B G, caren. e

i

!

'

¥

[ EERaientites iid WJ

== Axiomatix

(§ASA-CR~160662)

SHITILE Ku-BAND AND S-BAND

COMMUNICATIONS IMPLEMESTATION STUDY Final
Report (axiomatix, Los Angeles, Calif.)
274 p HC A12/MF A1 CSCL 178

880-25522

Onclas
G3/732 22960




SHUTTLE KU-BAND AND S-BAND
COMMUNICATIONS IMPLEMENTATION STUDY

FINAL REPORT
Contracts NAS 9-15240E and NAS 9-15240F

Prepared for

NASA Lyndon B. Johnson Space Center
Houston, Texas 77058

Prepared by

James G. Dodds
Gaylord K. Huth
Peter W. Nilsen
Andreas Polydoros
Marvin K. Simon
Charles L. Weber

Axiomatix

9841 Airport Blvd., Suite 912
Los Angeles, California 90045

Axiomatix Report No. R8005-3
May 21, 1980



TABLE OF CONTENTS

Page
LISTOF TABLES . . . . . . . .. ... c t e e s e e e e e e . i
LISTOF FIGURES . . . . . . . ¢« . . . v o .. e e e e e e e e e iv
1.0 EXECUTIVE SUMMARY . . . . . . . . & & v v v s e e s e o o v 1
2.0 INTRODUCTION . . . . & ¢ . i i i i s e e e e e e v o o a s 2
3.0 S-BAND NETWORK COMMUNICATION ANTENNA CALIBRATION STUDY . . . 3
3.1 General Technical Approach . . . . . . . .. ... ... 5
3.2 Data Gathering Procedure . . . . . . . ... ... ... 10
3.3 Processing Algorithm Considerations . . . . . .. . .. 14
3.3.1 Summary of Kalman-Bucy Filtering . . . . . . .. 15
3.3.2 Basic Signal Model . . .. .. ... ... ... 15
3.3.3 Basic Kalman-Bucy Estimation Algorithms . . . . . 17
3.3.4 Properties and Advantages of the Kalman Filter. . 20
3.3.5 Application of Optimal Linear Filtering to the
Antenna Calibration Problem . . . . . . . . . .. 22
3.3.6 Variable and Parameter Assignments for the
Antenna Model . . . . . . . .. .. ..+ ... 24
3.3.7 Variable and Parameter Assignments for the
Observations . . . . . . . .. ¢ o0 oo 28
3.3.8 Basic Flow Diagram for Antenna Calibration
Estimation . . . . . . . . .. 000000 .. 29
3.4 STDN Calibration Considerations . . . . . . . . . . .. 3
«.0 KU-BAND COMMUNICATION SYSTEM STUDY . . . . .. . . . . . .. 34
4.1 Analysis of TDRS Ku-Band Pointing Accuracy . . . . . . . 35
4.1.1 TORS Calibration Errors . . . . . . . . . . . .. 35
4.1.2 Open-Loop Pointing Budget . . . . . . . .. ... 39
4.1.3 Results of Revised Pointing Budget Analysis . . . 40
4.1.4 Conclusions . . . . . v v v v v v o v o v v o v & 43
4.2 Performance Characteristics of the Ku-Band Channel 3
Convolutional Code with G, Inversion . . . . . . . . .. 44
4 2.1 Run Length of the Eonvolutional Code with Gy
Inversion . . . . . . . . . . . i e it e e e . 45
4.2.2 Code Behavior with DC Ipput . . . . . . . . . .. 48
4.2.3 Summary of Performance . . . . ... .. . ... 54

4,3 Effects Due To Specific TDRSS User Constraint Parameters 55
4.3.1 Ku-Band Bit Synchronizer BER Degradation due to
Data Bit Clock Jitter . . . . . . . . . . .. .. 55
4.3.2 Effect of Data Asymmetry on Unbalanced QPSK
Signals with Noisy Phase Reference . . . . . .. 56



5.0 S-BAND PAYLOAD COMMUNICATION SYSTEM STUDY . . . « « ¢ & - &« .

5.1

5.2
5.3

I

I1

I
Iv

VI

VII
VIII

Bent-Pipe Performance with the Current PI/KuSP RMS
Regulator Capabflity . . . . . . . . .« e e e s e
Sweep Acquisition of Deep-Space (DS) Pay]oads by the PI
Two-Way Phase Noise Performance for PI and Coherent
Payload Transponders . . . « « « v ¢ o o ¢ o o o o o o o

REFERENCES . . . . . . ¢ v i i e i i et i e e e e e e e s oo o e
APPENDICES:

Ku-Band Synchronizer BER Degradation due to Data Bit
Clock Jitter

Effect of Data Asymmetry on Unbalanced QPSK Signals
with Noisy Phase Reference

Peak Regulator Design and Breadboard Evaluation
Acquisition Sweep Rate Viewgraphs

Maximum Sweep Frequency for Phase-Locked Loops with
Large Damping Factors

The Theory of Mean-Square Phase Noise Performance of
One/Two-Way Coherent Communication Links

Mean-Square Error Approximation to Phase Noise Spectra
Calculations and Final Results on the Phase Noise Error

Variance for the S-Band PI and Transponder for SGLS and
STON

ii

61

61
63

63
65



LIST OF TABLES

Absolute Flux Density and Antenna Temperatures at 2295 MHz. . .
Summary of Error Models - A/T Null . . ... .. ... ¢. ..
TORS/Shuttle Transmit Pointing Budget 0.06° Nuil-to-Boresight

Error . . . ¢ v o h h e e e e e e e e e e e . .
TDRS/Shuttle Transmit Pointing Budget, 0.92° Null-to—Boresight
Error & ¢ v v i e et e e e e e e e e e c v e e e .

TDRS/Atmospheric Explorer Pointing Budget, Worst Case . . . . .

Degradation for the Three Bit Synchronizer Classes and the
Two Jitter Specifications [(a) and (b)] for Sine Wave Jitter
(Uncoded Data) . . . . &« . & v v o i e e e e e e e e e e e

Degradation for the Three Bit Synchronizer Classes and the
Two Jitter Specifications [(a) and (b)] Random Noise Jitter
(Uncoded Data) . . . . .. ... .. ... e e e e e e

Bent-Pipe FM Transmitter Mean Deviations (MMz). . . . . . ..

itd

Page

AN
36

38
4
42

57

57
61









10.
1.
12.
13.

14,

15.
16.

LIST OF FIGURES

Link Relationships for Determination of Shuttle Antenna Gain

Dur.‘“g OFT ® & 8 3 & 4 S & & a2 e & s & 6 B 3 & e & B B e+ * o

Information Flow for Gain Pattern Determination of Shuttle
Antenna During STS . . . . & ¢ v ¢ v v 4 b it e e e e e .

Unprocessed Gain Matrix . . . . .. .. e e e e e e e e e
Basic Signal Model, a Finite-Dimensional Linear System . . . .

Basic Structure of One-Step Predictor Version of the
Kalman-Bucy Estimator . . . . . . . ¢ v v ¢t 4 v 4t v o o v v W

Kalman Estimator Redrawn to Emphasize its Structure as a Copy
of the Original System Driven by the Estimation Errvor . . . .

Specification of the Angles for Antenna Calibration . . . . .

Conversion of AGC Voltage to Received Average Power Signal
Strength . . . . . .. ... ... e e e e e e e e e e e e e

Antenna Measurements Taken versus Time Assignments, k
Basic Flow Diagram for Antenna Calibration Estimation
Flow Chart for Calibrating Arbitrary DSN Station . . . . . . .
Master Station Block Diagram Gain Transfer Calibration System

Rate One-Half Encoder Representation, Ku-Band Return Link,
Mode 1 . & . . . L s e e e e e e e e e e e e e e e e e e

The Rate One-Half, Constraint Length 7 NASA Planetary
Standard Code . . . . . . ¢ ¢ . . L i i e e e e e e e e e e

Effect of Zero Input Data on Decoder Qutput . . . . . . ...

(a) Source Model for Ambiguous Check Symbol Sequence
(b) K=7Encoder . . . . . . v i v v v v v e et e e

vi

Page

n
12
16

19

21
23

25
27
30
32
33



1.0 EXECUTIVE SUMMARY

Various aspects of the Shuttle Orbiter S-band network
communication system, the S-band payload communication system, and the
Ku-band communication system are included in this final report.

The first topic, Section 3.0, deals with a proposed method of
obtaining more accurate S-band antenna patterns of the actual Shuttle
Orbiter vehicle during flight. The preliminary antenna patterns using
mock-ups are not realistic since they do not include the effects of addi-
tional appendages such as wings and tail structures.

Section 4.0 discusses the Ku-band communication system, espe-
cially the TDRS antenna pointing accuracy with respect to the Orbiter
and the modifications required and resulting performance characteristics
of the convolutionally encoded high data rate return 1ink to maintain
bit synchronizer lock on the ground. Also included is the TDRS user
constraints on data bit clock jitter and data asymmetry on unbalanced
QPSK with noisy phase references.

Section 5.0 outlines the S-band payload communication system
study, including the advantages and experimental results of a peak regu-
lator design built and evaluated by Axiomatix for the bent-pipe 1link
versus the existing RMS-type regulator. Also discussed is the selection
of the nominal sweep rate for the deep-space transponder of 250 Hz/s,
justifying this conclusion with a phase-plane analysis which incorporates
the transponder operating conditions and tolerances. And finally, the
effects of phase noise on the performance of a communication system is
analyzed in great detail. The phase noise spectra is characterized using
experimental results and included into models of the carrier tracking
loops to determine the phase noise system errors of the overall system.
Different types of two-way links are considered, including the phase
noise effects of multiple internal control loops which are equivalent
to three- and four-way links. Both in-band and out-of-band noise sources
are also included. ‘

Eight appendices are included at the end of this final report
which describe in detail the models used, the derivations and the con-
clusions of the studies for those who are interested in the technical
aspects of the investigations.



2.0 INTRODUCTION

This final report summarizes the system implementation studies
of the S-Band Network Communication System, the Ku-Band Communication
System, and the S-Band Payload Communication System. The specific areas
of study are covered under Contracts NAS 9-15240E and NAS 9-15240F; how-
ever, in the interests of continuity of conciseness, the results of the
study will be reported as a unit.



3.0 S~-BAND NETWORK COMMUNICATION ANTENNA CALIBRATION STUDY

This section presents the results of the investigation to date
of an approach to calibrate the Orbiter S-band antennas (and UHF antenna
also) during STS flights. The actual gain patterns of the flush-mounted
S-band quadratures (PM, two on each side of the Orbiter) and the S-band
hemi antennas (FM) are difficult, at best, to predict from the customary
ground antenna range pattern measurements. This is because, for flush-
mounted antennas, the Orbiter structure itself has a significant influ-
ence on the pattern. Consequently, the adjacent sections of the Orbiter
structure in which the antennas are mounted have been mocked-up and,
along with the antenna(s) mounted in them, used for pattern tests on the
JSC antenna range. This technique typically yields fairly accurate gain
measurements near the boresight of the antenna, i.e., normal to the sur-
face of the structure. However, as the angle off boresight increases,
the accuracy in the gain pattern decreases due to edge efiects of the
limited structural mock-up and the missing influence of the more remote
parts of the structure, such as the wings.

Even though the operation of these antennas is expected to take
place primarily in the central portion of the main beam, it is important
to have accurate knowledge of the natural antenna gain pattern throughout
the ent:.e main beam and the sidelobes. This is the case for the follow-
ing reasons:

(1) During the ascent and descent portions of flight, the
range to the ground stations will be relatively short. As a result, the
signal strength will be quite high. The configuration of the Orbiter and
the ground station, however, may be such that communication will be via
the low gain portion of the mean beam or even a sidelobe.

During T1ift-off, the present geometric configuration is
such that a weak portion of the S-band pattern will be in use. As a
result, more precise information about the gain patterns is necessary in
these regions. At such short ranges, even in the low gain portions of
the pattern, the SNR should be very adequate, but the extent of such
coverage is not really known.



(2) The long-term plan is to replace the S-band quadratures
with two-position switched beam phase-array antennas mounted in the same
physical location. The S-band quadratures are presently planned for the
first six to nine STS flights, The main problem of appendage blockage
is reduced by the use of phased-array antennas. This would not be nec-
essary, however, if by chance the S-band quadratures operated satisfac-
torily in the fringe areas (i.e., in the vicinity of -1 to +1 dB).

(3) The long-term plan is also to transfer communication to
the Shuttle/TDRSS links via the S-band quadratures or S-band phased
arrays as soon as possible into the STS mission. Because of the predic-
ted narrow design margins for some of the S-band Shuttle/TDRSS links, it
is important to show how large the spatial region is in which acceptable
link performance can be expected. This can be determined with accurate
knowledge of the S-band antenna patterns in the "fringe areas." A prime
opportunity to accomplish this finer calibration exists during the STS
phase because, during STS, communication with the Shuttlie will Ce via
STDN stations. While in orbit, the actual performance of the Shuttle
antennas will be free of all the ground effects present on conventional
antenna ranges. Thu-, with appropriate 1ink calibration and data pro-
cessing, the STS Orbiter/STDN Tink can function in the same manner as
an antenna range.

The remainder of this section describes a technical approach
to be used during STS to obtain the finer gain calibration. The results
described are preliminary, and further refinement of the approach is
expected to continue on a subsequent contract. The emphasis is placed
on the main proolem, namely, the changes in the S-band quadrature pat-
terns due to appendages.



3.1 General Technical Approach

The RF 1ink information which will be available during STS for
purposes of Shuttle antenna calibration will fall into two general cate-
gories. First, there is the link information which will *.: obtained dur-
ing communication while the Orbiter is in an "as flown" mission. The other
category of link information is that which is obtained while the Orbiter's
attitude is determined and controlled specifically to support antenna cal-
ibration. The FTR (Flight Test Requirement) for this category is to
determine antenna coverage that cannot be verified on the ground. The
only objective in these "special antenna-pattern tests" is to utilize
specific antenna coordinate profiles, or "passes," to obtain gain informa-
tion for that portion of the antenna(s) pattern. This would be implemented
by having the Orbiter perform suitable roll maneuvers for two or three
ground-station passes. The present plan is to perform a 720° roll at 2°/
sec, requiring approximately six minutes. During such a maneuver, only
one of the S-band quadrature antennas would be operating, thereby provid-
ing Tow gain and sidelobe information. The 720° roll would be performed
twice, once for oneof the lower quadrant S-band antennas and once for one
of the upper quadrant antennas.

The type of measurement information obtained from the programmed
attitude profile will be superior to the "as flown" category. This is
because the portion of the pattern used in the "as flown" flights will
necessarily concentrate on the main beam of one of the S-band quadratures.
The antenna in use will be chosen so that the best signal strength is
obtained. Tne flights programmed for antenna measurements will provide
broader pattern coverage and will come closest to conventional antenna
pattern measurement techniques; however, the "as flown' measurements will
be the predominantly aveilable information due to the pressure of numer-
ous mission requirements for STS flights. The signal processing and data
reduction developed for the antenna measurements will be the same, however,
for both categories.

The general approach to updating the calibration of the Orbiter
S-band antennas from the measurements described above is as follows:

(1) Calibrate the STDN stations and Orbiter RF systems

The best information we have at this time is:



(a) The Shuttle transmitter power can be determined to
within £0.1 dB.

(b) NASA Goddard presently plans to accurately calibrate
one of the ground stations. At this time, it is not known whether this
calibration will produce values that are known to within i1 dB.

(2) Record uplink and downlink received signal strength versus
Orbiter structure.

(3) JSC will provide BET (Best Estimate Trajectories) and atti-
tudes of the flights. These will be sufficiently accurate that they can
be assumed to be deterministic.

(4) The data will be filtered to provide estimates of the actual
antenna gain in the immediate vicinity of the location where the measure-
merts were taken. The estimates can be updated as more STS flights are
taken. For example, data from STS-1 may be replaced with actual measured
points from STS-2 or used in addition to those f om STS-2 and succeeding
flights. Part o7 the filtering process will consist of a "data good"
algorithm to determine when data should be accepted or rejected.

(5) In those regions where the orbital antenna measurements were
not made and where the antenna pattern is relatively smooth, an interpola-
tion algorithm will be developed to provide updated values of the entenna
gain. For the sidelobes and/or in those regions where the antenna gain
variation is very large with respect to either :levation or azimuth, 1it-
tle if any interpolation is l1ikely. In these regions, the average antenna
pattern gain may be adjustable (biased) from that of the ground measure-
ments. The overall antenna gain measurement process is enhanced because
the gain of the main beam near boresight is expected to have no appreciable
change due to the appendages.

A11 aspects of the filtering algorithm will be fundamental in
determining actual antenna coverage capability that could not be verified
on the ground. A1l aspects of the filtering and interpolation process
will also continuously compare measured orbital values with those obtained
from the ground test-range patterns, particularly when confidence in the
orbital measurements is low.



Figure 1 illustrates the basic mathematical 1ink relationship for
determination of antenna gain from received signal power. From this fig-
ure, it is seen that, in addition to Orbiter attitude, the key parameters
which must be known or measured are received signal power, calibrated STDN
gain and circuit losses, Orbiter transmitted power and circuit losses,
line-of-sight range, and carrier frequency. This calculation is not nor-
mally encountered in conventional antenna measurement procedures because,
in conventional procedures, a standard gain horn is substituted for the
antenna being measured and the received signal power is measured. There-
after, the dB difference in received signal power with the measured antenna
indicates the gain relative to the standard gain horn.

Ideally, a completely calibrated STDN consists of precise knowl-
edge of all gains in the power budget computation, including antenna feed
circuit Tosses, preamp gain and receiver gains. The signal strength is
determined by monitoring the AGC levels. The relationship oetween AGC
level and signal strength must therefore also be determined (calibrated).
In addition, since it may be desirable to measure received signal power
on the Orbiter, the STDN gains and losses and power in the transmit mode
would ideally be accurately known. Similarly, the Orbiter transmit power
and circuit losses in the transmit and receive modes wculd ideally be
accurately measured.

However, an error budget inalysis will be carried out on all of
the parameters necessary to normalize the raw data (AGC output) into a
raw estimate of antenna gain.

Tarameter Bias RMS Error

Ran-~e

Attitude

Circuit Losses

Frequency

Transmitter Power

STON Gain

Gain Uncertainty

AGC Quality

AGC Nonlinearity Curve
(dBm versus volts)

Both bias and RMS error need to be estimated, as indicated in the
above table. With these estimates, the errors of the raw atenna gain
data can be estimated. The range data is expected to be very accurate,
based on Best Estimate Trajectory (BET).
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Figure 1.

LR = path loss

Link Relationships for Determination of Shuttle Antenna Gain During OFT



Both uplink and downlink data will be available during the
flights. The weighting of the uplink and downlink data needs to be
determined. The SNR in each link can be estimated via the previous
table for each link. One simplification of the overall data reduction
process is obtained by consolidating each uplink and downlink data point
into one data point.

The STDN stations, however, have heretofore had abundant design
margins so that sucn accuracies have not been necessary. Therefore, most
parameters in the power budget computations at most STDN stations are not
accurately known. The most economical approach to circumvent this is
proposed as follows:

(1) Accurately calibrate one STDN station and use this station
to make absolute gain measurements over a portion of the S-band antenna
patterns. A high degree of confidence would then exist for the absolute
gain in these portions of the patterns.

(2) Use the information in (1) above to calibrate the STON sta-
tions when the Orbiter passes by. Measurements over the remainder of the
patterns would then provide antenna gain values relative to those which
are known absolutely.

The best portion of the pattern in which to make these absolute
measurements is the region of boresiaht. This has the additional advan-
tage that the pattern in the main beam should closely agree with the
measurements made in the antenna ground test range. It is expected that
the appendages will not appreciably affect the antenna pattern in the
high-gain portion of the main beam.

An alternate method of obtaining the absolute antenna gain mea-
surements is by way of a calibrated standard gain horn at one STDN site.
Whether or not this approach involves fewer calibration difficulties is
yet to be determined.
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3.2 Data Gathering Procedure

The basic information gathering and processing procedure to obtain
the gain pattern is shown in Figure 2. Provisions for gain calculations
from both uplink and downlink communications are shown. The majority of
Figure 2 depicts the information flow necessary to evaluate the equitions
shown in Figure 1. The box labeled "Unprocessed Gain Matrix" represents
the three-dimensional matrix of measured antenna gain samples. This matrix
is J2picted in Figure 3. The X and Y coordinates correspond to the quan-
tized 0,9 look angle coordinates of the Orbiter antenna. The Z coordin-
ate corresponds to the measured gain samples. There may be more than one
samgle for a given coordinate, resulting from the several passes by the
same station or samples of the gain at that coordinate for several stations.
In general, the elements of the three-dimensional gain matrix are identi-
fied by Gue.0

where

GNe = gain sample which is a function of station, Orbiter antenna,
¢ station elevation angle, Orbiter lock angle, and Orbiter trans-
mit circuit

N = number of gain samples for the particular 8,4 cell

The matrix of GNB’0 will, in general, have many 6,¢ cells for which there
will be no values and others for which there will be several values. Thus,
to arrive at the final antenna pattern, it is necessary to pass this matrix
through an appropriate filter/estimator.
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The drawing in Figure 3 should not lead to the conclusion that
all sampfes are separated by A6 and A¢ in 6 and ¢, respectively. The
actual locations of the measurements are not now presently known. It can
be safely assumed that the measurement locations will be irregularly
spaced. The present plan for the "special antenna-pattern tests” is to
sample the AGC at 20 samples/sec during the roll maneuvers described above.
This corresponds to 10 samples/degree, which is quite adequate.

After the signal processing has been completed, the desired output
is a grid of estimated antenna gain values. A satisfactory grid size
appears to be 2° x 2°. This is certainly adequate over the main beam of
the S-band quadratures. However, the size of the computational problem
needs to be determined. The array of values for each of the quadrature
antennas is 90 X 45 based on the 2°-by-2° grid. This is also assuming
that each antenna pattern is evaluated only over the region where it is
the primary antenna. This evaluation will be performed during the next
phase of the investigation.
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3.3 Processing Algorithm Considerations

The signal processing for Shuttle antenna measurements can be
partitioned into two parts, as follows:

(1) Preprocessing. The effects of range, frequency, circuit
losses, biases, etc. are taken into account. In addition, the necessary
bookkeeping, such as which antenna is in use, 100k angle, data source,
etc., is carried out. The result is a set of normalized antenna mea-
surements which are used to update the appropriate antenna pattern.

(2) The algorithm. The computational procedure employed to
update the antenna gain pattern using the normalized antenna measurements
described above.

A recursive Kalman-Bucy type estimation algorithm is discussed
below as a candidate suggested by Prof. B. Tranter, which has received
extensive attention in the recent literature on signal processing, is
the Maximum Entropy approach. This method has been shown to have excel-
lent performance in the estimation of power spectral densities when only
sparse data is available. The limitation appears to be that highly
reliable data is necessary or, equivalently, that the observations are
at very high signal-to-noise ratios (SNR). This signal-processing tech-
nique will be examined to see if it can be extended to spatial filtering
at intermediate values of SNR. In this case, the dominant noise is the
calibration error variance.

If these techniques do not prove to be adequate, the class of the
nearest neighbor algorithms will also be examined in the next phase of
the investigation.

We cannot determine which of these algorithms is optimum since
essentially no statistical information is available. The real issue is
which of the candidate algorithms will do the most satisfactory job.
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3.3.1 Summary of Kalman-Bucy Filtering

In this section, the basic ideas of the discrete time Kalman-Bucy
filter are presented. Restriction is made to discrete time processing
since that is most amenable to digital computation and the raw data is
also expected to come to us in discrete time.

The Kalman-Bucy filtering algorithm determines the best linear
mean-square estimate of a signal immersed in additive noise when the sig-
nal and noise can be modeled in a certain manner. This basic signal model
is quite general and can be made to fit a wide variety of signal statistics.

3.3.2 Basic Signal Model

The basic signal model presented is not the most general but is
more than adequate for the antenna calibration problem. The basic signal
model is diagrammed in Figure 4 and is described analytically by the fol-
lowing equations:

Xesr = Fe X ¥ G Wy (1)
- ]
wher
xk = a stochastic signal vector which is modeled in (1) as a
first-order Markov process
Nk = measurement noise
W_ = input noise process which makes the signal stochastic

Yk = Sk + Nk is the measurement or observed process

Sk = H'y X, is the system input process, a weighted value of the
desired signal, Xkx. It is the observed signal when there is
no measurement noise. The notation' means transpose.

k  represents a discrete time argument, k > 0, and without loss
of generality, k takes on integer values only.
We shall make the following assumptions with regard to the noise
Processes:

1. {Nk} and {wk} are individual white processes. By white in
discrete time, we mean that, for any k and 2, k # 2, Nk and N2 are inde-
pendently random vectors and wk and wz are independent random vectors.



Figure 4.

X X
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Basic Signal Model, a Finite-Dimensional Linear

System
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2. {Nk} and {Nk} are individual zero mean, Gaussian random
vector processes with known covariance matrices, namely,

E Evk Nz'] = Rk 8o (3a)
E E‘k wz'] = Qk sz (3b)
where sz is the Kronecker delta.

3. {Nk} and {wk} are independent random vector processes.

In equations (1) and (2), {Fk}, {Gk}, and {Hk} are sequences of
deterministic (generally known) matrices which are chosen so that the
first-order and second-order statistics of {Xk} and {Yk} agree as closely
as possible with those of the real world system being modeled.

3.3.3 Basic Kalman-Bucy Estimation Algorithms

Given the basic signal model in equations (1) and (2) and in Fig-
ure 4, the Kalman filter determines the best mean-square estimate of the
process {Xk}, given the sequence of observations {Yk}. The basic discrete
time Kalman filtering problem can equivalently be stated as follows:

Suppose that the initial state vector, Xos of the desired

signal is a Gaussian random vector with mean, E(XO) = XO

and covariance matrix PO’ and independent of the noise pro-

cesses {Nk} and {wk}.

Then determine:

1e>

E E(knl . g ik-]] (4a)

E E(knl s L<k ] (4b)

and the associated error covariance matrices, E:k/k-l and z:k/k’ respec-
tively. In (4a), the best estimate is denoted by xk/k-l and represents

a one-step predictor in that the estimate of {X, 1 is determined for time

k given all of the observqtions up to time k-1, namely, {YO, Y]""’Yk-l}'
In (4b), the estimate is Xk/k and represents a filter estimate in that
{Xk} is determined for time k given all observations up to and including
time k, namely, {YO, Y],..., Yk}.

Xk /k-1
and

ne>

X /k
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We distinguish between the one-step predictor and the filter
versions of tte Kalman algorithm since the one-step predictor is signifi-
cantly simpler than the filtering algorithm. At this stage of the antenna
calibration p-oblem develnpment, it is enough to consider only the one-
step predictc} vers‘on of the Kalman algorithm.

Referring again to (4), the notation on the right side represents
the conditioial expectations (ensemble average) of what is to be estimated
given what ras been observed. Under very general conditions, this is the
best mean-square estimate.

Witnout proof, we now present the one-step predictor version of
the class of Kalman estimators.

The Kalman one-step predictor comprises the system depicted in
Figure 5 and is described for k > 0 by the equations

R . I s
Yewrsi = Ek " K Hk:l Xerp-1 + K Yy (5)
with
Xo7-1 = %o (6)
The gain matrix Kk is determined from the error covariance matrix
by

-1
K = Fe Diper B Eik'):k/k_] H + R|;| (7)

assuming the inverse exists (which is normally the case). The conditional
error covariance matrix associated with the estimate X /k-1 is defined as

zk/k-l ¥ E[(Xk “Xeker - xk/k-l)

and is minimized by the estimate defined in (4a). This conditional error
covariance matrix can be computed recursively by the discrete time Riccati
equation, namely,

Yy 19«1} (8)




+ Xks1/x ¥k
)D — Delay
+ r’/

Figure 5,

P = K By ——

Basic Structure of One-Step Predictor Version of the Kalman-Bucy Estimator
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-1
Zkﬂ/k = Fy E:k/m '):k/k-l He ("k'):k/k-] Hy * Rk)
x W' L jie ]Fk' + G Qy G’ (9)

This equation is initialized by
2osa1 = P

3.3.4 Properties and Advantages of the Kalman Filter

We hereby enumerate certain properties and advantages of the
Kalman algorithm:

1.  The Kalman filter is a linear, finite-dimensional, discrete-
time system. This is most advantageous in that it could have been nonlin-
ear and/or infinite dimensional.

2. The output of the system dk/k-l} is dependent, of course,
on the input {Yk}. The conditional error covariance matrix, on the other
hand, is indeperdent of the input sequence {Yk}. As a result, the error
covariance matrix sequence {zk/k-'l} and the gain matrix sequence {Kk} can
be computed before the filter is actually run.

3. The conditionral covariance matrix definition in (8) identi-
fies 2k/k-1 as the covariance matrix associated with a particular esti-
mate. Since zk/k-l is independent of {Yk}, however, we may take the
expectation of both sides of (8) over all possible {Yk} to conclude that

L - Eﬂxk “Kper) (e - ik/k-l).] (10)

This means that 2k/k-1 is also an unconditional error covariance matrix
associated with the Kaiman filter, 1'.e.,£k/k_1 is the covariance matrix
associated with the estimator.

4. The Kalman estimator is redrawn in Figure 6 to further empha-
size its structure as a copy of the original signal model driven by the
estimation error. The Kalman estimator can also be interpreted as develop-
ing an estimate of the observation at time k given all observations up to
time k-1, namely (Yk/k-l)’ as shown in Figure 6. The error (Yk°Yk/k-1)’



Xk /k-1

—
Copy of Basic Signal Model
| ;
Kk [ ;‘fx} K17k Delay - Hk'
P
Ye/k-1
Figu 7. Kalman Estimator Redrawn to Emphasize its Structure

as a Lopy of the Orijinal System Driven by the Estimation Error
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is the input to the gain matrix Kk and is, essentially, what drives the
estimator. If the error is zero, the copy of the basic signal model pres-
ent in the estimator runs by itself and continues to generate additional
estimates.

5. Suppose the underlying signal model is time invariant and
the input and output noise processes are stationary. Then, Fk’ Gk, Hk’
Qk’ and Rk are all constant (independent of k). In general, however,
Iy /k-1 and therefore K will not be constant, so the Kalman estimator
will normally still be time-varying despite time invariance and station-
arity in the signal model.

3.3.5 Application of Optimal Linear Fiitering to the

Antenna Calibration Problem

In this final section, we present the first version of tailoring
the Kalman-Bucy estimation algorithm to the antenna gain calibration prob-
Tem. As updated information is obtained about the accuracy of the various
ground station and Shuttle parameters, the filtering algorithm will also
be appropriately updated. We begin by making various observations:

1. For the present, we restrict attention to the S-band quads.
The desired output is an updated antenna pattern which has a grid size of
2°-by-2 . That is, the value for each 2°-by-2° component of the entire
pattern will be an estimate of the average gain in that region or the
gain at the center. Thkere is no way to distinguish between which of the
two values are being represented by the desired output.

The specification of the angles for antenna pattern specifi-
cation is shown in Figure 7. Based on a grid size of 2°-by-2°, there are
4050 values necessary to specify the pattern for all four S-band quads.

The antenna pattern will be specified by the vector Xk at
time k. Therefore, Xk is a 4050-dimensional vector. This is too large.

