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SUMMARY

A computational method for simulating the aerodynamics of wing-fuselage config-

urations at transonic speeds has been developed. The finite difference scheme is char-

acterized by a multiple embedded mesh system coupled with a modified or extended

small-disturbance flow equation. This approach permits a high degree of computational

resolution in addition to coordinate system flexibilityfor treating complex realistic air-

craft shapes. To augment the analysis method and permit applications to a wide range

of practical engineering design problems, an arbitrary fuselage geometry modeling

system has been incorporated as well as methodology for computing wing viscous effects.

Configuration drag is broken down into its friction, wave, and lift-induced components.

Typical computed results for isolated bodies, isolated wings, and wing-body combina-

tions are presented. The results are correlated with experimental data. A computer

code which employs this methodology is described in the Appendix of this report.





INTRODUCTION

The inherent complexity of transonic flows renders a purely experimental

approach to solving aircraft design problems impractical in many cases. Mixed

subsonic and supersonic regions, shock waves, and complicated viscous effects

characterize this flow field. Numerical methods for simulating transonic flows are

being developed to reduce the design cost and improve the performance of high speed

aircraft.

Murman and Cole (1) developed the first practical technique for computing two-

dimensional inviscid transonic flows. This scheme utilized mixed (upwind and central)

finite differences which were applied to the small perturbation equation in Cartesian

coordinates. The equation was solved iteratively by numerical relaxation. The success

of this technique made it possible for other investigators (2-4) to develop methodology

incorporating the full potential equation and exact boundary conditions. Typically,

coordinate system transformations now provide a grid system which is closely aligned

with the airfoil surface. The mapped coordinates simplify application of the exact

boundary conditions which are consistent with the full potential equation method. One

advantage of this approach is that details of the high-gradient region near the airfoil

leading edge are accurately predicted.

It is interesting to note that three-dimensional numerical methods for computing

transonic flows about wings and wing-body combinations have evolved in the same

manner that airfoil methods evolved. The early work of Bailey and Steger (5) with

the transonic small disturbance equation provided the foundation for a number of three-

dimensional schemes now in existence (6-12) Full potential equation codes have also

been developed for treating wings and simple wing-body shapes (13-15) Unfortunately,

the geometry-fitting coordinate system which is very advantageous when applied to

simple airfoil shapes becomes increasingly difficult to implement as geometries become

more complex. Constraints on computational resolution and geometry/coordinate

system flexibility arise in three-dimensional applications.

A high degree of numerical resolution will be necessary if flow details about

complex shapes are required. Providing this resolution for both a wing and fuselage
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simultaneouslypresents a difficult problem. In addition, computationalmeshflexi-
bility is necessaryto permit the treatmentof truly arbitrary shapes. This mustall
beaccomplishedwith sufficient computingefficiency to insure a cost-effective

approachto solving engineeringdesignproblems. Theserequirementsplace a
severe strain on the conventionalsingle continuousgrid/coordinate transformation
approachwhichcharacterizes existing numerical methods.

This grid embeddingapproach(16)providesa meansfor modelingandanalyzing

configurationcomponents(wingsandbodies)within locai detailedfine grid regions.
Beyondthesefine grid regions, a global crude meshtreats the flow field. Finemesh

computationsare performedonly in a regionvery close t_}the configurationwhere
gradientsare large anddetails are important. This permits a high degreeof computa-
tional resolution and, at the sametime, reducescomputerresource requirements.
Perhapsmore important, meshflexibility for treating complexshapesis available
since global transformations are not required.

Thepresent effort provides methodologyfor treating the morecomplexrealistic
aircraft shapesthat occur in pratical applications. Themothodusesa modifiedor

extendedsmall disturbanceflow equation. Withfull potential equationsolutions in
hand, this wouldat first appearto bea step in the wrong direction. However, the
simplicity of the planar boundaryconditionswhichaccompanythesmall disturbance

equation,permits the extensiveuseof Cartesian coordinates; this, in turn,

facilitates the implementation of a grid embedding scheme.
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Body cross-section pressure drag coefficient (lift-induced

+ wave drag)
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S YM BO LS

SEXP

S W

Xc/4
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f

U _V ,W
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r
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p

o

T

NOME NC LATURE (Continued)

Exposed wing area (for wing-body combinations)

Wing area

Wing section quarter-chord position

Position about which moments are computed

Wing span

Oswald efficiency factor (lift induced drag)

Wing geometry function

Perturbation velocities

Physical coordinates
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Specific heat ratio
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O3

F
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GLE

GTE
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Partial derivatives
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COMPUTATIONAL METItOD

Flow Equation

Early three-dimensional computationsusingthe classical transonic small-

disturbanceequationindicatedthat shockwaveswith appreciablesweep (>15)) relative

to the freestream direction could not be resolved. As a result, Lomax, Bailey and

Ballhaus (17) proposed the retention of additional terms in the flow governing equation.

Their derivation was based on simple sweep theory concepts.

The present method employs a flow equation constructed by adding three addi-

tional terms to the classical transonic small-disturbance equation. The flow equation is:

2
[1 -- M 2 -- (_ + 1) M2_o x -- 7 2+___11M2 _2 ] _xx -- 2Moo_°y_xy

+ [1 -- (_ -- 1) M-2__0x1_ _pyy + SOzz= 0
(t)

All of these terms can be found in the full potential equation (see ref 18, page 204).

The _y_xy and _x_yy terms, typically referred to as crossflow terms, permit the

resolution of shock waves with large sweep angles. A graphic example of the effects

of these terms on computed pressure distributions and shock wave pattern can be seen
2

in Figure 9 of ref 16. The Ox_xx term has been retained to provide a better approxi-

mation of the critical velocity at which the full potential equation changes type (elliptic

to hyperbolic). Difference approximations are applied to equation (1) as it is written.

Empirical corrections (19) and similarity variables are not employed. The method

could be classified as modified or extended small disturbance in character.

Pressure coefficients on wing surfaces are computed using the following equation.

Cp = --[2_ x + (1 -- M 2) _02x+ _2] (2)

To simplify velocity computations on the non-planar body surface, a simplified equation

is used. Note that the_ and_ components as iisted in ref 18, page 206 are not in-
y z

eluded in the present version of the method.

Cp = -[2_0 x + (1 --M 2) _2] (3)



Computational Space and Grid Systems

The computational space used in the present method is illustrated in Figure I.

This space is filledwith a relatively crude Cartesian mesh. Instead of adopting a far-

field solution for the grid outer boundaries, the original x, y, z region is stretched to

a } ,'_,_ region in which the boundaries correspond to infinity. The flow field poten-

tial is set to zero on all bounding planes except the downstream plane for which the

following equation is solved.

_yy + _zz = 0 (4)

The following conditions are enforced at the symmetry phm_.

_y = 0 (Sa)

_xy = 0
(5b)

Carlson

ing function.

x-direction is broken up into three regions (see Figure 2).

the following form:

(20) has noted that caution must be exercised in selecting a grid stretch-

For this reason, simple tangent functions are employed. Space in the

The grid stretching takes

strained to fall within Region If.

that

Regionslandlll X=X I+B ITAN(2 (}-}I)) +B2TAN(_ (}--}1)3) (6a)

Region II X = CI_ (6b)

Note that an evenly spaced grid spans the wing planform for wing and wing-body cases*.

For isolated bodies, the entire body is covered by Region If. The computational space

is divided into 50 cells or segments in the x-direction. Of these, 38 cells are con-

The constants C I and B 1 are computed by requiring

X = X 1 at } = }I

(6c)

* The author would like to thank Ed Waggoner (Vought Corporation) for demonstrating

the improved performance of this x-grid system over that originally employed

(see ref 16).
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NOTE: ALL PLANES EXCEPT SYMMETRY
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Figure 1 Computational Space for Wing-Body Configuration
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and

={dx
_/I \d_ /II at X = X 1

The constant B 2

be stretched several configuration lengths upstream and downstream.

finite computational region:

-4.167 __<} < 4.167

corresponds to the infinitephysical region:

--_<X<o_

Grid stretching in the y-direction takes the following form:

TANH -1 (r_}
Y

C 2

is determined by' requiring that the next-to-last physical x-grid point

As a result, the

(6e)

(6f)

(7a)

The hyperbolic tangent saves considerable computing resources when compared

to the milder tangent function. The use of this exponential function in the spanwise

direction has resulted in no apparent problems. The constant C 2 is adjusted to

provide 18 crude grid span lines along the wing out of the total of 26. In addition, it

is required that the wing tip lie exactly at the midpoint between two y-grid lines. This

central tip location provides the best approximation of the wing tip aerodynamics. The

finite eomputational region:

0 _< _ < 1 (Tb)

now corresponds to the infinite physical region:

0 £ y < oo (7c)

The grid stretching function in the z-direction is:

_r

Z = C3 TAN (gf) (8a)

Thirty-one grid lines are employed with the constant C 3 chosen to provide sufficient

mesh stretching so as not to inhibit or suppress supersonic flow development. As a

result, the finitecomputational region:

--1£{'<1 (8b)

t2



now corresponds to the infinite physical region:

- _<z<oo (Sc)

The stretching adds transform derivatives to the crude grid governing equation.

The following substitutions are made in equation (1).

_°x = ¢_ _x (9a)

_xx = ¢_ (_x)2 + ¢_ _xx (9b)

_Oy -- _ _y (9c)

_yy = _o_ (_y)2 + _ _yy (9d)

_xy = 'P_r_ _xr_y (9e)

_Pzz = _'_" (_'z)2 + _P_"_'zz (9f)

This results in a total of 41,106 grid points representing the global crude grid.

The primary purpose of this mesh system is the proper representation of both configu-

ration effects in the far-field and far-field conditions on the configuration. However,

the crude mesh also serves as a communication link for the embedded fine grid arrays

to be described.

Individual fine grid arrays are constructed for the wing and body. These second-

ary mesh systems serve two purposes. First, detailed computations are performed

only in a region very close to the wing or body where gradients are large and details

are important. The resulting numerical efficiency permits a very dense computational

mesh, a benefit in both the resolution of shock waves and the calculation of configu-

ration forces and moments. Second, the embedded mesh systems are independent

and optimized for a particular geometric component (wing or body shape). The system

is not constrained by a single geometry-fitting transformation. This will facilitate

future applications to configurations with multiple wing (wing, winglets, pylons,

canards) surfaces and multiple body (fuselage, pods, engines) surfaces.

13



Wingfine grid arrays are set up at each position where a crude y-grid line

cuts the wing surface. This results in 18 fine arrays for isolated wings and somewhat

less (depending on fuselage span extent) for wing-body combinations. Figure 3 is a

schematic which illustrates the wing section/grid system arrangement at a particular

span station along the wing.

 ,nnnn....nnnn-, _.---

t .... i

Figure 3. Wing Section/Crude Grid/Fine Grid Boundary Arrangement in

Physical X-Z Plane
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The wing fine grid is evenly spaced in both the x and z-directions (see Figure 4).

As a result, a shock wave will be resolved to an equivalent degree independent of its

position along the wing chord. The wing section leading and trailing edge are positioned

at the mid-point bet_een two stream_'ise mesh points. The present formulation

utilizes 100 mesh points along the wing chord. Fine grid boundaries are positioned at

20% local chord distance in front of each wing section leading edge and i0(_/behind each

trailing edge. Similarly, boundaries are set at 30_ of the wing average chord distance

above each section and i0_ below. These limits have been pre-set in the solution coding

and were used for all computed results presented herein. They may, of course, be

modified for special applications. The total number of field points in the wing grid

system is approximately 60,750.
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The wing fine grid system has been sketched in Figure 5o Note that the embedded

grid s_stem is tapered as is the wing pimfform. A shearing transformation is intro-

duced so that neightx_ring fine grid arrays can be used dir_ctly for cross-flow

differencing.

x = _ (XGT E -- XGL E ) + XGL E (10a)

TANH- 1(_) (lOb)
Y- C2

z = _ (lOt)

As was the case for the crude grid stretching transformation, this shearing trans-

formation introduces additional terms into the flow equation. The following substi-

tutions are made in equation (1).

_x = _ _x (11a)

_xx = _ (_x)2 (11b)

_y = _ _y + _7 _Ty (11c)

_yy = _ _yy + _ r_yy + _ (_y)2 + 2 ¢_77 _y_y + _7 0?Y )2 (lld)

_Oxy = _0_ (xy + _ _x_y + _77 rly(x (lle)

_zz = elf (1If)

Only the term _ _ which results from the _'xx term (Equati_n lib) is upwind

differenced at supersonic points (see finite difference at)Pr,:_ximations). All other

terms are centrally differenced (11, 21)

The body fine grid system is constructed to completely encapsulate the 1x)dy or

fuselage shape. Figure (i illustrates the body fine grid arrm_gement. Fine mesh homed-

aries are positioned at !(I r body length in front of the nose and behind the tail. For

special applications, the fine mesh may be concentrated (,n ()he particular region for a

detailed analysis. Boundaries above, below and on the si(tc_ are positioned at approx-

imately one average body radius away from the lx)dy surface.
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Figure 5 Wing Fine Grid System Embedded in Crude Grid
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Figure 6 Configuration with Crude Grid and Embedded Fine Grid Systems
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As was the case for the individual embedded wing grid systems, the body mesh

is evenly spaced in all directions. Transformations are not used. As a result, the

flow governing equation (1) is differenced directly. Details of this grid system can be

seen in Figure 7. A total of 54,000 points are available in this grid system, which

brings the total points in all grid systems combined to approximately 156,000.

Overlap regions in which the flow is computed twice provide a means for inter-

acting the different grid systems. This approach, which also employs combined

Dirichlet and Neumann boundary conditions and dummy boundary surfaces, is described

in the solution process section.

¢c

t , CRUDE GRID/FINE GRID
OVERLAP REGION

BODY ....,,.,,,.._ q
BOUNDARY

PO INTS

FINE EMBEDDED

BODY GRIDBOUNDARY

Figure 7 Details of Fine Embedded Body Grid
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Finite Difference Approximations

Finite difference approximations* are substituted for the derivatives in equation

(1). At each mesh point, the local velocity is computed to determine whether the flow

is subsonic (elliptic equation) or supersonic (hyperbolic equation). Equation (1) can be

written

T _0xx + U _xy + V _yy + Sazz = 0 (12)

where

T =I-M£-('Y+I) M2_0 x-

U = -2M 2 _y

V=I--{y--1) M2_x

")' +__.! M2 _2 (13a)
2

(13b)

(13c)

The elliptic equation results when

DES=U2--4"T" V<0 (14)

and the hyperbolic equation results for DES > 0. With the flow type determined, the

appropriate central or upwind difference operator is selected. For subsonic points

_XX --

+ 2 +
_Pi -- 1, j, k--_i,j, k --2 (1--1) _i, j, k +_i + 1,j, k

AX 2 (15)

and for supersonic points

_ 2_0_,j,k --_°i,j,k- 2_+-- 1,j,k + _°i- 2,j,k
_Pxx -

AX 2
(16)

Central difference operators are used for all other derivatives regardless of the

local flow velocity.

_i + 1,j,k--_°i-- 1,j,k

_x - 2AX (17a)

_i,j + 1, k--_i,j -- 1, k
_Y = 2AY (17b)

* Finite difference operators are listed for equally spaced grid system only.
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_xy=

_ v°i,j, k + 1--SOl, j, k --1
_z 2AZ

+ 4-

_°i -- l, j -- l, k -- S°i -- l, j +l,k--'Pi+ 1, i--l_k +_i+ 1,j+l_k
4AXAY

-- so.+ +
_sol, j- 1, k 1, j, k-- _i, j, k + _:i, i + 1, k

_YY - Ay2

(17c)

(17d)

(17e)

+
sz- --2 + +1, j,k 1 soi, j, k +_p"_ -- 1, j,k+ 1

sozz -
_Z 2 (17f)

The (+) superscript indicates that a new or updated value of the flow field potential is

used while no superscript indicates that the value is from a previous sweep or cycle.

This procedure enhances the diagonal dominance of the numerical scheme improving

the stability of the solution (21, 22)

It should be noted that non-conservative difference operators have been selected.

As a result, mass is not conserved across shock waves and the discrepancy or loss

increases with increasing shock strength, ttowcver, shock waves are weakened in the

physical flow field by interaction with the _dseous boundar_ layer. It has been known

for some time that nonconservative differencing fortuitous ly approximates the real flow

shock wave strength. Since the present viscous corrcclion method does not have suf-

ficient detail (approximately 41 chord\vise boundary lay(,r points) to resolve the details

of the true shock-boundary layer interaction, non-conservative difference operators arc

employed. This should result in a better simulation of th(, physical flow field.

Wing and Body Ik)tmdary Conditions

Surface boundary conditions are enforced on all outer surfaces of the computa-

tional space, wing and txody surfaces and grid interface rcgi()ns. Computational space

outer boundary requirements were illustrated in Figure 1. l?_)undary conditions at

grid interface regions will txe discussed in the solution pr()eess section. This

section will primarily concentrate on the tmundary conditions applied to the wing and

body surfaces and the wake potential jump condition.
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Boundaryconditionsare imposedby setting the valueof a potential or its first
derivative at a field point whichrepresentsthe configurationsurface. The wing and
wakeare approximatedby aplanar surface whichextendsfrom the wing leading
edgeto downstreaminfinity, while the bodyor fuselageis representedby a fixed cross-
sectional surfaceextendingfrom upstreamto downstreaminfinity. Corrections are
appliedto the bodyboundaryconditionsfor the simulation of finite lengthbodies.

