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FOREWORD

The reseavch results in this report on the sudden bending of a laminated

plate containing a through crack represent a portion of the work performed for

the NASA - Lewis Research Center ir, Cleveland, Ohio for the period February 13,

1979 through February 12, 1380 under Grant NSG 3179 with the Institute of Frac-

ture and Solid Mechanics at Lehigh University. The Principal Investigator of

the project is Professor George C. Sih. The co-author, Dr, E. P. Chen, was a

faculty member at Lehigh Univerl'I ty and is now employed by the Sandia Laboratory

in New Mexico. The encouragement and helpful comments made by Dr. Christos C.

Chamis, the NASA Project Manager, are gratefully acknowledged.
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SUDDEN BENDING OF A CRACKED LAMINATE

by

G. C. Sih
Institute of Fracture and Solid Mechanics

Lehigh University
Bethlehem, Pennsylvania 18015

and

E. P. Chen*
Sandia Laboratories

Albuquerque, New Mexico 87115

ABSTRACT

A number of laminated plate theories have been developed in recent times to

analyze the static and dynamic response of composite laminates with or without

the presence of stress concentrators such as holes, cracks, etc. Many of the

theories tend to quickly become intractable when considering the determination

of the state of affairs near the singular crack edges that are present in the

laminate, particularly if the loading is time dependent. Additional uncertain-

ties arise due to the lack of information on the mechanical properties of the

interface through which load transfer takes place between the adjacent layers.

This paper focuses attention on the intensification of stresses near a through

crack in the laminate that suddenly undergoes bending. A dynamic plate theory

is developed to include many of the essential features of the problem such as

material nonhomogeneity in the thickness direction, realistic crack edge stress

singularity and distribution while the parameter dependence of various signifi-

cant quantities is also assessed. Of particular interest is the variation of

the dynamic stress intensity factor with time. Numerical results for different

*Dr. E. P. Chen was on the faculty at Lehigh University.
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geometric and material constants are displayed graphically to show how they can

affect the transfer of load to the vicinity of a through crack in the laminate

that undergoes sudden bending.

INTRODUCTION

The damage of laminated composite materials is, to say the least, very com-

plex since it involves various modes of failure such as fiber breaking, matrix

cracking, interface delamination, etc. Analytical modeling would be beyond ap-

proach if all these failure modes were to be accounted for. The spirit of frac-

ture mechanics is to assume that a critical single flaw or damage zone exists

and can lead to instability in terms of load applied to the laminate. Damage

accumulated in the composite other than the dominant flaw may often be simulated

by changing some of the mechanical properties of the composite which are usually

the stiffness of the constituents, Although not all laminates can be identified

with a single characteristic damage state, the single-flaw fracture mechanics

approach will be taken in this analysis in order that a sensitivity study on the

physical parameters affecting laminate fracture can be made possible. One of

the main objectives of this investigation is to come forth with a feasible dy-

namic theory of the laminate plate for analyzing composite failure due to crack

propagation.

As a consequence of increased use of laminate composites in aircraft and

other high speed vehicles, the analysis of the fracture behavior of layered com-

posites has attracted the attention of a considerable number of investigators

[1,21. A variety of diverse approaches has been proposed to analyze laminate

failure and a collection of papers on this subject can be found in [u]. The

role with which the interfaces play in transferring the load from one layer to

-2-



the next in the laminate was emphasized, Because of the difference in the ma-

terial properties of the adjacent layers, the stresses across the interface ex-

perience steep gradients. Only recently, a comprehensive, study was made on how

the conditions in the interface can influence composite failure [4). Even though

the interface may be relatively thin when compared with ocher dimensions of the

composite, the resulting stresses can be sensitive to the material properties

of the interface depending on the loading conditions. There exists no theory at

the present which can relate the strength of a composite structure to the condi-

tions in the interface. This aspect of the problem is emphasized in this re-

port.

1

The aforementioned difficulties become even more overwhelming when the load-

ing is time dependent. There is,c'w need to emphasize the virtue for constructing

approximate dynamic theories for laminate composites, particularly for handling

crack problems. In the case of bending loads, it is essential that the three

physical boundary conditions of bending moment, twisting moment and transverse

shear stress be satisfied ir;dividually on the crack edge. Such a theory has

been developed by Mindlin [5] for a single layered plate made of isotropic and

homogeneous materi0 and applied to solve a number of crack problems [6]. An

equally effective theory is described herein for the dynamic bending of laminate

plates. Each layer of the laminate assumes different elastic properties and

is attached to the next layer with continuous strains across the interface.

The problem of a through crack in a balanced symmetric laminate is solved for

a moment applied suddenly on the crack surface. Not only are the qualitative

features of the three-dimensional stress distribution preserved in the vicinity

of the crack front, but, perhaps more significantly, the dynamic stress intensity

-3-



factor, which is a quantitative measure of the load transmitted to the crack,

is determined in terms of the significant material and geometric parameters such

that an effective study 5n laminate fracture can be made.

DYNAMIC THEORY OF LAMINATED PLATE

Without loss in generality, a four layered composite plate will be considered.

as shown in Figure 1. The two middle layers are made of a material with shear

modulus u i t Poisson's ratio v l and mass density p l while the two outer layers

have the properties u2 , v2 and P 2 . A set of rectangular Cartesian coordinates

x, y and z are attached to the mid-plane of the laminate such that the layer

'properties are symmetric with respect to the xy-plane with z being the thickness

coordinate. The total height of the laminate is h with each layer having the

same thickness h/4. The outer edges of the laminate are sufficiently far away

from the crack so that their influences can be neglected.

&t6ic ae,aumpt^ons and %e,CAUona. The layers of the laminate in the thickness

possess different material properties vp v j and pj (j = 1,2) such that (u1}

vl ,p l ) prevails in the range 0 <Izl <h/4 and (u20 v2I P 2 ) applies to h/4<(zl<h/2.