We reduce it by a factor of four by considering S-band quad antennas sep-
arately. The dimensionality of Xk is therefore reduced to 1012, which is
still quite large. The dimensionality can be further reduced substantially
by considering only those positions of the patterns which have a reasonable
chance of being used. At the present time, it is not clear how much
reduction in dimensionality is appropriate.
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For each of the four S-band quads, there are three Shuttle
configurations [1]:

a. Solid Rocket Boosters (SRB) + External Tanks (ET) +
Orbiter. (This configuration lasts from 1iftoff to the first approximately
120 seconds.)

b. ET + Orbiter (first approximately 500 seconds)
c. Orbiter only.

Ideally, therefore, there will be 12 distinct antenna pat-
terns and each data point which is collected applies to only one of the
patterns.

2. The raw data that is collected are AGC voltage measurements
onboard the Orbiter and in the various ground stations, as shown in Fig-
ure 8. This data must be transformed into average received power at the
various locations. As shown in Figure 8, signal strength will be simul-
taneously available from the Orbiter receiver and one of the ground sta-
tions. To perform this transformation requires calibration of the AGC on
the Orbiter and at the various ground stations. At present, we assume
that this transformation is carried out external to the filtering program
so that the inputs to the antenna calibration program consist of signal
strength.

3.3.6 Variable and Parameter Assigmments for the Antenna Model

The basic signal model in Figure 4 is tailored to represent the
antenna pattern as a function of time. As indicated above, xk represents
the vector of components which constitute the antenna pattern for one of
the S-band quads in one of the configurations. To be specific, we assume
that the Orbiter is in orbit since most of the data generated will be for
that configuration. We make the following assignments:

Xo represents the antenna pattern measured in the antenna ground
range and is assumed known

xk » k > 1 represents the antenna pattern for the antenna mounted
onboard the Orditer at the kth time period. More will be said
subsequently about how k represents time.
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Each integer value of k represents that portion of one flight
when communication is with one ground station. This is best seen by
inspection of Figure 9, where an example is presented. The time k = 1,
for example, corresponds to the Orbiter communicating with ground station
BDA (see [1]) for designations, locations, etc.) during which measurements
were taken at those antenna component indices across from the vertical bar
above k = 1 in Figure 9.

The antenna pattern associated with X_ is the modified version of
Xo due to the appendages on the Shuttle and due to being mounted on the
Orbiter itself. What we are after is an estimate of x]. It is assumed
that the antenna pattern remains constant throughout a given mission.
Therefore,

Xy = Xy = .= K= .= Xy (1)

where K] represents the last time period of the first mission. The
antenna pattern X] is related to Xg by

Xy = FoXg (12)

where the matrix F0 is unknown. Of course, our problem can be equivalently
stated as finding FO‘ We assume that F0 is diagonal, unknown and constant.
The values of Fy are

F, = 0 , T<k<k -1 (13)

Equivalently stated, the matrix Fk remains zero throughout the remainder
of the first mission.
Since the antenna pattern is assumed to remain constant, then

G, = 0 . Qk =0 for all k. (14)

At the beginning of the second mission, we assume that the antenna
pattern is uniformly attenuated by the factor "a." This is modeled by

X = aX (15)
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which is equivalent to saying

FK] = al (16)

where I is an identity matrix. The attenuation factor "a" is initially
unknown and results from the TPS tiles being charred during reentry. The
attenuation parameter "a" can be estimated, however, from signal strength
measurement variations from one mission to the next.

3.3.7 Variable and Parameter Assignments for the Observations

The weighting between the value of antenna gain and the signal
strength observation is performed by the matrix Hk' This matrix is also
diagonal. For a particular value of k, it has nonzero values only for
those indices which correspond to antenna positions where measurements
were obtained, as indicated in Figure 9.

The nonzero values of Hk convert the antenna gain to signal
strength. This is accomplished by the communication link equation

2
P G; G

R (4w) R2

For the downlink, the parameters in (17) are as follows:

o
"

T Orbiter transmitted power

[p]
[[]

T antenna gain of Orbiter, at some designated angular coordin-
ates (o, ¢)

R Ground station antenna gain

oD
1]

wavelength
range between Orbiter and designated ground station.

A1l measurements taken at a given ground station associated with
a particular orbital pass will be associated with a particular value of k.
For the downlink, each component of H, will contain

2
PrGry
(4r)% RZ
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which relates the antenna gain onboard the Orbiter to the signal strength
in the ground station receiver.

3.3.8 Basic Flow Diagram for Antenna Calibration Estimation

A basic flow diagram for antenna calibration estimation is shown
in Figure 10. The Kalman estimation algorithm is shown in Figure 6, where
all necessary matrices are assumed known. In Figure 10and the previous
sections, we have described the inputs required to compute the matrices
in Figure 6.

As more specific information is obtained regarding the availabil-
ity and accuracy of the necessary parameters, the basic flow diagram will
be developed in further detail.
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3.4 STDN Calibration Considerations

In order to assess the magnitude of the problem of accurately
calibrating the gain of the STDN stations, a preliminary investigation
of the techniques utilized by DSN to calibrate DSN stations at S-band has
been undertaken. The investigation has found that the DSN has the capa-
bility of calibrating station antenna gain to a 3o accuracy of +0.1 dB or
better. This accuracy is achieved as a result of making a series of very
exact measurements and utilizing averaging techniques on the data. On a
one-shot basis, wherein one or very few measurements are used, a 30 accu-
racy of +0.3 dB can be expected.

The technique utilized by DSN essentially utilizes accurately
measured radio stars as RF sources. The flux density of several selected
stars, listed in Table 1, was determined by means of an accurately cali-
brated DSN station, DSS-13 (Goldstone 26M). This station was calibrated
by means of a gain calibration transfer technique. The ultimate source of
calibrated antenna gain was an S-band Standard Gain Horn developed and
accurately calibrated by JPL specifically for this purpose. The major
steps for calibrating DSN stations, via the radio star, beginning with
the Standard Gain Horn, are shown in Figure 11. A block diagram of the
DSN gain transfer system is shown in Figure 12. The complexity and prob-
lems associated with implementing these types of calibration techniques at
selected STDN stations will be investigated in the next phase of the study.

Table 1. Absolute Flux Density and Antenna Temperatures at 2295 MHz

) 100% Efficient Antenna
Source F;“: ?g?ssgy Tgs K
26 m 34 m 64 m_|

3C123 31.0 + 0,61 5.92 | 10.2 36.2
3C218 (Hydra A) 26.7 + 0.51 5.10 8.78 31.2
3C274 (Virgo A) 136 + 2.6 25.9 44.6 | 158
3C405 (Cygnus A) 887 +15 169 292 1034
3C461 (Cassiopeia A)* 1525 & 27 291 502 1777

*
Flux density known to decrease approximately 1% per year (observation
epoch 1972.6)
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4.0 KU-BAND COMMUNICATION SYSTEM STUDY

The Ku-band communication system study investigated the
accuracy with which the TDRS Ku-band antenna could be pointed at the
Orbiter Ku-band antenna, as discussed in Section 4.1. The Orbiter
Ku-band system high data rate convolutionally coded return link was
modified to eliminate the need for a minimum transition density to
keep the bit synchronizer on the ground in lock. Section 4.2 pre-
sents the performance characteristics of the modification to the
convolutional encoder. The performance effects due to TDRSS user
constraints of data bit clock jitter and data asymmetry on unbalarced
QPSK with noisy phase reference are discussed in Section 4.3.
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4.1 Analysis of TDRS Ku-Band Pointing Accuracy

In order to meet EIRP specifications, the TDRS must point its
high-gain Ku-band antenna to within 0.24° of the user. TRW has done
extensive analysis and simulation of the open-loop pointing budget and
has concluded [6] that the TORS is capable of meeting the requirements
under worst-case conditions. This report is a review of the TRW analysis,
with emphasis on the Space Shuttle as a user. Certain parameters consid-
ered by TRW improve with respect to the Shuttle, and others degrade. The
net effect, if the TRW analysis were flawless, would be that the TDRSS
could easily service the Shuttle with the specified pointing accuracy.
However, TRW assumptions as to residuai errors after calibration appear
to be optimistic. As a result, the ability of the TDRS to point to the
Shuttle to within 0.24° is marginal with more realistic assumptions as to
residual calibraticn errors.

In subsequent sections, we discuss the various parameters used to
estimate the pointing accuracy, with emphasis on the more critical param-
eters. Error budgets are given using our best estimates of attainable
measurement errors. We consider errors with the Shuttle at 100-mile and
200-mile orbits and the TRW worst-case atmospheric explorer orbit.

4.1.1 TDRS Calibration Errors

Item 17 of the attached pointing budgets appears to be the most
controve ~sial in the pointing budget. On orbit, the TDRS high-gain Ku-
band antennas will be calibrated using the White Sards terminal. Specif-
ically, the autotrack null will be calibrated using the autotrack error
signal [7]. Prior to calibration, the autotrack null to mechanical bore-
sight uncertainty is greater than 1°.

During calibration, the antenna is swept past the White Sands ter-
minal and the autotrack error signal is used to estimate the position of
the null relative to the gimbal angle readout. Errors introduced by lags
in the system are first calibrated out by offsetting the null and sweeping
a fixed pattern. Local maxima and minima are correlated with gimbal angle
readouts to estimate the system time lag.

Table 2 of [6] is a 1ist of the errors involved in the calibration
procedure. Due to the complicated nature of the model, the resultant



Parameter

True Value

frror
(difference between
true and nominal values)

3. WNSGT look angles

. Electrical Boresight
Angles

¢. Attitude Angles

d. Gimba! Misalignment

Angles

e. Twme-tagging Errors

8, = % &, = 5.

1
[eBS? * 0352] 2 v Unif(+0.1%)

e, « N(sg, 0.0025)

L 2
4

Nls,. 0.0025)

L
L3

N{0, 0.1111)

<10 ., during calib.
e Unif(+2.0), after calib.

. during calib.

o
ue ‘umuio.b), after calib.

1
“DZ . ‘02 . .DZ] 2

< N0, 0.133)

80y, 8¢y = 8y * 8
By v 0.01° s (;!l R ‘)

B, « W(0,1.1-4)

868, = 0.00t + 0.015 sinfoe}
BS "(-71 - ‘,

+ /:-' N.
1 7

begg = 2 1-uy Ny

U, - Umit (0,1)
"l + K(0, 1.£-4)

(1

ar 8¢, 7 N{0,4. 131 -8)

A‘a'l,‘lz‘l3

[, + 0.191° sm<_?ﬂ*_g . 5)

E2 v 0.0 sin(_?‘"t + 0)
0.t

f2 7 N, T7.729L-4)

-

2 2 2
[AED + ACD “ 6!0 ]

+ N (0, 4.840-8)

CBET, CBE? = AliA20A34A4¢A5

A, ~ 0.0075° 1nt (1))

R, # Umf(+0.05°)

2
A3 ¢ 0.0]° san (2+t ¢ £)
Ay < N(O, 2.95-7)

Ag ~ 0.0075° Int (#2)

Notation: Unif(+C) = random variable uniform on the interval [-C,C).

N(O,oz) = norm3l random variable with 0 mean, variance o”.
Int(+N) « discrete random variable taking on the valuves (-N,...,N)
8's ® uniform (0,2s) random variables.

o —

Table 2.

Summary of Error Models - A/T Null

36



37

residual calibration error has been determined by TRW using a Monte Carlo
simulation. The fixed error after calibration, item 17 of Table 3, is
estimated at 0.0418° N-S and 0.0471° E-W. The autotrack noise (item Ay
of Table 2) used in the simulation is based on the worst-case minimum
autotrack scale factor of 0.041 V/V/°. We feel that it is probable that
the nulil can be measured to the accuracy claimed by TRW since worst-case
estimates of the error terms were used in the model and the slope of the
autotrack null is steep.

TRW has used the same technhique to estimate the residual calibra-
tion errors of the transmit peak (boresight). The intent is to calibrate
out the null-to-transmit boresight misalignment. This misalignment is
composed of two parts: an electrical boresight term and a boresight rull
shift term. The electrical boresight term is specified at 0.06° a=d the
null shift term is specified at 0.032°, for a possible worst-case mis-
alignment of 0.092°. TRW, however, has chosen to optimistically use an
electrical misalignment of 0.013° and a null shift misalignment of 0.012°.
Inasmuch as the contractor building tie antanna will sign up to only the
specified values (0.06° and 0.032°), we feel that the more optimistic
assumptions by TRW are not valid; conseauently, we use the specification
values in the estimates of the residual errors. In addition, these are
not random errors--they are fixed quantities. Hence, they are added
directly, rct RSS'ed, to the worst-case E-W residual error of the auto-
track null., This would not pose a problem if the transmit boresight could
be calibrated; the misalignment error could be removed.

The transmit boresight misalignment is calibrated by observing the
output of a Hewlett-Packard Model 436A digital power meter, as the beam
is swept past the ground station. The peak is tagged and correlated with
the gimbal position readout. TRW has calculated that, at a received C/N
of 45.5 dB, the pegk can be read to an accuracy of ].ZleO'4 dB, equiva-
Tent to 8.94x 10"4 . Two problems arise: the power meter has a specified
accuracy of +0.02 dB and a least count (resolution) of 0.01 dB, and the
fast variations (item 19 of Table 3) have a peak of 0.0876°, equivalent
to a variation of 1.1 dB. Either item will preclude the claimed accuracy.
The fast errors, consisting of quantization noise and mechanical roise,
will appear in the power meter. Even in the absence of the fast varia-
tions, the time constant of the power meter will prevent the measurement
to even 0.01 dB.
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One-Dimensional Errors
Fixed | Slow Vgrtattons (39) Fast
Max NS t-u aw |Variations
deg) | (deg) | (deg) | (deg) | (deg)
10 SOftNare 0.026
Antenna/Boom
2. Thermal (Boom) - 0.021 | 0.013
3, Thermal (Antenna) 0.0 0.06 -
4. Elect/Mech Alignment Spacecraft 2
to ZSA Misalignment 1.0
Spacecraft Z to Z
Meqsurement UnCerféinty 0.066
Z,A (Mech) to A/T Elect Je2
gart:. jensor
S. hMll Loc Alignment 0.05
6. Mech Alignment 0.05
1. Bilas Errors 0.0500] 0.0494 | -
8. Power Supply 0.0100{ 0.0099 | -
9. Radiance Uncertainty 0.0150] 0.0148} .
10. Nuise and Quantization 0.03
(0.04)*
Contiol System
11. Step Size & Dynamic Oscillations 0.06
(0.08)»*
12. GbA Position Error 0.04
13, Orive Axis wobble 0.03
14, Yaw Coupling Errors - - 0.0382
15. User Ephemeris - - 0.113
16. TDRS Position Determination 0.014 | 0.014 | -
. . N-S10.0418
17. Fixea Error After Calibration {e_ulo 107
18. RSS of the Slow Varying trrors 0.05501 0.0836 ] 0.120
19. PSS of the Fast Varying Errors 0.0876
20. uncertainty Ellipse Major Axis (30¢) 10.170
21. Uncertainty Ellipse Minor Axis (39)(0.103
22. Probability of Pownting within
0.24 degree 0.986
23, Pointing Loss to KSA Forward
EIRP (GB) at 0.24 degree 9.6

[
Exceeds 0.03 degrees for 20 sec following slew start or stop of other SA antenna.

N
Exceeds 0.06 degrees vor 15 sec following slew start or stop of other SA antenna.

Table 3.

TDRS/Shuttle Transmit Pointing Budget, 0.06° Null-to-Boresight Error
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In the next section, we discuss revised pointing budgets based on
null-to-boresight misalignments of 0.06° and 0.092°. The 0.06° misalign-
ment is used as a likely value to be encountered with the actual antenna,
and the 0.092° is the worst-case specification. These are added directly
to the null E-W calibration error to form the mean of the probability
ellipse used in the calculation of the probability o pointing within
0.24° of the Shuttle.

4.1.2 Open-Loop Pointing Budget

Tables 3 and 4 are the open-loop pointing budgets, TDRS-to-Shuttle.
Items 1-6 are taken directly from [6]. Items 1, 2 and 3 are beyond the
scope of this analysis and are taken at face value. The values given are
not unreasonable; however, verification would require extensive analysis
of the software algorithms ana the mechanical model of the system. Items
4, 5 and 6 are calibrated out by the procedure described earlier, with
residual errors given in item 17. Items 7, 8 and 9 remain unchanged in
the N-S direction but, for the Shuttle, increase to 0.0494°, 0.0029° and
0.0148°, respectively, in the E-W direction. They are given as the pitch
error allocation (0.05°, 0.01° and C.015°) times cos (target elevation),
with target elevation equal to 8.9° for the Shuttle.

Items 10-13 are also taken directly from [6]. Again, verification
of these quantities would require extensive analysis of the system hard-
ware and structural design.

Item 14, yaw coupling, is decreased from worst-case 0.129° for the
atmospheric explorer to 0.0382° for the Shuttle. This error is given as
0.25° sin (target elevation).

Item 15, user ephemeris, is given as the 9-second uncertainty
times the relative user angular velocity, 6. With h the altitude of the
user in miles,

1.1436x 10'2 . _(h + 3959) .

3/2
(6.371 x 10% + hx 1.609x 105) (22284 - h)

Thus, for h = 100 miles, & = 1.25x 10"2°/sec and the uncertainty
is 0.113°. For h = 200 miles, 6 = 1.24x 10'2°/sec and the uncertainty is
0.112°. We use the worst-case value of 0.113° in ihe revised pointing
budgets.
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Item 16, TDRS position detemmination, is taken directly from [6].
The N-S error of item 17 (0.0318°), fixed error after calibration, is
taken from [6] and is a result of TRM simulation of the effect of all
anticipated error sources, as discussed in a prior paragraph. The E-W
residual error is the direct sum of the transmit peak-to-~null boresight
misalignment and the residual null calibration error (0.0471°).

Items 18 and 19 are the RSS of the error in the respective col-
umns. Item 20 is the RSS of items 18 E-W, 18 yaw and 19. Item 21 is the
RSS of item 18 N-S and item 19. Items 20 and 21 are termed the peak
values of the errors and used as 3o values for probability calculations,
with item 17 N-S used as the mean of the minor axis and item 17 E-W used
as the mean of the major axis of a bivariate Gaussian distribution.

Item 22 is the integral of the bivariate Gaussian over a circle
of 0.24°, which gives a pointing loss of 9.6 dB.

4.1.3 Results of Revised Pointing Budget An>lysis

Two cases of null-to-boresight misalignment were analyzed for the
Shuttle orbit. A nominal 0.06° misalignment is used to represent a com-
promise between the optimistic 0.03° used by TRW and the worst-case 0.092°
in the specification. The results of this analysis are presented in
Table 3. The 0.06° case is equivalent to a pointing loss of 0.5 dB during
calibration of the transmit boresight. This is well above the accuracy
of the power meter, and may be attainable if not masked by the fast varia-
tions extant in the hardware. The probability of pointing to within 0.24°
(item 22) is 0.986 for this case.

As a worst-case, a null-to-boresight misalignment of 0.092° is
used. From Table 4, the probability of pointing to within 0.24° is 0.954.

For purposes of comparison with the TRW worst-case (atmospheric
explorer) budget, Table 5 gives the pointing budget based on the 0.137°
E-W worst-case residual error. TRW calculates a probability of pointing
within 0.24° of 0.993, while the worst-case estimate gives a probability
of 0.898.
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One-Dimensional Errors

Fixed
Max
deg

Slow Variations (30)

- ~ E-H Yaw
(deg) | (dey) | (deg)

Fast

Variations
(deg)

1.

2.
3.
4.

5.
6.
7.
8.
9.
10.

1.

12,
13.
14,
15,
16,
17.
18.
19.
20,
21,

Software
Antenna/Boom

Therma®' (Boom)
Thermal {Antenna)

Elect/Mech Alignment Spacecraft 1
to ZSA Misalignment

Spacecraft Z to Z
Measureiment Uncerféinty

ZSA (Mech) to A/T Elect
Earth Sensor

Null Loc Alignment

Mech Alignment

Bias Errors

Power Supply

Radiance Uncertainty
Noise and Quantization

Control System

Step Size & Dynamic Oscillations

GDA Position Error

Drive Axis Wubble

Yaw Coupling Errors

User Ephemeris

TORS Position Dutermination
Fixed Error After Calibration
RSS of the Slow Varying Errors
RSS of the Fast Varying Errors
uncertainty Ellipse Major Axis (39)
Uncertainty Cllipse Minor Axis (39)

N-S
E-W

1.0

0.066
0.2

0.05
0.05

0.0418
0.137

0.178
0.103

- 0.021 0.0]3
0106 -

0.0494 | .
0.0099 | -
0.0148 | -

0.U500
0.0100
0.0150

0.0382
0.113

0.014 | 0.014 |-

0.0836 | 0.120

0.0550

0.026

0.03
(0.04)*

0.06
(0.08)*»

0.04
0.03

0.0876

22,

23.

Probability of Pointing within
U.24 degree

Pointing Loss to KSA Forward
LIRP (dB) ut 0.24 dearce

0.954

9.6 |

'
Excevds 0.03 degrees for 20 sec following slew sturt or stop of other SA antenna.

L]
Exceeds 0.0b deyrees for 15 sec following slew start or stop of other SA antenna.

Table 4.

TDRS/Shuttle Transmit Pointing Budget, 0.092° Null-to-Boresight Error
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One-Dimensional Errors

Fixed
znax
deg

Slow Vartations (30)

N3
(deg)

EW
(deg),

aw
(deg)

fast
Variations

(deg)

.

.
3.
4,

5.
6.
1.
8.
9.
10.

11,

12.
13.
14,
15.
16.
17,
18,
19.
20,
21,

Software
Antenna/Boom
Thermal (Boor)
Thermal (Antenna)

Elect/Mech Alignment Spacecraft 2
to ZSA Misalignment

Spacecraft 2 to 2
Measurement Unceréﬁinty

ZSA (Mech) to A/T Elect
tarth Sensor

Null Loc Alignment

Mech Alignment

Bias Errors

Power Supply
Radiance Uncertainty

Noise and Quantization

Control System
Step Size & Dynamic Oscillations

GDA Position Error

Orive Axis Wobble

Yaw Coupling Errors

User Ephemeris

TDRS Position Determination

Fixed Error After Calibration -{g:ﬁ
RSS of the Slow Varying Errors

RSS of the Fast Varying Errors
Uncertainty Ellipse Major Axis (3o)
Uncertainty Ellipse Minor Axis (39)

1.0

0.066
0.2

0.05
0.05

0.0418
0.137

0.213
0.103

- 0.021
0.06

0.0500 [0.0429
0.010u (0.0086

0.0150 {0.0129

0.014 } 0.014

0.0550 1 0.795

0.013

0.129
122

o

0.1776

0.026

0.03
(0.04)*

0.06
(0.08)**

0.04
0.03

0.0870

22.

21.

Probab1lity of Pointing within
0.24 degree

Pointing Loss to KSA Forward
CIRP (dB) at 0.24 degree

0.898

9.6

')
Excevds 0.03 degrees for 20 sec following slew start or stop of other SA antenna.

.-Excecds 0.06 degrees for 15 sec following slew start or stop of other SA antenna.

Tables.

TDRS/Atmospheric Explorer Pointing Budget, Worst-Case
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4.1.4 Conclusions

A significant loophole has been found in the TRW analysis of the
transmit pointing bucget. While the pointing 1oss may be marginally
acceptable for the Shuttle, other users could experience difficulty in
acquisition. These results are predicated on the other errors being
within budget. It should be emphasized that the remaining error budget
items are TRW engineering estimates rather than hard specifications.
Errors greater than the TRW estimates due to mechanical noise, quantiza-
tion effects, thermal effects or larger than anticipated Earth sensor
errors will adversely affect the ability of the Shuttle to acquire TDRS.

Should the null-to-boresight error, however, be larger than the
worst-case 0.092°, it could probabiy be calibrated to this value using
the techniques proposed by TRW. This error is equivalent to an error of
1.25 dB at the power meter, and should be discernible if the other errors
are within bounds.
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4.2 Performance Characteristics of the Ku-Band Channel 3

Convolutional Code with 62 Inversion

The present implementation of the high data rate (mode 1,
channel 3) error-correcting code can engender system performance degra-
dation under certain input conditions. The data-derived clock at the
receiver requires a minimum transition density, e.g., a transition-free
string of data exceeding the maximum specified value of 64 symbols can
cause loss of lock at the bit synchronizer. Uncoded input data consist-
ing of all zeros (not necessarily an unlikely event) will result in a
coded output of all zeros and loss of bit synchronizer lock. In order
to preclude this event, the code is being modified by inversion of the
second encoded check bit (GZ) out of the encoder. This check bit is
reinverted after demodulation and prior to decoding.

Users should be made aware of two minor problems with the
proposed method of G2 inversion. The encoded symbol stream can slightly
exceed the maximum transition-free length under certain pathological (low
probability) conditions and, with high probability, the decoder will out-
put meaningless data if the uncoded input data is all zeros or all ones.
The first problem is probably of no concern since the input data giving
rise to the long transition-free run of coded symbols has a lTow prob-
abiticy of occurrence. The second problem may be of some concern since
input data consisting of all zeros may be valid if the user ignores the
constraints of at least 64 transitions in 512 bits and no more than 64
bits without a transition.
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4.2.1 Run Length Performance of the Convolutional Code

with G2 Inversion

Figure 13 is a representation of the return link encoder with
G2 inversion. This code is derived from the NASA Planetary Standard
rate one-half constraint length 7 code shown in Figure 14 by replacing
g(x) with g(xs). The resultant code is an interleaved version of five
constraint length 7 codes and is decoded with five parallel Viterbi
decoders. The run length properties of the K = 7 code have been inves-
tigated by Simon and Smith [8] who have shown that an input sequence of
10101001011001 (read left to right) will result in an output sequence of
1000000000000001 with 62 invcrsion. That is, the maximum run length is
14. The results of Simon and Smith can easily be extended to the modi-
fied K = 31 code by repeating each input symbol five times. Referring
to Figure 1, by alternately concatenating five check symbols from the
first nod 2 adder and five from the second, each symbol in the original
K = 7 code will be replaced by five symbols. Thus, if each input bit is
repeated five times, each check symbol will be repeated five times and
the maximui run length is extended to 70 symbols. Note, however, that a
unique 62-bit input data stream (or its complement) is required. Assum-
ing "random" input data at 50 Mbps, this event should occur once every
several thousand years.
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4,2.2 Code Behavior with DC Input

With a1l zeros (or all ones) as input to the encoder, the
resultant coded sequence will consist of alternating strings of five
zeros and five ones, e.g., ...111110000011111..., which is the whole
point of implementing G2 inversion. In the event that the fiva decoders
are not synchronized to the correct phase of the check bit pairs by prior
transmission of nonzero data, each decoder will arbitrarily get alternat-
ing ones and zeros as input. After reinversion, a decoder will attempt
to decode either all zeros or all ones. Since this is a transparent
code, the all ones "encoded" sequence will produce a valid output data
stream of all ones. This output sequence will be interleaved with the
output of the other decoders, producing a cyclic string of ones and
zeros. This is because a decoder cannot acquire branch synchronization
on all ones or all zeros. In fact, under these conditions, the decoder
will output erroneous "data" 90% of the time. This can be illustrated by
examining Figure 15. The relative origin time of the alternating sequence
can take on one of 10 values with respect to the first of the five
decoders. In this example, decoder 1 (D]) takes as input check bit 2,
number 3 inverted at the transmitter and check bit 1, number 3 as the
receive. Thus, decoder 1 sees a string of all ones, a valid code word,
and outputs all ones. By contrast, decoder 4 sees all zeros and outputs
all zeros. The only case wherein all zeros will be output is wnen
decoder 1 starts decoding check bit 1, number 1 and rheck bit 2, number 1,
reinverted at the decoder. Assuming that the decoder starts up at a
random point on the encoder sequence, this will happen 10% of the time.
One of the remaining nine incorrect decoded sequences is the all-one
sequence, an inverted version of the actual data. This, too, presumably
could be acceptable to the user by virtue of the inverted frame synchron-
ization. It should be pointed out that periodic frame sychronization bits
in the ali-zero sequence will appear as noise to & decoder which is not
correctly branch synchronized. On the average, each decoder will see
five "noise" symbols--not enough to effect branch synchronization.

The question arises as to the number, if any, of additional
sequences which have the property that branch synchronization is ambig-
uous. This can be analyzed formally by examining the response of one
constraint length 7 encoder. The bit inversion can be ignored since this
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has the effect of complementing the encoded symbol sequence if the phase
of the check bits is slipped by one symbol and the complement of a code
word is also a code word. Let C](x) and Cz(x) be the polynomial repre-
sentation of the encoder output, e.g.,

Cy(x) = Cpp + Cyyx + € x7 + .o = gy (x) 1(x),
2
Cz(x) =Cpg * Cpx + Cyp X" + ... = gz(x) I(x),

with g](x) the generator polynomial for the first check symbol and I(x)

the polynomial representation of the information sequence. If the branch
synchronization is ambiguous, the symbol pairs c20 C]], CZI c12’ 622 c]3,...
will form a code word. This can be written in polynomial form as:

X2+..

C]] + C]Zx +C gz(x) I*(x),

13

with I*(x) the alternate information sequence. Thus,

g,(x) I(x) = g](x) I*(x), and
g,(x) I(x)
a - - g,(x) I*(x).

X

This pair of equations can be solved to determine the input conditions
under which branch synchronization is ambiquous; e.g., if C]C2 represents
a coae word, so does CZC].

Solving for I(x) and I*(x), we find that

100 g2 () + 9,700 = 0

and

I*(x) xg,z(x) + g]z(xi] = 0.
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For the NASA constraint length 7 code,

g](x) =1+ x2 $x3 40+ x6,

and

Q]Z(X) =1 +x+ x2 + x3 + x6.

Thus,

w13 4 XIZ + x10 + x7 + x6 0+t 4 x3 +1

x9,2(x} + 9,%(x)

(x*H)(x]2 + x9 + x8 + x7 + x5 + x3 +1)

Py (x)py(x)

factored into irreducible polynomials p](x) and pz(x).
If

- 2 13
I{x) = I0 + I]x + sz + ...+ I]3x + ...,

the criterion that I(x)p](x)pz(x) = 0 implies that

I0 + I] + 13 + I6 + 17 + 18 + 19 + 110 + 112 + 113 =0 (Mod 2),

or

L3s gt v 3 v L+ I+ lg+ Ig + Ly + Ly,

That is, given 13 specific input bits as initial conditions, if the four-
teenth bit (113) satisfies the above equation, the output sequence is
ambiguous. Note, however, in order for this sequence to sustain itself,
each subsequent input bit must also satisfy the relationship. That is,

Ipo=1, +1

=L L vl I eI+ 1+ L + Iy + L5, ete.

7 8
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The sequence can be modeled a- the output of a linear feedback shift
register, as shown in Figure16, with taps appropriate to P](x)PZ(x). The
properties of these sequences are well known. p](x) = 1 + x corresponds
to the all-one sequence and its complement, the all-zero sequence, which
we know are ambiguous. From [9], we find that pz(x) is primitive, and
the shift register model of the sequence will have period 2]2 - 1.
Depending on the initial conditions of the register, the sequence gener-
ated will be all zeros, all ones, or one of two complementary periodic
sequences, each with period 2]2 - 1. The probability of any data source
generating this specific "infinite" sequence with period 4095 is presum-
ably rather low; hence, we have shown that branch synchronization with
this code will not be a problem with real data. In any case, if
I(x)p](x)pz(x) = 0, then I*(x)p](x)pz(x) = 0, and the decoded I*(x) will
merely by a aelayed verison of I{x). This would certainly not be a prob-
lem with a single decoder; the only ; -oblem is in conjunction with the
five interleaved decoders, which is shown to be a result of pathological
input data.

