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EXECUTIVESUI_ARY

This report describes the design study program of a toroldal traction CVT
for electric vehlc]es. The work was performed by Garrett-AIResearch as part
of the Electric and Hybrid Vehicle Program for the U.S. Department of Energy.
The work was managed by ?he Bearing, Gearing, and Transmission Section of the !
NASA Lewis Research Center. It was performed under Contract DEN 3-117.

The objectives pf this study were: (1) develop, evaluate, and optimlze_
a preliminary design concept for a continuously variable transmission (CVT) to
couple the high-speed output shaft of an energy storage flywheel to the drive
train of an electric vehicle, (2) identify technological advancements required
to develop the CVT design concept, and (3) determine the suitability of the CVT
design concept for alternate electric and hybrid vehicle applications.

The program effort was directed toward evaluating and comparing flve
different full toroidal cavity, traction drive CVT configurations, selecting
one design configuration, and optimizing that design with respect to the speci-
fication requirements. Program activity was separated into four tasks that
were performed according to the following schedule:

1979 L98o :

Task H J J A $ 0 N D J ,

I Design study •

II Required technical advancements
row--

III Alternate applications I

IV Design and technical assessment I

The purpose of Task I was to conduct engineering analyses to select and
optimize a CVT design configuration and develop a preliminary CVT deslgn to
meet the design requirements. During this task five CVT design conflgur_tiohs
were compared using the following desig;_ criteria: efficiency, cost, size,
weight, reliability, noise, controls, and maintainability. Each design con-
sisted of one or t_o full toroldal cavity traction drive elements connected
to various reduction gearing arrangements. A computer simulation was used
to compare the performance of the five CVT design configurations. Based on _
this analysis, a dual-cavity full toroidal traction drive with regenerative
gearing was selected for the CVT design configuration. The design was then
optimized to obtain estin_ted operational efflclencles up to 95 percent and
a 98.3 percent probability of achieving the specified 2600-hr operating life.

The final design selected during Task I Is Illustrated in figure 1, The ::
dual-cavity toroldal traction drive and the regenerative gearing are shown In
the figure. The CVT will meet all the design requirements specified in the

i statement of work. A striking feature of the design is that it Is Infinitely ,
variable, so that the Input shaft can be operated at full speed when attached ,:
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?o a flywheel or to an electric motor; and the output shaft can be brought to
zero speed, which eliminates the need for a clutching device. The design

encompasses conventional materials and manufacturing techniques, and the CVT

is comparable in weight ana size to a present day automotive automatic trans-
mission.

During Task II technological advancements required for developing the CVT

to production status were identified. This included defining the problem areas

and estimating the means and efforts required to solve the problems. Although
no technical problems are expected with the basic CVT design, three areas were

identified that will _equire some development. They are the ratio control
system, the traction fluid properties, and evaluation of the traction contact
performance.

The control system dynamics must be evaluated in detail to ensure that a

smooth transfer of power takes place both ways between the flywheel and vehicle

and that the CVT is responsive to the driver command. This can be accomplished

by a combination of analog computer analysis and dynamometer testing.

Present traction fluids exhibit two properties that limit the operational

envelope of a traction drive: a rather high viscosity index and a tendency to

entrain air. Traction fluid manufacturers are conducting development work to

solve these problems, and the traction fluid properties may change with each
new development. Test verification of the actual traction fluid properties

operating in a CVT is needed to obtain the best traction contact performance
analysis.

In Task III the suitability of the selected CVT design concept for alter-
nate electric and hybrid vehicle applications and alterndte vehicle sizes and
maximum output torques was determined. In all cases the toroidal traction
drive design concept was applicable to the vehicle system. The regenerative
gearing could be eliminated in the electric-powered vehicle because of the
reduced ratio range requirements. In the other cases the CVT with regenerative
gearing would meet the design requirements after appropriate adjustments in
size and reduction gearing ratios.

Task IV consisted of preparing a design report and discussing the design
criteria and tradeoffs. The report presents the results of the engineering
analyses conducted on the CVT during the design process; these Included stress,
critical speed, life, reliability, weight, and performance.
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I :. _ODUCT ION

Purpose

The program described in this report was initiated to evaluate, optimize,
and develop a preliminary design concept for a continuously variable trans-
mission (CVT) to couple the hlgh-speed output shaft of an energy storage fly-
wheel to the drive train of an electric: vehicle (shown in fig. 2), identify the
technology advancements required to develop the CVT, and determine the suit-
ability of the CVT ctesign concept for a_ternate electric and hybrid vehicle
appl ications.

This work was part of the Electric and Hybrid Vehicle Program of the U.S.
Department of Energy. It was performed under Contract DEN 3-117 and managed
by the Bearing, Gearing, and Transmission Section of the NASA Lewis Research
Cantar •

Bac kground

In a traction drive, torque Is transmitted from one smooth rolling element

to another by the resistance to shearing of a fluid pad separating the two
elements. Thls traction phenomenon is dlscussed In detail in the Operation
Description subsection. A large variety of different traction drive mechanisms
have been attempted, some successfully and some not. Some of the more common
types of traction drives are shown schematically in figure :3. Of the variable
ratio traction drive configurations conceived, the toroidal type has shown the
best combination of power, speed, and efficiency.

The first toroidal drive patent was Issued In 1877. Since that tlme

several varlatlons of the toroldal drlve deslgn concept have been manufactured

and tested by varlous Indlvlduals, Today over two dozen companies throug_ut

the world manufacture various types of traction drives that are primarily used
in industrial applications. They are generally used in light-duty service.
Steel and tractlon fluid developments in recent years, however, al low the deslgn
of higher power traction drives as a result of increased material strength and
Improved fluid traction properties.

This report presents the toroidal traction drive resulting from an engi-
neering design study and supporting analyses. The design study Included the
latest traction fluid properties data and available empirical data from traction ,_
contact exper iments.

_r

4
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Figure 3.--Some commontypes of _raction drives.
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PROGRAM SCOPE AND PROCEDURES

The program effort was directed toward evaluating and comparing five

different full toroldal cavity, traction drive CVT configurations, selecting
one design configuration, and optimizing that design wlth respect to the speci-

fication requirements. These requirements are described in the following Design
Requirements section.

In this report, Task IV of the program, activity is discussed in terms of
the three principal tasks:

• Task i--Conduct an engineering analysis to select and optimize a CVT
configuration to meet the design requirements, and develop a pre-
liminary CVT design.

• Task II--Identify technology advancements required for develcplng the
CVT to production status. This includes defining the problem areas
and estimating the means and efforts required to solve the problems.

• Task Ill--Determine the suitability of the CVT concept for alternate
electric and hybrid vehicle applications and the suitability of the
selected CVT design for alternate vehicle sizes and maximum output
torques.

These tasks were performed according to the following schedule=

.... 1979 i980
LI

Task M J J A S 0 N D J
| i | •

I Des ign study •

II Required technical advancements

III Alternate applications _lJmll

IV Oesign and technical assessment __ll _'
, . ,,, . , ,,

Tas,. I, Des i gn Methodo Iogy

A digital computer program was developed to analyze the performance of

the CVT. The details of the program are discussed In the Task I_ Configuration
Analysis end Selection section. The computer program was used to select the 0
optlmal toroldal cavlty and roller dlmenslons, compare the performance of

different design configurations, and predict the performance of the final CVT
design configuration.

A parawtrlc study was conducted to select the ootiml toroidal cavity ,
and rol ler dimnsions. The study consisted of optimizing preselected CVT per-
formance parameters while varying the torold and roller dlmenslonsp holding
all other operating conditions constant. The torold and roller geoimtry that
yielded optimal performance were then selected. T;

?
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The selected toroid/roller geometry was then used to compare five candidate
CVT design configurations. These five CVT design configurations are described
in the Design Configurations subsection. To compare the performance of the
design configurations, a mathematical model of eac_ was made and input into the
computer program. These performance of each was +hen evaluated at preselected
operating conditions. The final design configuration was selected using spe-
cific, ranked design criteria. These design criteria, starting with the most
important, are:

(1) Efficiency

(2) Cost

(3) Size and weight

(4) Reliability

(5) Noise

(6) Controls

(7) Maintainability

Task II, Identification of Required Technology

The operation of the selected CVT design configuration was analyzed with
respect to potential technological problems. This analysis included identify-
ing the problems and discussing the effort required to solve the problem, All
aspects of the design were included In the analysis, the control system, the
traction fluid performance requirements, and all the mechanical components.

Task III, Suitability for Alternate Applications

The suitability and scalability of the toroidal cavity traction drive CVT
concept for electric and hybrid vehicles end alternate vehicle weights and out-
put torques were determined by comparing the mechanical requirements of the
alternate applications to the Initial conditions, This Included ratio range,
speeds, torques, and size, The alternate application design configurations
Included an electric vehicle powered by an electric motor, and • hybrid vehicle
with an electric motor and Internal coa_ustion engine, The alternate vehicle
weights were 790 kg (1750 Ib) and 10 000 kg (22 000 Ib), and respective output
torques were 210 I_a (155 Ib-ft) and 2600 N-m (1900 Ib-ft). These conf'gura-
tions were Gvelueted in accordance with the specified operating conditions.
The cx_aputer program was used to verify the analysis when necessary.

8
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Task IV, Design and Technical Assessment Report

Information relating to the CVT design selection and analysis of Task I is
presented. A full description and layout of the selected CVT design configura-

tion, including performance maps, are presented as well. The selected CVT design

is described in the Selected Design Description subsection.

A discussion of the design approach covers the design tradeoffs, the

strengths and weaknesses of the five candidate design configurations, and

the ability of each to achieve the design specifications.

Detailed engineering analyses of the selected CVT configuration were per-

formed. The results are presented in the Configuration Ana:ysis and S_lection

subsection. These analyses included stress, critical speed, life, rellability,

weight, and geartrain.

Engineering consultants were employed as necessary to guide the engineering
analyses in the areas of stress, l_fe, traction fluid properties, and configura-

tion design. These consultants included Dr. Alston Gu and Byron Heath, AiResearch

Manufacturing Company; and Milton Scheiter, General Motors, retired.

Discussions of the required technological advancements identified in Task

II and the suitability of the CVT design for the alternate vehicle appllcations

specified in Task III are included.
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DESIGN REqUIREmENTS

The desigr requirements are specified in lhe statement of work and apply
in 1he performance of all three tasks. The design requirements are outlinee in
this section. The purpose of the design requirements is to describe a CVT that
has both a wiCe ratio range and high efficiency, with relia_.ility, size, welch?,
and cost comparable to those of present day automotive transmissions.

The CVT performance requirements are as follows:

• Input flywheel speed: 14 OOC to 28 000 rpm

• Output shaft speed: 0 to 50OO rpm

• _aximum delivered torque: 450 N-m (330 Ib-ft)

• _aximum delivered power: 75 kW (100 hp) for 5 s

• Ratio change rate: full ratio 2 s (increasing or decreasing)

• ri-direction power flow

• Startup and driving smoothness of conventional automatic transmission

• High efficiency over its entire operating spectrum

• Overall size and weight comparable to those of _resent automotive
lransmissions of equal power

• Palntainability equal to or better than present automotive automatic
transmissions

The design features of the vehic!e arc as follows:

• Vehicle curb weight: 1700 kg (3750 Ib)

• Extracted flywheel energy: 1.8 _J (0.5 kwh)

• CVT controls to provide "feel" of conventional automatic transmission

• Reverse drive by electric motor or CVT

• Electric motor to charge flywheel from rest

• Design life:

I0 percent life, 2600 hr

, Weighted average power: 16,_ k_ (22 hp)

. Average speed: 21 000 rpm Input�3000 rpm output

I0
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The initial effort was directed toward determining the CVT ratio range

requirements specified by the design requirements and creating the preliminary

CVT design configurations to meet these requirements.

Establishing a ratio of the input and output speed requirements will yield

the ratio range necessary for meeting the design requirements. Therefore, the
CVT must have an infinite ratio range if a zero output speed is to be achieved.
This can be accomplished with the addition of regenera+ive gearing to the

toroidal drive. All the configurations disc_ssed here are described in detail

in the Design Configurations subsection.

The statement of work, however, indicates that a minimum CVT output speed

of up to C50 rpm is acceptable if the CVT is not continuously controllable down
to zero output speed. This would require the addition of a slipning clutch to

the driveline to allow the differential input speed to go to zero. The minimum

output speed would be dictated by ,he slipping clutch performance.

The minimum CVT ratio range necessary to achieve an 850 rpm minimum CVT
output speed is 11.7:1. Because the full cavity toroidal drive has a maximum

usable ratio range of about 8:1, the design must expand this ratio. Five CVT

design configurations were considered that could attain the requireJ ratio

range, and each was evaluated to determine the advantages and disadvar ages
during he selection process.

11
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DESIGN CONFIGURATIONS

Each of the five CVT design configurations evaluated during this study
include toroidal traction elements coupled in various ways to another toroidal
traction element and/or reduction gear sets. These deslgn configurations are
described below.

Baseline Drive

The baseline drive (fig. 4) incorporates smooth rollers In both the slngle-
stage fixed-ratio planetary drive system and in the variable toroldal roller
section that provides the variable output speed and can provide a reverse func-
tion. Power is transmitted to the input shaft, which drives the sun element of
1he fixed-ratio planetary drive at input speed. Torque from the sun Is reacted
by the planet rollers and is transferrod to the ring element and planet carrier.
The planet carrier is attached to the output shaft of the drlve and transmits all
of the output power. It should be noted that the sun element is operating in a
direction opposite to the ring and is feeding power back into the toroid system
by the rea:tive torque required to deliver power to the output shaft. When the
speed of the ring element through the toroidal system is modulated so that the
surface speed of the ring approaches that of the sun, the output shaft speed
will approach zero speed. Any surface speed of the ring that is higher than
the sun produces a reverse rotation of the output shaft. Variable speeds are
obtained by inclining the toroidal rollers with respect to the input and out-
put discs, thereby increasing or decreasing the respective speeds of the discs.

The roller control system is described In the Transmission Ratio Control
subsection.

Series Drive

This configuration consists of two toroidal cavities In series with the
output of the first connected to the Input ot the second as shown in figure 5.
Power is transmitted to the Input shaft, which drives the Input disc. Torque
from the disc is reacted by the rollers and transmitted to the output disc.
The output disc is connected to the Input disc of the second cavity. Again the
torque is reacted by the rollers and transmitted to the output dlsc. Variable
speeds are obtained by varying the angle of inclination of the rollers with
respect to the Input and output discs. Independent roller controls are required
for each cavity. The minlmum output speed can be achieved by additional reduc-
tion gearing, as required.

