EVALUATION OF HOT CORROSION BEHAVIOR OF THERMAL BARRIER COATINGS

P.E. Hodge, R.A. Miller, and M.A. Gedwill
National Aeronautics and Space Administration
Lewis Research Center

Work performed for
U.S. DEPARTMENT OF ENERGY
Energy Technology
Fossil Fuel Utilization Division

Prepared for
International Conference on Metallurgical Coatings
sponsored by American Vacuum Society
San Diego, California, April 21-25, 1980
NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
EVALUATION OF HOT CORROSION BEHAVIOR OF THERMAL BARRIER COATINGS

P.E. Hodge, R.A. Miller, and M.A. Gedwill
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Performed for
U.S. DEPARTMENT OF ENERGY
Energy Technology
Fossil Fuel Utilization
Washington, D.C. 20545
Under Interagency Agreement EF-77-A-01-2593

International Conference on Metallurgical Coatings
sponsored by American Vacuum Society
San Diego, California, April 21-25, 1980
EVALUATION OF HOT CORROSION BEHAVIOR OF THERMAL BARRIER COATINGS

by P. E. Hodge, R. A. Miller, and M. A. Gedwill

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

INTRODUCTION

Currently, there is considerable interest in the use of insulating ceramic thermal barrier coatings (TBCs) on cooled hot section components of gas turbines. These coatings are presently being developed for both clean-fuel aircraft gas turbines and the anticipated dirty-fuel environments of industrial/utility gas turbines. Such insulative coatings can give temperature drops of 100° to 200° C when only 0.04 cm thick. This large temperature drop offers substantial potential gains in heat engine efficiency by permitting higher gas temperatures with no change in component temperature or in durability by lowering metal temperature. The basis for the current interest in ceramic TBCs was brought about by the good performance of such coatings in clean fuel combustion gas exposures (refs. 1 to 3). However, early results with the ZrO2-12Y2O3/NiCrAlY system in the presence of the usual heavy fuel impurities (Na, V, etc.) were less than encouraging (ref. 4). In burner rig tests at NASA Lewis, two coatings systems, ZrO2-8Y2O3 and a calcium silicate TBC, were identified as having substantially more resistance to spalling in Na plus V doped combustion gases than previously tested systems (ref. 5). A number of TBCs based on calcium silicate, on improved ZrO2-Y2O3 compositions, and on improved NiCrAlY and CoCrAlY bond coats were evaluated recently in similar burner rig hot corrosion tests. The purpose of this paper is to present and discuss these results.

EXPERIMENTAL PROCEDURE

Materials and plasma spray coating deposition. - The chemical compositions and specifications for 1.8 CaO SiO2 and ZrO2-Y2O3 plasma spray powders and cast nickel-base alloy IN-792 hollow erosion bar substrates have been documented previously (refs. 3 and 5). All plasma spray bond coats were analyzed and found to have trace impurity levels comparable to the levels in bond coats used in reference 3. Both thermal barrier and bond coatings were applied manually in an open-air environment with a subsonic plasma spray gun using argon as the plasma gas. Metallographically measured coating thicknesses varied locally from 0.005 to 0.018 cm for a nominal 0.013 cm thick coating, and by about +0.010 cm for all thicker coatings. The zirconia coatings were about 88 percent dense with interconnected porosity while calcium silicate coatings were more dense and had fewer interconnected pores.

Cyclic Mach 0.3 burner rig tests. - The Mach 0.3 burner rig used in these studies is described in reference 5. Briefly, air, fuel, and an aqueous solution of NaOH and NH4VO3 were injected into the combustor, ignited, and expanded through a nozzle at a velocity of Mach 0.3. The dopant levels of Na and V in the combustion gases were adjusted to correspond to a fuel equivalent of 5 ppm Na and 2 ppm V. Cooling air flow was calibrated to maintain the metal sub-
strate at 843° C for 0.038 cm ZrO₂-8Y₂O₃ coated specimens. Test parameters based on the calibration runs were: fuel/air mass ratio of 0.046, calculated adiabatic flame temperature of 1552° C, coating surface temperature of 982° C, metal substrate temperature of 843° C, specimen holder rotation of 450 rpm, and specimen distance from the nozzle of 3.2 cm.