The only remaining caveat is that the input data to the en:oder
should not have a period of five, as this would result in eact :f the
five decoders seeing a constant string of ones or zeros.



(a)
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Check Symbol Sequence

Figure 16.

(b) K = 7 Encoder
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4.2.3 Summary of Performance

With certain input data, the mode 1, channel 3, encoder/decoder
with G2 inversion will not perform as specified. These conditions are
delineated below.

With very low probability, thc encoded symbol stream
will have transition-free runs longer than 64 symbols.

With high probability, the decoder will not attain branch
synchronization if the user constraints are ignored and
all zeros are input.

With high probability, the decoder will not attain branch
synchronization if the input data is cyclic with a period
of five bits.

No aperiodic data stream exists which will preclude
branch sychronization.

Problem area 1, the possibie output of transition-free runs of
encoded s, mbols greater than 64, is a result of unique input data and
should not be of concern. Problem area 2, the inability of the decoder

to synch-onizer on all-zero data, will be of concern only if a user
attempts to initiate transmission with data consisting of all zeros (or
all ones) in violation of the user constraints or if the input data is

cyclic with a five-bit period.
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4.3 Effects Due To Specific TDRSS User Constraint Parameters

In the previous study (NAS 9-15240E [10]), all but two Ku-band
TDRSS user constraints were evaluated and compared to Hughes Aircraft
Company specifications. The cumulative performance degradation effects
of the TDRSS user constraints were analyzed and summarized. In this sec-
tion, the performance degradation of the remaining two user constraints,
data bit clock jitter and data asymmetry on unbalanced QPSK, are
presented.

4.3.1 Ku-Band Bit Synchronizer BER Degradation

due to Data Bit Clock Jitter

Appendix I determines the timing error variance and resulting
bit error rate degradation in a Ku-band Shuttle-compatible second-order
bit synchronizer due to input data clock jitter modeled as either a sin-
usoidal signal or a spectrally flat random process. Both NRZ and Man-
chester data are considered.

Results are obtained for the bit synchronizer tracking error
for both the sinusoidal and random jitter cases. Next, the bit error
probability for both sinusoidal and Gaussian data clock jitter is derived
and plotted. Using the timing variance, it is then possible to compute
the bit error probability and the associated degradation from the jitter-
free case.

Finally, the three bit synchronizer types used with Ku-band
data are evaluated to determine their respective bit error rate degra-
dation. Depending on which specification, modulation format and syn-
chronizer are considered, bit error rate degradations vary from less
than 0.1 dB to over 10 dB. The degradations tend to be small (0.1 dB)
when the frequency deviation and deviation rate are specified at 0.10%

Rs bu Juite large when specified at 0.1% RS. where Rs is the symbol rate.

To evaluate the BER degradation, it is necessary to know the
bit synchronizer loop bandwidths. Based on a telephone conversation with
John Roach of Harris Corporation (Melbourne, Florida), the following bit
synchronizer specifications were obtained:

1. Ultra-High Data Rate Bit Synchronizer (UHDR)

75-150 Msps
60 kHz (BL = 200 Hz)

Ry

f
n
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Manufacturer: Motorola
Jitter problems commerts: Yes, since they could not make

the loop bandwidth narrow enough
due to internal delays

2. High Rate Bit Synchronizer (HDR)

R = 10-75 Msps (will operate down to 4 Msps)
fn = 0.08% RS (BL = 0.267% Rs)
Manufacturer: Harris Corporation

Jitter problem: No.

3. Low-Medium Data Bit Synchronizer (LMDR)

RS = 1 ksps to 10 Msps

fn = 0.1% Rs, 0.3% RS, 1% Rs and 2% RS
Manufacturer: Aydin Monitor

Jitter problem: No.

First we consider the sinuscide. jitter case. HWe cunsider two
subcases; the first is for aAf = 0.01% R and fh = 0.01% RS, we .all this
case (a). The second is for af = 0.1% R, and f = 0.1% R, which we call
case (b). The BER degradations are shown in Table 6.

For the random case using the same two subcases, we obtain the
results for BER degradation which are shown in Table 7.

In conclusion, we see that, when the frequency deviation and
the deviation rate are specified at 0.01% RS, the degradation does not
exceed 0.2 dB but, with the specifications at 0.1% RS, the degradation
can be over 10 dB. Also from Tables 6 and 7, it can be seen that Man-
chester data causes more degradation than NRZ data, as is well known.
Fina.ly, sine wave jitter and flat random noise jitter cause roughly
the same level of degradation based on the Ku-band Shutter jitter
specification.

4.3.2 Effect of Data Asymmetry on Unbalanced QPSK Signals

with Noisy Phase Reference

In Appendix II, an analysis of the impact of data asymmetry on
the bit error rate performance of a QPSK signaling scheme used to trans-
mit two data streams with different rates and different powers is



Table 6. Degradation for the Three Bit Synchronizer Classes and
the Two Jitter Specifications [(a) and (b)] for Sine
Wave Jitter (Uncoded Data)

Bit Degradation

synchromizer | Nz Data Biolbaa | 0
UHDR (a) 0.1 dB 0.2 dB 0.25
UHOR (b) 2.5 dB = 10.0 dB 2.5
HOR (a) <0.1d8 < 0.14d8 0.125
HDR (b) 2.0 dB = 8.0 dB 1.25
LMDR (a) < 0.1 d8 < 0.1d8 0.1
LMDR (b) 1.7 dB 4.5 dB 1.0

Table 7. Degradation for the Three Bit Synchronizer Classes and
the Two Jitter Specifications [(a) and (b)]
Random Noise Jitter (Uncoded Data)

Bit Degradation
Synchronizer L f /f
Class NRZ Data Bi-¢-L Data m n
UHDR (a) 0.03 dB 0.08 dB 0.25
UHDR (b) 2.6 dB > 10.0 dB 2.5
HOR (a) < 0.1 dB < 0.1 dB 0.125
HDR (b) 1.6 dB 9.0 dB 1.25
LMDR (a) < 0.1 dB < 0.1 dB 0.1
LMDR (b) 0.’ dB 2.3 dB 1.0
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presented. Such a model arises, for example, in the QDSB system employed
in the Shuttle Ku-band Mode 1 return link [11], which is essentially at
cascade of two such unbalanced QPSK systems. Of primary interest here
will be the subcarrier QPSK system and, in particular, the version imple-
mented via a digital phase-shift-modulated square-wave subcarrier [12].

The performance of the recently popular unbalanced QPSK (UQPSK)
systems in the presence of reference phase noise has been examined by a
number of authors (see [13] to [17] and references therein). The general
approach is to evaluate the bit error probability conditioned on the data
and the value ¢ of the phase error, then average over these variables.
The marginal probability density function (pdf) of ¢ strongly depends
on the employed tracking loop and is, in general, difficult to accurately
evaluate for sophisticated receivers. Here we follow a truncated Taylor
series expansion approach, indicated in [15], which provides credible
results, assuming high loop signal-to-noise ratio (SNR). Regardiess of
the particular method used, the bit error probability (BEP) depends on
the powers and data rates of the individual channels.

The ¢-conditioned BEP (which is a reasonable estimate of BEP
for very high SNR) is an increasing function of ¢, the reason being that
an imperfect phase lock loop attenuates the demodulated signal power and
at the same time increases interchannel cross talk.

Data asymmetry is a potential source of performance degradation
in any digital transmission system. It arises whenever the modulator
spends more time at one amplitude state than the other as a result of
the misalignment of a threshold device. It is usually defined as the
difference between the elongated pulse length and the shortened pulse
length normalized by the nominal length. Keferences [18] and [19] per-
tain to previous work on the issue of determining the effect of data
asymmetry on the BEP of BPSK signaling {[18] for a variety of coded and
uncoded data) and UQPSK with equal data rates [19]. Since no cross talk
was considered in [19], the two QPSK channels are essentially two inde-
pendent identical BPSK channels with different power allocations.

Appendix II addresses the problem of evaluating the perfor-
mance degradation of a UQPSK system due to both data asymmetry and noisy
reference. As we shall see, the degradation of each channel can quali-
tatively be perceived as consisting of a "self-degradation" term plus a
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"cross-degradation” term. The former is the superposition of a power
attenuation (due to noisy reference) along with the impairment caused by
asymmetry. The latter (which is actually the interchannel interference)
exists because of the presence of noisy reference and also depends on the
asymmetry otr the companion channel data stream. Hence, the results to be
derived here should coincide with those in [18] and [19], if the phase
error is assumed to be zero.

The parameter of interest here is the additional signal-to-noise
ratio ASNR (dB) required to compensate for the losses due to asymmetry and
phase noise for each channel. It is defined as the difference between the
SNR required to achieve a BEP of 10'5 under the aforementioned conditions
and the nominal value of 9.6 dB for an ideal BPSK system without impair-
ments other than Gaussian noise.

We have assumed a power ratio of 4 and a data rate ratio of 10
for the two channels. These are typical values for the I and Q components
of the subcarrier QPSK system of the Orbiter's Ku-band, which operate at
2 Mbps and 0.2 Mbps, respectively.

According to the approach taken in Appendix II, the phase error
impact is sufficiently characterized by the mean m¢ and the variance 0¢2
of the tracking jitter ¢. When a biphase Costas tracking loop is employed
at the receiver, references [20] and [21] provide some (although compli-
cated) analytic results for Sy We felt than an extension of these
results in the presence of asymmetry is a prohibitively complicated task;
therefore, we can only postulate some values for m¢ and O However, it
is intuitively appealing to assume that, in the presence of small asym-
metry, typical values for % will be slightly higher than what appears in
the figures of [20] and [21]. As such, we have selected to examine the
cases of m¢ = 0°, 3°, 5° and o¢2 = 0,4,9 (degrees)z.

Before commenting on the computer results, let us focus on the
assumptions made in the course of the analysis. First, we consider NRZ-L
data for both channels. An analysis for biphase-L data would follow on
the same lines. Second, we have assumed perfect symbol synchronization
for each individual channel. Third, we have assumed that the data rate
ratio N is much greater than one, in general (for the specific applica-
tion where N= 10, such an assumption is well justified). The above

assumptions suffice in order to derive a good estimate of the bit error
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probability of the high data rate channel. For the low data rate channel,
two more assumptions are involved: first, that N is an integer and, sec-
ond, that the two channels are aligned, i.e., no epoch difference exists.
Although the second assumption is perhaps rarely met in practice (since
there are two different data clocks for the two channels, they most likely
are independent, therefore not aligned), one can sr,gue that the signifi-
cance of the epoch difference diminishes as N increases. Similarly, if N
is not an integer, one can consider the integer part of it and still get
credible results. In summary, the cardinal assumptions for the analysis
to be reasonably precise are that (1) each channel is perfectly synchron-
ized, and (2) N is sufficiently greater than one. The low data rate

The low data rate channel (Q) is found to be more sensitive to
parameter variation than the high data rate channel (I). In general, the
SNR losses increase exponentially with the amount of asymmetry present
for both channels. For the values considered, Figure 7 in Appendix II
shows the range from 0 dB to 1.4 dB for the I channel and from 0 dB to
1.9 dB for the Q channel. As shown in Figure 8 of Appendix II, the
effects of phase mean and phase variance are effectively decoupled. How-

ever, as expected, as o, increases, the effect of phase offset becomes

¢
more and more drastic.
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5.0 S-BAND PAYLOAD COMMUNICATION SYSTEM STUDY

Three major system interface issues in the payload communication
system required a detailed investigation. These interfaces are the pay-
load interrogator (PI) and Ku-band signal processor (KuSP), the sweep
acquisition of the payload by the PI, and two-way phase noise generated
in the PI and turned around by a coherent transponier.

5.1 Bent-Pipe Performance with the Current PI/KuSP
RMS Regulator Capability

The maximum allowable deviation of the Ku-band FM transmitter -
is +11 MHz. Optimum bent-pipe performance is obtained whenever the modu-
lating waveform is allowed to produce this maximum deviation in accord
with its peak values. For this reason, Axiomatix has proposed that a
peak type rather than an RMS type of AGC regulating loop be employed. A
comparison between the RMS and peak regulator performance, as measured by
FM transmitter mean deviation, is summarized in Table 8.

Table 8. Bent-Pipe FM Transmitter Mean Deviations (MHz)

Waveform RMS Regulator Peak Regulator
One Sinusoid 3.7 7.8
Two Sinusoids 3.7 5.5
Three Sinusoids 3.7 4.4
Four Sinusoids 3.7 3.9
Square 3.7 11.0
Gaussian 3.7 3.7

The peak regulator optimizes the FM deviation for all waveforms,
providing maximum bent-pipe SNR performance for all waveform conditions.
The RMS regulator, on the other hand, may have its output scaled to pro-
vide optimum deviation for any chosen waveform, but the deviation for
all other waveforms will be suboptimum. If, for example, the RMS regu-
lator output is optimized for the Gaussian waveform (characteristic of
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PI low SNR conditions), the FM transmitter will be underdeviated for all
other waveforms. As part of the development and specification of the
PI/KuSP bent-pipe interface, Axiomatix undertook the design and evalua-
tion of a signal waveform peak regulator. A final report on the entire
activity appears in Appendix III.

Now suppose that the RMS regulator is used and its output is
scaled to provide optimum deviation for a single-sinusoidal waveform.
From Table 8, the mean deviation will be 7.8 MHz. If a Gaussian waveform
rather than the single sinusoid then appears at the input to the RMS reg-
ulator, the RMS regulator will automatically scale the Gaussian waveform
to cause a mean deviation of 7.8 MHz. But the peak-to-peak RMS ratio of
a Gaussian waveform is on the order of 3:1; therefore, the peak deviation
will be 23.4 MHz, or more than two times larger than the maximum deviation
limit.

To prevent overdeviation, an amplitude clipper is usually
employed at the input to the FM transmitter. Thus, for tke Gaussian wave-
form example just cited, it will be clipped at its 1.40 level, causing
extreme distortion and SNR loss.

For the bent-pipe, the waveform condition for which the RMS
regulator output should be scaled to provide optimum deviation is an open
issue. The final choice will have to be a value judgment. An expedient
solution may be to optimize the bent-pipe performance for the two-sinusoid
case (as this may be the most likely bent-pipe signal). Thus, the mean
deviation would be set at 5.5 MHz and amplitude clipping would keep any
other waveform, such as the Gaussian, from exce-ding the 11 MHz limit.
The peak-to-RMS ratio would therefore become 2. Underdeviation would
occur for single-sinusoid and square waveforms, while the Gaussian wave-
form would be clipped at its 20 level. It is interesting that the cur-
rent TRW RMS regulator and output circuit design provides for a 1.5:1
peak clipping-to-RMS ratio. TRW, however, would like to change the max-
imum to 8V peak-to-peak, achieving the 2:1 ratio.

SNR performance estimates for the underdeviation cases may be
easily calculated. The peak clipping cases, however, are not readily
amenable to analysis (although performance bounds may be obtained by
analysis). Simulation or actual hardware measurements must therefore
be used to obtain gquantitative figures for the clipping cases.
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5.2 Sweep Acquisition of Deep-Space (DS) Payloads by the PI

On June 22, Axiomatix completed the effort to assess the proper
sweep rate for the DS transponder. A formal viewgraph presentation was
subsequently prepaved and presented at RI on June 26. This meeting was
attended by RI, NASA and Axiomatix personnel.

The viewgraphs used at the June 26 meeting appear as Appendix 1V
to this report. It is noted, however, that an error appeared on the last
page of the presentation, resulting in a too-fast sweep rate of 400 Hz/s
being agreed upon at the June 26 meeting. As a part «f the resolution
process, it was decided by all present that the DS “ransponder would never
be operated in conjunction with the PI transmitter +4 dBm power level at
a range of 10 nmi. Thus, the sweep rate corresponding to the +27 dBm
Tevel was selected.

At the TRW monthly program review on July 12, Axiomatix corrected
the aforementioned error. TRW also estimated that, within the neighbor-
hood of the proper sweep rate, a tolerance as large as +30% (rather than
+20%, as assumed on June 26) of the nominal sweep rate value could be
expected. The final report, therefore, is that the nominal sweep rate
must be set at 250 Hz/s.

Appendix IV to this report is a set of viewgraphs which define
the problen, indicate the nature of the problem solution, show the solu-
tion as a function of transponder operating conditions and tolerances,
and present recommended sweep rate limits. The approach employed to ob-
tain the critical sweep rate values is a modified method of phase-plane
analysis that apepears in Appendix V. Since the calculations are based
on an “"ideal" second-order PLL transfer function, a 20% backoff has been
made to allow for the mechanization imperfec.ions of the DS transponder.

5.3 Two-Way Phase Noise Performance for Pl
and Coherent Payload Transponders

In order to obtain a realistic characterization of system per-
formance, it is essential to analyze all of the many error sources, in-
cluding phase noise. Phase noise is generated in the transmitter refer-
ence oscillators and the receiver local oscillators. Other sources which
are not as obvious are in the mixer (multiplier) logic noise, AM-to-PM
conversion due to 1ink nonlinearities, and possible vibration effects.
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The result of this phase noise is degradation of the carrier tracking
loop performance, and this contributes to the overall system error prob-
ability performance.

Appendix VI contains a detailed discussion of the effects of
phase noise using mathzmatical models of the carrier tracking ioops and
introducing the appropriate power spectral densities of the various phase
noise instabilities. Section 2.0 of this appendix outlines the system
model of a two-way coherent communication system and describes the basic
system configurations. Section 3.0 calculates the mean-square phase
noise for a one-way coherent 1ink, while Section 4.0 extends this elabo-
rate analysis to the two-way link, incorporating both in-band and out-of-
band phase noise sources. For the special situation of a close range
comnunication link, Section 5.0 deals with the essentially coherent case
of a common transmitter and receiver reference oscillator, where the cor-
relation time of the phase ncise is short compared tu the round-trip delay
times. The conclusion, as might be expected, is 2 slight modification of
the noncoherent two-way link. Section 6.0 expands the analysis to include
other internal frequency synthesizer oscillator sources by modeling and
incorporating these synthesizer phase noises. Section 7.0 exterds the
study to the three- and four-way mcan-square phase noise situations.

7. next appendix, Appendix VII, describes a method of charac-
terizing the phase noise spectra by a mean-square error approximation
using measured laboratory results. Two examples of phase noise modeling
for specific actual phase noise measurements are outlined, and compari-
sons are included in both cases which show the derived and expected
results.

Finally, Appendix VIII calculates the expected phase noise
RMS deviation upper bound of 9° for both the SGLS and STDN modes using
the mean-square phase noise relationships of Appendix V1 and the mean-
square error approximation of Appendix VII.
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APPENDIX I

KU-BAND BIT SYNCHRONIZER BER DEGRADATION
DUE TO DATA BIT CLOCK JITTER

By

Jack K. Holmes



1.0 SUMMARY

This report determines the timing error variance and resulting
bit error rate degradation in a Ku-band Shuttle-compatible second-order
bit synchronizer due to input data clock jitter modeled as either a sinu-
soidal signal or a spectrally flat random process. Both NRZ and Manchester
data are considered.

Results are obtained for the bit synchronizer tracking error
for both the sinusoidal and random jitter cases. Next, the bit error
probability for both sinusoidal and Gaussian data clock jitter is derived
and plotted. Using the timing variance, it is then possible to compute
the bit error probability and the associated degradation from the jitter-
free case.

Finally, the three bit synchronizer types used with Ku-band data
are evaluated to determine their respective bit error rate degradation.
Depending on which specification, modulation format and synchronizer are
considered, bit error rate degradations vary from less than 0.1 dB to
over 10 d8. The degradations tend to be small (0.1 dB) when the frequency
deviation and deviation rate are specified at 0.01% Rs but quite large
when specified at 0.1% RS, where Rs is the symbol rate.

2.0 PROBLEM STATEMENT

The problem this report addresses is the determination of the

bit error rate degradation caused by data clock timing errors that are
either sinusoidal or a random process. This specification appears in basi-

cally similar forms in numerous documents. From the Ku-band specifica-
tion [1] (Appendix VII, p. 456), we have:

"70.3.3.2.2 Data and Clock Jitter. Data and clock jitter
shall be taken as the time-varying component of data and/or
clock transitions compared to a jitter-free data stream or
clock. The definition contains both a jitter magnitude and
a rate in the following form:

(a) Jitter magnitude shall be taken as a percentage of the
data symbol clock rate. The resulting magnitude shall be
the peak magnitude for sinusoidal jitter or the 3-sigma
value for random jitter.

(b) Jitter rate shall be taken as a percentage of the data
symbol clock rate. The resulting jitter rate shall be the
peak rate for sinusoidal jitter or the 3-sigma value when
the jitter is random.




When the data are coded, bit jitter shall refer to symbol
Jitter. Also when a clock accompanies the data, the jitter
shall refer to clock jitter as well as data jitter."

Also from [1] (p. 147), the high data rate (HDR) input to the
SPA has a jJitter specification:

"HOR Payload Digital Data Input to SPA

h. Frequency jitter: plus or minus a frequency deviation
of 0.01% vms of the data rate at a rate of 0.01% rms
of the data rate.'

Other specifications on this topic indicate a 0.1% of the data
rate deviation and a 0.1% of the data rate deviation rate.

We will address the sinusoidal jitter case first, then consi
the “random" case.

3.0 JITTER MODEL DEDUCED FROM SINE WAVE SPECIFICATION REQUIREMENTS

Consider a phase-moduiated sine wave clock modeled by
y(t) = VZA sin (ut + o(t)) (1)

where A is the rms signal amplitude, ©y is the angular clock frequency
(rad/sec) and e(t) is the phase modulation process which causes the jitter.
In Figure 1, a typical NRZ data stream and the associated (unmodulated)
sinusoidal clock are illustrated. Since the phase modulation process,
o(t), is assumed to be sinusoidal, we obtain

o(t) = 8 sin (mmt) (2)
where 60 is the peak phase modulation of the clock and @y is the frequency
of the phase deviation. Now, since the jitter magnitude is specified as

a percentage of the data symbol clock rate (frequency amplitude), we have

§(t) = 8 wy €05 (upt) (3)

and the peak is some percentage of the data symbol clock rate, i.e.,
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Figure 1. NRZ Bit Sequence and the Associated Clock



Bgu = 21 Af = ZnDRs (532—') (4)

where D is the relative frequency deviation relative to the data rate,

Rs. From the HDR specification [1] (Section 11), we deduce that D =

0.0001 (0.01%). The jitter rate specification implies that

Wy 2n FmRs , (5)

where Fﬁ is such that mm/Zn FmRs and {s the relative modulating fre-
quency (relative to Rs). The jitter rate specification specifies the rate
of the sinusoidal jitter. Now, using (4) and (5) in (2) yields

o(t) = £ sin (ut) = Fsin (2FR L) (6)
m m

When the relative jitter magnitude (D) and relative jitter rate (Fm)
are equal, we obtain

o(t) = sin (2= fht) (7)

which inticates a peak one radian phase deviation or 1/2r = 16% of a bit
period timing jitter (see Figure 2). Other values of D and Fm yield dif-
ferent phase deviations. In the derivation of (6) and (7), the peak jit-
ter magnitude (frequency deviation) was used but, for the jitter rate,
only one frequency exists so that the meaning of peak rate is not clear.
It is felt that (2) is the unly meaningful model of sinusoidal jitter.
The clock is therefore modeled as

y{t) = /Z A sin (%Ot + %ﬁ-sin (2 fmt)). (8)

If the jitter frequency, FmRs’ is very low compared to the bit
synchronizer natural frequency, fn’ all the "jitter" will be tracked out.
On the other hand, if the jitter frequency is high compared to the natural
frequency of the bit synchronizer, then all the "jitter" will be passed
through, with a resulting high BER degradation.
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We now determine the response of a second-order bit synchronizer
with a one radian peak phase modulation on the input. In general, H(S),
the closed-loop transfer function, is given by

Hs) = e’ e “ (9)
s = ———
ST +2¢ mnS+ mnz

where 0, is the loop natural frequency (rad/sec) and ¢ is the damping
factor. We wish to evaluate the peak squared tracking error expressed
by

0.2 = 0.2 (A (10)

P f=f

where S = 25if, ¢; is the input peak phase error and ¢_ is the residual
peak phase out of the bit synchronization loop. If we select ¢ = 1//2,
a commonly used value, then it is easy to show that

2 f
H(F)|© = n
[H(£)] —4————5f+fn ()

where fn = mn/Zn is the natural loop frequency expressed in Hz. From
(10), using the input phase modulation process of (6), we have

2 4

¢p2 - [)2 4f T (12)

Fm f + fn

f=Fuks
or
4 o 4

¢ 2 = Dz 4Fm 4Rs (13)
p 2 4

Fm Fm RS * fn

or



F 2 R 2
P s F "R 4 + f 4
m s n
Now we fix fn, Rs and D, and let Fm vary* so that using Fm Rs = fm
2 2
¢ f
m
37 TT, (18)
Rs D fm + fn

If we differentiate the right-hand side of (14) and set it equal to zero,
we obtain the solution, fm = fn' It therefore follows that the maximum
error occurs at fm = fn when the deviation Af = RSD is fixed and the
error at that frequency is given by [using (2), (4) and (15)]

¢p = 2 = 2 (]6)
fm-fn 2 fm
where
RD
S
8 = F— (17)
0 fm

It therefore follows that

= l = . 1
¢p = r 8y at f_ fn, af fixed (18)

Whenever fm # fn’ the peak value is less for fixed Af. Figure 3 illus-
trates the response ¢p2/Af2 as a function of fm for fixed af. This curve
is related to BER degradation since a large value of peak phase error, ¢p‘
causes a large BER degradation. Blyth and Carpenter [2] have summarized

*
We are fixing the frequency deviation and clock nominal
frequency and varying the phase-modulating frequency.
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measured BER degradation performance of a bit synchronizer* due to jitter
and pointed out under a constant value of Af the degradation peaks very
near fh = fn!

It should be further pointed out that the peak phase error, ‘p’
for a fixed input phase modulation deviation, eo. is maximum for frequen-
cies much greater than fm = fn. This fact is easily demonstrated by
starting with (14) and letting f, = Kf,» so that we have

2 £
2 _ pep2 __m
¢p Rs D -V (19)
m K
so that we obtain
2.2
02 - RsDZ 4K4 - 0,2 4K4 (20)
P o K #1 K* 41

= 2 _ .2
Hence, as K = fm/fn > ®, ¢p e0 .

In Figure 4, the peak output phase error is plictted versus
fm/fn for a second-order (high gain) bit synchronizer loop with ¢ = 0.717
which has a unit input peak phase deviation.

In conclusion, the phase modulation of the tone havirg 2 period
equal to the duration of the bit time that satisfies the jitter magnitude
and jitter rate specifications is given by

o(t) = %sin (0, t) (21)

where Af = DRS is the peak jitter magnitude and fm = wm/2n = FmRs is the
jitter rate, with RS the symbol rate, D the ~atio of frequency deviation

tc data rate and Fm the ratio of modulation frequency to data rate. Hence,
when D and Fm are obtained from the specification's 8y = D/Fm is the peak
phase modulation, and Figure 4 allows one to compute ¢p /eo2 (the ratio

*
Based on the available literature, a common test procedure is
to vary Af for fixed fm and measure the 3ER degradation.
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of bit synchronizer loop error squared to input phase squared) when
f'm/fn is specified. Recall that fn is the bit synchronizer loop natural
frequency (rad/sec).

4.0 PROBABILITY OF ERROR FOR NRZ AND MANCHESTER DATA VERSUS

SINUSOIDAL PEAK TIMING ERROR

We now determine the probability of error versus Eb/N0 for sev-
eral values of peak timing error bascd on a sinusoidal timing error vari-
ation with time. The motivation for ceveloping the following results is
based on appraising the effects of the jitter magnitude and jitter rate
when the jitter is sinusoidal, as specified in the Ku-band specifications.

It will be assumed that the bit clock jitter rate is slow com-
pared to the data rate so that the average bit error rate can be described
as

PE = [ P(E/) pla) dr (22)

where P(E/-) is the bit error rate conditioned on the value of the timing
error, t, aixd p(tr) is the probability density function of the error timing
error t. First consider P(E/t) the conditional probability of bit error
given . parcicular value of timing error ¢ for NRZ data. For uncoded NRZ
signats, there are two cases for the bit error probability. Irn the first
case, when no transition in the bit stream occurs, the probability of
error is simply

/ 2E
b

where

e dt (24)
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When a transition does occur, the bit error probability is no longer
expressed by (23) but, rather, is modified to

%, ‘)
P, = O\ [, -2k (25)
/

The reason for the factor (1 - 2|t|) is due to the previous bit (or fol-
lowing bit) being of the opposite sign and being included in the integra-
tion of the current bit duration of T seconds (see Figure 3). The matched
filter integrates over T seconds. As the bit timing error increases, the
integration includes the present bit plus the adjacent bit. When there
is no transition, this error produces no decrease in the integrated sig-
nal voltage. However. when there is a transition, there is a decrease in
the integrated voltage during one bit time. In fact, with a little reflec-
tion, it is clear that the decrease in integrated voltage is linear and
goes to zero when t = £T/2. It follows that the integrated voltage con-
tains the factor (1 - 2{t|) for |t} < 1.

In conclusion, if we denote by PT the transition probability,
the conditional probability of error conditioned orn t is given by

(26a)

%
NRZ: P(E/x) = P Q N/-ﬂa- [1-2l<|3}+ (0 -P) 0

and

2k 2E
Manchester: P(E/«) = (1 -PT) Q J/—N} (1-4{<])} + PT q —ﬂé—)— (1-2{<})

l1] < 0.5 (26b)

where the Manchester case can be derived in a manner similar to the NRZ
case.

Next, we obtain the probability density function of the timing
error, p{r). We descrive the equivalent phase modulation by

o(t) = ¢, sin (u t + 95) (27)

P
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where (denoting the data rate by R), ¢p is the peak phase error (rau), Wy
is the modulation frequency (mm << Zuks) and 8 is a random variable uni-
form over (-u,n).

Since, for any t, w,t + 9, is uniformly distributed over (-mw,n),
we model ¢(t) as far as the distribution of ¢(t) goes by

#(t) = ®% sin 8 - (28)

where 60 is a uniform random variable, uniform on (-n,n). To obtain the
density function of ¢, we have [3],

1
ple) = ,__;__2 e (29)
- lo € .
2n f’p ¢ ZWJﬁp $
so that
plo) = —— -4p £ ¢ < 0y (30)
} 2 2
"'\/°P - ¢
Now since ¢p/2n = Tps the peak timing error, we have, with another change
of variables,
p(x) = — Z > TS, (31)
w Tp - T

Hence, the average probability of error is yiven by

2, 12E
T
NRZ: PE = 1 g [__b s [Pl /R a-2pey) - == (322)
VI WA No 2
Y TJ&P -

and
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v j
MANCHESTER: PE = 3 [ (1-4|f| of [52 (1-2]c[)} de
“Tp - 0
PR T l (328)

Equations (32a) and (32b) were programmed on a digital computer, with the
results illustrated in Figures 6 and 7. Notice that a 5% (0.05) peak sine
wave timing error causes about 0.5 dB degradation at PE = 1076 for NRZ data.
For Manchester data, a 5% peak causes about 1 dB degradation.