Modelingis sufficiently flexible to permit thetreatment of wingsat varying height
relative to the body (high-low-mid-wing).

Specialdifference approximationsare required at boundarypoints. Theplanar
wing andwakeare representednumerically by a grid surfaceof doublevaluedmesh
points (seeFigure 8). For a wingsurface definedby

Z = f (x, y) (18)

the wing flow tangency condition is approximated by

_z (x, y, o) = fx -- _ + 6x (19)

where the slope of the boundary layer displacement thickness is added only for the

inviscid/viscous interaction mode of operation.

The wing upper and lower surface boundary conditions enter the solution

formulation by way of the _ term in equation (1). At the wing surface, this term
zz

can be written

: ,,,ZL\ z - z

Note that the I and J subscripts have been dropped for convenience.

the following relation into equation (20)

* _K+I--_K--1

fx--a+6x = 2AZ

The wing boundary condition on the upper surface becomes

(20)

By incorporating

(21)

_zz (x, y, o +) = _-% _ ] fXu -- a + 5x
(22)
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Similarly, the wing lower surface boundary condition becomes

--A"Z A Z -- fx_ --(_--6x (23)

At the end of each sweep of the flow field, the Kutta condition is enforced by

calculating the circulation at the trailing edge of the _,ing section

F = _(XTE, y, 0 +) _ _(XTE, Y, 0-)
(24)

Figure 8 Grid Approximation of Wing and WakeSurfaces
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The magnitude of the circulation is determined as part of the solution. The circula-

tion jump condition is enforced along the wake between the wing section trailing edge

and downstream infinity. The finite difference approximation for the wake upper sur-

_0zz (x, y, 0 +) =

face is

and for the wake lower surface

_Ozz (x, y, 0--) =

_°K + 1 - 2 _oK + (_oK _ 1 + [')

AZ 2

(25)

(_K + I--F)--2_° K +_o K_ 1

AZ 2

(26)

The use of the shearing transformation (Equation 10-a) for the wing embedded

fine grid system complicates the imposition of symmetry conditions for isolated wings

and wing root juncture conditions for wing-body combinations. The simple Cartesian

(crude) grid symmetry condition (Equation 5a) becomes

_Oy= ¢} _y + _pWr/y = 0

for isolated wings at the symmetry plane and

_Oy= _o}}y + _o__?y= Fx

(27)

(28)

Here, F X representsfor wing-body combinations in the wing root juncture region.

the slope of the fuselage or body at the wing root.

Computations indicate that numerical instabilities will result if special attention

is not given to the selection of difference approximations in this region. These

difficulties result from the nature of the shearing transformation. To solve this

problem, a plane of dummy mesh points is positioned across the symmetry plane

(within the body surface for wing-body configurations) opposite the wing. These flow-

field potentials are artificial in the sense that there is no physical flow field associated

with them. They simply provide a side boundary of potentials which when used for

differencing, produce the proper side condition given by Equation (27) or (28).
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A special first order accurateone-sideddifferenceoperator is usedto generate
the dummy interior point potential values. Figure 9 is a schematicwhich illustrates
the meshpoint arrangement. For _ grid lines which are sweptback in the physical

plane (_ <0), the following equationis used

__?y _y _D_I,j -1Y _lD,J-- 1 -_'_ _PI,J--_'_

ny _y
A_*_ A_ (29)

andfor _ grid lines whichare sweptforward ((y > O)

 ID,  I,J
(30)

Note that the operator changes depending on whether the grid lines are swept forward

or backward. In each case, the coefficient of the dummy potential at the point (I, J-l)

is larger than the coefficients of other potentials in the difference equation (see ref

23). This enhances the effective diagonal dominance of the system even though the

dummy points are not directly relaxed in the conventional sense*.

MESH POINTS INVOLVED

_y<0

BODYSIDE

MESH POINTS INVOLVED

_y>0

Figure 9 Wing Root Boundary Condition for Dummy Interior Points

*Problem solution provided by J. South, NASA LRC.

J+l

J

J-1
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Differencing at the wing tip is complicated by the fact that the fine mesh system

does not extend beyond the wing tip. Unlike the conventional global transformation

approach, the coordinate lines do not have to be unswept or unsheared far from the

wing. Provisions must be made, however, for properly ending the fine grid computation

at the wing tip. For this reason, another temporary fine mesh is positioned just

beyond the wing tip. Like its neighboring fine grid on the wing, this grid array is

located at a crude mesh Y-line. Its extent in the streamwise and vertical directions

is consistent with the fine grid system on the wing. Both the dummy plane beyond the

wing root and the temporary fine grid beyond the wing tip are computed for each sweep

of the array of fine grid structures. While the root dummy plane is computed using

difference formulas, equations (29) and (30), the tip plane is simply filled using linear

interpolation and potentials from the crude Cartesian grid.

A computational surface represents the Lrue body surface in the Cartesian grid

systems. For axisymmetric bodies, the computational shape is an infinite cylinder

with a radius equal to the true body maximum radius. For wing-body configurations

the shape takes the form of the body cross-section in the wing-body juncture region.

Figure 10 is a schematic illustrating the true and computational body surfaces. This

approach proves to be more economical and stable than "fitting" the body boundary

points to the true body shape in the axial direction. This approximation is probably

consistent with the planar wing/wake surface and the small disturbance approach in

general.

Body boundary conditions are imposed by computing appropriate flow field

potentials at points near the body surface (body computational surface). The flow field

is relaxed, holding these values fixed during each iteration cycle. No attempt is made

to position mesh lines so points fall near the body surface. The mesh density is

sufficiently detailed to provide a good hands-off representation of the cross-sectional

shape (see Figure 7). For a bedy shape defined by

F (x,y, z) = 0 (31)

The small-disturbance boundary condition is

F x + Fy _y + F z _oz = 0
(32)
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EMBEDDED GRID BOUNDARY

I

I
I

COMPUTATIONAL

BODY SURFACE

BODY SURFACE

Figure 10 Computational and True Body Surfaces

Following Bailey and Ballhaus (10), three-point extrapolated differences are substituted

for the flow velocities in Equation (32). The body/mesh arrangement for a typical body

point is illustrated in Figure 11.

Between the nose and tail of the body, there are sections where the true body

surface and the computational body surface are not aligned. This is illustrated in

Figure 10 and can be seen on a sectional basis in Figure 11. To ensure a proper rep-

resentation of the true body shape, a correction must be applied to the boundary

condition on the computational surface. The boundary condition correction will account

for the displacement effect. Similarly, flow velocities computed on the computational

surface must be corrected to yield velocities and pressures on the true body surface.

Slender body theory provides the required modifications*.

* Boundary condition displacement corrections provided by Professor Jack Werner,

Polytechnic Institute of New York (24)
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an = Rc ;)nc b

Sb (×)

% (X) = S-_ °_ge°m

/ d / Rb _)_

_COMPUTATIONAL

F-I - - SURFACE

Figure 11. Details of Body Surface Approximation

The effects of body thickness and incidence lead to separate corrections. Body

thickness effects can be approximately represented by a source distribution, the

strength of which is proportional to the rate of change of body area. The boundary

condition on the computational surface can be obtained by requiring that the net source

strength across both surfaces be identical at each cross-sectional cut.

fc_n dsc = fb_n dSb

(33)

As a result, the correct global effect of the true body shape on the remainder of the

flow field will be obtained. This leads to

I &Sb I
_on - _ _°n

c --c b
(34)
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In the present method, cross-sectional shapes are taken to be circular or near-

circular in character. Equation (34) is approximated by

SOn " I= "_-'CCSOn
c b (35)

A similar correction can be obtained for effects caused by flow incidence or

angle-of-attack. In this case equivalent doublet strengths are enforced where doublet

strength is proportional to the cross-sectional area S.

aeff Sc (X) = ageo m Sb (X)
(36)

An effective angle-of-attack is obtained for each sectional cut. The angle-of-attack

imposed on the computational surface becomes

Sb (X)
o_c (X) - C_geom

Sc (X) (37)

By substituting three-point ex_trapolated differences for the velocities in the body

botmdary condition (Equation 32) and adding the thickness correction (35) and the

angle-of-attack correction (37), the following expression for body boundary points is

o btained

A

SOcj, k B
(38)

where

and

R b Ny

A:Nx_c c + -_--y(4SOj+ I,k --SOj+ 2,k)

( sb)4SOj, k+I--SOJ, k+2 + C_geom-g_-c+ Nz 2Az

(38.1)

N( yB=_" +'A'7

(38.2)

Note that the I subscripts have been eliminated for clarity.
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Solution Process

Conventional finite difference relaxation schemes employ a procedure which is

known as "Grid Halving". A solution is obtained using a very crude mesh. The grid

is halved (mesh points are twice as dense) and the crude mesh potentials provide an

initial flow field for what is now a medium mesh. The medium mesh solution is used

for a mesh system which is halved once again for the final fine grid solution. Conver-

gence is accelerated because flow disturbances naturally propagate faster in a crude

grid than in a fine grid.

The present method does not employ grid halving, however, an initial solution is

obtained using only the global crude grid system. This quickly establishes the general

character of the flow field and provides a starting flow for the detailed embedded grid

systems. Final results are obtained by a simultaneous solution in all grid systems,

both crude and fine. It is required then, that the different grid systems interact. This

interaction is made possible by mesh overlap regions in which the flow is computed

twice during each cycle.

Successive Line Over-Relaxation (SLOR) is used, vertical columns of mesh points

are relaxed starting at the first point upstream and ending at the last point downstream

in each grid system. The solution process for isolated bodies and wings will be

described first followed by the solution process for wing-body combinations.

Isolated Body Solution Process.

Phase 1: The body is represented by crude mesh points and an initial solution is

obtained in the global crude grid. Typically, 50 iterations are sufficient.

Crude grid potentials (¢) in the crude/fine grid overlap region (see Figure 7)

provide a starting flow for the embedded fine grid. Linear interpolation

is employed.

Phase 2 (Step No. 1): The embedded body grid is swept holding fine grid perimeter

points fixed forming an outer boundary. Body boundary points are computed

and they form an inner boundary (see Figure 12). Body boundary potential

values are computed using Equation (38).
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(StopNo. 2): The crudegrid points which makeup the inner boundaryof the
overlap region are updatedbasedonfine grid potentialsobtainedin step
No. 1. The global crudegrid is sweptholdingthesepotential valuesfixed
as an inner boundary. Infinity boundaryconditions(Figure 1) at the limits

of the computationalspaceform anouter 1,)undary. Crudegrid potentials
are nowusedto updatefine grid perimeter points. StepNo. 1 is repeated

Phase2 proceedsby repeatingSteps1 and2 until bothgrid systemsare con-

verged. Typically, 50 cyclesare sufficient. [_odypressu_'ecoefficients are computed
using bodyboundarypotentials in the fine grid system.

• • • BOUNDARY POTENTIALS FIXED

..J" REGION RELAXED

INNER BOUNDARY

OF CRUDE GRID

OUTER BOUNDARY /

OF FINE GRID "

STEP #1

FINE GRID SOLUTION

//

/" /i' /'¢/

/

/

/
/

/

///'/

/
/

/,
z

//

/ /J'

///,

STEP =2

CRUDE GRID SOLUTION

Figure 12. Phase 2 Isolated Body Crude/Fine Grid Solution Process
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Isolated Wing Solution Process. The isolated wing solution process is similar to

that of the body. However, the entire fine embedded grid region is now the overlap

region. In addition, side boundaries at the wing root and tip must be computed.

Phase 1: The wing is represented by crude mesh points which fall randomly on the

planform (see Figure 2). An initial solution is obtained using the crude

mesh, typically 100 iterations are sufficient*. Using linear interpolation,

crude grid potentials in the crude/fine overlap region (see Figures 3 and 4)

provide a starting flow field for the fine embedded grid.

Phase 2 (Step No. 1): The embedded wing grid is swept holding fine grid perimeter

points fixed as an outer boundary (see Figure 13). Conventional Neumann

boundary conditions (¢n) are imposed at fine grid section boundary points

forming an inner boundary.

()

()

CRUDE GRID

___ FIELDPOINT

 IN   'DNTs

T
0

()

(}

(5-

FINE GRID

PERIMETER

SECTION //

BOUNDARY POINTS

(FINE GRID)

/ ,_j_, POINTS

__ S APE

SECTION

BOUNDARY POINTS

(CRUDE GRID)

Figure 13. Wing SectionCrude/Fine Grid Interface

*See recommendations for usage section (pg. 148) for additional comments on
iteration count and convergence.
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(StepNo. 2): Thecrude grid section boundarypoints are computedusingthe
potentials at the fine grid sectionboundarypoints (linear interpolation).
Thesecrudepotentials (_0)are heldfixed for the global crudegrid sweep
forming an array of dirichlet (_,) inner boundaryconditions. Onceagain,
infinity boundaryconditionsat the limits of the c,m_putationalspaceform
theouter boundary. At the endof the crude grid sweep,crude grid

potentials are usedto updatethe fine grid perimeter points. StepNo. 1

is repeated.

Phase2 proceedsby repeatingSteps1and2 until t×Jthgrid systems are converged.
Typically, 80cycles are sufficient. Wingpressure coefficients are computedusingwing
boundarypotentials in the fine grid system.

Wing-Body Solution Process. The wing-body solution process combines the

procedures which are deserilyed for isolated bodies and isohlted wings. In addition,

however, a scheme for interacting two fine grid systems (en_bedded wing fine and body

fine) is necessary. Fig_lre 14 is a schematic illustrating the overlap of the three

different grid systems involved.

Phase 1: An initial solution is obtained with the wing-lx)dy configuration represented

in the crude mesh. Typically, 100 iterations are sufficient. Crude grid

potentials are used to fill both wing and body embedded grid systems.

Phase 2: (Step No. 1) As was the case for isolated wings, the wing fine grid is swept

using conventional Neumann boundary conditions at fine grid section bound-

ary points.

(Step No. 2) As was the ease for isolated bodies, the body fine grid is

swept with perimeter points and body boundary points fixed. An additional

surface representing the wing and wake is also heht fixed (see Figure 15).

Flow field potentials representing the wing/x_ake surface are obtained

from the fine embedded wing grid.

(Step No. 3) The global crude grid is swept with interior boundary points

provided by the fine wing and body grid solutions. At the end of the crude

grid sweep, crude grid potentials are used to update fine body grid perim-

eter points and fine wing grid perimeter points outside the fine body grid

region (recall Figure 14). Within this region, fine body grid potentials are

used to update fine wing grid perimeter points. Step No. i is repeated.
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Figure 15. Fixed Wing Surface Region for Embedded Body Grid Solution
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Phase 2 proceeds by repeating Steps No. 1, 2 and 3 until all grid systems are

satisfactorily converged. Typically, 80 cycles are sufficient.

The development of the solution in all cases is monitored by calculating the

maximum update to the flow field potential ( _+ -_ ) and its position in the three-

dimensional flow field. Typically, for most configurations at: flow conditions which

are of interest, this maximum h _ value will start near 0.5 x 10 -1 and end near

0.5 x 10 -4 for the final solution. Large regions of supersonic flow will slow this con-

verging process since difference approximations at supersonic points are only first

order accurate while those at subsonic points are second order accurate. Most impor-

tant, however, the position of this maximum flow field correction will be useful in pin-

pointing the problem area when convergence is hindered. Problem areas may develop

when the flow conditions are extreme or when the geometric representation is in error.

Body/Fuselage Geometry Model

The present method provides a means for analyzing truly arbitrary body shapes

at transonic speeds. Thus, it is occasionally required that complex three-dimensional

geometries be input, processed and converted into a suitable array of boundary con-

ditions for the analysis scheme. Since the input or modeling of complex body shapes

is extremely error prone and certain applications might not warrant this level of effort,

several options have been provided for describing body or fuselage shapes.

Option No. i Cylinder - A cylinder extending from upstream infinity to

downstream infinity approximates the body shape. Only a

radius need be input. This simple approach may be

suitable for certain wing-fuselage applications (no body

force or moment computed).

Option No. 2 Axisymmetric Body - Only an array of X and R coordinates

need be input. This option is particularly advantageous when

analyzing simple research test configurations.

Option No. 3 Arbitrary Fuselage - This option is necessary in most

realistic aircraft applications, particularly when flow details

about fuselage contours (canopies, blisters and fairings) are

required.
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This section describes the mathematical modeling system which is employed for

processing arbitrary fuselage shapes (Option No. 3). The system has been named

"Quick-Geometry" by its developers, Vachris and Yaeger (25) A detailed User's

Guide for the Quick-Geometry System can be found in the Appendix of ref 26. This

system was originally developed for the geometric modeling of wing-body shapes.

Since only fuselage shapes are of concern here, many of the more sophisticated

options including fillets and patches will not be described in the paragraphs which

follow. In addition, if ref 25 and 26 are being used to augment the modeling descrip-

tion provided herein, it should be noted that the input format has been modified to be

more consistent with that of the basic transonic wing-body code.

The geometry package requires that certain body lines and cross-section lines

be defined. The body lines and cross-section lines may be likened to the stringers

and bulkheads, respectively, used in fuselage construction. These line models are

defined by a combination of simple curves (i.e., lines, ellipses, cubics). They are

taken together to provide a continuous analytical model of the surface geometry.

Slopes and normals are developed analytically. Either discontinuous intersections or

smooth fairings can be modeled and enforced.

