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PREFACE

The work presented in this final report was in response to the following

three topics as suggested in the contract's scope of work.

1).	 Investigation of possible multivariate extensions of existing

univariate distributions which have been used for modeling

meteorological phenomenon.

2) .	 Development of Goodness-of-fit tests, in particular for non-

Gaussian distributions.

3).	 Investigation of the effect of correlated observations on

statistical inference

Reports 1-4 are concerned with some aspects of topic #1. Report 1 contains

an estimation procedure for several discrete multivariate distributions.

Report 2 contains a procedure for computing cloud cover frequencies in the

bivariate case. This procedure can be used to compute probabilities for

cloud frequencies fcr either two geographical locations or for the same

location at different times. Report 3 contains the procedure and correspond-

ing computer code for calculating conditional bi vari ate normal paraseters.

This report was requested by the COR. Report 4 contains a procedure for

transforming multivariate non-Gaussian distributions into a nearly Gaussian

distribution.

Reports 5 and 6 are concerned with topic #2. Report 5 contains a

goodness-of-fit test for the extreme value distribution which is used in many

meteorological applications. Report 6 contains a goodness-of-fit test for

several continuous distributions.
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Report 7 is concerned with the problem given in topic #3. In this

+	 report, the effect of autocorrelated observations on confidence regions is

inves ti gated.

Report 8 contains a computer code for generating both random and non-

random observations for specified distributions. This program was used to

generate the samples for the Monte Carlo simulation needed in the other

reports.
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ESTIMATION IN DISCRETE MULTIVARIATE DISTRIBUTIONS

Summary

Procedures for estimating the parameters of three discrete
multivariate distributions, the Multinomial-, Negative Multinomial,
and the multivariate Poisson distribution, are given along with
approximate variances for the parameter estimates.

I. INTRODUCTION

This paper is concerned with the problems associated with the

estimation of parameters for three discrete multivariate distributions,

the multinomial, negative multinomial, and the multivariate Poisson,

.	 which are the multivariate extensions of three common univariate

discrete distributions, the binomial, the negative binomial, and the

Poisson distribution. The distributions are introduced in Section e.

A detailed explanation of the estimation procedures along with

approximate bounds for the variances of the estimates are given in

Section 3. An example is presented in Section 4 which is intended

to demonstrate the use of the estimation procedures. A listing

and card input description of the computor program is given in the

Appendix.
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II. DISTRIBUTIONS

Johnson and Kot2 (1969, Ch. 11) provides a detailed

discussion of the functions described below.

2.1 Multinomial Distribution

The simplest of the three distributions both in

structure and theory is the multinomial distribution. Let

El1 E21 ..
9
Ek be possible events which can occur from a series

of independent trials. If E  has probability P  of occuring

and n  is the number of times E  occurs in the N trials where

k
i	 nj = N , then the joint distribution of the random
j=1

•	 variables n„n,),...,n,- is the multinomial distribution with1 L

parameters N,Pl,P2,...,Pk. The distribution is defined by

?r k
P(-il,n2,...,nk) = N! It	 (p1 j /nj ! ) (O<n j , E n j =N).	 (1)

J=1	 j=1

2.2 Negative Multinomial

Just as the multinomial distribution is a natural

extension of the binomial distribution, the multivariate

negative binomial distribution is a natural extension of the

negative binomial distribution. Hence, the probability generating

functiun for the multivariate negative binomial is defined by

k
(Q - E Pit i

)_ 
N	 (2)

i=1



k
with Pi > 0 for all i=1, ... ,k; N > 0, and Q - E P.	 1.

i=1 z

From formula (2) we have the following distribution function

3

k
r(N+ r n.)

i=1 1	 Q-N

( n ni !) (N)
i=1

n	 (Pi/Q)nl	 (3)
1=1

P(n1,n2,...,nk) _

where n  > 0 1 i=19...,k.

This is called the negative multinonial (or multi-

variate negative binomial) distribution with parameters

N,P1 ,P21 .0.,Pk , where N is a non-negative integer. A special

form of this distribution is a compound Poisson distribution

which can be further simplified to a bivariate form as

described by Batea and Neyman (1952).

2.3 Multivariate Poisson

Consider a sequence of k variables xl,x2,...Jxk

such that each one is a combination of two independent uni-

variate Poisson variables where one of the Poisson variables

is present in all k variables. That is,

x
i
 = u+v 1 ,x2 = u+v29 ... ,xk = u+vi and u,vl,v2,...,vk

are independent univariate Poisson variables with expected

values E,e l ,e2 	ek respectively. The joint distribution

of x1,x2,...,xk is

P(x1,...,xk) = exp(-C-el-...-ek) E
j=0

x2- j
82

x^^r

x -
1e 1

^.(xl-j .

xk- j
... 

e k

xx^)T (4)
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where m a min(x l ,x 2 ,..6xk). This is called the multivariate

Poisson distribution with parameters C,819929...,ek.

III. ESTIMATION

In section 3.1 the techniques used to estimate the

parameters of the three distributions are described. The

subsequent section is concerned with the variances of the

estimates for the multinomial and negative multinomial dis-

tributions. A computer program was written to perform the

needed computations.

3.1 Parameter Estimation

The maximum likelihood estimates of P1 ,P2; ...Pk for the

multinomia] distribution are the relative frequencies

Pi = nJ/N Q=1, ... ,k) (5)

where n  is the observed frequency of Ej given N independent

trials.

The method of moments is the most convenient approach

for estimating the parameters of the negative multinomial

distribution. The moment generating function of a k variate

negative multinomial distribution is

	

k	 }• -N

	

M (tl,...,tk) = (Q - E	 Pi e yl )	 .
i=1

Thus we obtain the following moments

8m(t l , ... ,tk )
E(nj)	

2	
= NPj for j=1)...,k

j
t-0

I
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a2m(tl,...,tk)
E(nin^)	 at t.