Coated specimens were exposed to thermal cycles consisting of 1 hour at temperature followed by 6 minutes of external forced air cooling to below 100° C. Internal cooling air was maintained constant during both heating and cooling cycles. Specimens were inspected after each twenty 1-hour cycles. Specimens were removed when the ceramic had spalled over approximately one-fourth of the hot zone on the leading edge. Coating lives reported represented the average removal time of two specimens, but individual variations in life generally were no more than ±15 percent from that average. A representative number of exposed specimens were selected for metallographic (all specimens polished in varasol to retain water soluble condensates), XRD, SEM, EMP, and chemical analyses to determine the extent of hot corrosion and to identify condensates and the mode of spalling.

RESULTS AND DISCUSSION

Test results. - The response of the TBCs to the Na plus V doped Mach 0.3 combustion gases is summarized in figure 1. In general the data show (1) that the durability of TBC systems may be substantially improved by reducing the thickness of the TBC from 0.038 to 0.013 cm, (2) that high Cr+Al bond coatings improve the durability of TBC systems, (3) that 1.8 CaO SiO₂ coatings are more durable than ZrO₂-8Y₂O₃ at comparable ceramic thicknesses with the same bond coatings, and (4) that ZrO₂-12Y₂O₃ and ZrO₂-6Y₂O₃ TBCs are less durable than ZrO₂-8Y₂O₃ TBCs when evaluated with the same baseline bond coating. Specimens with 0.013 cm thick ceramic coatings have higher bond coat and lower ceramic surface temperatures compared to specimens with 0.038 cm thick ceramic coatings. If the temperatures within the ceramic coating or at the bond coat/ceramic interface are higher than the dew points of the condensates (e.g., 905° C for Na₂SO₄) no condensation can occur at this location which may account for the increased durability of TBC systems with thinner ceramic coatings. No apparent hot corrosion of the bond coatings was evident from metallographic examination of the tested specimens. The improved durability of TBC systems with various bond coatings thus may not be due to differences in bond coat hot corrosion resistance.

Analyses of test specimens. - Two modes of spalling of the TBCs were observed for specimens exposed in these hot corrosion tests. 1.8 CaO SiO₂ coated specimens spalled in the center of the hot zone. In a few cases, as with YSZ coated specimens, they failed at the upper edge of the hot zone as illustrated in figure 2. Points A, B, and C in figure 2 show where cross-sections were taken for metallographic and EMP analyses and points D, E, and F show where samples were taken for SEM/EDAX, chemical, and XRD analyses.

The post-test analyses of some representative specimens are summarized in table 1. X-ray data for 6 and 8 w/o YSZ indicated no gross changes in the tetragonal to monoclinic ratio. XRD of exposed calcium silicate coated specimens showed the following: (1) There was a phase change of β-Ca₂SiO₄ (larnite) to Ca₅SiO₃ (wollastonite). Further testing is needed to determine if this
phase change was reaction or thermally induced. (2) CaSO₄ was formed in both hot and relatively cold areas of 1.8 CaO SiO₂ test specimens, probably by a gas-phase reaction with SO₂. Calcium sulfate has also been observed in similar tests at Westinghouse (R. J. Bratton, private communication) and calcium silicate/SO₂ reactions have been reported in reference 6. SEM/EDAX and chemical analyses show that Na, S, and V are present at the surface or within exposed YSZ and 1.8 CaO SiO₂ coatings. These are probably the reaction and condensation products of Na₂SO₄, Na₂V₂O₆, and V₂O₅. Co, Fe, W, and Ni, found only in 1.8 CaO SiO₂ coatings, probably evolved from the L-605 Co-based Mach 0.3 burner rig nozzle.