Two different coordinate systems are employed. Geometry definition is per-

formed in a Cartesian coordinate system (x, y, z), while interrogation of the model for

body boundary conditions is performed in cylindrical coordinates (X, R, O ). This

results in the use of a plane of symmetry map axis, the height of which usually

corresponds to the position of the max-half-breadth line. It is required that the

configuration radius at any cross-sectional cut be a single valued function of the angle

O These definition lines and coordinate systems are illustrated in Figure 16.

From this description, it should be apparent that a minimum of four body lines

are required for the simplest fuselage. These are 1) top centerline, 2) bottom center-

line, 3) max-half-breadth line, and 4) the map axis. Each body line must be defined by

both its Y and Z values over the full range of X (between fuselage nose and tail).

Similarly, a minimum of two cross-section line segments are required for each

different cross-section line model. These are 1) body upper, and 2) body lower.

Both body lines and cross-section lines are specified by defining key arc or

segment shapes and their accompanying limiters. The segment shape boundary

conditions that are used to determine the coefficients of the shape equation are the
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(1)origin point, (2) termination point, and(3) slopecontrol point. The slopecontrol
point lies at the intersection of the line which is tangentto the segmentshapeat the
origin point andthe line which is tangentto the segmentshapeat the termination

point (seeFigure 17). The slopecontrol point is a vet5 convenientwayof specify-
ing slopeconditions. In particular, it allows for the simultaneousspecificationof
slope conditionsat bothendsof the segment.

BODY LINE __

(TOP CENTERLiNE)

Z

/

/

/

j_/
/ / CROSS

/ /_// SECTION LINE

Figure 16. Geometry Model Lines and Coordinate Systems
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The arc shapes used for defining a cross-section line model are listed in Table i.

TABLE 1. Cross-Section Arc Shapes

Shape Keyword Equation

LINELine

Ellipse

(Concave to origin)

Ellipse

(Convex to origin)

E LLI

E LLO

Ay+Bz+C=0

(y -y0 )2 + (z - z0)2

A 2 B 2

Same as E LLI

=0

They are input in an order which starts at the body bottom conterline an,

the body top center line.

listed in Table 2.

proceeds to

The segment shapes used for defining a body line model are

TABLE 2. Body Line Segment Shapes

Shape Keyword Equation

Line

X-PARA BOLA

Y-PA RA BO LA

X- E L LIPSE

Y-ELLIPSE

CUBIC

LINE

XPAR

YPAR

ELLX

ELLY

CUBI

Ax+By=0

Ax + By +y2 =0

Ax + By + x 2 = 0

Ax +By+Cx 2 +y2 =0

Ax + By +Cy 2 +x 2 =0

Ax + By +Cx 2 +x 3 =0

Cross-section arcs are input in their order of appearance. However, body line

segments are defined along with an index which establishes their order in the x-direc-

tion. In addition, body lines may be aliased to other body lines to avoid duplicate

definitions.

It should be noted that cross-sections are defined only in terms of named

component arcs (arc shape table) and named control points. On the other hand,

body lines are defined mathematically by coordinates over the length of the configura-

tion for which they are required. At a given x-station, the body lines are interrogated

to give the key control points required to construct the cross-sectional arcs.
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Figure 17 is a schematic illustratingthe component build-up of a particular

body line and cross-section line model. Naturally, LINE segments do not require a

slope control point. In this case, the portion of the body top center line illustrated

requires four body line segments and the cross-section is constructed with two arcs

(two is the minimum number allowed).

Figure 18 illustrates an array of cross-section lines and the body lines for a

typical transport fuselage shape. Five different body lines can be identified. These

body lines form the limiters for the three distinct cross-section models. This geometry

package has proven to be particularly useful when coupled with the mesh embedding

scheme since the fine grid structure may be placed for analysis purposes about any

region of interest in addition to totallyencapsulating the body shape. Figure 19

illustrates the surface geometry produced when the mathematical model is interrogated

COMPONENTS OF BODY (TOP CENTER) LINE

MODEL. SEE FIG, 16,

CANOPY SLOPE "_

CONTROL POINT ,(_.._

NOSE SLOPE __\

CONTROL POINT __ "_

NOTE: Z - HEIGHT OF MAP AXIS

USUALLY IS ALIGNED WITH

MAX. - HALF-BREADTH LINE

LINE

COMPONENTS OF CROSS-SECTION

LINE MODEL

BODY UPPER

SLOPE CONTROL

(_ POINT

ELLI J ' BODY LOWER
_ L _,.,_ SLOPE CONTROL

POINT

Figure 17. Componentsof Body and Cross-SectionLine Models
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for a fine embedded mesh system. Boundaries of this region were outlined in Figure

18. Note that the mathematical model does not change in this case, only the region

over which the model is interrogated for boundary conditions and the surface shape.

The input data set for this geometry can be found in the Appendix (page 109 and

computed results can be seen in the Results Section (page 59).

Figure 20 illustrates an array of cross-section lines and the body lines for an

area-ruled transport fuselage shape. Here, only four body line models and one cross-

section model were required. The cross-sectional shape has been varied from circular

to flat bottomed simply by changing the position of the max-half-breadth line.

The geometry modeling procedures described in the preceeding paragraphs can

best be interpreted by studying a sample fuselage shape. Table 3 lists the geometric

model for the transport nose-windshield-canopy shape illustrated in Figure 19. Lines

C through S make up the cross-section line model input while lines T through FFF

describe the body line models. Note that there are three distinct cross-section line

FINE GRID REGION FOR

DETAI LED ANALYSIS

, llitllIIIllllllllllll ]Illlllllll II llllIlllfll I1111

Figure 18. Crude Grid Interrogation of Complete Geometry Model
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Figure 19. Fine Grid Region Interrogation of Geometry Model

Figure 20. Geometry Model for Area-Ruled Fuselage
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models (lines C-E, F-I, and J-N). Line group P-S provides the region over which

each cross-section line model is to be applied. Most important however, note that

line S indicates that the same cross-section model is to bc used for both the nose and

fuselage body.

Lines T through FFF indicate that ten body lines are required for this fuselage

shape. Each is described in both y and z values over the range of x for which they are

required. This leads to twenty different models along with the y center line used for

aliasing. Ten are defined by inputting section shape and limiters (lines U-UU) and

eleven are aliased to them (linesVV-FFF).

As one might expect, it is very easy to make errors when defining complex

three-dimensional shapes. Various diagnostic checks have been incorporated into

the method to simplify this process. First, geometry verification plots are available

to illustrate the defined surfaces using cross-section lines. Second, a diagnostic print-

out is available for checking both the coefficients of the shape equations and the proper

range of definition for body segments. Finally, the sample cases provided in the

Appendix should provide a foundation of experience upon which a user can build.

Wing Viscous Effects

Wing viscous effects (CD 6 *) are computed in the present method by coupling
f,

a modified Bradshaw boundary layer computation with the 'aforementioned finite

difference potential flow scheme. The boundary layer method provides details of the

thin viscous layer close to the surface given the wing pressure distributions from the

global inviscid calculation. Several modes of operation are provided for tailoring the

computation for various applications and minimization of computing requirements.

Mode No. 1 Wing viscous effects including skin friction drag component

(CDf) and boundary layer displacement thickness (5 *) are not

computed. Inviseid solution only. Minimum computer resources

required.

Mode No. 2 Wing viscous effects are computed at the end of the inviseid

solution providing an approximation to CDf and 5 *. Permits

subtraetion of B.L. _ * for design work done inviscidly to get

physical or constructed wing shape (approximately 7_ computing

time increase over Mode No. 1).
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ModeNo. 3 Coupledinviscid/viscous interaction solution. Iterative scheme

for simultaneoussolution of boundarylayer andpotential flow
(approximately30_ computingtime increaseover ModeNo. 1).

Examplesof viscous flow phenomenaoccurring onwingshavebeensketchedin
Figure 21. In particular, anaft-loadedor supercritical wing sectionshapehasbeen
illustrated. Details of the shockwave/boundarylayer interaction are not computed
by thepresent method. This effect includesbotha local thickeningof the boundary
layer anda weakeningof the shockwavestrength. Instead, non-conservativefinite
differencesof the flow equationhavebeenselectedwhichsomewhatfortuitously
approximate the shock weakening phenomena. The global boundary layer displacement

thickness effects are predicted by the present method. For aft-loaded wing sections

or wings with control surface deflections, this effect can have a dramatic effect on

wing loading and shock wave positions. As illustrated in Figure 21, an asymmetric

boundary layer build-up results in a net decambering effect. For Mode 3 operation,

this effect is incorporated into the solution automatically.

M<I M>I
SHOCK

WAV E

\

Figure 21. Wing Section Viscous Effects

43



The modified chord technique of Nash & Tseng (27) is used in the present method.

Developed by Mason (28) this particular technique permits a two-dimensional boundary

layer method to be ex-tended to the three-dimensional case pi'ovided that the flow does

not deviate far from the infinite sheared wing t_q0e. The coordinate system for this

sheared wing approximation can be seen in Figure 22. The wing sweep angle is taken

to be that of the mid-chord span line. As a result, the local boundary layer computa-

tions vary with the wing planform shape, see Figure 23. q2qisquasi-three-dimensional

approach has been selected because itrequires alxyut an order of magnitude less

computing time as compared to a fullthree-dimensional Ix_undary layer calculation.

This is an important consideration when coupling with th_'ee-dimensional transonic

flow nlethods is being investigated.

v

W

/

I/! w,NGSWEEP

, ji.,.E

Figure 22. Infinite Sheared Wing Coordinate System
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MID-CHORD ISPAN LINE

j

Figure 23. Wing Viscous Effects Approximated by Infinite Sheared Wing Approach

The Bradshaw turbulent boundary layer method (29) provides the foundation for

this scheme with the laminar boundary layer predicted by Thwaites method modified

for compressible flow. Several corrections are required for simulation of three-

dimensional effects. The modifications of Nash and Tseng (27) for incompressible

flow about an infinite yawed wing are employed. In particular, it was noted that,

A) pressure gradient effects on boundary layer development were properly accounted

for by a 2-D calculation performed in the ehordwise R'direetion and similarly, B) shear

stress direction and magnitude could be represented by a 2-D calculation in the

streamline direction (see Figure 22). Nash has shown that the equation for the

chordwise shear stress component is similar to the conventional 2-D equation.

r% = cos[tan_l Wex -O--gel r=Xr

Here it is assumed that

stress change.

(39)

varies slowly in the _'-direction compared to the shear
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The computationrequires aneffective Reynoldsnumberwhich is obtainedby
requiring that the shear componentin the x_-direction})earthesamerelationship to
aneffective Reynoldsnumberthat the actualshear stress hasto the specifiedReynolds
number. This is accomplishedbyusingthe Reynoldsnum}_erbasedon the momentum

thicknessat transition in the Karman-Schoenherrformula. The transition point has
beenfixed at the 5_ chordposition in the codingof the method. Of course, this may
bemodifiedor varied by changingthe coding. However, this variation is not provided
as an input option.

Finally, a method is required to compute the solution in the spanwise direction.

It is assumed that V_z can be related to 0 z by a flatplate skin-friction formula. In

this case, the Squire-Young formula is used.

rwz% 1

= O,'v
P°_W°°2 [5.89 log10 (4.075 R_ - z i] 2

c (40)

NOTE: Re based on Woo and effective chordwise viscosity of Nash.

The boundary layer computation will stop when flow separation is predicted

(T-_= 0). At this point, the slope of the displacement thickness boundary is

extrapolated to the trailing edge. This will permit the calculation to proceed, however,

it should be noted that deviations between computed results and the real flow will

result if separation points before the 96 to 97% chord position are encountered.

The interaction solution (coupled viscous/inviscid) requires that the boundary

layer computation be performed during the solution development. The computed

boundary layer displacement thickness slopes are added to lhe wing geometric surface

slopes to provide an equivalent inviscid wing shape for analysis by the inviscid

scheme. Note that in the present small-disturbance method, only the boundary con-

dition slopes are modified. The planar wing boundary surface does not change.

Many wing shapes which are of practical interest have section shapes with cove

regions. This includes the supercritical type wing section shapes and occasionally

conventional sections when control surfaces are deflected. Of course, it is possible

for cove type shapes to exist on the wing upper or lower surfnce. The existence of

this type of geometry coupled with extreme flow conditions can become a problem

during the solution process if cove type flow separations are encountered. Typically,
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the boundarylayer becomesthicker in the coveregion andthins out toward the
trailing edge(seeFigure 21). If separationis encountered,the boundarylayer com-
putation will stop andthe character of the displacementthickness effect will be lost.

In this case, the section lift may besignificantly in error whichwill leadto apoor
numerical simulation. To relieve this problem, anempirical relation developedby
Bavitz (30)is employedto provide anapproximationto the covedisplacementthick-

ness. This will makeit possible for the computationto continue.

Bavitz's empirical relation is basedon anextensivecorrelation studyof
supercritical type airfoils. It involves the pressure coefficients anddisplacement

thicknessat four points alongthe section surface. Thesepoints havebeenillustrated
in Figure 24. Thefirst point is positioned 10c_chord upstreamof the separationpoint.
The secondpoint is 8_:ichord before separation, the third point is midwaybetweenthe
separationpoint andthe trailing edge, andthefinal point lies at the trailing edge.

Theboundarylayer displacementthicknessat stations 3 and 4 are computedusing
usingthe following equations:

5" 5"
C = C

3 1
+ 0.019 (CP3 xI xl

--CP1)--0.022{c 3 --c 1

5*
+ _ )/2

1 3

(41)

(42)

A third degree polynomial is fit to the four 6 * values to provide the boundary layer

shape between the separation point and the trailing edge. The pressure difference

coefficient in Equation (41) was set at 0. 033 for computations involving two-dimensional

airfoils. Calculations performed on several supercritical wings, however, indicated

that a lower value would be better for the three-dimensional case. As a result, the

0. 019 coefficient is used in the present method.

It should be noted that this empirical relation only provides an approximation

to the cove region boundary layer when shallow separations are encountered. In many

cases, this approximation may be sufficient to establish the proper wing lift level and

the final solution in the cove region may be fully attached (empirical correction not

used). If this is the case, a valid solution has probably been obtained. If on the other
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hand, the final solutionstill indicatescoveseparationis present, it is likely that the
physical flow ts separatedandagreementbetweentheory andexperimentmay bepoor.

In the present method, the empirical correction is employedif separationis
encounteredandthe trailing edgeangleis less than -4° oc greater than+4°. For

trailing edgeangleswithin theseboundaries, the conv(_ntionalprocedureis usedbeyond
the separationpoint. In other words, the sumof the ,5_ andlocal wing slopesat

the separationpoint is enforcedas thewing boundaryconditionbetweenthe separation
point andthewing trailing edge. Viscouseffects are incorporatedby usinganunder-
relaxation factor of 0.6. This factor shouldbe reducedit boundarylayer instabilities
are encountered.
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Pressure, Force, and Moment Coefficients

Force (except wing friction) and moment coefficients are obtained by integrating

computed ibressure coefficients. Wing pressure coefficients are computed by using

central difference operators for velocity components (Equations 17a, b) and then

pressure coefficients from Equation 2. With i00 grid points between each section

leading and trailing edge, this provides pressure output every i_/ chord beginning

at 0. 005c.

Body pressure coefficients are computed in a similar manner except that a

correction must be applied in regions where the computational body surface and the

true body surface are not aligned. The velocity or pressure distribution corrections

are similar to those developed for the body boundary conditions (Equation 38). Both

apply only in regions where there is a displacement between the computational body

surface and the actual body surface. Velocity components on the computational sur-

face are obtained with central difference operators at body boundary points. The

velocity on the true body shape is then approximated by

Ub=_x --_x + _(_x ) 5r
b c c

where

5 r = R b -- R c

Since the flow is continuous in this region, (Equation 43-A) may take the form

(43-A)

(43-B)

: xl c0r

[b: xlc  nJc
Using (Equation 35) the body surface velocity becomes

(_r

(44-A)

(44-B)

ub = uc + (R b
--Rc) _" (R _n b)

c

(45)
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Bodysurfacepressures are nowcomputedusinga central differenceoperator
(Equation17a)for the surface velocity (Equation45)which is substitutedinto the
pressure equation(Equation3).

Configurationforce, moment, andloadingcoefficients require reference
areas andlengthsas a basis. Thesereference valuesare takenfrom the input

geometricwingplanform shape. A typical wingplanform has beensketchedin
Figure 25. Notethat the wingis specified to theplaneof symmetry evenfor the
wing-bodycase. The followingparametersare computedusingthe definedwing
planform.

b2
Sw

(46)

(47)

TAPERED RATIO

Sw=(A+B+C) X2

SEX P=(A+B) x2

/_ = b2/Sw

).

;_ = CT/C R /

CT

b/2

- CR ....

Figure 25. Wing Planform Parameters

5O



2 (,1+ k + X2)
M.A.C. =-_C R 1 + X

Wing section coefficients are obtained by integrating the upper and lower

surface pressure coefficients along the chord.

;o -C_ - 1 (CPu Cp_) dxw Clo c

l oCCm_ (loc) C2oc (CPu-- Cpt_) (Xlo c -- Xc/4) dx

/c[ )1: 1-- cpu(_ -_)-%d_-_--_ dxCdco Clo c
O

In addition, a sectional moment about the axial reference position is computed.

(48)

(49)

(50)

(51)

I foc- (CPuCm¢o M.A.C. C loc --Cp_)(Xlo c --XRE F) dx
(52)

The wing liftcoefficient is obtained by integrating the spanwise load coefficients.