1

- N(N+1)PiPi

N2PiPi+NPiP^

E(n^)E(n )
E(n i ) E(n^) +

giving
E(ni)E(n )

N 5 --E(n 
—n—	 - n 1	 nj	 (6 )

and

Pj= E(ni)IN.	 (7)

Equating raw estimates to moments to obtain an estimate for N,

we have

N _	 nine	 and P^ = n^/N for i, i=1,...,k and i{j where
nine - nine

.z	 n

E n t.	 nt.nh.

ne nk = i=1n
	 given n observations.

The accompanying computer program utilizes this method of

moments in two ways. There are k(k-!)/2 possible estimates of

N by this method where k is the number of parameters. Similarly

there are k(k-1)/2 possible values of n ine as well as n ine. The

program first avera6 .. .j the k(k-1)/2 values of n ine and n i n i and

then outputs an estimate of 11 based on these averages. The

second approach calculates the k(k-1)/2 estimates of N and prints

out the average estimate of N. The parameters Pi,i=l,...,k is

also estimate: twice corresponding to the two estimates of N.



The method of moments is also used in estimating

the parameters of a multivariate Poisson. The moment Cener-

ating function is given by

k k

M(t l l ** Ovt k	 exp C(1-exp( I	 t i )) - r e j (l-e (8)

It follows that

am(t ll***Itk)	 E(x
3t i 	 t-0

0
a2m(t l , . . . 'tk)

at	 SIR E(xj x)0

	

t-0	 0

E(xi ) E(X

Therefore

E Lx 
i x 

j] - E 
[xil 

E 
[xil

Substituting raw estimates for expected values we have

n	 n
x 
ti	

xtix^^i

xix	 xix where x 	 n	 X 1 Xk	 n

Since ei E(xi )-C, a method of moments estimate for 9i is
A
C). Again the accompanying computer program uses two

approaches to estimate C via the method of moment:. First

the program averages all possible values for Xix 
i 

and x i x j and

estimates C based on these two averages. Next the program

averages the k(k-1)/2 possible estimates of C and outputs



n

	

k	 n1J

	

Q-Nn n	 (Pi/Q)j=1

i=1

(14)

this average as a workable estimate of &. The parameters

of e i , i=l, ... ,k are estimated twice to correspond to the

two estimates considered for E.

3.2 Variances of Parameter Estimates

The exact variance of the estimates for the multinomial

T rameters can be easily derived. Consider
A

var (P^) = var (ni/N).

E(nj/IT)2 - {E(nj/N)} 2

- 1 (N2P^2 + NPj q j ) - pj2
N

^ = P ( Nz.^- ----t 	(12)
A	 A	 A

hence an approximate variance for P
i
 is Pi(1-PJ)/N.

In order to place approximate bounds on the variances

of the negative multinomial parameter estimates, consider

Fisher's Information Matrix for the maximum likelihood para-

meter estimates which is defined as

V(a1 a2 ,... , ak ) = (E

-1
_ a 2 1og L	 )

Baia aj
(13)

where a  and a  are parameters and L is the likelihood function.

Kendall and Stuart have shown that this matrix is the asymp-

totic variance-covariance matrix for the maximum likelihood

parameter estimates. From equation (3), we have the following

n	 k
n r(N+E 	n )

L = Ll	 j =1 l^
n k

j=1 i=1 nJj!)(r(N))n
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n	 n k

	

In L = E In r(N+S j ) - In (n	 n	 n ij l) -n 1n r(N)	 (15)

	

j=1	 j=1 i=1

k n
-Nn In Q + E (E n ii )(ln P i - 1n Q)

i=1 Si1	 `

k	 1 n
where S^ = E n ij , S i = E n i p n is the number of samples

	

i=1	 j=1

taken and n ij is the number of times E  is satisfied on the

jth sample.

	

3 In L	 n

3 N	
= E	 E	 n In Q	 (16)

j =1 k=0	 N+K

32 1- 2 I' = E E (S ^^ -1 -_-^ _ E	 - (N+k-1) -2
E(Fj )	 (17)

3`N	 j=1 k=0	 (N+k)`	 k=1_

where F . is, the number of S .' s greater than or equal to j,

3 2 l L	 -n	 for i=1, ... ,k	 (18)

	

a a -.	
_	

k

	

1	 1 +E	 p.

	

-Nn - s F(SZ	 E(S-1 )
31n L	 .e.=1 ia—	 (19)-	 k .. + ^-

	

i	
1 + E	 P.	

t
j=1

k

	

Nn -f E E (S 1)	
E(Sj1

	

821n L=1 	 )
a —=	 k	 2	 - PC,	 (20)

	

j	 (1 + E Ft)	 J
t=1
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k	 1
Nn	 E 

S	 t	 1	
I or i f ,i	 (^'1 1a `.3)	

._

(l +	 ^	 i' )t

Usitir t.110 two sets of e.stimatc:, 1'ov N, 1'..., hk and nulnerir.nl

value:; for L(S .) E 1(	 ) , and L(1 .) , we c:;irr obt,:l, itz -1p)?rox:i.rn:+, t t,
"

hound; for V(N,F1,...,1k).

IV. AN EXAMPLE

Negative multinomial data were obtained from Arbous and

Kerrich (1951,p. 421 4) to illustrate the output from the computer

program. The results are found in Table 1. Notice that in the

binomial case both estimates of N are the same since there are

only two variables. For, this same reason, only one Fisher's

information matrix is produced. If more than two variables

were considered, we would have obtained two different estimates

for N and the information matrix. From the two distinct vartan

ces obtained from these matrices one could obtain the boundary

points of the internal about the variance of the parameter

estimates.
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TABLE 1.

