] (15)Xm Jm m

Zm = (Zm/PlCl) sin 0 (I + M1 cos 0) (16)

cr = Re(Z PlCl ) (17)m

In equations (12) through (17), a is the shell radius, Jm = Jm(klr a) and
Ym = Ym(klr a) are Bessel functions, and Zm is the impedance of the shell and
its contents.

Z = Zsh + Zc (18)
m m m

For a totally absorbing interior with only inward-travelling waves, the

impedanca of the contents can be shown to be given by

• _ (i) (k2ra) . .(I)
Zc = J_P2_m = Jp2C2nm (k2ra) (19)
m , H(1) ,

H(1)(k2ra)] sin e2 [ m (k2ra)]k2[ m
r

w eresin e2 = - 2
1 (i + Mcose)

In equations (14), (15) and (18), primes denote derivatives with respect to

the argument.
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The shell modal impedance can be obtained from the dynamic equations of
motion of the shell

sh ..

Lll(U) + LI2(V ) + LI3(W) = m u

sh "

L21(u) + L22(v) + L23(w) = m v (20)

sh ""

L31(u ) + L32(v ) + L33(w) = m w + p

where Lij are the appropriate differential operators given by equations 5
through 12 in reference 19; u, v, w are shell displacement components; msh is

the shell wall mass per unit area; dots refer to time derivatives; and p is

the excitation pressure.

Consistent with equation (6), the three shell displacement components
can be written in the form

lwlnml= Vm cos m@ exp [j(_0t- klz z)] (21)

m=o Wm cos m_

When equations 4 and 21 are substituted in equation 20, the resulting simul-

taneous equations can be solved for radial displacement as a function of
excitation pressure. The radial inward-looking modal impedance of the

cylindrical shell can then be written in the form

2

sh (mR/m) A (22)
Zsh = j m

m (i - 2) [AI2 A21 _ A11 A22]

where_R is the monocoque-shell ring frequency and Aij are coefficients that
result from substituting the displacements, equation (21), into the shell

equations of motion (20). The coefficients Aij and their determinant,_,
are given in reference 19 for a monocoque cylindrical shell. The effects
of stiffeners are smeared by the procedure in reference 20 to yield an

equivalent monocoque shell into which the foregoing theory is assumed to

apply.

Appendix D provides a critique of the smeared-stiffener theory in light
of more recent work.

64



APPENDIX D

CRITIQUE AND POTENTIAL IMPROVEMENTS

DI. STIFFENED SHELL THEORY

The method used in this study is an amalgamation of two theories. The

fuselage transmission loss (TL) is computed from both the cylindrical shell

theory of Koval, which emphasizes shell modes, and the method developed by
Cockburn and Jolly, which includes panel modes, with the smaller of the two

values being used. To this outer-wall TL is added the multilayered wall

increment due to fiberglass insulation, trim panel, etc., as computed by a

flat-panel model in the Cockburn and Jolly routine. The Koval theory uses

a smeared-stiffener model to represent the effects of stringers and ring

frames. For the narrow-body fuselage of reference 15, this approach appears
to give reasonable results up to the ring frequency when compared to a dis-

crete stiffener analysis. Beyond the ring frequency, it appears to over-
predict the TL of the cylinder sidewall.

The discrete-stringer model (reference 16) can be easily incorporated

into the present calculations because it involves a Fourier-series expansion

in the circumferential coordinate. This would, therefore, be the most logical
first improvement to the theory. Since this is the very same expansion em-
ployed in the smeared-stiffener theory, no difficulties are forescen.

The next logical step for improvement is to include a discrete model of

the ring frame, although it would be more complex and would involve consid-

erably more computer time. Reference 15 forms the basis of this theory in
which a shell of finite length was used (this is an improvement over the

smeared-stiffener model which considers the shell to be of infinite length).

This length, L, is taken as the length of the shell. The ring-frame modeling

then employed a Fourier-series expansion axially as well as circumferentially,
so that the shell displacement was taken in the form of a double Fourier series
viz.,

co =o

ny m_x eJmtw(x, y, t) = _ W cos-- sin
an=l m=l mn (23)

where a = shell radius.
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The coefficient Wmn was then calculated from the shell equations (with
the effects of discrete ring frames and stringers included) in the form

Lil (u) + Li2 (v) + Li3 (w) = m

L21 (u) + L22 (v) + L23 (w) = m v (24)

L31 (u) + L32 (v) + L33 (w) = m w + p

where Lij are the appropriate differential operators for the shell where u,
v, w are the three shell displacement components, m is the shell mass/area,

and p is the applied external pressure. The structural and inertial effects

of the rings and stringers are contained in the operators Lij. Details are
given in reference 15.

In equation (24), u, v, w and p are expanded in double Fourier series,

as in equation (23), and Wmn is then computed. The corresponding shell
impedance is computed from

P

zSh = mn (25)
mn j_ W

m!l

where _ = frequency of the incident acoustic pressure, and P is the Fouriermn
coefficient in the expansion of the incidence pressure p.

To make the above formulation fit the scheme employed in the smeared-

stiffener model (which involved only a summation of circumferential modes),

it would be necessary to remove the axial dependence from the problem. This
can be accomplished by defining the shell modal impedance as

SoL (p) dx

2

zSh PRMS 1 (26) -

n J°_WRMs J_° I _L[m___l i
W sin Im_rxl2 dxmn
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Substitution for p = Po sin (Xmj x) cos (n_) ej_t and Wmn eventually leads
to an expression of the form

zSh_ Eh ,/[i-sin(2  )I(2x• mz mz (27)

Voo C2 2

m[ _ ]n jma 2 _ _- All A22 AI2 A21n=l

where E = shell modulus_ h = shell-wall thickness, _ = L/a, length, Cm

coefficient for Fourier expansion of sin Xmz x, Aij = coefficient derived

from Lij, _ = det (Aij), and Xmz is a wave number parameter.

The significant thing about equation (27) is that the computation of

the shell modal impedance first involves a summation on the axial wave
index (m) for each circumferential wave index (n). Since the calculation

of TL then requires a summation on (n), the computational effort is consid-

erably larger than for the smeared-stiffener approach.

D2. NUMERICAL COMPARISON OF DISCRETE STIFFENERS

VERSUS SMEARED-STIFFENER RESULTS

The question is how do the two approaches (smeared-stiffener versus

discrete-stiffener) compare? The results of calculations for a narrow-body

jet are illustrated in figures 36 through 39 for angles of incidence 8 = 0.52,
#

0.79, 1.05, 1.31 rad (30, 45, 60, 75 deg), respectively. Inspection of the

curves shows that the smeared-stiffener approach overestimates TL above the

ring frequency except at 75 deg. But below the ring frequency, the smeared-

stiffener theory appears to provide acceptable accuracy, at least for the

purpose of preliminary design. It is interesting to observe that the discrete-

stiffener model also clearly verifies that relatively small values of trans-

mission loss are obtained near the ring frequency of the shell. This is a

result of the nature of the gross cylindrical geometry of the fuselage and

does not appear to be particularly sensitive to whether or not the stiffened

shell (or fuselage) is modelled by a smeared-stiffener approach or by a

discrete-element approach.

Also shown in figure 36 are the small notches in the TL curve for the

discrete-stiffener model. These notches are present below the ring frequency
in the predominantly stiffness-controlled region of the TL spectrum and tend

to slightly decrease the TL from the value predicted by the smeared-stiffener

model. These notches may be due to the additional structural resonances that

are introduced by the finite length of the shell. Such resonances are not

present in the smeared-stiffener theory because the shell length is assumed
to be infinite.
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D3. EFFECT OF FLOOR

Another feature of a real fuselage that has not been included in the

present study is the effect of the floor on the wall vibrations of the fuse-

lage and on the interior noise levels. Such a study for the free vibrations

of a monocoque-shell floor system has just appeared in the literature (refer-

ence 21). The problem was formulated on a Rayleigh-Ritz basis with Lagrange _
multipliers used to handle the constraints of matching floor and shell dis-

placements at the appropriate connecting points. Numerical results implied
that the floor tended to restrict the shell displacements at the floor con-

nection points. This will probably affect the resulting noise transmission,
although to what extent can only be determined by solving the sound trans-
mission problem for cylindrical shell with a floor. This could be done in

one of two ways.

The first approach would be the more approximate method in which the

effect of the floor is modeled by the in-plane stiffness of the partition.

This stiffness would be a longitudinally distributed spring placed at the
connecting points of the floor to the cylinder and would be used to restrict
the radial deformation of the shell in the same manner as does the floor. The

formulation would involve a Fourier-series expansion in the circumferential

coordinate. At first, coupling between the various circumferential modes

could be ignored, giving a direct calculation of the shell modal impedance

for a given circumferential wave number, n. Later, the coupling between
circumferential modes could be accounted for. An attempt could be made to

fit this problem into the TL calculation scheme now being employed.

A second, more rigorous and more complicated, approach would first solve
the coupled shell-floor vibration problem, including the effects of floor

mass and floor transverse displacements. It would then compute the noise
level within the'cabin (upper volume between shell and floor). This would

be a rather involved calculation and it would probably be better to compute
noise reduction rather than transmission loss. An additional feature would

be the noise radiated by the floor.

Once worked out for a monocoque shell, either (or both) of the previous
models could be improved by modifying the shell to include the effects of
stringers and ring frames.

D4. ADD-ON NOISE REDUCTION MEASURES

TL increments due to the add-on noise reduction treatments have been

added to the outer wall TL, computed either from the Koval cylindrical shell

theory or the Cockburn and Jolly program (as appropriate). These TL incre-
ments are computed using the Cockburn and Jolly flat panel model with multi-

layer configurations of fiberglass blankets, trim panels, air gaps_ and septa.

The use of a flat panel for computing the TL increments is a reasonable

approximation based on the fact that the thickness of the layers is very small
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compared to the radius Of curvature of the fuselage walls, so that the effect

of wall curvature on the TL increments is not thought to be significant. The

computer program employed for the parametric studies determined the trans-

mission loss of each add-on noise control layer on the basis of plane wave

transmission at the proper oblique incidence; therefore, kx = ky = 0 and
kzi = _/ci. While not strictly rigorous, the methodology employed fs felt to
be valid for engineering purposes for the following reasons:

• The lower-order circumferential w_ve numbers are likely to dominate

sound transmission, so that even though equation (28) has a cut-off

characteristic for the large-enough n, the error in not including
its effect will be small

• The axial wave number used is fixed for all layers

• The analysis of layers containing blankets (one of the principal

noise-attenuating elements) is highly empirical, so that the improved

accuracy may not have been significant enough to justify the delay

in the parametric study that would have been required to implement
the refinement.

D5. MISCELLANEOUS ITEMS

D5.1 Axial Variation of Pressure Excitation

The exciting pressure is not uniform along the length of the fuselage

since it decreases at locations removed from the propeller disc planes. This

is treated by dividing the affected portion of the fuselage into seven seg-
ments, and assuming that the OASPL levels in each segment are reduced by an

appropriate number of dB. This segmented approach is a reasonable way to

treat such a variation, giving a pressure distribution which is conservative.

In the calculations, the incidence angle of the noise radiated from the pro-

pellers is considered. Koval (reference 7) has shown that this is important.

D5.2 Plane Wave Model in Koval's Theory

For the aircraft designs investigated in the present study, the plane

wave model is considered to be a good local approximation to the spherical

wave fronts which originally emanated from a small noise source region near

the tip of an individual propfan blade. For each aircraft the minimum pro-

peller tip to fuselage clearance is well over one wave length. For the
2-engine aircraft with an 0.8 diameter tip clearance, this distance repre-

sents 1.64 wave lengths at the blade passage frequency. For the 4-engine,

wide-body aircraft, the inboard propeller clearance of 1.2 diameters repre-

sents a distance of 2.45 wave lengths; the outboard propeller with a clearance

of 2.3 diameters corresponds to a distance of 4.7 wave lengths. For these

conditions the curvature of the spherical wave fronts as they impinge upon the

fuselage is likely to have only a small effect upon the scattering of the

incoming waves compared to the calculation scheme used in this study.
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APPENDIX E

SUMMARY OF EQUATIONS FOR ADD-ON NOISE CONTROL ELEMENTS

The equations used to define the impedances of and pressure ratios across

the individual layer types will be described below. In the following discus-
sion, 8 denotes the classical incidence angle measured with reference to an
axis normal to the surface and positive in the downstream direction.

El. SKIN PANEL CHARACTERISTICS

For a skin panel subjected to an obliquely incident sound wave with an
external airflow, the pressure ratio is obtained from

PI = [ Z cos 82 PlCIc°s 82 ]

p--_ 1/2 LI + p + j (28)
Z2 cos @I(I+M sin 81) Z2

where

PI = incident pressure

PT = transmitted pressure

Z = characteristic impedance of skin panel
P

The characteristic impedance of a flat skin panel bounded by stiffeners

and with inplane stresses to simulate pressurization is defined by

2 r sin4 8o 3Dq sin4 2
Z - mq + 8 _o m - _o3D 4]L Vp _ Cl4 (I+Msin 8)4 + j _m (I+Msin 8) j (29)

where

_ = fundamentalfrequencyof skin panelo

(m)1/2 L_ + b2 / ? + (30)
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The corresponding pressure ratio equation from Reference 5 is (EQ 6.4)

PI P" + P [ Z cos 8]_ l r i + Z2P2 Pt

The differences between the two expressions result from the definition of

incident pressure. For this study the incident pressure did not include

the reflected pressure, while in Reference 8 the incident pressure was defined
as the sum of the incident and reflected pressures. When free-field sound

pressure levels are measured or calculated, equation 28 should be used to

calculate the pressure ratio across the skin. The characteristic impedance

equation from Reference 8 is (EQ 6.5)

= _ mN + _3D [ _°2D _3D ]Zp o T sin4 @ + j oJm - _0 C_- sin4 @

The difference in the first term of the equation is probably due to a

typographical error in Reference 8, and the denominator of the last term of

equation 29 includes a flow effect. The inclusion of the flow effect in

equations 28 and 29 was consistent with the flow effect described in Koval's

cylindrical shell theory (reference 7).

E2. SEPTA

When an internal layer is either a panel or a septum the following

expression is used to determine the pressure ratio across the layer

PI Z cos 82-- : 1 + P (31)
PT Z2

where

Z = characteristic impedance of layer
P

= j_m for a septum

= equation 29 (with M = 0) for a panel

Z2 = termination impedance

Equation 31 is identical with equation 6.4 of reference 8.
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E3. AIRSPACES AND POROUS BLANKETS

The pressure ratio across an airspace or a soft porous blanket subjected

to an obliquely incident wave is given by

PI cosh bd cos _ + coth- Z_°s
Z B-- (32)

where

b = complex propagation constant (Reference 8)

I/2

= jo9 i - j for blankets (33)

1
O9

= j _ for airspaces

Z2 = termination impedance

ZB = characteristic impedance of layer

. Kb
= - j_ for blankets

= pC for airspaces

The corresponding equation from Reference 8 is (EQ 6.11)

PI cosh _os@ + coth-I

P2 cosh Icoth-i zZ2B]

The input impedance of panel or septum layers is simply the sum of the

layer characteristic impedance and its termination impedance. This simple
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relationship does not hold for blankets and airspaces and their input imped-
ance is

ZIN cos_ coth bd cos_+ coth -I cos
= ------" (34)

ZB IJ

This expression is a modification of equations 6.12 and 6.14 of reference 8.

E3. MULTIPLE LAYERED CONFIGURATIONS

The procedure that is used to calculate the pressure ratio across a

multilayered configuration will now be described. The pressure ratio across

a single layer of a configuration can be calculated if both the character-

istic and termination impedances of the layer are known by equations 28, 31
and 32.

