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1. FOREWORD

The Solar Energy System Performance Evaluation - Seasonal Report has been
developed for the George C. Marshall Space Flight Center as a part of the
Solar Heating and Cooling Development Program funded by the Department of
Energy. The analysis contained in this document describes the technical
performance of an Operational Test Site (OTS) functioning throughout a
specified period of time which is typically one season. The objective of the
analysis is to report the long term performance of the installed system and
to make technical contributions to the definition of techniques and require-
ments for solar energy system design.

The contents of this document have been divided into the following topics
of discussion:

System Description
Performance Assessment
Operating Energy
Energy Savings
Maintenance

Summary and Conclusions

Data used for the seasonal analyses of the Operational Test Site described
in this document have been collected, processed and maintained under the 0TS
Development Program and have provided the major inputs used to perform the
Tong term technical assessment, This data is archived by MSFC for DJE.

The Seasonal Report document in conjunction with the Final Report for each
Operational Test Site in the Development Program culminates the technical
activities which began with the site selection and instrumentation system
design in April 1976. The Final Report emphasizes the economic analysis
of solar systems performance and features the payback performance based on
life cycle costs for the same solar system in various geographic regions.

Other documents specifically related to this system are References [1] and

[2].*

*Numbers in brackets designate references found in Section 8.




2.  SYSTEM DESCRIPTION

The Solaron Akron Solar Energy System was designed to provide both space
heating and domestic hot water (DHW) preheating for a dual level single-
family residence containing approximately 1840 square feet in Akron, Ohio.
Solar energy collection is accompiished with flat-plate collectors using
air as the trancport fluid. The collector array has a gross area of 546
square feet and faces south at an angle of 45 degrees from the horizontal,
Solar energy 1s stored in a 270 cubic foot rock thermal storage bin located
on the lower level of the house. Solar energy is transferred to the DHW
subsystem by means of an in-duct heat exchanger (HX1) whenever the system
is storing collected solar energy. Water from the 80 gallon preheat tank
and make-up water are transferred from the preheat system to the 52 gallon
DHW tank when there is a demand for hot water. The auxiliary space heating
subsystem consists of an afr to 1iquid heat pump coupled with a 1000 gallon
water storage tank. The heat pump can provide energy either directly to
the house or to the 1000 gallon tank. The system is designed so that the
heat pump can charge the 1000 gallon tank during off-peak hours when electrical
rates are lower. Energy stored in the tank can then be used for space
heating purposes as required. Auxiliary energy for both the space heating
and DHW subsystems 1s provided by electricity. The heat pump has a nominal
capacity of 30,000 Btu/Hr with supplemental heat strips rated at 12 kw, and
the auxiliary hot water heater {s rated at 4.5 kw. The system is shown
schematically in Figure 2-1, and sensor designations in Figure 2-1 are in
accordance with NBSIR-76-1137 [3]. The measurement symbol prefixes: W, T,
EP, and I represent respectively: flow rate, temperature, electric power,
and insolation. The system has the following modes of operation:

A. First Stage

1. Collector to Storage and DHW. In this mode the collector blower
transfers solar energy from the collector array to the rock
thermal storage bin through the DHW heat exchanger. Part of the
solar energy is utilized in the DHW preheat loop and the remain-
ing solar energy is delivered to storage. This mode is entered
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whenever the differential temperature between the collectors
and the return afr duct s 40 + 7°F and heating demands are
such that direct space heating from the collector array is not
required. This mode terminates whenever the differential tem-
perature falls to 25 + S°F, or less, or direct space heating
from the collector array 1s required.

Collector to Space Heating Load. In this mode dampers MD1 and
MD2 are open and solar energy goes directly to the residential
area ut{l{zing both the collector and circulating blowers. The
DHW heat exchanger {s bypassed in this mode and all collected
energy is delivered to the space heating load. The same differ-
entfal temperature conditions described above also control opera-
tion in this mode.

Storage to Load. When incident solar energy on the collector
array {s insufficient, space heating is provided from the
storage bin by way of the circulating blower. Dampers MD1 and
MD3 are closed in this mode and MD2 1s open. A minimum storage
temperature of 90°F 1s required for operation in this mode.

Second Stage

4,

Heat Pump Auxiliary Direct. When {nsufficient solar energy {is
present on the collector array and the storage temperature is

also insufficient to maintain a Yevel of comfort, dampers MD]

and MD2 close and MD3 opens to provide heated air from the heat
pump by way of the auxiliary heating/cooling heat exchanger.

At outdoor temperatures of approximately 40°F or above, the

heat pump will carry the entire space heating load. For tempera-
tures between 2°F and approximately 40°F, the heat pump is supple-
mented by the electrical strip heaters.

It is also possible to heat in this mode while, at the same time,
collected solar energy is being delivered to storage. This




condition exists whenever the room thermostat is calling for
second stage heating and sufficient insolation is available
to allow the collector array to operate.

Auxiliary Heat from Heat Pump Storage. This mode allows space
heating from the off-peak water storage tank. During off-peak
hours, when the heat pump 1s not needed to heat the residence,
it stores hot water for use during this mode. Dampers MD1 and
MD2 are closed and MD3 is open in this mode.

C. Third Stage

6.

Electrical resistance (strip) heat is used whenever the heat
pump is unable to maintain the desired comfort level in the
house. Above 2°F the strips supplement the heat pump, as
described in Mode 4 above, and below 2°F the strips carry the
entire load.




HALLRL L st L L L A Ry

2,1 Typical System Operation

Curves depicting typical system operation on a cold, mostly bright day
(February 5, 1979) are presented in Figure 2.1-1, Figure 2.1-1 (a)

shows the insolatfon on the collector array and the period when the array
was operating (shaded area). Also shown in Figure 2.1-1 (a) are the
collector array temperature profiles. These are the inlet temperature
(T100), the outlet temperature (T150) and the absorber plate temperature
(T104).

On this particular day the collector array began operating at 0916 hours.
At that time the insolation level was 199 Btu/th-Hr and the absorber
plate temperature (T104) was 137°F. At the same time the collector array
inlet temperature (T100) was 59°F. This represents 2 higher different{al
temperature than the 40 + 7°F required between the collector array and
return duct to {nitiate collector array operation. However, it should be
noted that T104 and T100 are not control sensors, but only serve to monitor
system behavior. These operating temperature constraints are mentioned to
make the reader aware that monitoring instrumentation and control sensors
have no direct correlation, but monitoring {nstrumentation can provide
sufficient information to determine {f each operational mode is function-
ing within a reasonable range of control temperature sensor limits.

The collector array continued to operate normally throughout the day. It
will be noted that T104 tracked the insolation level quite closely during
the operational period. The array outlet temperature (T150) also tracked
both the insolation level and absorber plate temperature but {its fluctua-
tions were not as pronounced as those of the absorber plate temperature.
The collector array inlet temperature (T100) showed a gradual rise almost
constantly during the operational perfod. This {s expected because the
system was operating in the collector to storage and hot water mode most
of the day. As a result T100 tended to track the temperature at the
bottom of the storage bin fairly closely. The only exception to this
occurred at approximately 0937 hours. At that time the system operated

T
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briefly (approximately 10 to 15 minutes) in the direct collector to space
heating mode. During this time T100 showed a slighc decrease, as would
be expected.

The collector array continued to operate until 1441 hours when it shut down
momentarily for about five minutes. It came back on and ran for approxi-
mately 17 minutes unt{l 1503 hours. It cycled on briefly once again at 1508
hours and then shut down for the remainder of the day. Just before the
fnitial shutdown at 1441 hours the array temperature (T104) had dropped
approximately 15 degrees (to 126°F) due to a momentary drop in the insola-
tion level. At this time T100 was reading approximately 86°F. This 40°F
differential again was greater than the 25 + 5°F required tc terminate array
operation but, as noted before, T104 and T100 do not precisely reflect con-
trol sensor temperatures.

Figure 2.1-1 (b) presents a profile of the storage bin temperatures for the
selected day. During the first hour the system was providing energy for
space heating. However, at 0100 hours the temperature at the top of storage
dropped to approximately 90°F and the storage to space heating mode ter-
minated. (It is coincidental that the minimum storage temperature required
for space heating is also 90°F). After 0100 hours the system remained in

a quiescent state until the collector array began operating and charging
storage. During the charging period the temperature profile in the storage
bin behaved as would be expected, based on the air flow pattern through the
storage bin and the collector array outlet temperature (7150). Once col-
lector array operation, and hence storage charging, ceased, the system
remained relatively stable for the rest of the day, as the system did not
enter the storage to space heating mode during the evening hours.




2.2 System Operating Sequence

Figure 2.2-1 presents bar charts showing typical system operating sequences
for February 5, 1979. This data correlates with the curves presented in
Figure 2.1-1 and provides scme additional insight into those curves. This
particular day was chosen because almost all possible modes of syster opera-
tion were exercised at some time during the day and, in addition, some
system control problems are visibly demonstrated.

There are several interesting observations that can be made relating to the
overall space heating subsystem from Figure 2.2-1. First {s the poor perfor-
mance of the auxiliary heating system controls. As can be observed during
the first hour of the day, the rock storage bin was providing enerqgy for space
heating. However, at the same time the heat pump was attempting to charge
the off-peak tank. Normally this would be desirable, but at this particular
time the outdoor ambient temperature was below 2°F, so the compressor should
not have been running at all. As a result, there was no useful energy gain
in the off-peak tank (the temperature remained at approximately 117°F) and
the power expended to operate the compressor and pump was wasted. “nce the
rock storage bin was depleted at approximately 0100 hours, the auxiliary
system took over the space heating requirements. However, even though there
was some energy available in the off-peak storage tank, the system did not
take advantaqe of it. Instead, the electrical auxiliary heat strips carried
the entire heating load. Also during this time period the heat p:ivap system
was not working properly. The dashed blocks in Figure 2.2-1 show that the
system was trying to operate in the direct heat pump to space heating mode
during this period. However, this time the compressor did not ccre on (the
outdoor ambient temperature was now slightly below 0°F) even though the circu-
lating pump (P2) was running. Thus the energy required to operate the pump
was vasted. Had the system used the off-peak tank for heating during this
time the punp energy expenditure would have been justified and the energy
reanired for the heat strips would have becr eliminated or sigrificantly
reduced,
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At approximately 0700 hours the system began to use the off-peak system for
space heating and continued to do so until just after 0900 hours. At this
time the solar energy system began operating and there were no further mea-
sured space heating demands until the evening. At just after 2000 hours the
system again heated from the off-peak storage tank for a brief period of time.
Then, beginning shortly after 2100 hours, the heat pump, supplemented by the
heat strips, took over the space heating load. This operation continued un-
til approximately 2300 hours and, at this point, unsch:4uled operation of
pump P2 began again.