THE MOMENT ESTIMATE OF N OBTAINED BY AVERAGING
THW RAW MOMENTS FIRST IS	 3.350

THE CORRESPONDING PROBABILITIES ASSOCIATED WITH
THE RESPECTIVE VARIABLES ARE 	 0.295

THE MOMENT ESTIMATE OF N OBTAINED BY AVERAGING	
0.385

ALL POSSIBLE MOMENT ESTIMATES 	 3.350

THE CORRESPONDING PROBABILITIES ASSOCIATED WITH
THE RESPECTIVE VARIABLES ARE 	 0.295

0.385
FISHER'S INFORMATION MATRIX USING THE MINIMUM
ESTIMATE OF N

1.207
-0.108 0.010
-0.140 0.012 0.017

REFERENCES

Arbous, A.G. and Kerrich, J.E. (1951). Accident Statistics
and the Concept of Accident Proneness, Biometrics 7,
pp. 340-432.

Bates, Grace E. and Neyman, J. (1952). Contributions to the
Theory of Accident Proneness, University of California,
Publications in Statistics, 1, pp. 215-253.

IBM Application Program (1968). System/360 Scientific Subroutine
Package, Fourth edition.

Johnson, N. and Kotz, S. (1969). Distributions in Statistics:
Discrete Distributions. Boston: Houghton-Mifflin.

Kendall, Maurice G. and Stuart, Alan (1961). The Advanced
Theory of Statistics: Inference and Relationshipr` ,7, p. 28.
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A P P E N D I X

CARD INPUT DESCRIPTION

Card 1

Cols.

3	 1 if a multivariate poisson distribution is to be analyzed

2 if a multinomial distribution is to be analyzed

Any other number in this column indicates that the
negative multinomial distribution is to be analyzed.

FOR THE MULTIVARIATE POISSON AND
NEGATIVE MULTINOMIAL DISTRIBUTIONS

Card 2

1-3 contains the number of variables

4-7 contains the number of observations

7-77 contains 7 pieces of data in consecutive 10-column spaces

Card 3+

1-70	 contains 7 pieces of data in consecutive 10-column spaces

FOR THE MULTINOMIAL DISTRIBUTION

Card 2

1-3 contains the number of events

4-74 contains 7 pieces of data in consecutive 10-column spaces

Card 3+

1-70	 contains 7 pieces of data in consecutive 10-column spaces
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APPENDIX

IMPLICIT REAL*5 ( 4 -H, 7-t)
RtAl*8 E1;. 21,EEI::,::1,kPIi:,::1,hJ(35:,:2),PI•&-1, AN( .i,a.), cm( ..,

Cj.1, T1121,F1350I*1VF113#131,S13:G1,SP1121,RM(411
28 GA0(5, i,eNG-1G' 1 Ir1

IF IIH.E0.21 GO TU 33REA015#4) K,M,IItrJII,JI,J-,l*KI,I•: ► M)
I FURMAT(2I3 , 17F:;#.,.))

K: •K +1
KK•K-1
DO 9 I-:,K
EII)-0DC

9 SPIII.ODC
DO .0 I . 1, KK
DO 10 J -I. KK

10 EPlI,J1s0DQ
pp	 s

12 StIi •4U3 ^M
DO 14 I -1, Kl
DO :4 J*IPKI

14 OG
F 2 I I . 1 O,K `f

DO 3 J-1,M
3 Et I 1 •E ( I)+NJ ( J, I)
2 E(I)•EIII/M

DO 4 J -1,KK
JJ-J+1
DU 4 L•JJ,K
LL-L - 1
0p 5 I=1,M

5 EPIJ ,LLI nEPIJ,LLI+%J(I,J)RNJ(I,I)
EE(J,LLI-E(J)*ElL)

4 EP(J,LL)-EPIJ,I!_1/4
Si-6DO
Si -VDC
DO b I-1,KK
DO b J-I,KK
SA-S1+EE(I,J)

b S2-S2+EPlI,J1
Gn K*(K-1)/2DC
IF ( IH.E0.1) GO TL] :t

CALCULATION US / THE NEG. MULTIN; ; MIAL PAKAMETEKS BEGINS HEPE

IF IHN.LE.OUC1 GC TO 50
11 WKITE(b,8) HN

DO I 7 E I I- b11,K
P(I)sE(I)/HN

7 WRITE(b,271 P(l)
SUM-ODO
DO i3 I.1,KK
DO 13 J-I,KK
ANII,J)*EE(I,J)/I:P(I,J1-cE:;,J)1
IF IANII,JI.LE.30.1 G3 TO

13 UM*SUM+ANII,J1
SU(M-EESU(M/G

MRiTE tb,1C61 SUM
PtIImEII)/SUM

15 WRITE(b,V) P(II
O-AN(1,11



ll

0^^1 t t+1.KK	 1
DO 31 J-I,KK
IF (ANl1,J)-CI 3,33, 2

C N>G IN THE NEGATIVE MULT NUMIAL GISTRIdUTION
2 0-ANtI,J)
3 IF ( AN ( I,J)-AE 1 3*, JL• 31

34 A'-AN(I,JI
31 C^NTINUE

C D IS NOW THE MAX ESTIMATE OF N AND AE IS THE MIN
DU 62 I.1.K
pp

• 62	
julm
.