Although it is not obvious from the curves, there is no irreduc-
ible error in this sinusoidal timing error case as there exists in the
Gaussian error case.

A comparison of the Manchester case can be made with some experi-
mental measurements of J. Rivers [5] of the NASA Johnson Space Center.

In Figure 8, Rivers-measured BER degradation and the theoretical values
obtained from Figure 7 are compared for Manchester data at PE = 10'4. As
can be seen from Figure 8, the theory is quite accurate, having at most a
0.3 dB error.

5.0 JITTER MODEL DEDUCED FROM THE

GAUSSIAN SPECIFICATION REQUIREMENTS

Now we consider the Gaussian modulation case and attempt to
determine a model of the jitter process. Again consider the sinusoidal
clock having a period equal to the bit duration. We have for the clock
signal

y(t) = /Z A sin (mot + e(t)) (33)

where 6(t) is assumed to be a stationary Gaussian random process. Since
the 3-sigma jitter is specified to be a percentage of the data rate, we
have that

32 [wdé(f) df = (mzs)2 (21r)2 (34)

Unless the phase process has a specified spectral density, it is impossible
to find the 3-sigma modulation frequency. In order to proceed, we will
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assume a phase process spectral shape that is flat in frequency. It
should be pointed out that this is a "reasonable" assumption, but is not
based on measurements. Figure 9 illustrates the phase process spectral
density. We have assumed that all the phase spectra is contained in

2FmR Hz. Since m%cl(f) is the spectra of the phase rate or frequency
(i.e., jitter), we have

(2n)? w2 = f Ao(f) af = f wiefo(f) df (35)

where g, is the rms frequency deviation (Hz). Evaluating (34) and (35)
with the phase process model of Figure 9 yields

FR
msS
9 . (20)2 cAfz = 9. [ “(2m? et N, df = (2n)° (mzs)2 (36)
F R
ms
or
3
(F R_)
2 (20) 9 Ny —BS— = (20) (R )? (37)
Solving for Ny yields
1 o? DR < f < DR (38)
N = . - < <
8 2 s — =3
6(FR) F,

Now that Ne the spectrail density of the. phase process. is determined, we
can compute rms phase ceviation:

DR
s 2
ol = | ‘ <27> of (39)

-DRS S(Fqu) Fo
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or
02 « 1(2 rads’ (40)
0 I\ 3 ?
m

Notice again, when C = Fm’ o = /1/3 radians. However, the input phase
deviation is not nearly as important as the phase error variance of the
bit synchronizer given by

f - w2 d(f) af = o2 (41)

where H(f) is the closed-loop transfer function of the bit synchronizer.
Evaluating (39) for a second-order bit synchronizer with ¢ = 0.707, we
have

FR

ms 4 2
s = | i ;l L D) af (42)
FR(F fJ 6(F.R) \F,
Note that
[fm gt - 2r -2 ffm/f" . (43)
= - X
ofmfz+fn4 "oy 1+ x

So from (42), using (43), we arrive at

£ /f
02=%_Dz_2]-.:_“fm n_d"__d. (44)
¢ Fm m 0 1 +x

The integral of (44) was evaluated by computer since the tables
appeared to give an incorrect result for values of fm/fn larger than one.
The curve is shown in Figure 10.
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For values of fm/fn < 0.5, (44) can be well approximated by

3

2 /f
2 1 D m
= w (r] \+ 45
% (,m) ( n) (48)

Hence, when FmR = fm’ fn and D are known, 002 can be evaluated from (45)
or (44) along with Figure 10. Note, to convert A to o (timing error),
we have the simple relationshin

(4]
o, = ?%' (fractions of a bit). (46)
6.0 PROBABILITY OF ERROR FOR NRZ AND MANCHESTER DATA VERSUS

THE RMS TIMING ERROR FOR A GAUSSIAN PHASE PROCESS

Since the rms timing error has been computed in (44) and (45)
usina (46), we can now determine the probability of error assuming trat
the phase process maximum modulating frequency is much less than the
data rate, i.e.,

f = FmRS << R

. (47)

S

Just as in Section 4.0, it can be shown that the conditional
error probability P(E/t) is given by

NRZ: P(E/1) = (1-P.) /ZEb +P * (-2 || <1
. T T Q No TQ ‘J NO |T Tl Il

2Eb ' Eb
MANCHESTER: P(E/t) = (1- PT) Q Tﬁ;‘(]"4ltl) + PTQ Tﬂ;-(1 -2]t|)
\

lt| <172 (48)

where t is the timing error, PT is the transition probabtility and Q(x) is
defined by
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2 o -t¥2
Q({) = LEEQ dt (49)
The probability density function of the timing error is given
by
i
p(t) = —/2_1-—?_: exp[.g?- (50)
It follows from (48) and (50) that, when PT = 1/2;
] BY. 7 "T'Ef [&y
NRZ: PE = %Q Wo! +f0/2?:‘&: e 2 QJN—O"U-ZIrI) dr  (51)
- 12 -
MANCHESTER: PE =z&%€ . 27 ?‘Q %(1-41) +o/%(1-zt) dr

(52)

These functions are plotted in Figures 11 and 12 for the NRZ
and Manchester (Biphase-L) symbol format case. Note that a 2.5% (0.025)
Gaussian timing error produces 0.4 dB degradation for NRZ and about 1 dJB
degradation for Manchester data. It can be shown that irreducio:- error
probabilities occur in the Gaussian timing error case, causing very high
degradations at larger timing errors.

7.0 EVALUATION OF THE BER DEGRADATION FOR THE SHUTTLE Ku-BAND

RETURN LINK BIT SYNCHRONIZFR

In this section, we apply the resuits of previous sections in
order to estimate the bit error rate (BER) degradaticn due to either sinu-
soidal or a flat Gaussian phase modulation process. To evaluate the BER
dagradation, it is necessary to know the bit synchronizer loop bandwidths.
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Based on a telephone conversation with John Roach of Harris
Corporation (Melbourne, Florida), the following bit synchionizer specifi-
cations were obtained:

1. Ultra-High Data Rate Bit hronizer (UHDR
R = 75-150 Msps
fn = 60 kHz (BL = 200 Hz)
Manufacturer: Motorola
Jitter problems comments: Yes, since they could not

make the loop bandwidth narrow
enough due to internal delays

2. High Rate Bit Synchronizer (HDR)
R = 10-75 Msps (will operate down to 4 Msps)
fn = 0.08% Rs (BL = 0.267% Rs)

Manufacturer: Harris Corporation

Jitter Problem: No

3. Low-Medium Data Bit Synchronizer (LMDR)

R

fn

Manufacturer: Aydin Monitor

1 ksps to 10 Msps

0.1% RS, 0.3% Rg» 1% RS, 2% Ry

Jitter Problem: No.

First we consider the sinusoidal jitter case. We consider two
subcases; the first is for af = 0.01% Rs and fm = 0.01% RS, we call this
case (a). The second is for af = 0.1% Rs and fm = 0.1% RS, which we call
case (b). The BER degradations are shown in Table 1.

For the random case using the same two subcases, we obtain the
results for BER degradation which are shown in Table 2.

In conclusion, we see that, when the frequency deviation and the
ceviation rate are specified at 0.01% Rs, the degradation does not exceed
0.2 dB but, with the specifications at 0.1% RS, the degradation can be
over 10 dB. Also from Tables 1 and 2, it can be seen that Manchester



Table 1. Degradation for the Three Bit Synchronizer Classes and
the Two Jitter Specifications [(a) and (b)]
for Sine Wave Jitter (Uncoded Data)

— Bit Degradation

Synchrenizer f'm/fn

Class NRZ Data Bi-¢-L Data

UHDR (a) 0.1 d8 0.2 dB 0.25
UHDR (b) 2.5 d8 =10 d8 2.5
HOR (a) < 0.1 d8 < 0.1dB 0.125
HOR {b) 2.0 dB : 8.0d8 1.25
LMOR {a) <0.1d8 | < 0.14d8 0.1
LMDR (b) 1.7 d8 4.5 dB 1.0

28

Table 2. Degradation for the Three Bit Synchronizer Classes and
the Two Jitter Specifications [(a) and (b)]
Random Noise Jitter (Uncoded Data)

Bit Degradation
Synchronizer fﬁ/fn
Class NRZ Data Bi-¢-L Data
UHDR (a) 0.03 d8 0.08 dB 0.25
UHDR (b) 2.6 dB > 10 ds 2.5
HOR (a) < 0.1 dB < 0.1 d8 0.125
HOR (b) 1.6 d8 9.0 dB 1.25
LMDR (a) < 0.1 dB < 0.1 d8 0.1
LMOR (b) 0.7 dB 2.3 dB 1.0
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data causes more degradation than NRZ data, as is well-known. Finally,
sine wave jitter and flat random noise jitter cause roughly the same
level of degradation based on the Ku-band Shuttle jitter specification.
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1.0 INTRODUCT ION

In this report, an analysis is attempted of the impact of data
asymmetry on the bit error rate performance of a QPSK sigraling scheme
used to transmit two data streams with different rates and different
powers. Such a model arises, for example, in the QDSB system employed
in the Shuttle Ku-band Mode 1 return link [1], which is essentially a
cascade of two such unbalanced QPSK systems. Of primary interest here
will be the subcarrier QPSX system and, in particular, the version imple-
mented via a digital phase-shift-modulated square-wave subcarvier [2].

The performance of the recently popular unbalanced QPSK (UQPSK)
systems in the presence of reference phase noise has been examined by a
number of authors (see [3] - [7] and roferences therein). The general
approach is to evaluate the bit error probability conditioned on the
data and the value ¢ of the phase error, and then average over ‘iese
variables. The marginal probability density function (p.d.f.) of ¢
strongly depends on the employed tracking Toop and is, in general,
difficult to accurately evaluate for sophisticated receivers. Here
we follow a truncated Taylor series expansion approach, indicated in
[5], which provides credibie results, assuming high loop signal-to-
noise ratio (SNR). Regardless of the particular method used, the bit
error probability (BEP) depends on the powers and data rates of the
individual channels.

The ¢-conditioned BEP (which is a reasonable estimate of BEP
for very high SNR) is an increasing function of ¢, the reason being
that an imperfect phase lock loop attenuates the demodulated signal
power and at the same time increases interchannel cross talk.

Data asymmetry is a potential source of performance degradation
in any digital transmission system. It arises whenever the modulator
spends more time at one amplitude state than the other, as a result of
the misalignment of a threshold device. It is usually defined as the



difference between the elongated pulse length and the shortened pulse
length, normalized by the nominal length. References [8] and [9] per-
tain to previous work on the issue of determining the effect of data
asymmetry on the BEP of BPSK signaling ([8], for a variety of coded and
uncoded data) and UQPSK with equal data rates [9]. Since no cross talk
was considered in [9], the two QPSK channels are essentially two inde-
pendent identical BPSK channels with different power allocation.

The present work addresses the problem of evaluating the per-
formance degradation of a UQPSK system due to both data asymmetry and
noisy reference. As we shall see, the degradation of each channel can
qualitatively be perceived as consisting of a "self-degradation" term
plus a "cross-degradation" term. The former is the superposition of
a power attenuation (due to noisy reference) along with the impairment
caused by asymmetry. The latter (which is actually the interchannel
interference) exists because of the presence of noisy reference and
also depends on the asymmetry of the companion channel data stream.
Hence, the results to be derived here should coincide with those in
[8] and [9], if the phase error is assumed zero.

Section 2.0 summarizes the results of this current research
and emphasizes the assumptions involved in deriving them, since these
assumptions weigh heavily on the validity of the conclusions. In
Section 3.0, we elaborate on the system model assumed by the analysis
and, in Section 4.0, we proceed to evaluate the BEP for Channels 2 and

w

2.0 SUMMARY

The parameter of interest here is the additional signal-to-
noise ratio ASNR (dB) required to compensate for the losses due to
asymmetry and phase noise for each channel. It is defined as the
difference between the SNR re~Jaired to achieve a BEP of 107 under the
aforementioned conditions .ad the nominal value of 9.6 dB for an ideal
BPSK system without impairments other than Gaussian noise.

We have assumed a power ratio of 4 and a data rate ratio of 10
for the two channels. These are typical values for the I and Q com-
ponents of the subcarrier QPSK system of the Orbiter's Ku-band, which
operate at 2 Mbps and 0.2 Mbps, respectively.



According to the approach taken in this report, the phase
error impag; is sufficiently characterized by the mean m¢ and the
variance o; of the tracking jitter ¢. When a biphase Costas tracking
loop is employed at the receiver, references [10] and [11] provide
some (although complicated) analytic results for Op- We feel that an
extension of these results in the presence of asymmetry is a prohibi-
tively complicated task; therefore, we can only postulate some values
for m¢ and o¢. However, it is intuitively appealing to assume that,
in the presence of small asymmetry, typical values for o, will be
slightly higher than what appears in the figures of [10] and [11].

As such, we have selected to examine the cases of m, = 0°, 3°, 5° and
02=0, 4,9 (degrees)a. The analytic results are summarized in (27a),
(32), (39), and (48) for the high data rate channel 2 and in (27b),
(32), (43), (58), (62), and (63) for the low data rate channel 3.
Before commenting on the computer results, let us focus on the assump-
tions made in the course of the analysis.

First we considered NRZ-L data for both channels. An analysis
for biphase-L data would follow on the same lines. Second, we have
assumed perfect symbol synchronization for each individual channel.
Third, we have assumed that the data rate ratio N is much greater than
one, in general (for the specific application where N = 10, such
an assumption is well justified). The above assumptions suffice in
order to derive a good estimate of the bit error probability of the
high data rate channel. For the low data rate channel, two more
assumptions are involved: first, that N is an integer, and second,
that the two channels are aligned, i.e., no epoch difference exists.
Although the second assumption is perhaps rarely met in practice
(since there are two diffe' :nt data clocks for the two channels, they
most 1ikely are independent, therefore nat aligned), one can argue
that the significance of the epoch difference diminishes as N increases.
Similarly, if N is not an integer, one can consider the integer part
of it and still get credible results. In summary, the cardinal
assumptions for the analysis to be reasonably precise are that (1) each
channel is perfectly synchronized, and (2) N is sufficiently greater
than one.



Figures 7(a-c) and 8(a-c) show the plots of ASNR as a function
of the percent asymmetry A, with m¢ and var ¢ as parameters. To gain
some confidence about their correctness, let us notice that, for var ¢=0
and A=0 0q¢ is the single parameter then), the results coincide with
the results of Figures 9 and 10 of [6] for both channels. Also, for
the high data rate channel with m¢==0, o¢= 0, and different degrees
of asymmetry, the results coincide with Table 1 of [8].

A study of Figures 7 and 8 shows that the low data rate channel
(Q) is more sensitive to parameter variation than the high data rate
channel (I). In general, the SNR losses increase exponentially with
the amount of asymmetry present for both channels. For the values
considered, they range from 0 d8 to 1.4 dB for the I channel and from
0 dB to 1.9 dB for the Q channel. We also notice that the plots are
virtually parallel (for a fixed 0¢), which means that the presence of
a mean phase error shifts the curves upwards. In other words, the
effects of phase mean and phase variance are effectively decoupled.
However, as expected, as o¢ increases, the effect of phase offset
becomes more and more drastic.

3.0 ANALYTIC MODEL

W adcpt in this report the following modulation and demodu-
lation schemes.

3.1 Modulator

In Figure 1, the three-channel interplex modulator (Hughes
Aircraft Company version) is shown. The waveform C(t) is given by

c(t) = Ao Jin [ug t +6{t)], (1)

where

mz(t)-l
o(t) = mz(t)m3(t)e0 -(-———5———-)n. (2)

fhe angle a(t) is shown in Fiqure 2. The functions mz(t) and my represent
the digital data streams for the two channels, respectively.



The total three-channel signal is
s(t) = /2 {C(t) cos wpt + S(t) sin wot} (3)
where wg is the carrier radian frequency and

S(t) = /Ay my(t) (4)

Assuming that mz(t), m3(t) are perfectly +1 Vt, then further analysis
of (1) shows that [2]:

+ -
c(t) = /5;'m2(t) E} (wsct;eo) + /§;'m3(t) 53 (wsct;eo) (5)

where
+

S (%) 23 Sin(“’sct+60) +1 E’.lin (u5ct20 ) (6)
and g (“’sct;eo) . %Sin (“’sct+eo) ) %’Sin (‘*’sct'eo)

Waveforms Ef]ugct;eo) and E;(wsct;eo) are shown in Figure 3.

The power ratio
P 1 -—
3t x %

ransmitter

It can be further shown (always assuming that m](t), mz(t) take on
only values +1) that, for this implementaticn in Mode 1, the bandpass
hard limiter has no effect on s(t), so that z(t)=s(t). This is
because

V(t) = \/P] m]z(t) + PS Eiinz(“sct + e(t» = constant

Note that, in the presence of disturbances affecting the amplitude of
either m](t) or fain (*) v~ both, this will no longer be true and the
redistribution of power and the triple cross-modulation term appearance
will have to be more closely examined.



3.2 Demodulator/Detector

Figure 4 shows the assumed ferm of the demodulator/detector
for channels 2 and 3. A similar loop is employed for tracking the
carrier and demodulating the high data rate channel 1. We assume that
this loop has no effect on the subcarrier demodulation loop, i.e.,
there is no phase-tracking error in the carrier demodulation loop.

We will have to relax this assumption later, when we will examine the
effect of parameter variations in the high data race channel 1 since
these variations intrcduce a phase error ¢c in the carrier loop. For
the time being, we concentrate on the effect of parameter variations
in channels 2 and 3 only.

Note the presence of the bandpass filter before the subcarrier
loop. The output x{t) of the bandpass filter can be written as

x(t) = Cy(t) + ngp(t) (8)

where C](t) is the bandpass filtered version of C(t) (where only the
fundamental is retained) and nBP(t) is bandpass noise represented by

ngplt) = /Z {N (1) cos us t - Ng(t) sin g & (9)

In (9), Nc(t) and Ns(t) are approximately statistically independent
white (compared to the data bandwidth) Gaussian noise processes with
single-sided spectral density N0 W/Hz and single-sided bandwidth
BH < wsc/Zn Hz. In the absence of the bandpass filter, such a repre-
sentation would “e of questionable validity.

If we expand Bin (+) into a Fourier series and retain only
the first harmonic, (1) gives [2]:

4 .
C](t) = F‘/Ps sin (wsct+ e(t))
4 . —
= 2 ¢$S cos 8(t) sin we b * g-v?s sin 9(t) cos wsct (10)

or, using (2) (always with the assumption that m.(t)=+1, i=2,3),

e

we get
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4 : 4 .
C(t) = /P, my(t) cos B Sin wg t + /P ma(t) sin 8g cos w. .t (11)

The power ratio at the receiver is

2
EZ _ cos” 8 i 9
P A cot eo
Y receiver sin- 8

as can be seen from (11). Comparing (12) with (7), we observe that
the BPF rearranges the power allocation. Define

-, _
P = |2 (7) cos” o] Py
o - el 2 ]
3r 2 (“) sin 90 rs

so that P2r+'P3r = (8,’7:2)PS (the loss 8/1r2 is due to the BPF). Then
(10) is written as

C]\t) = J2P2r mz(t) sin “sct + /2P3r m3(t) cos u .t

We assume switching type phase detectors (i.e., Square wave reference
signals) for the coherent demodulation of the signal. Let us assume
that

ro(t)

5 in E’sct - q{]
Sos ir“’sct - ¢:[

where ¢(t) is the phase error process. In (16), we have assumed,

f

r.(t)

for simplicity, unit reference gains.

Expanding (16) into a Fourier series and noticing that only
the first harmonizcs 4/7 sin (msct-¢) and 4/m cos (msct- ¢) correlate
with the quadrature signals, respectively, we get

(12)

(13)

(14)

(15)

(16a)

(16b)



es(t) = E:l(t)""ap(t)l g sin (“’sct“’)lLP
22 | By mylt) - N (6] cose - 22 [P myte) en (1)]sine (17a)

e(t) = El(t)+"ap(t):[' %°°5 (“’sct"’)lLP

2_“@ Jﬁ;m3(t)+nc(t):[ cos¢ - 2—,,@ Por mz(t)-Ns(t)] sing (17b)

Waveforms eS(t) and ec(t) are the inputs to the chanrel data detectors
which we assume to be matched filters. The outputs of these integrate-
and-dump circuits at the end of the kth and Lth signaling interval

of each channel are given by

1 kT2+e2
0, = T e (t) Pyt~ (k-1) T,-e,)dt (18a)
2 (k-])T2+e2
2T +e
1 3°€3
D, - T_.[ e (t) Pyt (2-1) Ty-eg)dt (18b)
3 7(2-1)T ey

where Pi(t); i=2,3 is the basic unit power symbol pulse in the ith data
stream mi(t) and is defined to be nonzero only in the interval (O,Ti).
Hence, we have assumed that the data stream is ideally of the form

m,(t) = z a, Pt-nTi-e) i i=23 (19)
n:-m

where
(N {ani}; i=2,3 are independent *1 sequences with the properties

1 m=n
E%an am = Gm
j i n {0 m#n

E’a a, } = 0, all n,n and i
i

(20)

(2) €53 i=2,3 is the arbitrary pulse epoch in these same modulations.



As we shall later see, due to different asymmetries, the series
representation of the mi(t) as a function of any in (19) is no longer
correct. In the following, we shall derive an expression for the prob-
ability of error as a function of my(t) rather than ani(t). We shall
also assume that ¢(t) is constant over the baud of either channel. Sub-
stituting (17) into {18) and dropping the factor 22/x, we get

D, = VP, Moy cose - Py iy, sing + Ny(t) (21a)
03 = ,/53r My3 COSO +‘/§2r m,3 sing + N3(t) (21b)
where
) : ’_kT2+€2
Myy = 1= ) ‘ mz(t) Pz(t-(k-l) Tz-ug)dt (22a)
2 T(k=-1)T, 4
2 2
~ : _kT2+52
g, = 1o f my(t) Pyt - {k-1) T, - ¢,)dt (22b)
2 (k-1)T,+
2 2
: TR
iz = ¥ ‘ m3(t) P3[t- (2-1) Ty- \3)dt (22¢)
3 (I'I)T +c
3 3
. AR (t) P (t- (e-1) ) (22d)
m = = m,(t) Po(t-(e-1) T,-e,)dt 2d
) l’ sz*’Cz
N2(t) ol cosd Ns(t) Pz(t- (k=1) Tz-ez)dt
2 (k‘])T2+€2
.kT2+‘o |
+ sing | N (t) P(t-(k-1)T,-¢,)ldt (22e)
Iy 2 2 2
(k‘])Tq+€2
i | VQT3*ﬁ3
Ny(t) = -1 |- coss [ M) Pyt ()T cg)at
3 (ﬁ-‘,T3*L3
f,T3+L‘3 ‘}

+ sing /| N (8) Poft - (2-1)T,-eq)dt! (22F)
(c-1)Tgrey ° 3 373) }
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Notice that, in the absence of any distortion, (22a) and (22c) yield
a(k_]),z and a(z_])’3, respectively.
From (22e) and (22f), it is easy to show that

: A AT
Ni(t) ~ G(? ; ?T;) ;1 =2,3 (23)

The decision scheme (a zero-level threshold device) outputs

8.5 = som{D;} 5 =23 (24)
at the gth signaling interval of either channel.

Conditioned on ﬁ22’ ﬁ32, ﬁ33, ﬁ23, ¢? the random variables
D2 and D3 are Gaussian, with mean

E{DZ/{miz; i=2.,3),¢0} =,/92r My, COSY -,/P3r My, Sing (25a)
E{04/ (4 i=3,2) = /Py, My case + ¢$§;’m23 sing (25b)

and variarce 0$-= NO/ZTi; i=2,3.
H-nce, the conditional probability of error for each channel

is
Ry
P(ee/(mi2;1=2,3),¢) =Q sgn{mzz}'\Jﬁg'mzz cosd -\/ﬁ;»m33 sinf)

(78]

- :
(e3/( 5i23,2),¢4) = Q sgn{m .} (¢rﬁ'm cosd + /RN fiys Sin¢)]

where R, = ZpirTi/NO (SNR for the ith channel) (27)

and

Np o= T3/T, (>>1) (28)

is the data rates ratio. (We have arbitrarily assumed that Channel 2 has
a higher data rate than channel 3)

and

17 x|
Q(x) = 5= / exp dx (29)

2

Finally, sgn{-) stands for the sign function.



n

4.0 AVERAGE ERROR PROBABILITY

To obtain the average error probability, one has to remove
the conditioning on the random variables mij and ¢. It is clear that
both random variables are data dependent in the sense that any
parameter variations in the data stream affect the performance of
the Costas loop and hence the p.d.f. of ¢. Unfortunately, we cannot
easily obtain the p.d.f. P¢(¢); hence, we are facing two possible
alternatives:

(1) Evaluate the ¢-conditioned P(ei/¢) of eithar channel just )
by removing the conditioning on ?"'i j* In the case where the variance o :
is very small (which implies high SNR in the loop), then P(ei/¢) stands
as a reasonable estimate of P(ei). The result of such an analysis will
be a set of curves of P(ei/¢) as a function of SNR, parameterized by
the mean value of ¢ and the degree of asymmetry.

(2) Expand P(ei/ﬁij.¢) into a Taylor series in ¢ around m,
and retain only the first three temms (a similar approach has been
taken in [5]). The results are credible if one again assumes small

ad). Then,

dP{e./m,m }
Ple;/@i.0) = Ples/mm) + —g—2 - (¢ - mo) (30)
2 -~
+ d P(ei/ﬂ’m¢)

2
“ {6 -m)
d¢? ¢

so that, if P¢(¢) is the marginal p.d.f. of ¢, we get

Pley/) = [Plej/ie) P(s) do (31)
2 -
d°P(e./m,m )
2 pledm) + — P . g 2

where @: ('ﬁ‘n’rﬁl‘])’ IyJ x 2»3v(1 f J)'
Equation (31) is parameterized by m, and Oy Removing the
m-conditioning from each of the three terms in (31) will yield P(ei).
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The second approach takes us one step further in approximating
P(ei) closer because of the presence of the correcting second term.
From (26a) and (26b), we have

dP(e,/i,0)
—— - -————exp -7 (32)

where zi(o); i=2,3 is the argument of Q(-). But

dz R
2 - - Ry
rrolii sgn{mzz}-(/R2 my, Sine + ﬁ;-m32 cos¢ (33a)
dz3 } R ]
rri sgn{m33}-‘JR3 m,s sing - RN, 23 cos¢ (33b)

so that

¢ i) - Lot e
P(e /mye) = R, M,,sing + =M., COS$
dé Ko \[ 222 N NT 32

T3 .
R2 m22 CoSd - —; 32 s1n;> o
S eXpL - A -sgn{mzzy (34a)

9

o)

and

d - 3. 1 = - .
T} P(e3/@,¢)— :%%:(0R3 Wyy SING - R2NT 23 cos¢)

‘ (‘/_3 my3 Cos¢ +y/RyNy m, g 5‘”“’)2)

. exPl > -sgn{my.} (34b)
ahn
d‘P(ez/m &) sgn{mZQy d | 2221
S = T 2, expy- 5 (35)
d¢h »2" 4 l ’
wWhere
R dz
P 3 - = . 2. ;
2% = (R, i, sing TN Mg C0S¢ 3 - sanimy,} (36)
and
*
i
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From (35), (36) and (37), it follows that

dzp (32/_'?'_!") Sgn {ﬁ‘zz} - 222
5 = zz-sgn{mzz}-exp - —5—}
d¢ V2w
|z
+25 . ('22) (-zér sgn{mzz}) -exp l - —%—}
2
z z
_ 2 2 [ ( 2]
= —— . exp - - (1 + (2%
o P ; T} (z3)
or
dzP(ez/m,¢) sgn{rﬁz?_} S /53_ i .
5 = . RZ myy cosé '\/N—' M9 sing
d¢ 2 T

5 2
R
5 ,,,’ 3 - .
| Ry . ‘(‘/Rz "oz OS¢ TNy “‘325"“)
v R 522 sing + /= My, COSGJ | -€x

11
2 2
T i
i ()
Similarly, from (34a), (38)
dzp(e3/@:¢) Sg“{ﬁ‘33} ’ 232l
> — a};zgexp--—r (39)
dd v2n Q ’
where
. _ N dz3 .
23 =\/R3 myq sing - ‘/RZNT My3 OS¢ = - 7= sgn{m33} (40)
and
*
dz )
T Z, sgn{m33} (41)
The result is
dZP(e3/@,¢) sgn{ms,} . ) .
5 = — -(Vﬁié My COS$ +,/R2NT M) g s1n¢)
de Ven \
- - . 2
i B | o ; }(Jk3m33cos¢ﬁ/R2NTm23s1n¢) '
. ]+(/§3m33s1n¢ - JRZNTm23cos¢) .expl 5 s

(42)
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Equations (38) and (42) are explicit functions of fl and ¢. Once

these are determined (see next section for i), the second derivatives
can be evaluated. Note the presente of the factor sgn(:), as a conse-
quence of (26a) and (26b).

We proceed now to evaluate ﬁij in (23). Several assumptions
will be imposed, and the analysis will advance from the simplest case
to more complicated cases by relaxing some of the assumptions.

The parameter variation to be examined is data asymmetry.

We shall assume that both channels suffer from data asymmetry of
degree A, which is presumably the worst case. Define

A= %-(length of long pulse - length of short pulse) : (nominal pulse length)
(43)

See Figure 5. Let us first assume NRZ-L format for both data streams.
Parameter a of Figure 5, pertaining to the amount of asymmetry occurring
at each transition, relates to A as a=A/2. Let us also first calculate
ﬁzz and m33. We note that these quantities measure the "self-degradation”
of each channel due to asymmetry; hence, the epochs €5 play no role
(we assume perfect syncrronization for each individual channel although
the QPSK scheme will most likely be staggered because of the different
data rates between the two channels), so that no assumption for the ei's
is necessary up to this point.

The values of m22 and ﬁ33 pertaining to an individual symbo?l
depend on the adjacent symbols. Table 1 summarizes the results.

Table 1. (ﬁzz or ﬁ33) (NRZ/NRZ)

v v v v
(1)) (M)(-1) (-1 (1M (-1)(1)(-1)

Prob 1/8 1/8 1/8 1/8
m
22°
1 1 1 1
M33
¥ + v +
() (-1)(1) (D (-1)(-1) (-1)(-1)(1) (-1)(-1)(-1)
Prob 1/8 1/8 1/8 1/8
T
22 ST+ 2 1+ A -1 +A -
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4.1 High Data Rate Channel

Having assumed T,>T,, we now proceed to eva]uate1ﬁ32.
Because T4>T,, within an interval of length T, one of the following
exclusive events can happen:

E+] = the event of having Channel 3 at the state a23==+1 in the
interval [(k-])Tz,sz]

1 ° the event of having Channel 3 at the state a

interval [(k-])Tz,sz]

the event in which Channel 3 switches state in [(k-])Tz,kTZ]

m
|

E3=-1in the

ESW

with corresponding probabilities P(EE])’ P(E?]), and P(ng) such that
PEZ) + P(ED) + P(ED ) = 1.