The second nbservation to be made concerns the manner in which the space heat-
ing demands were satisfied during the evening hours. As noted above they were
carried entirely by the auxiliary system, irrespective of the manner in which
the auxiliary system was performing. Referring back to Figure 2.1-1, it can
be seen that ample solar energy had been delivered to the storage bin during
the day to provide a useful space heating contribution during the evening,
However, the control system did not initiate the storage to space heating
mode at any time during the evening (or during the early morning hours the
next day), so the solar energy supplied to storage during the day was not used
by the system at night. This also resulted in an unnecessary consumption of
electrical auxiliary energy.

The last point to be made relating to the space heating subsystem concerns
the lack of any measured heating load during the day when the collector array
was operating (except briefly at approximately 0937 hours). With outdoor
ambient temperatures below 20°F all day, a substantial heating load would be
expected. The problem here has to do with the large amounts of air leakage
in the system. This situation is addressed in greater detail later in this
report.

Domestic hot water usage for this day was considerably above the 105 gallons
per day average for February. As shown in Figure 2.2-1, approximately 170
gallons of water was used during the day (bars without a value above them
represent usages of less than 2 gallons). Therefore, a higher than normal
amount of auxiliary energy was required to support the DHW subsystem.

11




3.  PERFORMANCE ASSESSMENT

The performance of the Solaron Akron Solar Energy System has been evaluated
for the November 1978 through October 1979 time period from two perspec-
tives. The first was the overall system view in which the performance values
of system solar fraction and net energy savings were evaluated against the
prevailing and long-term average climatic conditions and system loads. The
second yiew presents a more in-depth look at the performance of the indi-
vidual subsystems. Details relating to the performance of the system are
presented first in Section 3.1 followed by the subsystem assessment in
Section 3.2.

For the purposes of this Solar Energy System Performance Evaluation, monthly
performance data were regenerated to reflect refinements and improvements

in the system performance equations that were incorporated as the analysis
period progressed. These modifications resulted in changes in the numerical
values of some of the performance factors. However, the basic trends have
not been affected.

Before beginning the discussion of actual solar energy system performance
some highlights and pertinent information relating to site history are pre-
sented in the following paragraphs.

The Solaron Akron Solar Emergy System was initially activated in August 1978,

At that time all known system problems were addressed and corrected where
possible. After the system was started up, a period of data monitoring was
initiated to verify that the solar system and monitoring instrumentation
were functioning properly.

During the initial check-out phase there were several problems identified
relating to both the solar energy system and the monitoring instrumentation.

12




Some of the more significant problems were: six temperature probe
thermoweils were too short; the bypass line to the hot water tempering
valve was located incorrectly with respect to the hot water totalizing
flowmeter (W302); the supply water temperature sensor (T302) was reading
high due to being located too close to other elements in the hot water
subsystem; the cnllector loop operation was somewhat erratic; and a sign-
jficant amount of collector array leakage was observed.

These problems, with the exception of the collector array leakage, were
all corrected before the csystem entered the reporting phase in November
1978. The collector array leakage problem was accepted because it would
have been very difficult (and costly) to correct it. Also, 7302 was dam-
aged when it was relocated to a point further away from the hot water sub-
system, and W400 failed in October. Software modifications were incor-
porated to provide a temporary solution to these last two probliems until

a site visit could be made in December to correct them.

Once the system entered the reporting period there were very few additional
instrumentation problems noted. However, control problems, especially with
the off-peak heating (and cooling) system, were noted throughout the report-
ing period. These problems, where applicable, have been addressed in the
appropriate subsections.

13
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3.1 System Performance

This Seasonal Report provides a system performance evaluation summary
of the operation of the Solaron Akron Solar Ene:gy System located in
Akron, Ohio. This analysis was conducted by evaluation of measured
system performance against the expected performance with long-term
average climatic conditions. The performance of the system is eval-
uated by calculating a set of primary performance factors which are
based on those proposed in the intergovernmental agency report, "Thermal
Data Requirements and Performance Evaluation Procedures for the National
Solar Heating and Cooling Demonstration Program" [3]. The performance
of the major subsystems is also evaluated in subsequent sections of this .
report.

The measurement data were collected for the period November 1978 through
October 1979. System performance data were provided through an IBM devel-
oped Central Data Processing System (CDPS) [4] consisting of a remote
Site Data Acquisition System (SDAS), telephone data transmission lines
and couplers, an IBM System 7 computer for data management, and an IBM
System 370/145 computer for data processing. The CDPS supports the col-
lection and analysis of solar data acquired from instrumented systems
located throughout the country. These data are processed daily and sum-
marized into monthly performance formats which form a common basis for
comparative system evaluation, These monthly summaries are the basis of
the evaluation and data given in this report.

The solar energy system performance summarized in this section can be
viewed as the dependent response of the system to certain primary inputs.
This relationship is illustrated in Figure 3.1-1. The primary inputs are
the incident solar energy, the outdoor ambient temperature and the system
load. The dependent responses of the system are the system solar fraction
and the total energy savings. Both the input and output definiticns are
as follows:

14
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Inputs

0 Incident solar energy - The total solar energy incident
on the collector array and available for collection.

o Ambient temperature - The temperature of the external
enyironment which affects both the energy that can be
" collected and the energy demand.

o System load - The loads that the system {s designed to
meet, which are affected by the 1ife style of the user
(space heating/cooling, domestic hot water, etc., as
applicable).

- Qutputs

e System solar fraction - The ratio of solar energy applied
to the system loads to total energy (solar plus auxiliary
energy) required by the loads.

o Total energy savings - The quantity of auxiliary energy
(electrical or fossil) displaced by solar energy.

The monthly values of the {nputs and outputs for the total operational
period are shown in Table 3.1-1, the System Performance Summary. Compara-
tiye Tong-term ayerage values of daily incident solar energy and outdoor
ambient temperature are given for reference purposes. The long-term data
are taken from Reference 1 of Appendix C. Generally the solar energy
system ts designed to supply an amount of energy that results in a

desired value of system solar fraction while operating under climatic
conditfons that are defined by the long-term average value of daily
incident solar energy and outdoor ambient temperature. If the actual

16
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climatic conditions are close to the long-term average values,
there {s 1ittle adverse fmpact on the system's ability to meet
design goals. This is an important factor in evaluating system
performance and is the reason the long-term average values are
given. The data reported in the following paragraphs are taken
from Table 3.1-1,

At the Solaron Akron site for the 12 month report period, the

long-term average dafly incident solar energy in the plane of the
collector array was 1,179 Btu/th. The average daily measured value
was 1,118 Btu/th. which is about five percent ba16w the long-term
value., On a monthly basis, October of 1979 was the worst month with

an average daily measured value of incident solar energy 34 percent
below the long-term average daily value. December 1978 was the best
month with an average daily measured value 19 percent above the long-
term average daily value. On a long-term basis it is obvious that

the good and bad months almost average out so that the long-term
average performance should not be adversely influenced by small differ-
ences between measured and long-term average incident solar energy. It
should be noted that monthly performance assessments prior to September
1979 for this site provided long-term reference insolation data based
on averages measured in the horizontal plane, rather than the piane of
the collector array. As a result, they would be somewhat low when com-
pared to insolation in the plane of the collector array., As noted above
the values in Table 3.1-1 are all in the plane of the collector array.

The outdoor ambient temperature infiuences the operation of the solar
energy system in two important ways. First the operating point of the
collectors and consequently the collector efficiency or energy gain is
determined by the difference in the outdoor ambient temperature and the
collector inlet temperature. This will be discussed in greater detafil in
Section 3.2.1. Secondly the load is influenced by the outdoor ambient tem-
perature. The long-term average daily ambient temperature for the 12
month period from November 1978 through October 1979 was 50°F at the
Solaron Akron site. This compares very favorably with the measured

value of 49°F,
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It 1s interesting to note the strong influence that the local weather
conditions had on the measured solar fraction. For example, the

measured ayerage outdoor ambient temperature in January 1979 was 21°F
(five degrees below the long-term average), and in February 1979 it

was 19°F (nine degrees below the long-term average). Thus, the average
outdoor ambient temperature was quite close for these two menths. In
January the measured insolation was 13 percent below the long-term average
and the measured solar fraction was nine percent. However, in February
the measured insolation was 18 percent above the long-term average and

the measured solar fraction was 17 percent. In March 1979 the measured |
insolation was five percent above the long-term average, and the measured |
i average outdoor ambient temperature of 42°F was six degrees above the
long term average. The measured solar fraction increased markedly to

46 percent for that month. These observations serve to reinforce the
earlier statement concerning the impact of prevailing weather condi-
tions on the performance of a solar energy system.

The system load has an important affect on the system solar fraction and
the total energy savings. If the load is small and sufficient energy is
available from the collectors, the system solar fraction can be expected
to be large. However, the total energy savings will be less than under
more nominal load conditions. This is illustrated by comparing the per-
formance of the system during the summer (June, July and August) and winter
(Pecemher, January and February) months. During the summer the space heat-
ing load was negligible and the system was used primarily to svpport the
hot water load. As a result the system solar fraction was approximately
three times higher than during the winter months. However, the total
measured savings during the winter were almost twice as high as during

the summer and the measured winter load was over four times greater than
the summer load.

19




i w4

Also presented in Table 3.1-1 are the measured and expected values of
system solar fraction where system solar fraction is the ratio of solar
energy applied to system loads to the total enerqy (solar plus auxiliary)
applied to the loads. The expected values have been derived from a
modified f-Chart analysis which uses measured weather and subsystem
loads as inputs (f-Chart 1s the designation of a procedure that was
developed by the Solar Energy Laboratory, University of Wisconsin,
Madison, for modeling and designing solar energy systems [8]). The

model used in the analysis is based on manufacturers' data and other
known system parameters. The basis for the model is a set of empirical
correlations developed for 11quid and air solar energy systems that are
presented in graphical and equation form and referred to as the f-
Charts, where 'f' is a designator for the system solar fraction. The
output of the f-Chart procedure is the expected system solar fraction.
The measured value of system solar fraction was computed from measurements,
obtained through the instrumentation system, of the energy transfers

that took place within the solar energy system. These represent the
actual performance of the system installed at the site.

