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1.  FOREWORD

The Solar Energy System Performance Evaluation - Seasonal Report has been
developed for the George C. Marshall Space Flight Center as a part of the
Solar Heating and Cooling Development Program funded by the Department of
Energy. The analysis contained in this document describes the technical
performance of an Operational Test Site (0OTS) functioning throughout a
specified period of time which is typically one season. The objective of
the analysis is to report the long-term performance of the installed system
and to make technical contributions to the definition of techniques and re-
quirements for solar energy system design.

The contents of this document have been divided into the following topics
of discussion:

System Description
Performance Assessment
Operating Energy
Energy Savings
Maintenance

Summary and Conclusions

Data used for the seasonal analyses of the Operational Test Site described
in this document have been collected, processed and maintained under the
0TS Development Program and have provided the major inputs used to per-
form the long-term technical assessment.

The Seasonal Report document for Decade 80 House culminates the technical
activities for the site. The fact that the site was constructed as a show
place makes its costs unique. Consequently, no economic analysis such as
is performed for other 0TS sites in a final report is feasible. Other
documents specifically related to this system are References [1], [2].*

*Numbers in brackets designate references found in Section 8.




2,  SYSTEM DESCRIPTION

The Decade 80 House solar energy system is designed to provide domestic
hot water, space heating and space cooling to a one story, single family
residence located in Tucson, Arizona. The dwelling contains 3200 square
feet of conditioned 1iving space.

The collector subsystem consists of a 1923 square feet flat plate col-
lector array which has been integrated into the roof of the dwelling.
The array faces due south and is tilted at an angle of 26.5 degrees
from the horizontal. A solution of propylene glycol and water (30
percent propylene glycol by volume) is used as the energy collection
and transfer medium. Collected solar energy is transferred to water
contained in a buried, 3,000 gallon tank. The collector-to-storage
Toop also contains a heat exchanger used to heat a swimming pool.

The domestic hot water subsystem consists of a 66-gai.on storage tank

to which solar energy is supplied by a pump circulating water through

a heat exchanger immersed in the larger 3,000 gallon storage tank.
Auxiliary energy is provided to this subsystem by conventional electric
heating elements in the 66 gallon domestic hot water tank. Hot water

is continuously circulated from the hot water tank throughout the building
plumbing so that hot water is immediately available on demand.

The heating subsystem consists of a pump for withdrawing hot water from
the storage tank and circulating it through heat exchangers located in

the air distribution system of the dwelling. Auxiliary energy for heating
is provided by a gas fired, 150,000 Btu/hour boiler which can be used
either to add heat to the water from the hot storage tank or to heat water
circulating between the load heat exchangers and the boiler only.

. Space cooling is provided by two absorption cycle water chillers oper-
ating in parallel in a primary/secondary configuration. Energy stored
in the hot solar storage tank is circulated through the generators of
these chillers to activate the absorption cycle. Chilled water produced

canliiony i e
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in this manner is pumped to the heat exchangers located in the air
distribution system of the building. Whenever solar energy is insuf-
ficient to activate the refrigerant cycle, auxiliary energy is provided
by the gas fired boiler.

The system is shown schematically in Figure 2-1. The residence with
the collectors integrated into the roof is shown in Figure 2-2. The
system has four modes of operation:

Mode 1 - Collector-to-Storage: The collector pump (pump P1) is actuated
when the collector absorber plate surface temperature is 8°F hotter than
the water in the middle of the hot storage tank. This pump then circulates
the propylene glycol solution through the collector to the heat exchanger
where the collected energy is transferred to water circulating from the hot
storage tank by pump P2. Pump P2 is activated when the fluid temperature
out of the collector is 5°F hotter than that of the water in the middle of
the hot storage tank. When the temperature of the water in the bottom of
the hot storage tank rises to within 2°F of that of the collector absorber
plate surface, this mode is terminated.

Mode 2 - Domestic Hot Water Heating: When the temperature of the water in the
domestic hot water tank falls below the internal thermostat setting (normally
set at 135°F), water is withdrawn and circulated through the heat exchanger
immersed in the 3,000 gallon storage tank provided that the temperature in

the upper portion of this tank is 5°F higher than the thermostat setting. If
this condition is not met, the auxiliary immersion heaters provide the required
energy. As hot water is used, make-up water from the vtility main is passed
through the heat exchanger in the 3,000 gallon hot storage tank prior to

being admitted into the domestic hot water tank.

Mode 3 - Storage-to-Space Heating: Space heating is controlled by a two-stage
thermostat, with the stages set 1-1/2°F apart. When the first stage of this
thermostat calls for heat, hot water is drawn directly from the hot storage
tank and pumped to the heat exchangers in the air circulation duct. If
sufficient heat energy is not available and the second stage is then activated,
water is circulated through the boiler, where auxiliary energy is added, by-
passing the hot storage tank.
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Mode 4 - Space Cooling: The space cooling controls also include a two-stage
thermostat. The first stage is manually set to the desired room temperature,
while the second stage 1s always at a setting 1-1/2°F higher than that of the
first. When the cooling system is turned on by a demand from the first stage,
the primary chiller 1s activated. Hot water is drawn from the storage tank
to the generator of this chiller - provided that the temperature of the water
is at or above 180°F. The chilled water produced is circulated through

the heat exchangers in the air circulation system to cool the dwelling.

If, after 7 minutes, the temperature of the building is not at or below the
setting of the second stage, the secondary absorption chiller is activated
and continues to operaie in parallel with tha primary unit until the setting
on the second stage is reached. At this time, the secondary unit shuts down
and tha primary unit continues to operate until the desired room temperature
(the setting for the first thermostat stage) is reached. If the water pro-
vided to the generator(s) is less than 180°F, the auxiliary boiler is activated
to provide the necessary energy directly to the chillers. If the temperature
of the water returning from the generator(s) is less than that of the water at
the top of the hot storage tank, the returning water is circulated through
the hot storage tank on its way to the boiler; otherwise the hot storage tank
is bypassed.

The sensor designations shown in Figure 2-1 are in accordance with NBSIR-76-
1137 [4). The measurement symbbl prefixes: W, T, EP, I and F represent
respectively: flowrate, temperature, electric power, insolation and fossil
fuel rate.




2.1 Typical System Operation

Operation of the Decade 80 House solar energy system has *sken place in
essentially two seasons: heating and cooling. Curves depicting the
system operation on two days, one typical of space heating, the second
typical of space cooling, are presented in Figure 2.1-1 through 2.1-7.
In both instances the total and operationally incident insolation are
shown along with representative thermal storage parameters. A composite
plot showing chiller array COP vs. generator inlet temperature {s
presented for the day requring space cooling. This day, July 28, was
chosen since the primary chiller was the only unit in operation.

As shown in Figure 2.1-2, the collector pump Pl came on just prior to 10:00 AM
and shut off at 5:00 PM. Storage temperature was raised from a nominal 63°F
to a high of 181°F, as seen in Figure 2.1-3, despite nearly constant usage by
the chiller array. Figure 2.1-4 shows the chiller operation as a function
of generator inlet temperature. The average COP for the day was 0.52. On
this typical day the system operated in a manner which was consistent with
design criteria. There were 3.9 million Btu of incident energy of which

1.0 mi114ion Btu were collected and 0.99 million Btu put into the storage
medium. This represents a collector array efficiency of 26 percent.

From storage, 0.9 mi11ion Btu were removed for use by hot water and

space cocling loads, for a solar conversion efficiency of 23 percent.

figure 2.1-5 shows the total and operationally available insolation for
a typical day in the heating season. From Figure 2.1-6 it can be seen
that the collector pump turned on at 8:45 AM and ran until 4:45 PM, The
storage pump did not come on until 10:15 AM, Lowever, and turned off at
3:45 PM. A total of 3.9 million Btu were available for collection and
the system collected 1.6 million Btu for a collector array efficiency

of 41 percent. This unsually high efficiency may be largely due to the
affects of pool heating which began on inis day. The pool heating also
accounts for the relatively small rise n temperature uf the storage
volume. Even though a large amount of energy was collectad only 42 per-
cent of the heating load was provided by solar energy, the majority being
diverted for pool heating.
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2.2 System Operating Sequence

For July 28 and February 7, 1979, the days selected to represent the typical
system operation, the sequences are shown in Figure 2.2-1 and 2.2-2. Through-
out most of the cooling season the house was unoccupied and there was no
consumption of hot water. A1l other subsystems remained operative in their

normal modes. On the typical cooling day, collection of energy began at 9:45 AM
and ceased at 4:50 PM. From the total 3.9 million Btu available, the solar energy
system was able to collect 1.0 million Btu during this time. Cooling was required
throughout the day except for a brief interval about 6:00 AM. Both chillers

were in operation most of this time with the secondary chiller operating
approximately three hours less than the primary. Assistance from the

auxiliary gas supply was required until 11:00 AM because the temperature of
storage could not be raised to suitable levels. Solar energy was depleted

and auxiliary was again required beginning at 10:00 PM. The cooling load was

0.95 million Btu. Slightly more than 1.0 million Btu of solar energy and

1.4 million Btu of auxiliary energy was required to produce this cooling etfect.
The average ambient temperature was 84°F and the house was maintained at 80°F,

Typical operation during the heating season is illustrated by data from

February 7, 1979, shown in Figure 2.2-1. The collector array was in operation
between 9:30 AM and 4:45 PM, collecting approximately 1.6 million Btu. Maintaining
the inside temperature at an average 70°F in the presence of a 46°F ambient re-
sulted in @ space heating load of 0.8 million Btu. Relatively heavy use of the
space heating subsystem early in the month depleted the storage of solar energy.
This was reflected by the heavy use of auxiliary to supply the space heating
requirement. This was also the first day of pool heat exchanger operation and a
significant amount of collected energy was diverted for this purpose. After the
collection system began operation, however, the need for auxiliary diminished
dramatically. The frequent cycling of the space heating subsystem appeared to be
the normal mode for the Decade 80 House, however, this is not normally desirable.
The cause may be related to an improper thermostat anticipator setting or to high
infiltration rates.

15
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The consumption of hot water occurred primarily during the hours between 8:00
and 11:00 AM when 117 gallons were used. There was little immediate contribution
from the solar energy system since the temperature of storage was below the
threshold (145°F) required before the preheating operation is initiated.
Auxiliary energy was used to meet all stand-by losses and to resupply the

tank following the heavy usage.
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3.  PERFORMANCE ASSESSMENT

The performance of the Decade 80 House Solar Energy System has been
evaluated for the November 1978 through September 1979 time period

from two perspectives. The first was the overall system view in

which the performance values of system solar fraction and net energy
savings were evaluated against the prevailing and long-term average
climatic conditions and system loads. The second view presents a

more in depth ook at the performance of the individual subsystems.
Details related to the performance of the system are presented first in
Section 3.1 followed by the subsystem assessment in Section 3.2.