The results of EMP mapping studies of exposed ZrO₂-8Y₂O₃ and calcium silicate coated specimens were in general agreement with the XRD, chemical and SEM/EDAX analyses. In figure 3(a) there is good correspondence between Na and S in a ZrO₂-8Y₂O₃ coated specimen and this is taken as evidence that Na₂SO₄ formed in the flame and condensed in coating pores and cracks. The scans of V (not shown) and Y indicated local concentrations of Y and some correspondence with V in some of these areas (probably YVO₄). Additional EMP scans on the same specimen at the colder A and C sections show some correspondence between Na, S, and Y and between S and Y which is believed to be the possible formation of Y₂(SO₄)₃ or Y₂S₃. EMP scans of Ca, Si, S, Na, V, Co, and W in a typical calcium silicate specimen at the A section show several interesting features (fig. 3(b)). This specimen had spalled in the hot zone as indicated in figure 2. There is almost a 1:1 correspondence of Na and S indicating Na₂SO₄ formation and some V and Na overlap at the surface which is probably Na₂V₂O₆. Of the elements evolving from the L-605 nozzle, only Co penetrated calcium silicate to any extent. Additional S in the interior of the coating is taken as an indication of CaSO₄ formation below the surface. EMP scans of the B section of the same specimen in the hotter spalled area show S (CaSO₄ from SO₂ reaction with 1.8 CaO SiO₂) and very little if any Na within the entire 0.005 to 0.013 cm remaining coating. However, the bulk of the coating was still calcium silicate based on the EMP scans of Si, Ca, and XRD results.

Calculation of dew points of potential condensates. - Based on calculations similar to those in reference 7 and the temperatures shown in figure 1, either V₂O₅ (1) (dew point 1210° C) or Na₂V₂O₆ (1) (dew point 1155° C) should condense and penetrate the zirconia coatings over the entire specimen length. Na₂SO₄ (1) (dew point, 905° C) should only condense outside the hot zone and penetrate only to a limited extent. Spallation of YSZ coated specimens occurred at the edge of the hot zone which implies that Na₂SO₄ (1) played a key role in causing failure of these coatings. Coating spallation may be caused by solidification of salt in the pores and microcracks of the coating which results in compressive stresses because the microcracks cannot fully close upon further cooling. EMP analyses show Na₂SO₄ within the ZrO₂-8Y₂O₃ coating which tends to support this argument. On the other hand EMP data also showed that reactions occurred between some Y-rich areas and S- and V-containing condensates. This could destabilize ZrO₂-Y₂O₃ and cause in spallation due to the thermal expansion difference between tetragonal and additional monoclinic zirconia.

The spalling behavior of calcium silicate is complicated. Most calcium silicate coated specimens spalled in the hot zone. Failure in the hot zone is believed to be due to a gas-phase temperature-dependent reaction of SO₂ with calcium silicate to form CaSO₄. Based on EMP data, spallation of a few cal-
calcium silicate coatings at the edge of the hot zone appears to be due to penetration of Na$_2$SO$_4$, Na$_2$V$_2$O$_6$, and Co containing condensates. Further exposure studies followed by analyses will be needed to clarify the mechanism of calcium silicate coating spallation and determine how the phase change of 8-Ca$_2$SiO$_4$ (larnite) to CaSiO$_3$ (wollastonite) affects this mechanism.

SUMMARY OF RESULTS

The lives of 1.8 CaO SiO$_2$ and ZrO$_2$–8Y$_2$O$_3$ thermal barrier coatings exposed to Mach 0.3 Na plus V doped combustion gases were about four times longer when the ceramic thickness was reduced from 0.038 to 0.013 cm. High Cr + Al, Ni–31Cr–11, Al–.5Y and Ni–16Cr–13Al–.4Y bond coatings improved the durability of calcium silicate and ZrO$_2$–8Y$_2$O$_3$ TBCs by approximately 2X to 3X. Similarly, Co–22Cr–13Al–0.3Y and Co–20Cr–9Al–.4Y bond coatings improved the durability of calcium silicate TBCs approximately 3X and 2X, respectively. Chemical and electron microprobe analyses supported the predictions of condensate compositions and their role in inducing spalling of ZrO$_2$–8Y$_2$O$_3$. Calcium silicate coating failure involved condensation and penetration of Na, V, and Co containing condensates, CaSO$_4$ formation as a result of reaction with SO$_2$, and the phase change from 8-Ca$_2$SiO$_4$ (larnite) to CaSiO$_3$ (wollastonite).