The measured value of system solar fraction can generally be compared
with the expected value so long as the assumptions which are implicit in
the f-Chart procedure reasonably apply to the system beiny analyzed. As
shown in Table 3.1-1, the measured system solar fraction of 24 percent
compared well with the expected value of 22 percent generated by the
modified f-Chart program. However, even though the yearly values of the
measured and predicted system solar fraction compared closely, there was
a considerable difference between the individual monthly values. The
exact reason for this disparity is not known, but there are several
factors that should be considered. First it will be noted that the
expected solar fraction averaged 56 percent during the summer months, as
opposed to a measured average of 43 percent. During this time period
there was a control problem that resulted in cyclic operation of the
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collector array and hot water recirculation pump. This resulted in less
efficient operation of the hot water subsystem and hence served to
reduce performance. Also during the summer months the system flow path
1s changed. Dampers D! and D2 are adjusted so that air flow does not
circulate through storage. In this configuration the collector array
performance is reduced because the inlet temperature to the array will
be considerably higher than when the full system is being utilized, It
s suspected that this also has a bearing on expected versus ~ctual
system solar fraction.

During the remaining eight months of the year the expected solar fraction
was generally lower than the measured solar fraction. Again, however,
there are several unusual circumstances that tend to cloud the picture.
First of all it sho:1d be noted that there is no fiowmeter in the imme-
diate vicinity of “.1e storage bin and, in addition, the collector array
1tself leaks a substantfal amount. As a result it is difficult to get

an accirute representation of system air flow in the collector to storage
mode of operation. This parameter is needed to compute one of the

inputs for the f-Chart model. Also, the system exhibits a considerable
amount of internal air leakage and this problem also tends to affect the
<omputations, To further compound the difficulties the air flow correction
factors for the first five months (November through March) were not
firmly established. ‘his caused additional inaccuracies in air flow
measurements throughou: the system. Finally, it must be remembered that
in April the hot water subsystem contribution to the total system solar
traction was based on estimated, rather than actual data.

Based on all the foregning problems, a great deal of reliance cannot be
rlacad in the shart term f-Chart predictions and comparisons for this
se.lar cnergy systea. However, based on the long-term results, the
uif1i* 7 of t1is analysis tool should not be underestimated.
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The total energy savings is the most important performance parameter
for the solar energy system because the fundamental purpose of the
system 1s to replace expensive conventional energy sources with {nex-
pensive solar energy. In practical consideration, the system must
save enough energy to cover both the cost of its own operation and to
repay the initial inyestment for the system. In temms of the technical
analysis presented in this report the net total energy savings should
be a significant positive figure. The total computed energy savings
for the Solaron Akron Solar Energy System was 6.88 million Btu, or
2,015 kwh, which was not a large amount of energy. However, this sav-
ings 1s based only on measured inputs of solar energy to the load sub-
systems. At the Solaron Akron site there were a significant amount of
uncontrolled (and hence unmeasured) fnputs of solar energy into the
house. These uncontrolled inputs of solar energy came primarily from
storage and transport losses and tended to reduce the overall heating
load, which in turn tended to increase real savings. This situation is
addressed in more detail in the appropriate sections that follow.
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3.2 Subsystem Performance

The Solaron Akron Solar Energy Installation may be divided into
four subsystems:

1. Collector array
2. Storage

3. Hot water

4,

Space heating

Each subsystem has been evaluated by the techniques defined in Section 3
and {s numerically analyzed each month for the monthly performance assess-
ment, This section presents the results of integrating the monthly data
available on the four subsystems for the period November 1978 through
October 1979.




ST T T TR T e e e

3.2.1 Collector Array Subsystem

The Solaron Akron collector array consists of 28 Solaron 2000 series
flat-plate air collectors arranged in two parallel rows of 14 collectors
each. These collectors are a one-pass air heatiny type with a double
glazing. Typical flowrate through the collector array is approximately
1.85 CFM per square foot of gross array area. Details of the air flow
path are shown in Figure 3.2.1-1 (a) and a photograph of the collector
array installation is presented in Figure 3.2.1-1 (b). The collector
subsystem analysis and data are given in the following paragraphs.

Collector array performance is described by the collector array effi-
ciency. This is the ratio of collected solar energy to incident solar
energy, a value always less than unity because of collector losses.
The incident scola-~ energy may be viewed from two perspectives. The
fﬁrst assumes thut all available solar energy incident on the col-
lectors must be used in determining collector array efficiency. The
efficiency is then expressed by the equation:

ne = 0/ (1)
where e °© Collector array efficiency

Q, = Collected solar energy

Q = Incident solar energy

1‘

The efficiency determined in this manner includes the operation of the
control system. For example, solar energy can be available at the col-
lector, but the collector absorber plate temperature may be below the
minimum control temperature set point for collector loop operation, thus
the energy 1s not collected. The monthly efficiency by this method is
1isted in the column entitled "Collector Array Efficiency" in Table
3.2.1-1,
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(a) Collector Air Flow Path

(b) Cailector Array Installation

COLLECTOR ARRAY SITE LOCATION
Tilt Angle — 459 Latitude — 40.92°N
Azimuth  — Due South Longitude — 81.43°W

Figure 3.2.1-1 Collector Details
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The second viewpoint assumes that only the solar energy incident on the
collector when the collector 1oop is operational be used in determining
the collector array efficiency. The value of the operational incident
solar energy used is multiplied by the ratio of the gross collector area
to the gross collector array area to compensate for the difference between
the two areas caused by installation spacing. The efficiency is then ex-
pressed by the equation:

o = Os/(Qpq x A/AY) (2)
where "o Operational collector array efficiency
Qs = Collected solar energy
Qoi = Operational incident solar energy |
Ap = Gross collector area (the product of
the number of collectors and the
envelope area of one collector)
Aa = Gross collector array area (total area

including all mounting and connecting
hardware and spacing of units)

The monthly efficiency computed by this method is listed in the column
entitied "Operational Collector Array Efficiency" in Table 3.2.1-1.

It should be noted that the values for collected solar energy and both
cnllector array efficiency terms presented in Table 3.2.1-1 are somewhat
suspect for the first five months (November 1978 through March 1979).
This is due to the fact that the air flow correction factors were not
firmly established for these months. Based on data for the remaining
seven months in the report period and additional information from site
operation obtained after the close of the formal data assessment period,
the reported values for the first five months are probably thirty percent
higher than they actually were.
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In the ASHRAE Standard 93-77 [5] a collector efficiency is defined in
the same terminology as the operationa! collector array efficiency.
However, the ASHRAE efficiency is determined from instantaneous evalua-
tion under tightly controlled, steady state test conditions, while the
operational collector array efficiency is determined from actual dynamic
conditions of daily solar energy system operation in the field.

The ASHRAE Standard 93-77 definitions and methods often are adopted

by collector manufacturers and independent testing laboratories in
evaluating the collectors. The collector evaluation performed for this
report using the field data indicates that there was some difference
between the laboratory single panel collector data and the collector
data determined from long-term field measurements. This may or may not
always be the case, and there are two primary reasons for differences
when they exist:

. Test conditions are not the same as conditions
in the field, nor do they represent the wide
dynamic range of field operation (i.e. inlet and
outlet temperature, flow rates and flow distri-
bution of the heat transfer fluid, insolation
levels, aspect angle, wind conditions, etc.).

o Collector tests are not generally conducted with
units that have undergone the effects of aging
(1.e. changes in the characteristics of the glazing
material, collection of dust, soot, pollen or other
foreign material on the glazing, deterioration of the
absorber plate surface treatment, etc.).

Consequently field data collected over an extended period will generally

provide an improved source of collector performance characteristics for
use in long-term system performance definition.

28
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The long-term data base for Solaron Akron includes all but two of the
months from April 1979 through February 1980. Although the system was
operating prior to April 1979, there were problems relating to the accu-
racy of air flow correction factors during the initial five months of
the reporting period. Therefore, data obtained prior to April 1979 have
not been included in the data base. However, site data was collected
and archived beyond the end of the formal data assessment period. This
additional data was used to build the long-term data base for the col-
lector array analysis. A four month extension of the long-term data base
enabled the generatfon of a more accurate assessment of collector array
performance.

July and December are not included in the long-term data base. In July
data was lost for 17 days, and in December the filtered collector array
performance data exhibited too much scatter to be usable.

The operational collector array efficiency data given in Table 3.2.1-1

are monthly averages based on instantaneous efficiency computations over
the total performance period using all available data. For detailed col-
lector analysis 1t was desirable to use a limited subset of the available
data that characterized collector operation under "steady state" conditions.
This subset was defined by applying the following restrictions:

(1) The measurement period was restricted to collector opera-
tion when the sun angle was within 30 degrees of the col-
Tector normal.

(2) Only measurements associated with positive energy gain
from the collectors were used, i.e., outlet temperatures
must have exceeded inlet temperatures.

(3) The sets of measured parameters were restricted to
those where the rate of change of all parameters of
interest during two reqular data system intervals*
was l1imited to a maximum of 5 percent.

*The data system interval was 5-1/3 minutes in duration. Values of
all measured parameters were continuously sampled at this rate
throughout the performance period,
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Instantaneous efficiencies (“j) computed from the "steady state"
operation measurements of incident solar energy and collected solar
energy by Equation (2)* were correlated with an operating point
determined by the equation:

T1 - Ta
g = -2 (3)
where Xy = Collector operating point at the jth
instant
T1 = Collector inlet fluid temperature
Ta = Outdoor ambient temperature
I = Rate of incident solar radiation

The data points (“j' xj) were then plotted on a graph of efficiency
versus operating point and a first order curve described by the slope-
intercept formula was fitted to the data through linear regression
techniques. The form of this fitted efficiency curve is:

nj b - mxj (4)

where n,: = Collector efficiency corresponding to the
jth instant

b = Intercept on the efficiency axis
(<)Jm = Slope
_ . . .th
xj = Collector operating point at j
instant

The relationship between the empirically determined efficiency curve
and the analytically developed curve will be establishzd in subsequent
paragraphs.

*The ratio Ap/Aa is assumed to be unity for this aralysis.
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The analytically developed collector efficiency curve is based on
the Hottell-Whillier-Bliss equation

Ty - Ta

n = FR(m) - Fpy, (-—-r—) (5)
where n = Collector efficiency

FR = Collector heat removal factor

T = Transmissivity of collector glazing

a = Absorptance of collector plate

UL = Overall collector energy loss coefficient

T1 = Collector inlet fluid temperature

T, = Outdoor ambient temperature

1 = Rate of incident solar radiation

The correspondence between equations {4) and (5) can be readily seen.
Therefore by determining the slope-intercept efficiency equation from
measurement data, the collector performance parameters corresponding to
the laboratory single panel data can be derived according to the follow-
ing set of relationships:

b = FR(m) (6)
noo= Rl

where the terms are as previously defined

The discussion of the collector array efficiency curves in subsequent
paragraphs is based upon the relationships expressed by Equation (6).
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In deriving the collector array efficiency curves by the linear re-
gression technique, measurement data over the entire performance period
ylelds higher confidence in the results than similar analysis over shorter
perfods. Over the longer periods the collector array is forced to operate
over a wider dynamic range. This eliminates the tendency shown by some
types of solar energy systems to cluster efficiency values over a narrow
range of operating points. The clustering effect tends to make the

linear regression technique approach constructing a 1ine through a single
data point. The use of data from the entire performance period results

in a collector array efficiency curve that is more accurate in long-term
solar system performance prediction. The long-term curve and the curve
derived from the laboratory single panel data are shown in Figure 3.2.1-2.