19




3.1 System Performance

This Sec.onal Report provides a system performance evaluation summary

¢f the operation of the Decade 80 House Solar Energy System located in

Tucson, Arizona. This analysis was conducted by evaluation of measured
system performance against the expected performance with long-term average
climatic conditions. The performance of the system is evaluated by calcu-
lating a set of primary performance factors which are based on those proposad
in the intergovernmental agency report, "Thermal Data Requirements and Perfor-
mance Evaluation Procedures for the Natioral Solar Heating and Cooling
Demonstration Program” [4]. The performance of the major subsystems are
evaluated in subsequent secticns of this report.

The measurement data were coiiected for the period November 1978 through
September 1979. Svstem performance data were provided through an IBM devel-
oped Central Data Prycessing System (CDPS) [3] consisting of a remote Site
Data Acquisition Systew (SCAS), telephone data transmission lines and
coupiers, an 13M Svsten 7 computer for data management, and an 1BM system
376/145 cowputer for data praocessing. The CDPS supports the collection
and analysi. of solar dats scguired from instrumented systems located
throughout the country. Tness data are processed daily and summarized
into monihiy perforrance assessients which then provide a common basis for
compara:ive system evaiuation. These monthly summaries are the basis of
the ev:'nyotion and data cuntainad in this report.

The s:lar erergy system perfort-nce summarized in this section can be
vie ¢ a3 the dependent vesporse of the system to certain primary inputs.
This etationstip is {lusirated in Figure 3.1-1. The primary inputs are
the incident solar oners,, auxiliary thermal energy, the outdoor ambient
temperat.-e and the system load. The dependent responses of the system are
the system solar fraction and the total energy su.vings. The input and out-
put definitions follow:

20




Inputs

) Incident Solar Energy - The total solar encrgy incident on
the collector array and available for collection.

) Ambient Temperature - The temperature of the external
environment which affects both the energy that can be
collected and the energy demand.

(] Auxiliary Thermal Energy - Energy derived from an auxiliary
source (natural gas) used to supply the thermal needs of the
various subsystems.

) System Load - The loads that the svstem is designed to meet,
which are affected by the life style of the user, e.g., space
heating/cooling, domestic hot water.

Outputs

0 System Solar Fraction - The ratio of solar energy applied to
the system loads tuo total energy requirement of the system.

0 Total Energy Savings - The quantity of auxiliary energy (electrical
or fossil) displaced by solar energy.

The monthly values of the inputs andg outputs for the total operational
period are shown in the System Performance Summary Table 3.1-1. Com-
parative long-term -ve-age values of daily incident solar energy, and
outdoor ambient temperature are given for reference purpose. The long-
term data are taken from Reference 1 of Appendix C. Generally the solar
energy system is designed to supply an amount of energy that results in a
desired value of system solar fraction while operating under climatic con-
ditions that are defined by the long-rerm average vaiue of daily incident
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solar energy and outdoor ambient temperature. If the actual climatic con-
ditions are close to the long-term average values, there is little adverse
impact on the system's ability to meet design goals. This is an important
factor in evaluating system performance and is the reason the long-tevm
average values are given. The data reported in the following paragraphs
are taken from Tables 3.1-1, 3.1-2 and 3.1-3.

In order to evaluate system performance, some reference or comparative
standard must first be established as a basis for comparison. Included

in Tables 3.1-2 and 3.1-3 are expected values for subsystem solar fractions.
These expected values have been derived from two sources: the modified
f-Chart [9] approach for hot water and space heating and a method described
in the following paragraph for space cooling. The modified f-Chart approach
{s based upon' the method deveioped at the University of Wisconsin [8]. The
inputs for the collector array data are based upon measurements taken at

the site which are processed to establish Hottel-Whiller-Bliss model by

a technique developed by McCumber [7]. This was done because the collectors
were not purchased as entities, but were built and installed in the the house
at the time of construction. The model used in the analysis is based on manufac-
turers' data and other known system parameters. The bases for the model are
empirical correlations developed for liquid and air solar energy systems that
are presented in graphical and equation form and referred to as the f-Chart;
where 'f' 1s a designator for the system solar fraction. The output of the
f-Chart procedure is the expected system solar fraction. The measured value
of system solar fraction is computed from measurements, obtained through the
instrumentation system, of the energy transfers that took place within the
solar energy system. These represent the actual performance of the system
intalled at the stie.

The following estimation method for space cooling loads was used. This
method is basically the standard ASHRAE technique used to size conventional
afr conditioning equipment. The long-term average cooling degree days are
multiplied by the average UA of the building. A constant 30 percent is then
added to account for latent loads. This technique is implemented as follows:
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CcL = UA X LATENT X CDD, X 24

est
where UA = 1000 Btu/°F. hr. obtained from builder's test
data and empirically from data obtained through
the data network
LATENT = 1.3 (ASHRAE estimate)
CDD, = long-term average coolig degree days in ith month

1

Table 3.1.3 shows the comparison of the measured data with the assumed
method for calculating cooling load.

The performance will be discussed in two segments: heating was required
from November 1978 through April 1979; cooling was necessary for April
through September 1979. April represents a transition month. Domestic
hot water was used to some extent throughout the entire period, although,
during months without occupants, the load was sporadic, being drawn mainly
to test the state of readiness of the system. Both the space cooling and
heating subsystems remained active under thermostatic control despite

the lack of occupants, thus loads were recorded without the usual
perturbations caused by normal occupancy.

Table 3.1-2 shows that the expected space heating load based on long-
term average heating degree day data is smaller than the actual load
encountered at the site since the temperatures were on the order of

3°F to 4°F lower on the average than the norms. Although available
solar energy was approximately 11 percent lower than average there

was still sufficient energy availabie for collection and direct gain
did not play as large a role in heating the house. Because of this the
solar space heating subsystem was exercised to a greater extent and was
able to satisfy a higher percentage of the load. The lower-than-average
ambient temperature improved collection efficiency by reducing the 1¢ss
factor, thus improving the efficiency/operating point balance.
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Table 3.1-3 shows that under the assumption used to generate the expected
cooling loads, the loads encountered at the site during the report period
agreed quite well. However, the absorption chiller total coefficent of per-
formance (COP) was significantly lower than would ordinarily be expected
based solely on the measured generator inlet temperatures. This leads

to the conclusion that, had the total chiller COP been as high as antici-
pated, the cooling subsystem solar fraction would have been much higher.
There are at least two possible explanations for this lower COP. It is
known that chiller maintenance was performed in August, and, as may be seen
by Table 3.1-3, a significant improvement in COP was observed after that visit.
At this time it was also learned that excess auxiliary thermal energy had
been expended to heat generator inlet water to temperatures often greater
than 190°F. This had the adverse effects of wasting auxiliary energy
(reducing the solar fraction) and over-firing the absorption chillers
thereby lowering their efficiency.

The operation of the two chillers in a primary/secondary mode, with the secondary
chiller cycling on and off, may also have contributed to the lower COP (resulting
in the lower solar fraction). It is characteristic of chillers to require a
warm-up period during which they do not operate efficiently. Perhaps the more
constant operation of the two with the addition of some cold thermal storage
would have served to improve both total COP and solar fraction.

In either event it can be seen that the capacity of the cooling subsystem
is adequate to meet the nominal cooling requirements of the house. System
solar fraction might have been significantly better had the chiller array
functioned properly.

Net energy savings were realized during every month of the reporting period.

These total savings are reported in Table 3.1-1 and are broken down by sub-
system and energy type in Table 5-1.
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3.2 Subsystem Performance

The Decade 80 House solar energy installation may be divided into five subsystems:

. Collector Array
Storage

Hot Water

Space Heating
Space Cooling

N BH W N -
*® e

Each subsystem has been evaluated by the techniques defined in Section 3

and is numerically analyzed each month for the monthly performance summaries.
This section presents the results of integrating the monthly data available
on the five subsystems for the period November 1978 through September 1979.
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3.2.1 Collector Array Subsystem

The Decade 80 House collector array consists of Revere, laminated panel, inte-
grated roof/flat plate liquid collectors having a gross area of 1923 square feet
and interconnected with parallel supply and return feeders. The absorber surface
has been painted with 3M "Black Velvet" and a double glazing of PPG "Twindow"

was used. The flow path through each collector panel is serpentine. Inter-
connection and flow details, as well as other pertinent operational characteristics,
are shown in Figure 3.2.1-1 (a) and (b). The collector subsystem analysis and data
are given in the following paragraphs.

Collector array performance is described by the collector array effici=ncy.
This is the ratio of collected solar energy to incident solar energy, a value
always less than unity because of collector losses. The incident solar
energy may be viewed from two perspectives. The first assumes that all
available solar energy incident on the collectors be used in determining
collector array efficiency. The efficiency is then expressed by the
equation:

e = Q0 )
where c = Collector array efficiency

Qs = (ollected solar energy

Q

Incident solar energy

e
1l

The efficiency determined in this manner includes the operation of the
control system. For example, solar energy can be available at the col-
lector, but the collector absorber plate temperature may be below the
minimum control temperature set point for collector loop operation, thus
the energy is not collected. The monthly efficiency by tnis method is
listed in the column entitled "Collector Array Efficiency” in Table
3.2.1-1.
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Inlet and Outlet
Headers as required by Array

Figure 3.2.1-1(a) COLLECTOR ARRAY ARRANGEMENT (2 SINGLE PANELS)

Panel Shown Without
Four Section Cover

—>

Figure 3.2.1-1(b) COLLECTOR PANEL LIQUID FLOW PATH (SERPENTINE)

Collector Data Site Data

Manufacturer - Revere lLocation - Decade 80 House

Model - Special, built ip place Tucon, Arizona
: o}
Type - Liquid Latitude - 32.7°N

3 - [o]
Number of Collectors - integral with roof Collector Tilt - 26.5

Flow Paths - One Longitude - 111°W
Azimuth - 0° (l?]
G
Figure 3.2.1-1 COLLECTGR ARRAY SCHEMATIC Oﬁ‘p(%;/!lj PAG
? R
QUA ‘]S
,,IIV
r
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The second viewpoint assumes that only the solar energy incident on the
collector when the collector loop is operational be used in determining
the collector array efficiency. The value of the operational incident
solar energy is multiplied by the ratio of the gross collector area to
the gross collector array area to compensate for the difference between
the two areas caused by installation spacing. The efficiency is then ex-
pressed by the equation:

N *  Qg/(Qpy X Ap/Aa) (2)
where Neo = Operational collector array efficiency

Qs = Collected solar energy

Qoi = Operational incident solar energy

Ap = Gross collector area (the product of
the number of collectors and the
envelope area of one collector)

A =z Gross colilector array area (total area
including all mounting and connecting
hardware and spacing of units)

The monthly efficiency computed by this method is listed in the column
entitled "Operational Collector Array Efficiency" in Table 3.2.1-1.