Assigning probabilities to the aforementioned events is a
rather difficult task, since these events depend on the ratio T2/T3,
the amount of asymmetry present, the epochs statistics, etc. However,
things are simplified completely if we make the assumption that
T3/T2>> 1. This assumption is justified in our case, where T3/T23_10
(see [1]). Then, as T3/T2-»w, event ng is of probability measure zero,

so that

PEZ) + P(ED) 2 1 (44)

In the absence of asymmetry, it would be P(E31) = P(E?]) = 1/2. However,
because of the asymmetry A present, each of the two probabilities equals
the average percentage of time alloted to each symbol correspondingly,

i.e.,

P(E3+]) = ; 1 +% - (1+%)+]§(1+A) = ;—(H%) (45)
P(E3_]) - -}3—-1+%(1-%—)+;—(1-A)=%(1 -g-) (46)

(See Table 1 also.)
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Combining (23b) and (45) and the fact that both p](t) and
pz(t) are NRZ-L data, we form Table 2:

Table 2. (m32)

Prob | (1+5) | 3(1-3

i -1

LY

We are now in a position to write an expression for the average error
probability in the high data rate Channel 2:

Pley) = ‘7[% (1+3) Pleyy11) + 3 -3) P(ez/(l,-l))]

+: _]? (1 +%) Pley/ (-14A,1)) + 2 (1 %) P(ez/(-HA.-])):l
‘g %( g) Pey/(-142A,1)) + ;—( -’2‘-) P(ez/(-HZA,-]))]
B /
+‘§_‘§( g) Ple,/ (-1,-1)) ;—\1 52‘-) (ey/ (-1 -1)):{ (47)
where the notation
P[eZ/a,B) 8 P(EZ/E'ZZ = da, '332 = B) (48)

and the corresponding expression for P{ezl(ﬁzz.ﬁ32)) is given by (31) in
conjunction with (28). (Case I is a special case of II when 0y = 0.)

We now summarize the conclusion of this section as follows.
Equation (47) yields the average hit error rate for the high data rate
Channel 2. Assumptions used to derive (47) are summarized below.

(1) Phase-error variance is small, so that the truncated
Taylor series (30) gives reasonably geod results.

(2) Both channels suffer from the same degree of asymmetry A
as defined in (43). The case of different degrees of asymmetry for
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each channel is a trivial modification of the above results. Indeed,
assume that each channel is subjected to asymmetry Ai; i=2,3 and
AZ#A3. Then each parameter A appearing as an argument of P(ez/@)
in (47) should be replaced by A2, and each parameter A appearing in
the multiplicative factors of the form (1+A/2) or (1-A/2) should
be replaced by A3.

(3) Data are NRZ-L for both channels. Cases where one or
both channels have biphase-L data can be handled similarly.

(4) Perfect synchronization is assumed for each individual
channel.

(5) The ratio T3/T2>>]. This enabled us to induce assumption
(44) which led to forming Table 2.

(6) No assumption about the epoch statistics is necessary.

4.2 Low Data Rate Channel

We now proceed to evaluate ﬁ23, and subsequently P(e3). If
EX means "expectation with respect to x," then

Ple,) = 55133{%23 {P(e3/rﬁ33,rﬁ23)}} (49)

We shali first evaluate P(e3/(m33.m23)]. The analysis will be carried
out under the assumption that the two channels are synchronized, i.e.,
the epoch difference is identically zero [18]. This means that,
within a pulse P3(t), there exists exactly N(Ne Z+) pulses pz(t)
(nominally, i.e., in the absence of asymmetry). It is intuitive, how-
ever, to conclude that, for large rate ratios N, the presence or
absence of epoch difference is not of great practical import.

In Figure 6, we have shown a possible sequence of N Channel 2
pulses (in the absence of asymmetry) within a T3-sec time interval.
The pulses have been indexed by ki (i=0,1,...N+1) according to their
position within the interval. Note that, because of the existing
asymmetry, two more pulses (k0 and kN+1) must be take . into account
since their presence affects the results. We shall argue later that

*
2t denotes the set of positive integers.



for N large, their contribution is insignificant, which will result
in certain simplifications of the final expression.

analysis.

With the above definitions available, it is a question of exhaustive
séarch to show that the following conditional relationships hold:

eff

1=+,-
ye [0,N+1]

i,j=4,-
Y.8 € [0,N+1]

eff

L+

L+ 2

We make the following assumptions:

18

It is the multi-
plicity of the possibla patterns of the N successive pulses, combined
with the presence of asymmetry, that necessitates the following

= the event that a pulse occupying the vth
position has a +1 or -1 value

= the joint event that the yth pulse has an
i sign and the 6th pulse has a j sign

]

number of positive pulses in the interval [1,N]

(i.e., excluding pulses k0 and kN+1)

number of transitions from a positive to a
negative pulse or vice versa in the interval
[1,N] (i.e., excluding the transitions between

the boundary pairs (0,1) and (N,N+1)

number of effective transitions in the interval

[1,N] (i.e., with the boundary transitions
included, whenever they occur).

or

or

or

3.1
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Note that min k = 0 and max k = N. We now examine the limits zrnin and

\ ij
R'max of & as functions of k and EIN‘
{ (k=0
0...... . if or
| k=n
+,-
_ . E] ,N N]ikiN-])
R’min = | I if or
1,N
2 . . if

E}y NNV2 <k <N-2)

For Yrax® e have to distinguish between the cases N

(a) Neven:
k-2 ... ... if Eyry M2 < k< N/2)
2(N-k) . . . ... if Ey’y MNV2<keN)
4 S L if‘or’ e
Epon”

2 1N

max 2(N-K) - 1. . .. iflor
2K oo if E3"y N0 <k <N/2)
2(N-k) -2 . ... if Ey 'y NN/2 <k <N-2)

30 (1 <k <N-1)

E;:; N(2<k <N-1)

even

E}':&m(l < k< N/2)
{1<k<N/2)

‘ ET*T MN/2 < k< N-1)

E;:;] AN/2 <k < N-1)

\ Ne2 o v e e if £y Ty 0k = N2)

3.2

3.3
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(B Nogq*
+,t . -
2k - 2 if Ey’N nz._kf(u 1)/2
+,4
2(N-k) it Epy Nz <k <N
+ -
s N1 <k <f-1)/2
2(k-1) if ‘ LN 4+
l By 1<k -2
Lrax g 3.3b
+.-
EPr A (N2 <k <N-1
2(N-k) - 1 if LN (2 ke
l £ on (42 <k ne
2k if B’y O 0 <k -T2
2(N-K) - 2 it g N2z ck w2

We now proceed to evaluate F = P(e3/m33). If v define F(.) to
mean "F given (-)," we can apply the law of total probability to get

\ LER
2 VR = D Rk > Ryl F(elde)

F =
k=0 i,j=+,-
i,J

N Ev N ( i, ) Bnax y
2 Pkl D eylg ) > P (“’51 N’ ) F(1 Nikst )
k=0 i.3=+,- =
N 2K R

- E Py(k) Z PN(El,N/k) . PN("/EI,N"‘)

k=0 i,j5+,~ z=zm/n
£ Pd

.20 N+ P Piq /E ) FIE P,.qQ Ei "j'k‘l (50)

NE R 7 €1 0,41 351, g%
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where PN(A/B) denotes the probability of the event A or that random
variable A takes the value A, given the event B or that the random
variable B assumes the value B, in the presence of N Channel 2 pulses
in T3 seconds.

The quantities involved in (50) can be evaluated as follows
Obviously, the random variable k follows a binomial distribution with
parameters p=q=1/2, so that

= (M) ) @ - &

k() 2

Because of the independence of the ki and kj pulses (kiflﬂﬁ’ we have
that

Pu(Eo e/ E1 ks ) = Pu(Eg%idh) < Yo (52)

The quantity PN[R/(E;:ﬂ),k) has been evaluated in Appendix A and is
given by (A-24), (A-25), and (A-34).

Observe that the limits 2 in and zmax depend on both k and
(E] ) through Tables 3.2 and 3. 3 The quantities P (El’N/k) have
been evaluated in Appendix B and are given by (B-2) through (B-4) and
wnd (B-5) through (B-11).

Finally, we have to evaluate F(Ep’N+],E]’§,k £). Note that
the triple [’E0 N+1) (E]’N) 2] virtually defines Logs through Table 3.1.
With k and ¢ cff 25° parameters, it is easy to check from (22d) that

fyg (VoA ) = T';[(k S (NK)) Ty A kg - T (53a)

or

2k - N+ A °2
~ _ eff
m23(N,A,k,zeff) = 0 (53b)

since TZ/Tc = 1/N. So, simplifying the notation, we have that

2k=N+A- g
, o . £f
F(EopNﬁ],E1 3k l) ¢ F((p,q);(w,J);k;z) - ?(.'/rn33,m23= — > (54)
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where Rogs is determined as a function of (E8:3+]), (E;:N), L from
Table 3.1

In principle, the problem has been solved. In the following,
we shall first try to perform certain simplifications that result from
the formulas and, at a second stage, we shall try to proceed to some
approximations which make the final result look more tractable without
sacrificing significant accuracy.

First, let us consider only the conditioning on k and write

N=2
F e Py(0)« FO) + R(N) - FN) + P(1) < F(1) + Py(N-1) < FON-T) + By (KD Fy

and, applying (50), (51), (52) and (54), Appendices A and B, and
Tables 3.2 and 3.3, we find that

gP»d
9 0,N+]
F = Nz jz F((p.a);(-1,-1)5050) + F((p,q);(1,1),N;0)
P,q

+ F((p,q):(1,-1)31;1) + F({p,q);(-1,1);1;1]
+ F((p,q)s(1,-1);3N-151) + F((p,q):(~1,1);N-151)
+ (N=2)-F((p,q)5(-1,-1)3152) + (N-2)-F((p.q)s(1,1);N-1;2)

N-2 oo (kLE77
+ ZE maiz ]’N)(:;;)((fzgifz)'F((P,Q);(1,1);k;1)

k-2 | 2=2;3ven

+,-
2max(k'El,N) k-1 N-1-k
' ((2-1)/2 (1-1)/2)'F((D,Q);(1,-1);k;2)

2=Y;0dd

' ]jé.dd ((QE{;/z)((?:}gyz)'F((P,q):(-1.1);k;z)
=1, 0

-y

L
(k.507)
SR Y (% (G RGN

g=2;even

(55)
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Note that (55) is accurate, i.e., only some ‘rangement of terms has
taken place.

Equation (55) can be programmed as it is to yield an exact result,
if Tables 3.0 (for zeff) and 3.3 (for zmmx) along with (53) are taken into
account.

4.3 Approximations to F-Equation

(1) MWe first note that the coefficients of the first eight terms
within the qu expression are either ]/(2N+2) gr (N-2)/(2N+2). For
N = 10, these coefficients are of the order -~10 ° and can therefore be
neglected. .

(2) We assume that the "edge effects" are negligible, i.e., the
contribution of Eofﬁgl in F is not significant. Indeed, these factors
will contribute some amount of asymmetry in (0,T3) during = (1/4 * 3/4
+2/4 - 1/2 + 1/4 - 0)-100% = 50% of the time, and the contributions will,

on the average, be minimal. In other words, Loff is

%, for {% .100% of the time

] 6 .
leff =g 2 +1, for 16 100% of the time
L+ 2, for f%--]OO% of the time

We can then say that (zeff)avz (9-1+(9.+l)-6+(z+2)-])/16 =g +1/2, and we
can use this value independently of Table 3.1. The combination of (1)
and (2) greatly simplifies F, which ncw takes the form (also removing the
factor 1/4 since the congitioning on Eofﬁgl is removed):

(k.5 ) tnac(5€1R)
max 1,N _ 1. * max 1,N _
y Jﬁ 25 (t/;)((g-;)tz)'Fk.z v ((151;/2)

£-2; even t=1; odd

: (50) *
(@550 e " Zl ! (25 P | 0

2=2; even
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where we have defined

2k-N+A-(z+%))

* -~ -
Feoe = P(93/'“33""23 = N (57)

and we have also exploited the symmetry between E;'i and E;’; . (We

always assume N even.) Furthermore, we can break the summation in (57)

into three disjoint sums (2 <k <N/2), (k=N/2),(N/2 <k <N-2) to get from
(57) and Table 3.3a:

1 N e * [-k-’ N-1-k k-1 N-1-k
F= ;N' 2 Z Fk,z '[gz/é)((z-Z)/z) + ((1-2)/2)( £/2 )]
k=2 |[2=2;even

2k-1

* (N-l-k)'F:,sz 2y F:,z((z'-(;;/z) ((2:}3'/(2)
£-1;0dd

N-2 2(N-k)-2 .
C3 SR (S )]

k=N/2+1| 2=2;even

K1\ 21 k-1 \f N-1-k
* (N-k)'F K, 2=2(N-k) * 2 Z Fro ((9.-1)/2)((!.-1 )/2)
2=1; odd
& v (2 * < vz s
vz ) ( 2 )((2{23}2) Fenz,e b2 2 [((1{13/2)] Fr=ns2,0 ¢ (58)
£=2; even £=1;04d 8

Observing certain symmetries, (58) is reduced to
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] N/2-1  2k-2
] N-1-k N-1-k
R LN - 5 (5]

k=2 g=2;even

N/2-1 2k-1

vz ) ) |:F: -k :J ()72 ((2:}372)

k=2  2=1; odd
N/2-1
* * N-1-k
) Fk,z=2k+FN-k,z=2€l( k )
k=2
N-1

N-2 2
SN (2 EEA ERED o 07 [

L=2;even 2=1;0dd
(59)

Finally, if we use the identity

() 62+ () (8) - () () aarady (0

setting a = k-1, b = N-k-1 and x = 2/2, we get

N/Z 1 2k 2

F = 1 * N k- 1) 2-{N-2

2N l k z N k.2 1/2 /2 4(k-2 N-
k=2 £=2 even

2k-1
S Bt S

2=1;0dd

. . N-2
+[Fk,z=2k"Fn-k,ﬂ.=2k (N-]-k) . z (N/Z-] N/2-1 )
2 k /2 J\(2-2)/2

1=2;even

N-1

* N/2-1 l
) l:k=N/2,xc ¥ Z [((z-l)/Z:] Fk N/2, zs (61)

t=Y;0dd
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Equation (61) is the final expression for F= P(e3/ﬁ33). where F:’l is
given by (57) and P(e3/ﬁ|33,ﬁi23) is given by the combination of (26a),
(31), and (42). The uncc-ditional Pe(e3) will be derived by averaging
F over ﬁ33 according to Table 1, i.e.,

Ple) = 3 Plegfiigy=1) + 7 Plegfingy=-1+4)

1 ~ 1 -
+ g Pleg/mys=-1) + g Pleg/my = -142A) (62)
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GLOSSARY OF SYMBOLS

Tracking phase error process

Mean of ¢

Variance of ¢

Data rates ratio

Error probability of channel i conditioned on

m..,m. .
i)

= The event that the yth pulse equals i

F(x) & Peg/my3,x) =

The joint event that the yth and §th pulses equal
i and j, respectively. Note: Whenever there is

a possibility of misunderstanding, it is replaced
by (i,3).

Number of positive pulses in {1,N]

Number of transitions from +1 to -1 or vice versa,
Within the internal [1,N], with the boundary tran-
sition excluded.

Number of effective transitions in [1,N], with the
boundary transitions included, whenever they occur.

Limits of ¢

Probability of error for Channel 3 conditioned on
Mag and other events k.

Number of pairs of qdjacent positive pulses in
[(1,N], given in E}’ﬂ and k.

Number of combinations of m objects taken every n
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ADDENDUM A

EVALUATION OF THE CONDITIONAL PROBABILITY DISTRIBUTION
OF THE RANDOM VARIABLE 2 GIVEN THE EVENT E]’ﬂ AND k

In this appendix, we evaluate the probabllity distribution of
the random variesle ¢, condltioned on k and (E]’N) Let us first
define Py(e/(1]*0)5K) & P(2/(3,3),Kk):

(1) If k=0, then P(0/(-1,-1),0)=1 (A-1)
and every other cond. prob. is zero.

(2) If k=N, then P(0/1,1),N) =1 (A-2)
and every other cond. prob. is zero.

(3) If k=1, then P(1/(1,-1),1) = P(1/(-1,1),1) =1 (A-3)
and P(2/(-1,-1),1) =1, P(2/(1,1),1) =0 (A-4)

(4) If k=N-1, then P(1/(1,-1),8-1) =p{(1/(-1,1),N-1) =1 (A-5)
and P(2/(V,1),N-1) =1, P(2/(-1,-1),N-1) =0 (A-6)

iet us assume 2<k< N-2, and let us define the random variable
T as the number of pairs of adjacent positive pulses (k kp+]) given
’J) and k. Then it is easy to verify that

(
L+2 . +,+
Z(k-‘t) -2 k - —2— if E],N
2+1 . +,-
2(k-t) - 1 k - 5 if E],N
LF EFD> - A-7
< 2+1 . -,+ ( )
2(k-1) -1 k - —2—' if E-I N
|3 . -,-
2(k-1) k - 7 if EI,N

Let us now consider the set S of all possible pairs of adjacent
{(positive) pulses. Then,

5 = g lkyako)s (kZ’k3)""’(kk-1’kk)/E}.:gl}
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of cardinality k-1. The way we select t of these pairs does depend
on E: ",1; hence, we distinguish the following cases.

AN (E;:ﬁ)

In this case, k]fl, kka. The k pulses lie in an interval
of N'=N-2 slots. Then, T of the pairs in S can be selected in (k;])
ways, and the possible selections are all equiprobable. Hence, we
can write

P/ (1,100 = (1) PE/(-1,-1).K) (A-8)

where the event E in (A-8) stands for any particular selectien of
the 1 pairs. We shall select the following particular pattern:

E, = {(k],kz),[kz,k3)...(kr,kt+11/t;:§;k} (A-9)

i.e., ES stands for the collection of all patterns having the first
(t+1) positive pulses adjacent, and the rest P=k - (1+1) nonadjacent.
The above hold for 1>0. If t=0, then

P(x=0/(-1,-1),k} = P(no adjacent pu]ses/(-],-l),k) (A-10)

and will be derived later in this appendix.
We shall try now to find the probability of the event ES in
(A-9). We write

P{ES/(-I,-I),k} = =(,N',k)-P{any individual pattern/N',k} (A-11)

where =(t,N',k) is the number of patterns within the set Es’ and

1

(&

P {any individual patter/Njk} = (A-12)
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Next, we evaluate =(t,N',k). We note that
2(r,N,K) = 5 (r N ksky) + 2(ruN'Ksky) Hoot 2(TLN' KK ) (A-13)

where E(T,N',k;ki), (i =l.....km) stands for the number of patterns
belonging to ES whose first positive pulse occurs at the position ki'
The upper limit km is easily shown to obey the equation

or 2[k - (++1)] + (x¥1) + k= N

Ky = N' -2k + 1T +3 (A-14)

We can then combine (A-13) and (A-14) into

N'-2k+1+3
SN =) £ (N kik;) (A-15)
k=2

«n the following, we proceed to evaluate E(T,N',k;ki). From
the setu+ of the problem, it follows that this number equals the
number ,pi of all the possible patterns containing P=k - (1+1) posi-
tive nonadjacent pulses within an interval of =, = N'- [ki° 2+ (1+1)]
= N' - Lki+-r)+ 1 slots. From (A-14), it follows that s takes on the
values m; e [(2k-27t-2),(N'-7-1)]. An additional constraint should
Le added here, namely, that the first slot within the ms places should
not contain a positive pulse (since, otherwise. we would have 1+2
pairs of adjacent positive pulses, contradicting the problem formula-
tion). An additional constraint is that-r>rm1n = 2k-1-N", in the
case k> N/2.

One of the following two ways could be used for solving this
combinatorial problem. The first is to formulate a difference equa-
tion which the variable g; should satisfy. Such an equation arises
by splitting all these patterns enumerated by gg into the ones con-

taining a positive pulse at the second siot within the w-interval,
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plus the ones which do not. Hence, we can write

T _ w1 -2
Ep = Ep' + gp_] > T 2,3
with initial conditions (A-16)
1. 1. 2 _
50 = ] ’ EP#O 0 ] Eo 0

2 _ 2 = LI
E] - ] ] gpfo’] O s 5“ 0

and try to solve (A-16).
The other approach is to consider that we have a collection
of objects of two kinds:

First kind: .d:b- i.e., a negative pulse followed by a positive
pulse. This assumes that no two positive pulses
will be adjacent. There are p of these objects.

Second kind: B o= i.e., a negative pulse which does not accompany
a positive pulse. There are m-2p of these objects.

Hence, the number of all distinguishable permutations containing these
two objects is

5; =((w-%y)+P) . (v;p) (A-17)

If we substitute (A-17) into (A-16) and use the identity (N\ = (N;]) + (2:})
we indeed verify that (A-17) is the solution of (A-16).
Combining (A-8), (A-11), (A-12), (A-15), and (A-17), we con-

ciude that
N-1-3

ES (ni-k+T+])

Pl - (V) am2(kee-n)t K

o, changing variables (¢ =ni-k+r+1), we have that
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P(r/(-1,-1).k) = -(k;‘)- N.fk ( $ )

The constraints for (A-18) are as in Table 3.3a. Also, we agree thati
(@ =1

Finally, the desired quantity P(%2/(-1,-1),k) is obtained from

(A-18) and (A-7):
( k-1 ) N-2-k
_ \k-2/2 . om
P(/(-1,-1),K) = F%)— D (esa)s wmevens2 (A-19)
k $=2/2-1

with constraints

2 < k < N2 /2 < Kk < N-2 Kk = N/2
or or
2 < %<2k 2 < & < 2(N-k)-2 2 <2 < N-2
_ _ 0\ _ . .
For example, PN(Q-Z/(-I,-l),N-Z) = 1/1 -(0) = 1, which is correct.

We now examine P(t=0/(-1,-1),k). Obviously, P(t=0/(-1,-1),k) = 0
if k>N/2. Hence, we examine only the P(t=0/(-1,-1),k) with k <N/2.
Observe that, if k = N/2, 721, and (A-19) is applicable as it is.

After some thought, we can see that

N'+1
13 ' 1
P(x=0/(-1,-1),k;2 < k < N/2) = -{&3§-; where gy 1 = (N'41-K) (A-20)
th
However, we can show that (A-20) is virtually incorporated in (A-19).
.:.deed, for £=2k (which is equivalent to 7=0), (A-19) gives
N-2-k
2 (&)
P(1=2k/(-1,-1);k;2 < k < N-2) = ilzﬁ%iy——— (A-21)
k

and to verify the claim, we have to show [cambining (A-20), (A-21)] that
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(N'+|](-k) ] (N-l-k) ) (kgl) (A-22)

To prove this, we use the identity ([12], problem 2-2):

3 23

Putting r=k-1, r+n= N-k-2 in (A-23), we verify (A-22) directly.
The final result for the (E{’&) cas: is summarized in the
foiiowing (after minor manipulations and using (A-22) again):

[ P(0/(-1,-1)30) = 1
P(2=2/(-1,-1);1) =1

A

k=1 '\ (N-k-1
P(L/(-1,-1)3k) = laj2- L g 1/2) (A-24)

where

\ 2 = even > 2; 2 < k < N-2; & obeys restrictions of Table 3.3.a.
Finally, P(2/(-1,-1);k) = 0, els_where.

+,+
A.2 LE],N)

This case is exactly symmetrical to A.1, if one substitutes
the k positive pulses with N-k negative ones. Hence, the result
can be directly derived from (A-24):

(P(O/(1,)5N) = 1, P(e=2/(1,1)3N1) = 1

P(a/(1,105Kk) = <;2§)NQEZE;J) (A-25)
k-2

where 5 = aven > 25 2 < k < N-2; g obeys restrictions of Table 3.3a.
Finally,P(2 /(1,1);k) = 0, elswhere
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Note that, in order to derive (A-25) from (A-24), we have used the
identities

N-2 N-2 N-k-1 N-k-1
k) T \k-2/ \N-kg) C %1)
A3 ER s PR

These two cases are identical, so we treat the first of
them. To find P(2/(1,-1),k), we use total probability to write

P(2/(1,-1),k) = P(2/(1,-1)3ksky=2) P (ky=2/(1,-1) k)

+ P(2/(1,-1)5ks5ky > 2) -P(ky > 2/(1,-1) ,k ‘(A-26)
We first find PN(k2=2/(11~1),k) and PN(k2>2/(1,-1),k) as follows

E[k2=2;(k-1) positive pulses in [2,N-1]/(1,-1)]
P[(k-]) positive pulses in [2,N-1]/(],-1)1

Pky=2/(1,-1) k) =

(A-27)

Then

P[k2> 2/(1,-1);k] = P[k2=2/(1,-1);k] - (A-28)
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Second, we note that

P[%/(],-]);k;k2=%] = p n/E;’ﬁ_];(k-l) positive pulses in {2.N-l]] (A-29)

and

P[}/(l,-l);k;k2>-%} = P[%-]/E]+ﬁ:];(k—1) positive pulses in [2,N—1]] (A-30)

If we substitute (A-27) through (A-30) into (A-26), a recur-
sive relationship appears for evaluating P(2/(1,-1),k), since the $
quantity in (A-30) is of the form (A-24) for the (E{:&) case. To
proceed further, we split again the expression in (A-29) in the same
format as the original (A-26), replacing N> N-1 and k~k-1. This
can be repeated n steps, and the resuit will be of the form Wffter
some manipulation):

n

PLa/(1,-1)5k] = (ﬁlfz) ix P(Q»I/E;:;‘_n; (k-n))- (N;'f;‘”‘/* (A-31)
k-1/ n=

The r.v. n accounts for the number of recursions needed to bring
he quantity PN[R/LE;’&*n),(k-n)] to zero. A question that arises
now regards the value of Max’ From Table 3-3a, we see that

2k if 1<k <N2
lmax {

2(N-k) - 2 if N/2 < k < N-2

[we are referring to the (E;’\] caseJ

L]
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Since both N and k are reduced by n at each step, the second
limitation is always satisfied. Hence, n nax (i.e., the maximum number
of permissible steps) will be determined by forcing

2 -1=2(k-n

©
"

max max]

or

2-1
Mmax 2 k (A-32)

From (A-24), we have that

k-n-1 \ /N- k-:)
2-1
P(” (E1ohen)s “‘"") ) (- -zyT (A-33)

so that (A-31) combined with (A-33) yields

( | kiiil k-n-1
P(2/(1,-1):k) = -1
o 2

or, using identity (A-23), we finally arrive at

P{e=1/(1,-1)31) = 1, P(2=1/(1,-1);N-1} =

P(2/(1,-1);k) = (A-34)

-2 and % obeys the restrictions of Table 3.3.a.
, elsewhere. An identical result holds for the

waere 2= odd>1; 2<k
Finally, ((z/(l 1)5k)
casz E; N

(l)



ADDENDUM B

EVALUATION OF THE CONDITIONAL PROBABILITIES OF

THE EVENTS E:’ﬂ GIVEN k POSITIVE PULSES IN N SLOTS

In this appendix, we evaluate the probabilities PN(E'](’a/k) 4
P((i,j)/k) as follows:

9((1,2;/k) = P((;fl%;k) - P((1,1)j(k-2) posi§2{§ pulses in [z,N-l]) (B-1)

and, since the two events in the numerator are independent, we get

1 (N-Z) 1
% P((k-2) positive pulses in [2,N-1]) _ 1 ‘K2 N-2

" BT

PN1,1)/K) =

or, finally,

L (B-2)

and similarly,

P((1,-1)/k) = P{(-1,1)/k} = ‘& (8-3)

and
P(-1.-1V/k) = = (B-4)

The above were derived assuming 2 < k < N-2. Obviously,
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P((1,1)/0) = p((1,-1)/0) = P((-1,1)/0) = © (8-5)
P{(-1,-1)/N) = P((1,-1)/N) = P((-1,1)/N) = O (8-6)
P((1,N) = 0 (8-7)

P((-1,-1)/N-1) = © (8-8)

P((-1,-1)/0) = P((},1)/N) = 1 (B-9)

PIIL-DAY = P((-1,1)/1) = P((1,-1)/N-1) = P((-1,1)/N-1) = L (B-10)

PI-1,-0/1) = ety = B2 (8-11)
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APPENDIX A
PEAK REGULATOR DESIGN AND BREADBOARD EVALUATION

1.0 INTRODUCTION

As a part of the development and specification of the PI/KuSP
bent-pipe interface, Axiomatix undertook to design and evaluate a signal
waveform peak regulator. Such a regulator permits the largest possible
peak frequency deviation of the FM transmitter for any waveform shape,
thus maximizing the mean-square deviation and FM link SNR.

The purpose for this activity was twofold:

(1) To demonstrate the simplicity of implementation using readily
available integrated circuits

(2) To show that the loop will be stable and perform to expecta-
tions for all input waveforms.

2.0 FUNCTIONAL DESIGN

Figure 1 is a functional diagram for the peak regulator loor.

The inp t, Vi’ is first passed through a two-pole LPF having a 3 dB fre-
quency of 4.5 MHz. This LPF is reclly not a part of the lcop proper but
is necessary to simulate the output bandwidth characteristics of the PI
receiver. following the LPF is a gain-controllable amplifier (GCA) whose
gain, K, is voltage controllable by a reference voltage, VR’ The nominal
open-loop gain of this amplifier is +16 dB and is variable by the refer-
ence from about +36 dB to -34 dB. Prior to the GCA is a 21 dB attenuator
ard following the GCA is a +20 dB fixed gain amplifier, so that the over-
all nominal 1nput/output gain is +15 dB (a voltage gain of 5.6). Since
the regulated output voltage is specified to be +2V p-p, the nominal
input voltage is 357 mV p-p.

Qutput of the regulator, Vo’ is input to an absolute value cir-
cuit which is mechanized in the form of a half-wave linear rectifier.
(Note: The earlier functional design showed a full-wave linear rectifier
but, because of waveform symmetry, the half-wave circuit was judged to be
sufficient and simpler to implement.) A gated reset peak detector following
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the rectifier functions to store or hold the largest voltage peak observed
over a 0.99 ms time period. At the end of each 1 ms sample period, the
peak value is transferred to a sample-and-hold amplifier where it is
retained while the peak detector memory (capacitor) is reset and the next
peak detection operation takes place.

Designating the sample-and-hold output by the symbol V, the loop
instantaneous error, e, is formed by subtracting a 1V reference from V.
Thus, ¢ = V-1. An LPF follows (time constant = 1 sec) which averages
over a large number of the peak detzcted error values that may change
each 1 ms. The LPF output is denoted by €. Following the LPF is a 36 dB
gain amplifier which produces at its output 618 subject to a maximum con-
straint of 0.8V, This constraint is imposed to keep the reference volt-
age to the gain-controllable amplifier within a linear operating range,
precluding the possibility of an unstable loop condition. The amplifier
voltage reference, VR’ is formed by offsetting the error 6le by -3.6V.

The original specification of the loop requlation performance
was to be +1% on the output for a +20 dB input variation. Thus, the
equation of regulation would be

100(V0p-1)

Vop = 5.6 vip x 10

where Vop and Vip are, respectively, the regulator waveform peak output
and input voltages. As will be seen from the actual circuit performance
discussed in the following section, this capability was achieved over
only a 16.5 dB range.