The long-term first order curve presented in Figure 3.2.1-2 indicates

that the collectoi array as a whole seemed to perform better than the
laboratory test unit. However, this is probably due to the fact that the
performance equations for the collector array take into account the leakage
of outside ambient air into the array. Also the long-term first order curve
has a slightly less negative slope than the curve derived from single panel
laboratory test data. This 1s attributable to lower losses (other than leak-
2ge) resulting from array effects. The laboratory predicted instantaneous
efficiency is not in close agreement with the curve derived from actual field
operation. This indicates that the laboratory derived curve might not be
useful for design purposes in an array configuration of this type. However,
this statement must be tempered by the fact that actual performance might
approach predicted performance more closely if there were no leakage problems
with the collector array or ductwork.

For information purposes the data associated with Figure 3.2.1-2 is as
follows:

Single panel laboratory data

FR(m) = 0.476 FRUL = -0.856
Long -term field data
FR(ra) = 0,507 FRUL = -0.649
32
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Table 3.2.1-2 presents data comparing the monthly measured values of
solar energy collected with the predicted performance determined from
the long-term regression curve and the laboratory single panel effi-
ciency curve. The predictions were derived by the following procedure:

1. The instantaneous operating points were computed
using Equatfon (3).

2. The instantaneous efficiency was computed using
Equation (4) with the operating point computed in
Step 1 above for:

a. The long-term linear regression curve
for collector array efficiency

b. The laboratory single panel collector
efficiency curve

3. The efficiencies computed in Steps 2a and 2b
above were multiplied by the measured solar
energy available when the collectors were
operational to give two predicted values of
solar energy collected.

The error data in Table 3.2.1-2 were computed from the differences
between the measured and predicted values of solar energy collected
according to the equation:

Error = (A-P)/P (7)

where A = Measured solar energy collected
P = Predicted solar energy collected

The computed error is then an indication of how well the particular

prediction curve fitted the »eality of dynamic operating conditions
i{n the field.
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The values of "Collected Solar Energy" qiven in Table 3.2.1-2 are not
necessarily fdentical with the values of "Collected Solar Energy"
given in Table 3.2.1-1. Any varfations are due either to differences
in the data base or to the differences in data processing between the
sc.tware programs used to generate the monthly performance assessment
data and the component level collector analysis program, These data
are shown in Table 3.2.1-2 only because they form the references from
which the error data given in the table are computed.

The data from Table 3.2.1-2 {1lustrates that, for the Solaron Akron site,
the average error computed from the difference between the measured solar
energy collected and the predicted solar energy collected based on the
field derived long-term collector array efficiency curve was -5.9 per-
cent. For the curve derived from the laboratory single panel data, the
error was 25.1 percent. Thus the long-term collector array efficiency
curve gives significantly better results than the laboratory single panel
curve.

A histogram of collector array operating points illustrates the distri-
bution of {nstantaneous values as determined by Equation (3) for the
entire month, The histogram was constructed by computing the instan-
taneous operating point value from site instrumentation measurements

at the regular data system intervals throughout the month, and counting
the number of values within contiguous intervals of width 0.01 from zero
to unity. The operating point histogram shows the dynamic range of col-
lector operation during the month from which the midpoint can be ascer-
tained. The average collector array efficiency for the month can then be
derived by projecting the midpoint value to the appropriate efficiency
curve and reading the corresponding value of efficiency.

Another characteristic of the aperating point hictogram is the shifting
of the distribution along the operating point axis. This can be explain-
ed in terms of the characteristics of the system, the climatic factors
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of the site, 1.e., incident solar energy and ambient temperature, and
the method of system operation. Figure 3.2.1-3 shows two h{stograms
that {1lustrate a typical winter month {(February) and a typical summer
month (August) operaticn. The approximate average operating point foi
February {s at 0.22 and for August at 0.29. In terms of Equation (3)

it can be seen that, as the operating point becomes larger, the col-
lector array efficiency decreases. At the Solaron Akron site it will

be recalled that the flow path 1s changed during the summer months so
that afr circulates in a tight path tetween the outlet and inlet of

the coilector array. The only mechanisms for extracting energy in this
flow configuration are the DHW heat exchanger and duct losses. As a
result, the collector array inlet temperature becomes very high and the
collector array efficiency tends to decrease, even thougn both the inso-
lation level and the outside ambient temperature also tend to increase
in the summer months. The behavior 1s further {llustrated by considering
the data in Table 3.2.1-1.

Table 3.2.1-1 presents the monthly values of incident solar energy, opera-
tional incident solar energy, and collected solar energy from the 12 month
performance period. The collector array efficiency and oper~tional col-
lector array efficiency were computed for each month using Equations (1)
and (2). On the average the operational collector array efficiency ex-
ceeded the collector array efficiency, which included the effect of the
control system, by 117 percent.

Additional information concerning collector array analysis in general may
be found in Reference [7]. The material in the referer:e describes the
detailed collector array analysis procedures and presents the results of
analyses performed on numerous collector array installations across the
United States.
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3.2.2 Storage Subsystem

Storage subsystem performance is described by comparison of energy to |
storage, energy from storage and change in stored energy. The ratio of '
the sum of energy from storage and change in stored energy to energy to |
storage is defined as storage efficiency, Nge This relationship 1s ex-

pressed in the equation

ng = (80 + Q)0 (8)
where:

aQ = Change in stored energy. This is the difference in
the estimated stored energy during the specified
reporting period, as indicated by the relative |
temperature of the storage medium (either positive
or negative value)

Q = Energy from storage. This is the amount of energy

S0 |
extracted by the load subsystem from the primary ]
storage medium

051 = Energy to storage. This is the amount of energy Q

(both solar and auxiliary) delivered to the primary
storage medium

Evaluation of the system storage performance under actual system opera-
tion and weather conditions can be performed using the parameters defined
above. The utility of these measured data in evaluation of the overall
storage design can be 11lustrated in the following discussion.
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Table 3.2.2-1 summarizes the storage suhsystem performance during the
report period. However, before discussing storage subsystem performance

tt s necessary to point out a minor difficulty reiating to the monitoring
instrumentaticn in the storage loop. Examination of Figure 2-1 will reveal
that there is no flowmeter in the ducts leading directly in or out of the
storage bin. Physical limitations prevented the installation of a flowmeter
in this area, so other flowmeters (W100, W101 and W600, as applicable) have
been used to measure air flow through the storage bin. Since there are in-
eyttable air leaks in an air system of this type, the computations for en-
ergy to and from storage will be slightly in error, even though an attempt
was made to account for air leakage wherever possible.

During the 12 month period an approximate total of 12.73 million Btu was
delivered to storage and 4.44 million Btu was extracted for support of the
space heating load. Howeyer, the storage subsystem was inactive during the
summer months (June, July and August), so these values essentially represent
performance for a nine month, rather than a 12 month period. During these
same nine months the net change in stored energy was -0.11 million Btu,
which leads to an overall storage efficiency of 0.34 and a total heat loss
from storage of 8.40 million Btu. The average temperature of storage during
the active period was 108°F, and for the full 12 months it was 102°F.

It will be noted that almost two times as much energy was lost from storage
as was removed for support of the space heating load during the active
period. It is suspected that the seal around the cover of the unit is de-

~ fective to some degree, thus allowing this large amount of leakage. During
seasonal transitional months, such as April, May, September and October,
this leakage can result in some discomfort for the occupants and also cause
a higher than normal cooling load. However, during the winter months the
losses represent an uncontrolled reduction in the overall space heating load.
The ramifications of this uncontrolled heat input to the dwelling will be
discussed in greater detail in subsequent sections.
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3.2.3 Hot Water Subsystem

The performance of the hot water subsystem is described by comparing the
amount of solar energy supplied to the subsystem with the energy required
to satisfy the total hot water load. The energy required to satisfy the
total load consists of both solar energy and auxiliary thermal energy.

The performance of the Solaron Akron hot water subsystem is presented 1in
Table 3.2.3-1. The value for auxiliary energy supplied in Table 3.2.3-1
1s the gross energy supplied to the auxiliary system. The value of aux-
1liary energy supplied multiplied by the auxiliary system efficiency gives
the auxiliary thermal energy actually delivered to the load. The differ-
ence between the sum of auxiliary thermal energy plus solar energy and

the hot water load is equal to the thermal (standby) losses from the hot
water subsystem.

The measured solar fraction in Table 3.2.3-1 is an average weighted value
for the month based on the ratio of solar energy in the hot water tank to
the total energy in the hot water tank when a demand for hot water exists.
This value is dependent on the daily profile of hot water usage. It does
not represent the ratio of solar energy supplied to the sum of solar plus
auxiliary thermal energy supplied shown in the Table.

For the 12 month period from November 1978 through October 1979, the solar
energy system supplied a total of 7.29 million Btu to the hot water sub-
system. However, the hot water subsystem itself effectively delivered
5.98 million Btu to the hot water load. The difference represents losses
attributable to the preheat tank and its associated plumbing. The total
h~t water load for this period was 20.50 miiiion Btu, and the weighted
averaqe monthly solar fraction was 26 percent.
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The monthly average hot water load during the reporting period was 1.71
million Btu. This is based on an average daily consumption of 102 gal-
lons, delivered at an average temperature of 127°F and supplied to the
system at an average temperature of 65°F. The temparature of the supply
water ranged from a low of 54°F {in March to a high of 75°F in August and
September.

Each month an average of 0.50 million Btu of solar energy from the
preheat tank and 1.52 million Btu of auxiliary thermal (electrical)
energy were supplied to support the hot water load. Since the average
monthly hot water load was 1.71 mi1lion Btu, an average of 0.31 million
Btu was lost from the hot water tank each month. In addition, an average
of 0.02 million Btu of operating energy was required to support the hot
water subsystem each month.

There were some instrumentation problems relating to the hot water
subsystem during the reporting period. Both the supply water temperature
sensor (T302) and flow sensor (W302) failed at different times for
periods of approximately one to one and one half months. The affected
parameters have been noted in Table 3.2.3-1 and it is believed that the
values presented there constitute a reasonable approximation to the true
values for these parameters.

In addition to the instrumentation problems there was & control problem
that developed during the summer months. This problem resulted in

cyclic operation of both the hot water recirculation pump (P1) and the
FCSS blower (B1). The problem was corrected with the installation of a
differential controller in the early fall, but performance of the hot
vater subsystem was probably degraded somewhat from July through September.