REFERENCES

TABLE I. - PRE- AND POST-TEST ANALYSES

<table>
<thead>
<tr>
<th>Coating system* test time</th>
<th>Location of analyses**</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Chemical analyses</th>
<th>Impurities detected by SEM/EDAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO₂-8Y₂O₃/ Ni-16Cr-6Al-.3Y</td>
<td>D E</td>
<td>Tetragonal(s), Monoclinic(w)</td>
<td>Same</td>
<td>Na²</td>
<td>S</td>
</tr>
<tr>
<td>120 1-hour cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrO₂-6Y₂O₃/ Ni-16Cr-6Al-.3Y</td>
<td>D E</td>
<td>Tetragonal(s), Monoclinic(w)</td>
<td>Same</td>
<td>Na²</td>
<td>S</td>
</tr>
<tr>
<td>80 1-hour cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8CaO·SiO₂/ Co-22Cr-13Al-.3Y</td>
<td>D E</td>
<td>8Ca₂SiO₄(s) Larnite</td>
<td>CaSiO₃ Wollastonite(s), CeO₂(w)</td>
<td>Na</td>
<td>Na,S</td>
</tr>
<tr>
<td>620 1-hour cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8CaO·SiO₂/ Ni-16Cr-6Al-.3Y</td>
<td>D E</td>
<td>8Ca₂SiO₄(s) Larnite</td>
<td>CaSiO₃(s), NiO-CoO(s)</td>
<td>Na</td>
<td>Na</td>
</tr>
<tr>
<td>160 1-hour cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*0.038 cm thick ceramic coatings for coating systems listed.
**Calcium silicate coated specimens with failure patterns of left-hand specimen in figure 2.
Sample taken at approximate depth of 0.020 cm compared to all other samples taken 0 to 0.013 cm from surface.
Approximately twice the background amount of Na. S was present in these samples.
Just discernible above background.
Figure 1. - Mach 0.3 burner rig corrosion test: fuel impurity level, 5 ppm Na + 2 ppm V; fuel/air = 0.046; ceramic surface temperature, 982°C; substrate temperature, 845°C.
Figure 2. Typical failure pattern of thermal barrier coatings after exposure to Mach 0.3 Na plus V doped combustion gases.

(a) ZrO₂-8Y₂O₃/Ni-16Cr-6Al-0.31Y COATING SYSTEM AFTER 120 1-hour CYCLES, CROSS-SECTION B, LEADING EDGE.

Figure 3. Electron microprobe maps.
Figure 3 - Concluded.

(b) 1.8CaO·SiO₂/Co-22Cr-13Al-0.3Y COATING SYSTEM AFTER 620 1-hour CYCLES, CROSS- SECTION A, LEADING EDGE.
Title and Subtitle
EVALUATION OF HOT CORROSION BEHAVIOR OF THERMAL BARRIER COATINGS

Author(s)
P. E. Hodge, R. A. Miller, and M. A. Gedwill

Performing Organization Name and Address
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Sponsoring Agency Name and Address
U.S. Department of Energy
Fossil Fuel Utilization Division
Washington, D.C. 20545

Abstract
Calcium silicate and yttria stabilized zirconia/MCrAlY thermal barrier coating systems on air-cooled specimens were exposed to sodium plus vanadium doped Mach 0.3 combustion gases. Thermal barrier coating endurance was determined to be a strong inverse function of ceramic coating thickness. Coating system durability was increased through the use of higher Cr + Al NiCrAl and CoCrAlY bond coatings. Chemical and electron microprobe analyses supported the predictions of condensate compositions and the determination of their roles in causing spalling of the ceramic coatings.

Key Words (Suggested by Author(s))
- Ceramics
- Hot corrosion
- Burner rigs
- Coatings
- Thermal barriers

Distribution Statement
Unclassified - unlimited
STAR Category 26
DOE Category UC-90F

Security Classification
- Report
 - Unclassified
- This Page
 - Unclassified

* For sale by the National Technical Information Service, Springfield, Virginia 22161