The input impedance of each layer is calculated by starting at the inner-

most layer and working outward to the skin (figure 40). Thus, the input

impedance of the trim panel is equal to the sum of its characteristic imped-
ance and its termination impedance

ZTR = Zp (eqo 29) + (PC)cabi n

TRIMSKIN "_----dA(; d _ PANEL

,,,,\\
,',,)

\\\"

\\_ AIRCRAFT
\\\

/ / \\\ INTERIOR
," /// " "" pC

///

\\\

Figure 40. Typical aircraft sidewall configuration
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The input impedance of the trim panel is also the termination impedance of the
fiberglass blanket and the blanket input impedance is written from equation 34
as

[ oZBL = Cos4 ° coth bd cosqb+ coth

\ ZB /].

The input impedance of the airgap is then

, [ lZAG = Cos_ coth bd cos_+ coth- _ ZA

Finally, the input impedance of the aircraft skin is defined as

ZSK = Zp (eq. 29) + ZAG

With the characteristic and termination impedance defined for each layer of the
the configuration, the pressure ratio across each layer can now be calculated

using equations 28, 31, and 32. The pressure ratio across a multilayered
configuration can be expressed in terms of the pressure ratio across the
individual layers.

Therefore, the pressure ratio across an entire configuration of q layers is

equal to the ratio of the pressure transmitted by the innermost layer to the
pressure incident on the outermost layer.

Transmission is calculated from

TL = i0 logl PI121 '

Laboratory verification tests are normally performed most conveniently
in a free-field (anechoic) envfronment or a random incidence environment. The
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equationspresentedearlierare sultablef0r free-fieldplane waves at speci-
fic angles of incidence. In order to simulatethe effect of a random incidence
or reverberantenvironment,the pressureratio is integratedover a range of
incidenceangles and averaged (referencel3).

8'

= 2 o T (8) sin 28d8

PIJ = 1 - cos 28' (37)

Where r is the reverberantfield transmissioncoefficientobtainedby averaging
T(8'). The angle @' is the limitingvalue of the incidenceangle 8. A value
of 1.48 rad (87.5deg) was selectedfor 8' and the integrationwas approxi-
mated using Simpson'srule with a 5-degreestep or increment. The denomi-
nator (i - cos 28') is approximatelyequal to 2.0 (8' = 1.48 rad (87.5 deg))
and the above expressionfor the averaged transmissioncoefficientis reduced
to

8 !

¥ = T (8) sin 28 d8 (38)
o
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APPENDIX F

EXPERIMENTAL VERIFICATION OF ANALYSIS METHOD

FI. TEST FACILITIES

Experimental investigations performed at Lockheed with Independent
Development funding have provided a limited but supportive data base which

is summarized in this appendix. Flat panel sound transmission loss tests
and unstiffened cylinder noise reduction tests were performed at the

Lockheed-Rye Canyon Acoustics Laboratory. The panel tests were performed

with the panel mounted between two reverberant chambers (figure 41). The

larger chamber has a volume of 780 m3 (26 560Rft 3) and the smaller chamber
has a volume of approximately 227 m3 (8000 ft_). Sound pressure levels

in the large (source) room were measured using three stationary microphones

and sound levels in the receiver room were measured using a single orbiting
microphone. An ILG reference sound source was used to determine the

characteristics of the receiving room. The unstiffened cylinder noise
reduction tests were performed in the large reverberant chamber and in

an anechoic chamber. The anechoic chamber had a clear working volume of

5.5 by 5.5 by 4.3 m (18 by 18 by 14 ft) and a design low frequency cut-off
of 60 Hz.

FI.I Panel Transmission Loss Tests

A broadband random noise source was used for the panel sound transmission

loss tests. The flat test panel was 2.44 by 2.44 m (8 by 8 ft) with four
frames at 50.8 cm (20 in.) spacing and no stringers. A bare or untreated

panel sound transmission loss test was performed first (figure 42) and this
was followed by a series of tests with added acoustic treatments. Two

treatment configurations did not include an inner panel or septum:

• A 7.6-cm (3-in.) wall depth with a 2.5-cm (1-in.) air-gap and a

5.l-cm (2-in.) thick, 19.2-kg/m 3 (l.2-pcf) blanket with mylar
wrapping (figure 42).

• A 17.8-cm (7-in.) wall depth with a 7.6-cm (3-in.) air-gap and a
lO.2-cm (4-in.) thick, 19.2-kg/m 3 (l.2-1b/ft 3 (pcf) blanket with
mylar wrapping (figure 43).

Two treatment configurations included a septum inner wall of 2.4 kg/m 2
(0.5 pounds per square foot (psf)):

• A 7.6-cm (3-in.) wall depth with a 2.5-cm (1-in.) air-gap and a 5-cm
(2-in.) thick, 38.4-kg/m 3 (2.4-pcf) blanket with mylar wrapping

(figure 44).
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Figure 41. - Schematic of acoustics laboratory.
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Figure 42. - Panel transmission loss; 7.5 cm (3 in.) wall spacing
with a 19.2 kg/m 3 (1.2 pcf) blanket.
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Figure 43. - Panel transmission loss 17.8 cm (7 in.) wall spacing

with a 19.2 kg/m 3 (1.2 pcf) blanket.
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Figure 44. - Panel transmission loss; 7.5 cm (3 in.) wall spacing with a

38.4 kg/m 3 (2.4 pcf) blanket and 2.44 kg/m 2 (0.50 psf) septum.
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• A 22.9-cm (9-in.) wall depth with a 7.6-cm (3-in.) air-gap and a

15.2-cm (6-in.) thick, 19.2-kg/m 2 (l.2-pcf) blanket with mylar wrapping
(figure 45).

The Beranek/Cockburn and Jolly method that was used predicted the transmission

loss of the unstiffened skin panel only and not the loss of the larger multibay

stiffened panel. The good agreement between predicted and experimental trans-

mission loss can be seen in figures 42 through 45.

F2. CYLINDER TESTS, UNSTIFFENED

Two series of tests were performed with cylinders: an unstiffened

cylinder in an anechoic environment, and a stiffened cylinder in a reverberant

environment. The first series of tests was performed in an anechoic chamber

where a 50.8-cm (20-in.) diameter, unstiffened cylinder was subjected to one-
third octave bands of random noise at specific angles of incidence. Both ends

of the cylinder were treated with a 15.2-cm (6-in.) thickness of Scott Foam

and lead vinyl, and a 15.2 cm (6-in.) thickness of Scott Foam ran axially the
full length of the cylinder. This provided an average absorption coefficient

of 64% above 300 Hz. Insertion loss or noise reduction of the cylinder was
determined from the results of two separate tests.
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Figure 45. - Panel transmission loss; 22.9 cm (9 in.) wall spacing with a

19.2 kg/m 3 (1.2 pcf) blanket and 2.44 kg/m 2 (0.50 psf) septum.
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A loudspeaker source of random noise was used for both tests, and a micro-
phone located close to the source monitored the source levels to ensure that

the source output was invariant between tests. A second microphone was

located approximately 3.66 m (12 ft) from the source in a free field to measure

the source level without the cylinder present. This same microphone was then

installed at the center of the test cylinder at the same spatial location with
reference to the source. The difference in sound levels measured with and

without the cylinder present is the insertion loss or noise reduction associated

with the cylinder. The loudspeaker remained stationary for all tests while

the cylinder was rotated about an axis which passed through the internal

microphone in order to vary angle of incidence (figure 46).

Noise reduction tests were performed at 0.26 rad (15 deg) increments

from a graze angle of 0.26 rad (15 deg) to 1.57 rad (90 deg). The results of

these free-field tests are shown in figures 47 through 52, along with pre-

dicted noise reductions using Koval's method of reference 4. The agreement

between theory and experiment is excellent for 0.26, 0.52, 0.79 and 1.0 rad
(15, 30, 45 and 60 deg) graze angles; not very good at 1.3 rad (75 deg) and

fair at 1.57 rad (90 deg).

F3. STIFFENED CYLINDER TESTS - FLOOR EFFECT

In the second series of tests, a 1.22-m (48-in.) diameter stiffened

cylinder was tested in a reverberant or random incidence environment

(figure 46). Each end of the cylinder was treated with fiberglass and
lead vinyl and an interior absorption coefficient of 16% was estimated
for frequencies above 300 Hz. A simulated floor structure was added for one

of the tests to determine its effect on noise reduction. Three microphones
were installed inside the cylinder and three microphones were used to monitor

the levels inside the reverberant test chamber. The experimental noise
reductions were obtained from the arithmetic difference between the three

exterior and three interior microphones. A comparison of the measured noise
reductions for the cylinder with and without a floor structure is shown in

figure 53. The effect of the floor is to increase the noise reduction above

the ring frequency and to reduce it below the ring frequency. However, the
addition did not substantially change the noise reduction characteristics of
the cylinder. Noise reductions were then calculated for the stiffened

cylinder in a random incidence environment using a Simpsons rule integration
of the transmission coefficient. The transmission coefficient was calculated

at 0.087 rad (5 deg) increments from 0.044 rad (2.5 deg) to 3.10 rad
(177.5 deg) using Koval's theory. Experimental and calculated noise reductions

for the stiffened cylinder are compared in figure 54. The compariosn is poor
except at the ring frequency; however, the shape of the noise reduction curves

are similar. A second analysis of the cylinder noise reduction was performed
and the frames were ignored and the cylinder was considered unstiffened. The

stiffened cylinder did not have stringers but did have 2.5-cm (1-in.) deep

frames spaced 50.8 cm (20 in.) apart. The unstiffened analysis is compared

to the stiffened cylinder experimental data in figure 55 and agreement between

theory and experiment has improved. Also the experimentally determined noise
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Figure 46. - Cylinder noise-reduction test layouts.
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Figure 48. - Noise-reductlon test; 50.8 cm (20 in.) cylinder
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Figure /49. - Noise-reduction test; 50.8 cm (20 in.) cylinder
at 0.79 rad (45 deg) graze angle.
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Figure 50. - Noise-reduction test;50.8 cm (20 in.) cylinder
at 1.05 rad (60 deg) graze angle.
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Figure 54. - Theoretical vs experimental treated cylinder noise reduction;
1.22 m (4 ft) diameter cylinder (stiffened) reverberant
environment ring spacing 45.7 cm (18.0 in.) no stringer
0.13 cm (0.050 in.) skin thickness.
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reverberant environment.
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reductions are several dB higher than the calculated noise reductions when

the 16% absorption case is used for comparison. If the 50% absorption case

is used for comparison, then the agreement with theory is very good above
the ring frequency.

F4. CONCLUSIONS CONCERNING COMPARISONS OF THEORY AGAINST
SMALL TEST SPECIMEN DATA

• The data presented in this section demonstrates reasonable agreement

between theory employed in this study and test data for small

specimens having typical cylindrical shell structural characteristics

• The data substantiates the method for add-on noise control elements

for flat-panel configurations, including some which demonstrate very
large noise reductions.

• The data for cylinders with and without floors shows that the

measured noise reductions are not drastically affected by the pre-
sence of the floor.
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APPENDIX G

RESULTS OF ADD-ON NOISE REDUCTION PARAMETRIC STUDIES

GI. OUTLINE OF SCOPE OF STUDY

During the course of the study many more calculations were performed in

the quest for better noise reductions than are indicated by tables 13 and 14.
Only the key results leading to the selected noise-reduction designs are

presented here. Secondary effects will be discussed briefly in a later

section of this appendix. Table 13 describes parameters investigated under

the category of "add-on" noise reduction design. Table 14 summarizes the

parameters investigated under the heading of advanced noise-reduction designs.

G2. 4-ENGINE, WIDE-BODY AIRCRAFT RESULTS

G2.1 Baseline Structure and Sidewall Characteristics

The baseline structural properties are shown in Appendix B. The analysis

assumes the structure to be of a uniform, axisymmetric semimonocoque construc-

tion, with a uniform skin gauge of 0.173 cm (0.068 in.), ring-frame spacing

of 50.8 cm (20 in.), stringer spacing of 21.6 cm (8.5 in.) and a fuselage
outer shell diameter of 6.12 m (241 in.). The effects of windows are

neglected for simplicity. The ring frequency is estimated at 270 Hz based
on an elastic wave speed of 5182 m/s (17000 ft/s) for aluminum.

The baseline sidewall construction of the wide-body aircraft is shown in

figure 22, Appendix B. The sidewall construction contains a fiberglass blanket
for both thermal and acoustical insulation purposes, with an air gap adjacent
to the outer skin for the circulation of cooling air. A wall-space depth of

15.2 cm (6 in.) between the outer skin and the interior trim panel was

selected, anticipating the benefits of relatively large spacing on the basis
of results of the double-wall mass law studies of reference I; however, some

effects of wall spacing are shown in this appendix. The B-type of fiberglass
blanket was selected, having a fiber diameter of 3.81 x I0-0 m (150_ in.) and

a bulk density of 9.6 kg/m 3 (0.6 ib/ft3). This selection was based on a num-
ber of preliminary studies. Likewise, equal thicknesses of 7.6 cm for the

fiberglass blanket and the air gap provide the best noise reduction and were

selected based on these preliminary studies. Blanket parameter results are
to be discussed elsewhere, since variations of blanket design properties with-

in reason had no large effect on noise reduction.

G2.2 Baseline Aluminum Structural Transmission Loss and Noise Reduction

Figure 56 shows the calculated transmission loss spectrum for the base-
line outer wall wide-body structure. Results are shown for several angles of

incidence, varying from 0.52 rad (30 deg) to 2.09 rad (120 deg). These
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TABLE 13. - MATRIX OF ADD-ON REDUCTION CONFIGURATIONS

NOTES: (A) REPEAT3 TIMES FOR DIFFERENT EXTERIOR NOISE HARMONICS
(B) OASPL OF EXTERIOR NOISE EQUAL FOR EACH HARMONIC DISTRIBUTION
(C) A SINGLE DESIGN BLADE PASSAGE FREQUENCY FOR EACH AIRCRAFT SIZE

OUTER

NOISE OUTER WALL INNER BLANKETS SEPTA
EFFECT EVALUATIONS FUS. WALL WALL DAMPING WALL

STUDIED TOTAL NO. DIAMETER DEPTH STIFFNESS MASS MASS TYPE DENSITY THICKNESS NO, MASS

DOUBLEWALL 36 3 2 1 1 2 OPT OPT OPT 0 0

DW + SEPTA 36 3 2 1 1 1 1 2

DAMPING 27 3 1 1 3. 1 OPT OPT

STIFFNESS 27 3 1 3 1 1

126

TABLE 14. - MATRIX OF ADVANCED NOISE-CONTROL CONFIGURATIONS

NOTES: (A) REPEAT3TIMES FOR DIFFERENT EXTERIOR NOISE HARMONICS
(B) EQUAL EXTERNAL OASPL FOR EACH HARMONIC DISTRIBUTION

(C) A SINGLE VALUE OF DESIGN BLADE PASSAGE FREQUENCY FOR EACH AIRCRAFT SIZE

OUTER
NOISE OUTER WALL INNER BLANKETS SEPTA

EFFECT EVALUATIONS FUS. WALL WALL DAMPING WALL
STUDIED TOTAL NO. DIAMETER DEPTH STIFFNESS MASS MASS TYPE DENSITY THICKNESS NO. MASS

A. CONVENTIONAL MATERIALS/HIGH STIFFNESS

STIFFNESS 18 3 1 2 1 1 OPT OPT OPT OPT OPT

DAMPING 18 3 1 MAX 2 1

DOUBLEWALL 18 3 1 MAX 1 2

B. ADVANCED COMPOSITE MATERIALS/ORTHOGRID

STIFFNESS 18 3 1 2 1 1

DAMPING 18 3 1 MAX 2 1

DOUBLEWALL 18 3 1 MAX 1 2

108
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calculations include effects of forward velocity and internal pressure at a

flight Mach number of 0.8 and at an altitude of 9144 m (30 000 ft). The cabin

is pressurized to an altitude of 2438 m (8000 ft), providing a differential

pressure of 45, 197 Pa (6.54 psi) across the cabin wall. A damping loss

factor of 6 percent is assumed.