3.2.4 Space Heating Subsystem

The performance of the space heating subsystem is described by comparing
the amount of solar energy supplied to the subsystem with the energy re-
quired to satisfy the total space heating load. The energy required to
satisfy the total load consists of both solar energy and auxiliary thermal
energy. The ratio of solar energy supplied to the load to the total load
is defined as the heating solar fraction. The calculated heating solar
fraction {s the indicator of performance for the subsystem because it
defines the percentage of the total space heating load supported by solar
energy.

The performance of the Solaron Akron space heating subsystem is presented
in Table 3.2.4-1. For the 12 month period from November 1978 through
October 1979, the solar energy system supplied a measured total of 3.23
million Btu to the space heating load. The total measured heating load
for this period was 15.09 million Btu, and the average monthly solar frac-
tion was 21 percent.

It must be emphasized that all values presented in this section relating

to the performance of the space heating subsystem are based on measured
parameters. In other words the space heating load, solar contribution and
solar fraction are all determined based on the measured output of the space
heating subsystem. These measured values do not include any of the various
solar energy losses that are present in the system. However, solar energy
losses are generally added to the interior of the house and, as such, rep-
resent an uncontrolled (unmeasured) contribution to the space heating load.
At the Solaron Akron site these solar energy losses occur during energy
transport between the various subsystems (primarily due to duct leakage),
from the storage bin and, to a lesser extent, the hot water preheat tank.
During the primary heating season (October through April) a total of approxi-
mately 23.12 million Btu of solar energy was added to the interior of the
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house through these various losses. This amount of uncontrolled solar
energy added was over seven times greater than the measured amount of
solar energy supplied to the space heating subsystem during the primary
heating season. As such, this uncontrolled input of solar energy to the
house represents a significant contribution to the space heating luad.

In addition to the solar energy system losses there are also lc.ses of
auxiliary energy from the off-peak system, During the primary heating
season these losses totaled approximately 5.96 million Btu and also con-
tributed to the space heatiny load, although to a lesser extent than

the sclar energy system losses.

It is interesting to note the dramatic change that occurs in the calculated |
space heating subsystem performance when all the losses are included in the |
computations for the primary heating season. By adding the total amount of
losses (solar plus auxiliary) to the measured load, and adding the solar
losses only to the solar contribution, the heating solar fraction increases
to 60 percent. This is almost three times greater than the computed value
of 21 percent.

One final point relating to the uncontrolled solar energy losses should be

considered. Even though these losses provide a benefit during the heating |
season, tiey represent a burden to the cooling load during the transitional

periods of the year. If any air conditioning is done, the cost of operating

the cooling unit will be increased. If no air conditioning is used, the

occupants of the house may have to suffer some unnecessary discomfort due

to higher interior temperature levels.

During the 12 month reporting period a total of 8.31 million Btu of auxiliary
energy was consumed by the space heating subsystem when it was operating in
the various auxiliary heating modes. Of this total, 6.95 million Btu were
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consumed by the heat pump compressor and 1.36 million Btu were consumed
Dy the heat strips. Since 14.69 millfon Btu were added to the auxiliary
heating system by the heat pump, the average COP of the heat pump was
approximately 2.11. This is in contrast to the average COP of approxi-
mately 1.11 for the entire off-peak system. The average overall system
COP of 1.11 1s based on a comparison of the total amount of power con-
sumed by the heat pump compressor and pump P2 versus the total energy
delivered to the auxiliary system at HX2 (reference Figure 2-1). As
such, {t 1s a more accurate indicator of the aux{liary heat pump system
performance because it represents the actual ratio of energy sought to
energy that costs. Power unnecessarily consumed by either pump P2 or the
heat pump compressor due to control system or other problems is included,
so the average system COP represents all phases of system operation.
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4, OPERATING ENERGY

Operating energy for the Solaron Akron Solar Energy System is defined

as the energy required to transport solar energy to the point of use. Total
operating energy for this system consists of energy collection and storage
subsystem operating energy, hot water subsystem operating energy and space
heating subsystem operating energy. Operating energy 1s electr{sal energy
that 1s used to support the subsystems without affecting their thermal state.

Measured monthly values for subsystem operating energy are presented in
T.b]. “‘ .

Total system operating energy for the Solaron Akron Solar Energy System is
that electrical energy required to operate the blowers in the ECSS loop

(B1) and the air distribution duct (B2), the pumps in the DHW subsystem

(P1) and the auxilfary heat pump system (P2), and the heat pump outside

fan, These are shown as EP1C0, £P400, EP301, EP404 and EP403, respectively,
in Figure 2-1. Althougn additional electrical energy is required to operate
the three motor driyven dampers and the control system for the installation,
1t is not included 1n this report. These devices are not monitored for
power consumption and the power they consume is inconsequentfal when com-
pared to the fan and pump motors.

During the 12 month reporting perfod, a total of 5.22 million Btu (1529 kwh)
of operating energy was consumed. However, this includes the energy required
to operate the blower in the air distribution cduct and the pump and outside
fan {n the heat pump system, and that energy would be required whether or not
the solar enerqy system was being utilized for space heating. Therefore, the
energy consumed by these devices {s not considered to be solar peculfar opera-
ting energy, even though it {s included as part of the space heating subsystem
operating energy.
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A +otal of 2.15 mil14on Btu (630 kwh) of operating energy was required

to support the pump and fan that are unique to the solar energy system
during the reporting perfod. Of this total, 1.87 million Btu were allo-
cated to the Energy Collection and Storage Subsystem (ECSS) and 0.28 mil-
11on Btu were allocated to the DHW Subsystem. Since a measured 9.21 mil-
lion Btu of solar energy was delivered to system loads during the reporting
period, a total of 0.23 mi11ion Btu (67 kwh) of operating energy was re-

quired for each one millfon Btu of solar energy delivered to the system
loads.
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5.  ENERGY SAVINGS

Solar energy system savings are realized whenever energy provided by the
solar energy system is used to meet system demands which would otherwise
be met by auxiliary energy sources. The operating energy required to
provide solar energy to the load subsystems is subtracted from the solar
energy contribution, and the resulting energy savings are adjusted to re-
flect the coefficient of performance (COP) of the auxiliary source being
supplanted by solar energy.

The Solaron Akron Solar Energy System has a heat pump for auxiliary space
heating purposes. However, the heat pump is not used as a stand-alone unit,
but rather in conjunction with an off-peak storage tank and associated hard-
ware. As discussed in the Space Heating Subsystem section, the average COP
for the overall heat pump system (not including the electrical strip heaters)
was approximately 1.11 for the reporting period. Auxiliary energy for the
heat strips and hot water heating is also provided by electricity and the
COP for both the strips and hot water heating element is considered to be
1.0 for computational purposes.

Energy savings for the 12 month reporting period are presented in Table 5-1.
During this time the system realized a gross electrical energy savings of
9.03 million Btu, which is the amount of solar energy supplied to the hot
water subsystem and space heating subsystem (with appropriate COP adjust-
ment). Since 0.28 million Btu were required to operate the hot water sub-
system recirculation pump, the net savings for the hot water subsystem
amounted to 5.70 million Btu. The net savings for the space heating sub-
system, which is not charged with any operating energy deduction, totaled
3.05 miliion Btu. The ECSS blower consumed 1.87 millior Btu of operating
energy, so the net electrical energy savings for the entire solar energy
system were 6.88 million Btu (2,015 kwh).
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It should be noted that all values relating to space heating savings

are based only on the measured solar energy contribution to the space
heating load. As discussed in the Space Heating Subsystem section,
approximately 23.12 million Btu of solar energy were added to the in-
terior of the house through various losses during the primary heating
season. This uncontrolled addition of solar energy to the house, had

1t been included in the space heating subsystem computations, would have
altered the space heating (and total system) savings tremendously. This
additional but unreported savings can be approximately quantified by
determining the ratio of auxiliary energy supplied by the heat pump (88
percent) and the heat strips (12 percent), splitting the losses by this
ratio, and dividing by the appropriate COP (1.11 for the heat pump and
1.0 for the heat strips). This procedure yields a savings of 21.10 mil-
1ion Btu (6182 kwh), again over seven times greater than thc reported
space heating savings of 3.05 million Btu. If the losses were taken into
account, the net savings for the complete solar energy system would have
been 27.98 million Btu (8198 kwh), as opposed to the reported value of
6.88 mil1ion Btu.
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6.0 MAINTENANCE

This section provides a summary of all known maintenance visits made
to the Solaron Akron site from the time it went on 1ine until the c¢losing
of the data assessment period.

August 22, 1978
(] Release air entrained in system and reprime system

October 7, 1978
° Set off-peak tank charging system from cooling mode to off

December 12-13, 1978
° Replace off-peak timer with a unit incorporating a spring reserve
° Check filters in off-peak system
0 Set off-peak charging system from off to heating mode

February 8, 1979
0 Replace damper motor for MD3

March 27-30, 1979
0 Seal air leaks in ductwork

October 9-11, 1979 (approximate)
(] Repiace controller in collector loop

° Adjust off-peak control system

NOTE: No formal report was received for this maintenance
visit. Therefore, the above data may be incomplete.
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7.  SUMMARY AND CONCLUSIONS

The following paragraphs provide a brief summary of all pertinent
parameters for the Solaron Akron Solar Energy System for the period
from November 1978 to October 1979. A more detailed discussion can
be found in the applicable preceding sections.

During the reporting period, the measured daily average incident inso-
lation in the plane of the collector array was 1,118 Btu/th. This
was five percent below the long-term daily average of 1,179 Btu/th.
During the same period the measured average outdoor ambient tempera-
ture was 49°F. This was one degree below the long-term average of
50°F. As a result 6,528 heating degree-days were accumulated, as com-
pared to the long-term average of 6,224 heating degree-days.

The solar energy system satisfied 24 percent of the total measured load
(hot water plus space heating) during th2 12 month reperting period.
This agreed closely with the expected value of 22 percent for the
entire reporting period. However, there were considerable variations
between the measured and expected solar fraction at the monthly level.
The exact cause for the monthly variations is not known, but there were
several possibilities. These were discussed at length in the System
Performance section of this report.

A total of 222.63 million Btu of incident solar energy 'as measured in the
plane of the coilector array during the reporting period. The system col-
lected 40.78 million Btu of the available energy, which represents a col-
lector array efficiency of 18 percent. During periods when the collector
array was active, a total of 104.42 million Btu was measured in the plane
of the collector array. Therefore, the operational collector efficiency
was 39 percent. However, as noted in prior sections, the air flow correc-
tion factors for November through March were suspect. This means that

the values for solar energy collected and the two collector array effi-
cierncies were somewhat high during these five months,
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During the reporting perfod a total of 12.73 million Btu of solar en-
ergy was delivered to the storage bin. During this same time 4.44
million Btu were removed from storage for support of the space heating
load. However, the storage subsystem was not used during the summer
months as there were no space heating requirements during this time.
During the active period the net change in stored energy was -0.11
million Btu and 8.40 million Btu were lost from storage. The average
storage efficiency was 0.34 and the average temperature was 108°F.