Two-Speed Shifted Drive

The t_o-'speed concept Incorporates t_o toroidal cavities in parallel with
the output discs connected to a reduction planetary gearset as shown in figure

; 6, Power is transmitted to the Input discs. The input discs are tied together
_ and are located In the center of the transmission. Torque from the discs is

_, 12
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reacted by the rollers and transmitted to the output discs. The output discs,

which are connected together, drive the planetary sun element. The planet car-

rier is attached to the output shaft of the drive. A brake band is positioned

around the planetdry ring element, and a clutch is positioned to connect the

sun element directly to the planet carrier.

When the maximum gear reduction is desired, the output discs drive the

output shaft through the planetary reduction with the clutch released and the

brake bard applied to the ring element. The output discs drive the sun element.

Torque from the sun is reacted by the planet gears against the stationary ring
element. The output shaft is attached to the planet carrier and rotates as

the planets are driven by the sun gear.

The planetary reduction can be bypassed by releasing the brake band and

applying the clutch. The output discs then drive the planet carrier directly
through the clutch.

The shift occurs as the toroidal cavity reaches the ratio extremes. During

acceleration, the planetary would be in reduction. When the toroid rollers
move to the maximum ova'drive position, the shift would occur. Simultaneously,

the brake band would be released, the clutch would be activated, and the rollers

would be driven to a predetermined position to match the new overall transmission

ratio to the ratio prior to the shift.

Inverse Regenerated Drive

The inverse regenerated drive (fig. 7) incorporates a single-stage fixed-

ratio planetary drive system and a variable toroidal roller section that pro-
vides the variable output speed and can provide a reverse function. The design

utilizes two toroid cavities, in parallel, with the Input discs and output discs

connected together. Power is transmitted to the input shaftw which drives the
input discs and the planetary ring element at a speed that is proportional to

the input speed. Torque from the ring is reacted by the planet gears and Is
transferred to the sun gear. The planet carrier Is attached to the output

shaft of the drive and transmits all of the output power. The sun gear operates

In a direction opposite to the rlng and Is feeding back power into the torold

system by the reactive torque required to deliver power to the output shaft.
By modulating the speed of the sun gear through the toroldal system so that
the surface speed of the sun approaches that of the ring, the output shaft speed
will approach zero speed. Any surface speed of the sun that Is higher than
the ring produces a reverse rotation of the output shaft. Variable speeds are
obtained by varying the angle of Inclination of the torold rollers in the toroid
cavity.

Regenerated Drive

i The regenerated drive concept (fig. 8) is similar to the Inverse regenera-

tiw3 concept described above. The sun gear speed in the regenerated drive Is
prol_0rtional to the Input speed. Output shaft speed is zero when the ring gear
sur'=ace speed Is equal to the sun gear surface speed. As the rlng gear speed

is increased, the output shaft speed also Increases.

i '°
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The principal difference between the regenerated drive and the inverse

regenerated drivu is thdt the rotational speed of the reacting member (sun
gear) decreases as the output shaft speed increases for the inverse regenerated

drive and the rotational speed of the sun gear increases as the output shaft

speed increases for the regenerated drive.

i;
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TRANSMISSION RATIO CONTROL

The combination of two power sources, namely the electric motet and the

flywheel/CVT, in the same vehicle drive system requires control logic that will

sum the power sources to produce the desired driver command. The greatest

benefit to the propulsion system will occur when the electrlc motor power

demands are load-leveled, which results in a reduction in electric motor and

controller sizes and an increase in the utilization of battery energy.

To provide the required control strategy, two control loops are needed.

One control loop is used to manage the flywheel energy level by comparing the
flywheel speed and the vehicle speed so that the flywheel energy can be main-

tained as desired for a given vehicle operating cycle. The flywheel speed

is held within prescribed limits by the addition of electric motor power or

the extraction of vehicle kinetic energy through the use of the motor as a

generator during portions of the vehicle operation such as hlll descent. The

second control loop is used to change the CVT ratio so that combined flywheel
and electric motor power sources provide a vehicle output power as commanded by

the inputs from the accelerator and brake pedals. A schematic of the vehicle

control system is shown in figure 9.

Motor Control

The motor control is separate from the CVT control system. However, the
control function must be correlated with the flywheel/CVT control system as

described in the operation of the roller position control logic. The motor

controller responds to the command to maintain flywheel speed at the required

value, and it does this by adjustlng motor current to the requlred power level.
A current limlt can be selected which provides sufflclent power to maintain a

maximum steady-state driving condition, such as a hill cllmb at some prescrlbed

value of vehicle speed. In a typical dc mechanically commutated motor, the
current limit is established by an armature chopper when the motor Is below

its base speed, or the speed where the motor back EMF is less than the supply
voltage. The current limit is established by field weakening when the motor
speed is above base speed. An attempt should be made to control the motor
operation in a range that results in the lowest level of source current that
produces maximum battery energy capability.

CVT Control

The CVT control of power flow into and out of the flywheel must provide
for the added power source supplied by the electric motor. Since this power
source is located between the CVT and the vehicle wheelsp the CVT control will
be biased by the added power so that the CVT control reflects the net power
to satisfy the accelerator and brake pedal commands. The bias signal can be
proportional to the electric motor current.

2O
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The CVT control is accomplished by a ratio change between the input and
output shafts to control the flow of power to and from the flywhc01. The

ratio change is accomplished by applying a force to the power rollers so that

the rollers move to the rolling path that produces the commanded ratio change.

This is a force-feedback actuation system that is hydraullcally powered with

pressure-balanced hydraulic actuators. A schematic of the CVT hydraulic con-

trol is shown in figure I0; a list of the control valves is given below.

(I) Forward, neutral, and reverse valve selects:

(a) Pump pressure to Valve 2 for forward

(b) Both outputs to sump for neutral

(c) Pump pressure to Valve 3 for reverse

(2) The flywheel charge command valve is solenoid activated for flywheel
charging when the vehicle is stopped and in neutral,

(3) The power command valve proportions roller position control pressures

to accelerator pedal position,

(4) The flywheel charge control solenoid valve proportions the rol let

position control pressures to charge the flywheel-solenoid. Force

and direction are control led by flywheel speed control logic.

(5) The roller position ratio limit valve reverses roller position con-
trol pressures when roller tilt reaches maximum in either direction.

(6) The maximum power limit valve limits the roller position control
system maximum pressure for maximum load limit on the transmission.

(7) The demand pressure valve sets pump discharge pressure to a fixed
amount over maximum control system pressure.

(8) The maximum pressure valve limits system pressure,

(9) The shuttle valve selects maximum control system pressure for pump
pressure control •

FIywheel Starting

To start or to charge the flywheel using the electric motor when the
vehicle is stopped Is performed by an automatic sequence as a result of turn-
Ing on the Ignition key:

(I) The Jew clutch between the motoe and the vehicle is disengaged.

(2] The CVT ratio is control led towarOs overdrive so that flywheel speed
can be Increased with a motor sl)e_ that rapidly approaches base
speed or above.

1 '• 2
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(3) When the key is turned off, the jaw clutch is again disengaged_ and
the CVT ratio is controlled towards overdrive so that the flywheel

can be restarted by the motor.

Alternate Control System

A simplified alternate vehicular drive train and control system is shown in

_igure 11. This configuration has the electric motor connected directly to th_

flywheel with a fixed ratio speed increaser. The motor control becomes a func-
tion of flywheel speed. Motor efficiency can be maxlmlzed because the motor

operates within a 2:1 speed range (the same as the flywheel) rather than from

zero to 5000 rpm. All vehicle power goes through the CVT, which has direct
power control regardless of whether the power comes from the flywheel or thG

motor. The CVT hydraulic control schematic for this configuration is shown !n
figure 12.

The flywheel starting system is simpllfled since the CVT ratio can remain
in maximum reduction when the vehicle is stopped and the flywheel coas1_ down

below its normal operating range. Starting is provided by applylno power to

the electric motor, which speeds up and charges the flywhee*,

CVT Power Roller Actuation

With a toroidal type traction CVT_ there have trJditionally been two
different types of control systems used to position tho power roli_rs--a posi-
tion control type and a load control type.

Position controi system._The position control system controls the drive
ratio by adjusting the actual geometric tilt of the po_r rollers. This is
usually done by manipulating the roller rotational axis to cause the roller to
steer and roll to a new position.

As normally used a position control system is insensitive to the power
carried by the drive and will not respond to changes in power levels. This
lack of feedback makes it very difficult to cause all the power rollers to
shar'e the load aqually_ especially with a dual cavity drive conf_guration.
Each roller must be held in a true geometric position to within a very small
tolerance while the drive is subjected to load and thermal stresses. Any
backlashp out-of-tolerance_ miselignment, etc.p will allow the rollers to
vary from true position and ind_me roller-to-roller interection and fighting.

Because of the Insensitivity to drive Ioads_ • positlon type s/stem was
not Juclged acceptable for this CVT applic_tlonp where a load responsive control
system Is required.
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Load cent/el syst£n).--fhe load (force-feedback power roller) control system
ideally fits load responsive control requirements of an automotive applicali,_n.

With this system, the controls adjust the tangential forces carried by the power
roller, not the roller tilt. The system is shown schematically in figure 13.
The rotating input disc imparls a tangential force (a) on the power roller
causing it to rotate and impart an equal tangentiai force (d) on the output
disc. A reaction force (b) is imparted on the power roller. The sum of forces
(a) and (b) is balanced by the force (c) from the hydraulic pressure in a support
cylinder. While these forces are in balance, the roller stays on tile tangential
point of roll on the 3raction discs, and remains stable. When there is a dif-

ference between tht_sum of the tangential iorces and the support force, the

roller novas to either lead or lag the fan,lent point, and generate a roller
steering action, as shown in figure 14.

In figure 14 tllerolling contact is shown at point (b). That contact rolls

on the traction disc along the circular pathway (a-b-c) as the disc rotates
about center C. The contact also rolls on the power roller, but in a straight

line represented by (d-b-e). As long as the contact remains at tangent point (b),

there is no vectorial error between the roll paths on the disc and power roller.

Steering action occurs when the sum of the tangential force_ is different

from the force from the hydraulic cylinder. Fig. 14 shows the rolling contact

between the input disc and the power roller. When the sum of the tangential

forces exceeds tilehydraulic cylinder force, tilerolling contact will move to

point (f) to lag the tangent point. At point (f), the roller roll path (d-f-b)
has a vectorial difference from the new traction disc roll path (shown dashed).

This vectorial error causes the power roller to roll down a spiral path, bring-

ing tilecontact inward towards the center C.

On the output disc, the same action occurs except that the direction of

the roll paths are reversed, and the contact point spirals outward away from
center C. Thus, when the sum of the tangential forces exceeds the hydraulic
force, the contact on the input disc is steered towards the disc center while
the contact on the output disc is steered away from the center; the power rol-
ler then moves toward reduction. The opposite action occurs when the sum of
the tangential forces is less than the hydraulic force, and the roller moves
towards speed-up.

Each power roller is therefore controlled independently by its own hydrau-
lic cylinder. With all the cylinders connected in parallel, all the rollers

must find a roll path where they will have equal tangential forces and thus
equal loads, If one roller is moved slightly towards speed-up in relation to
the others_ it will have higher tangential forces (by carrying more than its
share of the load) and will undergo the move towards reduction as described
above. The load sharing between rollers Is as accurate as the force of the
separate hydraulic cylinders. No other crl*Ical parts or dimensions are Involved.

By contro.lling the hydraulic pressure in the cylinders_ the vehicle con-
trol system commands the tangential forces on the power rollers andp there-
fore, the power transmitted by the CVT. The specific ratio of the CVT is not
controlled end will assume any value required between the flywheel and vehicle
speeds. The CVT can transmit power to and from the flywheel as commanded by
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increasing, decreasing, or reversing these hydraulic pressures. When the
hydraulic pressures are sot equal (or both to zero), the rollers will not carry
a load and will find a roll path whore no load is transmitted. That path will
be at the exact CVT ratio of the flywheel speed to the vehicle drive shaft
speed. Any variation from _nis ratio will produce positive or negative tan-
gentlal forces. Whe_ _he vehicle is stopped, the CVT ratio will be at zero
output speed.

To control the rate at which the roller tilts or changes ratio, the
hydraulic cylinder must be connected to the roller assembly in such a way that

there is a stroke or displacement of oli as a function of the tilt. The flow

rate of the oil entering a;,d :eavlng the cylinder is restrlcted by orifices.

In the oFtlmized design configuration, the hydraulic cylinder is split in

half with each half pushing on one end of the roller carrier or trunlon, u,,e
end of the trunlon has an integral cam surface. The pl_*o_ _r_ that end pushes
against these cam surfaces through a pair of cam followers. The trunlon rotates

as the roller tilts within the toroldal cavlty, and the piston is forced to

move up or down the cam ramps.

This configuration has been built and tested on numerous drive conflg-

urations and will have no difficulty in meeting the specified requirement of
running from maximum ratio to minimum ratio In 2 s. As designed, a sustained

displacement of less than 0.05 mm (0.002 in.) from the true tangent polnt of

roll will produce this rate of ratio change.

_r

'I
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TRACTION DRIVE DESCRIPTION

Operation

This section describes the basic principle behind the operation of a

traction drive and defines some of the important parameters used in the

analysis of the traction contact between two rolling surfaces.

In a traction dmive, torque is transmitted across two smooth rolling

surfaces; not by metal-to-metal contact, but by the resistance to shearing

of a fluid pad separating the two surfaces.

A simplified sketch showing the basic principle of traction drives is
shown in figure 15. The rotation of the driving member causes shearing in the

traction fluid between the two surfaces. This creates a tangential force that

drives the driven member. The amount of shearing in the traction fluid Is a

function of the normal force (FN) and the fluid traction coefficient (u) which
is defined as:

P = mFT (1)
FN .,

therefore,

FT = uF N (la)

The fluid film between the rolling surfaces resists shear and minimizes !

slippage while operating in the elastohydrodynamlc reglon of lubrication. The
fluid actually becomes _ semi-solid under the high momentary contact pressure
in a traction drive.

The fixed ratio arrangement shown In figure 15 is representatlve of a

simple single stage speed reducer, and the power (kW) transmltted can be
expressed as.

2_R1N1FNUn
Pout = nPin = 33 000 x 0.746 (2)•

where

n = efficiency _!

i

R 1 = radius of Input disc, m (ft)

NI = speed of input ,:isc, rpm

t FN = normal forcesp kg (Ib)

u • traction coefficient
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Figure )5.--Basic principle of traction drives.