CLWING ='-_ Ca v
dy

(53)

Note that for wing-body combinations, all integrals in the spanwise direction start

at the wing-body juncture instead of the symmetry plane which is the case for an iso-

lated wing. In addition, the computed spanwise integrals are scaled by SExp/Sw for

the wing-body case.

The wing moment coefficient is computed in a similar manner.

2 fob/2 Cl°cCm_ ) dyCMWING ==b" ( CZ

(54)
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Wing skin friction drag is computed by integrating the shear stress coefficients

computed by the boundary layer analysis. At each wing station, a local section skin

friction coefficient is computed.

C= [Zx% cos Alo c
Cfc° o

+ rz% sin Aloe] dx

(55)

The _ and _ sheared wing coordinate system was illustrated in Figure 22. Total wing

skin friction drag is then obtained by integrating the local friction coefficients along

the span.

r b/2 Cloc Cfco)

CFWING =230 ( Cav
dy

(56)

The wing pressure drag coefficient:

CDp(w/ :2f b/2 (ct°c Cd¢° dy
o Cav (57)

is added to the skin-friction drag coefficient to obtain the total wing drag coefficient.

CDwING = CFwING + CDp(w) (58)

Body coefficients are obtained by integrating surface pressure distributions and

adding a skin friction component based on total body wetted area. A body cross-

sectional force coefficient distribution is computed first.

and

1 Rl°c 1 ?foeC_ b Rloc _ [CPuPPER Nz] dy= • Rloc [CPLoWER Nz] dy
O O

R loc Rlo c

1 7Cdb= R 1---'oc [CPuPPER " Nx] dy +_R loc [CpLoWER_ " Nx] dy
O O

(59)

(60)
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The longitudinal coefficients are then integrated along the length of the body.

L Q

1 ClUb Rl°c

CLBOD Y =--_ f [ ] d_
Rmax

o (6 I)

Similarly

a •

1 [ClUb Rl°c
- ] (XlocCMBODY L 2 f Rma x

o

--XREF) dt_

(62)

and

L [Cdb
1 ' Rl°c

=-- f '] d_
CDp(b) L Rma x

o

(63)

The body moment coefficient (62) is scaled by L/M. A.C. for the wing-body case.

The reference position about which moments are computed is taken to be the

center of the body for isolated bodies and the input moment center for the wing-body

case. In addition, the integrated coefficients are based on reference areas which are

a function of the case. For isolated bodies, the maximum cross-sectional area

becomes the reference area while for wing-body configurations, the wing plan form

reference area is used. For isolated bodies, equations (61-63) are scaled by

SBp/SBBAS E and for wing-body combinations, the equations are scaled by SBp/S w

The body skin friction coefficient is computed using the Prandtl-Schlichting

formula

0.455

C_BODY= [log (Re_)] 2.58

(64)

corrected for compressibility effects. Here, Re_ is the Reynolds number based on

body length. Total body drag is then computed.

CDBOD Y = CFBOD Y + CDp(b ) (65)
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Total configuration force and moment coefficients are obtained by adding the wing and

body components.

CL = CLwING + CLBODY (66a)

= +

CM CMWING CMBODY (66b)

= +
CD CDWING CDBODY

(66c)

Configuration liftinduced drag (CDI) is computed by first determining the span-

wise loading efficiency factor (E). This is accomplished by means of fast Fourier

analysis applied to the configuration span load distribution. The liftinduced drag

component is then computed using the following equation.

CD I - rr • E
(67)

The wave drag is then computed by subtracting the lift induced drag from the total

integrated pressure drag given by (Equations 57 and 63).

CDWAVE = CDp(c0) + CDp(b) --CDI (68)

Itis important to note that the body, wing, and wing-body force and moment

coefficients are based on reference areas and lengths taken from the input geometry.

These values are listed as part of the program output. Sometimes itis required

that configuration force amd moment coefficients be based on reference values

other than those provided by the physical wing and body shape. Ifthis is the case, and

case 8 is a good example, itwill be necessary to scale the computed coefficients by

the ratio of the two reference values. IfA is the reference length or area, the actual

coefficients are computed.

ACOMP

CLACTUAL = ARE F CLcoMP

ACOMP

CMACTUAL_AREF "CMcoMP

ACOMP

CDACTUAL-ARE F "CDcoMP

(67a)
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COMPARISONSANDTYPICAL RESULTS

Thecomputationalmethodis capableof treating a variety of geometric shapes.
Severaloptions are available for modelingandanalyzinga particular configuration.
If a single samplecasewere chosenas a demonstrator, manyfeaturesof the method
wouldnot be illustrz,ted. Sincetransonic experimentationis often impaired by wind
tunnelwall interference effects, it wouldalso bebadpractice to rely on a single case
to evaluatea numerical method. For this reason, eight different samplecaseshave
beenselected. Theseincludethree isolated bodyor fuselageshapes,two isolated
wings, andthree wing-bodycombinations. Thesecasescover bothsharp andblunt nose
bodiesas well as conventionalandsupercritical type wing sectionsover a rangeof flow
conditions.

Thecomparisonsare of particular interest becausethe present methodis based
on certain small-disturbance assumptions. It is important then to studytheseapplica-
tions if the methodis to beeffectively appliedto realistic, aircraft configurations. The
input dataset for eachof thesecaseshasbeenincludedin the appendixof this report.
Figure 26definesthe various symbolsusedfor the correlations throughoutthis
section.

Isolated Bodies

A sharp-nosebodyof revolution was investigatedby SwihartandWhitcomb(31).
The bodyhada finenessratio of 12andwassting-mounted. This datawasselected
becauseit provided isolated bodyexperimental results for non-zeroangles-of-attack.
Correlations for the zero angle-of-attack caseat M = 0.99 canbeseenin Figure 27.
A computationwasalso madefor the 8.4°angle-of-attack caseat M = 0.99. Correlation
with experimental datafor the top andthe bottomcenterlines canbeseenin Figure 28.
Discrepancieson the upper surfacenear the body-stingjuncture canprobably beattributed
to boundarylayer thickening.

Experimental datafor a blunt-nosebodyof revolution was recently obtainedby
Couchand Brooks (32). This bodyhada finenessratio of approximately9. The cross-

sectionalarea distribution is typical of supercritical type bodies. Thepressure
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distributions are characterized by a rapid expansion around the nose followed by a flat

distribution along the length of the body. Correlations for the case M = 0. 980 and

M = 0. 991 can be seen in Figure 29.

These simple research models for which comparisons were just presented pro-

vide a means of checking the behavior of the present modified small disturbance

method when analyzing both blunt and sharp-nose bodies. However, these shapes are

rarely of interest to the aircraft designer. To demonstrate the full computational

capability of the present method, calculations have been made for a realistic transport

fuselage. The geometry for this case can be seen in Figures 18 and 19. In this par-

ticular application, the fine mesh is positioned for detailed analysis of the nose-wind-

shield-canopy region of the fuselage.

Wind tunnel pressure distributions were measured to provide an understanding

of shock-wave/boundary layer interactions over the canopy _hich caused unacceptable

levels of noise in the cockpit. The sting-mounted isolated fuselage model was

instrumented to obtain detailed pressure data in the windshield-canopy region (33)

The objective of follow-up experiments or the use of the analysis method would be to

re-contour the fuselage shape to reduce the strength of the canopy shock wave. Corre-

lations with experimental data for the fuselage top eenterlinc at the transonic cruise

condition can be seen in Figure 30. The computed decay of the canopy shock wave can

be seen in Figure 31.
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Isolated Wings

Two different wings have been selected for comparisons. The first is a low

aspect ratio wing with a symmetric wing section and the second is a high aspect ratio

wing with a conventionally cambered NACA 641-212 wing section. Viscous effects on

the symmetric wing are negligible and no viscous effects were computed (VISMOD -- 1).

Viscous effects did not have a large impact on computed pressures for the cambered

wing but they did significantly change the computed forces and moments. The cambered

wing was analyzed using the viscous/inviscid solution process (VISMOD = 3).

The ONERA M6 wing (34) provides a very simple easel for the computational

method because wing planform sweep and taper are mild. In addition, viscous effects

are negligible making this a very popular case for published correlation studies. The

ONERA wing is interesting, however, because the data exhibits a double shock wave

pattern. Superimposed computed pressure distributions for the wing upper and lower

surface can be seen in Figure 32. A weak highly swept supersonic to supersonic shock

wave forms at the wing leading edge. As the wing tip is approached, this weak shock

wave coalesces with the primary supersonic to subsonic shock wave behind it. Published

reports indicate that methods with poor resolution or flow governing equations without

additional cross-flow terms cannot resolve the weak highly swept type of shock wave.

Correlations with experimental data at five span stations can be seen in Figure 33.

Spanwise distributions of lift, drag and pitching moment can be seen in Figure 34.

Figure 35 shows the computed spanload and drag component breakdown.

A cambered high aspect ratio wing (35) was analyzed using the present method.

This case is thought to be of particular interest because the geometry and lift condition

are typical of conventional transport wings now in existence (super-critical type wings

are also included - case number 8). Figure 36 illustrates the wing shock wave pattern.

Correlations at five spanwise wing stations can be seen in Figure 37. The computed

spanload along with span efficiency factor and drag comp(ment breakdown can be seen

in Figure 38. Force and moment comparisons can be seen in Figure 39.
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Wing Body Configurations

Three different wing-body configurations have been selected for correlation

studies. They are 1) a simple wing-body research model with a planar wing, 2) a

conventional wing transport aircraft, and 3) a supercritical wing area-ruled fuselage

transport configuration with wing control surface deflection effects. The final con-

figuration with its highly aft-cambered wing section illustrates both the use of the

viscous/inviscid interaction mode of operation and the arbitrary body modeling scheme.

A simple wing-body research model (36) is illustrated in Figure 40. The center

mounted wing has 45 ° of sweep with a NACA 65A006 wing section. Superimposed

computed pressure distributions for the wing can be seen in Figure 41. Correlations

with experimental wing pressures at five spanwise stations can be seen in Figure 42.

Body pressure correlations can be found in Figures 43 and 44. Boundary layer dis-

placement thickness effects were not computed for the symmetric wing in this case.

Force and moment comparisons are made in Figures 45 through 49. The configuration

drag source breakdown can be seen in Figure 48.

The Boeing KC-135 transport (37) has been illustrated in Figure 50. This is a

good example of a conventionally winged transport. Comparisons have been made for

the configuration without engine pods or pylons. An initial computation indicated that

this wind-tunnel model may be experiencing a wing twist caused by wing loading. As a

result, the geometry analysed includes 1° of negative section incidence at the wing tip

blending to 0 ° at the wing-body juncture. Superimposed computed wing pressures can

be seen in Figure 51 for the cruise design point. Correlations at three wing span

stations can be seen in Figure 52.

The final case is a supercritical wing/area ruled fuselage transport config-

uration (38) (See Figure 53). The solution diverged if the actual glove leading edge

sweep of 72 ° was modeled. For this reason, a reduced sweep of 57 ° was employed for

these comparisons. It is expected that the wing root leading edge pressure peak

discrepancy (Figures 55 and 56) is a result of this approximation. In addition, the wing-

body computed moment coefficient will have an erroneous nose down component (Figures

58 and 59). The fuselage model for this calculation was shown in Figure 20. This

model is interesting because it illustrates the aerodynamic effects that a wing control
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surface deflectionhasona supercritical wingwhenthe flow is transonic andshock
wavesare present. For thesecomparisons,dataat a -]5 ° deflectionof the second
control surfacewasused. Thecontrol'surface canbeseenin Figure 53andon the

wing sectionpressure distribution plots. Superimposedcomputedpressure distri-
butionsat the cruise designpoint canbeseenin Figure 54 for the basicwing shape.
Wingpressure distribution correlations at five spanwisestationscanbe seenin Figure
55. A similar set of comparisonsfor the wingwith the control surface deflectedup-
ward canbeseenin Figures 56and57. Force andmomentcomparisonsare madein
Figures 58and 59while the spanloadanddrag source breakdowncanbeseenin
Figure 60.

Figure 40. NACA RM L51F07 Simple Wing-Body Configuration
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Figure 50. Boeing KC-135 Transport Configuration (Pylons and Engines Off)
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NOTE: 57 ° GLOVE LEADING EDGE
SWEEP USED FOR ANALYSIS

(ACTUAL GLOVE SWEEP 72 ° )

Figure 53. Supercritical Wing/Area-Ruled Fuselage Transport Configuration

(NASA TM X-3431 )
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Figure 56. NASA TM X-3431 Transport Configuration Superimposed Computed Wing

Pressures for Wing with Control Surfac_Deflected
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Figure 60. NASA TM X-3431 Transport Configuration Effect of Wing Control Surface

Deflection on Computed Wing Spanload
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CONC LUDING REMARKS

The present method provides certain advantages in both the design and analysis

of wing-fuseLage configurations at transonic speeds. These advantages are related to

the high density resolution available and the grid system flexibilityneeded for treating

complex three-dimensional shapes. However, to make these gains, some desirable

features had to be sacrificed. In particular, the basic small disturbance-planar

boundary condition approach exhibits certain limitations when compared to the more

sophisticated full potential equation - exact boundary condition approach. This method

can be used effectively ifthese limitations are understood.

Itwas pointed out in the grid system section that wing section leading edges are

positioned between fine grid points. It is not possible to have a boundary point exactly

at the leading edge, a restriction inherent in the small disturbance formulation. As a

result, details of the flow in the wing section nose region are somewhat compromised.

Unfortunately, the drag computations involve a pressure integration that includes the

nose region where for blunt sections, a suction force naturally develops. For this

region, itis expected that the present method will be useful in predicting drag

increments but caution should be exercised when using the absolute drag levels.

Itshould be noted that for certain extreme geometric configurations and certain

extreme flow conditions, computed small disturbance solutions may not correLate

with the physical flow as well as a full potential equation solution. The Douglas wing-

body configuration (Ref 39) is a good example (see Figure 61). This wing has 15%

thick blunt wing sections. If the flow condition is mild, for example, below the drag

divergence condition, comparisons with experimental data are good (see Figure 62

and 63). However, if flow conditions are extreme, beyond what would be considered

the design point or drag divergence conditions, comparisons are somewhat compromised*

(see Figure 64). However, computations indicate that the present method performs

well for the more common geometries and flow conditions occurring in most practical

applications. In particular, existing transports analyzed at normal cruise conditions

have yielded excellent correlation with experimental data. To date, these transports

include the Boeing KC-135, Grumman Gulfstream III, and Lockheed C-5A and C-141.

*See Comments on Converence Criteria on Page 148.
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Wingsweepcanbecomea problemfor anyfinite difference schemeemployinga
shearingtransformation for the wingplanform. The shearedcoordinatelines were
illustrated in Figure 9. As wingsweepincreases, the two grid lines collapseoneach

other degradingresolution in the physicalY-direction. Dependingon the application,
the methodsperformancemaybedowngradedfor wing sweepanglesgreater than
50or 60degrees.

Finally, a warning aboutanalyzingcomplexshapesis in order. Experience
has shownthat the modelingandinputof complexgeometric shapesis error prone.

It is hopedthat users of this methodwill familiarize themselvesfirst by analyzing
simple shapesandslowly progress to more complicatedshapes. The array of sample
casesincludedin this report shouldprovidea goodstarting point. In addition, the
modular construction of thepresent code(isolatedbodiesandwings as well as

wing-bodies)shouldprove to beuseful in diagnosingbothcodeusageandaerodynamic

problems.

Future work will includethe developmentof methodolog'yfor treating multiple

bodyandmultiple wing surfaces (seeFigure 65).
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Figure 65. Future Grid Component Build-Up Capability for Complex Aircraft
Configurations
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GENERALCOMPUTERCODE DESCRIPTION

The computer code is operational on both IBM and CDC type computers. Over-

lay structures are not used although this approach (for reducing core requirements)

may be advantageous depending on facility charging algorithms. The IBM version

using the extended H compiler (opt = 2) requires approximately 670K10 for storage

and execution. The CDC version with OPT = 1 compiler optimization and segmented

loader requires about 236K 8 for storage and execution. There is considerable use of

temporary disk storage units. Since interpolation and searching is required, a result

of the mesh embedding approach, it is useful to have planar potential (_,) arrays

separate and addressable. As a result, 72 different units (16 CDC units) are cur-

rently employed.

DISK NUMBER

1

7

8

10-35 (1 CDC Unit)

41-58 (1 CDC Unit)

61-76 (I CDC Unit)

80

81

82

83

84

85

86

87

88

The disk unit number and a description of contents are listed below.

DESCRIPTION

Input data transferred to Unit 1

Flowfield potentials for save/re-start capability

Quick-geometry problem diagnosis printed-output

Global crude grid potential array

Fine wing grid potential array

Fine body grid potential array

Crude grid wing upper/lower surface boundary conditions

Fine wing grid upper/lower surface boundary conditions

Fine wing grid x-coordinate array

Fine wing grid section surface ordinates

Crude grid body surface normal (direction cosines)

Fine grid body surface normal (direction cosines)

Fine wing grid shearing angles

Wing and body pressure coefficient arrays

Boundary layer displacement thickness slope
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Computer running time will of course vary depending on the facilityand the mode

of operation or operating system. The absolute levels specified may be out dated

shortly after they are specified. IBM 370 running times arc specified below, however,

since the relative increment for various options will remain essentially steady and

these increments will be useful in estimating the time and cost of using different

options.