The hot water load for the 12 month reporting period was 20.50 million
Btu. A total of 5.98 million Btu of solar energy and 18.23 million Btu
of auxiliary energy were applied to the hot water load, which represents

a weighted hot water solar fraction of 26 percent. The average daily
consumption of hot water was 102 gallons, delivered at an average tempera-
ture of 127°F. A total of 3.71 million Btu was lost from the hot water
tank during the reporting period. The subsystem extracted 7.29 million
Btu of solar energy from the collector loop, so there were additional
transport and preheat tank losses of 1.31 million Btu.

The measured space heating load was 15.09 mi11ion Btu for the full report-
ing period. However, all of this space heating demand occurred during
the September through May time period. During the seven month primary
heating season (October through April) the measured space heating load
was 15.00 million Btu, or 99 percent of the total. The heating solar
fraction for both the full 12 month period and the primary heating season
was 21 percent. During the seven month heating season a total of 3.14
million Btu of measured solar energy and 11.86 million Btu of auxiliary
thermal energy were actually delivered to the space heating load, and
this energy maintained an average building temperature of 70°F, How-
ever, a total of 16.03 million Btu of auxiliary thermal energy was
actually added to the space heating subsystem by the compressor and

heat strips during the primary heating season when the system was opera-
ting in a defined heating mode.
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A total of 2.15 million Btu, or 630 kwh, of electrical operating energy
was required to support the solar energy system during the 12 month re-
porting period. This does not include the electrical energy required
to operate the fan, pump or heat pump in the auxiliary system. These
would be required for operation of the space heating subsystem regard-
less of the presence of the solar energy system.

Gross electrical energy savings for the 12 month reporting period were 9.03
million Btu. However, when the 2.15 million Btu of electrical operating
energy is taken into account, the net electrical energy savings were 6.88
million Btu, or 2,015 kwh. If a 30 percent efficiency is assumed for
power generation and distribution, then the net electrical energy savings
translate into a savings of 22.92 million Btu in generating station fuel
requirements. It should also be noted that the electrical energy savings
are based only on the measured amount of solar energy delivered to the
space heating subsystem, As discussed in Section 5., the energy savings
will increase considerably if the uncontrolled solar energy input to the
building s considered.

In general, the performance of the Solaron Akron Solar Energy System was
somewhat difficult to assess for the November 1978 through October 1979
time period. The problems relating to the control systems, various

solar energy leakages, air flow correction factors and instrumentation
cause a significant amount of subjectivity to be involved in the perfor-
mance assessment for this solar energy system. Had these problems not

been present, it is felt that this system would have exhibited a reasonably
high level of measured performance.
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APPENDIX A
DEFINITION OF PERFORMANCE FACTORS AND SOLAR TERMS

ENERGY COLLECTION AND STORAGE SUBSYSTEM

The Energy Collection and Storage Subsystem (ECSS) 1s composed of the
collector array, the primary storage medium, the transport loops between
these, and other components in the system design which are necessary to
mechanize the collector and storage equipment.

] INCIDENT SOLAR ENERGY (SEA) 1s the total insolation available
on the gross collector array area. This 1s the area of the
collector array energy-receiving aperture, including the frame-
work which {s an integral part of the collector structure.

e  AMBIENT TEMPERATURE (TA) is the average temperature of the outdoor
environment at the site.

o  ENERGY TO LOADS (SEL) 1s the total thermal energy transported
from the ECSS to all load subsystems.

e  AUXILIARY THERMAL ENERGY TO ECSS (CSAUX) is the total auxiliary
supplied to the ECSS, including auxiliary enerqgy .dded to the
storage tank, heating devices on the collectors for freeze-
protection, etc.

. ECSS OPERATING ENERGY (CSOPE) is the critical operating energy
required to support the ECSS heat transfer loops.
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COLLECTOR ARRAY PERFORMANCE

The collector array performance is characterized by the amount of solar energy
collected with respect to the energy available to be collected.

() INCIDENT SOLAR ENERGY (SEA) s the total insolation available on the
gross collector array area. This is the area of the collector
array energy-receiving aperture, including the framework which is
an integral part of the collector structure.

0 OPERATIONAL INCIDENT ENERGY (SEOP) s the amount incident solar
energy on the collector array during the time that the col-
Tector loop is active (attempting to collect energy).

0 COLLECTED SOLAR ENERGY (SECA) is the thermal energy removed from
the collector array by the energy transport medium.

(] COLLECTOR ARRAY EFFICIENCY (CAREF) is the ratio of the energy col-
lected to the total solar energy incident on the collector array.
It should be emphasized that this efficiency factor is for the
collector array, and available energy includes the incident energy
on the array when the collector loop 1s inactive. This efficiency
must not be corifused with the more common collector efficiency
figures which are determined from instantaneous test data obtained
during steady state operation of a single collector unit. These
efficiency figuras are often provided by collector manufacturers
or presented in technicai journals to characterize the functional
capability of a particular collector design. In general, the
collector panel maximum efficiency factor will be significantly
higher than the collector array efficiency reported here.
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STORAGE PERFORMANCE

The storage performance is characterized by the relationships among the energy
delivered to storage, removed from storage, and the subsequent change in the
amount of stored energy.

ENERGY_TO STORAGE (STEI) 1s the amount of energy, both solar and
auxiliary, delivered to the primary storage medium.

ENERGY FROM STORAGE (STEQ) is the amount of energy extracted by
the load subsystems from the primary storage medium.

CHANGE IN STORED ENERGY (STECH) is the difference in the estimated
stored energy during the specified reporting period, as indicated
by the relative temperature of the storage medium {either positive
or neqgative value).

STORAGE AVERAGE TEMPERATURE (TST) 1s the mass-weighted average
temperature of the primary storage medium.

STORAGE EFFICIENCY (STEFF) is the ratio of the sum of the
energy removed from storage and the change in stored energy
to the energy delivered to storage.
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HOT WATER SUBSYSTEM

The hot water subsystem {s characterized by a complete accounting of the
energy flow to and from the subsystem, ac well as an accounting of in-
ternal energy. The energy into the subsystem is composed of auxiifary
electrical or fossil fuel, solar energy, and the operating energy for the
subsystem. In addition, the solar fraction for the subsystem is tabulated.
The load of the subsystem {s tabulated and used to compute the estimated
electrical and fossil fuel savings of the subsystem. The load of the sub-
system {s further identified by tabulating the supply water temperature, and
the outlet hot water temperature, and the total hot water consumption.

o  HOT WATER LOAD (HWL) 1s the amount of energy required to heat
the amount of hot water demanded at the site from the incoming
temperature to the desired outlet temperature.

(] SOLAR FRACTION OF LOAD (HWSFR) is the percentage of the load
demand which is supported by solar energy.

(] SOLAR ENERGY USED 'HWSE) 1s the amount of solar energy supplied
to the hot water subsystem.

) OPERATING ENERGY {(HWOPE) s the amount of electrical energy re-
quired to support the subsystem, (e.g., fans, pumps, etc.) and
which 1s not intended to affect directly the thermal state of
the subsystem.

] AUXILIARY THERMAL USED (HWAT) 1s the amount of energy supplied
to the major components of the subsystem in the form of thermal
energy in a heat transfer fluid, or its equivalent. This term
also includes the converted electrical and fossil fuel energy
supplied to the subsystem.




AUXILIARY ELECTRICAL FUEL (HWAE) is the amount of electrical
energy supplied directly to the subsystem.

ELECTRICAL ENERGY SAVINGS (HWSVE) is the estimated <ifference
between the electrical energy requirements of an alternative
conventional system (carrying the full load) and the actual
electrical energy required by the subsystem.

SUPPLY WATER TEMPERATURE (TSW) is the average inlet temperature

of the water supplied to the subsystem.

AVERAGE HOT WATER TEMPERATURE (THW) 1s the average temperature of

the outlet water as it is supplied from the subsystem to the load.

HOT WATER USED (HWCSM) 1s the volume of water used.
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SPACE HEATING SUBSYSTEM

The space heating subsystem {s characterized by performance factors account-
tng for the complete energy flow to and from the subsystem. The average
building temperature and the average ambient temperature are tabulated to
tndtcate the relative performance of the subsystem in satisfying the space
heating 1oad and in controlling the temperature of the conditioned space.

o  SPACE HEATING LOAD (HL) 1s the sensible energy added to the air
1 tn the building.

, o SOLAR FRACTION OF LOAD (HSFR) is the fraction of the sensible
3 energy added to the air in the building derived from the solar
energy system.

o  SOLAR ENERGY USED (HSE) fs the amount of solar energy supplied to
the space heating subsystem.

o  OPERATING ENERGY (HOPE) 1s the amount of electrical energy
required to support the subsystem, (e.g., fans, pumps, etc.) and
which {s not intended to affect directly the thermal state of
the subsystem.

o  AUXILIARY THERMAL USED (HAT) 1s the amount of energy supplied to
the major components of the subsystem in the form of thermal energy
in 2 heat transfer fluid or its equivalent. This term also in-
cludes the converted electrical and fossil fuel energy supplied to
the subsystem.

(] AUXILIARY ELECTRIC FUEL (HAE) is the amount of electrical energy
supplied directiy to the subsystem.

() ELECTRICAL ENERGY SAVINGS (HSVE) 1is the estimated difference between
the electrical energy requirements of an alternative conventional
system (carrying the full load) and the actual electrical energy
required by the subsystem.
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1% ] ELECTRICAL ENERGY SAVINGS (HSVE) is the cost of the operating
‘ energy (HOPE) required to support the solar energy portion of
the space heating subsystem.

e BUILDING TEMPERATURE (TB) is the average heated space dry bulb
temperature.

° AMBIENT TEMPERATURE (TA) is the average ambient dry bulb tem-
perature at the site.
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ENVIRONMENTAL SUMMARY

The environmental summary is a collection of the weather data which is
generally instrumented at each site in the program. It is iabulated in
this data report for two purposes--as a measure of the conditions prevalent
during the operation of the system at the site, and as an historical

record of weather data for the vicinity of the site.

o TOTAL INSOLATION (SE) is accumulated total incident solar
energy upon the gross collector array measured at the site.

o  AMBIENT TEMPERATURE (TA) is the average temperature of the
environment at the site.