A variable ratio traction drive arrangement would use a toroidal cavity
formed by separate input and output discs on a common center and a number of
traction rollers positioned equidistant around the center of the toroidal
cavity (fig. 16). The effective speed ratio _cross the ,oroldal cavity would
be the ratio of the input and output radii:

R(::l (3)
Ratio = R-_

For highest drive efficiency, 'the normal forces between the discs and the
rollers need to be varied in accordance with varying torque and ratlo condi-
tions. An Initial preload force is applied by springs to prevent any initial
sl Ip between the discs and rollers during startup. Upon rotation and torque
appl Ication, Io_d cams attached to the output shaft Increase the preload
between the rollers and discs.

The rollers are steered to change ratio and are held in position by med's
of hydraulic control pistons. The hydraulic force balances the tangential forces
on the rollers. When a new ratio position is desired, hydraulic pressure is
changed in the control pistons causing the rol lets to move from the tangent
position of roll to a new position where the forces are agaln balanced. There

i the rollers again return to the tangent point of roll. Parallel hydraulic
: connections between the rol let control cylinders enable all rol lers to share

, the same loads (in each cavity) so that all rollers are equally loaded,
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Traction roller

Input toroidal disc Output toroidal disc

I ! Rc°
Rci

Input Output

D

D = Toroidal pitch diameter

C = Toroidal cavity diameter

R = Power roller contact radius, transverse to
rolllng direction

Rc = Contact rolling radius; i = input; o = output

Aspect ratio = C/D

Conformity = 2 R/C

Drive ratio, Input speed/output speed - Rco/Rcl _ne

Figure 16.--CVT toroid cavity arrangement.
J
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In the toroidal cavity design concept (fig. 16) the axial thrust force

created by the load cam is balanced through the tension shaft connecting the
discs. This results in the elimination of axial bearing loads and minimizes
the reaction forces in the housing.

Tract ion Characteristics

Many factors influence the traction phenomenon within the fluid pad sep-

arating the two traction surfaces. Several of these factors are defined below.

Contact area.--When two elements such as a sphere and a plate (fig. 17)

are held together by a force normal to the plane of contact, an area develops

because the pressure deforms both the sphere and the plate. This flattening
is a function o; the modulus of elasticity of the materials, the normal or

contact force, and the curvature of the sphere and plate. The contact area

is a circle or an ellipse depending on the geometry of the two bodies in con-

tact. The contact area dimensions are found using the general case of two

bodies in contact, reference I, which is presented in detail in Appendix A.

Axial force.--The axial force is the force on the toroid discs parallel

to the centerline of the toroid. As mentioned above, the axial force is varied

by the use of a load cam mechanism attached to the output disc. Therefore,
the axial force is proportional to the torque on the output disc and the load-

ing cam lead:

4_T NROLL + F (4)
FAX = L I

where

T = torque

NROLL = number of rol lets

L = cam l e_J

F I = preload

Normal forceo--The force normal to the plane of contact between the disc
and roller is the contact force, as shown in figure 18. The contact force is
a function of the axial force, roller position, end number of rollers:

FN = FAX (5) '
cos (a) NROLL
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Figure 17.--Sphere andplate In contact.

1980017164-037



1980017164-038



where

FAX = axial force

= angular position of the roller with respect to the horizontal

NROLL = number of rollers

Hertzian pressure.--The Hertzlan pressure is the compressive stress at any
point in the contact area. The Hertzlan pressure is assumed to have a parabolic
distribution over the contact area, with the maximum Hertz pressure being at
the center of the contact area and going to zero at the edge of the contact area
(fig. 19). The Hertz pressure distribution is defined as (ref. 2):

where

FN = normal force

a = half the major axis

b = half the minor axts

x and y = point coordinates

Film thlckness.NWhen a fluid is present between the two surfaces, they
are separated by a pad of fluid, as shown in figur_ 20. The thickness of this
fluid pad is a function of the fluid viscosity, contact force, contact area,
equivalent diameter of rolling, and the rolling speed of the contact. The
equivalent diameter of rolling is the spherical dlameter that will y.eld the
same contact area; this is used for comparative purposes when the actual con-
tact area is an ellipse. The film thickness is (ref. 3):

•o ,o,[,,v],, ,,,, 6° 0. L

: where a • viscosity pressure component

i
E • material modulus of elasticity

v - flul _. viscosity
!

V - rolling speedB m/s (ft/s)

OR - equivalent diameter of rolling

FN - nomel force

ONAJ • major diameter of ¢onta¢_ ares ,

]6
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Tangential force.--This is the power carrying force along the plane of
the traclion contact; the force that transmits torque from one traction part

to another part (see fig. 18). The tangential force is transmitted between

the traction parts through the resistance to shear of the fluid within the
traction contact.

TF = T (8)
Pc NROLL

where

T = the torque on the disc

RC = the contact radius

NROLL = number of rollers

Traction coefficient.--The traction coefficient is defined as the ratio

ot the tangential force tc the contact force. It is a measure of the ability
of the fluid to sustain shear.

S_S_._.--Ina traction drive, the roller rolls on the disc in a curved
path; therefore, for an elliptical contact area oriented with its major axis

perpendicular to the direction of roll, the outer edge must traverse a larger

distance than the inner edge as it rolls over this curved path (fig. 21).

This rotation, superimposed on the rolling col,tact due to a curved roll path,
is called spin. The rotation is about an axis normal to the contact plane.

Creep.--Creep is defined as the motion of one traction surface relative
to the other traction surface due to the shearing in the traction fluid. In

a traction drive, a torque is transmitted to the roller through the fluid

film. As the disc rotates, sheering occurs in the traction fluid, resulting

in the disc moving a greeter distance than the roller (fig. 22). The differ-
ence in relative motion is called creep:

C = TROLL (9)
R 12"--'7-

where

TROLL = the sheer rate in the direction of roll

V = rolling speed

It is often more convenient to express creep as a percentage. It can then
be related to most other contact parameters:

Percent CR = 100 CR (ga)
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Traction drive life.--The life analysis is performed on the toroidal cavity

traction components, the discs and rollers. The analysis uses the standard

Lundberg-Palmgren theory for fatigue failure of two bodies in contact (ref. 4).

The total traction drive life is given by the following equations:

LIO _LlO)i_10/9 + (L10)o-10/9] -0.9 (-!13)
= (BANK) B (10)

where

L10i, LIOo are the LIO fatigue lives of the rolling contacts subjected to a normal
load Q. This may be estimated by:

(LIO)k = (111

where

k= i, o

and

i refers to the input contact and o the output contact

The basic dynamic capacity (Qc) for each of the traction drive contacts is
defined as the contact load that the contact can endure for one million revolu-

tions with a survival probability of 90 percent. According to reference 4 the

basic dynamic capacity for a rolling element contact can be written as

Oc = A1 ¢ Dl'4** (12)

where

¢ =(T_)3" 1(-_1)5 B.4 (a.)2.8(b.)3.,,D_.3(D_p)2"1 _-d-) u -1/3
(13)

(Symbol definitions are presented at the end of this subsection.)

Power input disc and roller Contact: Let the contact point be defined by
r i as shown in figure 23. The curvature sum of the surfaces at the input
contact is

1 1 sin (_) 1

Zpi = _ + 1 + (14)
r c r r r i rc

.1 sin (_)

r r r i

(*_For D(1 in., the exponent 1.8 is recommended.)
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and the ratio of the curvature difference to the curvature sum is

= r i
F(p) i _Pi

The angle _ can be determined when the contact between the roller and the

power output disc, defined by the radius ro, is Known. Let rolr i = n. One
obtains from figure 23

L 'rl
With F(P) calculated, a* and b* in eq. (13) can be obtained from ref. 4.

+

b* = _/(t 2 - 1,(2t- 1) (17)
a*

And (; and T are:

= 1

(t + 1) _/2t- 1 (18)

2t(t + I) (ref. 4) (19)

r

Roller

, I
Power input disc Power output disc

• ittl

#

F igure 23.--Rol I er geometry.
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For the special case of a circular contact, i.e., b*/aw = I, one obtains

_I = 0.3509

and

T I = 0.2139

The roller diameter at the contact is

D = 2rc

and the raceway diameter of the input GISC is

d = 2ri

When the disc is rotating, a point on its contact track line is alternately
stressed and unstressed twice per revolution. The number of stress cycles per
revolution of the input disc is therefore

U = 2

Power output disc and roller contact: The output contact point as shown
in figure 23 is defined by ro, which is related to ri by

ro = ri + 2rc sin a (20)

The curvature sum of the surfaces at the output contact is

SPo = I_ + I___ _ sin (a) _ I_ (21)
rc rr r0 rc

= I . sin (_)

rr ro

and

I__ _ I___ + sin ((_)+ I___

= rc r r r o r c (22)

FlP)o i:po

The raceway diameter of the output disc is

d = 2r o

:L

44

i :
r

l'

] 9800 ] 7 ] 64-047



When the input disc revolves one revolution, the number of stress cycles
on the output disc is

u = 2r-_L (23)
r o

A I and B in equations (10) and (12) are constants.

For bearings fabricated on 52100 steel, through-hardened to Rockwell
C = 61.7 to 64.5, test data of Lundberg et al. (rats. 2 and 4) indicate
A 1 = A/0.0706 with A = 7450 in inch-pound units, i.e., A1 = 105, 524.

B is a life adjustment factor fret. 5). It includes adjustment factors for
material, processing, lubrication, speed effects, and mlsalignment. The expected
traction drive life equals the rated LIO life times this life adjustment factor.

B = 5 in this analysis.
i

It may be noted that the Lundberg-Palmgren theory assumes that the risks
of fatigue failure of the bodies in contact are both equally great. Because
the contact track line on the rollers is constant, while on the raceways of
the discs it varies with the angle a, it is likely that roller failure may be
more frequent than disc failures. The LIO life predicted by equation (10) is
therefore conservative if all parameters are accurately estimated.

Nomenclature:

A1 material constant for the basic dynamic capacity

a*, b* coefficients for determination of the major anu minor semi-axes of the
pressure ellipse

B life adjustment factor

BANK number of toroidal cavities in parallel

d raceway diem

D rolling element diem

L fatigue life in millions of revolutions

Oc basic dynamic capacity
t

, 0 constant load
t

r c radius of cavity

, r r red'i us of rol let crown

: T ratio of max. shear stress amplitude to max. Hertz stress

i u number of stress cycles per revolution of driving unit

i 45
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P curvature

ratio of depth where max. shear stress amplitude occurs to sem;-minor

axis of contact ellipse

Subscripts:

i input disc

o output disc

r rol er

,?

I

/

.! o
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TASK I, CONFIGURATION ANALYSIS AND SELECTION

CVT design configuration analysis, selection, and optimization were divided
into four steps. Each step was directed towards optimizing one aspect of the

CVT design.

The first step consisted of performing a parametric study wherein changes
in preselected CVT performance parameters were observed with respect to varia-
*ions in the toroid and roller geometry. The purpose of this parametric study
was to establish the optimal toroid geometry.

Having established the toroid geometry, the second step of +he anaJysis,
selection of the optimal CVT design configuration, was begun. The final CVT
design configuration was selected from the five candidates based on the ranked
design criteria presented in the statement of work. In order of their overall
importance they are: efficiency, cost, size and weight, reliability, noise,

controls, and maintainability.

The third step consisted of optimizing the final CVT design configuration.

A fourth and final step consisted of studying the transient load and

motion characteristics of the CVT roller control system. To perform this

study, an analog computer simulation was generated from a math model describing
a vehicle containing a CVT.

Computer Simulation

A digital computer simulation was developed from an existing AiResearch
program, and the program output data were used in the decision making process
of each of the steps outlined above, The purpose of the computer simulation
was to model each CVT design configuration and evaluate the traction contact
and overall CVT performance under various operating conditions,

Because of the complex interrelationship between the traction contact para-
meters, creating an analytical model of the traction contact was difficult. The
traction coefficient is affected by several contact parameters, including spin,
temperature, creep, roll ing speed, Hertz pressure, film thickness, the curva-
tures of the two elements, and the surface finish of the elements. Similarly,
creep and spin are affected by some, or all, of the parameters mentioned above.
The digital computer program was written to include both empirical data and
anal ytical expressions.

The simulation uses anal_lcal methods to determine the speeds and loads
through the CVT and empirical data to evaluate the traction contact for the given
operating conditions. It is constructed to be flexible using a modular fore. The
fluid properties and empirical data are Input as data maps that can be modified

as additional data become available. Independent subroutines are used to Inter-
polite within the data maps. A mathematical model of each CVT design conf igura-
tton is Included In the program and uses standardized variable names. Any con-
figuration can be selected for evaluation by setting an Indicator flag.
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Logic diagrams of the computer program and contact analysis subroutine are
presented in figures 24 and 25, respectively.

Data inputs to the program are made through data cards and Include the
following:

(1) Speed and power into the CVT

(2) Output torque and power limits

(3) Toroid and roller dimensions

(4) CVT configuration, including

(a) Number of toroid cavities

tb) Number of rollers per cavity

(5) Ratios of additional gear sets, Including the planetary gear ratio

(6) Finite torotd cavity speed ratios, up to eight possible

A first approximation is performed In which the initial gearing and bearing,
traction contact, and oil pump losses are each estimated to be 2 percent of
the input power. The program then proceeds through each ratio of the CVT and
calculates the input and output speeds and torques, subtracting the losses as
applicable. The final output power and torque are compared to the maximum
allowable values specified in the Input and set equal to the maximumvalues
if they exceed the maximumvalue.

The contact and tangential forces are calculated using the axial force
on the discsj the torque and the roller geometry. The traction coefficient
is found by:

= __FT (24)
FN

The contact area is calculated using the general formula for two bodies In
contact (Appendix A), and the mean Hertz pressure Is calculated by dividing the
contact force by the contact area.

The average spin Is calculated using the roller geometry and speeds.

i 48
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Figure 24.--Co_uter program.
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The final gearing and bearing losses are calculated using the loads,
speed, and sizes of the elements.

The traction contact losses are calculated, and the program repeats the
analysis using the actual loss values. To determine the contact loss, the total
percent creep must be found. The total percent creep is the sum of the percent
creep due to spin and the percent creep due to the tangential force.

Percent creep is also a function of the traction coefficient, Hertz pressure,
and spin as well as other voriables. The procedure usud to calculate the trac-
tion loss is described below.

Research ha_ been done using traction machines to determine the traction
coefficient characteristics with respect to percent creep. The procedure is to
set a Hertz pressure and percent creep and then find the traction coefficient.
A typical family of traction coefficient vs percent creep curves for various
Hertz pressures is shown in figure 26. As used in the program, these curves
are normalized to unity and then multiplied by other correction factors.