63 tt13SlIl+NJ(I,J!
"Mum- g.
DO 64 I . 1, MM, i
11.1+2
11::1

1t
 }}

75 DG	 1*11-S(1)) 75, 7o, 7b

S(I)-S([+&)
StI +i! -DC

76 00 b4 J= t t, M
IF (S(J)-S(Ill 5:,*5,24

b5 OD-S(Il

l
.SS tt
I)^S(it

St I1)-DU
S(J)-CE

64 CONTINUE
L-SIM)
OU 66 J-1, L
DO b7 I-IPM
IF (S(I)-J) b7,by,56

b8 F(J)=M-I+1D^
GU T 0 6b

b7 CONTINUE
66 CONTINUE

SH-GD6
00 78 I-1.M

•	 78 SH-SH+S(I)
39 DO 35 I-:P L
35 1NF11,11-INF(t.:)+(.CU /(U+I - .[CI*42)*F(I)

SPI=GDJ
DO 36 I . 1, K

36 SPI^SP I+PI DI)
00 37 I= 2,K1
H- M

37 OOF38pS1LHK1^Ot+SPIT
DG 38 I -J,K1
INF(J,I)=-(D*M+SH)/(100+SPI)**2

38 IF (I.EQ.J) INF(I.J)=INF(I•J)+SP(J-:)/P(J-11**2
IF (D.EQ.AE) WRITE (o.44)
IF (D.NE.AE) WRITZ tb.431
ALL ARRAY (2,Klpk4j- IVF )
ALL SINV tRM,K:,.35o lER)
ALL ARRAY(1,K:.RM, INF)
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V93 1 I . 1, K

00 23 J•Ii,Kl

23 hF(f'JI1.Ki(I,J)
41 WRITE (6, 4 2) (INF(1,J1, I•.,JI
42 FORMAT(9F14.8/4F1».81
*#3C FgRMAT('CFISHERS 14FORMATION MATRIX USING THE MAXIM.IM ESTIAATc GF

IF (O.EO.AE) GO TO 28
0mAE
GO TO 34

44 FURMAT('CFISHER " S INFORMATION MATRIX USING THE MIAIM,JM ESTIMATE
COF NO)

C CALCULATIONS (IF MULTIVARIATE PJISSJN PAR4M£TF-mS BEGIN HEKE

	

16 I 
S I	 ODC) GO T3 60

$UM-ODD
WRITE (6,181 Pt
WRITE (6,211

.11DU 2 0
20 DWJIIEE( 

.o27) 
Till

DU . l J - I, KK
EH(I,J)-EP ( I,J)-EE(I,J)
IF (EH(I,JI.LE.:0.1 GO TO F:

17
 iUM

• SUM+EH(I,J)
UMwSUM/G
WRITE ( b,19) $U,^
WRITE (o,21)
DO 22 I*IPK
T(I l n E(I I-SUM

22 WRITE (b,27) Till
27 FORMAT(31X,F:-.8)
19 FORMAT('U','THE MOMENT ESTIMAT OF THc POI$S0N PARAMEE T c k FJK U GdT

CAINEO BY 4VERAGING ALL' /' Pg SSIaL^ ^MOMEVT :STIM:.TES 1ST•3X,F.4.a)
8 FURMAT ( O O O P'THE MOMENT ESTIMATE OF *4 OBTAINED BY AVEKt.GING THE kl-w

C MOMENTS FIRST IS'/31X,F14.o)
26 FORMAT(' THE CORKESPO 4 DING PKC ' B481L ( TIES tSSGCIITE) WITH THc kESP:
CCTIVE VARIABLCS ARE')

24 FURMAT ( 4 0*p'THE MOMENT ESTIMATE OF + OBTAIVEG BY AVERAGING ALL PJS
CSIBLE MOMENT ESTIMATES' /' .lF N IS1 ► =4X,F14.81

18 FGRMAT('0','THE MOMENT ESTIMATE OF THE PCISSUN PARAMETER FOR U .8T
CAINED BY A VERAGING THE kAW MOMENTS FIRST ISI,FI,o6)

21 FORMAT (' THE CORRESPONDING ESTIMATE OF THE POISSON PARAMETER FJR
C THE RESPECTIVE V VARIABLS :.FE'1

GU TO ^8
C	 CALCULATION OF MULTINOMIAL PAQAPETErS BEGIN HEGE

30 READ (5,491 K, (T(I ), I.1,K)
49 FORMAT(I3,(7F1v.•.1)

WRITE 16,521
SUM-000
DU 5t, Im1,K

50 
pp
SUM- SU M+T (I )

P1I11sTl
t
Ii%SUM

SP(I)wP(Il* (1D:•P(Il)/SUM
51 WRITE ( b,48) P (I),SPIII

H
FORMAI('fPROBABILITIES',:CX,'tPPRCXIMAT: VAKI,.4CES'l

	

F k	 14.6, 14XPF: At.$ )

GO TO 28
80 WRITE Ib,all81 FORMAT(' A NON-vEGATIVE PARAMETER HAS BEEN ESTIMATED AS NSGATIVE'1

100 N
O

D



15SIUR??TtNE ARP.AY(MODE ► N.RMv INF 1
1MLICiT REAL*d (A-Hv0-11
It' AL 48 RM(9;)vINF1l3..31
I1 )MODE- :1 1 ,.. ► :.:. i2D

100 Wo

d•1 011L=1,K
. 110 NFILvKI•RMIIJ ►.

GO TO 440
120 pWoo

88 ^25 L-1vK
I,I.1J ♦1

125 RMIIJI•INF(LvK)
140 RETURN

S ,JBQ.OUTINE MFS: I.,vV. EPS.I s a l
IMPLICIT Ri LL • e+ to. - HP-3 - Z)
DIMENSI ON A I a. )
IF (N-.) .2.:v:

1 I - R•t
KP I V-.
DU •i K =:.N
KPIV-KPIV+K
IND•KPIV
Li NO -K-.
TUL= OAKS(EP$ 4 41KP!V) )
OC it 1=K.N
DSUM -k- 11.
IF ( L:ND 1 Z. 4.

