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PULSE CHARGING OF LEAD-ACID TRACTION CELLS

by John J. Smithrick

SUMMARY

Pulse charging, as a method of rapidly and efficiently charging 300

amp-hour lead-acid traction cells for an electric vehicle application

was investigated. A wide range of charge pulse current squareI

waveforms were investigated and the results were compared to constant

current charging at the time averaged pulse current values.

Representative pulse current waveforms were: Positive waveform-peak

charge pulse current of 300 amperes (amps), discharge pulse-current of

zero amps, and a duty cycle of about 50%; Romanov waveform-peak charge

pulse current of 300 amps, peak discharge pulse current of 15 amps,

and a duty cycle of 50%; McCulloch waveform - peak charge pulse

current of 193 amps, peak discharge pulse current of about 575 amps,

and a duty cycle of 94%. In addition, experiments were undertaken to

define the effect of peak charge pulse current, peak discharge pulse

current, duty cycle and pulse frequency for a Romanov type waveform.

For each of the above methods the charge was terminated when either

10% of the charge pulse current produced gas or the cell temperature

reached 120°F.

In order to explore ways to improve the energy and ampere-hour

(amp-hour) efficiency of pulse charging a limited study of two

alternate methods of charging were compared. In method 1 the cell was

pulsed throughout the entire charge. In method 2 the cell was

initially charged at a constant current, and after the onset of

gassing was switched to pulse charging.



Experimental results indicate that on the basis of amp-hour

efficiency, pulse charging offered no significant advantage as a

method of rapidly charging 300 amp-hour lead-acid traction cells when

compared to constant current charging at the time average pulse

current value. There were, however, some disadvantages of pulse

charging in particular a decrease in charge amp-hour and energy

efficiencies and an increase in cell electrolyte temperature. The

constant current charge method resulted in the best energy efficiency

with no significant sacrifice of charge time or amp-hour output.

Whether or not pulse charging offers an advantage over constant

current charging with regard to the cell charge/discharge cycle life

is unknown at this time.

INTRODUCTION

Recently there has been a growing interest in electric vehicles as a

mode of urban transportation. This interest has been precipitated by

a shortage of domestic oil, _nd by a more pollution conscious society.

For an electric vehicle to be successful it must, of course, be

accepted by potential users. The range on a single charge of typical

electric vehicles of today with the present generation of lead-acid

batteries is limited. For many potential users and to stimulate a

reasonable market penetration it is essential to extend this limited

range. One method of increasing the dailey range of an electric

vehicle and its utilization may be to rapidly recharge the battery at

a suitably equipped on-the-road service station in a similar manner as

internal combustion powered vehicles now refuel with gasoline at a



service station. Various methods of rapidly charging batteries have

been proposed and reviewed (1,2,3,4,5,6,7,8). One proposed method is

pulse charging. Some investigators claim good results while others

claim it provides no advantage. Since data reported by both groups is

very limited, and inconclusive, an investigation was undertaken and

reported herein, to clarify the effect of pulse charging on 300 ampere

hour (amp-hour) lead-acid traction cells. Primary interest was in the

charge time and energy efficzency.

EXPERIMENTAL

SCOPE OF EXPERIMENT - Three distinct but closely related series of

experiments were conducted in this investigation. 300 ampere-hour

lead-acid traction cells were used in all cases.

The first pulse charge experiment was conducted primarily to evaluate

the effect of substantially different pulse charge waveforms on charge

time and energy efficiency. The pulse charge methods were compared to

a constant current method at the time average pulse current value.

The pulses were limited to different square waveforms, which were

classified as positive, Romar_ov, and McCulloch pulse waveforms. These

are illustrated in Figure i. Although all are square each is unique.

The second pulse charge experiment was conducted to define the effect

of peak charge pulse current, peak discharge pulse current, duty cycle

and pulse frequency for a Romanov type waveform. Initially peak

charge pulse currents of 500 and 300 amperes (amps) were used.