Resoarch has been done establishing the interrelationship between the Hertz
pressure, rolling speed, and spin. The results of this research are shown in
figures 27, 28, and 29. Using the average Hertz pressure, the Hertz pressure
factor is found by interpolating in figure 27. Similarly, the roiling soeed and
spin correction factors can be found by interpolating in figures 28 and 29, res-
spectively. The traction coefficient versus percent creep curves are then mod-
ified for the actual operating conditions by multiplying then by these correction
factors dnd a special factor for the specific fluid to be used.

To evaluate the contact loss, the contact area Is _ubdivided into 450
sub:livisions of equal size. The total creep, traction :-fficient, and contact
and tangential forces are calculat_l for each area and ,,,rimed.

The actual Hertz pressure for the area being eval_ted is calculated based
upon the actual pressure distribution presented above and is assumed to be con-
stant over the elemental area.

Given the Hertz pressure and the average traction coefficient needed to
transmit the torque under the given operating conditions° the percent creep
due to the tangential shearing can be found by interpolation (fig. 26). The
creep due to spin is calculated directly, and the two are added vectorlally.
Having found the total percent creep° the program then returns to the parame-
ters shown in figure 26, using the percent creep and Hertz pressure and finds°
by interpolation, the actual trectlon coefficient. If this total value is less
than that needed, the drive will not transmit the torque but will slip.

The elemental tangential end contact forces are cal=ulated using the elem-
ental traction coefficient. The targentlal force, contact force, and percent
creep are summed for all the elements. The elemental losses are calculated by
multiplying the total shear rate by the elemental tangential force. The total
contact loss is the sum of the elemental losses tim the power through the
torold.
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PH -- 10.3 X 108 N/m 2 PH = 13.2 X lO 8 N/m 2
(150 ksi) (192 ksi)

= 2 _ = 12.4 X 108 N/m2
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Analysis Step I, Parametric Study

The parametric study was the first step toward selecting a CVT coqfiguration.

The purpose of the study was io determine the effect perturbations in certain

CVT parameters have on the overall toroidal cavity performance. The ratio of

the cavity diameter to the tor-oid diameter (aspect ratio) (refer to fig. 16),
the physical size, the ratio of the roller transverse diameter to the cavity

diameter (conformity), the velocity of the contact, and the type of traction

fluid were all varied independently according to predetermined ranges (table I).

The CVT configuration used in the parametric study was a simple, single-
toroid cavity design with a reduction gearset at the input and output ends of

the toroid cavity, as shown in figure 30. The gearsets were included so that the

contact velocity could be varied.

Only those parameters listed above were changed. All other operating para-
meters were held constant during each computer modeling run. The runs were
made under the following operating conditions: input speed, 21 000 rpm; power,
16 kW (22 hp); and CVT ratio, 0.35:1. Each run consisted of "operating" the

CVT at 6 discrete ratios that spanned the toroid cavity ratio range. The data
from these runs were plotted and studied. The plots are presented in Appendix

B, and the trends observed resulting from the study are presented in table 2.

The objective of this study was to select a CVT cavity configuration that

would have high efficiency, low Hertz pressure, low to moderate energy dissipa-
tion through the traction contact, and be as small as possible. Based on the

observed trends, to achieve the highest efficiency and the lowest Hertz pressure
and energy dissipation, the CVT should be as large as possible and turn as fast
as possible.

Therefore, size became an important selection criteria. With this in mind,

the data were evaluated to establish the performance benefit that results from

stepped increases in the toroid size. The nominal toroid diameter was selected
as 112 mm (4.4 in.). This diameter selection was based on research conducted

by Milton Scheiter at General Molars in 1957, where he chose a 112-mm (4.4-in.)

toroid diameter for his research design of a toroidal traction drive of up to
75 KW (100 hp) and 244 N-m (180 Ib-ft) of torque for automobile service. A

lO-percent step in the toroid diameter was selected, yielding the iO0-mm (3.96-
in.), ll2-mm (4.4-in.), and 123-mm (4.84-in.) diameters evaluated. T_.easpect

ratio range and conformity range were determined ira similar fashion.

The first task, after the computer runs were made and the dat_ were

recorded, was to compare the performance for the three toroid sizes and select

one for the design configuration comparison. The comparison was performed at

one drive ratio. The drive ratio of 0.35:1 was selected after reviewing a tab-
ulation of the percent change in performance at each of the different ratios
when going between two toroid diameters (Appendix B). The largest changes in
efficiency and energy dissipation occured at this ratio; therefore, small
changes in performance would be easl ly observed.
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TABLE 1.--GEOMETRYSUI_VARY

CONF _ 0.5
DCAV - 0.8 CONF = 0.6
DTOR CONF = 0.7

CONF = 0.5
DTOR = 0.10 m DCAV _ 0.9 CONF - 0.6

(3.96 in. DTOR CONF -- 0.7

DCAV CONF = 0,5
= 1.0 CONF- 0.6

DTOR CONF = 0.7

DCAV i'-'--- CONF = 0.5

DTOR - 0.8 L CONF = 0.6CONF = 0.7

1 0.9 I _- - cONF=0'5selectedcONF= 0.6 j geometry
DTOR = 0.11 m DCAV _

(4.4 in.)" DTOR "[ I CONF = 0.7

DCAV CONF = 0.5
1.0 CONF : 0.6

DTOR
CONF = 0.7

DCAV CONF = 0.5
- 0.8 CONF = 0.6

DTOR CONF = 0.7

CONF = 0.5
DTOR - 0.12 m DCAV _ 0.9 CONF = 0.6

(4.84 in.) DTOR CONF = 0.7

DCAV CONF = 0.5
= 1.0 CONF = 0.6

DTOR ___ CONF = 0.7 ==_
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TABLE 2.--PARAMETRIC STUDY TRENDS

Input conditions:

Flywheel input speed, 21 000 rpm

Flywheel input power, 16 kW (22 hp)

Input disc Output disc energy
Parameter Efficiency Hertz dissipation intensity,

pressure W/mm 2

Aspect ratio Decreases Decreases Decreases slowly
(0.8 to 1.0)

Physical size Increases Decreases Decreases
l(toroid diam

I00 mm to 123 mm)

Conformity Decreases Decreases Almost constant
(0.5 to 0.7)

Increases at mid-

Input disc speed Increases Decreases speed ranges, same
(3000 to 6000) at extremes

Traction coefficient Decreases at N.A. Increases aT low

(Mobile 62, low speeds speeds

Santotrac 30, Increases at Decreases at high :
Santotrac 50) high speeds speeds

Having selected the drive ratio, the data were plotted for each aspect

ratio, comparing the performance for each size. These plots, shown in figures

31, 32, and 33, were used in selecting a toroid diameter of I12 m (4.4 in.).

A 100 mm (3.96-in.) toroid diameter was found to have high energy dissi-

pation irrespective of the aspect ratio and high Hertz pressure. The energy

dissipation ranged from 64.4 to 78.4 W/mm2 for a moderate power level of 16 kW

(22 hp).

A 122-mm (4.4-1n.) toroid diameter was determined to be the optimum size
and was selected over one of 123 mm (4.84 In.) because the increased size would

result in only a 1-percent increase in efficiency, whereas the weight penalty
would be significant. The disc weight is proportional to the toroid diameter
to the cubic power. In addition, the weight of other ancillary parts would
Increase as they were made larger, Including the housing, in both length and
girth, and the rollers and roller mounting structure. This weight Increase
would result In a proportional cost Increase.

' The energy dissipation trends shown in figure 32 Indicate a significant
! reduction as the toroid diameter is Increased; however, the energy dissipation

value of approximately 52 W/mm2 for the 112-mm (4.4-1n.) toroid diameter isi
59
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believed to be satisfactory for the cavity desi]n, and a further reduction
associated with the 123-mm (4.84-in.) toroid diameter is not required.

Similarly, the mean Hertz pressures for the 112-n_n (4.4-1n.) toroid diameter
are within the operating stress levels of the contact surfaces. An increase in
toroid diameter Joes not result in a significant decrease in mean Hertz pressure
and is therefore not required.

The aspect ratio and conformity were selected after evaluating plots of
the performance data for the 122-mm (4.4-in.) toroid diameter at the various
aspect ratios and conformities (fig. 34), An aspect ratio of 0.9:1 was selected.

The 0.9:1 aspect ratio was selected over an 0.8:1 ratio because it l,rT_se,lted

a 7.6-to 9.3-percent decrease in Hertz pressure and up to a 10-percent decrease

in energy dissipation with less than a I-percent drop in efficiency, The 0.9"1

ratio was also selected over a 1.0:1 ratio because the weight consideration
became significant. Again, the Hertz pressure dropped to 5.6 xlO8 N/m2 (82 000

.psi) with an aspect ratio of 1.0:1.

A conformity of 0.6 was selected. Its energy dissipation was the lowest
of any of the conformities and the Hertz pressure range was also the lowest
while staying above 6.9 xlO 8 N/m2 (100 000 psi). A comparison of the Hertz
pressure range for each conformity is shown in table 3.

TABLE 3.-- HERTZ PRESSURE COMPARISON

Toroid diameter: 112 rrrn (4.4 in,)
Aspect ratio: 0.9:1

i

Ccnformity Mean Hertz oressure range,
N/m2 (psi)

Ill II I

0.5 1.96 x109 to 8.15 w10E (284 405 to 118 287)

0.6 1.74 xlO9 to 7.14 x108 (253 097 to 105 521)

0.7 1.54 x109 to 6.14 x108 (224 006 to 89 151)

!
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A toroid diameter of I12 mm (4.4 in.), a cavity diameler of I00 mm (3.96

in.), an aspect ratio of 0.9:1, and a conformity of 0.6 were selected as the

toroid geometry for the CVT design configuration comparison.

Anal sis Step 2, Configuration Selection

The selection of the final CVT configuration was made after evaluating and

comparing the five candidate configurations. In each case the toroid cavity

geometry conformed to that selected in the parametric study: an aspect ratio
of 0.9 and conformity of 0.6.

The first step in the selection process was to determine whether each

design configuration could meet the design requirements. This consisted of

evaluating each design configuration with regards to meeting the power, speed,

and ratio requirements. A design configuration was eliminated from further

consideration if it was too large, demonstrated low operationa_ efficiency,

or could not meet the design requirements without an advance in the state of
the art.

The second step was to analyze the remaining design configurations by use
of the c_puter simulation. The final design selection was made based on a

review of the five CVT configurations and by an examination of the computer simul-

ation performance data. The regenerated, dual cavity, full toroldal design was

selected over the other four configurations. The selected design Is capable of

meeting the.program goals and specifications without an advance In the state of

the art. The selected design provides an infinitely variable transmission rati,,
range without the use of a slipping clutch. In addition, the balanced load, d_.:
cavity toroid CVT has butter performance than the alternate approaches provide.

Each of the design configurations is discussed below.

Baseline configuration.--A single cavity full toroidal traction CVT with
traction differential planetary output section in load balance (Baseline drive,
fig. 4) was the baseline design for the CVT study.

Detailed analysis of the baseline design revealed large d'fferences in the
axial load capaOilltles betw_n the two traction sections. As a result, the
Hertzian pressure forces on the variable ratio section and the regenerative
section (planetary differential) were difficult to balance simultaneously.
Because the planetary differential was used to force balance the toroidal sec-
tion, it was subjected to identical axial loads. Also, because the ring-to-
sun ratio waS selected to meet the specified output speed re4uirement, there
was little flexibility in selecting the contact angle of the planets or the
number of planets. Analysis of the gyroscopic forces developed when running
the differential planetary carrier with the planet axis nonparallel to the
carrier rotational axis, shoved that decreasing the planet contact angle to
reduce the contact load increases the gyroscopic unbalance to an unacceptable
value. For use with lover output speeds, a reasonabl_ engineering conpronise
may be made and a servicable drive designed.

Regeneratedj dual-cavity configuratL_..--A regenerated, duel-cavity, full
toro|dal CVT (fig. 8) was the secon_ design approach that wa_ exmined. To
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meet the specified output speed requirements, a geared planetary differential
was used on the output of the CVT• Through th_ selection of an Input speed
reducer Jf 3:1p the flywheel speed was reduced to optimum CVT operati.g spe_._s.

PowPr is transferred from the center output section of the CVTj to the
ring of the planetary gear differential through a jackshaft w_th a 1•85:1
reduction ratio. The ring-to-sun ratio of the differential is 4.5. This pro-
vides a transmlsslon output speed range from zero to 5000 rpm with an input
speed range from 28 000 to 14 000 rpm.

In practice, the output speed was actually designed to go slightly
negative. This allows the load type control system the capability _f unloading
the CVT from excessive torques when operating In the fully regenerated condi-
tion (zero output speed)• To provide further protection, a torque l imiter
clutch was incorporated in the regenerated power loop.

Because of 'the recycled power within the CVT when operating at reduced
output speedsp the CVT losses are Increased and the eff=clency decreased over
a straight nonregenerated CVT.

Shifted# du_:-cavi,_y configuration.NA nonregenerated configuration was
also analyzed. The design inc!uded a dual-cavity, full toroidal CVT Incorporat-
;ng one or more shifts to provide maximum efficiency (fig. 6). Without reger, er-
ation, the CVT did not have internal recycled power. It could be somewhat
smaller, and operate with less losses; however, the CVT output speod could not
go to zero. A slipping clutch was judged capable of providin_j acceptably smooth
slartup and adequately low creep speed for stop and go traffic, if the minimum
CVT output speed was kept below 200 rpm. Because the flywheel power source had
a 2.'1 speed reduction whi ie the vehicle speed was increasingp the CVT had to
have a ratio range of 50:1 to provide a 200 rpm minimum output speed.

The full cavity toroidal CVT has a maximum usable ratio range of about 8:1
(2.8:1 to 0.35:1), Thus, a single-shift step ef 6.25:1 or double-shift steps :-
of 2.5:1 each, are required. The double-shift design was Judged to be overly
complex and vas not pursued. The single-shift configuration shift step was
analyzed and is very promising for an advanced design CVT.

A detailed examination of the shifting process .'evealed that the reduction
lock-out clutch must be modulated to smoothly hold drivel lne torque while the

CVT ratio was adjusted for syncronlzation. A review of tl_ available technology
indicated that such a controlled shift with a modulated ,.:lurch was beyond the
current state of the art. General Notors was successful wdth a maximum shift

of 1.8:1 using electronic controls. The same shift using hydraulic controls
was not acceptable. With the rapidly p,-_,'_s_lng state of the art in electronic
controls, a shift step of 2:1 could probe=: ," _ used and a development program
could produce the technology for a 7: I ;i," ,_. Such an effort is viewed as a
required technaloglcal advancement.