The surfaces of the laminate are free froi^. tangential tractions

-4-
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a X
z (2)

ITxz T
yz x Q for z a h/2

but may be subjected to normal pressures q 1 and q2 as follows:

-gl( x ,y , t ) for z a h/2

-g2 (x,ypt) for z = -h/2

In the sequel, the notation

q(x+y+t) : g2(x,y ,t) - q l (x,y+t)
	

(3)

will be used. In plate theory, it is more convenient to work with the moments

Mx , My , Hxy and shearing forces Qx , Q  defined in the usual manner as

h/2

(Mx,My,Hxy) _I (ax,ay,Txy)zdz
-h/2

h/2 f 

( Txz'Tyz)dz
-h/2

From the stress and strain relations and equations (4), the expressions

Mx = D,11(rx)
1
 + vl(ry) 1 1 + D2 1(rx ) 2 

+ v2(ry)21

My = Dl [(ry ) l + vl (rx ) I I + D2 [(ry ) 2 + v2(rx)2^

H	 (1 vl ) p
1 -v2 D

xy	 1(r xy
)
 l 

+ (
=) 2 (r xy ) 2

and

(4)

(5)

Qx =	 hC ^` l (rxz ) 1 + u2(rxz)2

Qy = T h[u l ( ryz ) + u2(ryz)
1	 2	

-5-
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are developed provided that the quantities (r	 (r(ry)^^---, (ryz )3 0112)

stand for

[(rx) , ( ry ) , (rxy) ] :	 hj4 (ex,ey9yxy)zdz
1	 1	 1	 -h/4

[( r 	(r(ry ) , ( rxy) J = 9 7 [-hj4 (ex,ey.Yxy)zdz
2	 2	 2	 -h/2

h/2

	

+ hI (ex ,ey, Yxy )zdzJ	 (7)

I( rxz) , ( ryz ) J = F hj4 (rXz ,Yyz)dz
1	 1	 _h/4

-C(rxz) , (ryz ) J =	 [ hj4 l.YX7 )Yyzidz + hj2 (yXz,yyz)dzJ
2	 2	 -h/2	 h/4

In equations (5), D l and D2 are the flexural rigidities of the layers given by

D1 =	 D2 = 48(1-727

ul h3	 7u2h3	

(8)

The constant K in equation (6) accounts for the thickness-shear motion of the

plate and takes the value of n/Vrl--2 as given in [51.

Now, let the displacements be continuous through the interfaces by letting

ux = ZVx(x,r,±), v  = Zty(x,Y)t)I W  = w ( x ,Y,t)

	

(9)

Making use of the strain-displacement relations together with equations (7) and

(9), it is found that
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(rx) _ (rx)	
a^ , 

(ry) x (ry) x 
a

1	 2	 1	 2
By

a^ a
.. ^'x

Crxy )^	 (rxy ) 2	
ax	 ay

(rXz) 1 	 (rxz )2 	$X + ax' (ryz)1 ^` (ryz)2 - ^y + ay

Hence, the moments M x , My and Hxy can be expressed in terms of the displacement

functions fix , ^ y and w:

DI'x	 asMx	
DO[ax

_ + ^q ay

q)	 Dq► x
My = DD [

a
Y + "0 

ax 3

Hxy = r (1-'Qp)( ax + Dyx

The same applies to Qx and Q  which become

Q  = 12 hup(V'x + ax)

Qy = 12 huO (V)y + ay)

Note that DO' 
V  

and u0 are defined as

D1 v1
+D2v 2 	

ul+P2
pQ = p1 + D2 , vD	

D0	
µp - -- —

i

(10)

(11)

(12)

(13)



Equations (11) and (12) are, in fact, similar to those derived in [5] for the

case of a single Layer homogeneous plate except that the constants D, v and p

are now replaced by D0 , v0 and 110'

Govetc.►r.utg dtb6eAemtin.t equatto ►te	 Consider the elastodynamic equations of

motion givo by

ac  arty 1TA

ax	 ay + az

"I xY + I(Iy + ITYZ
ax	 ay	 a z

aT Xz	 aTyz	
111z

Ox + ay * az

a° u
0(z) a

aav

P(x) at	 (14)

a'-w

P(z) 8-

in which the mass density may vary in the thickness direction of the laminate.

Multiplying the first two equations by z, expressing the stresses in terms of

moments and integrating the results with respect to z from -h/2 to h/2 lead to

aM	 aH	 P 
ax +^ ` Qx = ,^. 113 a

s% + a2
-
 _ P^ awl

ax ay Qy 12 h at-

aQX+^ +q_ph3

in which

PO _	 (Pl + 7P2) 1 P	 T (Al + P2)

(15)

(16)
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The result of inserting equa
i
tions (11) and (12) into equations (15) is a

system of second order partial differential equations

(1-v )	 O+v )	 a^	 any	 2	 p	 a
0 D 92,y +	 O p a( x + .Y) n h ^, (^ + aw) s O h 3 + x0 x ^— b ax ax	 ay " 1r' 0 x ax 17 a^

( 1 -VO)	 ( 1 +VO)	 a	 aIx a^ )	 7r 2h	 aw	 Pb	
820

_—^— p0o2 ^,y + —=I p0 ay ( ax + 5"'I "" TF 
uO(, y + ay) _ TY hs aA

(17)

,rah u0(V2w + 3X +
a ) q=^h a=ay

where v2 - a2/;X2 + a 2/aye is the Laplacian operator in two dimensions. Equa-

tions (17) may be combined to give a single equation

POO 92
( D0 

p2 = a^^') (72

12D 

0

solving for the transverse

	

_ 0

2	 2
a=)w + ph a=

h2 POa2

	

+ o 
9	 (18)

3 displacement w(x,y) of the laminated plate.