In the ASHRAE Standard 93-77 [5] a collector efficiency is defined in
the same terminology as the operational collector array efficiency.
However, the ASHRAE efficiency is determined from instantaneous evalua-
tion under tightly controlled, steady state test conditions, while the
operational collector array ef/iciency is determined from actual dvnamic
conditions of daily solar energy system operation in the field.
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The ASHRAE Standard 93-77 definitions and methods often are adopted

by collector manufacturers and independent testing laboratories in
evaluating collectors. The collector evaluation performed for this
collector using the field data indicates that there was a significant
difference between the laboratory single panel collector data and the
collector data determined from long term field measurements. This being
the case, there are two primary reasons for these differences;

() Test conditions are not the same as conditions
in the field, nor do they represent the wide
dynamic range of field operation (i.e. inlet and
outlet temperature, flow rates and flow distri-
bution of the heat transfer fluid, insolation
levels, aspect angle, wind conditions, etc.)

® Collector tests are not generally conducted with
units that have undergone the effects of aging
(i.e. changes in the characteristics of the glazing
material, collection of dust, soot, pollen or other
foreign material on the glazing, deterioration of the
absorber plate surface treatment, etc.)

Consequently field data collected over an extended period will generally
provide an improved source of collector performance characteristics for
use in Tong-term system performance definition. In addition to these
generic dirferences, the collector array at this site was built by the
contractor at the time the house was constructed. Substantial variation
can be expected between the "as built"” configuration and the test module.

The operational collector array efficiency data given in Table 3.2.1-]
are monthly averages based on instantaneous efficiency computations
over the total performance period using all available data. For de-
tailed collector analysis it was desirable to use a limited subset

of the available data that characterized collector operation under
"steady state" conditions. This subset was defined by applying the
following restrictions:
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(1) The measurement period was restricted to collector

operation when the sun angle was within 30 degrees
of the collector normal.

(2) Only measurements associated with positive energy gafn
from the collectors were used, §.e., outlet temperatures
must have exceeded inlet temperatures.

(3) The sets of measured parameters were restricted to
those where the rate of change of all parameters of
interest during two regular data system intervals*
was limited to a maximum of 5 percent.

Instantaneous efficiencies (nj) computed from the "steady state"
operation measurements of inciden. solar energy and collected solar
energy by Equation (2)** were correlated with an operating point
determined by the equation:

x. = o Ta
J I (3)
where xj = Collector operating point at the jth
instant
Ti = Collector inlet temperature
T

= Outdoor ambient temperature

1 Rate of incident solar radiation

The data points (nj. xj) were then plotted on a graph of efficiency
versus operating point and a first order curve described by the slope-
intercept formula was fitted to the data through linear regression
techniques. The form of this fitted efficiency curve is:

*The data system interval was 5-1/3 minutes in duration. Values of
all measured parameters were continuously sampled at this rate
throughout the performance period.

**The ratio Ap/Aa was assumed to be unity in this analysis.
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where ﬂj

(<)m

X5

Collector efficiency corresponding to the
Jth instant

Intercept on the efficiency axis
Slope

Collector operating point at ith
instant

The relationship between the empirically determined efficiency curve
and the analytically developed curve will be established in subsequent

paragraphs.

The analytically developed collector efficiency curve is based on
the Hottell-Whillier-Bliss equation:

where n

Ty - Ta
Falra) - FRU X —q— (5)

Collector efficiency

Collector heat removal factor
Transmissivity of colilector glazing
Absorptance of collector plate

Overall collector energy loss coefficient
Collector inlet fluid temperature
Outdoor ambient temperature

Rate of incident solar radiation
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The correspondence between equations (4) and (5) can be readily seen.
Therefore by determining the slope-intercept efficiency equation from
measurement data, the collector performance parameters corresponding to
the laboratory single panel data can be derived according to the follow-
ing set of relationships:

and (6)

where the terms are as previously defined

The discussion of the collector array efficiency curves in subsequent
paragraphs is based upon the relationships expressed by Equation (6).

In deriving the collector array efficiency curves by the linear re-
gression technique, measurement data over the entire performznce period
yields higher confidence 1in the result than similar analysis over shorter
periods. Over the longer periods the collector array is forced to operate
over a wider dynamic range. This eliminates the tendency Shown by some
types of solar energy systems* to cluster efficiency values over a narrow
range of operating points. The clustering effect tends to make the

linear regression technique approach constructing a line through a single
data point. The use of data from the entire performance period results

in a collector array efficiency curve that is more accurate in long-term
solar system performance prediction. The long-term curve and the curve
derived from the laboratory single panel data are shown in Figure 3.2.1-2.

The two curves of Figure 3.2.1-2 show significant differences in both slope
and intercept. This disparity is hardly surprising considering that the
collectors at this site form an integral part of the roof and were built and
installed by the construction crew at the time of the house building. A

*Single tank hot water systems show a marked tendency toward clustering
because the collector inlet temperature remains relatively constant and
the range of values of ambient temperature and incident solar energy
during collector operation are also relatively restricte. on a short-
term basis.
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"roughly similar" Revere collector was constructed and tested prior to
the home construction phase, but there is no assurance that the "as
built" configuration bears any resemblance to the tested model.

Information available from the preliminary testing program using the
ASHRAE method had reported an FR (ta) = 0.75 and an FRUL = -1.25, however,
the long term evaluation under the present instrumentation monitoring
program has yielded what must be considered a more realistic assessment
of the true thermal characteristics of the operational array, e.g.,

FR(Ta) = 0.48 and FRUL= -0.64.

Table 3.2.1-2 presents data comparing the monthly measured values of solar
energy collected with the predicted performance determined from the long-
term regression curve and the laboratory single panel efficiency curve.
The predictions were derived by the following procedure:

1. The instantaneous operating points were computed using
Equation (3).

2. The instantaneous efficiency was computed using Equation (4)
with the operating point computed in Step 1 above for:

a. The long-term linear regression curve for
collector array efficiency

b. The laboratory single panel collector efficiency
curve

3. The efficiency computed in Steps 2a and 2b above were multiplied
by the measured solar energy available when the collectors were
operational to give two predicted values of solar energy collected.

The error data in Table 3.2.1-2 were computed from the differences
between the measured and predicted values of solar energy collected
according to the equation:
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Error = (a-P) /P (7

where A =  Measured solar energy collected
P = Predicted solar energy collected

The computed error is then an indication of how well the particular
prediction curve fitted the reality of dynamic operating conditions
in the field.

The values of “Collected Solar Energy" given in Table 3.2.1-2 are not
necessarily identical with the values of "Collected Solar Energy”

given in Table 3.2.1-1. Any variations are due to the differences in
data processing between the software programs used to generate the
monthly performance report data and the component level collector anal-
ysis program. These data are shown in Table 3.2.1-2 only because they
form the references from which the error data given in the table are
computed.

The data from Table 3.2.1-2 {llustrates that for the Decade 80 House

site the average error computed from the difference between the mea-

sured solar energy collected and the predicted solar energy collected
based on the field derived long-term collector array efficiency curve

vas 2.1 percent. For the curve derived from the laboratory single panel
data, the error was 10.3 percent. Thus the long term collector array
efficiency curve gives significantly better results than the manufacturer's
laboratory single panel curve.

A histogram of collector array operating points illustrates the distri-
bution of instantaneous values as determined by Equation (3) for the
entire month. The histogram was constructed by computing the instan-
taneous operating point value from site instrumentation measurements

at the regular data system intervals throughout the month, and counting
the number of values within contiguous intervals of width 0.01 from zero
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to unity. The operating point histogram shows the dynamic range of
collector operation during the month from which the midpoint can be
ascertained. The average collector array efficiency for the month can be
derived by projecting the midooint vaiue to ihe appropriate efficiency
curve and reading the corresponding vaiue of efficiency.

Another characteristic of the operating point histogram is the shifting

of the distribution along the operating point axis. This can be explain-

ed in terms of the characteristics of the system and the climatic factors

of the site, i.e., incident solar energy and ambient temperatura. Figure
3.2.1-3 shows two histograms that illustrate a typical winter month
(February) and a typical summer month (July) operation. The actual

midpoint which represents the average operating point for February is

at 0.15 and for July at 0.35. Decade 80 House is a single family residence
with hot water, space heating. and cooling systems, where the energy require-

ments from the solar source causes significant variation in the storage
temperature. This results in the collector inlet temperature varying

dependent upon the season. Conseguently, the operating point changes

| dramatically in contrast to the less complex systems with more constant

storage temperatures. For February it can be seen that both the temperature
differential and the insolation used in Equation (3) are lower, as is typical
during winter months; space heating enabling a greater use of the storage

tank by accommodating the use of lower temperatures. As a result, the operating

it ) AL C L

point range decreases and the predominant grouping shifts to the left (toward
a higher efficiency). In the month of July, however, when the tumperature of
storage was maintained at a higher level suitable for powering the absorption
chiller and the insolation was only 10 percent greater, the typical operating
point moved to the right (toward the lower efficiency region). It is

o TR TR AT AR T e e e
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important to note this seasonal shift toward lcwer efficiency in the
summer is driven primarily by the need for the higher minimum storage
temperatures required by the absorptfon chiller. This behavior is well
11lustrated in Table 3.2.2-1.

Table 3.2.1-1 presents the monthly values of incident solar energy,
operational incident solar energy, and collected solar energy from the
eleven month performance period. The collector array efficiency and
operational collector array efficiency were computed for each month
using Equations (1) and (2). The values of operational collector
efficiency range from maximum of 0.39 in February 1979 to a minimum

of 0.24 in May 1979. On the average the operational collector array
efficiency exceeded the collector array efficiency, which included the
effect of the control system, by 28 percent. This represents good per-
formance for these collectors in the application which included hot water,
space heating, and space cooling subsystems.

At Decade 80 House, incident solar energy totaled 1157.5 million Btu

(Table 3.2.1-1) for the report period. Solar erergy collected by the
array totaled 256.2 million Btu, giving an overall collector array
efficiency of 22.5 percent. Incident solar energy, during the time of
collector loop operation, was 890.2 million Btu resulting in an operational
collector efficiency of 28.8 percent. The operational collector efficiency
is considered the best measure of solar system performance because it ex-
cludes such factors as control system anomalies and scheduled system down
time. 1t, therefore, reflects the true ability of the system to collect

available solar energy when it is operating in the intended collection modes.