Series m duel-cavll_y conflguretton.--A series or tandem design configuration
consisting of duel toroldel cavities in series (fig. 5) ues analyzed. The pre-
I i.ainary anelysls showed this design configuration to require • large secondary
torold disc and complex rot !ur control system. T;m second toroidel drive would
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have to be designed to handle all torque and speed multiplication from the front

drive, resulting in an excessively large toroid size. In addition, the two
toroid drives would require different Uoading forces as they moved to various

ratios ¢ eating a force balancing problem similar to that described for the
baseline ]rive. The roller control system would be much more complex than for

the other design configurations because both rollers would need to be controlled

independently. A logic system would have to be included in the controlier to
determine which drive was adjusted in response to a change in operating condi-
tions. Based on these considerations the series or tandem design configuration

was dropped from further consideration.

Inverse-reqenerated dual cavity configuration.--An inverse-regenerated

design configuration (fig. 7) was analyzed as a possible alternative to the

straight regenerated configuration. In This configuration, the input shaft
drives the ring gear of the epicyclic gearset while the output from the vari-
able ratio toroidal drive drives _he sun gear. The planet carrier is the

transmission output.

Unlike the regenerated transmission, minimum output speed (zero) is
obtained when the variable ratio toroidal drive is in a maximum speed-up

ratio. The pitch line velocity of the sun gear is equal to the pitch line

velocity of The ring gear.

Maximum recycled power occurs when the toroidal drive is running at

maximum speed. This increases losses and reduces the life rating for both

the traction drive components and support bearings.
i

The inverse-regenerated configuration was reje;ted, therefore, because
it demonstrates poorer efficiency and reduced life rating at maximum operating

speed.

Analysis Step 3, Design Optimization

The purpose of the CVT design optimization was to obtain the smallest,

lightest, lowest in cost, and most reliable design within the selected design
configuration constrain:s. The optimization procedure consisted of performing

stress, weight, reliability, and maintainability analyses to select the size:

materials, and design details that would achieve the optimal CVT design. The
results of these analyses are presented below. The preliminary design layout of

the optimized regenerative CVT design configuration is presented In Appendix D.

: Stress analysis.--The stress analysis was d;rected toward three critical ;
areas of the CVT: the Hertz stress on the disc and roller, the Hertz stress

on The gears, and the critical speed of the main shaft.

The critical speed analysis was performed using a lumped parameter,

transfer matrix, computer program that included the effects of shear deforma- !

tion, rotary and polar inertia, ard bearing support stiffness and dampening

characteristics. The input and output bearing spring rates were assumed to De
2.4 x 109 Nlm (350 000 Iblin.) and 3.1 x I0g Nlm (450 000 Ib/in.)_ respectively.

The input planetary ring gear and both input disc masses were Included in the

analysis.
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The program calculated the critical speeds and critical speed mode shape.

The first critical speed (bending mode) of the CVT main shaft system occurred

at ]9 690 rpm. This critical speed was 211 percent of the maximum operating

speed of g333 rpm and provided a more than adequate critical speed margin. The

first critical speed mode shape is shown in figure 35.

Because the transmission jack shaft was about the same diameter as, and

shorter than, the main shaft, its critical speed was higher than that of the
main shaft. The maximum operating speed was 7150 rpm; therefore, the critical

speed mdrgin of the transmission jack shaft was even higher than for the main
shaft.

A summary of the mean Hertz stresses on the roller and disc over the

entire operating range is shown in table 4. These stresses were calculated
as described in the CVT simulation subsection.

The mean Hertz stress in the discs and roller range from 22.4 x I08 N/m2

(324 ks|) to 6.2 x 108 N/m2 (89 ks|) over the entire operating envelope that
is from 7.5 to 75 kW (10 to ]00 hp) and |4 000 to 28 000 rpm. The lower Hertz

stress level is slightly below the 6.89 x |08 N/m 2 (lO0 ks|) minimum design

guideline selected during the preliminary design phase; however, because this

low stress occurs only at the low power levels, the potential for skidding is
small.

These preliminary stress analyses show that the CVT design is acceptable
for the srecified operating conditions.

The gear train was analyzed using the AiResearch general gear train

analysis program. This program performs elastic analysis of the gear teeth

due to the interaction between meshing gears o _ the system. The program uses
Monte Carlo techniques for optimizing specific parameters, such as: diameter

change, diametric pitch, and center dlstances. The gear types that can be
analyzed by this program include parallel and crossed axis spur and hel'cal

gear sets. The program calculates tooth deflections, Hertz stresses, bending

stresses, temperature rise, and efficiency for instantaneous loadings. The

gear train configurations gear mesh identification numbers, and input and out- :

put speeds used in the analysis are shown in figure 36. The loading conditions

of the gear tooth and analysis results are presented in table 5.
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TABLE 4.--ROLLER AND DISC MEAN HERTZ STRESS RANGE SUIVNARY,

N/m2 x 108 (ksi) INPUT SPEED (rpm)

Input Speed

Output power,

kW (hp) 14 000 rpm 21 000 rpm 28 000 rpm :
u

iInput 11.4-6.2 22.4-6.2 22.4-6.57.54 (I0) (165-89) (324-89) (324-95)

Output I0.3-8.9 16.I-7.9 16.I-7.4
(149-129 ) (233-I15) (233-I07 )

IInput 14.2-7.1 22.4-7.1 22.4-7.6

14.9 (20) (2e6-I03) (324-103) (324-I10)

_Output 12.8-10.1 16.1-9. I 16.1-8.6
(186-147) (233-133) (233-124)

rInput 17.4-8.5 22.4-8.5 22.4-9.1
29.8 (40) b (252-123) (324-124) (324-132)

Output i5.6-12.2 16. I-I0.9 16.I-I0.3
(227-177 ) (233-158 ) (233-149) _-

lnput 18.6-9.9 22.4-9.9 22.4-10.7

52.2 (70) (269-144) (324-145) (324-155)

_Output 17.0-14.3 16.1-12.8 16.1-12.1
(247-208) (233-I86 ) (233-I75 )

iInput 18.6-II.0 22.4-11.1 22.4-11.975.0 (100) (269-160) (324-16. I) (324-172)

Output 17.5-15.9 16.9-14.2 16.7-13.4
(254-230) (245-206) (242-194 )
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TABLE 5.--GEAR ANALYSIS RESULTS

Gear Hertz stress Average Tangential
mesh Ratio N/m2 (ksi) efficiency force, N (Ib)

I_ I.I x 109 98.8 666

( 3.0:1 (161.8) (149.8)

I (Ring-to-sun)2 I.I x 109 99.4 666

(161.8) (149.8)

3_ 8.1 x 108 99.5 1934

( 1.85:1 (I17.5) (435.1)

I (Overall)4 7.4 x I08 98.6 2440

(107.1) (549)

5 8.1 x 108 98.8 772

I 4.5:1 (117.5) (173.6)

i (Ring-to-sun)6 8.1 x 108 99.4 772

(117.5) (173.6)

As the qear analysis shows, the stress levels are well below the 1.38 x 109

N/m 2 (200 ksi) m,_x.Hertz stress, which is the maximum level normally used in

standard automotive industry practice (ref. 6). The preliminary gear train

design is adequate for the operating conditions specified.

Cost t sizet and weight.--The cost of the CVT is expected to be comparable
to that of present day automatic transmissions. Both the part count and weight

of the CVT are less than those for a present day transmission. In addition, no

special gears, bearings, seals, or materials are needed, and though the surface
condition, material conditions, and hardness of the rollers and discs must be

controlled, no special processes are needed.

A detailed weight analysis was performed on the CVT. The total predicted
weight for the CVT and all ancillary equlpment (controller_ plumbing, etc.) is

68 kg (150 Ib). Details of the weight analysis are presented in Appendix C. f

A study was performed in 1976 to estimate the weights and manufacturing costs

of automotive systems and paris (ref. 7). A llst of welghts for various auto-

matic transmission configurations Is presented in table 6.

¢
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TABLE O.--TRANSMISSION WEIGHT CHART

Weight, I Automatic transmission

Type transmission kg (Ib) I weight to CVT weight ratio

3-cneed,
rear wheel drive 65 (144) 0.95:1

3-speed

with lock-up, 71 (157) 1.05:1
rear wheel drive

4-speed
rear wheel drive 77 (170) 1.13:1

4-speed

with lock-up, 83 (183) 1.22:1
rear wheel drive

3-speed

with lock-up, 70 (155) 1.03:1
front wheel drive

4-speed

with lock-up, 82 (181) 1.21:1
front wheel drive

Th_ three-speed automatic transmission is the only configuration weighing
less than the CVT. The other configurations weigh 3 to 22 percent more.

A size comparison is presented in figure 37. The CVT size was compared to

a standard Chrysler 904 model 3-speed automatic transmission. As figure 37 shows,

the CVT is shorter by approximately 76 mm (3 in.) and sllghtly taller by approx-
imately 38 mm (1.5 in.).

Reliability.--The preliminary reliabillty analysls of the CVT Included the

following components: bearings, discs and rollers, gears, and main shaft.

Survivability techniques were used to evaluate the loading and stresses
In the component and then to determine the probability of the component sur-
viving the specified operating life by comparing the operating stresses to .o
the material strength. A normal distribution was assumed for each material
strength value with 78 percent of the mean value to be at 3 standard deviations.
The probabili+y of survival was determined based on the number of standard devi-
ations between operating stress and mean strength using tables of the standard
normal distribution. The bearin 9 survival was predicted using standard bearing
life calculation method_ ogy.
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A summary of the preliminary reliability analysis is presented in table 7.
As the table shows, there is a 98 percent probability that the aforementioned
components will achieve the specified 2bUU hr life when operating under the
following conditions:

(1) Average input speed = 21 000 rpm

(2) Average output speed = 5000 rpm

(3) Weighted average output power = 16 kW (22 hp)

TABLE 7.--PRELIMINARY RELIABILITY ANALYSIS SUMMARY

C,omponent Probability of survival

Pearings (10) >0.983

Discs and rollers >0.999999

Cears (14) >0.999999

Main shaft >0.95996

Tota I >0.983
l i ii

Noise.--The traction type configuration is inherently quiet because the

traction elements are in constant contact, and there is no torsional pulsation
or vibration since the elements roll on each other. When a traction element

is coupled to a properly designed gear train, the CVT noise level will be
cuieter than that of an equivalent automative transmission.

Maintainability.--The disc type traction drive CVT design selected from
this study requires low maintenance. "The CVT components are designed for

greater than the specified 2600-hr operating life. No part replacement will

he required during this time under normal operating cnnditions.
4

The CVT does contain a traction fluid that is used for cooling w lubrica-
tion_ and torque transmission, The Santotrac 30 fluid selected for use in the
CVT is a synthetic naphthenic base fluid. Because of the Hertz pressure levels
present and the.lo_ energy dissipation through the traction contactp the fluid
should give over 5000 hr of service life; howeverp leaks may developp and over-
heating of the fluid can cause the fluid to break down. This fluid, ho_'ev,qrw
is stable to a higher temperature than standard petroleum-based .transmission
fluids. The fluid level and fluid condition should be checked at each vehicle

maintenance interval _ and should be added or changed as necessary.

I 75 _"
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A fluid filter is located in the hydraulic system before the fluid pump.
The purpose ot this filter is to trap particu _tes entrained in the traction

fluid. The filter will require minimal maintenance during the life of the CVT.

This maintenance will consist of checking and cleaning the filter. The filter
maintenance interval will correspond to the regular vehicle maintenance interval.

The CMT control system uses a hydraulic power supply. It is a simple

force balance system that has been described earlier. This system will be

adjusted at the time of manufacture of the transmission and should not need

additional adjustment during the life of the transmission.

4"
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Analysis Step 4, Roller Control System Analysls

In order to study the transient load and motion characteristics of the
CVTp an analog computer simulation was generated from a math model describing
a vehicle containing a regenerative CVT. Only fundamental characteristics of
the CVT/vehicle system are contained in this math model, which includes descrip-
tions of the following subsystems:

(1) Flywheel energy source with gearing

(2) CVT torus

(3) Torus roller control system

(4) Torus output gearing

(5) Vehicle with drive axle and clutch

The system math model, with detailed descriptions of these subsystems, Is shown

in the block diagram of figure 35. The system variables are shown in the system
schematic of figure 39. A list of system variables is contained tn table 8, and
a list of system parameters in table 9. All mechanical elements, except the
flywheel, are assumed to be massless, (no inertia) and rigid (no flexibility).
The math model can be modified to add the in_rtias and spring rates of the
development unit when this information is available.

Flywheel.--The flywheel section of the system math model consists mainly
of an inertia (JF) upon which the load ?o que (T F] acts. Also included in thls
section is the gearing ratio (REDT) through which speed signals are reduced and
the torque amplified. The load torque into the gearing (T I) is the sum of the
torques transmitted to the transmission input shaft from the CVT torus (TTI)
and from the transmission output gearing sun gear (Ts).

CVT torus.--The CVT torus consists of the Input and output discs and the
traction roller located in the center of the toroid cavity (fig, 39). Torque
and speed are transmitted between the input and output discs with a continuously
varying ratio. The ratio variation Is achieved by varying the angle of inclina-
tion of the roller in the toroid cavity. Torque transm;ssion between the Input
and output discs is assumed Iossless, but the traction velocity loss, celled
creep, L_tween the roller and the discs Is Included in the model, Creep is
approximated from the digital computer model data _s:

Creep (ft/sec) = 2,43 X I0 "4 (HPF O*15)(N F O'3)(NDoO'8) (25)

where

: _PF • Power of the flywheel speed and load torque

i _;F • FI ywheel speed (rpm)

NDO • Drive shaft speed (rpm)
L
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TABLE 8,--LIST OF SYSTFM VARIAPI.ES

var iable Def in it ion Un i_'s
i

CREEP Vefocit_ loss across torus m/s (ft/s)

FCAR LOAD Total force load on vehicle kg (Ib)

FCO Constant part of vehicle load kg (Ib_

F(2¢D Disc servo force commanded kg (Ib)

F_ Disc tangential forca kg (Ib)

FW Vehicle wheel traction force kg (Ib)

H PF Flywheel power los_ (gain) kW (hp)

M P_C Vehicle spee_ km/hr (mph)

NA Vehicle axle speed rpm

NC Vehicle speed relaxed to axle rpm

N[,0 Drive snaft speed rpm

NF Flywheel speed rpm

N I Input torus speed rpm

Np, Ring gear speed rpm

NSLIP Drive shaft speed loss due to rpm
clutch slip

NTO Outpu torus speed rpm

RTI Input torus radius frc_, disc m (in.)

contact point to shaft

RTO Output torus radius from disc m (in.)

contact point to shaft

-T A Drive shaft load torque without N-m (Ib-ft)
axle gearing efficiency losses

TDO Drive shaft load Torque with N-m (Ib-ft)
t axle gearing efficiency losses
f

t
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TABLE 8.--LIST OF SYSTEM VARIABLES-Continued

Variable Definition Unirs

TF Flywheel load torque H-m (Ib-ft)

T I Total shaft load torque at Torus N-m (Ib-ft)

TR Ring gear load torque N-m (Ib-ft)

TS Sun gear load torque N-m (Ib-ft)

TTI Input torus load torque N-m (Ib-ft)

TTO Output torus load torque H-m (Ib-ft)

TW Axle drive torque from wheel H-m (Ib-ft)
traction

VC Vehicle sp_,ed km/hr (mph)

_D Disc inclination angle to shaft _ dog

_D Disc inclination rate deg/s

The CVT torus model does not include axial loading provisions or its effect

on torque ard speed transmission characteristics, except through the creep
uquat ion.