2 DO 3 L=,.LEND
L44F • KP IV-L
L1ND-INO-L

3 DSUh a DSUM +A(L., NF)rt(Ll`I0)
4 DSUM=A(IND) - DSUM

I F( I-K) : .5v.
5 IF (DSUM-T0L) o,cpq
b IF (OSUM) t4,.,.7
7 IF ( IkR) 3vbvy
8 IER=K-
9 OPIv -NukT(USUM)

A( KP IV ) =L'P I V
DP I V n ; D, /D P I v
GU TO .:

11	 AI I,V01=CSUM*CP IV1: [rid= 1ND+I
RETURN

12 IcR•

RETURN
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UBROUTIN : SINVIA,V,EPS,IiR)
MPL 1C IT 464L ; t! 1 :-t1, j- L)
DIMENSION A19. ►
All MFSC(A,F.,LPS,ICK)
F lIrR1 a,.,.

1 PIV-N*lN+ll /:
IND- IP IV

S
U b Is:,y
IN n IDC/AIIPIVI

AIIP V ► sDIN
MIN-N
KENOul -1
La NF sN-KEND
IF (KEND)

2 J • IND
DU 4 K-1,KEND
M RKa -jD*
MIN-MIV-;
LHOR n IPIV
VERsJ
 S LsLANF,MIr4

LVExsLVEQ+i
LHORaLHOR+L

3 MURK-W0KK+AILV=-'$*4(LHOR)
Al J) a -WORK *C IN

4 JsJ-MIN
5 IPIV n IPIV-MIN
b IND - IND - :

DO o Is:,N
IPIV n IPIV+I
J- IPIV
D,j 8 Ksi,N
WORKs-,D,.
LHORsJ
DJ 7 LsK,N
LVER-LHUk+K-I
WuRK sWJRK +AIL ► + 0*;-lLVE91

7 LHOR-LHOF+L
Al JIswUoiK

8 J-J+K
9 RETURN

END



A PROCEDURE TO PREDICT CLOUD COVER
FREQUENCIES IN THE AIVARIATE CASE

Summary

The purpose of this report is to present a procedure
for approximating cloud cover probabilities for two different
locations or for the same .location at different times. In
addition a monte carlo procedure is presented for integrating
the bivariate normal distribution. This program is used for
computing the approximate probabilities.

If one assumes that the density function for the bivariate
cloud cover model is approximately bell-shaped, then it is shown
that the des:1red conditional probablities can be approximated
using the bivariate normal distribution. Examples illustrating
the feasibility of this procedure are included. However, if
the bivariate density for the cloud cover model is highly J or
U shaped this procedure provides results which are less than
satisfaefory. Examples illustrating this situatic,n are also
included.

I. INTRODUCTION

The purpose of this report is to present a procedt.-re

for estimating joint probabilities for the degree of cloud

cover over two regions or one region at subsequent time intervals.

Falls (1974) demonstrated that the beta distribution

adequately describes th- variation in the amounts of cloud cover.

This conclusion was based upon analysing cloud cover data fr6m

diverse locations, for .different times of the year and for

1T
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different times of the day. Thus, we may expect that the

multivariate beta distribution, sometimes called the Dirchlul

distribution would be a natural extension for describing tlir,,

bivariate case. However, a theoretical requirement of the Di.rchet

distribution is that the variables be negatively corrc !,ted, and

this constraint seems to intuitively disagree with the actual

situations. Consequently, a different approach was regc:it-id, one

allowing for both positive and negative correlations.

Pei_zer and Pratt (1968) provide a possible approach, that

of using the nor ,ial distribution for approximating tail proba-

bilities in the oeta distribution. Thus, if one assumes that

the correlation between the two sites is structurally related

tc the r_-.­relation present in the bivariate normal distribution,
)ne may to able to extend the work of Peizer and Pratt to the

lit, ^3r'i^tic g etting, that of approximating joint probabilities

u:i Ing the ti v r r ate normal distribution (BVPI) . This approxi-

mation would app ar to work adequately for those cases where the

univariate normal approximation gives satisfactory approximations

'.o the beta disf.'-'bution.

This repo-t ::onsi6ts of three main sections. The first

=vctior. deccrtbt:s a program for integrating the BVN over rect-

ang-ala ­ : •egint.s . This section is basically self contained, and

It dr YA.des the user the needed explanation for integrating the

BVN. The second section illustrates how this procedure Is used

in approximating the bivariate cloud cover model. Applications

and example, of this procedure are presented in section 3. The

program documentation and listings are presented in the Appendix.
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II. BVN PROGRAM

A procedure was required for integrating the bivariate

normal distribution over a specified region. The BVN program

provides an approximation to the above integral. This section

consists of three subsections, 1) introduction to the monte

carlo theory, 2) application of this thr ,ory to the BVN distri-

bution, 3) examples.

2.1 General Monte Carlo Technique

An excellent summary on the general principles of monte

carlo theory can be found in Newman and Odell (1971). The

following is a discussion of this method as related to double

integration.

Let x-(xl ,x2 ) denote an arbitrary two dimensional vector

and f(x) a real valued function of x. Consider the integral

• w

• " f l f(x)e(x)dx ldx2 	(2.1)

where g(x) denotes a probability density function on the plane.

The integral (2.1) is the expected value of f(x) and can be

estimated by
1 N

e = A ^ :'cx1)
Jul

where x i , i=1,...,N are random samples from the pdf g(x). 	 The

variance of 0, is given by
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V&r (^) = p ver tf(x_))=N 1a 1^ (f(x)- e)2g(X) 8xldx2

which can be estimated by

N
s2 =
	 Jul 

WE,)- ej2.