0 WIND DIRECTION ('WDIR) 1s the average direction of the prevail-
tng wind.

o  WIND SPEED (WIND) {s the average wind speed measured at the site.

o  DAYTIME AMBIENT TEMPERATURE (TDA) 1s the temperature during the
period from three hours before solar noon to three hours after
solar noon.
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APPENDIX B

SOLAR ENERGY SYSTEM PERFORMANCE EQUATIONS FOR
SOLARON AKRON

I.  INTRODUCTION

Solar energy system performance is evaluated by performing energy balance
calculations on the system and its major subsystems. These calculations
are based on physical measurement data taken from each subsystem every
320 seconds. This data is then numerically combined to determine the
hourly, daily, and monthly performance of the system. This appendix
describes the general computational methods and the specific energy
balance equations used for this evaluation.

Data samples from the system measurements are numerically integrated

to provide discrete approximations of the continuous functions which
characterize the system's dynamic behavior. This numerical integration
is performed by summation of the product of the measured rate ot the
appropriate performance parameters and the sampling interval over the
total time period of interest.

There are several general forms of numerical integration equations which
are applied to each site. These general forms are exemplified as follows:
The total solar eneray availahle to the collector array is given by

SOLAR ENERGY AVAILABLE = (1/60) z [1001 x AREA] x at

vhere 1001 is the solar radiation measurement provided by the pyranometer
in Btu/ftz-hr, AREA is the area of the collector array in square feet,

At is the sampling interval in minutes, and the factor (1/60) is included
to correct the solar radiation "rate" to the proper units of time.



Similarly, the energy flow within a system is given typically by
COLLECTED SOLAR ENERGY = £ [M100 x aH] x ar

where M100 {s the mass flow rate of the heat transfer fluid, in 1bm/m1n. and

oH 1s the enthalpy change, in Btu/]bm, of the fluid as it passes through
the heat exchanging component.

For a 1iquid system aH is generally given by
aH =T
P AT
where Cb is the average specific heat, in Btu/(Ibm-°F), of the heat
transfer fluid and AT, in °F, is the temperature differential across
the heat exchanging component.
For an air system aH {is generally given by
8H = Hy(Toue) - HalTyq)
where Ha(T) is the enthalpy, in Btu/]bm, of the transport air

evaluated at the inlet and outlet temperatures of the heat ex-
changing component.

Ha(T) can have various forms, depending on whether or not the humidity ratio
of the transport air remains constant as it passes through the heat ex-
changing component. .



For electrical power, a general example is
ECSS OPERATING ENERGY = (3413/60) £ [EP100] x At

where EP100 is the measured power required by electrical equipment in
kilowatts and the two factors (1/60) and 3413 correct the data to Btu/min.

These equations are comparable to those specified in "Thermal Data
Requirements and Performance Evaluation Procedures for the National

Solar Heating and Cooling Demonstration Program." This document, given

in the 1ist of references, was prepared by an inter-agency committee of
the government, and presents guidelines for thermal performance evaluation.

Performance factors are computed for each hour of the day. Each numerical
integration process, therefore, is performed over a period of one hour.
Since long-term performance data is desired, it is necessary to build
these hourly performance factors to daily values. This is accomplished,
for energy parameters, by summing the 24 hourly values. For temperatures,
the hourly values are averaged. Certain special factors, such as ef-
ficiencies, require appropriate handling to properly weight each hourly
sample for the daily value computation. Similar procedures are required
to convert daily values to monthly values.

II. PERFORMANCE EQUATIONS
The performance equations for Solaron Akron used for the data evaluation

of this report are contained in the following pages and have been included
for technical reference and information.
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EQUATIONS USED IN MONTHLY PERFORMANCE ASSESSMENT
NOTE: MEASUREMENT NUMBERS REFERENCE SYSTEM SCHEMATIC FIGURE 2-1

AVERAGE AMBIENT TEMPERATURE (°F)
TA = (1/60) x £ TOO1 x At
AVERAGE BUILDING TEMPERATURE (°F)
TB = (1/60) x £ T601 x At
DAYTIME AVERAGE AMBIENT TEMPERATURE (°F)
TDA = (1/360) x £ TOO1 x At
FOR + 3 HOURS FROM SOLAR NOON
INCIDENT SOLAR ENERGY PER SQUARE FOOT (BTU/FTZ)
SE = (1/60) x £ 1001 x At
OPERATIONAL INCIDENT SOLAR ENERGY (BTU)
SEOP = (1/60) x r [1001 x CLAREA] x At
WHEN THE COLLECTOR LOOP IS ACTIVE
HUMIDITY RATIO FUNCTION (BTU/LBM-°F)
HRF = 0.24 + 0.444 x HR
WHERE 0.24 IS THE SPECIFIC HEAT AND HR IS THE HUMIDITY RATIO
OF THE TRANSPORT AIR. THIS FUNCTION IS USED WHENEVER THE
HUMIDITY RATIO WILL REMAIN CONSTANT AS THE TRANSPORT AIR FLOWS
THROUGH A HEAT EXCHANGING DEVICE
SOLAR ENERGY COLLECTED BY THE ARRAY (BTU)
SECA = £ [(M101 x (T150-T100) + (M100-M101) x (T150-T001)) x HRF] x At
NOTE THAT THIS EQUATION ACCOUNTS FOR LEAKAGE FLOW FROM THE OUTSIDE
ENVIRONMENT INTO THE COLLECTOR ARRAY, ALSO, IN THE EVENT THAT THE
COLLECTOR INLET TEMPERATURE EXCEEDS 159°F, T100 IS REPLACED BY
(T102-3)°F.
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SPACE HEATING LOAD (BTU)
HL = £ [M600 x HRF x (T450-T601)] x At
WHENEVER THE SYSTEM IS IN A SPACE HEATING MODE
AVERAGE TEMPERATURE OF STORAGE (°F)
TST1 = (1/60) x £ [(T200 + T201 + T202)/3] x At
SOLAR ENERGY TO STORAGE (BTU)
STEI = ¢ [0.5 x (M100 + M101) x HRF x (T102-T152)] x at
SOLAR ENERGY FROM STORAGE (BTU)
STEO = ¢ [(M600-M100T) x HRF x (T102-T152)] x at
WHERE M100T IS A TERM THAT ACCOUNTS FOR ANY FLOW THAT DOES NOT
GO THROUGH STORAGE DUE TO DAMPER LEAKAGE
SOLAR ENERGY TO LOAD FROM STORAGE (BTU)
HSE3 = HL WHEN HEATING FROM STORAGE
SOLAR ENERGY TO LOAD FROM COLLECTOR ARRAY (BTU)
HSE2 = HL WHEN HEATING FROM THE COLLECTOR ARRAY
ECSS OPERATING ENERGY (BTU)
CSOPE = 56.8833 x £ EP100 x Ar
HOT WATER CONSUMED (GALLONS)
HUCSM = r¥ID302 x At
ENTHALPY FUNCTION FOR WATER (BTU/LBM)

T2
on (1) = [ cme
N
THIS FUNCTION COMPUTES THE ENTHALPY CHANGE OF WATER AS IT PASSES
THROUGH A HEAT EXCHANGING DEVICE |
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HOT WATER LOAD (BTU)
HWL = £ [M302 x HWD(T352, T302)] x At
SOLAR ENERGY TO HOT WATER SUBSYSTEM (BTU)
HWSE = £ [M301 x HWD (T351, T301)] x At
SOLAR ENERGY TO HOT WATER LOAD (BTU)

HWSE1 = £ [M302 x HWD (T303, T302)] x At IF M301 = 0

HWSE1 = £ [M302 x HWD (T351, T302)] x At IF M301 > M302

HWSE1 = £ [M302 x HWD (TX, T302)] x At IF M301 < M302
WHERE

TX = (7351 x M301 + T303 x (M302-M301))/M302

HOT WATER SUBSYSTEM OPERATING ENERGY (BTU)

HWOPE = 56.8833 x r EP301 x at
HOT WATER SUBSYSTEM AUXILIARY ELECTRICAL FUEL ENERGY (BTU)

HWAE = 56.8833 x £ EP302 x At
SPACE HEATING SUBSYSTEM OPERATING ENERGY (BTU)

HOPE = 56.8833 x £ [EP400 + EP403 + EP404] x At

HHENEV&R SYSTEM OPERATING IN A HEATING MODE

AUXILIARY ELECTRICAL FUEL ENERGY TO HEAT STRIPS (BTU)

HAE1 = 56.8833 x r EP401 x at
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AUXILIARY ELECTRICAL FUEL ENERGY TO HEAT PUMP COMPRESSOR (BTU)
HAE3 = 56.8833 x r [EP402-EP403] x At
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HAE4 = 56.8833 x ¢ [EP402-EP403] x At
WHEN CHARGING OFF PEAK STORAGE WITH HEAT PUMP
HEAT PUMP SYSTEM POWER (BTU)
HPPWR = 56.8833 x r [EP402 + EP404] x at
WHEN HEAT PUMP IS IN A HEATING MODE
ENERGY DELIVERED BY HEAT PUMP SYSTEM (BTU)
HTHPDIR = £ [M400 x HWD (T401, T451)] x at
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HTHPSTO = £ [M400 x HWD (T401, T451)] x At
WHEN HEATING FROM OFF PEAK STORAGE TANK
AUXILIARY THERMAL ENERGY FROM HEAT PUMP (BTU)
HAT3 = £ [M202 x HWD (T257, T207)] x At
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HAT4 = ¢ [M202 x HWD (T257, T207)] x At
WHEN CHARGING OFF PEAK STORAGE WITH HEAT PUMP
SUPPLY WATER TEMPERATURE (°F)
TSH = T302
HOT WATER TEMPERATURE (°F)
THY = T352
BOTH TSW AND THW ARE COMPUTED ONLY WHEN FLOW EXISTS IN THE
SUBSYSTEM, OTHERWISE THEY ARE SET EQUAL TO THE VALUES OBTAINED
PURTNG THE PRIYIOUS FLOW PERIOD.
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INCIDENT SOLAR ENERGY ON COLLECTOR ARRAY (BTU)
SEA = CLAREA x SE
COLLECTED SOLAR ENERGY (BTU/FTZ)
SEC = SECA/CLAREA
COLLECTOR ARRAY EFFICIENCY
CAREF = SECA/SEA
CHANGE IN STORED ENERGY (BTL)
STECH = STECH - STECH 1
WHERE THE SUBSCRIPT | REFERS TO A PRIOR REFERENCE VALUE
STORAGE EFFICIENCY
STEFF = (STECH + STEO)/STEI
ENERGY DELIVERED FROM ECSS TO LOAD SUBSYSTEMS (BTU)
CSEQ = STEQ + HSE2 + HKSE
AUXILIARY THERMAL ENERGY TO HOT WATER SUBSYSTEM (BTU)
HWAT = HWAE
HOT WATER SOLAR FRACTION (PERCENT)
HWSFR = 100 x HWTKSE/(HWTKSE + HWTKAUX)
WHERE HWTKSE AND HWTKAUX REPRESENT THE CURRENT SOLAR AND
AUXILIARY ENERGY CONTENT OF THE HOT WATER TANK
HOT WATER ELECTRICAL ENERGY SAVINGS (BTU)
HWSVE = HWSE1 - HWOPE
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SOLAR ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HSE = HSE2 + HSE3
AUXILIARY ELECTRICAL ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HAE = HAE] + HAE3 + HAE4
TOTAL ENERGY DELIVERED BY HEAT PUMP SYSTEM (BTU)
HLHP = HTHPSTO + HTHPDIR
AUXILIARY THERMAL ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HAT = HAE1 + HAT3 + HAT4
SPACE HEATING SUBSYSTEM SOLAR FRACTION (PERCENT)
HSFR = 100 x HSE/HL
SPECIAL HEAT PUMP TERMS
NORMALIZED CAPACITY
CAPN = 0.325 + TA x (0.0162-0.00005 x TA)
HEAT PUMP FRACTION