Additional information concerning collector array analysis in general may
be found in Reference [7]. The material in the reference describes the
detailed collector array analysis procedures and presents the results of
analyses performed on numerous collector array installations across the
United States.
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3.2.2 Stcrage Subsystem

Storage subsystem performance is described by comparison of energy to
storage, energy from storage and change in stored energy. The ratio of
the sum of energy from storage and change in stored energy to energy to
storage is defined as storage efficiency, ng- This relationship is ex~
pressed in the equation

s (aQ + Qg)/Qg; (8)

where: %

AQ Change in stored energy. This is the difference in
the estimated stored energy during the specified
reporting period, as indicated by the relative
temperature of the storage medium (either positive

or negative value)

Qso = Energy from svorage. This is the amount of energy
extracted by the load subsystem(s) from the primary

storage medium

Qsi = Energy to storage. This is the amount of energy
(both solar and auxiliary) delivered to the primary

storage medium

Evaluation of the system storage performance under actual system opera-
tion and weather conditions can be performed using the parameters defined
above. The utility of these measured data in evaluation of the overall
storage design are illustrated in the discussion which follows.




PRy

An effective storage heat transfer coefficient for the storage sub-
system can be defined as follows:

C = (Q-0Q/U(T, - T,) x t] Bl (9)

where
c = Effective storage heat transfer coefficient

Qgy =  Energy to storage

Q, = Energy from storage

AQ = Change in stored energy

T s Storage average temperature

Ta = Average ambient temperature in the vicinity
of storage
t = Number of hours in the month

The effective storage heat transfer coefficient is comparable to the heat
loss rate defined in ASHRAE Standard 94-77 [6]. It has been calculated for
each month in this report period and included, along with Storage Average
Temperature, in Table 3.2.2-1. The eleven month average storage efficiency
was 84.4 percent.

A useful application of the Effective Storage Heat Loss Coefficient is
the evaluation of storage temperature for periods of time when the amounts
of energy delivered to and taken from the tank are equal to each other.
Such conditions did occur for a brief period from March 8 at 9 PM to
March 10 at 4 AM, 1979, During this period energy to storage and energy
from storage were both zero.
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For steady state operating conditions, the storage average temperature
at the end of a time period can be determined by:

Te = TA+ (T1 - TA) x EXP \- k x t) (o)
where
TF = Average temperature of storage at time t

Ty =  Average ambient temperature (assumed in this
case to be equivalent to the temperature in
the vicinity of the storage tank)

Ti s Initial average temperature of storage at
the beginning of the time period.

k = Ratio of the effective heat loss coefficient
from Table 3.2.2-1 to the thermal capacity of
the storage subsystem.

t = Length of time in hours

For the storage system at Decade 80 House, the 3000 gallon tank was filled
with 2800 gallons of water. The thermal capacity (Tc) is:

T 2800 gallons x 8.34 Ibs/gallon x 1 Sibe = 23352 SE

c

where this is a measure of the ability of the water to store energy.

The decay constant (k) is:

b
"

(effective storage heat loss coefficient)/
(thermal capacity)

k = %%23382 = 1.8842 x 10 3/hr
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The average temperature of storage on March 9 at 9 PM was 159.26°F and
the average ambient temperature during the 7 hour period ending March 10
at 4 AM was 55.60°F. Using the equation for the T abuve

Te = 55.60+(159.26 - 55.60)xEXP(-1.8842 x 1073 x 7) = 157.9°F

The measured average temperature at 4 AM on March 10, 1979 was 158.03°F.
This very good agreement between measured and predicted values of average
storage temperatures even over this relatively brief time span lends
credence to the average heat loss coefficient as presented in Table 3.2.2-1.
This calculation 1s important since it stands in direct contrast with the
specifications to which the tank was insulated, i.e., 3 inches of urethane
sprayed on at construction with a published k - value of

0.17 559——2
hr°F ft“/inch.

The tank of dimensions 8 1/2 feet in length and 8 1/2 feet in diameter has
a surface area of 185.74 ftz. Using the published value for the insulating
property of urethane one would conclude that the R-value of the coating
was 18, whereas if the calculations are based on the expected heat loss
coefficient from Table 3.2.2-1 the calculated R-value is only slightly
greater than 4. The disparity between these two values is significant

and shows the advisability of using system characteristics based on
measured data as a refinement to estimates based solely on design data.
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3.2.3 Hot Water Subsystem

The performance of the hot water subsystem is described by compiiring the
amount of solar energy supplied to the subsystem with the energy required
to satisfy the total hot water load. The energy required to satisfy the
total load consists of both solar energy and auxiliary thermal energy.

The performance of the Decade 80 hci water subsystem is presented in
Table 3.2.3-1. The value for auxiliary energy supplied in this table for
the months of November, Pecember, and January contains estimations due

to a faulty sensor which was repaired in early February 1979. The
difference between the sum of auxiliary thermal energy plus solar energy
and the hot water load is equal to the thermal (standby) losses from the
hot water subsystem which in this instance includes losses caused by a
recirculation loop which was not instrumented separately.

The measured solar fraction in Table 3.2.3-1 is an average weighted value
for the month based on the ratic of solar energy in the hot water tank to
the total energy in the hot water tank when a demand for hot water exists.
This value is dependent on the daily profile of hot water usage.

For the eleven month period from November 1978 through September 1979, the
solar energy system supplied a total of 9.21 miliion Btu to the hot water
subsystem. The total hot water load for this period was 3.73 million Btu,
and the weighted average monthly solar fraction was 62 percent.

The monthly average hot water load during the reporting neriod was 0.4
million Btu, which is based on an averaoz daily consumption of 2z.9 callons,
delivered at an averaye temperature of 126°F.

Each montn an averaqe of 0.84 million Btu of solar energy and 0.75
million Btu of auxiiidary thermal electrical energy were supplied to the
hot water subsysten. “ince the averaje monthly hot water load was 0.34
million Btu, an average of 1.25 million Btu was, therefore, lost from the

hot water tank each wonth.
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0f the eleven months encompassed by this report, primary emphasis should
be given to the three months period of February, March and April, 1979,
during which the residence was occupied. Only during this time can truly
representative operation of the subsystem be observed, since it is only
then that the system is being used as designed.

During this period of full occupancy, an average of 55 gallons of hot water
per day were consumed resulting in an average hot water load of 0.83 million
Btu. The solar energy typically supplied 57 percent of the energy 1o
produce the hot water at an average temperature of 130°F. Convenience
losses from this system, which includes a recirculation loop providing
instantaneously hot water upon demand, averaged 1.85 million Btu during

this time.




3.2.4 Space Heating Subsystem

The performance of the space heating subsystem is described by comparing the
amount of solar energy supplied to the subsystem with the energy required

to satisfy the total space heating load. The energy required to satisfy the
total load consists of both solar energy and auxiliary thermal energy. The
ratio of solar energy supplied to the load to the total load is defined as
the heating solar fractfon. The calculated heating solar fraction is the
indicator of performance for the subsystem because it defines the percentage
of the total space heating load supported by solar energy.

The performance of the Decade 80 House for the heating season, November, 1978,
through April, 1979, is presented in Table 3.2.4-1. During this period, the
solar energy system supplied 60.67 million Btu of a total 67.60 million Btu
heating load. This represents a solar fraction of nearly 93 percent.

The long-term average number of heating degree days (based on 65°F) for the
Tucson site is 1738. During the six months for which heating was required,
the number of heating degree days measured at the site were 1723. This
remarkably good agreement with the long-term average coupled with the

high solar fraction of 93 percent shows that the heating subsystem was

well designed for the locale and operated properly throughout the heating
season.
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3.2.5 Space Cooling Subsystem

The performance of the space cooling subsystem is described by comparing
the amount of solar energy supplied to the subsystem with the energy re-
quired to satisfy the total space cooling load. The energy required to
satisfy the load normally consists of both a solar and an auxiliary thermal
component. The ratio of the cooling produced by solar energy to the total
cooling load 1s defined as the space cooling solar fraction which is a
indicator of the overall subsystem performance. The measured monthly
values for performance parameters in the space cooling subsysicm are
presented in Table 3.2.5-1.

It was in the cooling subsystem that major modifications were made to
the original design. These medifications represented the major change in
the system configuration. Prior to July, 1978, the cooling subsystem
contained two Arkla 501-WF direct expansion <hillers which were assigned
individually to east/west zones. During the summer of 1978, the system
was extensively modified to incorporate the newer iModel WF-36 water
chiller which had been specifically designed to operate in the solar
environment. Furthermore the configuration was modified so that the two
chillers now operated in a primary/secondary mode with no zone dependency.
With this improvement in system design, the system was operated briefly
in a checkout mode November 15, 1978. There was no further requirement
for cooling until April, 1979. High confidence in the data from this
month is precluded due to a measurement malfunction which was directly
related to the discovery of contaminants in the lines. This problem of
contaminants in the generator supply lines became a recurring problem,
resulting in some subsystem down time, and the necessity for estimating
some of the performance parameters.

During the cooling period covered by this report a total cooling load

of 75.95 million Btu was measured for an average 12.66 million Btu per
month. Solar energy supplied approximately 50 percent of this load by
providing erergy to operate the absorption cycie of the water chiller(s).
The nominal coefficient of performance for the chiller array (the chillers
were not instrumented in such a manner to permit individual evaluation)
was 0.46.

¥




During August, maintenance was performed on the chillers by factory
representatives who discovered two anomalies. An accumulation of non-
condensible gas was present in both the chillers, which was removed by
evacuation. It was also discovered that since these chillers had been
designed for use in the Tucson area by having a specifically tailored
refrigerant charge, they needed to operate at lower generator inlet and
condenser return temperatures. Consequently the system parameter which
controls generator inlet temperature was modified to prevent this over-
firing which results in decreased efficiency and the dissipation of the
excess heat by the cooling tower.
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4. OPERATING ENERGY

Operating energy is defined as the energy required to transport solar
energy to the point of use without affecting its thermal state. Total
operating energy for the Decade 80 solar energy system consists of the
energy required to perform Solar Energy Collection and Storage (ECSS)
operations, hot water, space heating and space cooling functions. Oper-
ating energies for the system performance evaluation period are presented
in Table 4-1.

The ECSS operating energy requirement throughout the reporting period

shows normal seasonal variations, e.g., expending more energy in months

when there is typically more solar radiation available. On the average

0.67 million Btu per month (200 kwh) were expended for this purpose. An
apparent anomaly exists in the February and March data, however, as dis-
cussed in Coll.ctor Subsystem section. This is due to the higher efficiencies
of the ECSS brought about by the use of the main collector array to heat

the swimming pcol. This was in addition to its normal application wherein

all the energy was put into the buried thermal storage.