The estimated standard error is given by, = s/rn—.

The following describes a procedure for reducing the

magnitude of the var (p ). Suppose that there exists a function

h(x) on R2 (two dimensional real;) which approximates f(x) on

R2 and suppose that

x	 h(x) g(X)dX1dx2

is known. Then

« w
e = x + s 1 Mx) - h (x) ) E; (x_)dx1dx2.

M M

The variance of f(x) - 74(x), is given by

vas (f(x)-h(x) ) var (f(x))+var(h(x))-2 cov(f(x),h(x)).

If var (h(x)) < 2 cov (f(x), h(x)), we have that

var (f c) - h(x)) < var (f(x)).

Note that if (f-h) and h are positively correlated then var (f-h)

is less than var W. This is true since

var(f) - var C h+f-h

var(h) + var(f-h)pcov(h,f-h)

Thus we have

var(f-h) - var(f) - var(h) - 2 cov (h,f-h).

• ^ 3

I
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Assume the correlation of (f-h) and h is positive. Hence,

var(f-h) < var(f) - var(h)

which implies that

var (f-h) < var (f) .

Therefore the larger the correlation of (f-h) and h, the

greater the reduction of the variance by removal of the regular

part h(x).

2.2 Program Explanation

"he object is to integrate

e= f bl f b2 f (x u, E )dx1dx2.al a2	 -

a	 Po v
where y-'= (ul

9u
2 ); E = (P0

1102
Q22)and

f(x y $ r ) = BVN distribution =

1	 1	 Xi-Pi 2	 (X1-P1)(X2-u2)

2wO10 2 (1— P2) 1/2 
exp { — 1 1—Pz) L ( a 	 ) — 2p Q1
	 02
	 +

X2-112 ) 2	
}	 (2.2)

02

In formula (2.1) we define

g(x) represents a bivariate

evaluate the integral

0 = f 
b  f b2 f (X L,

al a2

g(x) =	 1	 , i.e.
b l-al b2-a2

uniform distribution, and

dxldx2
E) b -a	 b -a	 (2.3)

1 1 2 2
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It follows that

e . 0(bl-al)(b2-a2)

and the estimate

0 a 0 (bl-al)(b2-a2)

where
1%	 N
0.- ^ L	 f(xi ) v, 1)

i=1

when xi is a random vector from the pdf

g(x) =	 lbl—al b2—a2 I aJ ^ 
xJ 

^ b J , j=1, 2

0	 ; Otherwise

Since g(x) is the product of two independent uniform distributions,

a random vector is generated using the equations xl 
`'.i+ta,i(h.1-a,))'

j=1,2 wlicre u  is distributed uniform over the interval (p,l).

In the BVII program the regular part h(x) is defined to he

all the terms up to the coeffecient 1/8! in the t% .:n dimensional

Taylor's ex pansion ( fult;s l g69, p, ?f)n ). The tyro dimensional

Taylor's exnansinn ;!:out We point (a l ,a ? ) is given by

of
f(xl ,x2 ) = f(a l ,a2 ) + (xl-al) axl (a 11 '2

• (xL-a2 ) ax . (a1 ,12 + T[
(Xl_al)2
 ax

a12 Cal,a?)l
• 2(x	 -a(al,a2) + (x2-a2) a-	 (al,n2)

2

1	 3 a 3	
3

+ 3- (xl-a^) --	 (al,a2) + 3(x1-al)2(x2-a2)axx	 (al,a2)
a

1	
1	 2

3	 I)

+ 3(x1-al)(x2-a2 )2 ar-2(al,a2)4(x2-a2)"a3 f(a l+ a2 ) + ..f
axl ax2	 ax23
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Hence it was nocesnary to find all part-Aal , (up to 8th order)

of the BVN distribution function, f(xl,x2).

Let (a l ,a2 ) = (ul , u2 ) the mean vector of the BVN

distribution. Then equation (2.4) becomes

ax1 (u 1 ,v2 )=f(x1 ,x2 ) -2(i p { Q (xl-P1)

1

0
20 (x2-v2 )}	 = 0

X12-- u1

X2= u2

2

ax 
	 2*o1302(1—p2)

	

a 
2 f
—	 p

1ax	 ?	 ? ?/?

	

axe,	 ,,xal^.a? ( 1 — p )

of f	 _	 -1
3/23x2	

2,wo1a2- (1-p )

4
of	 _	 3

axi	 2^ro15o2(1_ 2,.572

a f -3-	
—
	

—3P

	

a x2 
ax1	

2xo14a22(1-02)5/2

_
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a 4 f	 202+la
a x .1^2	 1	 2,rv13023(1_ P2 

)5/2

a 4f	 _	 —3°
ax^	

2^v 2v 4 2 5/2
1 2 (1— P )

a 4f 	 3

ax2 	 2101a25(1—°2)5/2

ax1 	 2Tv1702(1—°2)712

a6 _	 15 °

ax15ax2	 2*a16022(1—°2)712

a 6f_	 —3-12°
ax 

1  
3x2	

2wv 
150 

2 3 (1—P 2 )712

a 6 f	 _	 9° +6° 3

a xi 3ax2 
3	

2v v 
140 24 (1—P 2 ) 7/2

a 6f 	 _	 —3-12° 2

ax 1 
2
ax24	 2Nv 

1 
3v 

2 
5(1—P2)7/2

a6f	 15 °
a xla x2 5	 r 210 2v  62 7/2

1 2 (1—D )



a ° f	 105
8— ^	 2a xl 	 2*o 1902 ( 1—P2) 