Boundary eon"onb. In order to derive the boundary conditions that must

be specified on the crack, consider the energy stored in the laminate

W = hf
2 
Wdz = 

y (Ma rx 
+ Myry + 

Hxyrx + 4x rxz + 4yryz)	
(19)

-h/2	 y

in which r x , ry ,---, ryz are related to *x , qjy and w as indicated in equations

(10). Equations (5) and (6) may thus be applied to render

-9-



4W = Do(1 +vo)(rx+ry ) z + V
2

 U0h(r
yz+r2 ) + DO (l-vO )C( rx - ry) Z + rxy^	 (20)

Since the physical constants D O (l+vO ) and DO (1-vO ) are positive, W is a positive

definite quantity. Hence, W vanishes if and only if the equivalent strains rx,

ry , etc., vanish individually. Equation (20) also implies that

_ aW	 aW
Mx = 

aw
ar x ' My

 _ 
ary^ H	 ( 2 1)
xy _ arxY 

and

Qx = a
ZrX, Q

y
 = arW	

(22)

Yz

The kinetic energy in the laminate is

h/2	 h/2	 au a	 av u	 aw 2

T = 
- h%2 Tdz ='^ -

hf p(z)[(atx) + (	 ) + (-atz) adz

which, when expressed in terms of fix , ^y and w, takes the form

POO
T =	

- ^(	 2atx) + 
( a )^a 

+	 (at)2	
(23)

It is now possible to write down the expression for the total energy of the

laminate at time t

s	 z	 2

T + v = f 
dt 

ff	 [(atx) + (^) 7 +	
(aw) 

)dxdy
to

t

+ f dt ff at 
dxdy + TO + V^

to
(24)

-10-



where V is the total potential energy. Note that 
TO 

and VO are the values of

T and V corresponding to time t0* Equation (24) may be integrated by parts and

the results may be arranged to read as

t	
4n D' s	 awfi + V - f dt f ( at Mn + at Hns + -3T Qddso 

t
+	 dt ff q at dxdy + TO + Vo	 (25)

0

The above result may be interpreted as the total energy in the laminate at time

t and consists of the initial energy at to plus the work done by the external

forces along the edges and over the surfaces of the laminate during the time in-

terval t-t0 . The initial and boundary conditions for the laminate can now be

easily extracted from equation (25). They can be summarized as follows:

('1) On the laminate or crack edges: Any combination containing one member

of each of the three pairs ( ' In , M ), 
( aX H s ) and ( at, Q ) may be specified

n	 n	 a	 n

on the crack or laminate edge.

(2) Throughout the laminate: The initial values of fi x , Vey and w and their

time derivatives need be known.

(3) Tractions and Displacements: The external load q or the displacement

w on the laminate may be specified.

This completes the development of the dynamic laminate plate theory which

will be used to solve a crack problem.

*Refer to page 45 for the derivation of equation (25).

-11-



A CRACKED LAMINATE PLATE

As an example, consider the laminate in Figure 1 to be initially at rest

and bent suddenly by a moment with a constant magnitude of Mo maintained on the

crack surfaces. The conditions can be stated as

Qy(x,o t) = Hxy (x,o,t) = 0 for O ilxl<-
	 (26)

and

My(x,o,t) = -MOH(t)for lx^<a and ^y(x,o,t) = 0 for IxI>a 	 (27)

which is of the mixed type. The displacement functions are subjected to the

conditions that

lim	 [v (x,y ,t), ^ (x,y ,t), w(x,y , t)3 = 0
X2+y2-^

No other external forces or constraints are present.

Lapeace ttakt46ohm. The governing equations (17) will be solved by intro-

ducing the Laplace transform pair

CO

f* (P)	 f f(t)e-ptdt
0

f(t) = ^	 f*(p)eptdpr

where the second integral is over the Bromwich path. Applying the first of

equations (28) to (17) yields

3

(28)

-12-



(^'	
D

T

*
(1 +VO ) 	 a^

+ "-	 ' DO ax ( axx

a

+	 )Y
*	 *	 o h3

- r u0(^X + ax )_	 p2*X

(1-v0)D 
v2^

- 0	 y —
+ (1+v

0) D	
a	

( a ^x0 ay	 a x + ate)By -	 2h u (* + 
aw
* ) 

= pOha	
^

O	 y	 ay
	 p

2 y
(29)

z
VO ( V2W*Ir z

ax	 ay

The analysis may be simplified by letting

ate + aH *_B_ aH
x ax	 -5y—, i y 	 ay	 ax	 (30)

such that equations (29) simplify to

ax (vz ^* - (Ra0 + S -1 )^^
* 

- S-1 w* +	 ' a ( v2 -w2 )H* = o

v

ay 
( vz ^*	 (Ra0 + S-1 ) * - s -1 w* } - 

1-

-T— ax (v2
-w2

)
H* = 0	 (31)

v2 (^*+w* ) - S 0w* = 0

The new quantities introduced in equations (31) are defined as

12D	 p hp 2	z

	

R = ^, S = O, d0 p0 0 = hD	 (32)

and

2(Rd0+S-1)(D1+D
W2 -	

2)
332	 (	 )1 - vl D1 + 1-v2 D2 

-13-



Furthermore, if

0* - (0-1)w*

is introduced into equations (31), it can be shown that

O2W* - 012W* 0

while a and a are given by

1	 Sa''
az :R80.^S-1+^ 

Consequently, the functions ^*an d ^* in equations (30) become

*
*

x = (el 1) ax 	 2 ++ (02-1) ax 	 ay

*

y = 0 1 -1) ay1 + (02-1) Ty— ' aX

*
and w may be written as

*	 *
w=wl+w2

In equations ( 37), o f and 02 are given as

1

a 
^2	

(Rao +S-
1)
_ a2,1

in which

a2
^2 =	

((Rao + S-6-04) ±
0
	 sa

04
) 2 - 4aO1112}

(34)

(35)

(36)

(37)

(3g)

(39)

(40)
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It is now apparent that once H* , w, and wZ are found from

(v2-w2 )H* a 0, (v 2-aj)w* = 0, (v2-aj)w2 x 0	 (41)

the problem is basically solved in the Laplace transform plane.