However, the 500 amp current resulted in a rapidly rising temperature
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which quickly exceeded the 120°F temperature limit. Therefore, a peak

charge pulse current of about 300 amps was used as an upper limit for

the remainder of the experiments which were as follows: i) the peak

discharge pulse current during the charge was varied from zero to

about 37 amps, 2) the duty cycle was varied from 50 to 94%, while

maintaining the peak discharge pulse current set at about 14 amps, 3)

the frequency was varied from 0 to 400 hz; peak discharge current

pulse set at about 14 amps. The frequency was limited to 400 hz

because above this value the waveform began to degrade. Pulse

charging, which introduces a negative pulse during a constant current

charge, can be inherently inefficient because the energy extracted

during the negative phase of the charge pulse is sacrificed. The

third pulse charge experiment was conducted in order to explore ways

of improving the efficiency of pulse charging. The results of a

limited study of two alternate methods of pulse charging were

compared. In method 1 the cell was Romanov pulse charged from the

start until 20% of the charge current produced gas; at which point the

charge was terminated. In method 2 the cell was initially constant

current charged at the time average Romanov pulse charge current rate

of method 1 until 10% of the current produced gas. At this point the

charge method was switched t( the Romanov waveform of method 1 and

continued until 20% of the current produced gas.

CELL CHARGER - The cell charcer used is versatile and allows for

operation in either the direct current or pulse current mode (9). A

wide range of charge current, discharge current, and pulse timing in
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either direct current or pulse mode is available.

The charger has the following characteristics:

I. A charge current from 0 to i000 amps.

2. A discharge current from 0 to i000 amps.

3. Charge and discharge current pulse frequency from 0 to i000 hertz.

4. Continuously variable discharge time from 0.i to i00 milliseconds.

5. Operates in either continuous charge or continuous discharge mode.

The current is controlled with a water cooled high current transistor

switch. The transistor switch is capable of carrying i000 amps dc as

well as switching i000 amps at a i000 Hz rate. Water cooling is

provided for all of the solid state power components in order to

obtain the compact, low parasitic inductance configuration necessary

for high rate, high current switching.

MEASUREMENTS AND PROCEDURES

During the pulse charge experiments the quantities measured and their

accuracies were as follows: cell temperature (_I°C limit of error);

cell gassing rate (_0.5%); amp-hours (_0.5%); cell discharge voltage

(_0.5%); cell charge pulse v(itage (_3%); charge pulse current

(_0.5%); discharge pulse current (_0.5%); and discharge current

(+0.3%).

Cell temperature was measured using iron-constantan thermocouples

located in the cell electrolyte. They were coated with epoxy to

prevent attack by the sulfuric acid electrolyte.

5



Cell gassing rates were measured during charge using a calibrated

laminar flowmeter (0 to 300 cm3/min at 21°C, 760 mm of Hg). Since

flow rate depends on gas temperature, the cell gas was heated to a

constant 65°C via a heat exchanger prior to entering the flowmeter.

Flow rates were then corrected to standard conditions, i.e., 21°C and

760 mm of Hg.

Since a charge pulse current generates gas in a pulse mode, the

laminar flowmeter averages the flow rate (i0). However, the flow rate

desired for charge termination is peak flow rate due to peak charge

current. Hence a relationship was derived for the peak flow rate in

terms of the measured average flow rate. This relationship enables

charge termination at the desired gas rate. The gas evolved by the

lead-acid cell was assumed to be about 67% H 2 and 33% 02 by volume

(i).

During pulse charging the total amp-hours into the cell during the

positive pulses, and the total amp-hours taken out of the cell during

the negative pulse were measLred separately with an amp-hour meter.

The amp-hour efficiency was calculated as a ratio of the total

amp-hour output of a cell during discharge to the total amp-hours put

into the cell during charge. The amp-hour output of a cell was

obtained by discharging it after a charge was completed, at decreasing

current levels to a 1.75 volt cut off. The amp-hour output at each

current level was obtained from the amp-hour meter and totalled. A

typical discharge amp-hour determination and the current used for
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these measurements are shown in Table i. The total amp-hours

delivered to the cell during charge was obtained from the amp-hour

meter.