In figure 56 the blade passage frequency of the propfan is noted at

162 Hz along with the next nine harmonics. Notice that the blade passage

and second harmonic at f = 2fBp are both near the ring frequency where low

values of transmission loss of between I0 and 25 dB are displayed for angles

close to normal incidence. Table 7 shows that the peak noise region defined

by Segment 4 is exposed to noise from the inboard engine over a range of
impingement angles between 0.77 rad (44 deg) at the aft end, and 1.94 rad

(iii deg) at the forward end. Since most of the propeller noise is concen-

trated at the propeller blade passage frequency and its lower harmonics, the

low TL calculated for Segment 4 in this frequency region will result in high
interior noise levels.

Figure 57 shows calculated interior noise for Segment 4 as a function of

fuselage wall surface density for both aluminum and composite wide-body air-
craft. All of the configurations retained the baseline stiffness while para-

metric studies were performed. For each configuration studied a selective

outer-wall surface density and loss factor were held constant while the trim
panel mass was varied. The baseline surface densities shown for the aluminum

aircraft correspond to the data given in table 2. The baseline turbofan

sidewall is predicted to yield an interior noise level of 108 dBA if exposed

to the propfan exterior noise environment of Spectrum i under the assumptions

postulated in this study. Figure 13 describes the external noise signature

of Spectrum I which has an OASPL of 132 dB and an A-weighted level of 123 dBA.

It can be seen that the baseline turbofan sidewall construction has provided a
noise reduction of about 17 dBA which seems reasonable in comparison to the

transmissionloss spectradescribedin Figure 56.

G2.3 Baseline Composite Fuselage Noise Reduction

Figure 57 also shows the noise-reduction performance of a strength-
designed, all-composite material outer wall. The baseline surface densities

shown correspond to the data given in table 3. The outer-wall structure is

approximately 30% lighter than the baseline aluminum structure, and the base-

line levels of all outer-wall stiffness properties (the E1 and GJ products,
etc.) of the skin and all stiffeners are the same as for the aluminum struc-

ture. These values are very close approximations to the fuselage designs

which resulted when designers were asked to design a composite fuselage design

without any special acoustical requirements. The composite fuselage design is
summarized in Appendixes B and I.

It is noted that the total surface density required to achieve 80 dBA is

about the same for either the aluminum or the composite structure. Therefore,

the strength-designed composite structure has an extra penalty for noise
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reduction, equal approximately to the difference in baseline structural sur-
face densities. In the data in figure 57, that difference is 30 percent of
9.17 kg/m2 (1.88 psf) which equals 2.75 kg/m2 (0.56 psf).

The results suggest that if a composite structure is assumed to have the
same outer wall stiffness and damping loss factor as the baseline, then it will
require roughly the same total wall surface density and therefore a somewhat
greater penalty mass to achieve high nolse reductions. Although it is possible
that the composite structure might provide inherently higher damping loss fac-
tors, the results of figure 57 show that reasonably achievable increases of
damping loss factor provided only modest reductions of interior noise.

G2.4 Results for Add-On Nolse-Reduction Design

G2.4.1 The behavior of the outer wall with damping treatment.- The next
discussion has implications for both aluminum and composite wlde-body add-on
studies. The outer-wall stiffness is, by definition, unchanged by the outer-
wall mass additions. However, the damping loss factor of the outer wall can
be increased as a function of the added mass of an appropriately selected
viscoelastic damping treatment, according to the schedule shown in Figure 58.

0.20

/
o
F-

u.

_ 0.10

z_
a.

do 0.06

0 9.72 19.5 29.3 KG/M2

I I I I
0 2 4 6 (PSF)

OUTER WALL SURFACE DENSITY 0-1

Figure 58. - Damping loss factor vs outer-wall surface density, 0-1
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This curve is a conservativeenvelopeof unpublishedLockheed resultscalcu-
lated for various constrainedlayer damping treatmentsbased on data and
proceduresdescribedin references17 and 18 and single unconstrainedlayer
results from reference17.

The analysisof reference18 refers to simply supportedpanels;therefore,
to apply the theory to the present case of propellernoise, it is assumed that
the equivalentpanel bay dimensionis equal to one-halfof the magnitudeof
the wavelengthin the externalacousticfield, as definedby using Koval's
theory (see reference7 or AppendixA). This proceduredefinesequivalent
panel bay dimensionswhich are much larger than typicalaircraftpanel bay
dimensions. Accordingly,the calculationproceduresof reference17 and 18
yield low dampingloss values for the long wavelengthshell vibrationmodes
which dominatethe low-frequencyregime associatedwith propellernoise trans-
mission. The loss factor data presentedin figure 58 are consistentwith
this result.

G2.4.2 The role of the trim panel.- The surface density of the trim

panel is varied to achieve the desired interior noise level for a given outer-

wall configuration. Therefore, trim panel surface density, _2, is the closing

variable in the studies such as figure 57, in which results are expressed as

a function of the total surface density of the sidewall.

The trim panel is further assumed to have the following characteristics:

• It maintains its original stiffness, independent of increases of

surface density

• The damping loss factor is maintained at 6% independent of surface

density

• The trim panel has suitable vibration isolation from the outer-wall
structure so that effective double wall behavior is achieved.

G2.4.3 Limp double-wall concept as mathematically modelled. - Appendix E

describes the mathematical modelling of both the skin panels and the trim

panels. The analysis accounts for stiffness, damping, pressurization and mass

in defining the panel impedance. The panel is modelled as a slngle-degree-of-

freedom plate including all the above effects. The impedance expression in

Appendix E allows for the coincidence of skin flexural waves with the external
acoustic field, including the effects of flow-field convection. The analysis

neglects higher order panel bay vibration response since the important pro-
peller excitation harmonics usually occur atfrequencies well below the funda-

mental resonant frequency of the panel. It is therefore unlikely that higher

order panel vibration responses will have a significant impact on the results

of the present study. Furthermore, the means for increasing trim panel mass

without significant stiffening would probably be accomplished by use of

"lossy" material such as lead-vinyl. For these reasons, it is believed that
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the mathematical model used in this study for panel bay response is quite
reasonable.

It is to be noted that neither the skin panel nor the trim panel is
entirely limp, because the baseline stiffness is always retained. Since the
outer_wall and trim-panel surface density values are considerably increased
in the large noise reduction designs, the walls become relatively more limp
than the baseline design.

As noted from the discussion in Appendix A, the baseline transmission
loss of an untreated cylinder is taken as the lower envelope of either the
bare panel response (as described in Appendix E) or the Koval theory smeared-
stiffness cylindrical shell response (figure 18). The most common result is
that the fundamental panel resonances are important only for add-on designs
with very large surface densities. At all other frequencies below the ring
frequency, the basic shell transmission loss, as described by Koval's method
(reference 7 and Appendix A), generally is lower than that of the individual
panel bays.

G2.4.4 Add-on noise reductions for aluminum and composite structures.-
The noise-reduction performance of the double wall isshown in figure 57 and
summarized in Section 3. To achieve noise reductions which exceed the baseline

by less than 25 dBA, it appears desirable to maintain the baseline outer wall

surface density and put all of the extra mass into the trim panel. This is

illustrated in figure 57, where the baseline outer walls (circular symbols)

provide the lowest interior noise levels below a total wall surface density

of 32 kg/m 2 (6.5 psf). To achieve noise reductions more than 25 dBA beyond

the baseline, the optimum outer will surface density should be about 19.5 kg/m 2

(4 psf) for both the aluminum and the composite designs (square symbols in
figure 57).

The top curve of figure 57 shows a design where the outer-wall surface

density has been increased to 29.3 kg/m2 (6 psf), which is clearly nonoptimum.
The least total surface density is obtained when the outer-wall mass is
roughly equal to the trim panel in accordance with classical double-wall

theory.

In summary, figure 57 displays the characteristic features of a llmp
double-wall design, though modified by structural dynamics effects as described

in the present prediction method. Curves such as figure 57 are shown elsewhere

in this Appendix for treatment Segments 3, 5, 6, and 7 away from the propeller
disc plane. Figure 57 can be used for variable exterior noise levels by using

the scale labelled Change in Exterior Noise OASPL. If Segment 4 were exposed
to i0 dB less than the peak design level of 132 dBA, then the -i0 ordinate

would represent the 80 dBA interior design level. The majority of the penalty
mass is contained in Segment 4, therefore, results for Segment 4 are repre-

sentative of design parameters effects. Data for other segments are used to
calculate total aircraft treatment mass penalties.
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G2.4.5 The effects of other acoustical treatment design parameters.- The

other parameters in the study matrix described in table 14 were investigated
and found to have less effect on interior noise than the double-wall optimiza-

tion study shown in figure 57. Discussion of these other studies will be

deferred until the add-on noise-reduction results have been presented for the

narrow-body and business aircraft double-wall optimization studies.

There are two reasons for this sequence of results:

• The format of the double-wall, add-on noise-reduction data is similar

to figure 57 for all of the aircraft.

• The other parameters investigated (stiffness, outer-wall mass, outer-

wall damping, loss factor, stiffener spacing, etc.) were incapable

of achieving, by themselves, the requisite large noise reductions

without the simultaneous optimal selection of trim panel mass.

G3. 2-ENGINE, NARROW-BODY AIRCRAFT RESULTS

G3.1 Baseline Structure and Interior

Noise Level Predictions

The 2-engine narrow-body aircraft has the baseline structural properties

defined in Appendix B. The double-wall sidewall construction is similar to

that shown in figure 22 except for the stiffener spacing. The exterior noise

signature and axial distribution or grazing incidence angle are given in

figures 7 and 9, and table 7 of Appendix A. Figure 7 shows that the peak

external noise level of 134 dB OASPL for the 2-engine narrow-body, having the
standard propeller tip clearance of _y/D = 0.8 per reference 5, is 2 dB higher

than for the 4-engine, wide-body aircraft with a larger minimum clearance of
_y/D = 1.2.

The baseline structure of the 2-engine, narrow-body aircraft has 48.3-cm

(19-in.) frame spacing, 152-cm (6-in.) stringer spacing and a nominal skin

thickness of 0.114 cm (0.045 in.). The wall depth is selected at 15.2 cm

(6 in.) with a 7.6-cm (3-in.) B-type fiberglass blanket and air gap adjacent

to the skin similar to that shown in figure 22 for the wide-body. The choice

of a 15.2-cm (6-in.) wall depth may appear excessive for a narrow-body fuse-

lage in terms of interior space; however, as will be shown in a later section,

a significant increase of acoustical treatment penalty mass would be required
if the wall space was to be reduced to 7.6 cm (3 in.). The trim panel and

blanket properties are the same as given in table 6.

Figure 59 shows the basic untreated transmission loss spectra for various

grazing incidence angles, for the baseline narrow-body turbofan-type aluminum

aircraft structure under in-flight conditions at an altitude of 9144 m

(30 000 ft) and at 0.8 Mach number. These results are governed primarily by

the outer wall since the baseline trim panel is too light to provide double-
wall benefits for noise reduction.
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From figure 59 it is seen that the transmissionloss spectrafor the
narrow-bodyfuselageare nearly the same as for the wide-bodyfuselage,des-
pite the differencein diameter. Since the blade passage frequencieshappen
to be nearlythe same for the wide-bodyand narrow-bodyaircraft,then one
would expect similarinteriornoise levels near the peak externalnoise region
definedby Segment4.

G3.2 BaselineNoise Levels For Aluminum and
CompositeStructures

Figure 60 shows the double-wall,add-on noise-reductlonstudy resultsfor
the 2-engine,narrow-bodyaircraft. Results are shown for the aluminum struc-
ture vs. an all compositematerial, strength-designedfuselagewhich is 70%
as heavy as the aluminumstructureand has equal outer-wallstiffness. At the
baseline trim panel mass conditionsof 1.61 kg/m2 (0.33psf) the aluminum
structureyields a peak noise level of 108 dBA, for the baseline outer-wall
mass. This result is nearly identicalwith the baselinewlde-bodyresult.
The untreatednoise levels are about 110 dBA for the lighterbaseline com-
posite structures,both for the wide-bodyand for the narrow-body,as shown
in figures57 and 60.

It is apparent that the strength-designednarrow-bodycompositestructure
offers no inherentnoise reductionbenefitswhen the outer-wallstiffnessand
dampingloss values are unchangedfrom the aluminum structurevalues as is
assumed in the present study.

G3.3 Narrow-body,Add-On Noise Reductionsfor Aluminum
and CompositeStructures

Figure 60 also summarizesthe effectsof parametricallyvarying outer-
wall mass and trim panel mass. All of the discussionabout the assumptions
and mathematicalmodeling given for the wide-bodyaircraftalso pertains to
the results in figure 60. The results show that:

• The optimumconfigurationfor an interiornoise design level of
80 dBA (requiringthe least penaltymass in the peak noise region
of Segment4) has an outer-wallsurfacedensityof 19.5 kg/m2 (4 psf).

. The requiredtotal surfacedensityof the wall is about 32.2 kg/m2
(6.75psf) which includesa B-type fiberglassblanketweighing
0.73 kg/m2 (0.15psf) and a trim panel surfacedensityof 12.7 kg/m2
(2.6psf). These resultshold for both the aluminumand the strength-
designed compositeaircraft.

• If the externalnoise is reducedby 10 dB, or if alternatively,the
designrequirementwas 90 dBA interiornoise level, then the optimum
outer-wallsurfacedensitieswould be the baselinevalues of 6.2 kg/m2
(1.28psf) for the aluminumaircraft,and 4.3 kg/m2 (0.89 psf) for
the strength-designedall compositematerial aircraft.
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• In the design range of 82 dBA to 88 dBA, the optimum outer-wall
surface density is 14.6 kg/m 2 (3 psf).

• The curve showing results for a 29.3 kg/m2 (6 psf) outer-wall surface

density may provide competitive results if the required interior noise

design level was reduced to 70 dBA, or if the external noise level was

increased by i0 dB.

In general, wlde-body and narrow-body results are quite similar except

that the narrow-body requires slightly lower penalties in the peak noise

region. The axial distribution of treatment mass differs considerably, how-
ever, due to the difference in the external noise signatures, as shown in

figures 7 and 8. See also figures i and 2.

G4. SMALL BUSINESS AIRCRAFT RESULTS

G4.1 Baseline Structure and Interior Noise Level Predictions

Appendix B describes the baseline structural and sidewall properties of
the small business aircraft. This aircraft has a diameter of 2.23 m (7.33 ft.).

The structure is assumed to have frame spacing of 50.8 cm (20 in.) with smaller
intercostals at axial intervals of 17 cm (6.7 in.). For analysis purposes,

the stiffener material for the ring frames and intercostals was redistributed

to provide frames of equal total stiffness at intervals of 17 cm (6.7 in.).

The longerons or stringers were spaced at intervals of 58.4 cm (23 in.). The
effect of the redistribution of frame material at 17 cm intervals was checked

by alternative analysis wherein all of the ring frame plus intercostal
stiffener material was redistributed at 50.8 cm (20 in.) intervals. The cal-

culated effect upon interior noise results was small; therefore, the mathe-

matical modeling of the frames at 17 cm (6.7 in.) intervals appears to be

satisfactory within the context of the present smeared-stiffener theory. The

double-wall spacing is chosen to be 10.2 cm (4 in.), anticipating the benefits

of a relatively large wall spacing for double-wall noise-reduction performance.
The sidewall cross section is similar to figure 22.

G4.2 Baseline Interior Noise Levels For Aluminum

and Composite Structures

Figure 61 shows the transmission loss spectra for the baseline aluminum
structure at various fixed grazing incidence angles, whose axial positions are

noted in the figure caption, expressed as ratios, relative to the propeller

i01



o
t,_ MULTIPLES OF BLADE PASSAGEFREQUENCY

fBP = 283Hz 2fBp 3 4 6 8 10

oo ' I i-

/ I///

O 30 Ay/D

' N_ ,_ 0z r<
_: 20 INCIDENCE

ANGLE
I,- '_/f _ (DEGR) AX/Ay

• 120 0.58
Z_ 105 0.27
• 0o o

10 [] 75 -0_7 •
- • 5o -0.58

0 45 -1.00
• 30 -1.73

0 = , t It I I I I I I I I I I I I f (Hz)
100 1000 104

, Ill , , , , , , ,,I l , i , i i Ill , i ' f/fR
0.1 1 10

, , , , i t i I t I I I I I I I I I i I I I I I I I f/fc0.01 p.1 1

Figure 61. - Baseline fuselage outer-wall transmission-loss spectra; business aluminum
aircraft at M = 0.8, 9144 m (30 O00 ft) altitude.



tip clearance. The values of Ax/_ymust be multiplied by 0.8 for this aircraft
to obtain the axial position expressed in ratio to the propeller diameter. For
this smaller aircraft with a relatively high blade passage frequency of 283 Hz,
the calculated transmission-loss values appear to be somewhat higher for
lowest propeller harmonics, when compared with the previous wide-body and
narrow-body results.