Integ)uU equaUon. Taking advantage of the symmetry condition with respect

to the y-axis, it is not difficult to show that the following integrals

wl(xty,p) : ff f B (1) ( s , p ) cos(sx)e-YlYds
0

w2( x ,Y,P) = n M B(2) ( s ,P) cos(sx)e-Y2yds
0

H* (x Y,P) .	 f B (3) (s,p) sin(sx)e 
Y3 

ds
7r 0

satisfy equations (41) provided that

Y1,2 = (s
2+al

,2
) 1/2 9 Y3 = (s 2+w2 ) 1/2	 (43)

The unknowns B (1) , B (2) and B (3) must be determined from the boundary conditions

in equations (26) and (27) whose Laplace transform are

Qy (x,o,p) = Hxy (x,o,p) = 0 for 0<x<-	 (44)

MO
My (X,o,p) _ - P for 0<x<a and ^*(x o,p) = 0 for x ya	 (45)

The appropriate quantities in equations (44) and (45) may be obtained by first

putting equations (42) into (37) and (38). This gives

(42)

and

-15-



- 2sY3(1-v0)(a1-a2)/^^}/(a1'a2)
(4g)

00

^x = - —^ o (s1(61-1)B(1)(s,p) 

_ 

Yly + (02- 1)B(2)(s,p)e Y2yj

+ Y38(3) (s, p)e Y3y) sin(sx)ds

_	 (46)

*y 	
n f ((61_ 1 )Y^ g(1) (s) p ) e-Yly + (62-1)Y28(2) ( s,p)e Y2y0

+ sB(3) ( s 9 p )e Y3y} cos(sx)ds

and

w* x n o (B(l)(s,P)e Yly + 6(2) ( s ,P)e Yzy } cos(sx)ds	 (47)

The Laplace transform of equations (11) and (12) will clearly involve ^*, ^,'"
X ) y

and w . Equations (46) and (47) and equations (45) can be satisfied if the

function C(s,p) obeys the dual integral equations

W

f C(s,p) cos(sx)ds = 0	 x>a
o	 —

W	
Irmo

I sG(s,p)C(s,p) cos(sx)ds = d P	 x^av

with G(s,p) being a known function

(l-v2)
—

2 0 G(s,p) = ( ( 1 -s l )(Y^-vO s 2 )
z 
/(sY l ) - ( 1 -s2) (Y2 -v 	

z

O
s 	 /(sY2)

(48)

-16-



The conditions in equations (44) may be used to relate the functions 8 (1) , B(2)

and B (3) to C(s,p)

B(l)( s +p) . 0 -
vO)sx+aT C(S,p)

Y l ("f -a
( 1 -v ) s2+az

B(2)(S,p) s - Y2(04-04) Ct s o p )	 (50)

B(3)(s,p) = s(1-a0)a52 B1) C(s,p)

Without going into details, the solution for equations (48) is of the form'[6]

2

C ( s , p ) _
O
 p 

0
j r T(4,p)J

0	
O(sa )d

where J O is zero order Bessel function of the first kind and the function T (^,p)

can be found from a Fredholm integral equation of the second kind:

* (^,p) + f L(t,n,p)'Y*(np)dn = r	 (52)
0

The kernel L(g,n,p) is symmetric in 9 and n and takes the form

L( g ,n, p ) _ -n f s[G(a p)	 1JJO (s;)JO (sn) d s	 (53)
0

Equation (52) can be evaluc„ted numerically for e * (g,p) in the Laplace transform

domain and then inverted into the time domain by using the second of equations

(28)•

DynamLe moment imten4 t jav-ton. The time dependence of the solution may be

recovered by two different procedures, The first is to apply the Laplace inver-
..17_
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sion formula to the quantities of interest and obtain the complete solution as

a function of time. Such an approach is not only cumbersome and can often re-

sult in a considerable amount of difficulties in numerical calculations. In

fracture mechanics, since it is only necessary to focus attention on the state

of affairs near the crack front, Sih et al [7] have suggested to obtain the

asymptotic stress solution in the Laplace transform domain such that the time

inversion is applied only to the first term of the stress expansion near the

crack tip. This approach has greatly simplified the analysis and will be used

here.

The local solution may be found by expanding the integral in equation (51)

for C(s,p) for large values of the argument s. Once the moments MX, My and HXy

are expressed in terms of C(s,p), the resulting integrals may be evaluated to

give the asymptotic expansions:

K*(p)
MX(r,e,p) _	 cos 'ef t1 - sin	 sin} + 4(r°)

*	 K(p)
My( r , e , p ) =	 cos T {1 + sin r sin Y-} + O(ro)

lixy (r,e9p) _ ^ cos T sin7	 cos r + 0(r0)

where Qx and Qy are nonsingular and remain finite as r-*0, i.e.,

Qx = Qy = 0(r°)	
,.

The polar coordinates r and a are measured from the crack front as shown in Fig-

ure 1. The parameter

(54)

(55)

► :	 AS

-18-



K (p ) * Mai '^ p
	

(56)

is the Laplace transform of the dynamic moment intensity factor and T * (l,p) de-

notes the values of the function Y *(g,p) near the crack border g-1,

Applying the Laplace inversion theorem to equations (54) yields the solution

as a function of time.

- K1- cos a tl - sin 
a 
sin 

3aMx (r,a,t)	 y	 1 
+ o(ro )^	 ,^--

M (r,e,t) = Ki t) cos	 0 + sin I sin f
Y	

) + O(ro )	 (57)

K fit)
yxy (r,A,t) _ 

4—F
cos sin 

7 
cos ^ * 0(r°)

The dynamic moment intensity factor K1 (t) may be computed from

MO
K i ( t ) _ — ^r

(l , p), eptdp
P

(58)

once	 (l,p) is known.