Energy efficiency was calculated as a ratio of the total electrical

energy output of the cell during discharge to the total electrical

energy into the cell during charge. The energy input during charge

was calculated as follows: perodically during the charge the charge

pulse voltage was measured across the cell terminals with a calibrated

oscilloscope. The oscilloscope traces were photographed at the same

time as the amp-hours into the cell, and charge times were recorded.

Plots of the peak cell charge voltage, and amp-hours into the cell as

a function of charge time were made. The resulting curves were

divided into intervals; for each interval the average peak charge

voltage and the amp-hours into the cell were obtained. The total

energy into the cell was calculated as the summation, over the

intervals, of the product of the amp-hours and average peak charge

voltage. The total electric_l energy output of a cell at discharge

was calculated in a similar manner, except the time averaged cell

discharge voltage was obtain_,d from a strip chart recording.

Prior to the start of charge, the peak charge and discharge current,

pulse frequency, and duty cycle were set at the charger. The peak

charge pulse current was verified by calculating the ratio of the

positive charge pulse current ampere-hours into the cell, at the end

. of charge, to the product of the total charge time and duty cycle.

The discharge peak pulse current during charge was verified in a
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similar manner. The pulse current waveforms were verified by viewing

and photographing the wavesh_pes measured across a non-inductive

current shunt using a calibrated oscilloscope. A charge was

terminated when either 10% of the charge pulse current produced gas or

the cell electrolyte temperature reached 120°F. During charge and

discharge the cell temperature was monitored and recorded but not

maintained constant.

RESULTS AND DISCUSSION

EXPERIMENT 1

Representative square waveforms used in this charge experiment are

illustrated in Figure i. The waveforms are substantially different,

for instance for the Positive waveform the peak charge pulse current

was 300 amps, the discharge I)ulse current was zero and the duty cycle

was 50%. For the Romanov waveform the charge peak pulse current was

also 300 amps. The discharge pulse current was 15 amps and the duty

cycle was also 50%. For the McCulloch waveform the peak charge pulse

current was 193 amps, the peak discharge pulse current was 575 amps,

and the duty cycle was 94%. For the Constant current waveform the

charge current was set at 14( amps, which was the time average pulse

current of each of the pulse waveforms. Since the average charge

current for all of the above waveforms was the same, a comparison of

the effectiveness of the four charge wveform methods was possible.

The pulse frequency of each of the waveforms was 60 HZ.

The results of charging 300 amp-hour lead-acid traction cells using
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these substantially different waveforms are summarized in Table 2.

This data indicate on the basis of charge time, percentage of rated

° amp-hours capacity charged, and amp-hour output on discharge, that

pulse charging offered no significant advantage, as a method of

rapidly charging these types of cells, when compared to the constant

current charge method. However, as indicated in Table 2, there were

some disadvantages such as a decrease in charge amp-hour and energy

efficiencies, and an increase in cell electrolyte temperature.

The constant current charge method resulted in the best energy

efficiency with no significant sacrifice of charge time, or amp-hour

output on discharge when compared to the pulse charge methods. The

McCulloch type pulse charge method resulted in the worst energy

efficiency which was, on the average about 24% less than the constant

current charge method. To summarize from Table 2, for a 300 amp-hour

lead-acid traction cell using the different charging waveforms, the

range of values obtained were: i) 61%-63% of rated amp-hour capacity

charged, 2) a charge time of 75-78 minutes, 3) an amp-hour output on

discharge of 184 to 190 amp-hours, and 4) an energy efficiency of 61%

to 80%. Unfortunately the ac_vantages or disadvantages of pulse

charging waveforms, compared to constant current charging, on cell

charge/discharge cycle life are unknown at this time.

EXPERIMENT 2

This experiment was undertaken for a Romanov waveform to define the

effect of peak charge pulse current, peak discharge pulse current,



duty cycle, and pulse frequeilcy on amp-hour and energy efficiency.

The results for a representa_ ire cell are summarized in Table 3 and

are illustrated in Figures 2-4. This data indicate that for a Romanov

type wvaeform, with respect to amp-hour output, there was no

significant effect of discharge pulse current, or pulse frequency.