The operating energy for the hot water subsystem was typically 0.02 million
Btu per month (6 kwh). This too shows seasonal effects, but it is doubly
affected since the system will only preheat water when the temperature of
storage exceeds the set point of the auxiliary supplemental source in the
domestic hot water tank by 10°F. During the months requiring space
heating, the temperature of storage was often below this threshold value
(typically 145°F). This was the principal time of occupancy; thus when
the greatest demand for hot water was presented, the subsystem could not
respond in the most efficient manner. Later, when the temperature of
thermal storage was maintained consistently above the 145°F threshold,
the demand for hot water was diminished substantially. Operating energy
was expended to assist in offsetting convenience losses. It shouid be
noted that the system contains a recirculation pump for the purpose of
providing instantly available hot water at the tap. This pump was

not instrumented throughout the entire season.
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The space heating operating energy shows very good correlation with the
seasonal variation in load. During the six months that space heating

was required, an average 1.24 millfon Btu per month (365 kwh) were expended
to transport heated water to the zone heat exchangers.

Space cooling operating energy also correlates well with the space cooling
load. An average 5.67 miiiion Btu per month (1661 kwh) were expended.
This includes the production of chilled water as well as the distribution
to the zones for actual space cooling.
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5.  ENERGY SAVINGS

Solar energy system savings are realized whenever energy provided by the
solar energy system is used to meet system demands which would otherwise
be met by auxiliary energy sources. The operating energy required to
provide solar energy to the load subsystem {s subtracted from the solar
energy contribution. The resulting energy savings are then adjusted to
reflect the thermal conversion efficiency of the auxiliary source being
supplanted by solar energy. For Decade 80 the auxiliary source being
supplanted in the domestic hot water subsystem is an electric immersion
heater with the commonly assumed 100 percent conversion efficiency of
electrical to thermal energy for such devices. For the space heating
and cooling subsystems the auxiliary source being supplemented is natural
gas with an assumed 60 percent conversion efficiency.

Energy savings calculated for the Decade 80 House for the period November 1978
through September 1979 are presented in Table 5-1. Note that where & sub-
system had an active then inactive period, the averages only reflect the
actual operational period, e.g., both the heating and cooling subsystems

show 6 months averages as opposed to the ECSS system which was operational
each month.

Although the site was fully occupied and used as designed only three months
during this period, the hot water cubsystem remained active for the entire time.
A more detatled discussion of the subsystem and its operation is available

in Sections 2. and 3.2.3. Because the subsystem was fully operational for the
full time, an 11 month average savings of 0.801 million Btu were realized.

Two distinct seasons with different space conditioning requirements were
observed. From November through much of April, space heating was required.
Beginning April 18, 1979, and extending through September space cooling
was required. The solar energy system was able to supply virtually all of
the space heating requirement during this time.
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Energy savings realized by offsetting the use of natural gas averaged
16.851 mi11ion Btu per month. A relatively small penalty for the appli-
cation of solar energy was encountered because electricity was used

to transport the energy from storage to its point of consumption. This
resulted in a negative electrical savings (loss) of 1.223 million Btu per
month,

Solar energy cannot be directly applied to effect space cooling since it

{s desirable in this instance to remove energy from the conditioned space.
Because of this, solar energy is applied to an intermediate device, an
absorption cycle chiller, producing cooled water which is then used to

cool the space. Because devices of this :ype typically have an thermal
efficiency less than 1.0, far more energy 1s used as input than is produced
in the form of space cooling. Solar energy was able to supply approximately
50 percent of the energy required to cool the house from mid-April through
September. This has resulted in the savings of an average 23.427 million
Btu per month over the 6 month cooling season. Once again, as in the space
heating discussion above, a penalty was encountered for the transport of
this solar energy to its point of application. This transportation expense
averaged 3.643 miliion Btu per month. This substantially larger transportation
expense for the space cooling operation over the space heating is due to the
use of larger pump which was required to supply the two chillers and the
{nternal pumps inside the chillers.

A1l months experienced positive fossil savings and with the exception of
November, 1979, al) months experienced a negative electrical savings (losses).
| Total net savings are shown in Table 5-1 as 18.36 million Btu per motnh.

In order to translate the energy saving figures from Table 5-1, which are
expressed in terms of thermal units, into actual costs, the rate schedule
information from Appendix D was applied. Table 5-2 contains the cost savings
data. In this taile, the cost of the actual energy purchased is tabulated
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under gas or electric usage. These costs do not reflect any but those
directly connected with the solar energy system, for total electric power
consumption was not measured, nor was total gas usage, although no other
known use of natural gas was made. Energy required without the solar energy
system was projected based on equipment performance and is not an actually
measured quantity.

With the exception of a relatively small amount of energy used to heat
domestic hot water directly, all of the electrical energy was used in the
transport of other energy forms, 1.e., solar or gas heated fluids. This fact
1s clearly shown in the cost of operating energy and in the small electrical
savings of the final column. Natural gas, which is the primary source of
thermal energy at the site other than solar, is fairly inexpensive in the
Tucson area, therefore, the costs savings are meager. In effcct then, very
11ttle of the electrical power used could have been supplented by solar
energy since mcst of it went for transportation expenses. The cverall cost
savings at the site are also small even though solar carried 50 percent of
the total load. This 1s primarily due to the low cost for natural gas.

Without including local taxes, the average monthly expenditure for gas and
electricity actually used during the reporting period was $116.13. Had all
of the energy to perform the same tasks been purchased the average monthly
bi11 would have been $149.09 which represents a savings of $32.96/month.

Notice should te taken of the dramatic decrease in actual costs €or natural
gas in August. It is observed in Section 3.2.5 that chiller maintenance was
performed during that time, and one of the prime discoveries was that the
supply water wis b2ing over-heated, resulting in both hicher thermel losses
and decreased chiller efficiency.
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6.  MAINTENANCE

This section includes the solar energy system maintenance performed
during this seasonal report period, November 1978 through September 1979,
Maintenance data on the instrumentation system is not included in this
report.

December 1978 During a particularly cold night while circulating
water through the ECSS heat exchanger, the heat
exchanger cracked a header. This damage was assessed
as relatively minor and system operation was not
materially affected. Repairs were completed during

January 1979.

An additional heat exchanger was installed in the
ECSS loop to provide heating for the swimming pool.
Use was begun on February 7, 1979.

January 1979

Pump P4 was changed from 1 hp to 1/4 hp to conserve
energy.

May 1979

Representatives of Arkla, Incorporated, the chiller
manufacturer, installed flow feed-back loops to help
control temperatures entering generators of both
absorption chillers. In addition, flow limiting
orifices were installed in the generator inlets

and the outlet load 1ine to hold flow to specified
levels.

Auqust 1979

Aug.5t 1979 - Galvanic action caused by dissimilar metals used
in solar energy system plumbing caused disruption
of flows and required that the system be flushed.
The principal effect was noticed in the uncertainty
of measurements in the cooling subsystem. It was
concluded that no serious damage was done to any part
of the solar energy system.

66




S

7.  SUMMARY AND CONCLUSIONS

For the report period November 1978 through September 1979, the average
measured daily incident solar energy in the plane of the collector

was 1801 Btu/ft2 which was about 11 percent below the long-term value.

The average daily outdoor ambient temperature was 64°F, which is nearly

B°F less than the long-term average of 69°F. Based solely on these
conditions loads at the site were expected to be slightly less than designed.

The incident solar energy for the 11 month period totaled 1157.5 million
Btu. Operational solar energy totaled 890.2 million Btu and the total
collected solar energy totaled 256.2 million Btu. This gives a collector
operational efficiency of 28.8 percent. The collector array efficiency
was 22.5 percent. The 23 percent difference between the incident and
operational incident solar energy is an anticipated value which indicates
the control system is operating in the expected manner. Collector analysis
data indicates the collector is operating at an efficiency which is signi-
ficantly less than was expected. This is attributed primarily to the
fact that the collectors which were built in place at the time of con-
struction did not match the prototype which was used for testing, and
upon which performance expectations were based.

The average hot water load during this 11 month period was 0.34 million

Btu per month. This is based on an average consumption of 687 gallon

per month at an average usage temperature of 126°F. This very low figure
{s indicative of the fact that the home was unoccupied for most of the test
pericd. While full occupancy existed, more normal usage profiles were
observed; e.g., 1643 gallons of hot water were used per month, at 130°F.
This is normal usage for two person occupancy. Overall, the hot water
subsystem provided 62 percent of the hot water, but during the three months
of full occupancy, the fraction was only 57 percent.
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Space heating was required during six months of the reporting period.

The solar energy system supplied 93 percent of the total space heating
requirement during this time. During the three months of full occupancy,
however, the system supplied 97 percent of the space heating requirements.
This performance is outstanding when compared with the predicted per-
formance using the modified f-Chart approach where only a 76 percent
contribution was expected.

Space cooling was required for six months of the test period. Although the
home was not actually occupied during any appreciable length of time during
which space cooling was required, the system remained under automatic therm-
ostat control in order to obtain cooling season data. Very good agreement
with expected loads based on long-term average cooling degree day data were
found. The measured solar fraction for the six months of cooling was 48
percent, compared with the expected solar fraction of 63 percent. The 23
percent lower than expected solar fraction is directly related to the 11
percent lower than expected incident solar radiation and the low COP of the
absorption chiller array prior to this repair in early August 1979.

The use of solar energy in this installation has resulted in the net savings
of non-renewable energy supplies. Over the 11-months of the study a total

of 201.97 mi1lion Btu were saved. Although most of this savings was actually
realized by offsetting the need for burning natural gas, the savings would
have been an average of 5380 kwh/month had the auxiliary been electricity.
Table 5-1 shows that there was a net loss associated with the actual use

of electricity primarily due to the fact that it was employed as an operating
energy source to transport other forms of energy and did not contribute to
the change in thermal state of any of the subsystems.

The Decade 8C House was designed and built in the mid-70's to be a showplace/
workshop for solar energy utilization. Superior construction techniques, the
use of quality materials and a full time maintenance staff have served to
make the entire system an outstanding example of the application of solar
energy for residential purposes. The luxury of a full time, on-site
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maintenance person is perhaps the single most important aspect of this
program. While most installations can not support this level of maintenance,
in the early stages of this emerging industry it has been very useful in
order to keep all subsystems operating in top form and to allow for a full
season data collection to be obtained.