Figure 62 shows the results of the double-wall study. The lowest total
surface density values denote the baseline configuration results. The alumi-
num baseline structure has a total surface density of 6.8 kg/m2 (1.39 psf),
including an outer-wall structural mass of 1.61 kg/m2 (0.33 psf) and a B-type
fiberglass blanket with a thickness of 5.1 cm (2 in.), and a surface density
of 0.49 kg/m2 (0.i0 psf). The strength-designed composite structure has a
baseline outer-wall structural mass of 3.3 kg/m2 (0.67 psf) with the same
baseline trim panel and fiberglass blanket for a total surface density of
5.37 kg/m2 (i.I0 psf). The baseline structure yields interior noise levels
of Iii dBA and ii0 dBA for the aluminum and composite structures, respectively.

Apparently, the increased A-weighting associated with the higher blade passage
frequency tone of this aircraft, compared to the narrow-body and wide-body
offsets the benefits of improved transmission loss to yield essentially equal
baseline interior noise levels which are 30 dBA higher than the design goal.
The ring frequency for_this aircraft is 738 Hz and the ratio of blade passage
frequency to ring frequency is 0.38 which is very close to the narrow-body
ratio of 0.39.

G4.3 Add-On Noise-Reductions For Aluminum and Composite Structures

Figure 62 shows the noise reduction for Segment 4, expressed with Outer-
wall structural mass as a parameter with four values displayed, including the

baseline values for both the aluminum and the composite structures. The

trends for the business aircraft are very similar to the wide-body and narrow-

body results discussed previously. The following are some of the key features
of figure 62:

• For the aluminum structure the optimum outer-wall surface density to

achieve 80 dBA is 19.5 kg/m 2 (4 psf). The total surface density is

28.8 kg/m 2 (5.9 psf).

• For the composite structure, the optimum2tota! outer-wall mass to
reach 80 dBA is now reduced to 14.6 kg/m (3 psf). The total surface

density is 26.4 kg/m2 (5.4 psf).
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• To achieve a lower interior noise goal of 70 dBA (or to offset a i0 dB

increase of exterior noise level) the optimum outer-wall mass is

increased to 29.3 kg/m 2 (6 psf). The total surface density is

43.9 kg/m 2 (9 psf).

The reader will note for this smallest aircraft that some difference is

beginning to emerge between the composite structure and the aluminum structure.

Evidently, a lower value of outer-wall mass of 14.6 kg/m 2 (3 psf) is now the

optimum for the composite structure, whereas for the larger aircraft, a

19.5 kg/m 2 (4 psf) outer-wall mass was required.

G5. GENERAL COMMENTS ON DOUBLE WALL PERFORMANCE
FOR ALL AIRCRAFT SIZES

In the peak noise region, the optimum division of mass between the outer-
wall and the trim panel is nearly equal, which is consistent with the sim-
plified theory of double-wall-mass law behavior, subject to numerous con-
straints. These constraints included:

• Structural dynamic complexities of the stiffened cylindrical shell as
a whole and of the individual trim panels and outer-wall skin bays,
as modified by damping treatment.

• Acoustical coupling with the fiberglass blanket and interior air
gaps.

• Acoustical coupling to the interior via the P. W. Smith type of
radially-inward traveling wave field.

• Strength-design requirements of the outer-wall structure which impose
a minimum mass and stiffness level that cannot be reduced; but can

only be increased via the addition of damping treatments.

• Trim panel surface density cannot be reduced below its baseline value.

G6. SENSITIVITY OF RESULTS TO CHANGES OF EXTERIOR NOISE LEVEL OR TO

CHANGES IN THE DESIGN REQUIREMENTS FOR INTERIOR NOISE

The results shown in figures 57, 60 and 62 display the add-on noise

reduction performance of the limp double wall designs for the wlde-body,

narrow-body and business aircraft, respectively, for the noise region of Seg-
ment 4 over a wide range of noise reduction. These curves, therefore, auto-

matically display sensitivities to changes of design criteria, which could be

either a) an increase of the local exterior noise level, or b) imposition of
a different interior noise design goal.
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G7. ADD-ON NOISE REDUCTION PERFORMANCE OF OTHER TREATMENT SEGMENTS AWAY

FROM THE PROPELLER DISC REGION, AND THE EFFECTS OF BLADE PASSAGE

FREQUENCY VARIATION

GT.I 4-Engine Wide-Body Aircraft

GT.I.I Segment variation effects.- The results presented thus far have
focused upon the comparison of required surface density values in the peak

exterior noise region associated with Segment 4. In this discussion, the

treatment requirements for the other segments are briefly indicated, as well
as some indication of the effects of blade passage frequency variation. The

total surface density data for these other segments adjusted locally for

changes of external noise within the segment is the basis of penalty mass data

presented in Section 3 of this report.

Figures 63 to 65 show the results of the 0.152 m (6 in.) double-wall study

for Segments 3 through 7 having the external noise levels as defined nominally
in table 7 and showing local variations in figures 7 and 8. Figures 63 to 65

employ a dual abscissa showing the effects of trim panel surface density and
also total wall surface density. The latter scale facilitates the direct com-

parison of mass penalties for designs with differing outer-wall surface den-
sities. These data are used to generate table 15 which summarizes the total

wall surface densities required to achieve 80 dBA for each of the segments at
three values of outer-wall surface density. Designs with the minimun or base-

line value of outer-wall surface density require the least total surface den-

sity to achieve 80 dBA for all segments except Segment 4. This result holds
true for all aircraft sizes for add-on designs. The curves for Segment 4 in

figures 63 and 65 are based on a nominal OASPL of 132 dB which corresponds to

a baseline propeller tip clearance of _y/D = 1.2 for the inboard engine. The
nominal external OASPL design values for all segments are obtained from
table 7.

G7.1.2 Blade passage frequency effects.- Figure 66 shows the relation-

ship between blade passage frequency and performance of the limp double wall
for the case of an outer-wall surface density of 19.5 kg/m 2 (4 psf) and for a

trim-panel surface density of 14.6 kg/m 2 (3 psf). These are nearly optimum

parameter selections for the peak noise region, Segment 4. Figure 66 also
shows that baseline blade passage frequencies of between 160 Hz, and 200 Hz
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TABLE 15. - REQUIRED TOTAL SURFACE DENSITY TO ACHIEVE 80 dBA FOR

SEGMENTS 3 TO 7 VS OUTER-WALL SURFACE DENSITY; 4-ENGINE

WIDE-BODY AIRCRAFT; 0.152 m (6 IN.) DOUBLE-WALL

a1, OuterWallSurfaceDensity

kg/m2 (psf) kg/m2 (psf) kg/m2 (psf)
9.17 (1.88) 14.6 (3) 19.5 (4)

Exterior
Segment OASPL oT, TotalSurfaceDensity

3 124 16.6 (3.4) 22.0 (4.5) 24.4 (5.0)
4 132 41.5 (8.5) 40.0 (8,2) 35.1 (7.2)

5 127 25.9 (5.3) 30.3 (6.2) 30.3 (8.2)

6 122 22.5 (4.6) 22.5 (4.6) 25.4 (5.2)

7 119 21.0 (4.3) 21.5 (4.4) 22.9 (4.7)

producethe minimum interior noise levels for each segment,exceptfor
Segment 3. Segment 3 appears to give slightly better results at low fre-
quency. This result is consistent with the nature of the basic shell trans-
mission loss spectra shown in figure 56 where it is seen that low-frequency
transmission loss increases at locations upstream of the propeller disc
plane.

The results of figure 66 generally substantiate the benefits claimed
in reference I of the high blade passage frequency which is a character-
istic feature of the propfan. In the present example, the results appear to
worsen at 250 Hz; however, this is believed to be due to a skin panel res-
onance problem which could be eliminated by tuning the selection of stiffener
spacing, outer-wall skin thickness, etc., or possibly by an increase of
damping. The present configuration is, in fact, optimized for the baseline
blade passage frequency of 162 Hz.

G7.2 2-Engine Narrow-Body Aluminum Aircraft I

G7.2.1 Segment variation effects.- Figures 67 to 69 show the interior

noise levels for Segments 3 to 7 for the narrow-body aluminum aircraft with

a 0.152 m (6 in.) double wall. Results are plotted against dual scales of

trim panel and total wall surface density. Table 16 shows the total surface
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Flgure 68. - 2-englne narrow-body aluminum aircraft interior noise
levels vs total surface density for segments 3 to 7;

outer-wall surface density 14.6 kg/m 2 (3 psf);
0.152 m (6 in.) double-wall study.
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Figure 69. - 2-engine narrow-body aluminum aircraft interior noise

levels vs total surface density for segments 3 to 7;
outer-wall surface density 19.5 kg/m 2 (4 psf);

0.152 m (6 in.) double-wall study.
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density required to achieve 80 dBA for each of thesegments, and for each of
the three values of outer-wall surface density. The results of table 16 show

a behavior similar to that of the wlde-body results, namely:

• For Segment 4, the peak noise region, the least treatment penalty
mass is obtained with a 19.5 kg/m 2 (4 psf) outer-wall mass surface

density

• For Segments 3, 5, 6 and 7 the least treatment penalty mass is

obtained by selecting the minimumorbaseline value of outer-wall

surface density of 6.25 kg/m 2 (1.28 psf)

87.2.2 Effects of blade passagefrequencyvariation.-Figure 69 shows
the effectsof varyimgblade passage frequencyfor the 2-enginealuminum
narrow-bodyaircraftfor a noise controlconfigurationhaving a 19.5 kg/m2
(4 psf) outer-wallmass and a 14.6 kg/m2 (3 psf) trim panel. This is nearly
an optimum configurationfor the peak noise region 4, Segment4. The con-
figurationis not optimum,however, for the outer segmentsaway from the
propellerdisc plane. For these segmentsit is preferableto retain the base-
line outer-wallsurface density,as shown in table 16. Figure 70 shows that
Segment 4 does achievebest noise reductionperformancein the range of blade
passage frequenciesbetween 160 to 200 Hz.

TABLE 16. REQUIRED TOTAL WALL SURFACE DENSITY TO ACHIEVE 80 dBA FOR
SEGMENTS 3 TO 7 FOR VARIOUS OUTER-WALL SURFACE DENSITY VALUES

2-ENGINE NARROW-BODY ALUMINUM AIRCRAFT,
0.152 m (6 IN.) DOUBLE-WALL

OuterWallSurfaceDensity

kg/m2 (psf) kg/m2 (psf) kg/m2 (psf)
External 6.25 (1.28) 14.6 ( 3 ) 19.5 ( 4 )
OASPL

Segment dB TotalWallSurfaceDensity

3 124 12.2 (2.5) 22.5 (4.6) 23.9 (4.9)

4 134 42.0 (8.6) 37.6 (7.7) 32.7 (6.7)

5 124 14.2 (2.9) 29.3 (6.0) 26.4 (5.4) I
6 114 8.6 (1.76) 19.0 (3.9) 22.5 (4.6)

7 104 8.6 (1.76) 17.0 (3.48) 21.4 (4.38)
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Figure 70. - Blade passage frequency study for narrow-body aluminum
aircraft; 19.5 kg/m 2 (4 psf) outer-wall mass, 14.6 kg/m 2

(3 psf) trim-panel mass, 14 percent loss factor.
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G7.3 Small Business Aircraft

G7.3.1 Segment variation effects.- Figures 71 to 73 show the required
total surface density versus interior noise levels for Segments 3, 4, and 5,

" respectively. In each figure, the outer-wall surface density is parametri-

cally varied over 4 values from a baseline value of 4.68 kg/m 2 (0.96 psf) to

a maximum of 29.3 kg/m 2 (6 psf). These are double-wall studies for a 0.102 m

(4 in) wall spacing and a baseline blade passage frequency of 283 Hz.

As in the studies for the larger aircraft, the optimum outer-wallsurface

density is about 19.6 kg/m 2 (4 psf) for the peak noise region adjacent to

Segment 4. For Segments 3 (forward of the disc plane) and 5 (aft of the dlsc
plane), the optimum outer-wall mass appears to be about 9.8 kg/m 2 (2 psf)
based on the nominal exterior OASPL value of 124 dB for which these segments

were designed. It will shown, later in this report, that if the acoustic

treatment penalty mass is adjusted within these segments according to the
local external acoustic signature shown in figures 7 and 8, then the optimum
outer-wall mass reverts to the baseline value. This will be true for those

regions of Segments 3 and 5 where the local exterior noise levels are lower
than the nominal values. Results are omitted for Segments 6 and 7 for which

also the optimum outer-wall mass is the baseline value.

G7.3.2 Blade passage frequency variation effects.- Figure 74 shows the

effect of BPF variations on a nearly optimum noise control configuration for

Segment 4. This configuration has a 0.102 m (4 in&) wall depth with a

19.6 kg/m 2 (4 psf) outer-wall mass and a 14.6 kg/m _ (3 psf) trim panel mass.
The total wall surface density used in figure 74 amounts to 34.7 kg/m 2

(7.1 psf) which exceeds the weight requirement to achieve 80 dBA per

figure 72, yielding about 75 dBA at the baseline BPF of 283 Hz.

G8 EFFECTS OF OTHER PARAMETERS

G8.1 Introductory Remarks

A large number of parametric studies have been performed during this

analytical program. It would not be practical or desirable to include all of
the analytical studies in this report. However, an attempt has been made to
include all of the results that have been derived from the larger body of

- data. Selected data are presented in this section to support the conclusions

reached during this analytical study program.

G8.2 Effects of Damping Loss Factor

Earlier discussions of the double-wall performance of the outer-wall and

trim panel have shown how interior noise was affected when outer-wall loss
factor and mass were varied. Structural response is affected by both the

mass and damping of the structure. Changing the mass of the structure
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Figure 71. - Double-wall study for business aircraft;
segment 3 (upstream of disc plane).
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Figure 74. - Blade passage frequency study for small aluminum buslness aircraft:
19.5 kg/m 2 (4 psf) outer-wall, 14.6 kg/m 2 (3 psf) trim-panel

surface density, 14% loss factor;-0.102m (4 in.) double-wall.

121



affects the dynamic response of the structure and could mask or obscure the
effect due to changes in damping loss factor. Therefore, several parametric

studies were performed for which the varying parameter was loss factor and
all other variables were held constant. The data for Segment 4 and external

spectrum number I are presented in figure 75. Although the different con-

figurations have interior noise levels which vary over a wide range, the

levels for a given configuration are relatively insensitive to significant
increases in loss factor. It is therefore concluded that large decreases in

interior noise cannot be obtained by increases in damping loss factor alone.

However, the mass increases which are associated with increasing outer-wall

damping loss factor in an optimum double-wall configuration are seen to be
beneficial as discussed earlier. Similar results were obtained for each

segment and external spectrum combination.