There was on the average, a 12% improvement in amp-hour output at the

50% duty cycle when compared to the 94% duty cycle. However, with

respect to energy efficiency there was on the average, a 21%

improvement at the zero discharge pulse current when compared to the

aveage 36 amp discharge pulse current and on the average, a 7%

improvement in energy efficiency at the 94% duty cycle when compared

to the 50% duty cycle. There was, however, no significant effect of

pulse frequency. For the 94% duty cycle charge there was, on the

average, about a factor of two reduction in charge time when compared

to the 50% duty cycle charge. The electrolyte temperature at the end

of charge for this case was, on the average, about 6°F higher and the

amp-hour output on discharge was on the average about 11% lower. This

reduction in charge time was probably due to increased time averaged

charge current.

EXPERIMENT 3

A limited experiment was undertaken to explore ways of improving the

energy efficiency of pulse charging. The results of two methods

called method 1 and method 2 were compared. These methods have

already been fully described in the experimental section. Briefly, in

method 1 the cell was pulse charged for the entire duration of the
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charge. In method 2 the cell was initially constant current charged

and switched to Romanov puls_ _ charging at the onset of gassing.

Results of this limited stud _ are summarized in Table 4. This data

indicate method 2 was 1% mo e enesgy efficiency than method 1 with no

significant sacrifice of charge time, or amp-hours output of the cell

on discharge.

CELL TEMPERATURE

The cell temperatures were monitored and recorded during the

experiments (Series 1,2,3) but were not controlled. They are

summarized for the beginning and end of charge in Tables 1-3. This

matches reality since in actual applications of traction cells in

electric vehicles, golf carts, or fork lifts, the battery temperature

is not controlled during charge or discharge. Also cell temperature

is one factor which is influenced by a particular charge method since

it is related to efficiency and would be masked by a controlled

temperature test. As indicated in Table 2 the lowest cell electrolyte

temperature was obtained using the constant current charge method, and

was, on the average about 101°F. In contrast, the highest cell

electrolyte temperature was obtained using the McCulloch type charge

method, and was on the average about II9°F. For all tests, discharges

were performed at the same rates, and as expected, the cell

temperature variation was minimal.

CONCLUDING REMARKS

ii



Pulse charging offered no significant advantage as a method of rapidly

charging 300 amp-hour lead-acid traction cells when compared to

constant current charging at the time average charge pulse current

value. However, there were _:ome disadvantages such as a decrease in

charge amp-hour and energy eJficiencies and increase in cell

electrolyte temperature. Whether or not pulse charging offers an

advantage over constant current charging with respect to cell

charge/discharge cycle life is unknown at this time.
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Table ]

Ampere-HourOutput Determinationof a Representative
300 Ampere-HourLead-AcidTraction Cell

Discharge Amp.-
Current Hrs. Voltage*

Amps Output (Volts)

lO0 138.9 1.75

75 23.9 I.75

50 24.0 !.75

Total 186.8

*Voltage at which dischargewas terminated.



Table 2

Results of Chargin9 300 Ampere-Hour
Lead-Acid Traction Cells Using Representative Waveforms

i

Average Amp-Hr
Pulse Pulse Pulse Eff %

Charge Discharge Charge Duty Pulse 1 AH2 AH3 AHQ Energy Charged Charge T4 5

Current Current Current Cycle Frequency AHI 2 0 _I Eff.(%)(AHI_ Time(Min)(°F)l TCell Charge Wave Form (Amps) (Amps) (Amps) (%) (Hz)

102 Constant Curt. (Fig.l) 147 0 147 I00 0 190 0 190 I00 80 63 78 78 102
102 Positive Pulse (Fig, 1 ) 298 0 147 49 60 190 0 187 98 70 63 78 77 I12
102 Romanov Pulse (Fig. I 305 15 145 50 60 198 10 187 94 67 63 78 75 112
102 McCulloch Pulse (Fig.l) 193 573 147 94 60 227 43 184 81 61 61 75 78 120
I03 Constant Curr. (Fig. I) 146 0 146 100 0 196 0 196 100 79 65 81 74 99
I03 Positive Pulse (Fig. l) 303 0 151 50 60 192 0 194 I01 72 64 76 73 If2
103 Romanov Pulse (Fig. I) 309 15 148 50 60 214 10 198 93 65 68 83 74 114
I03 McCulloch Pulse (Fig l ) 193 577 147 94 60 236 45 190 81 60 64 78 74 ll7