HPF = 1 TA > 40
HPF = 1.11 x CAPN x (TB-40)/(TB-TA) 2<TA <40
HPF = 0 TA <2

HEAT PUMP QVERALL SYSTEM COP

HCOP = HILHP/HPPWR
WHERE HCOP IS BASED ON A TOTAL OF EIGHT
MONTHS OF SYSTEM OFERATION




ol

SPACE HEATING SUBSYSTEM ELECTRICAL ENERGY SAVINGS (BTU)

HSVE = HSE x (HPF/HCOP + 1 - HCOP)
HSVE = 0.5 x HSE x (1 + HCOP)/HCOP
SYSTEM LOAD (BTU)
SYSL = HL + HWL _
SOLAR FRACTION OF SYSTEM LOAD (PERCENT)
SFR = (HL x HSFR + HWL x HWSFR)/SYSL
SYSTEM CPERATING ENERGY (BTU)
SYSOPE = HWOPE + HOPE + CSOPE
AUXILIARY THERMAL ENERGY TO LOADS (BTU)
AXT = HWAT + HAT
AUXILIARY ELECTRICAL ENERGY TO LOADS (BTU)
AXE = HWAE + HAE
SOLAR ENERGY TO LOAD SUBSYSTEMS (BTU)
SEL = HWSE + HSE
ECSS SOLAR CONVERSION EFFICIENCY
CSCEF = SEL/SEA
TOTAL ELECTRICAL ENERGY SAVINGS (BTU)
TSVE = HWSVE + HSVE - CSOPE
TOTAL ENERGY CONSUMED (BTU)
TECSM = SYSOPE + AXE + SECA
SYSTEM PERFORMANCE FACTOR
SYSPF = SYSL/(AXE + SYSOPE) x 3.33
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LA U s

EQUATIONS USED IN MONTHLY PERFORMANCE ASSESSMENT
NOTE: MEASUREMENT NUMBERS REFERENCE SYSTEM SCHEMATIC FIGURE 2-1

AVERAGE AMBIENT TEMPERATURE (°F)
TA = (1/60) x £ TOO1 x At
AVERAGE BUILDING TEMPERATURE (°F)
TB = (1/60) x £ T601 x At
DAYTIME AVERAGE AMBIENT TEMPERATURE (°F)
TDA = (1/360) x £ TOO1 x At
FOR + 3 HOURS FROM SOLAR NOON
INCIDENT SOLAR ENERGY PER SQUARE FOOT (BTU/FTZ)
SE = (1/60) x £ 1001 x At
OPERATIONAL INCIDENT SOLAR ENERGY (BTU)
SEOP = (1/60) x r [1001 x CLAREA] x At
WHEN THE COLLECTOR LOOP IS ACTIVE
HUMIDITY RATIO FUNCTION (BTU/LBM-°F)
HRF = 0.24 + 0.444 x HR
WHERE 0.24 IS THE SPECIFIC HEAT AND HR IS THE HUMIDITY RATIO
OF THE TRANSPORT AIR. THIS FUNCTION IS USED WHENEVER THE
HUMIDITY RATIO WILL REMAIN CONSTANT AS THE TRANSPORT AIR FLOWS
THROUGH A HEAT EXCHANGING DEVICE
SOLAR ENERGY COLLECTED BY THE ARRAY (BTU)
SECA = £ [(M101 x (T150-T100) + (M100-M101) x (T150-T001)) x HRF] x At
NOTE THAT THIS EQUATION ACCOUNTS FOR LEAKAGE FLOW FROM THE OUTSIDE
ENVIRONMENT INTO THE COLLECTOR ARRAY, ALSO, IN THE EVENT THAT THE
COLLECTOR INLET TEMPERATURE EXCEEDS 159°F, T100 IS REPLACED BY
(T102-3)°F.
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HOT WATER LOAD (BTU)
HWL = £ [M302 x HWD(T352, T302)] x At
SOLAR ENERGY TO HOT WATER SUBSYSTEM (BTU)
HWSE = £ [M301 x HWD (T351, T301)] x At
SOLAR ENERGY TO HOT WATER LOAD (BTU)

HWSE1 = £ [M302 x HWD (T303, T302)] x At IF M301 = 0

HWSE1 = £ [M302 x HWD (T351, T302)] x At IF M301 > M302

HWSE1 = £ [M302 x HWD (TX, T302)] x At IF M301 < M302
WHERE

TX = (7351 x M301 + T303 x (M302-M301))/M302

HOT WATER SUBSYSTEM OPERATING ENERGY (BTU)

HWOPE = 56.8833 x r EP301 x at
HOT WATER SUBSYSTEM AUXILIARY ELECTRICAL FUEL ENERGY (BTU)

HWAE = 56.8833 x £ EP302 x At
SPACE HEATING SUBSYSTEM OPERATING ENERGY (BTU)

HOPE = 56.8833 x £ [EP400 + EP403 + EP404] x At

HHENEV&R SYSTEM OPERATING IN A HEATING MODE

AUXILIARY ELECTRICAL FUEL ENERGY TO HEAT STRIPS (BTU)

HAE1 = 56.8833 x r EP401 x at
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AUXILIARY ELECTRICAL FUEL ENERGY TO HEAT PUMP COMPRESSOR (BTU)
HAE3 = 56.8833 x r [EP402-EP403] x At
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HAE4 = 56.8833 x ¢ [EP402-EP403] x At
WHEN CHARGING OFF PEAK STORAGE WITH HEAT PUMP
HEAT PUMP SYSTEM POWER (BTU)
HPPWR = 56.8833 x r [EP402 + EP404] x at
WHEN HEAT PUMP IS IN A HEATING MODE
ENERGY DELIVERED BY HEAT PUMP SYSTEM (BTU)
HTHPDIR = £ [M400 x HWD (T401, T451)] x at
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HTHPSTO = £ [M400 x HWD (T401, T451)] x At
WHEN HEATING FROM OFF PEAK STORAGE TANK
AUXILIARY THERMAL ENERGY FROM HEAT PUMP (BTU)
HAT3 = £ [M202 x HWD (T257, T207)] x At
WHEN HEATING DIRECTLY FROM THE HEAT PUMP
HAT4 = ¢ [M202 x HWD (T257, T207)] x At
WHEN CHARGING OFF PEAK STORAGE WITH HEAT PUMP
SUPPLY WATER TEMPERATURE (°F)
TSH = T302
HOT WATER TEMPERATURE (°F)
THY = T352
BOTH TSW AND THW ARE COMPUTED ONLY WHEN FLOW EXISTS IN THE
SUBSYSTEM, OTHERWISE THEY ARE SET EQUAL TO THE VALUES OBTAINED
PURTNG THE PRIYIOUS FLOW PERIOD.
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SOLAR ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HSE = HSE2 + HSE3
AUXILIARY ELECTRICAL ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HAE = HAE] + HAE3 + HAE4
TOTAL ENERGY DELIVERED BY HEAT PUMP SYSTEM (BTU)
HLHP = HTHPSTO + HTHPDIR
AUXILIARY THERMAL ENERGY TO SPACE HEATING SUBSYSTEM (BTU)
HAT = HAE1 + HAT3 + HAT4
SPACE HEATING SUBSYSTEM SOLAR FRACTION (PERCENT)
HSFR = 100 x HSE/HL
SPECIAL HEAT PUMP TERMS
NORMALIZED CAPACITY
CAPN = 0.325 + TA x (0.0162-0.00005 x TA)
HEAT PUMP FRACTION

HPF = 1 TA > 40
HPF = 1.11 x CAPN x (TB-40)/(TB-TA) 2<TA <40
HPF = 0 TA <2

HEAT PUMP QVERALL SYSTEM COP

HCOP = HILHP/HPPWR
WHERE HCOP IS BASED ON A TOTAL OF EIGHT
MONTHS OF SYSTEM OFERATION




APPENDIX C

LONG-TEPM AVERAGE WEATHER CONDITIONS
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APPENDIX C
LONG-TERM AVERAGE WEATHER CONDITIONS

The environmental estimates given in this appendix provide a point of
reference for evaluation of weather conditions as reported in the Monthly
Performance Reports and Solar Energy System Performance Evaluations issued
by the Solar Heating, Cooling and Hot Water Development Program. As such,
the information presented can be useful in prediction of long-term system
performance.

Environmental estimates for this site include the following monthly averages:
extraterrestrial insolation, insolation on a horizontal plane at the site,
insolation in the tilt plane of the collection surface, ambient temperature,
heating degree-days, and cooling degree-days. Estimation procedures and data
sources are detailed in the following paragraphs.

The preferred scirce of long-term temperature and insolation data is "Input
Data for Solar Systems" (IDSS) [1] since this has been recognizad as the
sclar standard. The IDSS data are used whenever possible in taese environ-
mental estimates for both insolation and temperature related sources; however,
a secondary source used for insolation data is the Climatic Atlas of the
United States [2], and for temperature related data, the secondary source

is "Local Climatological Data" [3].

Since the available long-term insolation data are only giver for a lorizontal
surface, solar collection subsystem orientation information is used in an
algorithm [4] to calcu”ite the insolation expected in the tilt plane of the
collector. This calculation is made using a ground reflectance of 0.2.
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(1]

(2]

(3]

(4]

REFERENCES
Cinquemani, V., et al. "Input Data for Solar Systems." Prepared for
the U.S. Department of Energy by the National Climatic Center,
Asheville, NC, 1978.

United States Department of Commerce, Climatic Atlas of the United

States, Environmental Data Service, Reprinted by the National
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Klein, S. A., "Calculation of Monthly Average Insolation on Tilted
Surfaces," Joint Conference 1976 of the International Solar Energy
Society and the Solar Energy Society of Canada, Inc., Winnipeg, August
15-20, 1976.
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