G8.3 Stiffness Effects

G8.3.1 Effects of skin thickness.- The baseline widebody configuration

was used as a vehicle for this parametric study. Skin thickness was increased

from its baseline value of 0.15 cm (0.06 in.) up to 0.64 cm (0.25 in.) and

the surface density was allowed to increase with skin thickness. This

represents one of the more obvious approaches to stiffening a structure. The
results for Segment 4 and external spectrum number I are shown in figure 76.
The aircraft skin surface density is shown as a function of skin thickness

on the righthand scale of this figure. Analytical results for the other

spectrum numbers and for all combinations of spectrum number and segment
number show the same trend. Interior noise is not greatly affected by

increases in skin thickness -- the largest change occurs when the skin thick-

ness is increased from 0.38 cm (0.15 in.) to 0.51 cm (0.20 in.) for all trim

panel surface densities. If the skin thickness is increased to 0.51 cm
(0.20 in.) a 3 to 4 dBA reduction is obtained relative to the baseline for
an outer-wall surface density increase of 8.8 kg/m 2 (1.8 psf). Since a

28 dBA reduction is required to achieve 80 dBA, simply increasing skin

thickness is not a practical means of achieving the desired interior noise

goal.

The main problem with increasing skin thickness as a stiffening tool is

that the outer-wall panel bay resonant frequencies are controlled by the
membrane stresses for a typical pressurized cabin; therefore, the first
small increments of skin thickness increase the mass, but do not signifi-

cantly increase the net stiffness. Hence, the panel bay resonant frequencies
are reduced, making them closer to the propeller harmonic excitation

frequencies. This problem is compounded because the increased mass of the
outer-wall required in a double-wall design tends to further decrease the

resonant frequencies of the outer-wall skin panels.

G8.3.2 Outer-wall modulus and moment of inertia.- The stiffness of the

outer wall can be changed by varying the moment of inertia or Young's

modulus of the structure. In general, the moment of inertia of a structural
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OUTER WALL TRIM PANEL
SURFACE DENSITY SURFACE DENSITY

AIRCRAFT E/E (BASELINE) MATERIAL
SYMBOL TYPE kg/m2 (psf) kg/m2 (psf)
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• BUSINESS 10 ALUMINUM 19,6 (4,00) 1,6 (0,33)
[] BUSINESS 10 COMPOSITE 3,2 (0.67) 1,6 (0,33)
• NARROW-BODY 10 ALUMINUM 19,6 (4,00) 1,6 (0,33)
O NARROW-BODY 10 COMPOSITE 4,4 (0,89) 1,6 (0,33)
• WIDE-BODY 1 ALUMINUM 19,6 (4,00) 7,3 (1,50)
A WIDE-BODY 1 COMPOSITE 6,4 (1,30) 7,3 (1,50)
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Figure 75. - Damping loss factor parametric studies,
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Figure 76. - Wide-body skin thickness parametric studies.

shape can be increased by a redistribution of the mass about the neutral axis.
Further increases in stiffness can be achieved without increasing surface

density by using a material with a higher Young's modulus. Assuming that a

high modulus graphlte/epoxy material is suitable and available, then a

significant increase in stiffness would be possible with a modest increase
outer-wall surface density (see Section 3.2).

It was of interest to investigate the effects of increasing outer-wall

moment of inertia without increasing wall surface density. The baseline

wide-body aircraft was used for these studies. The moments of inertia of
the frames and the stringers were each varied separately without increasing

outer-wall surface density and the effect on interior noise is shown in

figure 77. Greater interior noise reductions occur when the frame moment of
inertia is varied. However, when the I/I (Baseline) ratio exceeds 30,
there is little or no effect on interior noise.

Another way of increasing outer-wall stiffness is to increase the

modulus of elasticity of the skin and stiffeners. It should be noted that
when this is done the speed of sound in the material is changed and the ring

frequency shifts according to the relationship.
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Noise reductionor transmissionloss is at or near a minimum in the
vicinity of the ring frequency. Therefore,the locationof the ring fre-
quencywith respectto the propellerfundamentalfrequencyand its harmonics
may determinewhether the interiornoise increasesor decreasesas modulus
of elasticityis increased. Interiornoise is shown as a functionof modulus
of elasticityin figure 78 for the baselinealuminumand baseline composite

- configurationsof each aircrafttype. For example,the wlde-bodyconfigura-
tions benefit from increasesin modulusof elasticitywithin the range of
practicalvalues (E/E(BASELINE))< 30.

- These resultsshow that increasedstiffnessof the stiffenersis some-
what more effectivethan increasesof skin gauge. AppendixH, however,
shows a better use of (increased)stiffnessin the advancednoise reduction
designs,by combiningincreasedstiffnesswithin an optimumdouble wall
design.
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Figure 78. - Baseline aircraft outer-wall modulus parametric study.

G8.3.3 Effect of stiffener spacing.- A convenient means of increasing
outer-wall stiffness is to reduce the spacing of the frames and stringers.

Analyses of the wide-body aluminum aircraft with outer-wall masses of

19.5 kg/m 3 (4.0 psf) and 29.3 kg/m 3 (6.0 psf) are shown in figure 79 as

functions of trim-panel surface density. For this parametric study the loss
factor was varied with the outer-wall surface density. The data shown are

for Segment 4 and external spectrum number i. As the stiffener spacing was

varied, the density of the skin was changed in order to maintain a constant
outer-wall surface density. With baseline stiffener spacings, the 19.5 kg/m 3

(4 psf) and 29.5 kg/m 3 (6 psf) outer-wall results are nearly identical.

However, with the reduced frame and stringer spacings the heavier outer-wall

results in significantly lower interior noise levels.

Outer-wall stiffness was increased by a factor of three and the stiffener

spacing was cut in half for the interior noise predictions shown in figure 80.
In contrast to the data shown in figure 79, the wide-body interior noise is

essentially unchanged when the stiffener spacing is reduced. However, the

narrowbody and business aircraft show significantly lower interior noise

when stiffener spacing is reduced with an E/E (baseline) ratio of 3. These

results are probably due to the smaller skin panel that results when the

stiffener spacing is reduced.
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Figure 79. - Stiffener spacing study; segment 4 and external spectrum i -
wide-body aluminum.
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Figure 80. Stiffener spacing study - wlde-body, narrow-body and

business aircraft; segment 4 and external spectrum 1.
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Figures 79 and 80 also illustrate that variations of the trim-panel

surface density have a powerful effect in conjunction with outer walls, which

have been stlffenedby means of reduced spacing between the stiffeners. This

effect is further exploited in Appendix H in the study of advanced noise

reduction designs.

G8.4 Effects of Fiberglass Blankets

The add-on noise-reduction configurations assumed that an optimized

fiberglass blanket would be identified. Three parameters were of particular
interest for the optimization study; I) blanket density, 2) blanket thickness,

and 3) fiber diameter. Using the baseline wide-body aluminum aircraft con-

figuration, a parametric study was performed to identify the optimum blanket

configuration. The data from this study are shown in figure 81. From these
data it was concluded that:

• A density of 9.6 kg/m 3 (0.6 PCF) is optimum for the heavier trim

while 38.4 kg/m 3 (2.4 PCF) is optimum for the baseline trim

• A 7.6 cm (3.0 in.) thick blanket is optimum

• A blanket fabricated from "B" fibers is optimum.

The conclusion that filling half the wall space with fiberglass is the optimum
thickness was derived from these data and used for all subsequent configuration

studies.

As regards the fiber size effect, the nominal diameter of B-type fiber is

much larger (3.81 _m (150 _in)) than that of the AA fiber (1.27 _m (50 _in.)
diameter)). Viscosity losses therefore begin at a lower frequency for the

B-type fiber and yield a net advantage of about 2.5 dBA compared to AA fiber
results for most of the configurations analyzed in the present study. Above

600 Hz, the AA-type fiber gives better performance which partly explains its
wide use in turbofan aircraft, where boundary layer noise transmission is the
dominant source of interior noise.

G8.5 Effects of Wall Space Depth

An important consideration in the acoustical design of an aircraft
fuselage is the amount of space provided between the interior trim panel and
the exterior skin. In order to provide an increased wall depth for acousti-

cal purposes one can either reduce the interior space or increase the diameter

of the fuselage. Neither of these alternatives is desirable unless the
acoustical benefit is substantial. Therefore, a study of the relationship

between interior noise and wall depth was performed for each aircraft type.

Data will be shown for Segment 4 and external spectrum number i - similar

data exist for other segments and spectra.
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Figure 81. - Fiberglass blanket optimization - wide-body aluminum aircraft.

The baseline wide-body aircraft results are shown in figure 82. There
is little benefit derived by increasing wall depth from 15.2 cm (6 in.) to

22.9 cm (9 in.). Figure 83 includes the results for a heavy outer-wall and
shows the curious result that increasing wall depth to 30.5 cm (12 in.) is

counter-productlve. The narrow-body aircraft was analyzed with a 7.6 cm

(3 in.) and 15.2 cm (6 in.) wall depth and the business aircraft with a

5.1 cm (2 in.) and 10.2 cm (4 in.) wall depth--the results are shown in

figures 84 and 85, respectively. For the narrow-body, reducing the wall depth
to a more conventional depth of 7.6 cm (3.0 in.) would entail a significant

mass penalty relative to the baseline spacing of 15.2 cm (6 in.). The
increased outer-wall diameter to accommodate a 15.2 cm (6 in.) wall depth

would result in about a 1.5 percent drag increase and an estimated 68 kg

o (151 ib) increase of the baseline shell mass. These penalties would more
than offset the estimated 1,000 pounds in treatment mass which would be saved

by selecting the deeper wall, based on the above approximate calculation.
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20 !110
• WALL DEPTH AtRGAP BLANKET AIRGAP

SYMBOL
cm kin.) cm (in.) cm (in.) cm (in.)

v,, • 15.2 (6.0) 7.6 (3.0) 7.6 (3.0)
_1_ /% 22.9 (9.0) 7.6 (3.0) 7.6 (3.0) 7.6 (3.0)

< ,-, O 22.9 (9.0) 15.3 (6.0) 7.6 (3.0)
m 100 -Y'_-_-

7O
0 7.3 14.6 21.9 29.3

(1.6) (3.0) (4.5) (6.0)

TRIM PANEL SURFACE DENSITY kgJm2 (psf)

Figure 82. - Wall depth study - baseline wlde-body aluminum aircraft.
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100
TRtM PANEL SURFACE DENSITY

Z_ SYMBOL kg/m2 (psf)
1.6 (0.33)

0 3.3 (0.66)
I-I 4.9 (1.00)

uJ /% 7.3 (1.50)
90 • 14.6 (3.00) --

-- 29.3 (6.00.)

8O

70
15.2 22.9 30.5
(6.0) (9.0) (12.0)

TOTAL WALL DEPTH cm (in.)

Figure 83. - Wall depth study - wlde-body aluminum aircraft with
19.5 kg/m 3 (4.0 psf) outer wall surface density and
0.14 loss factor.
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120

SYM8OL SURFACE DENSITY LOSS
110 ' . kg/m 2 (psf) FACTOR

6,2 (1.28) 0.066.2 (1.28) 0.06
• f'l 19.5 (4.00) 0.14

19.5 (4.00) 0,14

1oo

- -,_-_

7O
0 7.3 14.6 21.9 29.3

(1.5) (3.0) (4.5) (6.0)

TRIM PANELSURFACEDENSITYkg/m2 (psi')

Figure 84. - Wall depth study - narrow-body aluminum aircraft.

120

i I I I I
WALL DEPTH OUTER WALL SURFACE DENSITY LOSS FACTOR

SYMBOL
cm (in,) kg/m2 (psf)

110
0 5.1 (2.0) 4.7 (0.96) 0.06
• 10.2 (4.0) 4.7 (0.96) 0.06
[-1 5.1 (2.0) 19.5 (4.00) 0.14
• 10.2 (4.0) 19.5 (4.00) 0,14

- 9o _

7o _-
0 7.3 14.6 21.9 29.3

(1.5) (3.0) (4.5) (6.0)

TRIM PANEL SURFACE DENSITY kg/m2 (psf)

Figure 85. - Wall depth study - aluminum business aircraft.
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G8.6 Effects of Midwall Septa

A convenient means of increasing sidewall transmission loss is by the

addition of an intermediate limp wall placed between the trim panel and the

outer wall. The configuration analyzed for all three aircraft had the septum

inboard of the fiberglass blanket, midway between the trim panel and the outer

wall. Data are shown in figure 86 for Segment 4 and external spectrum number

1 for the baseline trim panel and a 14.6 kg/m2 (3 psf) trim panel. Similar

data exist for other segments, spectra and trim panel surface densities;

however, the data presented are representative of the larger body of data.

The dynamics of a multilayered wall configuration are demonstrated as septum

surface density is varied. Trends for the wide-body and narrow-body aircraft

are nearly identical while the business aircraft data varied considerably.

The results generally show that inclusion of a septum is not an efficient tool

for propeller noise reduction. The effect of a midwall septum is essentially

equivalent to reducing the wall space depth by one-half within a double-wall

configuration and is therefore counterproductive. This is illustrated by

figure 87 where configurations with a septum at best only approach the per-

formance of an equivalent weight double-wall configuration without a septum.

G8.7 Effect of Propeller Harmonic Content

A peak overall sound pressure level (OASPL) of 134 dB was selected from
the Hamilton Standard test data supplied in Reference 5. Three different

spectra, all with the same OASPL, were used in the analysis of each aircraft

configuration. The harmonic content of each spectrum is shown in figure 13.

While spectrum number i is the most realistic, the other spectra are of
interest in order to determine the sensitivity of interior noise to propfan

harmonic content. The relationship between interior noise and propfan har-

monic spectrum is shown in figure 88 for a few configurations of each aircraft

type. These data were selected as being representative of the analytical
study results. The differences between spectra numbers I and 2, although

substantial, had little effect on interior noise. This can be understood by

noting the small difference in the amplitudes at the fundamental frequency

and next two harmonics. When spectrum number 3 (flat weighted) was used
the interior noise was several dB lower than it was for spectra numbers I and

2-approximately the same as the difference in the amplitude at the

fundamental frequency.

G8.8 Modal Convergence Study

Interior noise is a function of the number of circumferential cylinder

modes that are considered in the analysis. When a sufficient number of modes

have been considered, the consideration of additional higher order modes has

a negligible effect on interior noise. This effect is shown in figure 89

for Segment 4 of the wide-body aluminum aircraft. The solution has converged
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.o,
m< 100 TRIM PANEL"€I

-- SYMBOL AIRCRAFT kg/m 2 (psf)O

_'_ _ Z_ BUSINESS '1.62 (0.33)

• BUSINESS 14.6 (3.00)

O NARROW-BODY 1.62 (0.33)
_" 90 • NARROW-BODY 14.6 (3.00)

_£ _ I-I WIDE-BODY 1.62 10.33)
-- • WIDE-BODY 14.6 (3.00)
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Figure 86. - Midwall septum study - baseline aircraft configurations.
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Figure 87. - Double-wall/septum study for business aircraft,

segment 4 (peak noise region).

133



OUTER WALL TRIM PANEL
SURFACE DENSITY

SYMBOL AIRCRAFT SURFACE DENSITY LOSS

kg/m2
FACTOR

kg/m2
(psf) (psf)

0 WIDE·BODY BASELINE 9.2 (1.88) 0.06 1.63 (0.33)

• WIDE·BODY 19.5 (4.00) 0.14 1.63 (0.33)

0 WIDE·BODY 19.5 (4.00) 0.14 14.6 (3.00)

0 NARROW·BODY BASELINE 6.3 (12.8) 0.06 1.63 (0.33)

• NARROW·BODY 19.5 (4.00) 0.14 1.63 (0.33)

0 NARROW·BODY 19.5 . (4;00) 0.14 14.6 (3.00)

A BUSINESS BASELINE 4.7 (0.96) 0.06 1.63 (0.33)
.A BUSINESS 19.5 (4.00) 0.14 1.63 (0.33)

• BUSINESS 19.5 (4.00) 0.14 14.6 (3.00)
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"t:l

w·
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0
Z
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0
a:
w
I- 90Z

70 L- ......L ~_____J

1 2 3

PROPFAN HARMONIC SPECTRUM NUMBER

Figure 88. - Effect of propfan harmonics.
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OUTER WALL SURFACEDENSITY TRiM PANELSURFACE DENSIT_

SYMBOL E/E (BASELINE) kg/m2 (psf) kg/m2 (psf)
110

1 19.5 (4.0) 14.6 (3.0)• 3 19.5 (4.0) 14.6 (3.O)

<
m 100

o
z

o

7O

10 20 30 40 50

NUMBER OFCIRCUMFERENTIAL MODES

Figure 89. - Convergence of Fourler-Bessel function series

solution for wlde-body segment 4.

at or before I0 modes --well below the number considered in the Lockheed

computer program. The criteria established for the Lockheed analysis was
that a sufficient number of modes had been considered when the contribution

from a given mode was i00 dB less than that from all the lower order modes.
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APPENDIX H

PARAMETRIC STUDY RESULTS FOR ADVANCED NOISE-REDUCTION DESIGNS

HI. DATA PRESENTATION

Figures 4 and 5 of Section 3.2 describe the estimated variation of

required outer-wall surface density versus stiffness level when the outer

wall is deliberately stiffened. In order to obtain the minimum total wall

surface density required to achieve a given interior noise level, it is nec-

essary to vary the trim panel surface density for each combination of outer-

wall surface density and outer-wall stiffness level. Results of such calcu-
lations are described below.