CASE

Isolated body

Isolated wing

Isolated wing w/viscous interaction

Wing-body (body modelled in crude

grid only)

TIME (CPU Minutes)

17 (50 erude/5(_ crude-fine iterations)

37 (100 crude/_0 crude-fine iterations)

43 (100 crude�80 crude-fine iterations)

37 (i00 erude/_0 crude-fine iterations)

Wing-body (body modelled in fine grid) 50 (100 crucle/80 crude-fine iterations)

Geometry/Grid verification 1 (No iteralions)

An effort has been made to minimize the amount of data required to define the

configuration geometry and flow condition. This should simplify matters for most

applications involving configuration analysis and reduce the chances for input errors.

For example, the computational grid systems (extent and density) have been set in the

FORTRAN coding to provide good results under most conditions. Occasionally, it

will be advantageous to manipulate the preset values and limiters. FORTRAN coding

changes will be necessary if this is the ease. The following values and limiters may

be modified in certain special applications.

1) Gas constant ( V = 1.4)

2) Fine wing/body embedded grid limits or extent
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3) Fine wing/body embeddedgrid density

4) Subsonicrelaxation factor ( w = 1.5)

5) Boundary layer transition (X/Ctran = 0.05)

6) The number of inviscid cycles between each viscous calculation

{currently set to 20)

All of the sample cases were computed using the basic code without modification. If

code modifications of type (2) or (3) are made care must be taken to insure that common

and dimensioned arrays are sufficient and consistent.

The input data format description can be found on the following pages. The

descriptions are thought to be relatively straight forward except in the case of wing

section definition. It is important to extend wing planform/section definition to the

symmetry plane even for wing-body configurations (see Figure 25). This serves

several purposes. First, the code will compute a wing-body juncture which will be

a function of both the configuration geometry and the computational grid system. If

the computational juncture is slightly inboard of the geometric juncture, section

definition in this region becomes important. Second, the input planform shape provides

both the aspect ratio for the lift-induced drag computation and the reference lengths

and areas used to reduce the integrated pressures to give force and moment co-

efficients. Finally, the data input for defining a wing-body configuration can be used

directly for the isolated wing case. This feature can be used to study wing-body

interference effects.

It is important to note that there is no provision for input of reference lengths

and areas. These reference values are computed from the input geometry and printed

at the end of the output stream. If reference values other than those computed are

used experimentally, the computed force and moment coefficients must be appropriately

scaled.

I01



LOCATION OF INPUT DATA READ STATEMENTS

CARD(S) ROUTINE

I-A THRU 3-B MAIN

4-B QWIKDE

5-B THRU 9-B CSMDEF

10-B THRU 13-B BLMDEF
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INPUTDATA FORMAT

Excludingliteral cards, all input datacards are punchedin sevenfield ten digit

format (7F10.0).* A decimalpoint is required in eachfield.

CARD CARD VARIABLE
NUMBER COLUMN NAME DESCRIPTION

Card 1-A 1-80 TITLE Configurationor run title to identify graphic
andprinted output.

Card 2-A 1-10 CASE

11-20 AMACH
21-30 AOA
31-40 RE
41-50 AXIT

51-60 AXITF

61- 70 VISMOD

CASE= 1. Isolated Body (omit cards -W)
CASE = 2. Isolated Wing (omit cards -B)

CASE = 3. Wing-Body

Mach Number (AMACH < 1.0)

Angle-of-Attack (degrees)

Reynolds Number (XIO 6)

Number of initial crude grid iterations.
(AXIT = 0. for geometry verification only)

Number of crude/fine grid iteration cycles.

VISMOD = 1. No viscous effects.
VISMOD = 2. Viscous effects computed at

end of inviscid analysis.
VISMOD = 3. Inviscid/viscous interaction.

NOTE: Omit card set 1-W through 5-W for CASE = 1.

Card 1-W 1-10 ASECT

11-20 ANIN

Number of streamwise sections defining wing

planform (2 < ASECT < 20).

Number of ordinates defining each wing section

(ANIN <_.60).

*NOTE: Card columns 71-80 on card 2-A have been reserved for the variable START

which provides a solution re-start capability.

START = 0.

START = 1.

START = 2.

START = 3.

Conventional solution

Writes/saves flow field on tape unit 7

Restarts with tape 7 as input - does not save resulting solution

Same as 2. But final solution is saved on tape unit 7
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CARD CARD VARIABLE

NUMBER COLUMN NAME

Card I-W

(cont'd)

21-30

31-40

41-50

51-60

ANOSW

XMOM

ZWING

WPO

61-70 WS

NOTE: Card set 2-W through 5-W

Card 2-W 1-10 XPL

11-20 YP

21-30 XPT

31-40 TWIST

41-50 AKODE

Card 3-W 1-70 XINW

Card 4-W 1-70 YINU

Card 5-W 1-70 YINL

NOTE :

Card I-B

Omit card set 1-B through

1-10 BKOD = 1.

BKOD = -1.

BKOD =2.

BKOD =-2.

DESCRIPTION

ANOSW = 0. Sharp nose wing sections.
ANOSW = 1. Blunt nose wing sections.

X-position about which moment is to be
computed.

Z-position of wing (waterline).

WPO = 0. No crude grid output.

WPO = 1. Crude grid output for diagnostic
purposes.

Wing Cp distribution plot scaling per inch
(typically 0.4 or 0.8).

is repeated ASECT times.

Wing section leading edge (X-value).

Wing section span position (Y-value). First
Y-value must be 0.0 (symmetry plane), even

for wing-body case.

trailing edge (X-value).

local incidence (twist angle in

Section ordinates identical to

preceding section (omit cards

3-W through 5-W).
AKODE = 1. New section definition expected

on cards 4W and 5W

Wing section X-coordinates (cards 3-W
defined only for first wing section, ANIN

values expected).

Wing section upper surface Y-coordinates

(ANIN values).

Wing section lower surface Y-coordinates

(ANIN values).

Wing section

Wing section
degrees).

AKODE = 0.

13-B for CASE = 2

Infinite cylinder (only RADIUS need be input).

Same as BKOD = 1. No embedded body grid.

Crude grid body representation only.

Simple axisymmetric body definition requested
(input BXIN, RIN on card(s) 2-B and 3-B).

Same as BKOD = 2. No embedded body grid.
Crude grid body representation only.
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CARD CARD VARIABLE
NUMBER COLUMN NAME DESCRIPTION

Card 1-B BKOD= 3.

(cont'd)

BKOD =-3.

11-20 BNOSE

21-30 BTAIL

31-40 BNIN

41-50 RADIUS

51-60 ANOSB

Complex body definition requested (input Quick-
Geometry model on card(s) 4-B through 13-B).

Same as BKOD = 3. No embedded body grid.
Crude grid body representation only.

]

Body (X-value)_For BKOD = +2. or _=3.nose

Body tail (X-value) J
|

Number of axisymmetric body coordinates to

be input. BNIN < 60 (for BKOD = _=2 only).

Cylinder radius for BKOD = _:1 only.

ANOSB = 0. Sharp nose.bodY}BKO D = :e2 only.
ANOSB = 1. Blunt nose boOyJ

61-70 BS Body Cp plot sealing per inch (typically 0.08).

NOTE: Omit card sets 2-B and 3-B for BKOD = 1 or BKOD =3.

Card(s) 2-B 1-70 XINB Axisymmetric body X-coordinates (BNIN

values).

Card(s) 3-B 1-70 RIN Axisymmetric body radii (BNIN values).

NOTE : Omit card sets 4-B through 13-B for BKOD = i or BKOD = 2.

Card 4-B 1-70 VTITLE Quick-Geometry model title,

Card 5-B 1-10 ACSM

Card 6-B 1-10 ADUM

Card 7-B

11-20 AARC

21-60 CTITLE

1-8 ARCNAM

11-14 ASHAPE

21-28 PNTNAM(1)

31-38 PNTNAM(2)

41-48 PNTNAM(3)

I-i0 ANTCSMCard 8-B

Number of distinct cross-section models

(ACSM card sets 6-B and 7-B will follow).

Running count of current cross-section model

(1-ACSM).

Number of arcs in current cross-section

model (AARC Card(s) 7-B will follow).

Title or descriptor of current cross-section
model.

Arc or component name.

Are or component shape.

Control point name for beginning of this arc.

Control point name for termination of this arc.

Slope control point name for this arc, if

required.

Number of cross-section models to define

entire body (ANTCSM card(s) 9-B will

follow).
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CARD CARD VARIABLE

NUMBER COLUMN NAME

Card 9-B 1-10 ADUM

I i- 20 AMOD E L

21-30 XCSMSI

31-40 XCSMS2

Card 10-B i-I0 BLINE

i i-20 A LIAS

Note: Card set ll-B and 12-B is

Card ll-B 1-10 BLSEG

ii BYORZ

Card 12-B

Note:

Card 13-B

12-19 BNAME

1-4 SSHAPE

11-20 D(1)

21-30 D(2)

31-40 D(3)

41-50 m(4)

51-60 D(5)

61-70 D(6)

Card set 13-B is repeated

11 BYORZ

12-19 BNAME

21 AYORZ

22-29 ANAME

DESCRIPTION

Running count of current cross-section model

(1-ANTCSM)

Index corresponding to already defined cross-

section models (between 1 and ACSM).

Starting X-station for current cross-section
model.

Ending X-station for current cross-section
model.

Number of body line models to be defined by

segments (BLINE card sets ll-B and 12-B

follow).

Number of body line models to be aliased
(Alias card(s) 13-B follow).

repeated BLINE times.

Number of segment(s) defining body line
model.

The letter Y or Z indicates which data
definition is to follow.

Body line name to be defined.

Segment shape.

X-station for beginning of segment.

Y or Z value corresponding to D(1).

X-station for termination of segment.

Y or Z value corresponding to D(3).

X-station for segment slope control point.

Y or Z value corresponding to D(5)

ALIAS times.

The letter Y or Z indicates which data
definition is to follow.

Body line name to be defined.

The letter Y or Z indicates which definition

is to be used for aliasing.

Body line name to which BNAME is aliased.).
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SAMPLE INPUT DATA SETS

(8 CASES)

NOTE: These data sets were used for the correlation studies

(See Comparisons Section, page 55)
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1,971 2,593 3. 090

4.143 4.167 4. 130

2°526 1,e52 1, 265
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Case No. 1

L53F07 ISOLATED BODY

1,n £n.

....32. 0.

1.25 9,.50

25. O 30.0

6%0 65,0
oO.O _I.0

1oo,n

n._28 0._22
3,465 3, 74 1
4.024 3.842

1.1 20 t. 005
0._33

50.

9.
5.00
35.0

70.0
92.0

1.205
3.933

3.562

0.92 =_

1.0

3,08

7.50

_0,0

75.0

93.0

1,613

_,063

3. 128

0,872

1.0

2.

0.

1.4

10.0
28.0

68.0

88.0

99.0

0,

1.645

3.648

5.052

5. 207

3. R 911.
1,422

0.991

O.

0.?

1.6

12.0

32.0

72.0

90.0

100.0

0,696

t.742
3.894

5._7

5.05_

3,648

1 .t127

Case No. 2

NACA TND 7331 ISOLATED BODY

0. 0 1,0 50.

100. U_. 0,

0. q 0.6 0.8

1.8 2.0 U.O
14.0 16.0 18.0
40.0 48._ 50.9

76.0 80o0 82.0

q2.0 94.0 96.0

O. 946

1. 832
4. 108
5. 412
4. 855
3. 357

50.

1.

1.0

6.0

20.0

52.0

84.0

97.0

1.0

3.08
1.2

9.0

24.0

_0.0

86,0

98.0

1.134 1.291 t.422 I. 539
1.916 2.556 3.005 3.357
4.295 4.460 4.607 4. 855

=.4 9 "!' 5. 500 5.497 5. 912

4.607 4.460 4.295 '4.108

3.005 2.556 2.271 1.916
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Case No. 3

GULFSTREAM II ISOLATED FUSELAGE

1 • O, 80

30 RoO

GULFSTREAM FUSELAGE

.30

1`,

BODYLO

80DYHI

20

CANLO

CANS !

WINDF

3,,

CANCPLO

CANOPS I

WINDSI

EANOPUP

40

2`,

3=

4`,

I0,

20

ELL x

LINE

40

ELLX

LI NE

CUB I

L INE

le

LI NE

2,

EUBI

L IN£

[,

ELL X

1,

LINE

1,

LINE

2,

L INE

LINE

20

L! NE

LI NE

10

LINE

3`,1 leo 500

200,0 0`, 0`,

QUICK-GEOMETRY MODEL

2`, NOSE TO IINDSHIELD BASE

ELL 1 80YBCL BOY MF_B

ELL I 8DYM HB 8DYTCL

3`, WINDSHIELD

ELL! 8DYBCL 8DYM I_B

ELLI 8DYMH8 CANLOW

LINE C ANI._ OW eOY TCL

41.`, CAN{]PY

ELL [ 80YBCL BOY WHB

ELL I 8OYM h8 CA NLCW

LI hie C 4NL 0 _l CANI_ [E

ELL [ C ANH [ E 8OYTCL

1`, 8`,3 64`,0

2`, 6400 83, S

3, 8305 13300

1`, 133,0 20000
!1`,

ZRDYBCL

ReO 7805 1330 0

133_0 5300 200, 0

ZBDYTCL

80 O 7805 6400

6400 113,5 8305

8305 132`, S 133e0

133,0 1470 0 2000 0
YCENTER

8`,0 0 00 20000
ZROYNH8

R`,O 78,5 18 100

181`,0 100,0 20000
YBDYMH8

8`,0 00 2000 0

ZCANLOW

6400 I 13,5 133,0

ZCANHI E

83`,5 132`, 5 133`,0
YC A NL OW

6400 O. 7905

7905 2800 I3300

YCANHIE

83.5 O, 96,0

9600 24`,5 13300

YCANTSCP

83,5 O. 133.0

ZMAPAXIS ZSDY MHB

YMAPAXIS YCENTER

ZCANTSCP ZBDYTCL

ZCANL SC p_ ZCANLOW

YCANLSCP YflDYMHB

YBDYTCL YCENTER

YBOYBCL YCENTER

YBCYL SCP YBDYMHB

ZF}DYL SCP ZBOYBCL

YBDYUSCP YBDYMHB

ZBOYUSC_ ZBDY TCL

80YL SCP

8DYUSCP

BDYLSCP

CANLSCP

8DYL SCP

,CA NIl..S E p

CANTSCP

5300

53.0

! 1305

122`, 5

14700

14700

0`,0

1000 0

10000

47`,0

113,5

1 _2`,5

2800

42`,0

240 5

340 0

22,0

NOSE

50`,

0.

8`,0

L35`,5

800

I00

004

530 0

I 00 00

4.70 0
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_t

2,
O. O.

O. 0.2_I

9. 5635_ 1 6. anQ76

Cl7._ 1197 q_. "_On37
90.6193';, 96._1960

O. n. £"zQSe
3.577 @2 u,. 1 q O£q
@.71661 _. 36 n'4 1

1.22399 0._R907

0,, -0. Q7a£ q
-3. 577_? -/4. I qo_q

-@,7166 1 -_. 367a 1
-1.2238n -0.4_907

0,85670 t,, 4R 39

Case No. 4

ONERA M6 ISOLATED WING

O.£nnv 3.01 2.5

2 _,, ...... 1_,._0.... ___ _O.u,52
1.0 0.

21.870Q6 27. 17978

60,23757 65. 1!093
100.0

1. 17 u, lq 1.6Rq84
@. 50_07 _. _ Ia£7
_. 059 _11 3.68990

0. 07052

-I. I_419 -I, _8980

-&.505_7 -4.7t9#7

-4.052_1 -3, 689n0

-0.0_052

1. 39_4 C.

100.

O.
1.9_ f:O9

?:2.4 2726
6q.q _027

U. 8t4 992

?, 29 U02

-2.2t_5_

- 3.2c_ 1402

80.

I,

2.Q7008

37.61_6

17, 05998

2,582_5

@.89296

2.65505

- 2, 582a5

-@. R9296

- 2, 65505

1.0

5. @12@8
@2.7@223
8@.07324

3,03278

'_.8,888

1,95838

-3. 03278

-q.8_888

- I. 95838

Case No. 5

NACA RM A9K01 ISOLATED WING

9.

10.859

_7.6_

q 1.701

9.

5._16

2.#o7

9.

-2._39

-3.9_q

-1.n0_
_5.625

q._'5_0 _. 0N ?._ 100.

0. _6.67 0. _.

N.065 _. 733 I,_75 2.699
16._7_ 71 .6_7 26,959 32. __13

q2. 6_4 57,6_q (2, 5_9 67.___3

e6._q0 q0.94_ gq._q7 I_0. 0

N.ng_ 1. t03 1.4tl 1.961
4.61[_ _. 175 S.%gO R. 8_5

_,525 :_,135 _.666 _, 133

1.6_? I. o@q 0._8_ 0.

-,q. _ 90 -o.q7q -1o221 -1.6_2
-3. U_Q -9.7o_ -_. _335 -a, 177

-3. 6_ -3, 307 -2, 88_ -2,_2

-0._, '9 -0.216 0.022 O.
_n. 0 _#, 955 -0,6 0.

!.0

5,388

37.@13

72.242

2,759

5.978

3,551

-2.196

-4.220

- I. 950

0.6

8. 129

42.555

76.998

] ,355

5. 983

2.93_

-2,608

-_.155

- 1.471

Ii0



3o

2o

12.625

)0

lO•O

Q.5•O

50•0

_o

1.824.

2o992

1•43T

-I,824

-2o992

-|•43?

25,3 ?_

2,

4•0

18,0

32•.)