9

a^ 	 —105 0a x  3x2 	2*o18022(1—'2) 9/2

a 8 f	 _	 15+-90P 2

62a x, ax 	 2A017023(1_02)9/2

R
a f	 _	 —450-60P

axl5ax2?	
2*o16024(1—'2)9/2

a 8 f 720720 2 + o f 24a 4

ax 1 X 24 	 two 50	
? ()p

a 8 	 _	 —45 P— 60P
ax13ax2'	 2A014026(1-02)5/`

a 8 f	 _	 15F()cp2

ax l ax2	2wo13o27 ( 1 —P
2)9/2

a8f	 —1^5  

2

P-----

9/2ax lax2 2A0 
1 

20 
28(1-0)

ax
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a Af	 105

ax2_
	

2wa1029(1-02)9/2

However, since all odd ordered partials of the BVN distribution

evaluated at the mean are zero, equation (2.4) can be simpli-

fied as follows

f (XI ,x2 ) -	 1	 - 1(xl-v 1)2 ---	 1
2wo 10 2 ( 1-0 )	 2*a1 30 2(1-0  )3

+ (x 
1-41) (x2 -u 2 )	

2 2	 2,312 - 1(x2 -u 2) 2
2* 0 1 0 2 (1-0 )

1

?No la?3(1-P ?)3/?

2wa 1 02 ( 1-0 )

-(xl-u1)3(x2-u2)	
40 20	

2 5/2 + -	 (2.5)
2*a 1 2 ( 1-0 )

From equation (2.5) we observe that llf(x l ,x2 ) - h(xl,x2)"

becomes large as (x1 ,x2 ) deviates from (u l , 42 ) 1 where h(x1,x2)

are the first 25 terms in (2.5) and 11 • 11 is some distance

function. For this reason

f(x) - h(x) g(x) dx

A

may not be bounded, especially for large region A. However,

if the regular part h(x) is not removed, the convergence would

be very slow. To accelerate the convergence and allow for
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1 2

(Ll , u2 )

(Ll,L2)

(U 1"2)

(ul,L2)
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integration over large regi.onc:, the PVN rrof;ram divides the

original integration region into four rectangular regions

and integrates each region separately. The program divides

the four regions as follows.

Let L1 < xl < ul and L2 < x2 —<u2 be the integration

region. When divided into the four desired regions

this becomes

T, u 1	 L,, F u.,
Region 1 limits are L l < x l < --,r—	 I.., < X,,

L f uL 't12
Region 2 limits are 	 < xl u 1 ; L2 ^ x2 <`

L +u	 L +u
Region 3 limits are L1 < xl < ^—1 ^ ? < x2 < u2 •

Region 4 limits are 
L1+ul	 L2+u2
--2-- < xl < ul ; --2 < x2 1 u2

After obtaining the approximate integral for each region the

results are then added together for the final answer. The final

standard error is computed as th: , average of the standard errors

corresponding to the four regions.

Since it is difficult to detc-^-ci .ne if var( ►i) < 2 cov(f,h),

the BVN program is currently set up to integrate both the BVN

40
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and

the

lues

dis

the regular part is

h is output. The

regular part has been

obtained by inte.grat-

played as the .final
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function and the BVN function after extraction of the regular

part. Convergence is currently checked by computing the

estimated standard error of o after every 1000 random sampler.

There are six input items. These are the means,

(ul ,u2 ) 9 the standard deviations, a l , Q2 , the correlation P ,

the maximum standard error, starting; value for random number

generation (odd integer 15), and the limits of integration.

The estimates for each of the four regions are outputed along

with their estimated standard error.

removed, the correlation between f-h

output also indicates whether or not

removed. Finally, the sum of the va

ing over each of the four regions is

answer.

2.3 Specific Examples

This section presents the output of four examples along

with the correct answers Pearson (1931). The four integrals

chosen are

r r

fo fo f(x o, E)dxldx2

where E =	 1	 '5
.5	 1

r r

2.	 f f1 f(x o, E )dxldx2

where E =	 1 -•5
-.5	 1
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w w

J•	 1 1 f(x I o, t )dxldx2
0 0

where Z a	 1 —•75
—.75 1

ft w

4.	 1
Yz 

1 
1 

f(x ( o, t )dxldx2

1	 .75
where t =	 .75 1

The results of the BVN program are given in the Tables

(1-4).
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THE RESPECTIVE MEANS ARE	 0.0	 0.0

THE RESPECTIVE STANDARD DEVIATIONS ARE 	 1.00000000	 1.00000000

THE CORRELATION IS	 0.50000000

THE MAXIMUM ERROR ALLOWED IS	 0.00300000

THE UPPER BOUNDS ARE 	 4.00000000	 4.00000000

THE LOWER BOUNDS ARE 	 0.0	 0.0

AN APPROXIMATION FOR THE 1 REGION

THE VALUE IS 0.2930342318 WITH A STANDARD ERROR OF 0.002x,139714
AND A CORRELATION OF 0.61:! 5916511
THE REGULAR PART IS POSITIVELY CORRELATED WITH THE INTEGRAL AND THUS
EXTRACTED

AN APPROXIMATION FOR THE 2 :REGION

THE VALUE IS 0.0161355461 WITH STANDARD ERROR OF 0.0006924657
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 3 REGION
THE VALUE IS 0.0164091896 WITH STANDARD ERROR OF 0.0007069048
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 4 REGION

THE VALUE IS 0.004017887 WITH STANDARD ERROR OF 0.0002146251
THE REGULAR PART IS NOT REMOVED

THE TOTAL I'ROBABILITY IS	 0.32963076
WITH A STANDARD ERROR OF 	 0.00103199

The correct answer is .33333

TABLE 1.
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THE RESPECTIVE MEANS ARF	 0.0	 0.0