Several conclusions may be drawn from this long term monitoring effort,
among which are:

- Flat plate collectors will support space cooling

- Definite energy savings can be realized

- More frequent periodic maintenance may be required on
solar energy systems that are not custom built

Some specific subsystem recommendations may also be made. From a purely
conservationist point of view the recirculation hot water loop should be
eliminated, since its convenience contributes to a higher loss for that
subsystem which can not be directly made up by solar energy. Full use

of the main collector array to heat the pool should always be considered.
This application significantly improved the collector array efficiency and
extended the pool use season. Consideration should be given to the addition
of some cold thermal storage which would provide a buffer capacitance between
] space cooling used and ability to produce chilled water. Further analysis,
beyond the scope of this report would be required to properly size that cold
thermal storage. Although the concept of primary/secondary chiller operation
appeared to work well, perhaps a better utilization of the operating energy
would have been made had the two chillers been arranged for separate supply.
The use of one pump capable of supplying full flow when both chillers were

on to supply only one chiller resulted in a poor energy efficiency ratio (EER).
The frequent cycling seen in the space heating subsystem (Figure 2.2-1) may
have been caused by a poor heat anticipator setting or high infiltration
rates. An investigation of either of these occurrences is in order,
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In conciusion, considering the complexity of this site and its
overall record of consistent daily operation; meeting a very high
fraction of all loads; the Decade 80 House must be rated as an out-
standing example of the applications of solar energy to residential
systems,
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APPENDIX A
DEFINITION OF PERFORMANCE FACTORS AND SOLAR TERMS

COLLECTOR ARRAY PERFORMANCE

The collector array performance is characterized by the amount of solar energy
collected with respect to the energy available to be collected.

o  INCIDENT SOLAR ENERGY is the total insolation available on the
gross collector array area. This is the area of the collector
array energy-receiving aperture, including the framework which is
an integral part of the collector structure.

] OPERATIONAL INCIDENT ENERGY is the amount of solar energy
incident on the collector array during the time that the col-
lector loop is active (attempting to collect energy).

) COLLECTED SOLAR ENERGY is the thermal energy removed from
the collector array by the energy transport medium.

0 COLLECTOR ARRAY EFFICIENCY is the ratio of the energy col-
Tected to the total solar energy incident on the collector array.
It should be emphasized that this efficiency factor is for the
collector array, and available energy includes the energy incident
on the array when the collector loop is inactive. This efficiency
must not be confused with the more common collector efficiency
figures which are determined from instantaneous test data obtained
during steady state operation of a single collector unit. These
efficiency figures are often provided by ccllector manufacturers
or presented in technical journals to characterize the functional
capability of a particular collector design. In general, the
collector panel maximum efficiency factor will be significantly
higher than the collector array efficiency reported here.
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ENERGY COLLECTION AND STORAGE SUBSYSTEM

The Energy Collection and Storage Subsystem (ECSS) is composed of the
collector array, the primary storage medium, the transport loops between
these, and other components in the system design which are necessary to
mechanize the collector and storage equipment.

0 INCIDENT SOLAR ENERGY is the total insolation available
on the gross collector array area. This is the area of the
collector array energy-receiving aperture, including the frame-
work which is an integral part of the collector structure.

o  AMBIENT TEMPERATURE is the average tcmperature of the outdoor
environment at the site.

0 ENERGY TO LOADS is the total thermal energy transported
from the ECSS to all load subsystems.

e  AUXILIARY THERMAL ENERGY TO ECSS is the total auxiliary
supplied to the ECSS, including auxiliary energy added to the
storage tank, heating devices on the collectors for freeze-
protection, etc.

° ECSS OPERATING ENERGY is the critical operating energy
required to support the ECSS heat transfer loops.
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STORAGE PERFORMANCE

The storage performance 1s characterized by the relationships among the energy
delivered to storage, removed from storage, and the subsequent change in the
amount of stored energy.

o  ENERGY TO STORAGE is the amount of energy, both solar and
auxilfary, delivered to the primary storage medfum.

° ENERGY FROM STORAGE is the amount of energy extracted by
the load subsystems from the primary storage medfium.

° CHANGE IN STORED ENERGY is the difference in the estimated
stored energy during the specified reporting period, as
indicated by the relative temperature of the storage medium
(either positive or negative value).

) STORAGE AVERAGE TEMPERATURE 1s the mass-weighted average
temperature of the primary storage medium.

() STORAGE EFFICIENCY is the ratio of the sum of the energy
removed from storage and the change in stored energy
to the energy delivered to storage.
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HOT WATER SUBSYSTEM

The hot water subsystem is characterized by a complete accounting of
energy flow to and from the subsystem, as well as an accounting of
internal energy. The energy into the subsystem is composed of aux-
{1iary fossil fuel, and electrical auxiliary thermal energy, and the
operating energy for the subsystem. In addition, the solar energy
supplied to the subsystem, along with solar fraction is tabulated. The
load of the subsystem is tabulated and used to compute the estimated
electrical and fossil fuel savings of the subsystem. The load of the
subsystem §s further identified by tabulating the supply water temp-
erature, and the outlet hot water temperature, and the total hot water
consumption.

] HOT WATER LOAD is the amount of energy required to
heat the amount of hot water demanded at the site from
the incoming temperature to the desired outlet temperature.

9 SOLAR FRACTION OF LOAD is the percentage of the load
demand which 1s supported by solar energy.

[} SOLAR ENERGY USED is the amount of solar energy supplied
to the hot water subsystem,

0 OPERATING ENERGY is the amount of electrical energy required
to support the subsystem, (e.g., fans, pumps, etc.) and
which is not intended to directly affect the thermal state
cf the subsystem.

0 AUXILIARY THERMAL USED is the amount of energy supplied to
the major components of the subsystem in the form of thermal
energy in a heat transfer fluid, or its equivalent. This term
also includes the converted electrical and fossil fuel energy
supplied to the subsvstem,




AUXILIARY ELECTRICAL FUEL is the amount of electrical
energy supplied directly to the subsystem.

ELECTRICAL ENERGY SAVINGS is the estimated difference hetween
the electrical energy requirements of an alternative conventional
system carrying the full load and the actual electrical energy
required by the subsystem,

SUPPLY WATER TEMPERATURE is the average inlet temperature
of the water supplied to the subsystem.

AVERACE HOT WATER TEMPERATURE is the average temperature of
the outlet water as it is supplied from the subsystem to the
load.

HOT WATER USED is the volume of water used.
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SPACE HEATING SUBSYSTEM

The space heating subsystem is characterized by performance factors similar

to those of che hot water subsystem, described above. The average building
temperature and the average ambient temperature are tabulated again on this
form to indfcate the relative performance of the subsystem in satisfying the
space heating load and in controlling the temperature of the conditioned

space. The perfornance factors provided on this report are defined as follows:

. SPACE HEATING LOAD is the sensible energy added to the air in
the building.

) SOLAR FRACTION OF LOAD is the percentage o7 the load demand
which is supported by solar energy.

) SOLAR ENERGY USED is the amount of solar energy supplied to
the space heating subsystem,

. OPERATING ENERGY is the amount of electrical energy required
to support the subsystem, (e.g., fans, pumps, etc.) and which
is rot inteaded to affect directly the thermal state of the
subsvstem,

) AUXILIARY THERMAL USED is the amount of energy supplied to the
major components of the subsystem in the form of thermal energy
in a heat transfer fluid or its equivalent. This term also
includes the converted electrical and fossil fuel c..ergy supplied
to the subsystem.

. AUXILIARY FOSSIL FUEL is the amount oi fossil fuel energy
supplied directly to the subsystem.




¢ ELECTRICAL ENERGY SAVINGS is the estimated difference between
the electrical energy requirements of an alternative conventional
system (carrying the full load) and the actual electrical energy
required by the subsystem.

() FOSSIL ENERGY SAVINGS is the estimated difference between the
fossil energy requirements of the alternative conventional system
(carrying the full load) and the actual fossil energy requirements
of the subsystem.

° BUILDING TEMPERATURE is the average space heated area dry
bulb temperature.

[ AMBIENT TEMPERATURE is the average ambient dry bulb temperature
at the site.

SPACE COOLING SUBSYSTEM

The space cnoling subsystem is characterized by performance factors similar
tc those of the hot water subsystem and space heating subsystem, described
previously. The performance factors in this form are defined as follows:

. SPACE COOLING LOAD is the total energy, including sensible and
latent, removed from the air in the spaced-cooled are of the
building.

° SOLAR FRACTION OF LOAD is the percentage of the 1oad demand which
is supported by solar energy.

° SOLAR ENERGY USED is the amount of solar energy supplied to
the space-cooling subsystem.
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OPERATING ENERGY 1s the amount of electrical energy required
to support the subsystem, e.g., fans, pumps, etc.. and
which is not intended to directly effect the thermal

state of the subsystem.

AUXILIARY THERMAL USED is the amount of energy supplied to the
major components of the subsystem in the form of thermal energ;,
in a heat transfer fluid, or its equivalent. This term also
includes the converted electrical and fossil fuel energy supplied
to the subsystem.

AUXILIARY ELECTRICAL FUEL is the amount of electrical energy
supplied directly to the subsystem.

AUXILIARY FOSSIL FUEL is the amount of fossil fuel energy
supplied directly to the subsystem.

ELECTRICAL ENERGY SAVINGS is the estimated difference between

the electrical energy requirements of an alternative cenventional
system (carrying and full load) and the actual electrical energy
required by the subsystem.

FOSSIL ENERGY SAVINGS is the estimated difference between the
fossil energy requirements of the alternative conventional
system (carrying the full load) and the actual fossil energy
requirements of the subsystem.

BUILDINa DRY BULB TEMPERATURE is the average dry bulb temperature
of the conditioned space.

AMBIENT TEMPERATURE is the average ambient dry bulb temperature
at the site.
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THERMODYNAMIC CONVERSION EQUIPMENT

The performance of all thermodynamic cycle equipment (e.g., heat pumps,
absorption chillers) used to transform energy at one temperature to energy
at another temperature will be reported by the following parameters. The
performance is characterized by the energies flowing to and from the equip-
ment and the coefficient of performance of the equipment.

The performance factors are defined as follows:

EQUIPMENT LOAD is the controlled energy output of thermodynamic
conversion equipment.

THERMAL ENERGY INPUT is the equivalent thermal energy which is

supplied as a fuel source to thermodynamic conversion equipment.

OPERATING ENERGY is the amount of energy required to support the
operation of thermodynamic conversion equipment which is not
intended to appear directly in the load.

ENERGY REJECTED is the amount of energy intentionally rejected

or dumped from thermodynamic conversion equipment as a by-
product or consequence of its principal operation.

COEFFICIENT OF PERFORMANCE is the coefficient of performance of

the thermodyramic conversion equipment.
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ENVIRONMENTAL SUMMARY

The environmental summary is a collection of the weather data which is
generally instrumented at each site. It is tabulated for two purposes
(1) as a measure of the conditions prevalent during the operation of
the system at the site, and (2) as a historical record of weather data
for the vicinity of the site.