Nummtcat &Mu,2ts. Since the procedure for solving the Fredholm integral

equation is already well known, it is not necessary to cover the details. The

numericill values of	 (l,p) in equation (58) are given in Figures 2 to 4 for

the three different values of u 2/ 1
1
1 = 0.1, 1.0 and 10.0. The Poisson's ratio

and mass density for the layers are assumed to be the same as their variations

in the thickness direction do affect the results appreciably. The function

Y* (l,p) is seen to increase monotonically with c 21 /pa where 
c21	 ()Jl/pl)1/2

is the shear wave speed of the material in the outer layers.
-19-
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As an indication of the load intensity transmitted to the crack edge region

as a function of time, the moment intensity factor K l (t) will be computed from

equation (58) by using the results in Figures 2 to 4. Figures 5 tc 1 display

the variations of the normalized quantity K l (t)/M0 /a— with the dimensionless

time parameter c2l t/a for 
N2/01
	 0,1

1 1.0 and 10.0 while the crack length to

laminate thickness ratio 2a/h takes on the values of 1, 2 and 4. Generally

speaking, Kl (t) tends to increase with time reaching a peak and then acquires

an oscillatory character. The peak value of K l (t) appears to be inversely pro-

portional to the ratio of 2a/h, i.e., K l (t) maximum at 2a/h = 1 is larger than

that at 2a/h = 4. The moment intensity tends to decrease as the crack length

is increased. Also, K I M maximum occurs earlier when the shear moduli in the

outer layers of the laminate is larger than those in the inner layers. Refer

to the curves in Figure 7 for u2/u l > 1 and those in Figure 5 for u 2/u l < 1.

The influence of 
u2/ul can be best illustrated by fixing the ratio of 2a/h and

use u2/ul as a varying parameter. Figure 8 shows a plot of K l (t)/M0 yra- versus

c21 t/a as 
u2/ul takes the values 0.1, 1.0 and 10.0. It is clear that the crack

edge moment intensity can be reduced by letting u2 < u l , i.e., making the shear

moduli of the inner layers to be larger than the moduli of the outer layers.

CONCLUDING REMARKS

A dynamic laminated plate theory is developed with emphases placed on ob-

taining effective solution for the crack configuration where the 1/ Vr— stress

singularity and the condition of plane strain are preserved. The radial dis-

tance r is measured from the crack edge. Although each layer in the laminate is

assumed to be isotropic, it is a simple extension to include anisotropy simu-

lating the directional properties of fiber reinforcement. This additional com

-20-



plexity was not thought to be necessary in this preliminary analysis.

Several revealing conclusions can be made from the numerical results of the

example on the sudden bending of a cracked laminate when compared with a single

layer homogeneous plate.

(1) The crack moment intensity tends to decrease as the crack length to

laminate plate thickness is increased. Hence, a laminated plate has the de-

sirable feature of stabilizing a through crack as it increases its length at

constant load.

(2) The level of the average load intensity transmitted to a through crack

can be reduced by making the inner layers to be stiffer than the outer layers.

The foregoing comments are striLtly based on the concept of moment intensity

factor as used in the theory of fracture mechanics. In the normal course of

design, other considerations must also be accounted for. However, the point has

been made that the present theory, although approximate, is useful for analyzing

laminate failure due to crack propagation.
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F

Compttte,% Pup= don BendZng o6 Uacked Laminate Ptaytu

PP06RA4 t4 eTA( INPUT,01ITPUT)
PEAL NON (4) 9F ( 4 .49) ),OC4,k) or)(«) *PT (4)
REAL 8(4) tP(4)
PEAL LP(19)sOTA(19)
FOU IVALE:NCE ( NON t H )

COmMON K1 •K2 #Klv)(4
COMMON/AUX/H9P,PKI ,PK2t8MUtX9Y

DTA (1)x0. 0
PEAO 2tK1tK29K3*K4

2 FOaMAT(12)
K 1 x WER OF SYSTEM nF EOLIAT IONS
K? = 110. OF DISTINCT KERNELS
K3 s N0. OF DATA POINTS
K4 : NO. OF DATA SETS tO HE EVALUATED
SET UP DATA POINTS

AK=K3
00 5 N-1tK3
AN=N

5 PT(N)=AN/AK
SFT UP INTEGRATIUN MArRIX

MaK3-2
NxK3-1
0=1<')
A=1./(3.*A)
nO 10 K=?9M92

10	 n( K) =290A
00 1 9; K= l•N#2

15 O(K)=4.* A
0(KI)=A

CALCULATE NONHOMOGE NFoOS TERMS
RHS =1
no P,? I=1 tk2
PRI NT 9

9 FORMAT(IH1)
00 C499 1I =1 tK4

DO 35 N_= I t K 3
35 MON(N)=RHS*SQkT (PT (N))
CALCULATE KERNEL MATRTCFS

CALL CONST(I)
00 20 N=1 9K3
(10 ?,0 M=1+K3
F(M.N9I)=Fl19PT(M)9PT(N))

20 CONTINUE
CALL CHANGF.(FtG,DtT)
CALL LINFQ(G.BtC+	 K3)
00 40 L=1+K3
PRINT 69PT(L) 9Nntq(L)

6 FOP4AT(9xtF8.4•F15.6)
40 CONT I NUF

LP(11+1)=N0N^(K3)
OTA(I1+1)=a

999 CONTINUE
CALL LADINV(DTA-LP)

22 CONTINUE
ENn	
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r U 1 40t ION $1014(1*At,!)
COMMO ►J/AL)X/H•NtPKl ePK299MUoX,Y
M X Y?xZ* o ) $
nFLs0,P$# (N_A)
IF(nEL)40945950