The peak error sampiing rate was chosen as 1 kHz, and the peak
detector averaging time per sample is 0.99 ms. Thus, for any of the var-
ious waveform shapes considered, where the lowest subcarrier (sinusoid)
Trequency is expected to be about 30 kHz and random noise occupies the
full 4.5 MHz bandwidth, each peak sample should be very close to the true
peak value of the waveform. Averaging over a thousand or so error samplies
s1s0 provides the loop with a reasonably rapid response to dynamic input
level changes, but is sufficiently long to obviate response to very short
signal transients or the possibility of an occasional impulse noise burst

due to EMI or other sources.
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3.0 REGULATOR CIRCUIT DESIGN AND PERFORMANCE

Figure 2 is a circuit diagram for the Axiomatix peak regulator
breadboard, and Figure 3 shows the companion timing logic circuits. As
most of the reguiator design is based upon operational amplifier configu-
rations, a correspondence between the circuit diagram and the functional
diagram of Figure 1 may be easily established. The amplifiers having the
AD prefix are Analog Device types, and AD583 is the sample/hold amplifier,
Block AHO152 is a FET switch used to discharge the peak detector capacitor
(100 pf). Clamp for the error voltage amplifier output is provided by
the pair of reversed IN457 duo-diode groups. Timing waveforms are pro-
duced by monostable multivibrators.

The RCA CA3002 was originally selected because of its large gain
control capability--up to 70 dB for a 1.5V control voltage differential
range. When the amplifier was tested to ascertain all of its operating
characterisitics, it was discovered that the maximum input voltage had to
be limited to 150 mv p-p. Above this value, virtually independent of the
gain control bias, the amplifier output exhibited a voltage saturation
(compression) condition. The result was that the amplifier could not be
driven to the levels intended in the original design. This, therefore,
necessit ited an adjustment of the intended operating point and resulted
in a regulating range of 10 dB below the nominal input and 6.5 dB above
the nominal input (rather than 220 dB). It was decided, however, that
this would not compromise the prime reason for the breadboard evaluation
of demonstrating excellent peak-to-peak regulation as a tunction of a
variety of complex waveforms plus 4.5 MHz lowpass noise.

The initial regulator breadboard was constructed with a full-wave
linear rectifier (see Figure 34 of the Final Report for 1978 Contract
NAS 9-15240D for the circuit). This circuit performed very well as a
functicn of input frequencies un to 2.5 MHz. Above 2.5 MHz, however,
unsymmetrical phase shifts ippeared between the waveforms produced by
the individual half-wa.. rectifier outputs. Further, the overall fre-
quency response was limited to about 3 MHz due to the inability of the
AD507 amplifiers to preserve the harmonic structure of the full-wave
waveform above this frequerncy. Rather than redesign the full-wave rec-
tifier using different (wider bandwidth) amplifiers, it was decided to
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use a linear half-wave circuit instead, as all the contemplated input
waveforms are amplitude symmetrical. This change eliminated two AD507
amplifiers, with the result that the half-wave rectifier responsa was
found to be adequate up to 4.2 MHz utilizing IN914 diodes.

A1l the rewaining circuits performed essentially as expected.
A 470 Q resistor had to be installed between the FD300 diode and 100 pf
capacitor in the peak detector circuit in order to suppress an undesirable
switch-off transient from the AHO152 FET discharge switch.

4.0 DEMONSTRATION AND TEST RESULTS

A measurement of the loop regulation capability was made in the
following manner. Figure 4 shows the configuration used to obtain the
necessary data. The approach taken was necessitated because of limited
equipment but proved to work reasonably well.

The regulation error was measured in a differential fashion. As
shown in Figure 4, an oscilloscope was employed to measure the AV0 as a
function of Vi' The measurement was calibrated for Vi = 178 mV-p and
V0 = 1 V-p at a frequency of 500 kHz. (A 500 kHz frequency was selected
for this measurement so as to minimize any possible phase shift through
the regulating circuits. Some perceptible phase shift at f = 2 MHz had
been observed through the CA3002 amplifier as a function of its gain.)
The scope, operating in its differential input mode (Y] - Yz), was cali-
brated on the Y2 input, while the Y] variable attenuator was adjusted to
produce an amplitude null cn the scope screen. Voltage, V, was held con-
stant while \'i was changed using the operational adjustable attenuator
and measured using a high-frequency RMS-to-DC converter in conjunction
with a DVM. The result is that regulation error, AVO, as a function of
Vi’ could be read directly on the scope. The only problem encountered
was that the wideband noise generated in the regulation loop amplifier
circuits made it difficult to measure error voltages below 5 mV.

Table 1 summarizes the regulation measurements. As can be seen,
the regulation range of -10 dB to +6.5 dB about the nominal (calibration)
point was achieved.

The throughput frequency response of the regulator was measured
exclusive of the LPF, and the 3 dB frequency was found to be about 5.2 Miz,
the main contributor to the roll-off being attributed to the +20 dB output
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25
50
75
100
178
300
400
500
600
700
800
900
1000

A1l voitages are in mV-peak

Table 1.

860
970
992
996
1000
1002
1006
1009
1011
1018
1028
1050
1100

Measured Regulator Performance

% Error

4.0
3.0
0.8
0.4
0.0
0.2
0.6
0.9
1.1
1.8
2.8
5.0
10.0

Exceeds Regulator Specification

Calibration

Exceeds Regulator Specification

CA3002 Amplifier in Compression
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amplifier. With the input LPF connected, the throughput 3 dB frequency
was 3.9 MHz.

The remainder of the measurements made on the regulator were
rather qualitative and consisted of mixtures of signal waveforms and
noise. A 1.024 MHz sinewave (representative of a subcarrier), a 200 kHz
square wave (representa:ive of NRZ data), and random noise were combined
at varying levels and the regulator input and output observed on the
scope. The performance was judged to be as expected. It was estimated
that the regulator was able to hold regulation on the 4.5 MHz noise peaks
at about 2.75¢.

The regulator was never observed to exhibit instivility, and was
able to accommodate input on/off step transients.

5.0 CONCLUSIONS

Except for the somewhat 1imited regulator dynamic range of 16.5 dB,
all other aspects of the peak regulator design and breadboard evaluation
met the objectives set for the effort. If, in the future, it is desired
to increase the dynamic range to the original design goal of 40 dB, this
may be done by replacing the CA3002 amplifier by a FET or diode current
controiled attenuator configuration.
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THE BA>IC PROBLEM ) E AXiomeix

@ DSN TRANSPONDERS WILL BE SWEEP ACQUIRED BY THE PI UNDER CONDITIONS OF MODERATELY
STRONG SIGNAL LEVEL

® AT MODERATELY STRONG SIGNAL LEVELS, THE DSN TRANSPONDER PLL IS CHARACTERIZED BY A
TRACKING BANDWITH (ZBL) BETWEEN 150-225 Hz AND A DAMPING FACTOR (£) AS LARGE AS THREE

@ THE SWEPT PLL MAXIMUM SWEEP RATE LIMIT FOUND IN THE LITERATURE (VITERBI, ET AL) IS
FOR A DAMPING FACTOR OF \E/Z = 0,707, THIS RESULT IS THEREFORE NOT APPLICABLE TO
THE DSN TRANSPONDER

ey



PROM: 11 SOLUTION E AXiomaﬁx

OBTAIN THE ABSOLUTE MAXIMUM SWEEP RATE FOR THE DSN TRANSPONDER PLL TRANSFER FUNCTION

THE PROCEDURE FOR A SPECIFIC TRANSFER FUNCTION IS TO FIND THE VALUE OF SWEEP FREQUENCY

fs = A°/27r THAT RESULTS IN A SADDLE-POINT B AND éA = $C' (B = PLL NATURAL FREQUENCY,

RAD/SEC)




NSN TRANSPONDER CHARACTERISTICS

PLL TWO-SIDED THRESHOLD BW (ZBLO)

PLL THRESHOLD DAMPING FACTOR ({.)

MAXTMUM SUPPRESSION FACTOR @%o)

PLL STRONG SIGNAL BW (ZBL(max))

PLL STRONG SIGNAL DAMPING FACTOR (Cmax)

STRONG SIGNAL SUPPRESSION FACTOR

== Axiomatix

NOMINAL TOLERANCE MINIMUM
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0.0547 -
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1.0 1.0
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MINIMUM DSN PAYLOAD AND ORBITER LINK CONDITIONS
FOR 10 NMI RANGE

= Axiomatix

PI_TRANSMITTER POWER

37 dBm 27 dBm
PAYLOAD RECEIVED SIGNAL LEVEL -92 dBm ~102 dBm
DSN TRANSPONDER NEGATIVE TOLERANCE ALLOWANCE -4 d8 -4 dB
LIMITER SUPPRESSION FACTOR 1.0 1.0

@ FOR VERY NEAR-RANGE, THE LIMITER SUPPRESSION FACTOR IS 1.0 FOR ALL
TRANSMITTER POWER LEVELS

4 dBm
~125 dBm
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PI TRANSMITTER MAXIMUM NOMINAL SWEEP RATES

-

] S== Axiomatix

@ 20% BACKOFF FROM ABSOLUTE MAXIMUM PHASE PLANE LIMIT IS ASSUMED

@ +30% SWEEP RATE TOLERANCE ON PI ASSUMED

NOTE:

Pl TRANSMITTER POWER
37 dBm 27 dBm 4 dBm

wLO = 18 Hz 470 Hz/s 470 Hz/s 365 Hz/s

(NOMINAL)

W = 13 Hz 250 Hz/s 250 Hz/s 190 Hz/s

(TOLERANCE MINIMUM) o ,
SWEEP RATE

THIS PAGE HAS BEEN CORRECTED AND REVISED FROM THE ORIGINAL OF 6/26/79.
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1.0 INTRODUCTION

The classic paper by Viterbi [1] investigates the swept acquisition
capability of a phase lock loop (PLL) using the phase plane approach.

Therein is was shown that, in the absence of noise, a second-order loop with
damping factor ¢ = 0.707 could always* h2 brought to a locked condition as
long as the sweep rate A (rad/sec) was less than half the square of the loop
natural frequency g. For values of g /"<‘“0< 32, the loop could not be
guranteed to lTock. This is equivalent tc saying that some of the phase plane
trajectories corresponding to initial conditions in certain regions of the
plane would not approach the equilibrium (lock) point in the steady state but,
rather, go on to a stable limit cycle. If the initial conditions were such
as to bring the loop into lock, however, it would continue to track. For
A0>v52, the Toop would not lock at all. Moreover, if it ever reached the
Tock point, it would not continue to track.

Extension of these results to other values of loop damping was con-
sidered by Dye [2] and Tauseworthe [3]. In particular, Dye showed that, for
z= 0.5, lock-on is guaranteed for Ay < 0.387 52, marginal for 0.387 32 <
Ao<:82, and not possible for Ay> 32. Tauseworthe verified these results and
generalized them by investigating the maximum guaranteed lock-on capability
for a range of damping factors between 0.25 and 1.6.

The purpose of this report is twofolid. First, we wish to extend
Tauseworthe's results to larger damping factors. Second, we shall consider
the situation where the PLL is preceded by a narrowband bandpass limiter (BPL)
which is typical of the deep-space network (DSN) transponder receiver. Actu-
ally, these two generalizations will not be performed independently. Rather,
the increase in damping factor will come about because of the increase in
SNR in the BPL input bandwidth, thus raising the limiter suppression a from
its threshold value g toward its strong signal value. The damping factor
(relative to its threshold value Zgs essumed here to be 0.707) is directly
proportional to the square root of the ratio of a to ag-

The approach taken in this report will once again make use of the
phase plane. A simple method for obtaining phase plane trajectories on a
digital computer was discussed by the author in [4]. The approach used
there will prove useful in obtaining the desired results described above.

*The word "always" as used herein implies an initial frequency offset
between the input and loop's YCO reference of any magnitude and a sign in the
direction of the sweep.




2.0 THE L.OOP EQUATION
A second-order PLL with perfect integrating loop filter

1+ T8
) = — (1)

is governed by the differential equation of operation [3]

N

Ay = dt +32(sin¢+rzg%cos¢) (2)

Q.

where ¢ is the loop phase error. The loop damping ¢ can be related to 8

BT

Thus, defining the normalized time variable t = 2zgt, (2) can be rewritten
in the form

2 A
d% , do 1 oo (M ,
-—% + 22 cos ¢ + sin ¢ = (3)
dl 0T a2 1 (32)

Further, letting v = d¢/dt, and equivalently, d2¢/dt2 = vdv/d$, (3) can be
put in a form desirable for using the phase plane approach of [4], namely,

A

dv 1 0 .

Jatcose=—|5-sing (4)
¢ az"v [B ]

3.0 THE PHASE PLANE TRAJECTORY APPROACH

In [4], it was shown that the parameter arc length defined by

2

ds? = dv?

+ d4? (5)

was a desirable independent parameter for constructing a plot of ¢ versus
v (a phase plane) on a digital computer. Thus, our goal (as in [4]) is to



find a pair of coupled first-order differential equations for ¢ and v,
i.e.,

%% = f] (¢ »V)
dv = f (
das 2 ¢,v) (6)

and solve these iteratively. To see how this is done, we first observe

from (5) that

1+(g%)
fobe . 8 o
(&)

Substituting (4) into (7) and (8) gives the desired set of differential
equations in the form of (6), namely,

4 - :
S

A 2
‘/vz + [_%(—g - sin ¢ - 4;2v cos ¢)]
4" \s

i sin ¢ - 4;2\» cos ¢]

L8 L

ds X
J\:z +[;‘—]7(ﬁg— - sin ¢ - 4;2\: cos ¢)

L \B

(9)

N




4.0 DETERMINATION OF THE SADDLE POINT PHASE PLANE TRAJECTORY

The phase planes originally determined by Viterbi [1] contained
a trajectory (herein refarred to as the saddle point trajectory) which
passed through the saddle point ¢ = 0, ¢ = 7 - sin" (Aolsz). The sig-
nificance of this trajectory depends on the value of loop damping relative
to the normalized sweep rate Aolsz. For example, Figure 1 illustrates a
phase plane plot for ¢ = 0.707 and 0 < Ao < B /2 The saddle point is
denoted by point B and the saddle point trajectory corresponds to the
trajectory passing through points A, B and C. In particular, we note
that the value of ¢ at point A (¢ = -n) herein denoted by 6A is greater
than the value of ¢ at point C (¢ =n) herein denoted by &c. Thus, any
phase plane trajectory with ¢(0) < 0 ($(0) denotes the initial condition
on ¢(t)) will stay below this saddle point traJectory and eventually
reach the equilibrium point D (¢D = sin -1 (AO/B ), ¢D 0). This is con-
sistent with our previous statement that the loop will "always" reach lock
when A0< 32/2.

If £ = 0.707 and 32/2 < hy< 32, the saddle point trajectory will
be such that either &c > &A or point A disappears entirely. In the lat-
ter case (see Figure 2), for example, we observe that there exists a cor-
ridor in the phase plane bounded by the trajectories £ - E' and F - F'
or G- G' and F - F', for which any trajectory originating in this band
will be whipped past the equilibrium point and on to a stable limit cycle.
Thus, despite the fact that A, > 0 and $(0) < 0, the loop will not come to
lock if $(0) is of such a maanitude as to fall into this critical corridor.

From these examples, it is easy to conclude that the critical
value of Ays namely, 82/2, for which all trajectories with ¢(0) < 0 reach
the equilibrium point, corresponds to a saddle point trajectory for which
&A = &c (see Figure 3). This, then, is our task, namely, ;or each value
of loop damping ¢, we search for the largest value of AO/B which gives a
saddle point trajectory with &A = &C. This value of Aq, namely, Ag . .
is then the maximum sweep rate (in rad/sec) for which the loop is guaran-
teed to acquire.

Using the pair orf coupled differential equations of (9), we start
at (in the neighborhood of) point B (whose coordinates are known, namely,

=0, ¢ =7 - sin'] (AO/BZ)] and numerically integrate forward (ds
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positive) to point C (¢ = v) and backward (ds negative) to point A (9= -n).
The value of AO/s2 at which Va T Ve is then the desired result.

5.0 DETERMINATION OF THE MAXIMUM SWEEP RATE IN TERMS OF

THE DESIAN POINT LOOP PARAMETERS

Letting % and Bgs respectively, denote the design point (thresh-
old) values of loop damping and natural frequency, then, for any operating
point SNR in the BPL input bandwidth, the corresponding values are given

by
8=B‘,l;c=r,‘/—-° (10,
0 GO 0 00

In (10), % is the threshold limiter suppression factor and o is the cor-
responding suppression factor at the operating SNR. Substituting (10)
into (9) enables one to determine the criticai saddle peint trajectory as
a function of a for fixed values of ags 8 and Lo In pgrticular, fo;
ag = 0.0547 and 30 = 0.707, Figure 4 is a plot of fmax/B = AgmaX/Zns
versus « for values of 8y corresponding to two-sided threshold 1oop band-
widths W . of 13 and 18 Hz. The relationship between By and NLO is given
by

Lo

4;0

B, = W (M)
o ()

Table 1 tabulates some of these values along with the corresponding values
of 8 and ¢ as computed from (10) -
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Table 1. PLL Parameters as a Function of Limiter Suppression
Ao
a B [ 4 W f
L j;{ Smax
0.1000 16.5719 0.9559 20.1773 0.6140 26.837
0.2000 23.4363 1.3519 36.0213 0.7320 63.9894
0.3000 28.7034 1.6557 51.8653 0.7890 103.4583
0.4000 33.1439 1.9119 67.7093 0.8260 144.4132
0.5000 37.0560 2.1375 83.5533 0.8510 185.9801
0.6000 40.5928 2.3415 99,3973 0.8690 227.8967
0.7000 43.8452 2.5292 115.2413 0.8840 270.4689
0.8000 46.8725 2.7038 131.0853 0.8890 310.8556
0.9000 49.7158 2.8678 146.9293 0.9040 355.6132
1.0000 52.4051 3.0229 162.7733 0.9120 398.6225
5 = 0.707 NLO = 13.0000 By = 12.2565 ag = 0.0547
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APPENDIX VI

THE THEORY OF MEAN-SQUARE PHASE NOISE PERFORMANCE
OF ONE/TWO-WAY COHERENT COMMUNICATION LINKS

1.0 INTRODUCTION

In assessing the performance of one/two way coherent communication
links, one must consider the many sources of random fluctuations present
in the overall system and their individual degrading effects. While it
is most common to consider only those degradations due to the additive
thermal noise on the link(s), a complete characterization of system per-
formance should also include the effects of such phase noise sources as
transmitter and receiver local and reference oscillators, mixer (multi-
plier) logic noise, AM-to-PM conversion due to link nonlinearities, and
possible vibration effects. A1l of these phase noise components degrade
carrier tracking loop performance and those whkich are not tracked by the
loop(s) have an additional harmful effect on overall system error prob-
ability performance.

Regardless of the analysis technique employed, the fiirst step
in assessing tracking loop and bit error performance drgradations due to
phase noise effects is to introduce appropriate » *“hematical models for
the carrier (discrete or suppressed) tracking 12+ ) which include the
various sources of phase noise referred to above. These models ordinar-
ily take the form of equivalent linear loop block diagrams with phase
noise sources described by power spectral densities characterized by
inverse power law behavior as a function of frequency away from some
nominat value. A complete discussion of the various phase and frequency
instabilities present in precision frequency sources, along with their
characterization, is given in [1]. For our purposes, it is convenient
{as was done in [2]) to represent the equivalent two-sided lowpass power
spectral density Sw(m) of the various phase noise instabilities by the
(inverse) power series*

*
We shall ignore any discrete frequency components in the
spectrum such as those caused by spurs or vibration effects.
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The lmlo terms corresponds to white phase noise, |m|-] corresponds to
flicker phase noise, |m|'2 corresponds to white frequency noise, while
Iml'3 corresponds to flicker frequency noise.

In the past, the calculation of mean-square phase errvor in the
presence of phase noise has been based on an equivalent linear loop model
for a one-way link, with specific closed-form results obtained only for
the case of 0.707 loop damping (Eq. (11) of [2]). While the abstract and
introduction of [2] imply that these theoretical results can be applied
to assess the tracking loop and bit error probability performances of
various Shuttle S-band links (e.g., payload/Shuttle and TDRSS/Shuttle),
in reality, this is not true since these links are indeed two-way coher-
ent communication systems. In fact, the theory developed in the first
part of [2] is never used in assessing the performance of these links;
rather, estimates of the actual power spectral densities of the many
phase noise sources combined with piecewise linear approximations of the
various loop transfer functions allow for numerical integration computa-
tion of mean-square phase error.

In this report, we begin by generalizing the specific one-way
results given in [2] to the case of arbitrary loop damping. Following
this, we present a theory for computing mean-square phase error due to
phase noise sources in two-way coherent communication links. Here again,
the two loops are allowed to have arbitrary damping factcrs and natural
frequencies. Several different two-way transfer functions characteristic
ot payload/Shuttle links (e.g., Inertial Upper Stage (’US)/Payload Inter-
rogator (PI)}, are considered and, in each case, expressions for the
mean- s~-are phase error compone.ts cnrresponding to each term in the
power spectral density o1 (1) are derived. These resul*s, . 2n combined
with ~imilar 1osults available ror mean-square phase crror due to addi-
tive thermal noise [3], then allow for assessment of total mean-sauare
phase errcs performince and the coir2sponding degradation in bit erro-
nrobal iTity performance.



2.0 SYSTEM MODEL

Consider the simple model of a two-way coherent communication
system illustrated in Figure 1. As such, the reference system might rep-
resent the PI aboard the Shuttle while the vehicle transponder might rep-
resent the IUS/SGLS transponder.* When the switch is in position 1, the
system ot Figure 1 operates in a two-way coherent mode, i.e., the uplink
signal to the vehicle is coherently demodulated and a frequency-translated
version of it is retransmitted on the downlink, which is then tracked by
the reference tracking loop. When the switch is in position 2, a free-
running auxiliary oscillator aboard the vehicle provides the downlink
carrier and, as such, the system operates as two independent one-way
Tinks.

An equivalent linear baseband model of the system, including
various phase noise sources, is illustrated in Figure 2. Using simple
control system theory, the block diagram of Figure 2 can be further sim-
plified to Figure 3. From Figure 3, we immediately observe that the
phase error bo in the reference system is given in terms of the various
phase noise sources by **

oo = GgH (s) [1 - Ha(s)] Gy(s) Gy(s) wyy(s)
+ Ge [1 - H ()]0 - Hp(s)] Gy(s) Gy(s) w,(s)
- [1 - Ha(s)] 64(s) Gy(s) wpy(s)
- 1 - Ha(s)] 6,(s) wp(s)
= 01 - Ha(s)] v, (s) (2)

Assuming for simplicity that the IF amplifiers in the reference system
are identical ideal "brickwall" bandpass filters, with G](s) and Gz(s)
their equivalent lowpass transfer functions, i.e.,

*

In reality, the TCX0-linear phase modulator combination is
only a part of a more general-purpose frequency synthesizer aboard the
Shuttle PI which contains other internal loops and phase noise sources.
For the purpose of Sections 2.0 through 5.0, we consider orly the direct
fuedthrough paths of the TCX0O to the transmit and receive output termin-
als of the synthesizer. Laier on, we generalize the model to include the
other internal frequency synthesizer oscillator sources and other TCX0
paths.

**
We assume here that the switch i the vehicle system is in

position 1.
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s;1||D = Gyls) = {‘!Ii ol <o (3)

s elsewhere

then, using the notation

¥(s) = G(s) w(s) , (4.

[

Equation { simplifies* to

¢o(s) = GR (s) [1 - Ho(s)] ¥y .(s)
+ G [1 - Hy ()01 - Hols)] b, (s)
S T1 - H(8)]hgy(s) + Bpls) + v ()] (5)

The corresponding mean-square phase noise is obtained from

Jeo
5,0 = g ) %e(s) egles) és (6)

where the overbar denotes statistical expectation. Letting
5,(s) & v(s) v(-s) (7)

dencte the puwer spectral density (in Laplace transform notation) of the
phase noise process y, then (6) is evaluated as

o2 - -2.];5[- H(s)H(s)[-HR(s)][ R(->)Js (s) ds
T, j G2 [1- H, ()] [1- #,(-5)] - el | -ty sﬂ

ESNIUCI R TIENCRABE ‘S’] *

We further assume that 1& H ﬁ%) = 1-H (s), where
AR
Ho(s) W s i.e., Gy(s) i8 yiuspand wilh respect te Fa(s).



or letting s = ju,

o = 25 J_ o ntiall? [-wplie)l? 55 (o) do

+ é%-]i: szll-Hv(jw)lz |1-HR(30)|2 ng(u) duws

1 ° . 2
+5- f.“ I'I-HR(JN)I [S;,;Rx(w) + San(m) + S"r(m)] do (9)

From (9), we observe that three different types of integrals
occur; the first two involve two-way communication (i.e., two locps in
cascade) and the third, one-way communication (i.e., a single loop).

In the following section, we derive closed-form results for these terms
when S¢(m) is given by (1) and the loop transfer functions correspond to
second-order loops with arbitrary loop dampings and natural frequencies.

3.0 CALCULATION OF MEAN-SQUARE PHASE NOISE
FOR ONE-WAY COHERENT COMMUNICATION LINKS

A second-order carrier-tracking loop has the in-band transfer
function [4]

1+ fz s
H(s) = 7 (10)
1+ ﬁE s + l.(ff) 52
Wa r ®n

where r = 4z is the loop damping factor (z is the loop damping) and W
is the 1oop natural frequency in rad/s. The corresponding out-of-band

transfer function is clearly

1 (_fr_)zsz
r \w
1 - H(s) = n (11)

2
L L [EY
n “n

Finally, the magnitude-squared versions of (10) and (11) are respectively

=1

1T+

given by

. ™
- <
— e

v



2 (mn2+ m2)

“n
RREC P
4

G2 =

- HGe)? 0 (12)
m4+ mZEsnz(r-Z)] + mn4
Now consider the evaluation of
ot Yy = [ 1 - uGe)? 5;(0) do (13)
where |1 - H(jm)|2 is given by (12), S*(m) by (1), and
S (w) ; Im‘ < w
5;00) = s, H (14)
l 0 ; elsewherc
Substituting (1) combined with (14) into (13) yields
3
2 A 2
% N-way EE % |1-way (15)
k=0
where
h
2 1 (%" Tk : y12
0 = -~ + {1 - H(jw)|® dw
k 1-way v j; ;k
h W 4-k
N : do (16)

0 wd'+ “2[§n2(r‘2i] + uﬂ‘

For simplicity of the resulting expressions and with little
loss in accuracy, we shall, wherever possible, allow the upper limit of
the integral in (16) to be infinity rather than Wy Clearly, this is
possible (i.e., the integral converges) for k = 2,3 and is justified by



10

the already assumed fact that wy >> 6. We begin by evaluating (16) for
these two values of k before going on to the more complicated cases cor-
responding to k = 0,1.

Integrals of the form required in (16) can be found in both
their definite and indefinite forms in a standard table of integrals [5].
With regard to [5], we shall herein adopt the notation [5, p.xxx, Eq.(yy)]

to identify equation (yy) on page xxx of this reference.

a._  (k=3)

From [5, p. 67, Eq. (2.161-2)],

2
1 X+\, .2
iﬁ‘“‘(;}:;) Pr0

29"sina q° sina
where
qQ = bl/a s cosa = -2 (]8)
2/b
Letting
A
a = ”nz(r'z) N ”an » b o= mn4 (19)
we have
w mz
h = “’nz'Rz"‘ ; f o= 3 |R- Rz-“]; g = —'ZLEH./Rz-a]
2

Q = w, ; COSa = - %- , sine = (20)



n

and

1 o m+-2—E2v/R—2—_]

>2
zmnz‘/ R2-4  \ & Eu /R2-4]
f > 2“‘ ; dw = (21)
s
w e (r-Z)]m
———— tan ; R<2

Evaluating (21) between zero and infinity gives the definite integral

1 &2
mfRBR=AY e,

2mn2/R2-4 R-vR2-4

= (22)

N B %-tan']<—R—) ; R<2
u 2 /a-R? /a-g2

_/;) w +m2[ 2(r 2)]+w

Finally, letting W, = = in (16), as previously agreed upon, we immediately
have from (22)

l (__l__ g [RR=AY . s
", Zmnz/R2-4 R -/R%-4
. 3 (23
3 'l-way v S )
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b. (k=2
From {5, p. 67, Eq. (2.161-3)],

f-—[——z-—dx % —2—— ; he > 0 (24)

X +ax“+b

where f, g, and h are defined as in (18). Since b = mn4 > 0 in our case,
then h < a, and both f and g are positive. Hence

X2 = 1 _).‘_l- 2>
fmdx '/6 tan~ ( ) /F tan” (ﬁx. h® >0 (25)

Since (24) results merely from factorization of the denominator of the
integrand and a partial-fraction expansion, we can apply a similar fac-
torization for h2 < 0. To obtain a closed-form solution analogous to
(25), we proceed as follows:

For h2 < 0, let he = -h'z, or

h = jh* = j/ab-al (26)

and

poeoadhl g o oayn (27)

Expressing f and g in polar form,

f = |fled® ; g = |gle® (28)
where
If] = g} = %Ja-m'z = %/aiﬂbaz

S B ] (29)
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then

x4+ax2+b = (x2+g) (xz-l-f)

(x + J/mejelz) (x - j/mejelz)‘x - j/FgTe-je/z) (x +j,/me-.16/2)
—— e R
(XZ-ZXJW sin -g-+ /]ET)(xz-t- 2x/Tq[ sin -g—+ ./ET)

(xz- qu2 sin -g-*- qz)(x2+ qu2 sin g—+ qz) (30)

Forming a partial-fraction expansion, namely,

2 C]x sz
o7 2 s 2% Y (31)
X +ax +b X"-2xq sin§+q x“+2xq sin—2—+q

and solving for C] and C2 yields

C, = €, = —— (32)

Thus,

2 (
l X X
—5— dx = dx - dx
ﬁ4+ax +b 4q smg— Isz -2xq sin ?—+ 4 j;2+2xq sin %+ q°

2

h® <0 (33)

The two integrals in (33) can be evaluated using [5, p. 68, Eq. (2.175-1)],
namely,

xdx 1 2 B -1 /B +2x
—_- = Zn(x +sx+y) - — tan (——) sy A>0 (34)
_ﬂh x+y L /5 /i
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where

2

2
s @ by - g% = 4q2 -(th sin %)

= 4q° cos? 80 (35)

Finally, combining (33) and (34) gives the desired result

‘ ] x2+2xq sin%«rq2
X +ax +b 4q sin 1 )?—qu S‘in%-tqz
. 0 . O
_yf*X-asin _fXtq sin l
+tan-g—tan]———ez*tan]——-—e—z H
qcos qcos» ‘
2
h® <0 (36)
or, since from (29)
sind = cos2; cos = sind; sine = sina (37)
2 2° 3 2
then
2
x2 1 ‘ x +2xqc052+q
x +ax +b 4qsina I x - 2xq cos §+q
[+ ) o
_yfx-acos _yfxtqcosz '
+2cos%:[tan]-—-—Tf+tan]————ag-
g sin 3 q sin 3 ‘
he <o (38)

Applying (25) and (38) to the specific evaluations of a and b
in (19) and f, g, h, and q of (20),



15

.}r o dw = L
m‘*sz) nz(r-Z)]*l'mn4 mn¢R2-4
x{.[R;tem'1 = -/R_'tan'] —u _\\.

m"v/R-I o R”
R>2 (39a)
and
f mz dw = ]
ot + 0l E,nz(r-Z)}mn“ fu, h-r?
1 +(i}) /fiﬁﬁ-(ﬁL
x {- V24R Lq n n >
) ()
wn (l)n
z(wi - /TR
+ 2/2R [tan”!| 21
v2-R
2(£L + /2%
+ tan'] n s R<c2
v2-R
(39b)
where
RY 8 Ez +/R2-4:l
and
R™ 2 %E{-sz-a] (40)

The corresponding definite integrals with 1imits of zero and infinity are
identical and are simply given by
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f = ds = —I— ; allR (41)
0 m4+m2|znn2(r-2)]+mn4 2/R¥2 “n

Finally, substituting (41) into (16) gives the desired result

h
2 . 2 ; allR (42)

The indefinite integral

3
T
x +ax” +b

is not tabulated in [5] but can be obtained as follows. First note that

3
‘]‘%——i—,g,g—dx = 2n(x4+ax2+b') . (43)
X" +ax"+b

Then, since the desired integral can be expressed in the form

3 3
X ] 4%~ + 2ax a X
—_t—dx = = —_—t ot dX -~ & — dx (44)
j:4+ax2+b 4_[;4+ax2+b 2'/:(4+ax2+b

and since the latter integral is given by (17), we immediately obtain

2
1 x_ +fy, 2
iﬁ‘“(—f—)' >0

x‘+g

+ax“+b 2 2
1 ~1[x"-q"cosa 2
—s— tan ——-2-9-———;h < 0
Zqzsina q sina

(45)
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Applying (45) to the case of interest gives

3

| R L NCARC)

£n ; R>»2
a/R%-4 z(i) + R
2
2(2L) + R
R 1 _"n .
tan —~———L R <2 (46)
2/4-R /4 - R?

where, as before, R* and R~ are defined in (40). Finally, integrating
(46) between 0 and Wy [note the upper 1imit cannot be infinity since
the first term of (46) would become unbounded] and introducing the
notation

¢ (47)

Yy

=§[=§

we obtain the desired result from (16), namely,

h
2 M 2 4
% vy O ‘“(”YH R+YH)
( B 2Y2+R- -
R fn H2 *-zn(R—_;;R>2
/02 2yy *R R
{ R" -4 H

2
2y, +R -
_eR_ tan'] H - tan ](—-R—— i1 R<2 (48)

\a-rZ | /4-R%
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d. (k=0
Noting that

4
X ax_— &
T-_z-— = 1 - (49)
x +ax" +b x4+ax +b
then
4 2
X ax"+b
—2 _  _dx = X - - 7 (50)
j:c4+ax2+b fx4+ax +b

The second integral in (50) can be obtained from a generalization of
(25) and (38). In particular, multiplying (25) by A and using [5, p. 67,
Eq. (2.161-1)], we get

+ax +b v/§ /§

2
f———4Ax +ZB— dx = .:]. [ALS_’_Bl tan”! (L)+ (B-A) tan'](—&)jl; <o (51)
X /F 4

Similarl,, following the procedure which produced (38), we get

Ax2+B B
7, 2. > T
x +ax +b 49~ sina

2 a 2
‘ 2 X~ + 2xqcosx + q
X ( ‘&BL)(S*“ %) tnl = —
1 X - 2xqcos§-+ q

2 X - gcosS>

+ 2(1+29C )(cos )| tan™! -2

B 2 sin 3
L \?%"2

]x+qum% l

+ tan~
q sin % ‘

. he >0 (52)
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Letting A = a and B = b and substituting (51) or (52) into (50) gives
the desired result.