Torus roller con _ ol.--Control of the roller inclination angle (eD) is

achieved throug_ a force balance between a commanded servo force level (FCMD)
ant the sum oi .he disc tangential forces occuring between the disc edge and

the two discs (FT from each disc). Any force imbalance causes an inclination

rate of 25 deg/s in a direction toward relieving the imbalance. The rate limit

is obtained by limiting the force servo rate by controlling hydraulic fluid
flow. With e torus radius of 56 mm (2.2 in.) and a disc radius of 50 mm (1.98

in.) the roller contact radii are:

Flywheel side: RTI (In) = 2.2 - 1.98 Slf,'eD (26)

_xle side: RTO (in) = 2.2 + 1.98 SIN eD (27)

The disc angle of Incllnation is limited to +27 deg, resulting in an achiev-
able ratio range of 0.42:1 to 2.3_:I. The indicated slgn convention Indlcates )

that when RTO is greeter than RTI , a speed reduction exists between the torus
input end out_:t discs with an appropriate torque ampllfical nn. The c_nverse

is true when PTO is less that RTI.

] 9800 ] 7 ] 64-084



TABLE 9.--LIST OF SYSTEM PARAMETERS

Parameter Definition Value
i i

JF Flywheel inertia 0.558 N-m/s 2
(4.94 Ib-in./s 2

MC Vehicle mass 173.5 kg-mass
(116.57 Ib-s2/ft)

REDO Gear reduction ratio between 1.85:1

output torus and ring gear

RED- Gear reduction ratio between 3.00:1

flywheel and input torus

Rw Vehicle wheel radius 0.581 m
(1.916 ft)

RTS Ring gear to sun gear radius 4.5:1
ratio

Total gear efficiency at axle 0.96

n Disc diameler I00 mm

(3.96 in.)

Disc center to shaft _ radius 55.9 mm
(2.2 in.)

Axle gear reduction ratio 5.26:1

Disc inclination angle limits +_7 deg

Disc inclination angle rate limits +..25 deg/s
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Tor,us outpu T ge,ar,inR,--Drive shaf¢ motion and torque result from the
summation of two power paths ending in a planetary gear arrangement, Power
goes directly through the CVT to the planetary sun element and through the
toroid cavity to the planetary ring element, The paYh to the ring element
also contains a gear ratio reduction (REDO) between the toroid output disc
and the ring gear, The planet carrier is directly coupled to the drive :haft,
The drive shaft speed (NDO) is defined by:

N_
NDO (rpm _ = HTO x | - (1 + RTS) (28)1 REDO

I+R--_

where

RTS = Ring to sun gear ratio

NTO = Torus output disc speed (rpm)

N I = Torus inpuY disc speed (rpm)

V;ith a load torque (TDO) applied to the drive shaftp the torques in the two
paths become:

T = RTS TDO (29)
TO 1 + RTS REDO

-1
---- (30)

TS = 1 + RTS TDO

where

TTO = Load torque on the output
discp N-m (Ib-ft)

Vehicle with axle and c_utch,--A torque limiting device has been Included
in the simulation to limit the CVT output torque #o 447 N-m (_30 Ib-ft), The
torque limit is simulated by a slip clutch between the CVT outpuY and vehicle
axle, Axle speed (NA) is modeled in Yhe simulation and is equal to the drive
shaft speed (NDO) w less any speed loss due #o clutch sllpp divided by the axle
gear ratio, The inertial load of the car_ plus windage and grade Ioedsp is

modeled by causing the two-wheel traction torques (T F) to be generated as a -
function of the speed differential between the axle speed and the car speed _,
related to the axle. The wheel traction torque for two wheels is defined by:

TF N-m (Ib-f#) = 200 (H A - NC) (31)

where .:

NC = Veh'cl_ speed relayed to axle (rpm) ._
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The axle torque (T A) equals the wheel torque with a sign reversal to Indi-
cate loading on the transmission in contrast to thrust on the vehicle. The drive
shaft load (TDo) differs from the axle torque by virtue of the axle gear ratio
and the axle gear efficiency (q) of 96 percent. This efficiency is a lumped effi-
ciency representing losses through the system gearing and changes magnitude from
q to 1/q to account for load and drive torques of the car upon the transmission.

Road loading on the vehicle is an exponentially increasing function of
vehicle speed and equals 1000 N (225 Ib) at 128.7 km/hr (80 mph). A graph of
the road loading ls presented in figure 40.

Roller Control System Analytical Results

The purpose of the control system analysis is to evaluate the translent
load and motion characteristics of the CVT disc and roller assembly. The
analysis was performed utilizing the analog computer simulation described in
the previous subsection and varying the command force in accordance with a pre-
determined schedule. This analysis included three parts: (!) evaluation of
the slew rate of the roller as it moved from one ratio extreme to the other,
(2) evaluation of the stability of the control system under maximum acceleration
conditions, and (3) evaluation of the stability of the control system under a
ramp increase and decrease in the command force, Each part is discussed below.

Slew rate.--The slew rate of the roller between ratio extremes was examined

under two different operating conditions. First, slewing from maximum reduction
to maximum overdrive, and second, slewing from maximum overdrive to maximum
red uct i on. .;

Under normal operating conditions_ the slew rate of the roller will track
the change in velocity of the flywheel and vehicle because it is rigidly con- _;.
nected to both. This rate will be something less than the specified slew /
rate. Therefore, artificial operating conditions were imposed on the CVT lo
isolate it from the vehicle and flywheel after achieving an initial steady-state _
cond i t ion.

To slew from maxlmuns reduction to maximum overdrlvep the fol lowing pro-
cedures were used. A command force, 756 N (170 Ib), was input ,o the CVT with ";
2668-N (600-1b) static drag load imposed on the vehicle. This caused the CVT
to go to maximum reductionp driving the vehicle at a slow speed of approximately l:

: 0.38 m/s (2 mph). Then instantaneouslyp the vehicle load was removed while
-_ maintaining a cons,ant flywheel speed and command force. This is analogous to

fracturing the drive shaft in the actual vehicle and would yield the maximum
slew rate.

Drive shaft fracture is simulated with switches that disconnect shaft

speed from axle speed and load torques TTOand Ts from TDO, Fracture thus :_
causes TTO_ TS, ' and axle speed NA to go to zero. The results are presented
in figures 41 and 42 for flywheel input speeds _f 14 000 end 20 000 rpm_ respec-
tively, Eight variables were plotted: command servo force_ the sum of the
toroid tangential forces (2 FT) , flywheel speed (Nr) , rol ler angle of incl I l t
nation (gp), ratlo across the toroid cavity (RTO/R11) , vehicle Sl_-:d (MPHcAR), _,
CVT output speed (NIX)) and torque (TDo).
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As figures 41 and 42 show, the toroid tangential forces went to zero when
the load was removed, and the roller angle changed at a constant rate due to
the constant command force from the initial position, +24 degrees, to the
negative extreme, -27 degrees. The time ticks at the bottom of the plot
show that the total elapsed 1;_ to traverse these ratio extremes was 2.08 s
and 2.10 s, respectively. This is within 5 percent of the specification
requirements.

it was not possible to slew from maximum overdrive to maximum reduction
because of the high torques involved. For this condition, the maximum command
force was input to the CVT, driving the CVT to maximum overdrive. Then,
instantaneously, the vehicle was stopped while maintaining a constant flywheel
speed and command force. The results are shown in figures 43 and 44 for flywheel
input speeds of 14 000 rpm and 20 000 rpm, respectively.

Figures 43 and 44 show the step increase in the toroid tangential forces
(tho actual value of the force is unknown because it went off the scale), the
decrease in CVT output speed, and the increase in CVT output torque up to th_
torque limit. This condition was analogous to driving a car into a wail.
The transmission changed ratios to compensate for the sudden increase in the
torque requirements. Once the torque limit was reached, the clutch began to
slip and the CVT output speed, torque, and ratio reached a new steady state;
however, the roller did exhibit a constant angular rate of change between the
time the vehicle was stopped and The time the torque limit was reached. This
line was extrapolated and the extrapolated portion appears as a dashed mine in
the figures. The extrapolated time to go between the ratio extremes is 2.18 s.
It should be noted that the roller slew rate can be controlled to any level by
modifying the hydraulic control system design. This analog computer analysis
showed thaT the slew rate can meet the specification requirements.

Stability under maximum acceleration.--Two runs were made to evaluate the
stability of the CVl control system under maximum acceleration conditions. In
the first run, shown in figure 45, the command force was rapidly increased from
zero to the maximum value. The CVT response was recorded while holding the
flywheel speed constant at 20 000 rpm. Notice that at point A the toroid tan-
gential force decreased from 2224 N (500 Ib) to 177g N (400 Ib). This is due
to the fact that the roller position was at an extreme, -27 deg, and the vehicle
had reached steady state. The torque requirement had decreased because the
vehicJe was no longer accelerating, and the toroid tangential forces decreased
to maintain equilibrium. The CVT was in equilibrium independent of the command
force. Notice, that the command force can be decreased to 1779 N (400 Ib) with 1
no change in the steady-state condition. As the command force was decreased )

; below 1779 N (400 Ib), the roller began to change position, and the CVT output i

speed, torque, and vehicle speed began to decrease, t _

A second run was made allowing the energy to accelerate the vehicle to t
_. be extracted from the flywheel. The results of this run are presented in !

i figure 46. Th9 command force was Increased from zero to 2224 N (500 Ib]. The

plots show the flywheel speed decreasing as the vehicle accelerated. Again,
the toroid tangential force dropped after the CVT reached maximum overorlve
ratio. After approximately 45 s in the maximum overdrive condition, the

i "
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Figure 44,--Maxlmum overdrive io maximum reducilo, for 20 O00-rl: flywheel ..
speed,
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command force was removed. This condition simulated regeneration of the fly-
wheel. In this case, the inertia of the vehicle powered the flywheel throujh
the CVT. When the command force was removed, a 5-s time delay was experienced
because of the manual operating procedure of the analo? computer. The control
system response was to drive the roller to reduction. ,n this case, the
transfer of energy from the vehicle to the {lywhoel occur'red over a short
period of time_ approximately 2 s. The roller went to maximum reduction as
the vehicle energy was transferred to the flywheel. This is shown by the
slight increase in flywheel speed as the roller changed position and the
vehicle speed dropped. Note that both the toroid tangential force and CVT
ou?put torque went netative , indicating power being transferred fro, n the.
axle to the flywheel.

These two runs show that the control system is responsive to the command
fo_-ce supplied from the accelerator pedal. It responds quickly and sn_thly,
an_ is _table when the force c-_:luilibrium is achieved between the torold tan-
gential forces an_ torque on the output shaft. The second run also shows that
the control system will control the roller position no n_tter which way power
is transferred.

Stability under ramp _o_m_tnd chan£e.--The final run, showr, in fig. 47,
shows the control system responsJ to a rapid increase and decrease in the com-
n_nd force with the vehicle Inilially _t a steady-_tete velo_ity. The initial
steady-state velocity that was selected was 48.3 km/hr (_0 mph). The c_and
force w_s then increased to 1112 N (250 Ib) until the vehicle speed reached
96.5 km/hr (60 mph) and then was returned to its original level, 89 N (20 Ib).
The energy to accelerate the vehicle was extracted from the flywheel where the
initial speed was 20 000 rpm. The system responded es expecte_:l. The roller
was driven to ma)'imum reducti_, the flywheel speed increased, and the tangen-
tial force and output _orque went negative when the command force was reduced°

9_
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: Figure 47.--Control systems stability under ramp commandchange.

ORIGNMLPAGE,IS
I C_ POOR_gAUTY

] 9800] 7] 64-097



Selected Design Description

The selection of the final CVT design configuration was made by comparing

the five candidate configurations and by performing design optimization analyses.

The selected design configuration is shown in fig. I. A complete parts list

appears in Appendix D. It is of regenerative design with two toroidal cavities

in parallel using two rollers per cavity. Three gear sets are incorporated
within the CVT hous;ng to control the speeds through the toroid cavity.

The inpul shaft of the CVT is connected to a 3.0:1 planetary reduction

gearset. A clutch mechanism is incorporated in this gearset to hold or release
the planet carrier; therefore, when the planet carrier is released, the CVT

is decoupled from the input power source.

Th_ ring gear hub of the input reduction gearset drives the main shaft of

the tren_.ission. The main shaft is supported by two bearings: a ball i:earing

at the Jnput end and a roller bearing at the output end to allow for thermal

and mechanical expansion.

Two input discs, one at each end of the main shaft, are driven through

splines by the main shaft.

The output discs are connected by a sleeve. One disc is brazed to the

sleeve; the other is attached via splines to allow for axial displacements as

the system is loaded and unloaded by the load cam mechanism.

The load cam mechanism is used to control the contact force between the

discs and drive rollers as a function of the torque on the output discs. The
load cam mechanism is located between the two output discs. It consists of a

load cam, bearing rollers, and retainer. The rollers are held between the

load cam and a surface of one output disc by the retainer. The load cam is

pinned to the output gear.

As the output discs are driven, the cam rollers roll against the output

disc and load cam creating an axial force on the output discs. This force is

proportional to the torque on the output discs; and Its magnitude is controlled
by the shape of the load cam.

The axial force loads the output discs against the input discs through
the rollers. It is reacted by the main shaft, isolating this force from the
hous,ng.

The contact force on the traction contact is proportional to the axial
force and orientatlon of the drive rollers in the toroidal cavity.

i The drive rollers are held in position between the Input and output discsI
by a trunnion arrangement. The trunnion allows the roller to rotate in the

i toroid cavity. A force balance rol let control system is employed to position
the rollers within the toroidal cavities. The roller posit:on sets the ratio
across the toroidal cavity, thereby controlling the output speed. This control
system is described in the Transmission Ratio Control subsection, and a prelimi-
nary analog computer analysis is presented in the Roller Control System Analysis
subsect ion • ..