° TOTAL INSOLATION is the accumulated total solar energy
incident upon the gross collector array measured at the site.

. AMBIENT TEMPERATURE(TA) is the average temperature of the
environment at the site.

() DAYTIME AMBIENT TEMPERATURE is the temperature during the
period from three hours before solar noon to three hours after
solar noon.
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APPENDIX B

SOLAR ENERGY SYSTEM PERFORMANCE EQUATIONS FOR
DECADE 80 HOUSE

I.  INTRODUCTION

Solar energy system performance is evaluated by performing energy balance
calculations on the system and its major subsystems. These calculations
are based on physical measurement data taken from each subsystem every
320 seconds. This data 1is then numerically combined to determine the
hourly, daily, and monthly performance of the system. This appendix
describes the general computational methods and the specific energy
balance equations used for this evaluation.

Data samples from the system measurements are numerically integrated to pro-
vide discrete approximations of the continuous functions which characterize
the system's dynamic behavior. This numerical integration is performed by

surmation of the product of the measured rate of the appropriate performance
parameters and the sampling interval over the total time period of interest.

There are several general forms of numerical integration equations which are
applied to each site. Examples of these general forms are as follows: The
total solar energy available to the collector array is given by

SOLAR ENERGY AVAILABLE = (1/60) r© [1001 x AREA] x At
where 1001 is the solar radiation measurement provided by the pyranometer
in Btu/ftz-hr, AREA is the area of the collector array in square feet, At

is the sampling interval in minutes, and the factor (1/60) is included to
correct the solar radiation "rate" to the proper units of time.

B-2

o e A AR R i A




Similarly, the energy flow within a system is given typically by
COLLECTED SOLAR ENERGY = £ [M100 x aH] x ar

where M100 1s the mass flow rate of the heat transfer fluid in lbm/min and
AH 1s the enthalpy change, 1in Btu/lbm. of the fluid as 1t passes through
the heat exchanging component.

For a 1iquid system AH 1s generally given by
tH = Eb aT

where Eb is the average specific heat, in Btu/(1b,-°F), of the heat
transfer fluid and AT, in °F, 1s the temperature differential across
the hezt exchanging component.

For electrical power, a general example is
ECSS OPERATING ENERGY = (3413/60) z [EP100] x 4t

where EP100 is the measured power required by electrical egquipment in
kilowatts and the two factors (1/60) and 3413 correct the data to Btu/min.

These equations are comparable to those specified in "Thermal Data Require-
ments and Performance Evaluation Procedures for the National Solar Heating
and Cooling Demonstration Program." 4] This document, given in the list
of references, was prepared by an inter-agency committee of the government,
and presents guidelines for thermal performance evaluation.

Performance factors are computed for each hour of the day. Each numerical
{ntegration process, therefore, is performed over a pericd of one hour.
Since long-term performance data is desired, it is necessary to build
these hourly performance factors to daily values. This ic accomplished,
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for energy parameters, by summing the 24 hourly values. For temperatures,
the hourly values are averaged. Certain special factors, such as effici-
encies, require appropriate handling to properly weight each hourly
sample for the daily value computatfon. Similar procedures are required
to convert daily values to monthly values.

I1. PERFORMANCE EQUATIONS
The performance equations for Decade 80 House used for the data evaluation

of this report are contained in the following pages and have been included
for technical reference and information.
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EQUATIONS USED IN MONTHLY PERFORMANCE REPORT
NOTE: = MEASUREMENT NUMBERS REFERENCE SYSTEM SCHEMATIC FIGURE 2-1

SITE_SUMMARY REPORT:

INCIDENT SOLAR ENERGY (BTU)
= (1/60) £ [1001 x AREA] x at
INCIDENT SOLAR ENERGY PER UNIT AREA (BTU/SQ. FT)
= (1/60) £ [1001] x ar
COLLECTED SOLAR ENERGY (BTU)
= £ [M100 x CP21 x (T100 - T150)] x At
WHERE CP21 IS THE SPECIFIC HEAT VALUE OF THE HEAT TRANSFER FLUID AS
A FUNCTION OF TEMPERATURE
COLLECTED SOLAR ENERGY PER UNIT AREA (BTU/SQ. FT.)
= £ [M100 x CP21 x (T100 - T150)/AREA] x At
AVERAGE AMBIENT TEMPERATURE (DEGREES F)
= (1/60) ¢ [TO01] x At
SOLAR ENERGY TG LOAD (BTU)

= £ [M403 x HWD(T453, T403) + (M300 + M301) + HWD(T350, T300)] x At
+ POOL HEATING LOAD

WHERE HWD(T1, T2) IS A FUNCTION WHICH CALCULATES THE ENTHALPY DIFFERENCE AT
T1 AND T2 FOR WATER
ECSS SOLAR CONVERSION EFFICIENCY
= SOLAR ENERGY TO LOAD/INCIDENT SOLAR ENERGY
COLLECTOR ARRAY EFFICIENCY = SOLAR ENERGY COLLECTED/INCIDENT SOLAR ENERGY
OPERATIONAL INCIDENT SOLAR ENERGY (BTU/SQ FT)
= 1/60 (1001 x AREA) x at, WHENEVER COLLECTOR PUMP IS RUNNING
ECSS OPERATING ENERGY (BTU)
= r [CONST x EP600 -HEATING OPERATING ENERGY -HOT WATER OPERATING ENERGY] x At
WHERE CONST = 3413/60
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LOAD SUBSYSTEM SUMMARY:
HOT WATER SUBSYSTEM:

HOT WATER AUXILIARY ELECTRICAL ENERGY (BTU)
= CONST £(EP300) x At
HOT WATER AUXILIARY THERMAL ENERGY = HOT WATER AUXILIARY ELECTRICAL ENERGY
POOL HEATING LOAD = :[M100 X HWD(T560, T561)] x At
ENERGY TO STORAGE (BTU)
= £[M200 x HWD(T250, T200)] x At
ENERGY FROM STORAGE (BTU)
= £[M403 x HWD(T453, T403) + (M300 + M301) x HWD(T350, T300)] x ar
CHANGE IN STORED ENERGY (BTU)
= STORAGE CAPACITY x [HEAT CONTENT PREVIOUS HOUR - HEAT CONTENT
PRESENT HOUR]
WHERE STORAGE CAPACITY IS THE ACTIVE VOLUME OF THE TANK
STORAGE AVERAGE TEMP (DEGREE F)
= (1760) £ [(T201 + T202 + T203) / 3] x Ar
STORAGE EFFICIENCY
- (CHANGE IN STORED ENERGY + ENERGY FROM STORAGE)/ENERGY TO STORAGE
ECSS SOLAR CONVERSION EFFICIENCY
= SOLAR ENERGY TO LOAD/INCIDENT SOLAR ENERGY
DAYTIME AMBIENT TEMP (DEGREE F)
= (1/360) ¢ [T001] x At
(COMPUTED ONLY + 3 HOURS FROM SOLAR NOON)
HOT WATER OPERATING ENERGY (BTU) = CONST £ [EP600] x At
HOT WATER AUXILIARY ELT"TRIC FUEL (BTU)
- £ [(EPCONST) x EP300] x At
TEMPERATURE OF COLD WATER SUPPLY (°F)
= TSW2/TSW1 (PERFORMED AT THE END OF EACH HOUR)
WHERE TSW2 = £ M301 x T351 x At
TSW! = £ M301 x At
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TEMPERATURE OF HOT WATER SUPPLY (°F) = THW1/TSW1 (PERFORMED AT END OF EACH HOUR)
WHERE THW1 = £ [M301 x T301] x At
HOT WATER LOAD
= £ [M301 x HWD(T301, T351)] x At
HOT WATER ELECTRICAL SAVINGS
- £ [(M300 + M301) x HWD(T350 -T300)] x At - CONST £ [EP600] x at
HOT WATER SOLAR FRACTION (PERCENT)
= 100 x (HOT WATER SOLAR ENERGY SUPPLIED TO CONSUMPTION LOAD/
HOT WATER LOAD)
HOT WATER CONSUMPTION (GAL) = £ [WD301] x &t
WHERE WD301 IS HOT WATER CONSUMPTION RATE DERIVED FROM W301
SYSTEM PERFORMANCE FACTOR
= SYSTEM LOAD/3.33 x (AUXILIARY ELECTRIC FUEL + SYSTEM
OPERATING ENERGY)
SPACE HEATING SUBSYSTEM:

SPALE HEATING LOAD

= 1 [(M504) x HWD(T504, T554)] x At
AUXILIARY SPACE HEATING THERMAL ENERGY

= 1 [(M504) x HWD(T402, T554)] x At ‘
SPACE HEATING SOLAR ENERGY ‘

= SPACE HEATING LOAD - SPACE HEATING AUXILIARY THERMAL ENERGY
SPACE HEATING SOLAR FRACTION

=  SPACE HEATING SOLAR ENERGY/SPACE HEATING LOAD #
SPACE HEATING ELECTRICAL SAVINGS

= CONST x £ [EP600] x At
SPACE HEATING FOSSIL SAVINGS

= SPACE HEATING SOLAR ENERGY/0.6
SPACE HEATING FOSSIL 7NERGY

= (HEATING AUXILIARY FOSSIL ENERGY)x(TOTAL AUXILIARY FOSSIL ENERGY)

(HEATING AUXILIARY THERMAL ENERGY)+(COOLING AUXILIARY THERMAL ENERGY)

SPACE HEATING OPERATING ENERGY

= CONST ¢ [EP600] x &t




SPACE COOLING SUBSYSTEM:

COOLING LOAD = £ [M504 x HWD(T554, TS04)] x At
COOLING AUXILIARY THERMAL ENERGY
= ¢ [((M500 + M501) x CP x T402 -((M500 x CP x T500) + (M501 x CP x T501)))] x ar
COOLING OPERATING ENERGY
=  CONST £ [EPSO0 + EP601] x At
COOLING SOLAR FRACTIUN

= 700 x (COOLING ENERGY/COOLING SOLAR ENERGY + COOLING AUXILIARY
THERMAL ENERGY)

COOLING AUXILIARY FOSSIL ENERGY

= iCOOLING AUXILIARY THERMAL ENERGY x TOTAL AUXILIARY FOSSIL ENERGY& )
+ GY

COOLING ELECTRICAL SAVING

= ¢ [CONST x EP500] x ar
COOLING FOSSIL SAVINGS

= (COOLING SOLAR ENERGY)/0.6
COOLING SOLAR ENERGY

. INPUT TO THERMODYNAMIC CONVERSION EQUIPMENT -
COOLING AUXILIARY THERMAL ENERGY

THERMODYNAMIC CONVERSION EQUIPMENT INPUT
= 1 [W502 x HWD(T550, T502) + M503 x HWO(T553, T503)] x At
THERMODYNAMIC CONVERSION EQUIPMENT REJECTED ENERGY
= 1 [M502 x HWD(T550, T502) + M503 x HWD (T553, T503)] x at
THERMODYANMIC EQUIPMENT LOADS = COOLING LOAD
THERMODYNAMIC EQUIPMENT COEFFICIENT OF PERFORMANCE