45 SIMO2060
PETURN

50 CONTINUE

SA=Z(19A)+7(I,N)
Sd=Z(19A+2.00FL)
SCxZ(19A+0tL) •7 (I,A+').*nEL)

51=(0E.L/3.)a(5A•?,*SH+4.*SC)
IF(SI.FO.0.0) GO TO 45
K;R

35 Sd=SH+SC
nEL=o.SODEL
SC=Z(19A+DEL)
J= K -1
no 4 N=39J.2
ANr.M

	

5	 SC=SC+Z (I +A+AN*f)FL )
52z(0EL/3.)0(SA+2.4SF*4.#5C)
DIF-A8S((52-51)/51)
FR =0.01
TF(nIF -FR)30925.?5

10 SIMP=52
WETUWN

25 K=?aK
SI =52
IF ( K -MXYZ ) 15 ,31 940

40 PRINT 4 291,A98
42 FOP W AT(5 X 9. * I N1, DOES NOT CONVERGE gtIl+2F9.4)

PRINT 609X9Y
60 FOPMAT(2F10.5)

00 70 J=I+10
4II P =J
DIP-DIP/10.
w zz (i tnIP)
PRINT 609W

	

70	 CONTINUE
CALL EXIT
FN0

OPIGINAL PAOI ll-32-	 U^ POOR QUAWry
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SURROUTINr LINL0IA9b*T9N)
REAL A (t ,IsN') ,p (N) r T (N)
RO 5 Is?,N

	

5	 all•1)^A (1,1)1A(1,1)

no 10 K =?•N
M: K -1
DO 15 1= ION

15 T(I)=A(1*K)
no ?A J=1+M
A(JrK):T(J)
J1=.)+l
00 ?0 1=J1,N

T(I)=T(1)-A(I•J)0A(J9K)
20 r,ONI INUFr

A(K,K)=T(K)
	 ;1)TF(K,EQ.N) 60 TO 

M =K +1
DO 25 I zM r N

	

25	 A(T K)=T(1) /A(KgK)
10 CON  i NIJE

)SACK S11RST I TUTE
no 31 I=1 rN
T(1)=8(1)
M= I+1

IF( m .rT.M! i.,o ro :+1
no 10 J=M•N
Q(,J)=6(J)-A(J,1)*T(I)

30 CONT INUE
31 CONTINUE;

00 35 1=1 +W
K=M+1-1
R(K) =T (K) /A(K,K)
K1 =K -1
1F0K1.Ef).0) GO TO 15
00 36 J1=1,K1
J =K -J l
T(J) =T(J)-A'(JrKIOH(K)

36 f ONT I NUE:
35 CONTINUE

GETURN
END

a

L. .max u i	

L



FUNCTION FU (I • A • Fl )
CCAM0N/AIIX/HrP ► VK19PK29RMU9XfY
X=A
Y=H
IF . ( A r 5) 5+ 10,5

10 Fu=O.o
PETURN

5 SUM=SIMP(1900095001
Fk=0.01
DEL =5.0

20 UP'-[)EL *5.0
A0r)L=SIMP(190 L.UP)
OEL =UP
TE9T=AHS(ADDL/SI)M)
SUM=SUM•ADDL
IFITEST-F w ) 1S920r2o

1S	 FU=SOHT(X"Y)•SUM

RETURN
F N 0

SURPOUTINE CHAN6C (Fr(i+n.I)
PEAL F(4r4,1)q(1(494)gD(4)
CO M MON K 19 K?. K304
DO 10 N=19x3
DO 10 M=1.K3
(I (M.N)	 =F (M.N9 1	 ("1)

10 CONT INUl:
00 PO N=1 gK3

20	 G(N.N)=G(N.N)•I.0
PETURN
FNS

I

-34-



FUNCTI ON HESJO W
IFiA 3.)595910

5 H=AOA/9,
W=1.-2.249499748
7xR* 14

w=V ► +1 .?.656608 ► Z
7=1*P
W='q-.3163tl"^6*Z
7=Z*E1
w=4+4044447901
Z=70A
W=W-90g3Q4440Z
7=7*8
AESJO = W*.000210Z
RETURN

10 H=3./A
W=-7970456-.00000077014
V-A-.76539p16- ,041hb397*8
7. =P*R
W=W-.0055274*
V=V-.000039'i4*Z
Z=7*H
w=w-.noon9Rl?0Z
V=V•.00?62$73*Z
7=ZOR
W=w+.00137';'170Z
V=V-.00054125*Z
z=z4R
w=W-.00072805*7
V=V-.000293330Z
7.=Z*R

w=14+.0001447607
V=V+.00013558*Z
QESJO=W/SCRT(A)OCnQ(V)
RETURN
f Nn
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FUrlrT I ON2(19S)
CUMMON/AUX/H q P q PK 1. PKP_ , HMU + X r V
COM PLEX AC.ALI+AL29SA ► S4
COMPLEX GAoGE)+AAtHQgRCtFgG
P I = 3. 1415920
PN_P*P
P=)-, ,*H/ 12 .
AA=).*7.*9mu*(1.-PK1) /(l. -NK2)
nEn =4A.a(1.-PK1)/(PP*H*H*AA)
SS=H*H*AA/(2 * OPI*PT*t1.-PK1) 0 (1.+8M()) )
XN(l0=(PK1- PK2+AA*Pv2) /AA
A6=(R+SS)*OFD
7Z= (R-SS) * (R-SS) *DF'OODEO-4.*OEO
U=CMPLX(ZZ-0.0)
AC=CSORT(G)
AL1=0.5*(AH#AC)
ALP.=0.9*(AH-AC)
AL3=2 **(P*0E0+I./5;)/(1.-XNU0)
SA=AL2/(k*DEO+1./SS)
Sd =eL 1 / (R*DEO+ 1 . /S q )
6A=CS')RT (S u S+AL 1 )
r•8=CSGWT (S*S+AL2 )
6C=SQRT(S*S+AL3)
RA=P./(1.-XNU04XNUn)/(AL1-AL2)
cry=r,A*CA-X+,IUO*S*S
PC=(78*6H-Xl,1UU*S*s
F=PA*((I.-SA)uNH*RP/GA-(1.-SR)*HC*HC/GR-2.*S*S*GCA(1.-XNO0)*(AL1 -A