C- 2. 95 ,.'
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The output gear drives the transfer shaft that transfers the output power
to the ring gear- of the output reduction planetary gearset. The overall trans-
fer shaft gear ratio is 1.85:1p and the output gearse? has a 4.5:1 ring-to-sun
ratio. The sun of the output planetary gearse? is driven directly by the main
shaft, and the CVT output shaft is driven by the planet carrier of the output
planetary geerset.

A torque limiting device is integrated into the transfer shaft. This
mechanism is designed to slip at a predetermined torque level, limiting
overloads through the drive.

The power flow through the CVT is in through the input planetary gearset,
across the toroidal cavities, through the 1.85:1 transfer shaft reduction, and
out through the output planetary gearset. The regenerated power flow is through
the sun gear of the output planetary gearse-; and return to the input toroidal
cavities.

The transmission includes a self-contained, closed-loop hydraulic and lubri-
cation system utilizing Monsanto Santotrac 30 traction fluid. A gear-driven
lube pump is driven directly by the input end of the main shaft through a drive
and idler gear arrangement. The pump supplies the lubrication for the hydraulic
roller control and the transmission. Lubrication is supplied to all rolling
elements by a series of oil jets connected by an oii galley system. The gears
are lubricated by splash lubrication, with the oil flowing to the transmission
sump by gravity return.

The CVT performance was determined under various operating conditions.
The results of this analysis are presented in figures 48 through 62.

These figures present five CVT performance parameters plotted against
transmission output speed at the five power levels specified= 7.5, 15, 30_ 52_
and 75 kW (10, 20, 40, 70 and 100 hp)o The performance parameters evaluated
are= efficiency, both overall and toroid cavity; life of the toroidal cavity
elements; energy dissipation through the roller contacts; mean Hertz pressure; _
and conl-act aspect ratio°

3'
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Figure 48.--Traction drive efficiency vs output
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TASK II, IDENTIFICATION OF REQUIRED TECHNOLOGY ADVANCEMENTS

Control System Development

While no technical problems are expected with the basic CVT design , or
with the use of the epicyclic gearing required to expand the overall transmis-
sion speed ratio range through regeneration, it is expected that some develop-
merit will be required in the control system for the CVT, in the traction fluid
performance, and in the evaluation of the traction contact°

The control system is, therefore, identified as an area where techno-
logical advancement is required, This will involve the sys*em dynamics of
smoothly transferring power both ways between two very high inertia elements,
the flywheel and the vehicle, Unlike a conventional heat engine, the flywheel
has an operational speed profile that varies in the opposite direction to the
vehicle speed, The control system must, by response to driver command_ operate
the transmission with a greatly increased ratio range, and control the amount

and direction of the power flow to drive the vehicle.

This new type of control system has been modeled on the AiResearch analog
computer, Using this initial simplified program, actual hardware mechanical
characteristics can be added to evaluate alternate means of mechanizing the
conirol function until an optimized control system is defined, A test bed
CVT could then be built for dynamometer testing of the control model in actual
hardware, By using two flywheels on a dynamometer, one on either side ot the
CVT, the complete vehicle can be simulated, During the testing of the CVT
hardware on the dynamometer, any errors in the analog model will be identified
and corrected, Through the combined use of the analog computer model and the
dynamometer testing of real CVT hardware, a practical, qualified control system
for a flywheel hybrid electric vehicle will be developed,

AI, aspects of this transmission/vehicle control system will be analyzed,
t_sted_ and developed to provide a smooth, producible system capable of pro-
vidtn 9 the feel of current stand, d cars for the driver and passengers,

Traction Fluid Development

A seL'onJ area of technical concern that warrants additional development
Is. the tr_.-rion lubrication fluid, In a traction drive, power is transmitted
from or_ rolling element ¢o another through shear in an elastohydrodynanic !
flu=- film between the traction contacts. The better the oli in this film is _ .-
able to resist the shearing action, the more power can be transmitted. This
_esistance to shear is primarily a function of the molecular structure of the

_ oil, although various addilives also have an Influence,

_,;_
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The resulting developed tangential force transmitted by this shear action,
when divided by the contact force holding the rolling elements together, is
called the coefficient of traction (U):

= Tan£ential force (32)
Contact force

Thus, a fl_id that develops a high tractive coefficient is generally preferred
for use in a traction drive.

In recent years, several chemical companies have developed special fluids
that exhibit a high coefficient of traction. Unfortunately, all of these spe-
cial traction fluids have other properties that can present problems for the

design of an automotive CVT.

The primary problem is the temperature viscosity index. This is the rate
at which the fluid viscosity increases (the fluid becomes stiffer) as the tem-
perature decreases, and decreases as the temperature increases. A traction
contact requires a fluid viscosity within a narrow range. If the fluid is
too viscous, the contacts cannot roll out a thin elastrohydrodynamlc film, but
instead roll up onto the oil and hydroplane. If the fluid becomes too thin,
the fluid film will not be adequate for separating the rolling contacts, and
contact wear and damage occur.

For many applications, traction drives can be operated under controlled
temperature conditions, and a fluid with an appropriate viscosity at that tem-
perature is chosen. For an automobile, however, operating temperatures are
not controlled, and the fluid must not be too viscous for startup and operation
below zero, or too thin for service when driving with high ambient temperatures.

The currently available traction fluids all have a rather high viscosity
index and become too viscous for traction drive use at temperatures above the
minimum required for auotmotive service. Santotrac 30, for instance, the least
viscous of the standard Monsanto traction fluid family, cannot be used below
about -25°C (-IO'F). It also becomes marginally thin at the upper normal auto-
motive operating temperatures. Some development work Is currently being done.
Monsanto now has experimental fluids reportedly serviceable to -55"C (-65=F),
and at least one other company is working on a silicone fluid with a much lower
viscosity index. These new fluids are at present too expensive to be used for
automotive service and are not yet available with a complete additive pack.

?
The second difficulty with some high traction coefficient fluids is the

tendency to entrain air. This is not the same as foam, where the air Is encased .:
In an oli fllm on top of the fluld, but rather Is the retentlon of the alr -i:
bubbles wlthln the body of fluld. Thls causes _ reductlon of the bulk modulus
when operating a hydraulic control system and some difficulty In scavenging.

.: Normal deaeration techniques, such as centrifuging the oll or allowing a set-
tling time in a reservoir, have only limited success at clearing air from the

;, fluid until a'sufficlently high temperature Is reached. Within a few degrees
of sane specific temperature, the fluids will quickly release the air bubbles
and behave like normal lubricants. For Santotrac 50, this temperature Is about _

I1_
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80°C (180°F). Above this temperature the fluid remains clear like a normal

lubricant, but below it, it rapidly turns milky white as soon as it is agitated

and will remain that way for many minutes.

Traction Coefficient Verification

Test verification of the actual coefficient of traction developed by new

fluids under conditions of contact size, rolling speed, contact spin, surface

finish, and temperatures found in an automotive CVT is warranted. In conjunc-

tion with these tests, the limits of tolerable contact losses from the results
of both the tractive shear and spin caused shear should also be found for the
conditions that are encountered in real drives.

Most traction drive designers have traditionally established tPeir own

data based on extensive testing of their design with a preferred fluid.

Until recently, this fluid was generally a silicone base fluid or a naphthenic
base petroleum oil like Mobil 62. Historically, a number of problems were

discovered with early silicone fluids and they lost favor, and production of

Mobil 62 has been discontinued. Recently, there has been testing done with

Sternal in England and other parts of Europe and with Santotrac fluids both
here and abroad. Unfortunately, virtually all this data is held as proprie-

tary. It is also generally not in sufficient depth to cover all the operating
conditions found in an automotive CVT.

Published data for the new types of traction fluids is generally taken

at only a single rolling speed and temperature and with a twin disc-type test

machine operating with no contact spin. The designer Is required to inter-
oolate from a similar test point for a fluid that has more data. Such inter-
polations are often not completely valid. The designer must be conservative
to account for this uncertainty with a traction dr;re; that is, he must assume
that the fluid has a lower coefficient of traction than indicated by interpola-
tion and must therefore use a higher contact force than necessary to carry the
required tangential load,

This design practice can cause development problems, The excessive contact
pressure will produce a larger contact area and greater hertzlan pressure than
required. The spin components of shear, Inherent in a CVT traction contact, are
therefore greater than anticipated. Excessive losses will be generated within
the contact, and the drive can be damaged, With more definitive traction data,

_. a much lower contact force can be used. The drive will still carry the required i
tangential Iced, but the spin losses will be greatly reduced and drive damage
avo i dad •

. It is interesting to note that in this case, the greater coefficient of
traction produced by the fluid also produced contact losses greater than anti-
cipated, This same phenomenon has also been observed when using these special
high coefficient fluids in angle contact ball bearings and roller thrust bear-
Ings; both operating with high contact spin.

114 _
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Contact Loss Verification

The limit on contact losses is an additional area where greater amounts

of test data are required. Current techniques of computer-assisted analysis

provide fairly reliable information on the actual losses occurring within the
traction contact under a variety of conditions. The maximum loss limit that

can be tolerated under operating conditions, prior to damaging the traction
contacts, is not known, Some work has ;ndicated that this limit may be as low

as 40 W/mm 2, Other work with gears indicate_ a limit as high as 200 W/mm 2

(a gear has more surface available for cooling for the same size pitch diameter}.
It is probable that the actual traction contact loss limit is between these two
values.

Test data taken under actual drive conditions of spin, temperature, Ioadt
and the same number of rolling contacts per revolution is recommended.
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TASK III, SUITABILITY FOR ALTERNATE APPLICATIONS

Electric Motor Powered Vehicle

To determine the suitability of a traction toroidal CVT for use in an

electric vehicle with an electric motor only, the following vehicle speci-
fications were used:

Vehicle: passenger car

Weight: 1700 kg (3750 Ib)

Drive train: See figure 63

Motor: electric

Operating speed: 0 to 6000 rpm

Del ivered power 0 to 75 kW (0 to 100 hp)

Motor efficiency: See figure 64

CVT: mechanical traction- ter_idal configuration

Output speed: 0 to 3000 rpm

Maximum delivered torque: 450 N-m (330 Ib-ft)

Weighted average power out: 16 kW (22 hp)

System life: 2600 hr B-tO

Ratio range: 9:1 to 1:1 (speed in/speed out)

Assumed:

i

Average output speed: 1500 rpm

Average Input speed: 1900 rpm (maximum efficient speed for

22 hp, fig. 64)

The CVT required for this appl icatlon does not require the expanded speed
ratio range necessary for the flywheel hybrid vehicle; therefore, the regener-
ation gearing will not be used. A straight 9:1 ratio range, dual cavity, full
toroldal, variable ratio drive will provide ample speed range. To reduce the _,
output speed of the variable ratio section to match the required speed of the
differential, .a 3:1 reduction unit will also be Incorporated wtthln the CVT. ,
This combination will provide a CVT ratio range of from 9:T reduction to direct i
drive; therefore, the output speed from the CVT can vary from 444 rpm to over

i

{
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Figure e4.--4Elecfrlc motor efflcl(mcyp 75 kW (tO0 hp) motor.
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3000 rpm with the motor at 4000 rpm the (maximum efficiency point for I00 percent

power). At a motor speed of 2000 rpm (the maximum efficiency point for 25 per-

cent power), the output speed can vary from 222 rpm to 2000 rpm.

The maximum torque load carried by the variable ratio drive for this appli-
cation is 150 N-m (II0 Ib-ft):

Maximum CVT torque = 450 N-m = 150 N-m (110 Ib-ft)
3

This is compared to a maximum variable ratio drive torque of about 200 N-m

(150 Ib-ft) for the drive configuration selected under Task I. The load capa-

city of the basic toroidal CVT varies to about the 2.8th power of the basic

pitch diameter; therefore, the d-ire size for this electric vehicle application

can he reduced to about 90 percent of the !12 mm (4.4 in.) toroidal cavity pitch
diameter selected under Task I.

The CVT configuration selected under Task I of this program would therefore

be well suited for use in a pure electric vehicle to the above specifications,

with the following modifications:

(I) The input 3:1 reduction (with associated band clutch) required to

reduce flywheel speed to acceptable CVT input speed would be eliminated.

(2) The epicyclic gear set required to regenerate the flywheel powered

CVT to zero output speed would be replaced by a straight 3:1 reduction

gear set.

(3) The basic pitch diameter of the variable ratio toroidal section would
be reduced from 112 mm (4.4 in.) to 100 mm (3.97 In.).

(4) The torque limiting clutch in the recycled loop of the flywheel
powered, regenerated CVT would be eliminated or modified.

(5) The control system for the pure electric powered vehicle would not be
required to regulate the input shaft speed in the same manner as with
the flywheel powered vehicle. It would have speed control character-
istics set to optimize motor efficiency. The force control power
roller steering system would be retained.

The CVT control system used with an electric motor having an efficiency
curve shown In figure 64 will need to sense and/or control the motor speed (CVT
Input speed) as a functlon of the electric motor output power. One possible
configuration would be to generate an electric or hydraulic signal proportionate
to the motor power and to apply that signal to counterbalance the force from a
flyball governor driven by the CVT Input shaft. Such • system would proportion _
the CVT Input rpm as a function of motor power. The CVT ratio would then assume
a value within the overall ratio range necessary for l_ransmitting pouer from the
motor to the differential. _

f The load control, pouer roller steering system will lend itself very veil _'
to such a control system by using e simple 4-ray spool valve connected to the

118 :
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flybell system with the hydraulic output signals directly fed to the control
cylinders.

There would be no new technological advancements necessary for the deslgn
m(xliflcatlons of the optimized CVT configuration for the pure electric powered
vehicle application described under Task I.

The areas of engineering concern described under Task II of this report
would also apply to this CVT application in order to advance the design from an
engineering development to an actual production electric vehicle transmission.