= THERMODYNAMIC EQUIPMENT LOAD
ﬁremmmﬁumrmm ENERGY

COOLING SOLAR ENERGY = THERMODYNAMIC EQUIPMENT ENERGY - COOLING
AUXILTIARY THEPMAL ENERGY

SYSTEM LOAD = HOT WATER LOAD + SPACE HEATING LOAD + SPACE COOLING
LOAD + POOL HEATING LNAD

SYSTEM OPERATING ENERGY = HOT WATER OPERATING ENERGY + SPACE COOLING OPERATING
ENERGY + SPACE COOLING OPERATING ENERGY + ECSS
OPERATING ENERGY
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AUXILIARY THERMAL ENERGY = HOT WATER AUXILIARY THERMAL + SPACE HEATING
AUXILIARY THERMAL + SPACE COOLING AUXILIARY
THERMAL

AUXILIARY ELECTRICAL ENERGY = HOT WATER AUXILIARY ELECTRIC ENERGY

SYSTEM SOLAR FRACTION = (HOT WATER LOAD x HOT WATER SOLAR FRACTION + SPACE
HEATING LOAD x SPACE HEATING SOLAR FRACTION + SPACE
COOLING LOAD x SPACE COOLING SOLAR FRACTION + POOL
HEATING LOAD)/TOTAL SYSTEM LOAD
TCTAL ELECTRIZAL SAVINGS = HOT WATER ELECTRICAL SAVINGS + HEATING ELECTRICAL
SAVINGS - ECSS OPERATING ENERGY + COOLING ELECTRICAL
SAVINGS
TOTAL FOSSIL SAVINGS = HEATING FOSSIL SAVINGS + COOLING FOSSIL SAVINGS
TOTAL ENERGY CONSUMED = AUXILIARY ELECTRIC ENERGY + AUXILIARY FOSSIL
ENERGY + SYSTEM OPERATING ENERGY + SOLAR ENERGY
COLLECTED
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APPENDIX C
LONG TERM AVERAGE WEATHER CONDITIONS

The environmental estimates given in this appendix provide a point of
reference for evaluation of weather conditions as reported in the Monthly
Performance Reports and Solar Energy System Performance Evaluations issued
by the Solar Heating, Cooling and Hot Water Development Program. As such,
the information presented can be useful in prediction of long term system
performance. C

Environmental estimates for this site include the following monthly averages:
extraterrestrial insolation, insolation on a horizontal plane at the site,
insolation in the tilt plane of the collection surface, ambient temperature,
heating degree-days, and cooling degree-days. Estimation procedures and data
sources are detailed in the following paragraphs.

The preferred source of long term temperature and insolation data is "Input
Data for Solar Systems" (IDSS) [1] since this has been recognized as the
solar standard. The IDSS data are used whenever possible in these environ-
mental estimates for both insolation and temperature related sources; however,
a secondary source used for insolation data is the Climatic Atlas of the
United States [2], and for temperature related data, the secondary source

is "Local Climatological Data" [3].

Since the available long term insolation data are only given for a horizontal
surface, solar collection subsystem orientation information is used in an
algorithm [4] to calculate the insolation expected in the tilt plane of the
collector. This calculation is made using a ground reflectance of 0.2.
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APPENDIX D
UTILITY RATE SCHEDULES FOR

GAS AND ELECTRICITY IN
TUCSON, ARISONA
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TUCSON ELECTRIC POWER COMPANY
P. 0. Box 711
Tucson, Arizona 85702
Dear Customer:
At your request we submit our Residential Electric Rate
No. 1 showing current adjustments:

RESIDENTIAL ELECTRIC RATE NO. 1

Base
Rate

SUMMER - .
May through October billings
First 100 kwh or less per month §6.08
All additional kwh per month @ 5.0241¢ per Rkwh
WINTER -
November through April billings
First 100 kwh or less per month $6.88
Next 500 kwh per month e 5.0841¢ per kwh
Next 400 kwh per month e 3.7733¢ per kwh
All additional kwh per month € 2.7293¢ per kwh
Fuel and Purchased Power Cost Adjustment:
All kwh per month e .45264¢ per kwh
Minimum Bill: $6.88 per month per meter.
TUCSON: To calculations on above rates add 2,0% Franchise

Tax; then, to calculations on above rates plus
Franchise Tax add 6.224% Sales Taxes and Corpora-
tion Commission Assessment.

SOUTH TUCSON: To calculations on above rates add 6,.224% Sales
Taxes and Corporaticn Commission Assessment.

OTHER: To calculations on above rates add 4.216% Sales
Taxes and Corporation Commission Assessment.

There shall be a $10.55 charge for the initial establish-
ment of each new service for each customer, There shall be a
$10,55 charge for the re-establishment of each service for each
customer,

Very truly yours,

TUCSON ELECTRIC POWER COMPANY

Eff. January 1980
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SOUTHWEST GAS CORPORAT!ON
Las Vegas, Nevada

Arizona Gas Tarift Fourth Rgy sed ACC. Sheet No..—d__
$autharn Arizona Division Cancelling Third Revised AC.C. Shest No.— 9

" STATEMENT OF RATES
EFFECTIVE RATES APPLICABLE TO SOUTHERM ARIZONA DIVISIOM SCHEDULES)/

Base Currently
Schedule No. & ) Tariff Fuel Adjustment Effective
Type of Charge: Rate Current Curulative Tariff Rate
. G-60 :
Sumri (Jml\e-Septemer)
Priorit
: Coma;f Charge
e . rst cf or Less $2.50 $ -- $ - $2.50
4 Plus Fuel Adj. per Ccf .- .01184 .05621 .05621
4 Next 20 Ccf per Cef .29530 .01184 .05621 .35151
Next 25 Cef per Ccf «22679 .01184 .05621 28300

A1 Additional Ccf per Ccf 19167 .01184 .05621 .24788
ter (October-May) :
{or

“Priority 1
Tmaii Charge
First B Ccf or Less $2.50 $ -- $ - $2.50

Wi

-‘

Plus Fuel Adj. per Ccf -- .01184 .05621 .05621

Next 20 Ccf per Ccf «29530 .01184 .05621 .35151

Y Next 75 Cef per Ccf .22679 .01134 05621 28300
Next 400 Ccf per Ccf .21227 .01184 .05621 +26848

Next 1,000 Ccf per Ccf .19786 .01184 .05621 «25407

A1l Additional Ccf per Ccf .19167 .01184 .05621 .24788

6-70
Summer (June-September)

Priority 1 and 2
Coﬁ‘f Charge
st g CcT or Less

4 $2.50 $ -- $ -- $2.50
Plus Fuel Adj. per Ccf -- .01184 .05621 .05521
Next 20 Ccf per Ccf .29530 .01184 .05621 .35151
Next 75 Ccf per Cef .22679 .01184 .05621 28300
Next 400 Ccf per Ccf .21227 .01184 .06621 .26848
A1l Additional Ccf per Ccf .19167 .01184 .05621 .24788
Priority 3
Comoﬂ!t Charge
First § Ccf or Less $2.50 $ -- $ - $2.50
Plus Fuel Adj. per Ccf -- .00039 .09142 .09142
Next 20 Ccf per Cef .29530 .00039 .09142 38672
Next 75 Ccf per Co* .22679 .00039 .09142 .31821
Next 400 Ccf per Ccf .21227 .00039 +09142 . 30369
ATl Additional Ccf per Ccf .19167 .00039 .09142 .28309
Issued On: November 29, 1979 Issued by Effective: January 1, 1980

Marvin R. Shaw
Vice President
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SOUTHWEST GAS CORPORATION
Las Vegas, Nevada
Arizona Gas Tariff
Southern Arizona Division

Cancelling

A.C.C. Sheet No.. 10 _
Third Revised A.C.C. Sneet No.10 __

STATEMENT OF RATES

EFFECTIVE “ATES APPLICABLE TO SOUTHERN ARIZONA DIVISION SCHEDULES)/

Marvin R. Shaw

Vice President

D-4

r U.5. GOVERNMENT PRINTING OFFICE: 1980-640 247/576 REGION NO. 4

ontinue
Base Currently
Schedule No. & Tariff Fuel Adjustment Effective
Type of Charge Rate Current Cumulative Tariff Rate
G-70 (Continued)
Winter (October-May)
riority 1 and 2
ommod1t arqge
First E Ccf or Less $2.50 $ - $ - $2.50
Plus Fuel Adj. per Ccf -- 01184 .05621 .05621
Next 20 Ccf per Ccf .29530 .01184 .05621 .35151
Next 75 Ccf per Ccf +22679 .01184 .05621 .28300
Next 400 Ccf per Ccf 21227 .01184 .05621 .26848
Next 1,000 Ccf per Cef .19786 .01184 .05621 .25407
A1l Additional Ccf per Ccf .19167 .01184 .05621 .24788
Priority 3
-CEhnwagty Charge
First 5 Ccf or Less $2.50 $ -- $ .- $2.50
Plus Fuel Adj. per Ccf - .00039 .09142 .09142
Next 20 Ccf per Ccf .29520 .00039 .09142 .38672
Next 75 Ccf per Cef .22679 .00039 .09142 .31821
Next 400 Ccf per Ccf 21227 .00039 .09142 .30369
Next 1,000 Ccf per Ccf .19788 .00039 .09142 .28928
. A1l Additional Ccf per Ccf .19167 .00039 .09142 .28309
G-75
Priority 1
Hourly Rated Capacity Per
Lamp per Month $1.57 ¢ .086 $ .410 $1.980
G-80
Prioritx 2
Commodity Charge
First %.550 Mcf per Month $1.7743 $ .1184 ¢ .5621 $2.3364
Next 47,500 Mcf per Month 1.7423 .1184 .5621 2.3044
A1l Additional Mcf per Month 1.7333 .1184 .5621 2.¢954
Priorit¥ 3
ommodity Charge
First S,SUU ﬂcf per Month $1.7743 $ .0039 $ .9142 $2.6885
Next 47,500 Mcf per Month 1.7423 .0039 .9142 2.6565
A1 Additional Mcf per Month 1.7333 .0039 .9142 2.6475
Issued On: —Navemher 29 1979 Issued by Effective: _lanuary 1. 1980
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