::)•

O. 7884

I •65 _2

LQOL04

NACA

0,93

20o

O•

3 ,_5

15o0

50,0

8.%.0

0•404

2, 191_

2,925

t•O_3

-0og64

-20 925

-1 •0_33

L2,O

Oo

0,2

0.0

20•9

33•0

3•0924

! •0372

1 • bObB

Oo 88

RM

Case No. 6

151F07 AXI-SYM BODY/45 DEG SWEPT WING

4.0 2o02 t09• 80•

1•0 200 3•0 1•0

20•12_ ._• 1o3

0.75 1.25 2•5 5•0

20 • 0 25• 0 3 3, 0 35• 0

55o0 60.0 65o ,3 7QoO

90,0 95o0 130, 0

!)o 563 O, 7 L _ _), g._} 1 1• 313

2,474_ 2o687 2•8q, 2 2•945

2. 793 2,602 2,36e# 2,087

O, 727 3o310 }o'31 3

-0•5<_3 -0• 718 -_)•9_1 -lo 31 3

-2.4"74 -2.687 -2,342 -2,9_5

-2• 793 -2•602 -2•364 -2, 087
-0,727 - 0•37_) -00013

29,8r5 O* 30

33o 333 25• )o Oo 0

0•3 9•5 100 2oO

8,0 tO,O L2.0 14-,0

22o0 2_o0 26•0 28o0

33• 333 33• 8

0, 1 [g2 3, 1712 0,2888 0,_820

lo 23_0 1• 31}60 L•41"9641" 1o5732

1•6520 1•6096 1•5368 1•4.2q. 8

0•c_33 0°833

2•0

0o6

7o5

40•0

I o591

2 • 996

lo775

-1o591

-20996

-1o775

0=_"

3•0

16•0

30,,0

0,6452

1•6252

1.2512

iii



Case No. 7

BOEING KC-135 TRANSPORT

3. o78 2cO 5,25 100, 80o I,

So 26o O. 52o 90 -4o @5 i, 0 os

28.66 ).0 70.27 1.8 1.3

0o 0,5 0o7_ 1,25 2,50 5o0 7,5

I 3, 15, 20. 25. 30. 35o 40o

45. 50. 55. 60. 6.5. 700 75.

BO, 85, 90o 95, 100,

)o740 1,750 2. 055 2,539 3. 470 4.830 5.813

6,572 ?.66 I _. ]80 8.860 9. 137 9.218 9.105

8, 76 0 9. 258 7, 6)20 6e 870 6, 02 9 .Se 168 4e ,3'00

3. 445 2.584 i. 723 0o861 O,

_,000 -0.872 - 1,076 -- 1.390 - L .9L5 -2.613 -3. 178

-3,600 -4.510 -5,228 -5, 757 -bo 104 -0o275 -0,250

-6,0_04 -5.£.78 -5. 185 -4.618 -4. 041 -3. 404 -2. 880

-20309 -[o F52 - |o 155 -0o 57T 3.

32o0 2 Q,3 ? 620 _9 1,6_ ..),

30.30 I 9o30 _7._6 1,70 1 ,,

3a 536 10599 10054 2,060 2,840 3.998 4 0850

5o51 l _,430 7.070 7,500 70 760 7,920 T.910

To t25 ?eSt'2 00895 6,284 5.570 4.782 3.985

]01_:_ '.3 -),591 l. %94 O, 797 _%,

3.03 J -Oo 7.J3 -0,895 - 1, 123 -LoZ'-7'b -1,915 -2o290

-2o640 -3o318 -3. 925 -4, 401 -4o 746 -40980 -50070

-5,0 _7' -4o t'g3 -_,44@ --3, 99 _, --304 gO --2ogg6 --204g]'

--I ._'98 -I o_98 -0,999 -00499 O,

41o4 I 1_073 59020 1o 70 I ,0

0o374 1, 1-_3 103_0 10687 2,3_0 3o360 _o 114

4.699 5._30 6. 347 6.422 6. 066 6e805 6._29

be 736 6,53<9 O, 150 5.043 5,049 _0380 3.087

2, 929 2o 1 )7 I , %*)5 0. 732 ),

3 • O0 3 -O._ZO -3o684 --0. 837 --I, 053 --1,307 -- Io 544

- 1,787 --?,205 -2. 731 --3,.I I S -3# %25 --3#642 --3e 763

-3,7_2 -2.096 -3e487 -3017-_ -2e 7_T -2.389 -- 10991

- | .093 - I • 1_)4 - 0.796 --0.398 3.

_0,81 29o 30 640 90 1044 | , 0

DoSS6 3.997 1o 198 Io510 2,160 3,130 3,857

40423 5.210 5. ?0_ 0.050 0.280 &.430 6.449

6o 370 6. 17S 50 850 50 412 4. 880 40267 30005

a. 904 2. I ?'8 Io452 O. 726 3,

O. O0 0 -O._(_b -3. 558 -0.657 - 0.750 -0.895 - I. 041

-Io 187 -loe_79 -IoZTO -2,059 -2.275 -2,445 -2.543

-20508 -2._01 -20330 -2.078 -10_18 -1,558 -10299

- 1 .039 -0,775 - O.SZO --0.260 30

69o2 7 53,06 74e 97 O. 80 O,

-2, 3e(O 108030 22, 5.04 le 04

Do 2,0 41..0 6.0 8,0 10.0 12.0

I 4,0 L6o 3 20, 0 30, 0 400 0 50o 0 60.0

7_,0 78.0 80.0 85.0 90.0 95.0 I00o0

I08. :3

O, 2,50 3035 3090 4, 30 4060 4080

4. 95 5.04 5004 5.04 5.04 5.04 5,04

5o 04 5, O_ 4.92 4.65 4 • 20 3.55 2 .65

2, 60

112



Case No. 8

NASA TM X-3431 TRANSPORT CONFIG.

3. 0.900 3.91 1.58 100. 80. 3.0

18. 25. 1.0 12.075 -2,5 1.0 0.6

36.3 0. 79.296 0.5 0.

_. 0.0025 0. C050 C.0100 0.01-=0 0.0250 0.0500

0.0750 0.100 0.150 0.200 0.250 0.300 0.400

0.500 0.5_n r. E00 C.650 0.700 0.750 0._00

0. 850 0.900 0. 450 I .300

-0.0225 -0.0153 -0.0119 -0.0075 -0.0043 0.0003 0.0078

0.0140 0.0182 0.0242 0.0283 0.0305 0.0307 0.0263

_.0173 0.0124 0. C07_ 0.0024 -0.0031 -0.0086 -0.0146

-0.0212 -0.0279 -0.0343 -0. 9424

-0.0225 -0.0296 -0.0331 -0.0376 -0.0_I0 -0.0465 -0.0555
-0.0618 -0.0664 -0.0728 -0.0776 -0.0808 -0.0828 -0.0834

-0.07q7 -0.0751 -0.0700 -0.06_2 -0.0-=_4 -0.052 ¢- -0.0468

-0.043_ -0.9_24 -0.0435 -0. O_4R
tl5.5 5.961 18.40"/ C._ 0.
53.2 11.') _I 79.27 _ 0.5 I.
-0.0502 -0.0417 -0.036@ -0.0130 -0.0_05 -0.0252 -0.0162
-0.0110 -0.0074 -,).00_0 -0. 0023 -0.0021 -0.0027 -0.0045

-0.00_3 -0.0110 -0.0144 -C.0109 -0.0243 - 0.0240 -0.0332

-0.038_ -0.3u_0 -0.0505 -0.0585

-0.0502 -0,0574 -0.0607 -0.0660 -0.0698 -0.0754 -0.0852

-0.0910 -0.094q -0.1390 -0.1030 -0.1046 -0.1052 -0.1033
-0.048Q -n.0454 -0.0q0_ -0.0853 -0.0_7 -0.0727 -0.0675

-0.0631 -0.0611 -0.06 11 -0. 0630

58.662 14.723 _0.42_ C.5 I.

-0.0880 -9.074R -0.n_52 -0.0705 -0.0672 -0.0629 -0.0557

-0.0511 -0.047_ -0.0_]Q -C.0404 -0.0".86 -0.0375 -0.0375

-0.0398 -0.3_2_ -0.0_46 -0.9_79 -0.0522 -0.0555 -0.0586

-0.0624 -0.067__ -0.073 c -0.0_32
-0.0830 -0.0959 -0.0995 -0.1046 -0.1082 -0.1133 -0.1213

-0.1263 -0. I_97 -0.13_2 -C.13_4 -0.1"63 -0.1364 -0.13_2

-0.1296 -0.1261 -0.121_ -0,1153 -0.1074 -0.1000 -0.0935

-0.0882 -0.0857 -0.0862 -C.0885

63.248 17.774 81.744 ,9.5 I.
-0.113 <, -0. 10c,6 -0.10_1 -0. Cc78 -0.r)c47 -0.0896 -0.0821
-0.0772 -0.0734 -0.0695 -0.0651 -0.0632 -0.0617 -0.0612

-0°0625 -0.0638 -9.06=,2 -0.0678 -0,0_0g -0.0935 -0.0758

-0.0791 -0.03_6 -0.0900 -0. 0997

-0. 1115 -0. I_,0_ -0. 1243 -C. 12q0 -0.1-_24 -0.1372 -C.1440
-0.1482 -0.1514 -0. 1552 -0. 1571 -0.1576 -0. 1573 -0. 155_,
-0.150_ -0. Iq57 -0. I_I0 -0.1341 -0.1;EI -0.1164 -0.1089
-0.1037 -0.1007 -0.1021 -0. I049
65.614 20.094 _2.83 = 0.5 I.

-0.1282 -0.1203 -0.1165 -0.1115 -0.1033 -0.1035 -0.0960

-0.0908 -0.0_70 -0.0820 -0.0765 -0.0_63 -0.0749 -0.0737
-0.0738 -0.0746 -0.0756 -0.0775 -0.0808 -0.0830 -0.0853

-0.0R37 -0, 9 43__ -0. 0999 -0. 1100

-0.1282 -0.1364 -0.I_01 -0. I_8 -0. 1481 -0.1524 -0.1591

-0.1635 -0. 1668 -0.1702 -0.1718 -0.1322 -0.1720 -Co1695

-0.161.11 -0. 1592 -0.1545 -0.1465 -0.1369 -0.1274 -0.1191

-0.1125 -0.1097 -0.111; -0.1161
67.198 ?.2.033 83.864 0.5 t.
-0.1399 -0.1296 -0.12=e -0.1219 -0.1179 -0.1137 -0.1069
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Case No. 8 (Cont'd)

-0.1024 -0.09q0 -0.0941 -0. 0907 -0.0883 -0.0866 -0.0846

-0,0841 -0.0843 -0.0850 -0. 0860 -0.0835 -0.0895 -0.0922

-0.0959 -0.1008 -0. I075 -0.1164

-0, 1399 -0. 1494 -0. 1532 -C. 1579 -0.1612 -0. 1658 -(_. 1729

-0.1773 -0.1804 -0.1841 -0.1858 -0.1863 -0.1860 -0.1832

-0.1777 -0. 1736 -0. 1678 -0.1593 -0.1476 -0.1370 -0.1284

-0.1221 -0.1188 -0.1201 -0.1285

68.953 2_. 557 85.075 0.5 1.

-0.1490 -0.1386 -0.1349 -0.1301 -0.1271 -0.1228 -0.1158

-0.1111 -0. 1074 -0.1020 -0.0980 -0.0c49 -0.0926 -C. 0892

-0.0874 -0.0870 -0.0869 -0.0872 -0.0880 -0.0894 -0.0916

-0°09/47 -0.0993 -0.1058 -C. 11_8

-0. 1490 -0.1581 -0.1618 -0. 1665 -0.1696 -0. 1741 -0.1808

-0.1849 -0. 1876 -0.1906 -0.1917 -0.1916 -0.1905 -0.1865

-0. 1798 -0. 1751 -0.1688 -0. 1598 -0.1/477 -0. 1367 -0.1278

-0. 1212 -0. 1178 -0. 1190 -0. 1275

.70.711 27.032 86.292 0.5 I.

-0.1586 -0. 1/482 -0.1445 -0.1399 -0.1369 -0.1326 -0.1257

-0.1209 -0.1172 -:).1115 -0.1073 -0.1040 -0.1014 -0.0976

-0.0952 -0.0945 -0.0901 -0.0°_41 -0.09_6 -0.0c.58 -0.0977

-0.1007 -0.1053 -0.1120 -0.1216

-0.1586 -0.1675 -0.1711 -C. 1757 -0.1788 -0.1831 -C.1897

-0.1936 -0.1961 -0.1989 -0.1997 -0.1993 -0. 1980 -0.1934

-0. 1863 -0. I_14 -0.17L19 -0. 1658 -0.1535 - 0. 102/4 -C.1335

-0.1270 -0. 1237 -0.1251 -0. 1341

72.464 29. 50 1 87.505 0.5 I.

-0.1687 -0.1584 -0.1548 -0.1502 -0. I_72 -0. I_30 -0.1361

-0.1313 -0. 1275 -0.1217 -C. 1173 -0.1137 -0.1109 -0.1065

-0.1036 -0. t026 -0.1019 -0.1017 -0.1019 -0.1028 -0.1045

-0.1074 -0. 1120 -0.1169 -0.1289

-0.1687 -0.1/74 -0.1810 -0. 1855 -0.1885 -0.1927 -0.1991

-0.2028 -0. 2052 -0.2073 -0.2082 -0.20_5 - C.2060 -C.2010

-0.1934 -0.1883 -0.1816 -0.1725 -0.1601 -0.1489 -0.1399

-0,1334 -0. 1302 -0. 1319 -0. 1/412

7/4.221 31.975 88.720 0.5 1.

-0. 1795 -0. 1692 -0. 1657 -C. 1612 -0.1583 -0.15/41 -0.1472

-0. lU, 23 -0.t385 -0.1325 -0. 1279 -0. 1242 -0.1211 -0. 1162

-0, 1127 -0. 1115 -0. 1105 -0.1100 -0. 1100 -0.1106 -0.1121

-0. 1144 -0.1194 -3.1265 -0.1369

-0. 1795 -0. 1880 -0. 1915 -0. 1959 -0.1988 -0.2030 -0.2092

-0.2127 -0.2150 -0.2172 -0.2174 -0.2165 -0.2147 -0.2002

-0.2013 -0,1960 -0. 1892 -0.1799 -0.1674 -0.1562 -0.1472

-0.1/407 -0.1376 -0.1394 -0.1490

75.974 34. _44 89.932 0.5 I.

-0. 1910 -0. 1808 -0. 1773 -0. 1729 -0.1700 -0.1659 -0.1590

-0.1541 -0. 1502 -3. 1401 -0.13£3 -0.1353 -0. 1320 -0. 1267

-0,1227 -0.1211 -0.1199 -0. 1191 -0.1188 -0.1192 -0.1205

-0. 1231 -0. 1277 -O. 1308 -C. 1456

-0.1910 -0.1993 -0.2028 -0.2070 -0.2099 -0.2140 -0.2200

-0. 223_ -0.2255 -0,2274 -0.2274 -0.2262 -0.2242 -C.2183

-0.2099 -0.2044 -0.1975 -0. 1881 -0.1756 -0.1643 -0.1553

-0. 1_188 -0. 1458 -0. 1478 -0. 1576

77.732 36.919 91.149 0.5 1.

-0,2036 -0. 1935 -0, 1900 -0,1857 -0,1829 -0.1788 -0.1720

-0. 1671 -0. 1631 -0.1568 -0. 1518 -0.1/477 -0. I(141 -0.1383
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Case No. 8 (Cont'd)

-0.1338 -0.1320 -0.1306 -0.1295 -0.1_90 -0.1291 -0.1302
-0. 1327 -0. 1371 -0.1444 -0. 1554

-0.2036 -0. 2118 -0.2152 -0.2193 -0.2:_2 -0.2261 -C.2319
-0.2352 -0.2371 -0.2388 -0.2386 -0.2371 -0.2349 -0.2285

-0.2198 -0. 21aI -0.2071 -0. IC,76 -0.IE=.I -0.1738 -0.1647

-0.1583 -0.1553 -0.157] -0.1672

8 1.056 al. 5q9 93.447 0.5 I.

-0.2297 -0.2196 -0.2163 -0.2121 -0.2094 -0.2055 -0.1986

-0.1937 -0. 1896 -0.1831 -0.1778 -0.1733 -0.1694 -0.1627

-0. 1574 -0.1551 -0.1532 -0. 1517 -0.1506 -0.1503 -0.1510
-0. 1532 -0. 1575 -0.16_8 -C. 1762

-0.2297 -0.2375 -0.2407 -0.2447 -0.2U74 -0.2512 -0.2567

-0.2597 -0.2613 -0.2625 -0.2619 -0.2600 -0.2_74 -C.2503
-0.2408 -0.2349 -0.2276 -0.2181 -0.2055 -0.1942 -0.1851

-0. 1787 -0. I)57 -0. 177_ -0. 1877

82.996 _4. 331 94.789 0.5 I.

-0.2462 -0.2363 -0.2330 -0.2290 -0.2263 -0.2_24 -C.2156

-0.2106 -0.2065 -0.1998 -0.1944 -0.1897 -0.1856 -0.1785

-0.1727 -0. 1702 -0.16e0 -0. 1662 -0. I{49 -0. IE44 -0.1649

-0.1669 -0.1710 -0.1783 -0.1897

-0.2462 -0.2539 -0.257_, -0.26C9 -0.2636 -0.2672 -0.2725

-0.2753 -0._769 -0.2778 -0.2769 -0.2749 -0.2720 -0.2645

-0.2547 -0. 2_86 -0.2412 -0. 2317 -0.2191 -0.2C78 -0.1976

-0.1923 -0.1892 -9.1913 -0.2012

86.506 49.275 c,7,217 0.5 I.