Figures 90 through 97 show the required total surface density in Segment 4

to achieve a given interior noise level for each of the three aircraft sizes.

Figures 90, 92, 94 and 96 show results for advanced aluminum structures at

stiffness levels ranging from 3 to 20 times the baseline stiffness. Fig-
ures 91, 93, 95 and 97 show results for advanced orthogrid/composite fuselage

designs with stiffness levels ranging from 3 to 20 times baseline stiffness.

It will be recalled that the baseline composite structure has the same stiff-

ness level as the aluminum baseline structure but is only 70% as heavy.

Figures 90 through 97 also show the effects of varying the relative

stiffener spacings,_x = _x/_x Baseline, of the rings and _v = _y/ _Y Baseline
of the stringers. The data shown are the underlying basis bf the optimum
advanced noise-reduction designs which are described in Appendix I, and for

which acoustical treatment penalty mass data are given in Section 3.2. Each

figure also shows results for the add-on noise-reduction design to provide a
basis for comparison. In the present studies of high stiffness outer-wall de-

signs, the damping loss factor is maintained at its baseline value of 6 per-

cent, despite the increased outer-wall mass, on grounds that the stiffening
material added to the outer wall in this case is not a viscoelastic material.

The following is a brief summary of the trends.

H2. DISCUSSION OF RESULTS FOR ADVANCED ALUMINUM DESIGNS

For the wide-body, Figure 90 shows that the optimum configuration when

adjusted to the local exterior noise level is one having three to five times

the baseline stiffness and retaining the baseline stiffener spacing, _x = I. _

For interior noise levels below 80 dBA, a relative stiffness level of six

at one-half stiffener spacing (_x = _y = 0.5) would be competitive. By com-
paring Figure 90 with Figure 57 of Appendix G, it is apparent that best re-
suits are obtained for interior noise levels above 95 dBA by retaining the

baseline outer-wall stiffness and mass, but with increased trim-panel mass.

For the narrow-body, figure 92 shows that the l_owest total surface den-

sity is required when the relative stiffness level E is six with one-half
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of the baseline stiffener spacing. The narrow-body does not show any benefit
of stiffening unless the stiffener spacing is reduced - compare figure 92 with
figure 60 of Appendix G. It is seen that for an interior noise design level
above 90 dBA, or for a 10-dB reduction of the exterior noise, it is best to
retain the baseline outer-wall properties and put all of the treatment mass
into the trim nanel.

Figures 94 and 96 show results for the advanced aluminum business air-
craft. These results illustrate another interesting feature; namely, that

both the stringer and ring spacing must be reduced to obtain results better
than the add-on design. The curves marked ix = 1 and _v = 0.5 denote reduc-
tion of stringer spacing but not the ring spacing. Resbits for the case of
one-half stiffener spacing for both the rings ( Ix = 0.5) and stringers

(_y =0.5) at six times stiffness are the only advanced aluminum results
which are better than the add-on results. An alternative design retaining
the baseline frame spacing but having 0.25 times the baseline stringer s_aclng
has performance slightly worse than the "add-on" design at 80 dBA. By com-
paring figures 94 and 96 with figure 62 of Appendix G, it is seen that the
stiff aluminum design is better than the add-on design in a limited range of
75 to 95 dBA.

One reason for obtaining somewhat poorer results for the stiffened busi-
ness aircraft can be seen by comparing figures 4 and 5 of Section 5, where it
is clear that stiffening the business aircraft with aluminum requires a
higher outer-wall mass ratio than is the case for the wide-body and narrow-
body designs. It is also noted that th_ original business aircraft design
calls for fewer longerons of greater cross-sectlonal area for the purpose of
reducing the number of parts, and hence to achieve a lower manufacturing cost
while maintaining the same axial load carrylngcapaclty. This baseline design
concept is not, however, helpful to the present stiffened outer-wall noise-
control approach.

H3. DISCUSSION OF RESULTS FOR ADVANCED COMPOSITE/ORTHOGRID DESIGNS

Figure 91 shows results for the wide-body aircraft. The optlmun relative
stiffness leve! appears to be E = 6 with one-half of the baseline stiffener

spacing. Comparison with figure 57 of Appendix G shows that the present high
stiffness designs are lighter that the strength-deslgned composite designs
when the interior noise levels are required to be below 102 dBA.

For the narrow-body, figure 93 shows that the optimum stiffness level
is E = i0 with one-halfof the baseline spacingof the stiffeners. It also
appears that_ = 20 with one-halfstiffenerspacingwould be optimumif addi-
tionalnoise reductionwas required. The advanceddesignsare more efficient
than the strength-deslgnedcompositestructuresfor interiornoise design
objectivesbelow 102 dBA based on comparisonof figure 60 of AppendixG with
figure 93.
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Figures 95 and 97 show for the business aircraft that the best design is

one with one-half of the baseline spacing of both the rings and the stringers,
with six to ten times baseline stiffness level, depending on the local

external noise level. Results for the configuration having four times the

baseline number of stringers are not quite as good, but are still considerably

better than the add-on design. Comparison with figure 62 of Appendix G shows

that the family of advanced designs is superior to the strength-designed com-

posite structural designs below 102 dBA.

The business aircraft case studies are interesting in the comparison of

advanced aluminum and advanced composite results. The use of composite ma-

terials allows significant mass penalty savings for almost all of the reduced

stiffener spacing cases in figure 97; however, for the advanced aluminum de-

sign (figure 96), there is only one clearly advantageous design among those
investigated.

H4. GENERAL COMMENT ON ADVANCED ULTRA-STIFF DESIGNS

The results shown herein are promising but display some sensitivity to
stiffener spacing and the variation of outer-wall mass versus stiffness;

therefore, pending further esperimental verification of the thgory and further
studies based on discrete stiffener theory, the reader should regard the

potential penalty mass savings for such advanced designs with some caution.

It appears analytically that the structure can be "tuned" to give either better
or worse results by adjusting the outer-wall structural properties and stiffener

spacing.

High-stiffness advanced designs appear to be advantageous when the required

noise reduction exceeds the noise reduction provided by the baseline structure

by more than i0 dBA. For smaller noise reductions, the best investment of the

penalty mass is to increase the trim-panel mass while retaining the baseline
levels of outer-wall mass and stiffness.
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01

CONCEPT SYMBOL E _'x _y kg/m2 (psf) r/

- ADD-ON O 1 1.0 1.0 19.5 (4.0) 0.14

ADVANCED DESIGN [] 3 1.0 1.0 12.0 (2.45) 0.06
/ • 6 0.5 0.5 17.7 (3.63)

Z_ 5 1.0 1.0 15.6 (3.20)

,& 10 0.5 0.5 23.1 (4.74)

10 1.0 1.0 30.4 (6.22)

r _I, 20 0.5 0.5 44.9 (9.21) _r

NOTES: -_x = RING SPACING; ,ex = ,tx/t x BASELINE

t_.y = STRINGER SPACING;_'y -- ,_y/,_yBASELINE
E = (EI)/(EI)BASELINE

o I -- OUTER WALL SURFACE DENSITY
r/ = DAMPING LOSS FACTOR

SEGMENT4

48.8 1101:

J
39.o lal

, _ - "-_BASELINE STRUCTURE -
29.3 (81 _.__&PLUSVARIABLE TRIM PANEL

.i

.< 9.76 121
"J _ALUMINUM STRUCTURElu

ZERO PENALTY BASELINE
u. 11.5 kg/m2 (2.36 psf)

I I
10_e0_ 70 80 De 100' 110 120

INTERIOR NOISE LEVEL, dBA

Figure 90.- Comparison of wide-body advanced aluminum vs. add-on noise

control; outer-wall mass and stiffness effects.
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01

CONCEPT SYMBOL E" _-x _y kg/m2 (psf) 'r/

ADD-ON O 1 1.0 1.0 19.5 (4.0) 0.14

ADVANCED DESIGN [] 3 1.0 1.0 7.0 (1.44) 0.06
ill 6 0.5 0.5 10.4 (2.13)
A 5 1.0 1.0 8.0 (1.64)

A 10 0.5 0.5 11.8 (2.42)
10 1.0 1.0 11.5 (2.35)

_r _ 20 0.5 0.5 17.0 (3.48) _I'

NOTES: Lx = RING SPACING,_"x = Lx/Lx BASELINE

_.y = STRINGER SPAClNG,Ty =_y/_y BASELINE
E = (EI)/(EI)BASE LINE

a1 = OUTER WALL SURFACE DENSITY
r/ = DAMPING LOSS FACTOR

_- .... BASELINE STRUCTURE
39.0 (8) _1 \ _k I J PLUSVARIABLE TRIM PANEL --

\\ /

293 (6)

19.5 141 'COMPO I _%.v=,j_'_ -
STRUCTURE _ZERO PENALTY \ _ _
BASELINE _ _1 _'V

'_, 8.74 kg/m2 (1.79 p_rf)_ _ _

9.76,2,
=L

o (o)
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 91. Comparison of wide-body advanced composite vs. add-on noise

control; outer-wall mass and stiffness effects.
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o1

CONCEPT SYMBOL E" Tx Ty kg/m2 (psf) r/P

ADD-ON O 1 1.0 1.0 19.5 (4.0) 0.14

ADVANCED DESIGN [] 3 1.0 1.0 8.4 (1.73) 0.06

• 6 0.5 0.5 12.6 (2.58)

r Z_ 5 1.0 1.0 11.1 (2.27)

• 10 0.5 0.5 16.5 (3.38)
10 1.0 1.0 17.8 (3.65)

r • 20 0.5 0.5 26.6 (5.45) _ '

NOTES: _x = RING SPACING _x = _x/_x BASELINE

_y = STRINGER SPACING _--y= _y/Ly BASELINE
E = (EI)/(EI)BASE LINE

oI = OUTER WALL SURFACE DENSITY
r/ = DAMPING LOSS FACTOR

"_ 58.6 (12)

SEGMENT 4

488 (10) _\_ , BASELINE STRUCTURE

p_ ,_'I /' PLUSVARIABLETR,MPANEL

"3s.o (81
,<.

29.3 (61 _b, -'t

_ .
_€ 19.5 {41 • '"

ZEROPENALTY _IL.._BASELINE _,_'(3_ ''_
9.76 (2) -- 8.6 kg/m2 (1.76 psf) '_ _""[3u_

0
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 92.- Comparison of narrow-body advanced aluminum vs. add-on noise

control; outer-wall mass, and stiffness effects.
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a1

- CONCEPT SYMBOL ]_ _x _'y kg/m2 (psf) r/

ADD-ON O 1 1.0 1.0 19.5 (4.0) 0.14

ADVANCED [7 3 1.0 1.0 5.22 (1.07) 0.06
• 6 0.5 0.5 7.76 (1.59) !

/_ 5 1.0 1.0 6.00 (1.23) i
• 10 0.5 0.5 8.98 (1.84)

<> 10 1.0 1.0 8.49 (1.74) I

I r _ 20 0.5 0.5 17.8 (3.65) _r

NOTES: _x = RING SPAClNG;Tx = Lx/_x BASELINE

__y = STRINGER SPACING;_y = _y/_y BASELINE
E = (EI)/(EI)BASE LINE

01 --- OUTER WALL SURFACE DENSITY
77 = DAMPING LOSSFACTOR

58.6 (12)

SEGMENT 4

_ 39.0 (8) _ BASELINE STRUCTURE
Q \'_[_ ,_PLUS VARIABLE TRIM PANEL"

293 161

COMPOSITESTRUUR
ZERO PENALTY _'I= .
BASELINE " _Z] L'_::::_

_ 9.76 (21- 6.44 kg/m2 (1.31 psf)_,_ "_

o (o)
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 93.- Comparison of narrow-body advanced composite vs. add-on noise
control; outer-wall mass and stiffness effects.
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a1

CONCEPT SYMBOL Ex, Ey _-x _-y kg/m2 (psf) _/

- ADD_N O 1, 1 1.0 1.0 19.5 (4.0) 0.14

ADVANCED [] 3, 3 1.0 1.0 8.05 (1.65) 0.06

• 3, 6 1.0 0.5 9.66 (1.98}

, X 6, 6 0.5 0.5 12.3 (2.52)

V 3, 12 1.0 0.25 13.0 (2.66)

Z_ 5, 5 1.0 1.0 12.8 (2.62)
• 5, 10 1.0 0.5 14.8 (3.04)

10, 10 1.0 1.0 27.0 (5.53)

' • 10, 20 1.0 0.5 32.5 (6.65) _r

NOTES: Lx = RING SPACING_x = Lx/_x BASELINE

_y = STRINGER SPACING j-y = _y/_y BASELINE

Ex, Ey = (EI)/(EI) BASELINE IN x AND y DIRECTIONS
a I = OUTER WALL SURFACE DENSITY
rt = DAMPING LOSS FACTOR

58.6 (12) i

SEGMENT 448.8 (10)

39.0 (81

2o.3 (s)

.J

•_ 19.5 14)<

I.U

._ ALUMINUM STRUCTURE
m 9.76 (2) ZERO PENALTY BASELINE

6.78 kg/m2 (1.39 psf)
u_

BASELINE

0 (0) PLUS VARIABLE TRIM PANEL
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dEA

Figure 94.- Comparison of business aircraft advanced aluminum vs. add-on

noise control; outer-wall mass and stiffness effects.
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o1

CONCEPT SYMBOL Ex, Ey _x _y kg/m2 (psf) ?7

ADD-ON O 1, 1 1.0 1.0 19.5 (4.0) 0.14
ADVANCED [] 3, 3 1.0 1.0 4.29 (0.88) 0.06

_7 3, 12 1.0 0.25 6.88 (1.41)
I [] 3, 6 1.0 0.5 5.12 (1.05)

X 6, 6 0.5 0.5 6.49 (1.33)

A 5, 5 1.0 1.0 5.27 (1.08)

A 5, 10 1.0 0.5 6.34 (1.30)

10, 10 1.0 1.0 7.91 (1.62)

_r _ 10, 20 1.0 0.5 9.47 (1.94) _r

NOTES: _x = RING SPAClNG;_"x = Lx/_ x BASELINE

= STRINGER SPACING;Ty = _y/_y BASELINE
E = (EI)/(EI)BASELINE
aI = OUTER WALL SURFACE DENSITY
7? = DAMPING LOSSFACTOR

++++1I I SEGMENT 4

TRIM PANEL

_ 19.514)

_ |COMPOSITE STRU_'q't

IZERO PENALTY
9.76 (2) BASELII_

5.37 kWrm(1.1 pd)
o (o) t

60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 95.- Comparison of business aircraft advanced composite vs. add-on

noise control; outer-wall mass and stiffness effects.
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a1

CONCEPT SYMBOL Ty kg/m2Ex, Ey _-x (psf) r/

ADD-ON O 1, 1 1.0 1.0 19.5 (4.0) 0.14
ADVANCED [] 3, 12 1.0 0.25 13.0 (2.66) 0.06

• 6, 6 0.5 0.5 12.3 (2.52)