Hybrid Electric Vehicle with an Internal Combustion Engine

To determine the suitability of the CVT design configuration selected
under Task I of this program for an internal combustion (IC) engine/electric
hybrid vehicle (shown in fig. 65), the following vehicle specifications were
used :

Vehicle: passenger car

Weight: 1700 kg (3750 Ib)

Drive train: See figure 65

IC Enqine:

Maximum power: 75 kw (100 hp)

Minimum fuel consumption curve: See figure 66

Assumed:

Max I mum eng i ne spe_ld : 40(X) rpm

Idle speed: 650 rpm

CVT: mechanical traction - 'l'oroldal configuration

Output speed: 0 to 3000 rpm

Maximum delivered torque: 450 N-m (3_i0 Ib-ft)

Weighted average power: 16 kW (22 hp)

System I I fe: 2600 hr B tO ,

Ratio range: Reverse 1o 0.55:1 In overdrive _

in order to establ Ish an optimized overall CVT ratio rangew an engine *:
performance map (shown in fig. 67) and • road load curve for the vehicle
(shown in fig. 40) were assumed to calculate the extent of required trans-

t mission overdrive. Maximum overdrive Is required to keep the englno on the ,

t
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Figure 65.--Orive line schenm?lc for electric/In+ernal co_ustion
engineered hybrid vehicle.
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l

minimum specific fuel consumption (MSFC) curve at the "knee" point just above

idle speed, represented by Point A in figure 66. Typically, a 75 kW (100 hp)

spark ignitio_ engine will develop 15 kW (20 hp) at 1000 rpm when operating

on the MSFC curve (fig. 67). Also typically, a vehic'e of this inertia weight

class will operate at 64.4 km/hr (40 mph) with only II kW (15 hp) for zero
grade and zero wind conditions. If the maximum drive shaft speed of 3000 rpm

represents a vehicle speed of I05 km/hr (65 mph), the transmission must be

capable of delivering 1850 rpm output with a 1000-rpm engine speed, represent-

ing 64.4 km/hr (40 mph speed). This requires a 0.54:1 overdrive ratio on the
CVT.

The CVT configuration selected in Task I can be used for the hybrid elec-

tric vehicle with an internal combustion engine with some modification to the

gearing and a change in CVT toroid cavity size. By selecting a planetary ring-
to-sun ratio of 2.32:1 with a variable ratio unit that goes from 3:1 to 0.33:1,

the output of the CVT will go from reverse to a ratio of 0:55:1 in speedup.

The torque load on this IC engine CVT will be somewhat greater than for the fly-

wheel powered CVT because of the differenl ring-+o-sun ratio necessitated by

the shifte speed ratio range. The Task I transmission had a speed ratio from

reverse to approximately direct drive, neglecting the 3:1 input reduction from

the flywheel. For a 450 N-m (330 Ib-ft) maximum delivered torque, the maximum
toroidal drive torque will increase from the 200 N-m (146 Ib-ft) of Task I, to
about 314 N-m (230 Ib-ft). Because the toroidal drive has a load capabillty that

varies io about the 2.8th power of the basic pitch diameter, the size of the

toroidal drive will need to increase by about 18 percent from the Task I size.

The optimized CVT design configuration selected under Task I of this pro-

gra_a is, therefore, also suitable for use with an IC engine, as specified above,
with the following modiflcations:

(I) Delete the 3:1 input reduction unit required for reducing flywheel

speed to acceptable CVT speed.

(2) Change the jack shaft transmitting power from the output of the

toroidal drive to the ring of the eplcyclic gear set from a 1.85:1
reduction to a I:1 ratlo.

(3) Change the ring-to-sun ratio (RTS) of the eplcycllc gears from 4.5:1
to 2.32: I.

(4) Increase the basic pitch diameter of the toroidal elements from _
112 mm (4.4 In.) to 132 mm (5.19 In.].

The reverse function requirement is provided automatical ly with this regen- , _
erated design, so no special reverse gear is required, The single F-N-R lever /-

- will only need to command that the toroidal drive ratio be changed to the maxi- -_
mum reduction stop when reverse Is selected by reversing the hydraul ic pressures ;_.

in the load type, rol let steering system, In both reverse and normal driving _,
mode, zero output speed is commanded by reducing the hydraul ic pressures in the
rol let steering system to zero as with the flywheel powered drive. With zero ""
control pressure, the power rol lets must go to the ratio position where _hey

• are not transmitting torque (i.e., zero output speed ratio), _ ._

, ?
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J4100 cc (250 ¢u in.)J
16,:ytind,_ I

59.6 (80)

44.7 (60)

37.3 (50)

29.8 (40)
t.
tl

22.4 (3o)

/

7,5 (10)
600 t000 2000 3000 _000 _000

[ ,.,,ram ;
Engine ipeed, rpm

Figure 67.--MSFC curve map for 250-cu-ln. slx-cyl Inder engine.
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The transmission control system that ts requlred to keep the IC englne
operating along the MSFC curve will need to sense engine vacuum and engine
speed so that it controls the engine speed required for matching the power
commanded by the dr!vet. This IC engine/CVT control system is judged to be
more complex than the electric motor powered system because of the power mixing
of the motor and the IC engine. The control system for this application is
thereforn selected as the area where new technology ts required. The accuracy
with which the MSFC curve is to be followed will affect the c_wnplexlty of the
technological advancement.

No other technological advancements are considered necessary for adapling
the Task I cvr to this application,

Scalabillty to Alternate Weight Vehicles and Torque Levels

The following examples show how CVT design parameters are determined for
vehicles of differing weight and torque levels by scaling from the Task I CVT
data.

Case 1.-- Vehicle welght is reduced to 790 kg (1750 Ib), and the maximum
CVT output torque is reduced to 210 N-m (155 I I>-ft). All other specifications
from Task I apply.

The CVT for this application would be virtually ijentical to the optimized
design configuration from Task I. The basic pitch diameter of the toroidal
drive would he slightly red_=ced to save weight and cost. The amount of this
reduction is computed through the following steps.

(1) Determine the torque split from eplcyclic gearing Into toroidal drive:

Torque split = RTS = 4.5 = 0.8182 (33)
I + RTS 5.5

(2) Determine the maximum torque on the 1Tection drive by multiplying the
maximum output torque by the torque split determined in (1) above
divlded by the torque reduction from the jackshaft ratio (1.85:1)=

Max, traction torque = Max, output torque x 0.8182
1.85 (.,..I,4)

- = Max. output torque x 0.442

: (3) Using the Task I max. output torque of 450 N-m (330 Ib-ft): _I

i Max. traction torque • 450 x 0.442 (34a)• 199 N-m (146 Ib-ft) :,
z

(4) Using the Case 1 max. output torque of 210 N-m (155 Ib-ft):

Max. traction torque • 210 x 0.442 (_4b)
• 93 N-m (69 II>-ft)

.
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(5) Determine the load ratio for Case " and Task I:

Load ratio = Max. traction torque Case I = 9___3 = 0,467 (._5)
Max. traction torque Task I 199

(6) Since the toroldal variable ratio drive has a load capabillty that
varios to about the 2.Sth power of the basic pitch diameter for
similar life with all other factors equal, the effective change in
the toroldal pitch diameter is:

(Load ratio) 1/2.8 = (0.467)I/2.6 = 0.762 (36)

(7) The Case 1 toroidal drive pitch diameter would therefore be:

Case I pitch dia = Task I pitch dla x 0.762
= 112 x 0.762
= 8E mm (3.4 in.)

With this s=_laller size toroidal unit, the rolling speed would also be
reduced. Some additional reduction in drive size could be derived by decreasing
the input reduction ratio to increase the drive running speed. For this pre-
liminary analysis, it is not necessary Io delve in depth into this speed effect,
as maximum rotational speeds, gear pi+ch line speeds, permissible gear sizes,
bearing speeds, and the cost effects of using bearing speeds above Grade 3
bearings would all need to be considered. The drive size reduction because of
speed effects is minimal compared to the above size change, and the slightly
reduced rolling speeds will not adversely affect the sizlng.

Case 2.--Vehicle weight is increased to 10 000 kg (22 O001b), and the
maximum CVT output torque Is increased to 2600 N-m (19001b-ft)o All other
vehicle specifications from Task I apply,

By using the same logic of scalabillty as in Case 1 above, this 2600 N-m
(19001b-ft) CVT would roquire a 201 mm (8.25 in.) pitch diameter. With the same
gear set combination as used in the optimized design configuration of Task I,
the maximum rolling speed will be over 126 m/s (415 ft/s], which is considerably
above the tested limits° This design isp therefore, not acceptable without
additional test data.

By selecting new .gear ra.+los, an optimized configuration was evolved to
reduce the rolling speeds. Reducing the rolling speods increased +he torque
load that the traction drive must handle. A tradeoff between speed and torque

was performed with the following results: ,_.

Input reduction: 4,667= 1

: Traction drive input speed: 3000 to 6000 rpm i'.

Traction drive ratio range: 2o75:1 to 0,35:1 _,

i '

k

_" _J[. _II .... :.................................................

1980017164-128



Traction drive output speed:

14 000 rpm flywheel: 1090 to 8571 rpm

21 000 rpm flywheel: 1636 to 9089 rpm

28 000 rpm flywheel: 2182 to 9640 rpm

Jackshaft reduction: I.12:1

Epicyclic gearset: Ring/sun = 3.05

CVT output speed: 0 to 5000 rpm

The maximum torque load on the traction drive with "_his gear combination is:

Max. CVT torque x RTS x I--!---
RTS +I 1.12 (37)

2600 N-m x .753 x --11___-= 1748 N-m (1289 Ib-ft))
1.12

The largest known successful toroidal traction drive of this type was built

by General Motors. The transmission was designed and tested for 1085 N-m
(800 Ib-ft) of torque in a turbine-powered bus. It had a 203 mm (8.0 in.) pitch

diameter, dual-cavity toroidal drive.

The Case 2 drive would be 240 mm (9.45 in.) in pitch diameter.

Diameter = 200 mmx r,748N-m I I/2.8 (38)

L1085N---;J
= 25.4 mm (9.45 in.)

Maximum rolling speed wlll occur at a flywheel speed of 28 000 rpm and a
CVT output speed of 5000 rpm. Under this condition, the toroidal drive will be
at a 0.622:1 ratio.

Ratio = 6000 rpm in = 0.622:!
9640 rpm out (39)

The input disc contact radius for this ratio is:

Rc = Toroldal dla = 240I + Ratlo 1.622 (40)

= 148 mm (5.82 In.)

With a 28 000 rpm flywheel and a 5000 rpm output speed, this d-ive will
have a rolling speed of 93 nl/s (305 ft/s), which is slightly beyond the maxtmum£

l 126

1980017164-129



known tested traction rolling speed of 81 m/s (268 ft/s). There Is no reason to
expect that this rolling speed will present a problem, but test data should be
obtained before the design ts flnallzed.

Case 2--alternate.--For this heavy vehlcle there are several alternate
means for accomplishing a solution besides direct scaling up of the optlmlzed
CVT from the lighter vehicle.

One approach would be to reduce the maximum CVT output speed and use a dif-
ferent rear axle ratio to make up the difference. A reduced output speed would
allow a broader choice in reduction ratios and in recycled power from the epl-
cyclic gearset.

Another approach would be to use two smaller CVTIs In parallel. The load
type, power roller steering allows multiple drives to be operated In parallel
from a single control system with all units equally sharing the load. This
configuration would also allow the elimination of the differenfial, since each
CVT would drive one rear wheel.

Finally, a multispeeo, or shifted, CVT configuration could be considere_

for this heavy vehicle. The added complexity of synchronizing the shift points

would require substantiation of the techlology involved prior to 8 deslgn finali-

zation. The heavy vehicle could benefit substantially from the reduction in

transmission losses associated with the shifted CVT configuration.

i

i
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APPENDI X A

DETERMINATION OF CONTACT AREA DIMENSIONS

A general case of two bodies in contact is the following:

_._/_ P Plane
Body,, 2 , of RI,

0

Body I _._,, Plane

of R2

Con ta( t

Area

SM717

At the point of contact minimum and maximum radii of curvature are R 1 and R 1'
for Body 1, R2 and R2t for Body 2. Then I/R 1 and 1/Rlt are principal curvatures
of Body 1p and 1/R2 and 1/R2t of Body 2p and in each body the principal curva-
tures are mutually perpendicular. Then:

IVax. s = 1.5__..__P
c _ ab (41 )

2a = __ (42)

2b = B (43 )

_/ K26 (44)

uhere '_
r

6= 4
L, L, L, L (45)
R 1 R2 R 1' R21 ,'
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and

K : 8 E1E2

and Bare given by the following table_ where

(46)

0 = arc cos 4| _ (_T - _11)2 + (_2"2 ]R'_) 2 + 2 1 " 1 _ |

0, d_J

0 I0 20 30 ,35 40 4,_ _0 5_ 60 65 70 75 80 8,_ go

c, . Ib.e.IZ J.778 2.7.31 Z.J97 2.136 1.926 1.754 1.611 1.4BO 1.3'}'8 1.284 1.202 1.128 1.061 1.00

CI 0 0.319 0.408 0.49,3 0.530 0.567 0.604 0.641 0.678 0.717 0.7_)9 0.802 0.846 0.B93 0.944 1.00
). - 0.851 1.220 1.45.3 1.550 1.637 1.709 1.772 1.828 1.875 1.912 1.944 1.967 I.ge5 1.996 2.00

/

where

R1, Rll _ R2_ and R21 = mutually perpendicuiar radil of
the curvatures of the two bodies

sc : surface contact stress

P = total pressure i
Z

2a = major axis

2b = minor axi_

y - deflection perpendicular to the

contact area plane

E = modulus of elasticity

V'- Polsonts ratio

i
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APPENDIXB

PARAMETRICSTUDYDATA

t

Data obtained durlng the parametrlc study are illustrated In figures 68
_hrough 73 and summarized in tables 10 to 12. Typical plots of parametric ;.
study data were made to establish optimum geometric relationships.

These data were used in the selection of the toroid cavity geometry.
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95 22.4 Torold diameter - I00 mm (3.96 n.)
(325) Aspect ratio - .9

85 5.2 .....

' . I000 2 3000 4 5000 _
Output speed, rim

Figure 68.--Overall CVT efficiency, mean Hertz pressure.
and energy dissipation vs output speed,
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95,1 22.4 • Torold diameter - 120 mr, (4.84 in.)

9_-I 20.7 J _ •

931 _8.9 1 , ao

_,ll " Is.st
/ '_, (225) /

8

" / / e

_/_ / !
.J ._ _2.o1

/ = (17s)/

884 _ Io.3t

*;1 8.61 20

e6 4 6.94 tO

O 5.1 i q 0
(TS) wOO0 3000 SO00*ye_t_o

OutPut limed, rib A,tllm

Figure 70.--Overs11 CVTefficlencyw meenHertz pressure,
and energy dissipation vs output speed.
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Toroid diameter=ll0 mm (4.4 In)
95 22.4 Aspect ratio =1.0

(325) Conformity =0.6
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APPENDIX C
#,

WEI GHT CALCULATIONS

This appendix contains the weight calculation sheets for the CVT shown in
figure 74, including:

(1) Toroil assembly

(2) Gears and shafts

(3) Housing and covers
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APPENDIX D

CVT DRAWI NG ANO PARTS L I ST

Tnls appendix presents a drawing of the CVT in figure 74 and lists it3 parts
in table 13,
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Figure 74.--Continuously variable transmission cross section drawing, i
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