-0.2793 -0.2696 -0.2664 -0.2625 -0.2690 -0.2562 -0.2_95

-0.24_5 -0. 2q03 -0.23__4 -0.2277 -0.2227 -fl. 2183 -C.2105
-0.2039 -0.2010 -0.1984 -0.1962 -0.1945 -0.1935 -0.1936

-0.1952 -0. 1990 -0.2061 -0.2174
-0.27q3 -0.2866 -0.2896 -0.2934 -0.2959 -0.2994 -0.3044

-0. 3069 -0. 3082 -0.3087 -0. 3075 -0.3051 - 0.3019 -C.2937

-0.2833 -0.2770 -0.2694 -0.2598 -0.2474 -0.2360 -0.2270

-0.2204 -0.2173 -0.2191 -0.2286

88.259 51.744 98.429 0.5 I.

-0.2981 -0.2885 -0.2854 -0.2816 -0.2791 -0.2754 -0.2687

-0.2637 -0.2596 -0.2526 -0.2468 -0.2417 -0.2371 -0.2290

-0.2220 -0. 21q0 -0.2162 -0.2138 -0.2118 -0.2107 -C.2105
-0.2119 -0.2156 -0.222@ -0.2336

-0.2981 -0. 3032 -0. 3083 -C. 3119 -0.31_4 -0.3178 -C.3226
-0.3251 -0.3263 -0.3266 -0.3251 -0.3226 -0.3192 -0.3107

-0.3001 -0. 2937 -0.2861 -0.2_65 -0.2_41 -0.2528 -0°2437

-0.2371 -0.2338 -0.2355 -0.2447

92. oqq 57. 150 101.085 0.5 O.
-3. O. 136.2 O. O. O. 0.4

NASA TM X-3431 TRANSPORT _US_L_GE - QUICK GEOMETRY MODEL
I.

I. 2. NOS_ TO TAIL
8£DYLO ELLI _DYBCL _D_[MHB BDYLSCP

BODYHI _iT I _DYMHB PDY_[CL BDYUECP
I.

I. I. O. 0 136.2

6. 6.

5. Z EDY BCL

ELLX 0.0 7.0 30.0 1.8 0.0 2. 3

LIN_ 30.0 1. _ C2.0 1.3
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Case No. 8 (Cont'd)

CUPI 92.0 I. 3 121.0 3.5 103.0 1 .2

CUHI 121.0 3. 5 I]2.0 4.0 125.0 4.0

LIN_ 132.0 4.0 136.2 4.0

6. Z EDYTCL

ELLX 0.0 7.0 45.9 15.25 0. 15.25
LINE 45.0 I=-.25 _7.0 15.0

LINE 57.0 !5.0 66.0 14.72

CUHI 66.0 I_. 72 _-=.0 13.8_ 88.5 I _.35
CUeI 95.0 13 .85 106.0 13.40 101.0 1 3.40

LINE 106.0 13._0 I-_6.2 13._C

I. Y HDY_CL

LINE 0.0 O. 0 136.2 0.0

6. ZEDYMHB

CUPI 0.0 7. 0 I_.0 7.9 8.5 7. c.

CUEI 1 9.0 7. q 32.0 6.8 29.0 7.9

CU_I 32.0 6. 8 -=C.0 4.0 40.0 4. O
LINE 50.0 4.0 78.0 4.0

CU_I 78.0 4. C _6.0 _.9 83.0 4.0

C[_HI 86.0 4. q 136.2 9.4 92.0 5.9

5. Y_DYM[]_

ELLX O. O. 49.0 7.55 O. 7.55

CU_I 49.0 i. _5 =6.0 7.2_ = 55.0 7. =_5

CUPI 58.0 7.25 80.0 7. 19 68.0 5.40

CUEI 80.0 7. 10 c.I.0 7.45 86.0 7.45

CUEI 91 .0 7.45 136.2 2 .8 113 . 0 7 ._5
2. Z _AP _X IS

CUHI 0.0 7.0 lq.O 7.9 8.5 7.9
LINE 19.0 7. 9 I_6.2 7.9

YMAP_XIS YHP.YTCL

Y EDV HCL YBDYTCL

Y EDYLSCP YBEYMHB

Y EDY[vSC_ YHtYMHB

Z EDYLSCP ZBDYBCI

ZEDYUSCP ZBEYTCL
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OUTPUTDATA (PRINTANDPLOT)FORMAT

Printed andplotted outputdata is provided. Sincea typical print or plot sequence

is lengthy, only a brief description of eachtype of output will be provided here. Note
that samplesof the plottedoutput canbe foundin the results andgeometryverification
sectionsof this report.

Printed Output

Theprinted output can be divided into three distinct sections.

SectionI InputDataListing/Geometry andGrid SystemVerification

SectionII RelaxationSolutionConvergenceHistory

SectionIII ComputedVelocities, Pressures, Forces, Moments, Reference
LengthsandAreas

Within eachsection, the outputdatawill beprinted in thefollowing sequence.

SectionI

• Input Data Listing

• Case Flow Condition

• Nominal Extent of Fine Embedded Grid Systems

• Quick-Geometry Model Error Diagnostic Information (BKOD = _-3 only)

• Configuration Position in Global Crude Grid System

• Body Crude/Fine Grid Limiters

• Global Crude Grid Coordinates

• Fine Embedded Wing Grid Coordinates

• Fine Embedded Body Grid Coordinates

Section II

Phase 1 (Global Crude Grid Solution)

The following information is printed for each crude grid iteration.

• Iteration Count

• Maximum Correction to the Flow Field Potential (zX eMAX )
A

• Grid Position of Z_MAX

• Wing Spanwise Circulation (F) Distribution
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B

Thefollowing information is printed at the endof the (_lobalCrudeGrid Solution.

• Section Mach Chart (0 indicates subsonic flow)

(1 indicates supersonic flow)

(8 indicates wing section surface)

(7 indicates wake surface)

• Span row number/_-position/local chord length, chord position, pressure

coefficient, disturbance velocity, section circulation (F).

(Crude/Fine Grid Interactions)

The following information is printed for each crude/fine grid interation cycle.

• Phase i (A) Output for Fine Embedded Wing Grid System

• Phase 1 (A) Output for Fine Embedded Body Grid System {for BKOD > 0 only)

• Phase 1 (A) Output for Global Crude Grid System

• Wing Spanwise Circulation (F) Distribution

For viscous interaction cases, the following information is printed every 20th

Phase 2

cycle.

Wing Upper/Lower Surface Boundary Layer Separation Point (x/c)

Boundary Layer 6 * Slope Added to Wing Bounda13 _ Conditions.

Section III

The following information is printed at the end of the solution process.

• Phase i (B) Output for Wing Embedded Fine Grid System

• , 3) Wing Upper/Lower Surface Boundary Layer SeparationFor (VISMOD = 2

Point (x/c)

Wing Section C g ,C m ,C d ,Cf
03 03 03 03

Note: C is section moment about local quarter chord position.
m

03

Spanwise Load, Moment, Drag Distributions

Wing Exposed Area, Total Area, Aspect Ratio, Taper Ratio, Mean Aero-

dynamic Chord, Average Chord, X-position about which Moments are computed

Total Wing , ,
CLwING CMwING CDwING
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• Wing

• Wing

• Body

• Body

• Body

• Body

Pressure Drag CDp(w )

Friction Drag CFwIN G

Grid Math Chart

Angular Cut Pressure/Velocity Distribution

Longitudinal Load and Drag Distribution

Length, Wetted Area, Projected Area, Max. Cross-seetional Area,

Reynolds Number based on body length

• Total Body CLBoD Y, CMBoDY, CDp(b )

• Body Pressure Drag CDp(b )

• Body Friction Drag CFB

• Total Configuration CL, CM, C D

• Wing-Body Wave Drag CDwAv E

• Wing-Body Friction Drag C F

• Wing-Body Lift-Induced Drag CDI

• Wing-Body Spanload Efficiency Factor (E)

Plotted Output

The plot output can be divided into two separate sections.

Section I (Input Geometry Verification)

• Title/Case/Flow Condition Label

• Body Cross-Sections

• Input Wing Sections

• Configuration Planview

• Configuration Head-On View

Section II (Computed Results)

• Superimposed wing pressure distributions (upper/lower surface) with total

wing C L, C M, C D label.

• Wing planform with section shapes at computed span stations.
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• Detailed wing section pressure distributions with section C g, C m, C d label.

• Detailed body angular cut pressure distributions.

• Body longitudinal load plot with body CLB, CMB, CDB and wing-body C

C D label.

• Wing-body spanload plot with span efficiency, lift-induced drag, wave drag,

friction drag label.
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INPUTGEOMETRYVERIFICATION

Codingfor the graphical inspectionof inputwing andbodygeometryhasbeen
included. Sincethe program requires considerablecomputertime andcore storage
to operateand somefacility budgetsmaynot provide for a numberof error-filled
submittals, it is recommendedthat the geometryverification modeof operationbe
usedbefore submitting for a completeandexpensiverelaxation solution. Thegraphic
outputcoupledwith printed outputfor geometry andgrid systems shouldbe sufficient
to diagnoseuser input errors. In particular, it hasbeenfoundadvantageousto make
the geometrycheckandperform a single crude anda single fine grid iteration (very
cheap)to checkcodeflow before a completeanalysis is performed.

Thebodycross-section array is first to beplotted after the casetitle andflow
conditionsare listed (seeFigure A-l). In this case, anerror in specifyinga Z-
coordinateof the canopytop centerline is apparent. In Figure A-2, anerror in
specifyinga Y-coordinate of thewindshieldbaseis illustrated. Finally, Figure A-3
illustrates the corrected andfinal shapeof the fuselageto be analyzed.

Thedefining wingchord sectionsare displayedafter the bodygeometry (see
Figure A-4). Each is blownup to a ten inch chord so errors in coordinateswill
becomevisible. It is important to note that there is nomappinginvolved in the
present method, thus, no coordinatesmoothingor manipulationis employed. As a
result, what you input is what youget. Irregularities in input coordinateswill cause
oscillations in computedpressure distributions.

A configurationplan-viewwill follow the wing sectionfigures. This shouldbe

usedto insure that the wing planform is properly definedandits placementon the
fuselageis correct (seeFigure A-5). Finally, a head-onview is plotted (seeFigure
A-6). Onceagain, check to see that the wing andbodyare indeedattached.
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GULFSTREAM [I

]SOLQTED BODY

NACH = 0.800

BE = 1.00 M

ISOLATED FUSELAGE

CASE l

ALPHA = S. tO

BOOT CROSS-SECTIONS

Figure A-1. Sample Input Geometry Verification Plot with Error in Z-Coordinate

of Canopy Definition

GULFSTREAM II ISOLATED FUSELAGE ).
i SOLICITED BODY CASE 1 _-,",",.33

MACH = O. 800 ALPHA = So 1.0 :"-.",'","'_"'_,"_

BODY CROSS-SECTIONS

Figure A-2. Sample Input Geometry Verification Plot with Error in Y-Coordinate

of Canopy Definition
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GULFSTREAM [I

ISOLATED BODY

MACH = 0.800

RE = 1.00 M

ISOLATED FUSELAGE

ALPHA = 3.10

)
BODY CROSS-SECTIONS

,))'

Figure A-3. Sample Input Geometry Verification Plot for Fuselage

INPUT NING SECTION ] 2T/B = 0.00

INPUT NING SECTION 2 2TtB = 0. I2

/t"-----"

INPUT N]NO SECTION 3 2Y/B = 0.35

Figure A-4. Sample Input Geometry Verification Plot for Wing Sections
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PLAN VIE_

Figure A-5. Sample Input Geometry Verification Plot, PlanView

\

J

WING PLANE

HEAD-ON VIEW

Figure A-6. Sample Input Geometry Verification Plot, Head-On View
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SUBROUTINE CALL SEQUENCE

NOTE :

@
@
©

MAIN

SLOPE

SPLINE

BODLIM

_GEVER_

Fuselage Geometry Definition

Fuselage Geometry Interrogation

Relaxation/Boundary Layer Routines

SPLINE

SAREA
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QWIKDE

SUBROUTINE CALL SEQUENCE @

-- CSMDEF

-- CSMCHK

--BLMDEF

----BLMCHK

-- DSE TU P

--DLOKUP

-- CURVES

--KRVDEF

-- GEMOUT
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SUBROUTINECALL SEQUENCEQ

--BLMSET

QWIKLO- CSGEOM

--BLGEOM

[-_ BLGEOM

-- CSMSET---_CSMCO E

--AORDER

-- THE LIM --

SINCOSCSCALC VDOTV

--CSMFLTTBLGEOM MDOTV

_--CSMCOE

_LIN LIN

-- CSMINT --_ LINE LL

r SINCOS E LLE LL--

-- CSCALC --_VMDDO:T _

-- CROSS

-- ELLCAL

--ELLCAL

--CROSS

--ESTNXT

-- SETNXT
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CONTRL-

SUBROUTINE CALL SEQUENCE

TRID
--GLOBAL t..--BODYC _ TRID

--BODVAL

--INTURP -- FILL

--INTERB

--POCRUD

--WINGF _TRID

t--.-- INTURP

--BODYF _ TRID

--PLOTER

--BODFIX

--POF INE --

_INTEG _ SPLINE

--LIDRAG- MAST

-@
-- SPLINE

-- SPLINE
I BODFM ---4

__a____ _ L@
SMOTH

NOTE : @

©

--FIT2

-- DE LTAI

INTRP

-- SERIE S -- RFAST -- FAST

BOUNDARY LAYER ROUTINES
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SUBROUTINE CALL SEQUENCE Q

_SLOPY

-- SPLNI

_ BLLAM --

STRIPK LVBRAD

-- SP LNIX

-- VNUSUB

-- SLOPBL

_GRAD

--TANCAL

SPRINT

-- FINT

-- SOLVEB

-- ORDIN

--REDUCX

-- RLORD

-- GORD

-- SIMPSN
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AORDER

BLAR

BLGEOM

BLLAM

BLMCHK

BLMDEF

BLMSET

BODFIX

BODFM

BODLIM

BODVAL

BODYC

BODYF

CONTRL

SUBROUTINEDESCRIPTION

Orders a set of numbersby permutation index.

Main control routine for laminar andturbulent modifiedchordwise

boundarylayer calculation. Computesboundarylayer displacement
thickness (_*) slopefor viscous/inviscid interaction modeof operation.

Assigns bodyline modelvaluesandderivatives to control point
coordinates.

ComputesThwaites laminar boundarylayer with Rott andCrabtree
compressibility modification.

Correlates andchecksthe input datadeckandthe indices for the

generatedbodyline math models.

Definesbodyline models from the input data.

Controls the determinationvaluesandfirst andsecondderivatives for

all bodyline modelsat a givenx-station.

Computespotentialson fixed wing/wakesurface in bodyfine grid given
solution in fine wing grid andglobal crude grid.

Computesintegratedbodyforce andmomentcoefficients.

ComputesJ andK limiters for bodyboundaryin bothcrude andfine

grid systems.

Computesbodyboundarypoint potential values.

Finite difference approximationsandrelaxation solution for body

boundaryin crude grid.

Finite difference approximationsandrelaxation solution for fine body
grid.

Main control routine for relaxation solutionof governingequation,
interpolation, boundarylayer analysis andprinted/plotted output.
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CROSS

CSCALC

CSGEOM

CSMCHK

CSMCOE

CSMDEF

CSMFLT

CSMINT

CSMSET

CURVES

DELTA1

DLOKUP

DSETUP

ELLCAL

ELLELL

Solvesfor the interaction of two lines in a plane.

Computesradial position andderivatives for specifiedcross-section
model, are, and 0 '

Is the main subroutine in the look-upportion of theQUICKsystem.
It is called to establishr' = f (0', x). It calls appropriatesubroutines
to evaluatebodyline valuesandconstruct cross-sectiongeometry at

a givenx-station. It is usedfor all geometrymodel interrogation.

Correlates andcheeksthe input datadeckandthe indices for the cross-
sectionalmathmodel.

Composesthe equationswhichare to definethe cross-section geometry

at a given station.

Logically defines the cross-section models from the input data.

Creates control point definitions to permit the insertion of a smooth

filletbetween cross-sectional arcs.

Locates user specified intersections between cross-sectional arcs

and adjusts their use-theta limits.

Sets up the control point coordinate arrays used to define the cross-

section geometry at a specified x-station.

Calculates values and first and second derivatives for individual curve

fits.

Interpolation routine for wing spanload.

Is a simple dictionary look-up routine. Itassigns an index to match

an input name to a codeword list, but is not capable of adding new

items to that list.

Is an adapting dictionary look-up routine. New items are added to a

codeword list, an index (counter) is retulmed for the codeword, and an

indicator (INEW) is set equal to 1 when a new item is encountered.

Set up for ellipse.

Calculates intersection of two ellipses.
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ESTNXT

FAST

FILL

FINT

FIT2

GEMOUT

GEVER

GLOBAL

CORD

GRAD

INTEG

INTERB

INTRP

INTURP

KIRVDEF

LIDRAG

LINE L L

LINLIN

MAIN

MAST

Estimates non-linear root by modified inverse quadratic.

Fast Fourier transform of complex data.

Performs interpolation controlled by INTURP.