• _ 5, 20 1.0 0.25 19.8 (4.06)

• 10, 10 0.5 0.5 18.8 (3.85)

10, 40 1.0 0.25 43.5 (8.91)
' • 20, 20 0.5 0.5 41.1 (8.43) _'

NOTES: _x = RING SPACING;_'x = Lx/Lx BASELINE

-- STRINGER SPAClNG;_'y =
_ = (EI)/(EI)BASE LINE

_y/Jy BASELINE

aI = OUTER WALL SURFACE DENSITY
r/ = DAMPING LOSS FACTOR

_" 48.8 (_0)

_J.o (s) \\ _ J /BASELINE STRUCTURE

o l<

_€ ALUMINUM STRUCTURE

_3 _ ZERO PENALTY BASELINE _,_
,_ 9.76 (2) 6.78 kg/m2 (1.39 psf)
UJ =m.
t,n

u_

o (o)
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 96 .- Comparison of business aircraft advanced aluminum vs. add-on

noise control; outer-wall mass and stiffness effects.
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a1

CONCEPT SYMBOL E'x,E'y _'x _y kg/m2 (psf) rt

ADD-ON O 1, 1 1.0 1.0 19.5 (4.0} 0.14

ADVANCED 17 3, 12 1.0 0.25 6.88 (1.41) 0.06
• 6, 6 0.5 0.5 6.49 (1.33)

Z_ 10, 20 1.0 0.25 8.44 (1.73)

• 10, 10 0.5 0.5 8.00 (1.64)

10, 40 1.0 0.25 12.7 (2.60)

_r • 20, 20 0.5 0.5 12.0 (2.46) _r

NOTES: t x -- RING SPACING; _'x= 'ex/'_xBASELINE

Ly = STRINGER SPACING;Ty =_y/,ty BASELINE
= (Ell/IEIIBASELINE

o I = OUTER WALL SURFACE DENSITY
77 = DAMPING LOSSFACTOR

58.6 (12)

SEGMENT 4

48.8 (10) (DJ

39.0181 . , "
BASELINE STRUCTURE

29.3 (6) _r_ PLUSVARIABLE TRIM PANEL

11.5 (4} _9.76 121 ZERO PENALTY
u. BASELINE - -".-..n_]_

5.37 kg/m2 (1.1 psf) B

0 (0)
60 70 80 90 100 110 120

INTERIOR NOISE LEVEL, dBA

Figure 97.- Comparisonof business aircraftadvancedcompositevs. add-on
noise control;outer-wallmass and stiffnesseffects.
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APPENDIX I

DESCRIPTIONOF THE AXIAL VARIATIONOF
THE HIGH NOISE REDUCTIONDESIGN CHARACTERISTICS

Ii. ADD-ON NOISE REDUCTIONDESIGNS

" Tables 17 to 22 describethe axial variationof the add-on noise-control
elements for the wlde-body,narrow-body,and businessaircraft,respectively.
Three of the designshave aluminumand three have compositeouter-wallstruc-
ture. By definitionof these designs, the outer-wall,load-carryingstructure
is maintained at its baseline strengthand stiffnesslevel, so the variable
elements include:

• Outer-wallviscoelasticdamping layer surfacedensity

• Trim-panelsurfacedensity

In principle,the fiberglassblanketpropertiescould have been varied
if advantageous;however,earlierstudiesdescribedin AppendixG indicate
that littlebenefit is derived from such variationswithin a fixed wall-space
depth. The choice of the largerdiameter "B" fiber versus the conventional
"AA" fiber diameteris the principalresult of the studiesof fiberglass
blanket effectsupon low-frequencypropellernoise transmission.

12. ADVANCED NOISE REDUCTION DESIGNS

Tables 23 through 28 describe the six advanced designs for which mass

penalty data are given in table i of Section 3.2. Three of these designs are
described as advanced aluminum, and three are called advanced composite/

orthogrid designs. All of these advanced designs are optimized to consider

the following features:

• Stiffening of the outer-wall along with the necessary increases of

outer surface density as defined by figures 4 and 5 of Section 3

• Use of the correct trim-panel surface density obtained from double

wall parametric studies

• Local adjustment of the required noise reduction in proportion to

changes in the external noise level as described in Section 3.2.

The data in tables 23 through 28 describe the axial distributions of

all of the pertinent noise-control parameters which are required to provide,
at minimum total wall surface density, the necessary local noise reduction
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(adjusted according to the external noise signatures given in figures 7 and 8
Appendix A). The axial position, X/D, denotes the ratio of distances to pro-

peller diameter forward of the position called zero. This zero position is

the position of the propeller disc plane for the 2-engine aircraft having a

propeller tip clearance of_y/D = 0.8. The optimum local noise-control

design is obtained from the envelope of curves such as are shown in Appen-

dix H, where the required total surface is plotted versus required interior

noise level. Since the design objective remains at 80 dBA, the increased

values of interior noise correspond to reductions of the local exterior noise

in accordance with figures 7 and 8, Appendix A. •

It is observed in tables 23 through 28 that in the regions of peak noise,

the configuration stiffness to baseline stiffness ratios, E = 5 to I0 are

best. For the advanced aluminum wide-body design the baseline stiffener

spacing is optimum. For the other designs it appears desirable to use double

the number of both stringers and rings (denoted by reduced relative spacings

_x = _y = 0.5). For the peakwise region, all of the data for outer-wall
section properties, stiffness, ring frame spacing and stringer spacing, are
given in Appendix B for each of the three sizes of aircraft in tables 8

through 12.

One other feature which is common to all designs, including the add-on
designs, is a uniformity of the optimum configuration for achieving the first

i0 to 15 dBA increments of interior noise reduction beyond what is afforded
by the baseline turbofan-type structure. For these low noise-reduction

increments, all of the treatment mass penalty should be invested in increased
trim panel surface density and none in the outer wall.
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2
TABLE 17. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGN

PARAMETERS FOR ALUMINUM 4-ENGINE WIDEBODY AIRCRAFT

SurfaceDensityValues

Viscoelastic
0uter-Wall Outer-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic Outer-Wall Trim Panel Blanket Sidewall Thickness Depth Thickness Depth
°'1Struct O'VE °'1 0-2 o-BLKT o-T

KG KG. KG KG KG KG
Segment X/D SQi (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) CM(IN) CM(IN) CM(IN) CM(IN)

3 1.0 9.J.7(_1.88) 0 9.17(.1.88) 1.61(.33) .73 (.15) 11.5(2.36) 0 15.2(6) 7.62(3) 7.62(3)

t 1.50
4 .50 5.9 (1.2) 15.8 (3.23)

.25 11.0 (2.25) 20.2 (4.13)
0 10.4(2.121 19.514.01 9.3 (1.9) 29.5 (6.05) .75 (.291
-.25 13.2(2.7) 33.4 (8.85)
-.50 14.6(3.0) 34.9 (7.15)
-.75 13.2(2.7) 33.4 (6.85)
-.10 11.0(2.25) 31.2 (6.40)

-1.25 I 9.3 (1.9) 29.5 (6.05)
-1.50 0 9.17(1.88) 16.1(3.3) 26.0 (5.33) 0
-1.75 13.7(2.8) 23.6 (4.83)
-2.0

i' -2.25
6 -2.25
I -2.50
7 -2.50 13.2(2.7) 23.1 (4.73)

-2.75 i 7.8 (1.6) 17.7(3.63)
i i-3.00 ! 3.6 (.74) 13.5(2.77)

I

-3.25 2.0 (.41) 10.9(2.44) II' -3.50 _r 'I 1.61(.33) _r 11.5(2.36) _ _r _r ir ,

NOTES: (A) Fiberglassblanket.Bulkdensity= 9.6kg/cum (0.6Ib/cuft). B-typefiberdiameter= 3.81 I,tm (150p,in)

(B) Viscoelasticlayer.Bulkdensity= 1384.1kg/cum (86.4Ib/cuft). Dampinglossfactor= .2 atasurfacedensityof 19.5kg/sqm

(C) Totaltreatmentmasspenalty.= 2283kg(5033Ib) = 2.31%of TOGW.TOGW= 98640kg(217466Ib)

(D) X/Dispositiveforwardofthepropellerdiscplane

i..=
J_



_" TABLE 18. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGNLn

o PARAMETERS FOR ALUMINUM 2-ENGINE NARROWBODY AIRCRAFT

SurfaceDensityValues

Viscoelastic
Outer-Wall 0uter-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic Outer-Wall TrimPanel Blanket Sidewall Thickness Depth Thickness Deptht

°-1Struct 0-VE °-1 o-2 °-8LKT °-T

K.._.G.G KG KG KG KG KG
Segment X/D SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) CM(IN) CM(IN) CM(IN) CM (IN)

3 .75 6.25(1.28) 0 6.25(1.28) 1.61(.33) .73(.15) 8.6 (1.76) 0 15.2(6) 7.62 (3) 7.62(3)
|

.5 2.5(.51) 9.5 (1.94)

4 .5 ]
.25 'i _r 7.3(1.5) 4.3 (2.93)

0 13.3(2.72) 19.5(4.0) 8.8(1.8) 29.0(5.95) .960(.378)
-.25 I 12.7(2.6) 32.9(6.75)

-.50 11.5(2.35) 31.7 (6.50)i J
-.75 I I' 7.8 (11.6) 28.1 (5.75)

-1.0 ; 0 6.25(1.28) 11.7(2.4) 18.7(3.83) 0

lr -1.25 4.6 (.95) 11.6(2.83)
5 -1.25

_1D50 1.61(.33) 8.6 (1.76)

NOTES: (A) Fiberglassblanket

B-typefiberdiameter= 3.81 p.m(150_in)
Bulkdensity=9.6 kg/cum (0.6Ib/cuft)

(B) Viscoelasticlayer

Bulkdensity= 1384.1kg/cum (86.4Ib/cuft)

(C) Totaltreatmentmasspenalty

= 741.4kg(1634.5Ib)= 1.82%TOGW

(O) TOGW=40,823kg(90000Ib)

(E) X/Dispositiveforwardof thepropellerdiscplane



TABLE 19. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGN PARAMETERS
FOR ALUMINUM 2-ENGINE SMALL BUSINESS AIRCRAFT

SurfaceDensityValues

Viscoelastic
0uter-Wall Outer-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic Outer-Wall TrimPanel Blanket Sidewall Thickness Depth Thickness Depth

°-1Struct 0-VE °-1 o-2 0-BLKT °-T
KG KG KG KG KG KG

Segment X/D SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) CM(IN) CM(IN) CM(IN) CM (IN)

3 .75 4.68(.96) 0 4.68 (.96) 1.61(.33) .49 (.10) 6.78(1.39) 0 10.2(4) 5.08(2) 5.08 (2)

.25  .08(1.04) 9.76(2.0) 6.6(1.35) 16.8(3.45) .37 4.7 1.86)
0 14.8(3.04) 19.5(4.0) 6.3 (1.30) 26.4(5.40) 1.072(.422_ 4.0 (1.58)

•-.25 8.8 (1.80) 28.9 (5.90)
!

-.50 7.8 (1.60) 27.8(5.70) 'l '
-.75 5.08(1.04) 9.76 (2.0) 14.2(2.90) 24.4 (5.00) .37 (.144) 4.7 (1.86)

-1.0 I ] 6.6 (1.35) 16.8(3.45)
' -1.25 0 4.68(0.96) 6.5(1.34, 11.7(2.40) 0

5 -1.25 '_ ! 2.64(.54) i 7.8(1.60),_ -1.50 , 1.61(.33) ' 6.78(1.39) _ _ '

NOTES: (A) Fiberglassblanket

B-typefiber,diameter= 3.81 [Jm(150 ]_in)
Bulkdensity= 9.6 kg/cum (0.6 [b/cuft)

(B) Viscoelasticlayer
Bulkdensity= 1384.1kg/cum (86.4Ib/cuft)

Dampinglossfactor=20%at VE= 19.5kg/sqm
(C) Totaltreatmentpenalty= 250kg(551 Ib)= 1.72%TOGW
(D) TOGW= 14515kg(32000 Ib)
(E) X/D ispositiveforwardof thepropellerdiscplane

i-=
_.n
i-=
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TABLE 20. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGN PARAMETERS
L.

FOR COMPOSITE WIDEBODY 4-ENGINE AIRCRAFT

SurfaceDensityValues
Viscoelastic

0uter-Wall 0uter-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic 0uter-Wall TrimPanel Blanket Sidewall Thickness Depth Thickness Depth

°°1Struct °-VE °1 002 00BLKT °-T
KG KG KG KG KG KG

Segment X/D SOM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) SQM (PSF) CM(IN) CM(IN) CM(IN) CM (IN)

3 .75 6.4 (1.31) 0 6.4 (1.31) 1.61.(.33) .73 (.15) 8.74 (1.79) 0 15.2(6) 7.62(3) 7.62 (3)
A .50 I 5.86(1.2) 13.0 (2.66)
1 .50 + +
4 .25 9.78(2.0) 16.8 (3.45)
i

0 '_' '_ 21.0(4.3) 28.i (5.75) '
-.25 13.1(2.69) (19.5)(4.0) 13.2(2.7) 33.4 (6.85) .95 (,374)

i

-.50 14.6(3.0) 34.9 (7.15)
-.75 13.2(2.7) 33.4 (6.85)

-1.00 _ ' 11.7(2.4) 32.0 (6.55) '

-1.25 0 6.4 1.31) 23.4(4.8) 30.6 (6.26) 0 ]
-1.25 I

-1.50 21.0(4.3) 28.1 (5.76) I
5 -1.75 18.1(3,7) 25.2 (5.16)

-2.00 15.6(3.2) 22.7 (4.66)-2.25 12.7(2.6) 19.8 (4.06)
6 -2.25 i i

-2.50 , 6.83(1.4) 14.0 (2.86)-2.50
7 -2.75 3.51(.72) 10.6 (2.18)

-3.0 2.68(.55) 9.81 (2.01)

-3.25 L 1.71(3.5) 8,83(1.81).I
I' -3.50 , ,. ,, 1.61(.33) , 8.74(1.79) ..... _

NOTES: (A) Fiberglassblanket.Bulkdensity= 9.6 kg/m3(0.6Ib/ft3). B-typefiberdiameter= 3.81p.m(150p.in)

(B) Viscoelasticlayer.Bulkdensity1384kg/m3 (88.4Ib/ft3). Dampinglossfactor= .2 at asurfacedensity,0"1 of29 kg/m2
= .06at 0"1= 9 kg/m2withlinearvariation

(C) Totaltreatmentmasspenalty,= 2441kg(5381Ib)= 2.47%TOGW.TOGW=98,641kg(217;466Ib)

(D) X/Dis-positiveforw_ardofpropellerdiscplane ..........