Since, to evaluate °02!1 -way’ we need the definite integral
version of (5) with 1imits 0 and wys letting a and b be as defined

in (19), we get, after some simplification

w, 2
I 2)]* “n . Un |RRT-1 - ( YH) - tan-](lﬂ-) .
w +N2[_ Z(Y'-z)]"' w YyR™-4 /;{T '/R: '/R—: /R‘; ’
R>2 (53a)

and

wyy 2]‘2 _2]+ 4
" L?" (r-2) w, ag V1n

2
_ ‘ V2R vy o(q4p)
— do = 2R g -]+
N wnz(r_z)] ‘o l TR \1- v, 2R+ v, /IR

-1

ZYH - /2—+R tan_-‘ ?lH - V?"R

x |tan —_—
v2+R V2+R
R <2 (53b)

Finally combining (50) and (52) with (16) and recognizing the further

simplifications
+ 3/2
and R
e _3/2
L= . w) (54)
R

gives the desired result
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iy " B o]
Y = RyY (55)
0 1-way Y4 H
where
Y Y
1 [(r*)3/2 tan']( H) (R- )3/2 tan” (;Ji) ;s R>2
/RE-4 /R /R
2
o(Rovs) - %_‘___& 1+ 7 /2R + v,
*'H
1/_ 1- vy 2R, 12
2y, - Y2-R 2y, + V2-R l
+ 2(1+R) tan'] (——lL———————)-f 1:an'1 (——li———————) 3 R<2
/2R /R "y }

(56)

When the loop has ¢ = 0.707 damping (i.e., r = 2 or R = r-2 = 0), then
(23), (42), (48) and (55) simplify immensely. In particular,

2 h

c = 3

3 %1-way 4mn2
o =h2

2 l]-way 2/?bn

h
2 1( 4

g = —fn {1 + ¥y )

1 l]_way 4n H

2
] hO“’n‘ ) 2(]+YH'/2-+YH
0 n
'1-way l

-2t YHZ

- E%% {%an'] (YH/?'-I) + tan”! (va?*+1i]§

(57)
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The first three relations in (57) agree with similar results*
obtained in [2].

4.0 CALCULATION OF MEAN-SQUARE PHASE NOISE FOR

TWO-WAY COHERENT COMMUNICATION LINKS

Here we consider the evaluation of mean-square phase ndise com-
ponents whose forms resemble the first two terms of (9). Subsection 4.1
of this section treats the evaluation of the first of these two compon-
ents (i.e., the in-band phase noise in the vehicle system) while subsec-
tion 4.2 considers the second term corresponding to the out-of-band
vehicle system phase noise.

For simplicity of notation, we shall use the integers 1 and 2
to replace, respectively, the subscripts V and R previously used to denote
vehicle and reference systems. Furthermore, it is noted that the vehicle
and reference system second-order carrier-tracking loops have in-band and
out-of-band transfer functions of the form given by (10) and (11), with
arbitrary damping ’actors rys T and radian natural frequencies Ons @n2°

4.1 In-Band Mean -Square Phase Noise

Consider the evaluation of

2

o Zlff M, Ga) |2 11 - Hy(de) 12 5;(0) do (58)

2-way

where IH](jm)|2 and |1- Hz(jm)l2 are both given by (12) with the appro-
priate subscript appendages and Sﬁ(w) is defined as before in (14). Sub-
stituting (14) combined with (1) into (58) yields

(59)

where

*Eq. (11) of [2] (which includes many typographical errors)
essentialiy expresses the sum of the first three results of (57).
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H h
2 = 1 k 2 2
oIk IZ-WQY = ;ElH](JW)I n-Hz(jw)] do
0
2f 2 2 4-k
LY Y (“'nl +"1"‘) ] w N
w
0 "'4+"'2E'n12"’1'2)]‘“‘nlt| "‘4“"2l:‘_nzz("z‘z)]““‘mz4

(60)

As before, for simplicity of the resulting expressions, we
shall allow the upper limit of (60) to be infinity whenever such an
integral is bounded. Here again, the justification is based on the fact
that o

>> w

H nt’ “n2°

a. (k=3)
To evaluate °I32|2-way' it is clear from (60) that we must
first consider the evalvation of an integrai of the form

Cx3 + Dx dx
(x4 + a]:z + b])(x4 + a2x2 + bz)

The procedure employed is to expand the integrand into its partial
fractions, namely,

3 3
- xS + Dx i Ax™ + Byx R Ax™ + Byx (61)
4+ax2+b x4+ax2+b x4+ax2+b x4+ax2+b

1 1 2 2 1 1 2 2

where
n e o C(by-by) - D(ay-3)

1 7 T T A

and

p DBy _ Cby(ap-ay) *Dﬁ’z'bral(az'a])]

B, = ¢—-- (62)
1 b2 b2 A
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with
A 2
A= (bz-bj) + (az-a]) (a2 bl - bz) (63)

Then using (17) and (45), we obtain the desired result, which is

4 2
CxS + Dx _ i N X +ﬁx +%

i3 Y dx = F W37
(x +a,x +bl) X +a2x +b2) X +a,nX +b2

1
+ {%l' E%;%] f(x; hlz)

where

x- + f,
Lo 5—1); hiz > 0
2 2h X"+ 9,
f(x; hi ) =
2x° + a
—— tan W—1 H hiz <0
.-hi2 /-hiz

i=1,2 (65)

The parameters f., g, and h; are related to a, and b, as in {18).
2

Applying (64) to the evaluation of 013‘ , we first relate

2-way

as bi’ C, and D to the loop damping and natural frequency parameters,

namely,

(66)
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Finally, then, combining (61-66) and substituting into (60)* with k = 3,
we obtain, after much simplification,

h A
2 3 13 4
-—=fny + f(R,) -A,., f(R,) (67)
| 2~way LU { 4 A23 1 33 2

where we have introdu.ed the parameter y to characterize the ratio of
loop natural frequencies, i.e.,

y 2 — (68)

and

1 % -tan'}(—lz—) i R <2
Ja-g? /a2
f (R) &
[
1__ gnf R¥/R -4 R > 2 (69)
R4 \r-/R%
with weighting coefficients
PRy +2) - Vofrp vy
Aig = 8 ’
B R, (R,+2 R
- -G - - )
A3 =~ 5 ,
J r R, (R,+2 2n
R Y
Ay = A
0

and

An infinite upper limit is used here.
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e (1 ) (o) o
“n2

ne>

To evaluate 0122 -way® we again begin by considering the

generic form of the integrand and expanding it into its partial fractions,

i.e.,
2 2
cx? + Dx? - A+ 8, + AZx lBZ (71)
(x4+a]x2+b])(x4+a2x2+bz) x4+a]x2+b] x4+a2x2+b2
where now
D{bz - by) + Clagby - ayby)
A] = ‘Az =

a

[~
"

] (bz) - b1E)(az ) ‘C(bz bl)]

and A is still as in (63).

(72)

Using (51) and (52) to integrate the two terms
on the right side of (71), we immediately get the desired result, namely,

4 2
Cx” + Dx
cdx = f(x; A;,By) + f(x; A,,B,)
[ 2 4 2 111 2°72
ﬁx +a]x +b])(x +a2x +b2)
where

A.g. -B. B.-f.A
hl = l)tan'] 2 +(1 ! )tan]( );h1‘2>0
PR A
[» ¥3
B; Ai9; o (X2 +2xa sing + o
T [
4q.” sina i ’
f(x:A;,B,) = L

[+ X3 2
X - 2xqi sin—- + a;

2
7
A.q. A
+ 2[1 +—‘B——‘€l(cos —2‘—)
i
i

i

X - Q. COS _1fX; 9. cos

x tan 1 Z + tan I :2_ ;h12<0
9; sin VA q; sin 3
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When (73) is evaluated between zero and infinity and the appropriate
substitutions are made for f,, g, hi’ qy» and a, in terms of r; and
w45 i=1,2, we get the much simplified result

2 B, *+ 2A
cx? + Dx - 21 %1
f(x4+ax +b)(x4+a xz+b o tfr’g‘ 3
2 2 “m

2
o ] By +una Ay .
/R2+§ m?

n

all Ry Ry (74)
Finally, substituting (72) into (74) and relating C and D to the appropri-
ate parameters in the integrand of 0122'2vway’ e.g., (66), we obtain,
after much simplification,

h
o2 |2-way i 2—..,,25 R_:;z‘ A2 * “—f,%;i "zz] (75)
where
Y4{(‘ )1 +Ry) - Y2(3*R1) Ry + (v +2+m)) Rl}
hig =-— By
73{(1 )Ry +2-7%) - yZE +v¥(R, +2HR2 +v¥(v? +R, +2)R]}
Ay = B 76)
and 5, is still given by (70).

0
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c. (k=1

For k = 1, we must consider the integral

st +Dx3 dx
(xj + a]x2 + b])(x4 + azx2 + bz)

whose integrand has the same partial-fraction expansion as in (61),
namely,

3 3
Cx -+Dx3 A]x 4-B]x Azx + Bzx

= + (77)
(x4+a]x2+b])(x4+a2x2+b2) x4+a]x2+b] x4+a2x2+b2

5

except that now A], B], A2, and 82 are given by

D(b, - by) * Clayb, -a;b,)

- _ 2 1 "1
Ay = Ry = A
b, by E)(az -ay) - Cly- bl)]
B = = b—z' Bz = A (78)

with o as in (63). Since the right-hand sides of (64) and (65) are now
also equal to the above integral, then using (66), evaluation of (60) with
an infinite upper 1imit and k = 1 yields, upon simplification,

g 2 = h—]_
n ‘2-way "

A, 4
- Iny * A FRy) - A F(Ry) (79)

where

At (42t

A = ’
11 8




and

For k = 0, we must consider the integral

ox8 ¢+ o i
(x4 + a]xv‘Z + b]) (x4 + a2x2 + bz)

whose integrand has une same partial-fraction expansion as in (71), namely

2 2
_ _2Cx6+Dx2_ . b "2 i O S SO
4 2 4 4 2
(x +a]x +b1)(x +a2x +b2) X +a]x +b] X +a2x +b2
where, now,
- CE’](bz' by) +ay(ahy ‘albz)] +D(agh, - -5,
A] =C - Az = 3

A

-(El)Bz ) l:C(a o ) + D(bZ : b])] (82)
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Since the right-hand side of (74) also applies to the above integral,
then, using (66), evaluation of (60) with an infinite upper limit and
k = 0 yields, upon simplification,

z . Moo [ho L Ry |
°10 IZ_W ~7 @‘Tﬁ + = (83)
where
Y4{(1-74)(3+R])+(YZR2-R])KR]+2)(R]+l) - ﬁ}
Ao=-— B -
y{(] ) Z+R, +2) + ¥E (PR, - RI)KR] +2)(Ry+1) - 72-}
A2 = 3 — (&

0

Analogous to what was true for the one-way case, the two-way
mean-square phase noise expressions for (67), (75), (79) and (83) simplify
imnmensely when ry=ry= 2, i.e., both Toops have 0.707 damping. Thus,
letting R] = R2 = 0 in (67), (75), (79), and (83) yields

2 hs v 2 2. &
°13 T Ay Y TRy
2-way 4wn] (1-7 )
3
2 _ hyy (1-v)(2+)
912 ) 4
2-way 2/§'wn1(1 -
2 .
2 hyy 2
o I R - 2 _1__ 4
1 2-way 4(]_ 4) {2(' y) gn y]
Y W
0102 = 0 ul [2 + r - 3Y:[ (85)
Z-way 2V2 (l—

!

A simple check on the result in (83) can be had by realizing
that this calculation was performed in [3, Chap. 3]. In particular,
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2
o h, W r,ry.E (86)
10 |, gy ~ 00 R(MT2E)
where “Li; i = 1,2 denotes the two-sided loop bandwidth and KR (r],rz,g)
is defined in [3, Eq. (3-18)] with

A W q(ry*1) Wy (3+R,) (87)
CPICTU NP1

Since loop bandwidth and natural frequency are related by

w(1+r,) w_:(3+R;)
wLi . _ni i/ . ai i s i=1,2 (88)

2&? 2/2+&

then using (68), we can rewrite (87) as

R2+2
E = ¥y ﬁ;fri' (89)

Finally, equating (86) and (83) gives

]+

R2+2) Aot vz Mo

2+
Ke\Ry #2> Ry+2, v R, ¥Z T+R

(90)
1

Substituting (84) into the right-hand side of (90) and executing some
routine algebra results in [3, Eq. (3-18)], thus proving the result
in (90).
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4,2 Out-0f-Band Mean-Square Phase Noise

In this section, we consider the evaluation of

R I 2 2
Uy 77-]:“|1-H](jw)l 1By (d0)|? Sple) dw (90

where once again |1 -Hi(jm)lz; i = 1,2 are both given by (12), with the
appropriate subscript appendages and 5@(m) is defined by (14). Substi-
tuting (14) combined with (1) in (91) yields

2 :§ 2 (92)
[+ = [+
Qloway k50 Iz-way
where
W,
Hh
2 1 k . vg2 . 12
o = = [1-H,(Jw)]” |1-H (Jw)|® dw
Qk 2-wiy " '/; ;E ! 2
h, ~H 8-k
- _Ek_f dw
(93)
a. (k=3)

The integrand required to evaluate oq3 ‘2 ~way has the same
partial-fraction expansion as (61), namely,

5 A xS + Bx

X - 1 -,
4 . 2 4 2 4 2 4 2

(X +a]x +b0(x +a2x +b2) X +a]x +b] X +a2x +b2

A2x3 + Bzx

(94)

with now

a - a,b b - b,(b,-b
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Thus, letting D = 0 in (64), we can apply the right-hand side of this
result to (94) which, when combined with (95) and (66), gives an equation
identical to (67). namely.

°032 R -A‘—3zn Yin,. FR)) -Asq F(R)) (96)
2-way 2 4 Y Tha3 TI") " A3z TIR2
‘ll’mn-l
where now
) 74\Y2R2'R1
As 5
alr. & L Ry2
(14" + 2 (FRy-wy)
Aoz = 5
2l a, 2R /2
Y (‘-Y)+Y T(YRZ'Rl)
Az = - 5 (97)
b. (k=2)

Once again for k = 2, we can make use of the partial-fraction
expansion of (71), namely,

6 AxC+B Ax2+B
4q 2 4 2 4 2 4
(x +a]x +b.|)(x +a2x +b2) X +a]x +b] X +a2x +b2

Jhere now
'E’] (by - by) +ay (apby - albz)]

b - b, (a,b, - ab,)
Y 0ot | YO 1 S Bl
B, - -<b—>32 - ) (99)
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Thus, (73) and (74) apply directly to this case which, when combined with
(99) and (66), give an equation identical to (75), namely,

h,

2 1 1
@ |pmy "~ T K L = 22)]

where now
Y4[(‘ -vY) + (R +1) (R, - Rl)]
A = - By
y[(] -74) + YZ<R2+])(72R2 -R]):l
Ay = B (101)
[ k=1

For k = 1, the upper limit wy of (93) cannot be allowed to
extend to infinity since the integral would become unbounded. Never-
theless, the partial-fraction expansion of (61) still applies, namely,

3 3
x7 ) A]x + B]x A2x + Bzx

) 7 T2 a S A B
(x +a]x +b])(x +a2x +b2) X +a]x +b] X +a2x +b2

(102)

now with A] and B] given by (99). Thus, again letting D = 0 in the right
right-hand side of (64) and evaluating the result between the Timits of
0 and wy gives
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W
H
7
2 dw
4, 2( 2 4, 2( 2 i
E“ +u? oy Rl)""’md]l:_" +u?(ugy Rz)*“‘nz:l

4 2
A wy +a1“'H +b

A 1\_,, .4 "“1“1).2_.2
T [ wnlr*‘azwuz*b) o (B‘-T l}(w,_,-h]) f(O, " ):[

2 /

i K:_f.)s] +(1-0) ;-2-] [f("’n; %) - (03 hzz)} (103)

where (x; hiz) is defined in (65). Finally, substituting (99) together
with (66) into (103) and simplifying enables evaluation of (93) for k = 1,
namely,

Y \2 Y 4
) h, } A 1+R (.-“-) +(_”L
O'Q o - _]_ }‘] ﬂn 1 Y Y
. -

'2-way 1+ RZYHZ + YH4

H (

YH . (]05)

and
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-
1]

Ry tan-](——B—) ; R<2
Ja-g2 /a-R? Ja-p?

fz(R,r)=
2 /7 2
1| Z& +R+R'4)+lnw;R>2(106)
2 /R%-4 arl + R -/R%-a R - /R%-4
Also note that
lim f,(R,r) = f(R) (107)
e

where f(R) is defined in (69).

d. (k=0

Here again, the upper limit wy of (93) cannot be allowed to
extend to infinity. In addition, before applying the partial-fraction
procedure to the integrond required in (93) for k = 0, we must first
reduce this integrand to one whose numerator is a lower order polynomial
than its denominator, i.e.,

8 ~0

4 ? 4 2 - T e 4 2
(x +a]x +b0(x +a2x +b2) (x +y X +b] X +a2x +b;)



where
C= a] + az

D=b, +b

1 Y0 v,
E = a)b, +ab,
F = bb, (109)

Applying the partial-fraction expansion technique to the second term in
(108) yields

8 Ax2 + B AxC + B
S SNV S L Lo Sl e (110)
(x +a]x +b])(x +a2x +b2) X +a.‘x +b] X +a2x +b2

where now

\ al F
(bz-bu E-b, c-qr + (azb]-a]bz)(o-a] c-Bl—

>
[[]

15C0-A =

4
Y . b][(az-a])(li-b] C-5, F) - (bz-bl)([)-a] c-q)

]:

Evaluating (109) using (66) and substituting into (111) results, upon
simplification, in

“’_212 Y4[‘ Ry(1-v*) + (1 Rlz)(*sz'Rl)]

A %
ot 4[ Ry (R, - ) (]‘ )( )]
By =- 8
YA ] )
2 " 8g
“nzdz(‘ ) (1R )+ :Ysz -Ry(1- )J (%, 'V2R1)=
B, - - = (12)
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Using (51) and (52) on (110) with limits of zero and oy W
arrive, after much simplification, to t! .inal result, namely,

2 o 1 )
W |y ey > {—'gévloﬁm“):;QQJMAmn“% (113)
where
! aR'-g tan'](—r—)- (“R-'B) tan™! _r_) ; R>2
JR2-a [\ /R &Y\ /& /e
g(R,a,8,T) =

1-T 72-R + fi

c
8 :““s:)l (l+r /2——R+r2)
I n
/IR

2(1+2
+ ( 3) tan~V (2E=2RY , .o -1 (20 ¢ /2R : R<2
2R /2R /24R

[ e
peg
-
-
1
=
P
—
-
]
F-9
g
ES
—
p—
]
~
-t
~N
v
——
N
~
~N
]
=
~
=

Mo = mn{z - ™
s B 74E2R1 (R -v%%;) + (1-#,)( '*4)]
A= —3°" 5
“n1
. A, (1-v [R (1 Yry + v (Ry - ) (PR, - )
Ap = — 27 Ao
“n2
s (- 0-Re) YZE‘ZRZ -&, (1 ’Y4)](R2 'YZRI)
dg = 5 (114)
®07 0

and R, R™ are given by (40). Also note that

m g(R,a,8,7) = % Ba) . anR (115)
[+ /2t R
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5.0 CALCULATION OF MEAN-SQUARE PHASE NOISE FOR TWO-WAY LINKS

WITH COHERENT TRANSMIT/RECEIVE OSCILLATOR SOURCES

Until now, we have implicitly assumed that the receive and
transmit phase noise sources, ¥rx and P1x* which emanate from the refer-
ence system TCX0 (see Figure 2) can be considered as statistically inde-
pendent random processes insofar as their effect on the computation of
mean-square pr.ase noise in this same system [see (9)]. Since, in real-
ity, YRx and $1x are derived from the same c¢scillator source, the above
assumption is justified by considering the extreme situation wherein the
round-trip delay of by to the venicle system and back is long relative
to the correlation time of the process itself. As such, a sample of ¥1x
which leaves the TCX0 arrives back at the reference system essentially
uncorrelated with the corresponding sample of YRx -

The other extreme is to assume the case where the round-trip
delay time to the vehicle syster and back is short relative to the cor-
relation time of the phase noise process. Here, the simplest model is
to assume $py = ¥yy. Whereupon (5) is modified to

bels) = [o myts) -1 - )] ipyts)

+ e[t - 1) [1 - wls)] dyt)
- E - R(s)][ﬁk(s) + w,.(s)] (116)

and, correspondingly, (9) becomes

2 . 1 f : 2 12
o T 2e]_ 1610 - 1E -l 5 (o) g

1 (.2 Y L2
+ .27[-@ 611 -H, (o)1 11 - Hplgu)|© 5; (o) do

1" 2 1
*??lwl]'HRU“H %%Jm)+5%}mh dw (117)
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Thus, we must now consider evaluation of a new type of integral whose
generic form [see the first term in [117)] is

2 -1 2 Y
° 2-way ) 2;.-[; 164 (Ju) =117 11 - H,(3u)]| Ss(m) dw (118)

where, as before, we use the subscripts "1" and "2" to replace “V" and
“R", respectively, and, for further notational simplicity, we drop the
“f* subscript on the frequency multiplication ratio (turnaround tran-
sponder ratio), Ge.

From the closed-loop transfer function defined in (10), we
immediately find that

2 2
1-G w 1-G
GHy(s) -1 = - =+ /1y (16)s + oy (1-6) (119)

2 ?
sT + gy rystoeg

Thus, from (11) and (119),

e

1(s)1(-s) # (6 (s) - 1) (1 - Hy(5)) (oM, (=50 = 1) (1 - H(=5)

4) 4 2 2 2 2 2 4
s - (1-G) w1 E‘]-"—_'G—:]S + (]-G) “n1 }

2
;[E'(s4-m (r;-2) sZ + mn]4)

- 8

4 2 2 4
(s - w0 (ri-Z)s t o )

2{ n12[1 1(;]5 o }.

_TT'(S -« (r 2) st v 14)

i=1

i

"
-

1

+ (l-s

(120)

Firally, letting s = juo
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TG 2 = 16Hy (Jo) - 112 11 - Hy(u) ]2
8
© 2
a, 2[ 2 4
;U]. (“’ Tu E’m’ (ri'z):l+‘”ni )
4 2 2 2 2
, Y “m (“'m "("1'T—‘G)“‘)
+ (1-6) (121)

( ot +a? "’m’z(ri'z)] +“’ni4)

wdo
n |I\D
—

When (121) is substituted in (118) together with the definition
of Si(w) given in (14), then, as before, we can express the two-way mean-
square phase noise as a sum of four terms, i.e.,

3
2, 2
o I [¢]
G | 2 Gk (122)
i 2-way k=0 lz-way
where
(L)H h
2. 1 . 2 Y
Ock = ’f -—E IGH](Jw)-]I “-Hz(Jw)l dw
powdy w
1)
w.,
hkjh 8-k
= — = = dw
" M4, 21 2, 7. alfa 2 2 4
0 t’ o len (rl-Z)Jmn] w E"nz (rZ-Z)]ﬂ"nZ

4-k

w 2 2 2
) hka “n1 (“’nl "("1‘1-6)‘”er w
— — jdw
-2 2 2 4
m4+wzli»n-| (r]-2):l+wn]4} m4+w E’nZ (Y‘Z-Z)]‘Fwnz_

(123)

Note that the first term of {123) is identical to Gkalz-way of
(93). Asize trom the (l»G)z multiplication factor, the second term of
(123) is quite similar to OIkZIZ-waY of (60), the difference being that



4]
the coefficient of mz in the numerator of the integrand is r]-Z/(l-G)
rather than - Because of this similarity, evaluation of the second
term of (123) should yield results identical to (67), (75), (79), and
(83), with the only change being the definitions of the coefficients Aij
in these expressions. In particular, one can show, after much tedious
algebra, that:

k=3
- )
902 (o] - e
Ay = - L)
af a2 Ry . 2 % TR
Y {( ‘Y)_" 'T(R1+€T):l 2 *R1)E‘1*61 T]}
A3z = B9 ne
(k=2)
) AE o)
A = o
Ao E57) - il ) ()
A22 = A

0
(125)
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k=1
4 4 26\/ 2
Y {(“Y)*(RI*G"-T)(" Ry- R])}
A'l'l * 1_\0
- 26
Y s 1 - 2 M ET) (2 g
Cypl-v)lmtea] Ry Ry) - — "Rk
AZ] [
2 26
YRy zs) 2 YRz(R *G‘-T) 2 }
A = Yz'("*l(Rl*T*t::r*Y(Rz-vkx)- 2 (YRz-'ﬁ)
31 AO
(126)
(k=0)
4 4 26 2 g
Y {(‘ "y )(] Ry +G—-T) *(Y Rz‘Rl)[(Rl +G_1) (1+8,) - ‘]}
Ao = — i
N, 2 (2 26
*l(‘-* )(Y *RP‘EZT) ty (Y Rz‘Rl)[(R1+EiT)(‘+R2) - Y]}
Ay = ™
(127)
Finally, then,
2 2 2 2
o = g + (1-6)° oy, ;
Gk 2-way Qk 2-way 'k 2-way
Kk =0,1,2,3 (128)

where the prime on the "I" subscript denotes the fact that (67), (75),
(79), and (83) are evaluated using (124), (125), (126), and (127),
respectively.
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6.0 SYSTEM MODEL WITH FREQUENCY SYNTHESIZER

In this section, we generalize the simple two-way coherent
comunication system discussed in Section 2.0 and illustrated in Fig-
ure 1 to include the other internal frequency synthesizer oscillator
sources and other TCXO paths. In particular, we now consider the two-way
system illustrated in Figure 4 whose equivalent 1inear baseband model is
given in Figure 5. As such, Figure 3 also applies as the block diagram
representation of Figure 4 and, thus, the reference system phase error,
P> is still given by (2). However, gy and drys the equivalent phase
noises at the receive and transmit outputs of the frequency synthesizer,
must now be expressed in terms of the individual oscillator component
phase noise sources within the synthesizer itself. To do this, we must
postulate a specific synthesizer structure.

Figure 6 illustrates the frequency synthesizer used in the
Payload Interrogator (PI) of the Shuttle orbiter, and Figure 7 is its
equivalent linear phase noise model. Using routine control loop analy-
sis methods, it is straightforward to show that

vpx(s) = ZE *(g*“) HRX(S)] ¥rexo(s)
+ [i - HRX(SE] wl(s) (129)

and

1 - )] () wy(8) + 6, () weyols)

+ E . HTX(S)] ) (130)
where
Kpx Ky
—— Foy(s) ~— Fry(S)
HRX(S) e NK RX s HTx(s) & NKT L (131)
s+ Fx(s) S+ Fryls)
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Also,

6 for L-band
G, = (132)
10 for S-band

Note from (129) and (130) that the TCxu phase noise Y7exo and the trans-
mit VCO phase noise ¥ each contribute to both the transmit and receive
synthesizer outputs. Furthermore, the first terms of the TCX0 contribu-
tions, name]y,leTcxo, represent the direct feedthrough paths of the
TCX0 previously accounted for in Section 2.0.

Substituting (129) and (130) into (2) and making the notation
simplifications and assumptions leading to (5) gives the desired result
for the reference system (PI) phase ercor in terms of all the individual
phase noise sources, namely,

bels) = B H(5) |1 - HR(s)]{ls + 2 By (s) Hyy(s)
-8 Etryts) [ - “Rx‘s)]}@mxo(s)
Ge(E) Hy(s) [1 - bal9)] 1 - Hey(s)] Hryls) )
66, Hy() 1 = Ha()] ry(5) Fyeypls)
G, H,(s) |:1 - HR(s):H:l - HTX(s):] ¥y(s)
6 [1 - 1)1 - )] 6, t5)
: HR(S)] 36 + 2(g+4) ”Rx(s)] brexo(s)
- Hos)|[1 - tex(9)] §y0s)

- ()| [ig(s) + 4,(5)] (133)

+

-+

+

+

N TS T
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The frequency division constants E, F, N and D of Figure 6
depend on the operating mode of the vehicle transponder (IUS) and the
channel number, CN, assigned to the particular frequency selected in the
frequency band corresponding to this mode. In particular, the following
table applies:

Frequency

Division

Multiple STON DSN SGLS
E 240 240 256
F 222 221 205
N CN + 519 CN - 431 40CN - 35460
D 1280 432 1280
CN 1-808 850 - 882 900 - 919
Gf 240/222 240/221 256/205

From the above, we observe that, for all three modes,

6 (£) =1 (134)

Also, from (133), the worst-case (largest) phase error would occur for
the maximum value of N which corresponds to the highest channel number.
Thus,

1327\ _
F (]—m) = 1.0367  STDN
N N
max max _ 451\ _
Gf( DE )‘ D - (432) 1.044  DSN (135)
1300\ _
(] 80) = 1.0156  SGLS

Before proceeding with the evaluation of mean-square phase
noise corresponding to ¢e(s) of (133), we point out that we have inten-
tionally written the pair of contributions from @Tcxo(s) and @](s) as
separate terms in this equation. The reason for this is to identify the
fact that in each case one of the contributions (the first of the pair)
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originates at the transmit output of the frequency synthesizer, travels
through the vehicle, and returns to the reference system phase error out-
put, while the second contribution of each pair enters the reference sys-
tem directly {rom the receive output of the synthesizer without ever
passing thi~ugh the vehicle system. As was done in Section 5.0, we shall
assume in what follows that the round-trip to the vehicle system and back
is long relative to the correlation time of either phase noise process
itself; thus, the two phase noise components in each pair are essentially
uncorrelated.