Simultaneous triple interpolation.

Determines cubic spline fit coefficients for input spanload distribution.

Ensures that all body lines required by a cross-sectional model are

defined for the range of that model.

Controls geometry verification plotting.

Finite difference approximations and relaxation solution for global

crude grid.

Bradshaw's G function.

Slope of a function at its tabulated points.

Integrates wing load distributions for lift, moment and drag

coefficients.

interpolation routine for body fine/global crude grid communication.

Converts input spanload distribution to a fine over spaced distribution.

Controls interpolation for filling fine mesh points using crude grid

potential values. Updates crude mesh given fine solution. Updates

fine mesh given crude solution.

Calculates coefficients for the various curve fits associated with body

line math models.

Main control routine for computing lift induced drag efficiency "E"

using a Fourier analysis.

Solves for the intersection of a line and an ellipse.

Solves for intersection of two lines.

Reads all input data except for fuselage math model. Sets up arrays

and storage areas. Sets up all crude and fine coordinate systems.

Controls cubic spline fitfor interpolation of input spanload distribution.
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MDOTV

ORDIN

PLOTER

POCRUD

POFINE

QWIKDE

QWIKLO

REDUCX

RFAST

RLORD

SAREA

SERIES

SETNXT

SIMPSN

SINCOS

SLOPBL

SLOPE

SLOPY

SMOTH

SOLVE B

SPLINE

SPLN1

SPLNIX

SPRINT

Performs matrix multiplication of a vector.

Linear interpolation.

Controls all graphic output (except input geometry verification).

Prints results in global crude grid.

Prints results in wing and body fine grid arrays. Integrates wing

pressure distributions. Computes body friction drag.

Main control routine for Quick-Geometry definition and check out.

Main control routine for interrogation of Quick-Geometry math model.

Performs interpolation to new grid.

Fast Fourier transform of real data.

Bradshaw's L function.

Computes body surface area given an array of cross-sections.

Determines Fourier series coefficients.

Reorders points for non-linear root finder.

Simpson's rule integration.

Adjusts input interrogation angles for top and bottom dead center.

Slope of a tabulated function at an arbitrary point.

Computes boundary conditions for wing surface and axisymmetric bodies.

Computes wing surface slopes.

Function for smoothing an array of values.

Solution of two simultaneous linear algebraic equations.

Computes a cubic spline through a set of points.

Computes continuous derivatives interpolation by means of a cubic fit.

Entry for special cases requiring extrapolation beyond ends of X and Y

tables.

Prints output of profile results.
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TANCAL

THELIM

TRID

VBRAD

VDOTV

VINTER

VNUSUB

WINGF

Computescharacteristic anglesfor use in the solution (equation21of

BradshawandFerriss).

Createsandcontrols use-theta arrays to establishcontinuity in the
cross-sectional model.

Solvestri-diagonal matrix.

ComputesBradshawcompressible 2-D turbulent boundarylayer
simulating 3-D boundarylayer on infinite yawedwingby Nash-Tseng
modifiedchord technique.

Computesa vector dot product.

Performs cubic 6* fit for separatedboundarylayer in wing section
coveregions.

Computesthe Nasheffective viscosity.

Finite difference approximationsandrelaxation solution for wing

fine grid.
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KEY VARIABLEDESCRIPTIONS

This description of key program variables andconstantswhich are locatedin
several commonblocks will beuseful in understandingflow logic.

VARIABLE

AK

ALAM

ALPHA

AMAC

AMACH

AM2

AOA

AR

BAREA

BCF

BCL

BC LF

BCU

BCUF

BNOSE

BODCD

BODCL

BODCM

BPAREA

DESCRIPTION

The value 1-M 2.

Wing taper ratio (h).

Angle-of-attack (radians).

Wing mean aerodynamic chord (MAC).

Mach number.

The value M 2.

Angle-of-attack (degrees).

Wing aspect ratio (A_).

Body wetted area.

Body skin friction coefficient.

Wing crude grid lower boundary slopes.

Wing fine grid lower boundary slopes.

Wing crude grid upper boundary slopes.

Wing fine grid upper boundary slopes.

X-coordinate of body nose.

Body (integrated) drag coefficient.

Body (integrated) lift coefficient.

Body (integrated) moment coefficient.

Body projected area.
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VARIABLE

BS

BTAIL

CA

CAV

CB

CC

CD

CDI

CDINT

CE

CF

CFINT

CIR

C LINT

CMINT

CMI,OC

CPL

CPU

CSCUT

DE LSL

DE LSU

DETA

DESCRIPTION

Body plot scaling coefficient.

X-coordinate of body tail.

Global crude grid stretching coefficient (} x ).

Wing average chord (CAv)"

Global crude grid stretching coefficient (} xx ).

Global crude grid stretching coefficient ('1 y).

Global crude grid stretching coefficient (7 yy).

Lift induced drag coefficient.

Wing section integrated drag.

Global crude grid stretching coefficient ( fz ).

Global crude grid stretching coefficient (Czz)"

Integrated wing section friction coefficient.

Wing circulation ( F ).

Wing section integrated lift.

Wing section integrated moment.

Wing section integrated moment about local quarter chord.

Wing lower surface pressure coefficient.

Wing upper surface pressure coefficient.

Body x-station for cross-sectional cut.

Wing boundary layer slopes for section lower

surface.

Wing boundary layer slopes for section upper

s ur face.

Global crude grid mesh spacing in ,7 direction.
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VARIABLE

DIM

DRDXC

DRDXF

DXB

DXI

DXW

DYB

DYW

DZB

DZETA

DZW

E

ETA

G

II

IBGI

IBGL

IL

ILEF

IMACtt

IMAXB

IMAX

IMAXW

DESCRIPTION

Configuration length for non-dimensionalizing maximum

potential updates.

Axisymmetric body slope distribution in crude grid.

Axisymmetric body slope distribution in fine grid.

Fine body grid mesh spacing in X direction.

Global crude grid mesh spacing in _ direction.

Fine wing grid mesh spacing in X direction.

Fine body grid mesh spacing in Y direction.

Fine wing grid mesh spacing in Y direction.

Fine body grid mesh spacing m Z direction.

Global crude grid mesh spacing in _" direction.

Fine wing grid mesh spacing m Z direction.

Wing spanload efficiency.

,7 coordinates for global crude grid (transformed

space).

The value (_+ I) M 2.

The value ( "Y-I) M 2.

Crude grid I value of body grid inner overlap region (forward).

Crude grid I value of body grid inner overlap region (aft).

Crude grid wing leading edge I values.

Wing fine grid leading edge I value.

Code for subsonic (0) or supersonic (i) flow at a grid point.

Maximum number of fine body grid points in X direction.

Maximum number of crude grid points in X direction.

Maximum number of fine wing grid points in X direction.
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VARIABLE

INOSE

INOSEC

IT

ITAIL

ITAILC

ITEF

ITER

JBG

JMAX

JMAXB

JROOT

JSD

JSDC

JTIP

KBB

KBOD

KBC

KBGL

KBGU

KBW

KLOC

KLOF

KMAX

DESCRIPTION

Fine body grid I value at body nose.

Crude grid I value at body nose.

Crude grid wing trailing edge I values.

Fine body grid I value at body tail.

Crude grid I value at body tail.

Wing fine grid trailing edge I value.

Iteration count.

Crude grid J value of body grid inner overlap region (side).

Maximum number of crude grid points in Y direction.

Maxinmm number of fine body grid points in Y direction.

Grid J value at wing root.

Fine body grid J value at first influence of body boundary

points.

Crude grid J value first influenced by body boundary point.

Grid J value at wing tip.

Fine body grid K value at wing plane.

Code for body in crude grid (0) or fine embedded grid (1).

Crude grid K value at wing plane.

Crude grid K value of body grid inuer overlap region (lower).

Crude grid K value of body grid inner overlap region (upper).

Fine wing grid K value at wing plane.

Crude grid K limiters for body surface (lower).

Fine grid K limiters for body surface (lower).

Maximum number of crude grid points in Z direction.
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VARIABLE

KMAXB

KMAXW

KOD B

KUPC

KUPF

MAXIT

MAXITF

MODV

NCASE

NINB

NINW

NOSE B

NOSEW

NPOA

NPOB

NSECT

NTC

NTF

NTOTB

DESCRIPTION

Maximum number of fine body grid points in Z direction.

Maximum number of fine wing grid points in Z direction.

Body option code . . . cylinder, axisymmetric, arbitrary

body (input as BKOD).

Crude grid K limiters for body surface (upper).

Fine grid K limiters for body surface (upper).

Maximum number of initial crude grid iterations

(input as AXIT).

Maximum number of crude/fine grid cycles (input as AXITF).

Mode of operation for viscous effects (input as VISMOD).

Case description . . . wing, body or wing-body case (input

as CASE).

Number of ordinates defining axisymmetric body shape

(input as BNIN).

Number of ordinates defining each wing section (input as ANIN).

Blunt/sharp nose body code (for spline fit).

Blunt/sharp nose wing code (for spline fit).

Number of fine grid points between leading and trailing

edge of each wing section.

Number of fine body grid points between nose and tail of body.

Number of defining wing sections (input as ASECT).

Number of points representing body cross-sections in crude

grid.

Number of points representing body cross-sections in fine

body grid.

Total number of fine body grid points in single X-Z plane.
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VA RIA BLE

NTOTAL

NTOTW

NWPO

PBL

PC1

PC2

PC3

PC L

PFI

PF2

PF3

PFL

PI

RADIUS

RAVC

RAVF

RC

RE

RF

DESCRIPTION

Total number of crude grid points in single X-Z plane.

Total number of fine wing grid points in single X-Z plane.

Code for print out of crude grid results for diagnostic

purposes (input as WPO).

Fine body grid wing/wake lower surface potentials.

Global crude grid potential (¢) arrays (Note: Only three

planes are in core at one time.)

Global crude grid potential (_) arrays (Note: Only three

planes are in core at one time.)

Global crude grid potential (¢) arrays (Note: Only three

planes are in core at one time.)

Crude grid wing/wake lower surface potentials.

Fine embedded wing and body potential arrays. (Note: Only

three planes are in core at one time).

Fine embedded wing and body potential arrays. (Note: Only

three planes are in core at one time).

Fine embedded wing and body polen,ial arrays. (Note: Only

three planes are in core at one time).

Fine wing grid surface potentials, lower surface

rr

Radius for body cylinder option.

Crude grid average body radius for b)undary condition calculation.

Fine grid average t_dy radius for lx)undary condition calculation.

Axisymmetrie body radius distribution in crude grid.

Freestream Reynolds number.

Axisyn_metric body radius distribution in fine grid.
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VARIABLE

RIN

RMAX

SDD

SEXP

SFD

SGRAD

SLD

SMD

TItETC

THETF

T IT LE

TSLOC

TWIST

W

WAREA

WCD

WCF

WCL

WCM

DESCRIPTION

Input R ordinates defining axisymmetric body.

Body maximum radius for computational body surface.

Wing spanwise drag coefficient CC d .

CAV

Wing exposed area.

Wing spanwise friction coefficient CCf .

CA V

Body side slope at wing-body juncture.

Wing span load coefficient CCj.

CAV

Wing spanwise moment coefficient CC
m

CAV

Body crude grid angular cuts.

Body fine grid angular cuts.

Case title for identifying graphic and printed output.

Wing local sweep angle at wing fine grid boundary points.

Wing twist (incidence) distribution.

Relaxation factor _0 .

Wing area SW.

Wing drag coefficient.

Wing friction drag coefficient.

Wing lift coefficient.

Wing moment coefficient.
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VARIABLE

WCORD

WS

X

XBF

XI

XILE

XINB

XINW

XITE

XLE

XLET

XMOM

XNC

XNF

XNOSE

XOL

XPL

XPT

XSF

XTAIL

XTE

XTET

XWF

DESCRIPTION

Wing section local chord length.

Wing plot scaling coefficient (input as SCALW).

X coordinate for global crude grid (physical space).

X coordinate for body fine grid.

coordinate for global crude grid

(transformed space).

coordinate of local wing section leading edge.

Input X ordinates defining axisymmetric body.

Wing section defining X-ordinates.

coordinate of local wing section trailing edge.

X coordinate of local wing section leading edge.

X coordinate of wing tip leading edge.

Position about which configuration moments are computed.

Body normal vector X direction at crude grid body points.

Body normal vector X direction at fine grid body points.

X coordinate of body nose repositioned in crude grid.

Non-dimensional distance along body length and wing chord.

X coordinate of input wing section leading edge.

X coordinate of input wing section trailing edge.

X coordinate defining wing sections at each fine grid

boundary points.

X coordinate of body tail repositioned in crude grid.

X coordinate of local wing section trailing edge.

X coordinate of wing tip trailing edge.

Fine embedded wing grid X coordinate.
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VARIABLE

Y

YBF

YINL

YINU

YNC

YNF

YOB

YP

YSF

YTIP

Z

ZBF

ZETA

ZNC

ZNF

ZWF

ZWING

DESCRIPTION

Y coordinate for global crude grid (physical space).

Y coordinate for body fine grid.

Wing section defining lower Y-ordinates.

Wing section defining upper Y-ordinates.

Body normal vector Y direction at crude grid body points.

Body normal vector Y direction at fine grid body points.

Wing span station (2Y/b).

Y coordinate of input wing section trailing edge.

Y coordinate defining wing sections at each fine grid

boundary points.

Y coordinate of wing tip.

Z coordinate for global crude grid (physical space).

Z coordinates for body fine grid.

_" coordinate for global crude grid (transformed space).

Body normal vector Z direction at crude grid body points.

Body normal vector Z direction at fine grid body points.

Fine embedded wing grid Z coordinate.

Wing height relative to center of body.
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RECOMMENDATIONSFORUSAGE

Thething that becomesapparentwhenfirst using a three--dimensionaltransonic

relaxation schemeis that a considerableamountof computertime andcore is required
for a solution. Perhaps, anorder of magnitudeincreaseover typical resources for a
subsonic/supersonicpanelmethodwill benoted. And, all of this effort will result in

a solution for a single angle-of-attack, Machnumber, andReynoldsnumbercombination.
It becomesvery important to conservetime andresources whenusing this type of
methodology. Thegeometryverification section of the methodhasbeendevelopedfor
this reason. It hasbeenfoundadvantageousto use this codein the following manner.
Whenfirst setting up for analysis of a newconfiguration, plan on submitting a

secondaryjob alongwith the primary job (whichwill provide the completesolution).
The secondaryjob shouldbe set (AXIT = 0, AXITF = 0) for the geometry verification

mode or set the solution for a single crude and single fine grid iteration. This will

provide a complete set up and cycle through the entire code. Since time requirements

will be low, the secondary job should be returned quickly. If errors are found, the

primary job can be cancelled to save costs and the error can be quickly corrected.

Analyses performed on highly swept/highly tapered wing planforms at extreme

flow conditions indicate that occasionally an erroneous diverging condition at the wing

tip is possible. This situation can be identified by increasing values of _'MAX at the

last span station on the wing. For severe cases, propagation of the discrepancy in-

board will be noted. This problem is caused by the large differences in resolution

between the embedded wing grid system and the surrounding crude grid system. It

occurs only when strong shock waves exist at the wing tip. A code modification has

been developed to relieve this problem so solutions at extreme conditions can be

obtained. In the main program, a parameter "KTIP" has been set to 0. This will

provide a normal solution process. If wing tip problems are encountered, "KTIP"

should be set to 1 (KTIP = 1). This will have the effect of reducing wing fine grid

density in general (80 evenly spaced points along the chord) and severely stepping

down resolution at the wing tip. This will make the crude and fine grid systems more

compatible from a numerical standpoint. This option should not be used for the
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majority of casesfor which it will notbe required. Notethat the includedsamplecases

provideexamplesof geometriesandflow conditionsfor whichthis optionwasnot

necessary.

In most cases, modelingwing-bodycombinationsusingthe crude grid body

only option (BKOD< 0) shouldbequite sufficient. As might beexpected,computing
resources are conserved. There is normally high grid density in the wing-body

juncture region becauseof the crudegrid stretching with its origin near the juncture.
If details of the fuselageare important (canopies,blisters, andfairings), the fine

bodygrid option is recommended(BKOD> 0). Isolatedbodies, becauseof the reduced
computingrequirements, shouldalwaysbeanalyzedusingthe embeddedbodygrid

system.

It is recommendedthat the wing crude grid system outputoption(WPO= 1)be

used. While crude grid wing Cp distributions are of little valuebeyonddiagnosing
errors, the Machcharts will providea measureof the extentof the supersonicflow

region into the flow field.

The wingandwing-bodysampleeaseswere all computedby using 100crude
iteration cycles followedby S0crude-fine iteration cycles. Comparisonsmadewith
experimentaldatafor the samplecasesandadditionalwing-bodyconfigurations
indicatedthat this level of computationalconvergencewouldbe satisfactory for

engineeringapplications. Any discrepanciesbetweenthe experimentandanalysis
were attributed to the methods small-disturbance character and the high flow gra-
dients encountered in certain applications. Waggoner(40) , however, was shown

that the basic 100/80 iteration cycle count may be insufficient for high aspect ratio

supercritical winK. cases. This may, in part, explain correlation discrepancies

noted for the NASA supercritical wing-fuselage configuration (page 82) and the

Douglas wing cylinder configuration (pa_e 92). For this class of geometry, the

total number of iterations may have to be increased by a factor of 3 or 4. The

user should be aware of this lack of convergence if applications to high aspect

ratio wings or suDercritieal type sections are of interest.
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