)( 2)/AL3)
O_ucAL(F)
f;A=AIHAG(F)	

Y

TF(OA-0.0)q.10+5
10 l=(O-S)oHESJO(SoX)*HFSJO(S*Y)

RETHPN
5 vkINT 99P.S9F
9 FOPMAT(4F10a5)

CALL EXIT
FNS
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c ► ) A wOI)T I PJF LAP P)V (rL AM, PH I )
r,	 TH19 NPO GRAM EVAL(..)nTFS THE COEVF ICI^NT L, FOP SERIF'S
r	 r)F JACOH t u ULYNoMI4L9 W HICH RL O kE: SE NTS A 1 AP LArE
C	 INVFPSION INTEGRAL

REAL MUL
nIMFNSION A(50),6L,%M(50) 9PHI (SO) 9C(49%0)
nI mFNSION HK(101).TT(101)
COMMON/2/T I v TF,nT 9 '.)r1 9 8K ♦ TT
PEAn 1 ,NN,(aN,MM

1 FOPMAT(312)
PEAO 29TI+TF90T

2 FOP4AT(3F10.5)
PR I ^!T 94

99 FORMAT (1H1 )
f ALL SPLIC F (GLAM,PHI•MM C)
P R I g T 101

101 F0 wMAT(/////5X9*	 CLAM	 PHI
PRINT 102+(GLAM(I),PHI(I)9I=IgMM>,

102 F0R4AT(5X.F10.5,5X.F10,5)
M 11-'t M-1 	'
PR INT 99
no 10 I =1 + ^IN
PE An 3gf+FT,DEL

I rOwmAT(?F10.5)
PRI N T 9 89-6 FT, nEL

98 FORMAT(/////5X9*PFTA =*F5.39* DELTA =*F5.3)
r)0 11 L=1 +'AN
AL=1.
4=1./(AL+6ET)/0rL
CALL SPLINF(GLAM,PNI+ ►4M+CrS9G)
F=r,0S
IF(AL-29)hfl,A?9h3

y ► A(1)=(I.•HET)*DFL*F
ri0 TO 11

S? A(?)=((2.*HET)*OEL'^F-A(I))0(3.*HET)
r,0 TO 11

'63 CONTINUE
TOP=l,
L1=L-1
AL 1 =L 1
110- I? J=1,L1
AJ=,)
TOP_AJ*TOP

I? CONTINUE
L2=2-OL-1
NOT= 1.
nO 13 J=L + L 2
C J=J
HUT=(AJ+HET)*R0T

13 CONTINlIF
MUL=ROT/TOP
cUm=0.0
r)O 14 N=1 • L 1
AN=N
IF(AN -? .)b5.H6,R7

85 TOn=1.
GO TO HE+

p
OR 	 Is

-38



Ah TOnsAL 1
GO TO Aa

87 CONTINUF
TO0=1 .
ICN=L1-(N-?,)
DO 15 J=ICH +L1
AJ=J
TUD=AJOTOD

15 CONTINUF
bA CUNTINUF

Puce=1.
JA=L1+N
no 16 J=LrJA
AJiQ
FOOD=SOD* (AJ+BET)

1 F CONTINUE
CO=TOO/NOD
SUM=SUM+CODA(N)

14 CONTINUE
A(L)=MUL a (nEL* -SUM)

11 CONTINUE
CALL JACSER(DEL,A.NET )

10 CONTINUE
Q99 CONTINUE

RETURN
ENS

SU8QOUTINE JACSER(niCt8)
DIMENSION C(50)9SF(50)rP(50)
nIMENSION PK(101)9TT(101)
C0MMON/2/TI•TFrDT.MNgAK.TT
'TT M =0.0
RK(I)=0.0
L'M = l

T=TI
12 T=T+OT

X=2,*EXP(-O*T)-1.
CALL JACOBI(MN.X•N.P)
5F(1)=C(I)*P(1)
no to L=2+MN
LI=I.-1
AL=L
SF(L) =SF (L1)+C(1_)0alL)

10 CONTINUE
L('I = L M ^ I

aK(LM)=SF(5)
TT(LM)=T
IF(T.LE.TF) GO TO 12
PRINT 97

47 FORMAT(////USX}* T	 K	 T	 K	 T	 K1	 T	
K1

ISO 31 MY=1125
MA=MY+1
MB=MA+?5
vC= MR+25
raU= ,AC+29
PPPJT 9f,.TT(,44).NK(MA).TT(M6)t!3K(MH).TT(MC)+5K(MC)•TT(MO) •PK(HO)

96 FORMAT(5X,F5.2.3X.r7.5.3XrF5.2,3A9F7.5,3X9F5.?r3XrF7.5,3X•F5.2r3X,
1F7.5)

31 CONTINUE

RETURN
FNp 	 _	 -39
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s

U4P U NE JA C04 I n^ X +N PH)S	 0 T I	 J ^'	 ( Soo	 r
C	 THIS F ROGkAtl CALCIII ATES JACUH 1 PULYNOMIALS OF ORDEW
C

	

	 K-1 WITH AHG X ANO PAWAMtTER H GT -1
DIMFNSION Pb(N)

AN=N
IF(AN-2019293

	

1 PHIL.>=1.	 '
RETURN
P810=1.

RETURN
3 ASS=9+► R

RONF=B+1.,
PB(1)=1.
PB(2)=X—R*(1.—X)/2.
DO 4 K=3rN
AK=K
AK1.=AK-1
AK2=AK-2.
K1=K-1
K2=K-2
CO1_((2.*AK1)+B)*X
COI= ((a,*AK2) +B)*Cn1
COO=(i2.*AK2)+80NE)*(C01 — BS c )
CO2=2. *AK 2* (AK2+8) * ((2 o *AK 1) +b )
CO=?_.*AK1"(AK.1+H)*((2•*AK2)+8)

4 P9tK)=(CO1*NA(K1)—CO?'rPH(K2))/CA
RETUR N

FND

l

1

	

^*fa ^'1
0

0

h^ ^ {, 3 alt'	 .	 Y	 -.