I. TotalAmp-Hrsintocellduringpositivepulse
2. TotalAmp-Hrsout of cellduringnegativepulse
3. TotalAmp-Hrsout of cellat discharge,aftercompletionof a charge
4. Temperatureof ceilelectrolyteat startof charge
5. Temperatureof cellelectrolyteat end of charge



Table 3
Ef_ct of Duty Cycle, Pulse Discharge Current,

and Pulse Frequency on Am_-Hour and Enerqy Efficiency of 300 Amp-Hr Lead-Acid Traction Cells
!

Pulse Pulse Amp-Hr %
Charged

ChargeDischargeDuty Pulse AH_AH_Eff. Energy(_ChargeT 4 T5
Current Current Cycle Frequency AHl AHn/AH_ Eff. Time

Cell Charge Wave Form (#mps) (amps) (_) (Hz) l (_ ' (_) / _'in_LE____ 2_

EFFECT OF DUTY CYCLE

102 Romanov (Fig. l) 305 15 50 60 198 lO 187 94 67 63 78 74 I12
102 a' 307 I_ 75 60 IC2 3 17G 98 60 48 78 119
102 I 303 6 94 60 166 .2 165 99 71 55 35 74 120
103 _I 309 Ib 50 60 214 lO 198 93 65 68 83 74 If4
103 | 305 14 75 60 191 3 188 98 69 63 50 76 I18
103 _ 309 II 94 60 179 .4 179 lO0 70 60 37 74 I18

EFFECT OF PULSE DISCHARGE CURRENT

I02 Romanov ( Fig. l) 298 0 49 60 190 0 187 98 70 63 78 77 ll2
I02 305 15 50 60 198 lO 187 94 67 63 78 74 ll2

I02 i 304 35 50 60 215 25 189 88 63 63 85 76 ll4
103 i 303 0 50 60 192 O 194 lOl 72 64 76 73 I12
I03 309 15 50 60 214 lO 198 93 65 68 83 74 ll4

103 _ 303 37 50 60 227 28 190 84 55 66 90 76 ll7

EFFECT OF PULSE FREQUENCY
103 Romanov (Fig. 1) 293 14 50 8 210 lO 200 95 67 67 86 73 ll3
I03 309 14 50 60 214 lO 198 93 65 68 83 74 I14
I03 ( 302 lO 51 200 205 7 196 96 67 66 80 71 I12
IO3 \Y 294 lO 52 400 204 7 193 95 67 66 80 72 I13

I. Total Amp-Hrs into cell during positive pulse
2. Total Amp-Hrs out of cell during negative pulse
3. Total Amp-Hrs out of cell at discharge, after completion of a charge
4. Temperature of cell electrolyte at start of charge
5. Temperature of cell electrolyteat end of charge.



Table4

Resultsof Charqing300 Amn-HrLead-Acid
TractionCell103 by Method_t1and Method__2

f
Pulse Pulse Amp-Hr %
Charge Discharge Duty Pulse Eff. Energy Charged Charge
Current Current Cycle Freq. AH3 AH_ AH_ AHn/A_ Elf. AH1-AH) Time T16 T27

Method Description _ (Amps) %__ (Hz) 1 (_ • _

Il RamonovPulse 303 15 50 60 228 II 211 93 65 72 90 72 Ill

22 ConstantCurrent 146 0 lO0 0 192 0 - 79 73 98
RamonovPulse {301 12 50 60 25 1.0 - - I0 98 101

Total 217 l.O 206 95 72 72 89

l MethodI. - cellpulsechargedfromstartof charge
2 Method2. - cell initiallyconstantcurrentchargedand switchedto pulsechargingat the onsetof gassing
3 TotalAmp-Hrsintocellduringpositivepulse
4 TotalAmp-Hrsout of cellduringnegativepulse
5 TotalAmp-Hrsout of each cellat discharge,aftercompletionof a charge
6 Temperatureof cellelectrolyteat startof test
7 Temperatureof cellelectrolyteat end of test
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