TABLE 21. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGN PARAMETERS

FOR COMPOSITE NARROWBODY 2-ENGINE AIRCRAFT

SurfaceDensityValues

Viscoelastic
0uter-Wall Outer-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic Outer-Wall Trim Panel Blanket Sidewall Thickness Depth Thickness Depth

°°1Struct °'VE 001 o-2 °-BLKT °'T
K.._GG KG KG KG KG KG

Segment X/D SO.M(PSF) SOM (PSF) SQM (PSF) SQM (PSF) SOM(PSF) SQM (PSF) CM(IN) CM(IN) CM(IN) CM (IN)

3 .75 4.34(.89) 0 4.34 (.89) 1.61(.33) .73 (.15) 6.7 (1.37) 7.62(3) 15.2(6) 7.62 (3) 7.62(3)
.5o / 2.93(.60) , 8.0 (1.64)

.25 3.0(.61) 7.32(1.5) 6.8 (1.4) 14.9(3.05) .215(.085)
0 15.2(3.11) 19.5(4.0) 8.8 (1.8) 29.0(5.95) 1.10(.432)

-.25 11.7(2.4) 32.0 (6.55)
-.50 12.2(2.5) 32.5 (6.65)
-.75 , 7.8 (1.6) 28.1(5.75) '_'

-1.0 3.0 (.61) 7.32(1.5) 8.5 (1.75) 16.6(3.40) .215(.085)
-1.25 0 (,4.34)(.89) 5.9 (1.20) 10.9(2.24)

' -1.25
5 -1,5 1,61(,33) 6,7 (1,37)

L -1.75-2.0 _ , _ _ ' '_ , i_

NOTES: (A) Fiberglassblanket.Bulkr]ensity9,6 kg/m.3(0.6 Ib/ft3). B-typefiberdiameter= 3.81 iJm(150_Lin)

(B) Viscoelasticlayer.Bulkdensity1384kg/m3(86.4Ib/ft3). Dampinglossfactor= .2 atasurfacedensityo-1= 29 kg/m2;
= .06at 001= 9 kg/m2withlinearvariation

(C) Totaltreatmentmasspenalty= 860kg(1895Ib)= 2.11%TOGW.TOGW=40,823kg(90,000Ib)
(D) X/D ispositiveforwardof thepropellerdiscplane

I-=
Ln
L_



TABLE 22. - AXIAL DISTRIBUTION OF "ADD-ON" NOISE REDUCTION DESIGN
%n
•"- PARAMETERS FOR COMPOSITE SMALL BUSINESS AIRCRAFT

Q

SurfaceDensityValues

Viscoelastic
Outer-Wall Outer-Wall Total Fiberglass Total Layer Wall Blanket Airgap
Structure Viscoelastic Outer-Wall TrimPanel Blanket Sidewall Thickness Depth Thickness Depth

°-1Struct °'VE 0-1 o'2 °-BLKT 0-_
K.__66 K...66 K._qG K.__Q6 K_..QG

Segment X/O SOM (PSF) SOM (PSF) SQM (PSF) SQM (PSF) SOM (PSF) SQM (PSF) CM(IN) CM(IN) ca (IN) CM (IN)

3 .75 3.27 (.67) 0 3.27(.67) 1.61(.33) .49(.10) 5.4 (1.10) 0 10.2(4) 5.1(2) 5.1(2)

.50 r 4.6(.95) 8.4 (1.72) _ ,

4 .50 : r.25 ! , _ 11.0(2.25) 14.7(3.02) '
0 11.4(2.33) 14.6(3.0) 7.3(1.5) 22.5(4.6) .82 (.324)
-.25 10.7(2.2) 25.9 (5.3)
-.50 11.2(2.3) 26.4 (5.4)
-.75 6.8(1.4) 22.0 (4.5)

-1.0 _ _ 2.9(.60) 18.1(3.70)' -1.25 0 3.27(.67) 5A(1.10) J 9.1 (1.87) O
5 -1.25 J

-1.5 2.2(.45) 6.0 (1.22)
-1.75 / 1.61(.33) 5.4 (1.10) ==I

NOTES: (A) Fiberglassblanket.Bulkdensity9.6 kg/m3(0.6ib/ft3). B-typefiberdiameter- 3.81_ m (150p.in)

(B) Viscoelasticlayer.Bulkdensity1384kg/m3(86.4Ib/ft3). Dampinglossfactor= .2 atsurfacedensity, o-1= 29kg/m2; .06 at o-1=
9 kg/m2withlinearvariation

(C) Totaltreatmentmaupenalty= 266kg(586Ib)= 1.83%TOGW.TOGW= 14515kg=32 000Ib

(D) X/D ispositiveforwardof thepropellerdiscplane



TABLE 23. DESCRIPTION OF "ADVANCED" ALUMINUM NOISE REDUCTION

DESIGN FOR 4-ENGINE WlDEBODY AIRCRAFT

al o2 °BLKT °TOTAL UNIFORMPROPERTIES

X kg kg

SEGMENT D m2 [ (psf) m2 [ (psf) (a)WallSpacing
15.24cm(6.0in.)

3 1.00 1.61 I 0.33 11.5 I 2.36

0.75 _ ] ] _ (b)BlanketProperties
0.50 4.25 I 0.87 15.8 I 3.23 • Type: B

• BulkD_nsity:
4 0.50 t' I t' =9.6 kg/'m3(0.6Ib/ft3)

_W 0.25 6.39 I 1.31 19.0 I 3.90 = Thickness:F O 0.00 10.8 12.21 23.4 14.80 7.62cm(3in.)
AFT -0.25 10.5 I 2.15 26.8 I 5.50

12.0 I 2.45 28.3 I 5.80 (c) Thickness_0_50 Airgap
-0.75 10.5 12.15 26.8 I 5.50 7.62cm(3in.)
-1.00 11.8 I 2.41 24.4 I 5.00
-1.25 10.8 I 2.21 23.4 I 4.80 (d) lnboardPropeller

, = I I I DiscPlaneI I I
X

5 -1.25 _ I _k at_-=-0.27
-1.50 9.52 I 1,95 22.2 I 4.54
-1.75 7.32 I 1.50 20.0 I 4.09
-2.00 6.34 I 1.30 19.0 I 3.89 (e)OutboardPropeller
-2.25 5.37 I 1.10 18.0 I 3.69 DiscPlane

- I X
ate-= 1.0126 -2.25 i)

-2.50 2.73 I 0.56 15.4 I 3.15 (f) ZeroPenalty
TotalWallSurface

7 -2.50 4 I t, _ I ; Density

-2.75 1.61 I 0.33 14.3 I 2.92 oT = 11.52kg/m2
-3.00 3.61 10.74 13.5 I 2.77 BL (2.36psf)
-3.25 1.61 I 0.33 I 11.5 I 2.36
-3.50

Baseline(ZeroPenalty)Configurationat OtherLocations
TotalTreatmentPenalty= 1523kg(3358Ib)

= 1.54%TOGW
TOGW= 98,641kg(217466Ib)



TABLE 24 DESCRIPTION OF "ADVANCED" ALUMINUM NOISE REDUCTIONLn

o_ DESIGN FOR 2-ENGINE NARROWBODY AIRCRAFT

I n l _- _ °, °= °BLKT °TOTAL UN,FOBM_BOPERT,ES
X kg kg kg I k.._gg

SEGMENT D m"-3- I (psf) m_ I (psf) -_" I (psf) m2 (psf) (a)WallSpacing,o_,o,ooo,,o,oo_i,_ ,o,,oi_o_oo _o,,,,o,o_,_m,oo°,

0.7F ' I [ 2i4 Ii5_ I _ 1 I 1 (b) BlanketProperties

, , , , •BulkDensity
V _ =9.6 kg/m3 (0.6 Ib/ft3)

4 0.25 1.0 1.0 1.0 t I Ir 7.32 I 1.50 14.30 2.93 =Thickness:
FWD 0.00 6.0 0.5 0.5 12_6 I 2.58 9.76 I 2.00 23.10 I 4.73 7.62cm(3 in.)
AIFT -0.25 ' ' " i 13.20 I 2.70 26.5oI 5.43

-0.50 I - 12.20 [ 2.50 25.50 J 5.23 (c)AirgapThickness

13
-1.25 1.0 I li0 1.0 6.25 1 1.28 4;64 I 0.95 11 0 2 8 (d)PropellerDisc

, .... I-- , ' ' Planeat
5 -1.25 ' t X

I r t I t t I ! -=o

-1.50 110 J 0.06 J 1.0 1.0 _ j _ 1.61 I 0.33 0. .15 8.59/ 1.78 D
..... (e)ZeroPenalty-TotalWall

SurfaceDensity _

I °TBL=8.59kg/m2 (1.76psf)i
I

Baseline(ZeroPenalty)Configurationat OtherLocations
...... TotalTreatmentPenalty= 618kg(1357Ib)

= 1.508%TOGW
TOGW=40,823kg(90,000Ib)

i
f • _



TABLE 25. DESCRIPTION OF "ADVANCED" ALUMINUM NOISE REDUCTION

DESIGN FOR m-ENGINE BUSINESS AIRCRAFT

o o2 aBLKT °TOTALUNIFORMPROPERTIES

x
SEGMENT D m2 (psf) m2 (psf) m2 (psf) m2 (psf) (a)WallSpacing

10.16cm(4.0in.)
3 1.00

0.75 1.0 0.06 1.0 1.0 4.68 0.96 1.61 0.33 0.49 0.10 6.78 1.39 (b)BlanketProperties

0.50 I ! I I • Type:B
_, _, • BulkDensity:

4 0.50 ! _, ,r _r 5.56 1.14 10.7 2.20 =9.0 kg/m3 (0.6Ib/ft3)

0.25 6.0 0.5 0.5 12.3 2.52 3.32 0.68 16.1 3.30 • Thickness:
FWD 0.00 10.2 2.08 22.9 4.70 5.08cm(2.0 in.)
AFT -0.25 / 13.1 2.68 25.9 5.30

11.6 2.38 24.4 5.00 (c) ThicknessJ Airgapm

-0.75 ..... 9.17 1.88 22.0 4.50 5.08cm(2.0 in.)
-1.00 6.0 0.5 0.5 12.3 2.52 4.29 0.88 17.1 3.50
-1.25 1.0 1.0 1.0 4.68 0.96 7.03 1.44 12.2 2.50 (d)PropellerDiscPlaneat

5 -1.25 D
-1.50 1 _' _' 0.96 1.61 0.33 6.78 1.39

(e)ZeroPenaltyTotal
WallSurfaceDensity

= 6.78kg/m2
°TBL (1.39psf)

Baseline(ZeroPenalty)Configurationat OtherLocations
TotalTreatmentPenalty= 225kg(495Ib)

= 1.55%TOGW

TOGW= 14,515kg(32,000Ib)

i,-=
(J1
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TABLE 26. DESCRIPTION OF "ADVANCED" COMPOSITE NOISE REDUCTION
DESIGN FOR 4-ENGINE WIDEBODY AIRCRAFToo

E" r/ _'x _'_ °l o2 OBLKT aTOTAL UNIFORMPROPERTIES
X k.._gg k._gg k.._g k._g.g

SEGMENT D m2 (psf) m2 (psf) m2 (psf) m2 (psf) (a)WallSpacing
15.24cm(6.0 in.)

3 1.00 1.0 0.06 1.0 1.0 8.39 1.31 1.81 0.33 0.73 0.15 8.74 1.79

0.75 1.0 0.06 _ _ J _, (b)BlanketProperties0.50 610 0.5 0.5 10.4 2.13 0.33 12.7' 2.61 • Type:B

' ' _ _ ' i • BulkDensity:4 0.50 =9.6 kg/m3 (0.6Ib/ft3)

0.25 2.83 0.58 2.86 • Thickness:
FWD 0.00 5.27 1.08 3.36 7.62cm(3 in.)

AF,T -0.25 6.73 1.38 3.66
t -0.50 7.71 1.58 3.86 (c)AirgapThickness

-0.75 6.73 1.38 3.66 7.62cm(3in.)
-1.00 5.78 1.18 3.46

-1.25 I J (d)InboardPropellerDiscPlane
X

5 -1.25 at-_'= -0.27
-1.50 2.15 0.44 2.72
-1.75 1.85 0.38 2.66 (e)OutboardPropellerDisc

-2.00 1.61 0.33 12.7 2.61 PlaneatX= -1.012-2.25

6 -2.25 (f) ZeroPenaltyTotal
-2.50 WallSurfaceDensity

lo I ! L7 -2.50 °TB L- 11.79psf)
-2.75 _r I' _' _
-3.00 0.5 0.5 10.4 2.13 1.61 0.33 12.7 2.01
-3.25 1.0 1.0 1.0 6.39 1.31 1.78 0.36 1.82

-3.50 1.0 'r' 1.0 1.0 _ 1.31 1.61 0.33 ] 1.79-3.75 1.0 _' _ 'Y !' 0.33 ,r ' ! 1.79
.-4.00

Baseline(ZeroPenalty)ConfigurationatOtherLocations
TotalTreatmentPenalty= 1009kg(2225Ib)

= 1.023%TOGW
TOGW=98,641kg(217,466Ib)



TABLE 27. DESCRIPTION OF "ADVANCED" COMPOSITE NOISE REDUCTION

DESIGN FOR 2-ENGINE NARROWBODY AIRCRAFt

E _ £x £y a_ 02 aBLKT OTOTAL UNIFORMPROPERTIES
kg kg k._g.g k...gg

SEGMENT D m 2 (psf) m 2 (psf) m2 (psf) m2 (psf) (a)WallSpacing
15.24cm(8.0in.)

3" 1.00 1.0 0.06 1.0 1.0 4.34 0.89 1.61 0.33 0.73 0.15 6.69 1.37

0.75 J ' _ J _ _2 (b)BlanketProperties0.50 3.32 0.68 8.39 1. • Type:B

.... [ , • BulkDensity:
4 0.50 1.0 1.0 1.0 4.34 0.89 = 9.6 kg/m3 (0.6Ib/ft3)

0.25 6.0 0.5 0.5 8.25 1.69 4.68 0.96 13.7 2.80 • Thickness:
FWD 0.00 10.0 = 9.52 1.95 10.3 2.10 20.5 4.20 7.62cm (3.0in.)

AFT -0"25 1-0.50 1 1 14"6 3"00 24.95.10= 13.2 2.70 23.4 4.80 (c) ThicknessAirgap
-0.75 10.0 _ _ 9.52 1.95 9.27 1.96 19.5 4.00 7.62cm(3.0in.)
-1.00 6.0 0.5 0.5 8.25 1,69 6.15 1.26 15.1 3.10
-1.25 1.0 1.0 1.0 4.34 0.89 5.86 1.20 10.9 2.24 (d)PropellerDiscPlaneat

5 -1.25 1.0 _ 1.0 1.0 _ _ _ _ _ _ _l -X=0D
-1.50 1.0 0.06 1.0 1.0 4.34 0.89 1.61 0.33 0.73 0.15 6.89 1.37

(e)ZeroPenaltyTotal
WallSurfaceDensity

= 6.69kg/m2
°TBL (1.37psf)

Baseline(ZeroPenalty)ConfigurationatOtherLocations
TotalTreatmentPenalty= 573kg(1264Ib)

= 1.404%TOGW
TOGW= 40,823kg(90,000Ib)

L,n



TABLE 28 DESCRIPTION OF "ADVANCED" COMPOSITE NOISE REDUCTION

o DESIGN FOR 2-ENGINE BUSINESS AIRCRAFT

E r/ £x 93/ al o-2 OBLKT OTOTAL UNIFORMPROPERTIES
k_g.g k.g.g k.gg k.._.g

SEGMENT D m2 (psf) m2 (psf) m2 (psf) m2 (psf) (a)WallSpacing
10.16cm(2.0in.)

3 1.00
0.75 1.0 0.06 1.0 1.0 3.27 0.67 1.81 0.33 0.49 0.10 5.37 1.10 (b)BlanketProperties

• BulkDensity:

4 0.50 '_, '_ r r 'r =9.6 kg/ma (0.6Ib/ft3)

0.25 6.0 0.5 0.5 6.49 1.33 2.29 0.47 8.78 1.80 • Thickness:
_ 5.86 1.20 12.8 2.63 5.08cm(2.0in.)FWD 0.00

AFT -0.25 10.0 8.00 1.54 6.831.40 15.3.3.14
! !

-0.50 _ _ { 6.34 1.30 14.8 3.04 (c)AirgapThickness
-0.75 6'0. , , 6.49 1.33 5.37 1.10 12.4 2.53 5.08cm(2.0in.)

-1.00 6.0 0.5 0.5 _ _ 2.93 0.60 9.91 2.03
-1.25 1.0 1.0 1.0 3.27 0.67 5.37 1.10 9.13 1.87 (d)PropellerDiscPlaneat

i5 -1.25 r D
-1.50 1.0 0.06 1.0 1.0 3.27 0.67 1.61 0.33 5.37 1.10

. (e)zeroPenaltyTotal
WallSurfaceDensity

= 5.37kg/m2
°TBL (1.1psf)

Baseline(ZeroPenalty)ConfigurationatOtherLocations
TotalTreatmentPenalty= 107kg(237Ib)

= 0.740%TOGW
TOGW-- 14,515kg(32,000Ib)
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