We now turn to deriving expressions for the necessary 3-way and
4-way mean-square phase noise components associated with the phase error
process in (133). Furthermore, to simplify matters, in this section, we
shall ignore altogether the terms corresponding to the TCXQ phase noise
since, typically, these contributions are much less dominant than those
arising from the other phase noise sources. Thus, analogous to (9), we
get

O‘¢2 = Zl—n'f le(Jw)‘zl]‘HR(JUJ)IZ“°HRx(JW)IleTx(JW)|2 SJ,](“) dw

-0

(-]

b | 626 21N (Ge) 1211 - B 12y (G0) 1215, () du
Yvexo

1 2 Y Y . v12 :
t 5 Ge ™ H, (Ju) 171V = Ho (Ju) |71 - Hpy (Gw) ] S@Z(N) du

'\5“\

1 2 c v 2 Y
+ 5 Gf |- Hv(Ju)I |- HR(Jm)I S‘I,v(m) dw

o«

{1-H (Jw)l |- Rx(Jw)l @](w) dw

x

-

| -
5‘-..___5 aﬂ-...__\ 5‘--.._\

. 2 J
i1- HR(Jw)f {S@R(u) + Swr(d%}dm (136)
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7.0 CALCULATION OF THREE-WAY AND FOUR-MWAY

MEAN-SQUARE PHASE NOISE COMPONENTS

Here we consider the evaluation of mean-square phase noise
components whose forms resemble the first three terms of (136). Sub-
section 7.1 treats the evaluation of the third term, while subsections
7.2 and 7.3 consider the second and first terms, respectively.

As was done in Section 4.0, we shall, for simplicity of nota-
tion, use the integers 1 and 2 to replace, respectively, the subscripts
V and R previously used to denote vehicle and reference systems. Fur-
thermore, we shall use the suSscripts 3 and 4 to replace, respectively,
the subscrypts TX and RX previsusly used to denote transmit and receive
synthesizer output terminals. Also, as before, all of the second-order
carrier-tracking loops (vehicle system, reference system, transmit syn-
thesizer, receive synthesizer) have in-band and out-of-band transfer
functions of the form given by (10) and (11), with arbitrary damping
factors ry i=1,2,3,4 and radian natural frequencies wog s i=1,2,3.4.

7.1 Out-of-Band* Three-Way Mean-Square Phase Noise

Consider the evaluation of

2 _ _L f . 2 _ . 2 _ . 2 o ‘
i3y 2«] [Hy (Ju) | 1= Hy(ie) 1 11 - H3tie) 1€ Selw) du (137)

-

where ;H](jw)l2 and |1 - Hi(jm)lz; i=2,3 are given by (12), with the appro-
priate subscript appendanges and S&(m) is defined as before in (14).
Substituting (14) combined with (1) into (137) yields

2, 8 N (138)

where

—_ -
The term "out-of-band” is used here with respect to the
third tracking loop.
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“ h
oq«ZL : f + 1012 11 By 12 1 Hyliu) | d
o
-way 0

By [nl o * ryo )] o

w

- duw (139)

3 p
4 2 4
0 :[_]]- IE" tw |:"ni (ri-Z):I * "’ni]

a. k

]

3

To evaluate °Q32|2-way’ it is clear from (60) that we must first
consider the evaluation of an integra! of the form

i=1l
where
. 2 sy 2 - 4
a; = ugg {r] 2) * Oni Ri 5 bi = wgg s 1F 1.2,3
- 2 - 2 ) - 4 _
C = @nl r] = ey (R]+2) ; D = w0 = b] (140)

The procedure employed is, as before, to expand the integrand into its
partial fractions, namely,

3 3
cx’ + Dx < A3 *Bi3
= 4

3 2
ll (x +a.x" + b ) i=1 x* + a.x" + b
i=1 i i

X

(141)

Then, integrating the right-hand side of {141) using (17) and (45) gives
the desired result, namely,
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3
Cx + 0 ax = EF-P-M (x4+aix2+bi)

A
+ (Bi3 - ‘iziS) f(x; hizil (142)

where f(x; hiz) is given by (65). Before evaluating (142) between the
limits of O and infinity, we digress to discuss the determination of the
six unknown coefficients A, i3 B. i3 i=1,2,3. 3

Multiplying both sides of (141) by'TT~ (x *-aix2+-b ) gives
the relation

3
3
> (A48, ‘(T(x +a x2+b£) = o/ +Dx° (143)
i=1 ;

Equating coefticients of like powers of x on both sides of (143) results
in a set of six linear equations whose solution gives the desired unknown
coefficients.

Rather than obtain specific rinsed-form expressions for these
coefficients a; was Jone previousiy in the one-way and two-way results,
it is more convenient here to describe the solution in matrix notation.
Specificallv. 2t Vy denote the unknowr coefficient vector
[ A3
By3
v, = | A3 (144)
B3
A3z
B33

and f3 the forcing function vector
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= (145)

o O o o6 o o
€

then the solution to (143) as described above can be written as

My, = F (146)

3

or, equivalently,

_ -1

where, makir.j use of (140), the 6x6 matrix [M] is characterized by

M1 M2 -+ - Mg
Moy Mo = - -« Mo

[M] = . . . . . . . (]48)
m6] rr.62 e e e e m66

with
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=
-
-be
L] ]
(=) a—t
- -
anbe e
" "
~N -
»
S W
o w»n

NE
ds

"
_"s
&

~n
g.:o

3
w
-t
"
£
=
<.
»
€
[
~N
ol
("

3 3
i=1,3,5
_ 2 4 4 3ds
My = E Z wnj Ry 9k

Mg = My io13 i=2,4,6; j=2,3...,6 (149)

Using the first two relations of (149) in (147), i.e., the ele-
ments of the first rcw of [M], we immediately see that

3
z Ay = 0 (150)
i=1

Furthermore, from the second row of [M], we have that

3 3
Z[ B 4 2 aA) = 0 (151)
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or, equivalently,

3 3
> (oo - 3 e 22

i=]

Solving for A., and B, '(aiAi3)/2 from (150) and (152) and
substituting into (142) gives the alternate form

o £, 2 | a x"+a X2 +b,
3 4. 2 = z z 4+ax2+b
|| (x +a.x -Fb.) i=1 X 3 3
i= ! !
1 13 2 n 2
A.

__—ja;-a3) (x;h32) (153)

It is now convenient to evaluate (153) between the limits 0 and infinity
which, upon algebraic simplification, results in

® 2
7 5 A.

f HR— = ) -y

B (x +a x2+b ) i=1
i=1
2
w . R.A,
ni i 43
+ ('313 - “T‘)[f(ki)‘ f(R3)}

A (v.2R. -R :
‘3(Y‘ . 3) f(R,) (154)

+

where f(R) is defined in (69) and the parameter Y5 characterizes the
ratio of loop natural frequencies relative to that of the third loop,

i.e.,
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W
vy & Mo, (155)

Finally, then,

(156)

b. k=2

To evaluate 502 |3 -way ° we again begin by considering the generic

form of the integrand and expanding it into its partial fractions, i.e.,

3
8 6 A x 4—B
Cx~ +Dx
Z T, (157)

3
'Tr(x +ax2+b) j=1 X taxtby
i=1

where a., b i=1,2,3 and C, D are as previously given in (140). From

(71) and (73), the integral of (157) is easily seen to be

Cx8+Dx6 _ S3 .
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where f(x; Ai,B1 )is given in (73). When (158) is evaluated between 0
and infinity and the appropriate substitutions are made for fi’ 9ys hi’

Qs and oy in terms of ry and ®aqs i=1,2,3, we get the much simplified
result

- 3 2
f . olen® r g B1’2+"'n:1; Ai2 (159)
(x4-+a1x2-+b.) i=1 R;%2 “ni

=] 1

0 i

Finally, then,

2
h, 2 v [Biz *uni P2

© 7 3 (160)
i1 R+ ni

Evaluation of the coefficients AiZ’ 3123 i=1,2,3 proceeds as before
by multiplying both sides of (157) by

_ﬁr'(x4<+aix2-+bi)

i=1

and eauating ccefficients of iike powers of x. The resulting set of
linear equations has the solution

- -1
YZ - [M} Ez (]5])

where now
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1.
22
22
32
32

and [M] is still described by (148) and (149).

In the interest of brevity, we shall merely present the results for
the cases k=1 and k:0.

these results follows that just described for k=3 and k=2, respectively.

c. (k=1 and k=0)
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(162)

With only minor changes, the procedure to obtain

h A
2 = 1 i
GQ] = = > in y
3-way
2
w_ s R.A.
1
*(Bn e ) E(R1)'f(R3)]
[ A ( 2 l
(y.°R. -R
2 AT 3)
* [“’m ( )+ 7 'Jf(%) ‘
(163)
2
2 _ by 1 *oni Ao
g = 5 (164)
Q0 2 i 3
3-way j “ni
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where
= =l . o
!k = [M] Ek’ k=0,1 (165}
with
A, | [ o 2R +2) |
1k nl
4
Bk “nl
A 0
b= | K] BeRs g (166)
B 0
2k
A3k 0
-B3kd | 0 _
7.2 In-Band Three-Way Mean-Square Phase Noise
In this section we consider the evaluation of
2 1 . 2 . 2 . 2
oy = 5 ’ [Hy (Ga) |7 11 - Hy (Gu) 1™ [H3(Jw) ] 5@(w) dw
3-way -
- (167)

where once again |1 - Hi(jm)lz; i=1,2 are both given by (12), with the
appropt iate subscript appendages and S$(w) is defined by (14). Substi-
tuting (14) combined with (1) in (167) yields

3
2! - 9 2
o) = > oy (168)
3-way k=0 3-way

where
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2

“h
°Ik - l-f & 1Hy G121~ Hy(u) 12 [ (J) 12 d
3-way w

o 2 2 2 2 2 2\| 4-k
h E w4 +riw o w +row ]m
= _k L nl (n] 1 ) n3 (n3 3 ) dw (]69)
TI'3 a4 2 2 4
0 ML E’"i (ri'z)} “ni

From (169), it is clear that we must evaluate integrals of
the form

8-k . - 6k . . 4-k

fcg‘ *0x” "HEX 4y 5 k=0,1,2,3
4 2 )

|| (x +aix +b1.

i=1

where a; and bi are defined in (140) and

4
4(Ry+2) wq (Ry+2)

C o= wpp rpugs r3 = on4Ry
2 2 2 2
D = wyrytustry = w "R +2) 4w (Ry+2)
E o=w . b b (170)

nl "n3

Since the partial fraction approach taken in subsection 7.1
also applies to the above integral, we can essentially write down the
desired results by inspection. Thus, rather than go thrcugh the develop-
ment for each value of k, as was done previously, we shall merely present
a summary of the results in compact notation. Thus,
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For k=1,3
2 ( ( 2
h A w.; R,A
2 = K _ ik ni i 1k)
oIk I TIRARA L E(Ri)'f(“aﬂ
3-way {=]
2
A (y R, -R l
iklYi Ry Rs
+ 5 ) f(R3)’ an)
For k=0,2
2 hy LBkt i P
Ik 72 s 3 (172)
h 42 w
3-way i=1 i ni

where ;s i=1,2 is defined in (155) and the unknown coetficent vector
defined in (166) has a solution of the form in (165) with, however,
forcing vectors given by

L o L
0 0 0
c 0 0
D c 0

o= e | B =f =] opo |38 = |c¢ (173)
0 E D
0 0 3

The parameters C, D and E in (173) are defined in (170), thus completing
the solution.
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7.3 Four-Way Mean-Square Phase Noise

In this final subsection, we consider the evaluation of the
four-way mean-square phase noise component necessary to compute the first
term of (136), namely,

2 _ 1 . 2 . 2 . 2 s
o 4-way-7;f [Hy () |7 11 - Hy(iu) [* [H3 (3w} 11 - Hy(3w) [ Sg(w) du
3
2
i Z % (174)
k=0 4'way
where
)

K Ga) 1211 - By () 12 [yl 211 - Hy () 12 da
w

Q
ol
~o
'S
=
[+¥]
<
1]
o | —
O\

dw (175)

Comparing (169) with (175), one would intuitively expect results
which are similar in form to those of (171) and (172). Iindeed, this is
the case. In fact, without belaboring the details, one obtains

For k=1,3




For k=0,2
4 2
2 M 1 [ 8kt oni Pk
i 4-wa -2 + 3
y in /R¥2 “ni

whceve the yi'; are now defined relative to w4 i.e.,

[ T
Y; 4 M i91,2,3
nd
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(177)

(178)

The unknown coefficient vector which now has eight components, i.e.,

(179)

still has a solution of the form in (165), where the forcing vectors are
the same as those in (173) with the addition of two zeros to the bottom

of each and the 8x8 matrix [M] is characterized by

My My . - - m]S'
May Moy -+ - Myg
Ml =
| "81 g2 "gg

(180)
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7i

Oi

Ji

[

13 i=1,3,5,7
0 ; i=2,4,6,8

d 2
2 “nj RJ
J=1
J#
4 4 4
1 2 2 4
2 Z — an Rj“'nk Rk + z wnJ
s 3=
? . g
j#k J#i
R T
z 2 nj ijnk * _[r nj RJ
i=1 k=1 J‘]
i J#i
J,k#i
J#k
4 4 4 4 4
1 4 4 1 2
722‘%3’“’“ +?zzz‘“an
J=1 k1 j=1 k=1 =1
J,k#i .k, L#i
J#k jtk#L
4 4 4
| 2 4 4
2 ji EE 25 “nj Ri%nk “nt
J=1 k=1 £=1
J.k,L#i
JEkEL

mj_'[’-i_] i=2!4’6,8; j=2,3,...8

2
jmnk Rk“’nl

4

65

}i=1,3,5,7

(181)
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APPENDIX VII

MEAN-SQUARE ERROR APPROXIMATION TO PHASE NOISE SPECTRA

Here we wish to derive a formula for approximating a given
phase noise power spectral density S(f) by a power series in f'k, keN,
in the least mean-square error sense (LMSE).

S(f) is either directly available from measurements or is given
in a piecewise linear form. The approximating function §(f)is assumed
to be
-2

+ 3 (1)

S(F) = h.+hf ) +nf 3

0 1 2

where hi; i=0,1,2,3 are unknoyn coefficients to be determined.

The specific form of S(f) in (1) is dictated by physical con-
siderations. The f0 term corresponds to white phase noise, f'] corre-
sponds to white flicker noise, £2 corresponds to white frequency noise,
and f'3 serves to model flicker frequency noise. The physical signifi-
cance of (1) then is that it represents the spectral superposition of
the irurementioned random components, assumed independent, in the fre-
quency and of interest.

The spectra to be approximated usually exhibit a flat portion
for high frequencies. We can then assume that this value, which is
directly measurable, determines hO. Henceforth, we will deal with the
evaluation of h,, k > 1.

The frequency band of interest will be denoted by (a,8). We
shall also assume, as is common practice, that g >> o. Indeed, custom-
arily, a is on the order of tens of hertz while g is on the order of
nega’ .« tz.

Since h0 is known, let us define

S'(F) = S(f) - hy (2)

The function to be minimized is



Since E is a

clearly corre

h h

-

1 2

B_
h h h
1 2 3
= S'(f) - (-—— + + ==
]; PR )

h

)

quadratic function of hn; n=

sponds to a minimum.

Jvfferentiating (3), we get

R
h h h
- -2 s'<f>-(—‘+—§+—§) S0
] £ )]t

8 2
= S{f) - (h + — + + -é) df
[ oo 30 3)]

2
df

1,2,3, it follows that

(3)



and inserting the assumption B'] << a'], we eventually derive from (4)
the following system of equations:

1 1 1 -
aM ot —3h = H
2a 3a
—2-h]+i3—h2+-]—4h4 = NZ I
20 3a 4a
1 1 1
h + —h, +—5h. = W
5;3 1 4«4 2 50‘5 5 3
where we have defined
B
A S'(f) . ne
o8 / L df 5 n=1,2,3 (5)
a f
If we further define
h
’ A __n_
h n i
n=1,2,3 (6)
4 n-1
N'n 2 a Nn
the system I is written in matrix notation as
-1 — -1
1 172 ]/é1r—h'] w']
1/2 1/3 1/4 h'2 = w‘z 11
1/3 1/4 175 h'3—J _W'3J
The solution of II is of the form
A
ht = -D (7)



where
R
& = 77160
and
W' W' W,
L B
4 * -0 tTT (8a)
R B B (8b)
2 = %0 tIm -7
W' W Wy
N o W3
83 = J3 -7 72 (8¢c)
From (6), (7) and (8), it eventually follows that
[] [ ] \
hy -a[gw] -35w2+3ow3]
hy, = 12 a%|- 3W,' +16 W," - 15 W,'| >
2 1 2 3
—_ 3 T ] []
h3—30u[w-| -6W2+6N3] (9)

where, from {(5) and (6),

8
S(f) - h
W' ! (-n——o-) df; n=1,2,3 (10)
R

Once the wn' is evaluated as in (10), then the hn follows directiy from
(9). However, except for the unlikely case that S(f) is given in a

closed form, evaluation of (10) is not apparent. To circumvent this, we
propose the following: assume that S(f) is given by a dB-amplitude/log-
frequency plot, as measured directly in the laboratory. We approximate

the plot by a series of N piecewise linear segments, each valid in the
region F. < f < F, .5 i=1,....N, where F; = o and Fy . = 8. Let us also
denote by Si the value of the spectrum at ., i.e., Si = S(Fi). Obviously,
the quality of approximation to S{f) increases as N increases. The
piecewise linear approximation in the 1og/log scale implies that S(f) is



assumed to have the analytic representation

0 sf)”

Fi<f<Fin ()

for

In (11), the exponent -Pi represents the slope of the line, viz.,

'Pi - Slope of 1in?0in dB/decade (12)

Direct substitution of (11) into (10) gives

Pl N - Fin Frst h g
[N = S| f = . i _._.(.jf__ - ...0_.
% f Sar = D spF, P+l f
F =1 Fooof 7

1

or

N i
— S. F. F
, i i N+1
ny' = 5 |1 - - hy 2 (13a)
] ;;% Pi (Fi+1) 0™n F]
Similarly, we obtain
r P.+1] B
W, = a J:‘ G N (<Jii—) | - hy |2 - BN (13b)
2 iti FiiPiﬂ& F1+] 0 ﬁ FN+]

and



N Pyte 1
s F, h
PREE) S . (F—") B R (13¢)
=1 Fy (P4+2) i+l Fi™ Fre

Note in the above that, in general, the Pi's need not be integers.

Comment

The above theory solely derives the LMSE estimate §(f) of S(f).
However, no care has been taken to account for the fact that §(f) should
be nonnegative as it represents a spectral density. Indeed, on some
occasions, the results provide a negative §(f) for some frequency regions.
In these cases, the coefficients of the LMSE estimate can serve as good
starting values which, after some heuristic small perturbation, produce
a good new estimate §*(f). This new §*(f) should also conform with the
aforementioned physical constraint of positiveness. The above comments
were used in Example 2 following.

Applications
We now apply the previous results to the following two
examples.

Example 1

Consider the TCX0 phase noise spectral density of Figure 1.
The coefficients of S(f) were calculated to be

h, = 0.31622776 X 1071
h, = 0.39822958 X 107

h. = -0.14756626 x 107/
hy = 0.31740942 % 107% .







Table 1 following compares certain values of STcxo(f) with the
corresponding ones of S{f).

Table 1

Frequency

f(Hz) 10 Hz 100 Hz 1 kHz 10 kHz ] 100 kHz | 1 MHz
Stexolf) | 275 | -105 -125 2135 | -145 | -155

(db)

S(f) -75 -104.7 -123.8 -134 -144 -155

(dB)

Example 2

Next we consider the VCX0 phase noise spectral density, shown
in Figure 2. It was approximated by three piecewise linear segments.
Table 2 summarizes the characteristic values considered for the imple-
mentation of the previous algorithms.

Table 2
n ] 2 3 4
Fo (Hz) 1 Hz 1 kHz 8.1 kHz 1 MHz
Sn (db) -14 -104 -115 -
_ dB/decade _ _ ]
Pn = =30 3 1.4 0
(s1ope)

PacCECING PAGE BuAlNA {+OT FILMED
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The coefficients were found to be

h, = 0.31622777 x 107"
hy = -0.3000000 X 1077
hy = 0.10874600 x 1073
hy = 0.39684600 x 107!

Table 3 provides a comparison between S(f) and §(f) at distinct
points for this case.

Table 3
Frequency

S{Hz) 1 Hz 10 Hz | 100 Hz | 1 kHz 10 kHz | 100 kHz ) 1 M+
S(f)

(db) -14 -44 -74 -104 -115 -115 -115

—

S(f) i i )
(db) -14 -43.9 -73 - 99,2 118 115.4 115

PRECECING PAGE BLAA [OT FLLMED
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APPENDIX VIII
CALCULATIONS AND FINAL RESULTS ON THE PHASE NOISE ERROR VARIANCE
FOR THE S-BAND PI AND TRANSPONDER FOR SGLS AND STON

The noncoherent result is

b(s) = 128 ypye (1-Hpyc)(1-Hpp) + vy (1-Hy ) (T - Hpp)-Hy-Hyye
=9 (T-H)(1-Hyp) + 9, G (1-Hy) Hyyo (1-Hpyp)

<10 ypy (1-Hpy) - & (2 -Hpy) (1)

where wl‘ and ¥, are two independent processes with the same statistics.
Furthermore, the spectra of Yus® Ypye Orp are the same (VCXO spectrum)
as given in Figure 1. Since the spectrum in Figure 1, SI (f), is mea-
sured with respect to a 2211 MHz carrier, the following is true:

(@) Sy (1) = Syl

(b) ¥pr is measured at 1.84 MHz, hence
s () - (13.4)2 5. (f)
IOwPI 221 I

(c) 0, is measured at 31 MHz, hence,
2

Sor, () = (?%%T)z 5, (f).

The common spectrum SII(f) (see Figure 2) of the processes ¥ w]', ¥
is measured at 2211 MHz. The method of extracting the shape of SII(f)
from the TCXO output spectrum measurement is described elsewhere (see

Addendum). Incorporating the above comments in (1) yields

Se(f) = 5p(f) :2.6SSXI0'4 1 'pl(f)l2 + |1-HIUS(f)|2 |1~le(f)l2$
+ SII(f){Il-H](f)IZ [y ()] [i-Hyys(F)1° [1-Hpy (F) 1% + 14, (£)1°

x 11Ho ()12 + 62 [1-Hp(F)17 [y (P12 l1-HpI(f)lzl

$
(2)
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Figure 1. VCX0 Measured Phase Noise Sideband Power Spectral Density
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We now make the following simplification. For the SGLS mode, the
bandwidth of “xus(f) is 3774 Hz, while that of Hz(f) is 560 Hz, or about
1/7 of the latter. Hence, we can safely ignore Hlus(f) in the fourth-
order products of (2) and use the approximation

118, (012 ()12 [Hpyg(12 11t ()12 2 10y (D1 [y 1ty (9|2

The above substitution simplifies matters significantly because we now
have to calculate two three-product integrals of the form

[
)

1 c f K, (F) (14, () (1-Hpy () |2 o (3a)

-0

and

il

1 .’. FIHyys(F) (1-H,(F)) (1o (F)) i df  (k=0,1,2.3)  (3b)

-0

instead of a three-product and iuur-product integral.
The evaluation of the variance

o¢2 = f%(f) df

requires approximating the spectra SI(f) and SII(f) by a series of the form
3 3
-i

cif .

0

1

The least square approximation method is described in Appendix VII of
this report and gives the following results

4

n_0asx07 | 0.500x107 0.108ax10T
2 3

$;(f) & 0.158x10°
f f f




and

~ 0.5
sll(f) = ?‘ (%)

Note: The spectra shown in Figures 1 and 2 are one-sided, while Sl(f)

and sll(f) are two-sided expressions. Therefore, 3 dB should be sub-

tracted first from the figure plots before approximation is attempted.
The evaluations of the one-product integral

L K11 - Hpy(F)12 af

and the two two-product integrals

ff"‘ [ - By (01211 - by ()] af

-00

and

f K012 - (12 afs k=0,1,2,3

-0

are performed by the program PHNOISE. Next we describe the evaluation of
I] and IZ‘

1.0 EVALUATION OF I] and I2

According to the theory developed, the evaluation of I] and 12
requires the prior computation of the matrix M, as given by (148) and
(149) of Appendix VI of this report. This was done by the program M, and
the results are as follows:



and

1 | o | v | o | 1 | o
0.4930x16 | 1 Jo.327x10® | 1 jo.3s6x108 | 1
0.250x10'% 10.4939x107 |0.625x10'% [0.327x10% |0.180x102! |0.356x108
0.3923x1020|0. 250x10"% [0.3092x1020|0.625x10"* |0.628x10%! {0.180x10]
0.1814x1028|0. 3923x1020{0.983x1023 |0.3092x102%}0.178x10%7 |0.628x10?"

0 Jo.1s14x10%%] o Jo.98310%3 | o  jo.178x10%7
- 1 | o | ' | o | 1 { o ]
3367x108 | 1 |n.307x108 | 1 lo.33x108 | 1
8 10.22x10" }0.336x10°

0

0.1086x10'2]0.3367x16% 10.203x10'°| 0.307x10
0.558x102" ]0.108¢<101°0.623x10%2] 0.203x10"° ]0.739x10%2 |0.22x10'°
0

.178x10% 10.558x1021 0.199x10%%| 0.623x10%2 10.362x1037 |0.739x10%

0 10.178x10%° | 0 [ 0.199«10%® | o  jo.362x10%°

Since we are interested in the k=2 term only (see (4b ) in connection with
(2)), we have to evaluate the following F, column vectors:

[§| 0.313x10% | 0.983x10' | 0| 0 | é]T

-
H

-
1]

T
[6[ 0.28486x10° | 0.202865x10'° | 0 | 0 |§]

The solution of the system [M]-[Vz] = [F,] is accomplished

through the subroutine SLEQ for the solution of a system of linear equa-
tions. Despite the fact that the matrix M is ill-conditioned (i.e.,

the eigenvalues differ by many orders of magnitude), the program produces

results of satisfactory accuracy. They are



he rilzr [0.1011x10]
Byp 0.5171x107
Ay 0.1011x10!
By, - -0.1937x10’
A, -0.695x107!
Bsp! -0.521x107

and

12: - ] - 1 7]
A, 0.222x10
By -0.8665x10°
Ay _ -0.222x10"
By 0.1085x10°
Ay -0.1734x1078
By, _-0.554x10‘5J

Applying (160) of Appendix VI for the proper transfer functions and k= 2,
we find that I, = 0.11504x10™ and I, = 0.3034x10™'.  These numbers rep-
resent the integrals I] and 12 as defined by (3), not the parameter
022 3-way of (160) of Appendix VI. To evaluate the latter, one should
multiply with h, = 0.5 as given by (4b).

The transfer function parameters (natural frequency fn’ damping fac-
tor ) which were used in the computation of the integrals are given in

the following table:

-
H !
Hyp c (SGLS) H Hy . e
Parameters IUS Pl synthesizer N i_--srzer
!
. (Hz) 3774 2064 1000 | 560
c 1 -0.707 | 0.82 1.0 5.0
V2




2.0 SUMMARY OF RESULTS AND COMMENTS

With respect to the calculation of the one-product and two-product
integrals apdearing in (2 ), we should mention that some of them, notably,
the harameters oo2 and 012 for both of them, are evaluated with the upper
limit of integration being some finite fH instead of +». This parameter
was chosen to be fH = 6 MHz (i.e., 12 MHz two-sided bandwidth) since that
was found as the lowest cutoff frequency of the IF filters. Also, the
gain Gf is of the value 256/204 = 1.2488.

The final deviation found is oy = 8.93° RMS (SGLS mode). In
the STDN mode, the bandwidth of HIUS is 755 Hz, i.e., of the same order
as the H2 bandwidth. In this case, the approximation of the four-
product integral by a three-product one is not valid anymore, and precise
results can be obtained only by using the appropriate formulas. Never-
theless, it is straightforward to see that the STDN variance is going to
be slightly less than the SGLS variance found because IHIUS|§J; we vir-
tually substituted HIUS with its upper bound in the previous calculations.
We can therefore claim that the 8.93° found represent an upper bound for
both SGLS and STDN modes.

A final comment pertains to the value of o,. By straightforward
integration of the phase noise spectrum of the TCXO0 output (see appropriate
memo), one gets a deviation of approximately 3.5°. Adding the same amount
at the PI receiver demodulator plus additional contributions from the PI
and IUS VCX0's (of considerably lower value, however, see Figurel), one
concludes that the value found indeed lies within the expected range.



ADDENDUM

Let us denote by STCXO 0(f) the phase noise spectrum measured
at the output of the PI TCX0, as plotted in Figure 3. From the PI dia-
gram, it follows that

Stexo,off) = Sw](f) -, (7)2 I, (£)12

+s,, () - #,(F)|? G + 256 So. () (5)

We now ertail the reasonable assumption that SGT(f) =0, i.e., ics con-
tribution is negligible. This assumption is verified if we plot the
product 256 SeT(f) against STCXO,O(f) and vealize that it is several
decibels below the latter. Furthermore, we assume that the noise pro-
cesses wl(t) and wz(t) pessess the same spectral characteristics.

Denoting this common spectral density by SII(f), we get, from
(5), that

Stexo,o0ff)
Spp(f) 2 2 . (6)
-t 12 1%+ -yl 6
Here,
A L
2 n2 n2 2
Hl™ = 7 7
freRy f "+ F
2 2
4
L2 . il
-l = o gt 1712
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Figure 3. Measured Transmitter Single-Sideband Phase Noise Spectral Density
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n

Substituting the previous expressions in the denominator D
of (6), we get

ol 2 2
& f"z (fnz *ref ) 9
D = -
farr Ze2ag bt Sefag 4T

2.8 2 2 2\ .6 4 2, & 4
G °f + (Gf R f " ¥ TP, )f . (fnz e )f

8 2 2\ .6 4 )
f +(R]fn] +R2fn2 )f + (fn] +f"2 +R

(7)
4f 4
1Ny

2. 2\ 4
]R2fn] .fn2 )f +f

Through (6), (4) and the So.,, o(f) of Figure 3, the spectrum S; (f) of
Figure 2 was derived.