SUAROUTIME SPLINEfX9YoMtCvA1NI9Y1NT)
014ENSION X(50)•Yl40)gC(4.50)
IF(X1NT-X(l))1.10r11

10 YINT=Y(1)
RETURN

11 CCONTINUE

IF(X(M)—XINT)1+12 90
12 PINT=Y(ta)

PETURN
13 CONTINUE

K=M/2
ti=rd

? CONTINUE
IF(A(K)—XINT)3+14,c

14 YINT=Y(K)
PE T(jRN

3 f;ONTINUE
IF(XINT —X:(K+l))4q1'i+7

15 YINT=Y(K+1)
PETURN	 rr

4 CONT I14UE
YIr,IT=(XlK+1)-XINT)4(C(19K)*(X(K+1)-XINT)0*2+C(IoK))
Yl t^IT=YIhiT • (XINT — X(K:))*(C( 2rK)'k (XINT — X K))**2+C(4•K))

P.ETIIPN
5 CONTI NUE

IF(X(K - 1)—XIN7)6•1-+,17
6 K'=K - 1

GO TO 4
16 YINT=Y(K-1)

RETURN
17 N=K

K=K/P
GO TO 2

7 l.L-=K
K=(N+K)/2

R CO P IT I NUE
IF(X(K)-XINT)3+14,18

18 CONTINUE
IF(X(K-1)-XINT)6916919

19 N=K
K= (Ll. +K) /2
GO TO A

1 PRINT 101

101 FORMAT(* OUT OF RANGE FOR INTEPPOLATION ^)
STnP
END
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SUPROUTIME. SPLICF(x,YtMtC)
DIMFNSION X(50)tY( O) 90(SO)tP(SU),E(50)tC(4,50)
61MENSION A(50,3)9P(50)9Z(50)
MMzM -1
nU 2 K=19MM
n(K)=X(K+1)—X(K)
P(K)=0(K)/b.

2 E(K)=(Y(K+1)—Y(K))/D(K)
00 3 K=2+MM
N(K)=E (R)—E(K-1)
All,?_)=-1.-0(1)/1)(7)
A(193)=0(1)10(2)
A(P,3)=P(2)-P(I)OA(l, i)
A(2.2)=2.*(P(1)+P(7))—P(I)OA(192)
A1793)=A(2',3)/A(2t?)
R(?)=4(?)/A(2.2)
00 4 K=3+MM
A(K92)=2 .*(P(K- 1)+p(K))-P(K-1}*A(K-193)
P(K)=H(K)—P(K-1)*8(K-1)
A(K pl)= P(K)/A(K-2)

4 H(K)=H(K)/A(K92)
0=0(M-2) /004-1 )
A(M-1)=1.+0•A(M-2,I)
A ('a,2)=—O—A (bt t l) *A (M-1.3)
R OA) =i'(M-2)-A(M I)46(M-11
7(4)=N(M)/A(M92)
,aN =M -2
no 6 1 =1,MP•4
K=M-I

h 7(K)=M(K)-A(K,3)*Z(K+1)
7(1)=-A(19?)+Z(2)—A(193)*Z(3)
DO 7 K=1 , MM
0=1./(6.*D(K) )
C(ItK)=Z(K)40

C(3,K)=Y(K)/D(K)—Z(K)*P(K)
7 C(4,K)=Y(K +1)/U(K)— Z(K+1)*P(K)

RETURN
END

i
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hfomen,' Irtteuity Factou

M i l? /M(Il s 51.00 Nlll s .30 NU2 s .34

A/H s 1.00 C21/PA : .02

	

02500	 00338A S

	

.5000	 .059Ap9

	

.7501	 0090175
	100000	 .25774A

4U2/MUl = 50.00 NUl = 930 NU2 = 030

A/H =1900 C21 /PA = .04,

	

.2500	 .0^9g41

	

.5000	 .1143pb

	

.7500	 .183013

	

1.0000	 .352715

MU2/4U1 = 50.00 NUl = .30 NO2 = .30

A/H = 1.00 C21/PA = .06

	

.2500	 .103272

	

.5000	 0169658

	

.7500	 9244217
100000	 .412993
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Lm,ivatton oS EquaVon (25). Equation (25) can be derived by first expressing

equation (24) in the form

t	
poha 

a* a2'	 0^ az^	 h aw axwT + y ,^ f dt ff {-^-- 
fat 

a—tz- + at a2 + r of a,-rldxdy
to

+f dt ff a d)Ay+To+Vo
to

in which aW/at can be written as

aW ¢ aw a rx
+aw::I+---+ayazz

at arx at	 ary at	 aryz at

a	 a	 a'^x
(Mx ax + Hxy ay + Qx ) at

a	 a	 any
+ (Hxy ax + My ay 

+ Qy) a

aa	 aw
+ (Rx ax + Qy ay ) at

Denoting n and s as the normal and tangential direction, equation (60) may be

integrated to yield

aW	 aIn	 ad's	 aw	
a^►x aMx %

ff at dxdy - (at Mn + at 	
aw

 + at Q
n )ds - ff fat ( ax + By - 4x)

	

+ a 2 
(aa + ay - Qy) + at (

aQx + a^)1 dxdy
	

(61)

Putting equation (61) into (59) and observing the relations in equations (15),

the expression for T+V in equation (25) is obtained.
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