THE RESPECTIVE STANDARD DEVIATIONS ARE 	 1.00000000	 1.00000000

THE CORRELATION IS	 -0.50000000

THE MAXIMUM ERROR ALLOWED IS	 0.00300000

THE UPPER BOUNDS ARE	 4.00000000	 4,00000000

THE LOWER BOUNDS ARE	 0.50000000	 1.00000000

AN APPROXIMATION FOR THE 1 REGION

THE VALUE IS 0.0111994202 WITH STANDARD ERROR OF 0.0006024 1423
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 2 REGION

THE VALUE IS 0.0000608119 WITH STANDARD ERROR OF 0.0000054074
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 3 REGION

THE VALUE IS 0.0000904058 WITH STANDARD ERROR OF 0.0000072492
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 4 REGION

THE VALUE IS 0.0000000995 WITH STANDARD ERROR OF 0.0000000122
THE REGULAR PART IS NOT REMOVED

THE TOTAL PROBABILITY IS	 0.01135074
WITH A STANDARD ERROR OF	 0.00015377

The correct answer is .0124447

TABLE 2.

a	 r
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THE RESPECTIVE MEANS ARE	 0.0	 0.0

THE RESPECTIVE STANDARD DEVIATIONS ARE 	 1.00000000

THE CORRELATION IS	 -0.75000000

THE MAXIMUM ERROR ALLOWED IS	 0.00300000

THE UPPER BOUNDS ARE	 4.00000000	 4.00000000

THE LOWER BOUNDS ARE	 0.0	 0.0

1.00000000

AN APPROXIMATION FOR THE 1 REGION

THE VALUE IS 0.1118712551 WITH STANDARD ERROR OF 0.00287£0424
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 2 REGION

THE VALUE IS 0.0001379567 WITH STANDARD ERROR OF 0.0000210493
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 3 REGION
THE VALUE IS 0.0001607447 WITH STANDARD ERROR OF 0.0000219862
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 4 REGION

THE VALUE IS 0.0000000005 WITH STANDARD ERROR OF 0.0000000001
THE REGULAR PART IS NOT REMOVED

THE TOTAL PROBABILITY IS	 0.11216996
WIT;i A STANDARD ERROR OF 	 0.00073027

The correct answer is .115027

TABLE 3.

r
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THE RESPECTIVE MEANS ARE	 0.0	 0.0

THE RESPECTIVE STANDARD DEVIATIONS ARE 1.00000000 	 1.00000000

THE CORRELATION IS 	 0.75000000

THE MAXIMUM ERROR ALLOWED IS	 0.00300000

THE UPPER BOUNDS ARE	 4.00000000	 4.00000000

THE LOWER BOUNDS ARE	 0.50000000	 1.00000000

AN APPROXIMATION FOR THE 1 REGION
THE VALUE IS 0.1133274387 WITH STANDARD ERROR OF 0.0027673633
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 2 REGION

THE VALUE IS 0.0084165793 WITH STANDARD ERROR 01' 0.0003595563
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 3 REGION

THE VALUE IS 0.0033200334 WITH STANDARD ERROR OF 0.0001715015
THE REGULAR PART IS NOT REMOVED

AN APPROXIMATION FOR THE 4 REGION

THE VALUE IS 0.0027903045 WITH STANDARD ERROR OF 0.0003.249913
THE REGULAR PART IS NOT REMOVED

THE TOTAL PROBABILITY IS	 0.'2785436
WITH A STANDARD ERROR OF	 0.00085585

The correct answer is .128133

TABLE 4.
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III. APPROXIMATION

The introduction briefly presented the reason why

the Dirchlet distrbution was not applicable in the multi-

variate case. As the beta distribution seemed firmly

established as a proper model in the univariate case, it

seemed more reasonable to build a prediction process utili:,.-

ing the beta distribution than to seek a new model applicable

to both univariate and multivariate cases. This led to the

BVN distribution.

The reason why the Dirchlet would not work war the

theoretical requirement of a negative covariance between the

variables--a situation not frequently encountered in most

applications. However, the BVN distribution imposes fewer con-

straints on the value of the covariance. Also, the normal. dist-

tribution has been shown to yield ex;,ellent approximations for

"tail" probabilities in the univariate beta case (See Peizer and

Pratt, 1968, pg. 1418). Also, the normal approximation exists

for the beta probabilities over any inte-val. If thA covariance

(or correlation) is thought of as effecting an increase or de-

crease in probabilities (compared with uncorrelated probabilities)

rather than depicting the underlying association between the

variables, then one :should be able to determine this effect

using either the approximations to the beta probabilities or

9

r
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the beta rrobabilities themselves. The only reason why a

bivaria.t, model is required is because we know cloud cover

frequencies at the sites are related. Otherwise an assumption

of independence would allow one to compute the joint probabili-

ties via a direct multiplication of the univariate beta proba-

bilities.

Finally, it is important to stress that the BVN, as

we u'.. it is only a mechanism to calculate probabilities.

In conversations with MSFC personnel it was noted that some

persons in the meteorological profession had proposed the

normal distribution as a model to describe aloud cover

frequencies. Such a model may or may not be plausible and.

we did not investigate it. The beta model serves as the

basis for our analysis, i.e., we assume the beta model fits

the data--all we must do is calculate the parameters. Falls

(1973) did encounter months, time intervals and sites where

the beta model was not a good fit. It would be proper to

preface all our remarks and, indeed, the whole report with

the condition that the beta distribution must yield a good fit

on the data at hand. However, it is also proper to assert,

based on proper evidence, that the beta model is always

adequate, at least for the purposes envisioned. The result

is the same--situations where the results obtained from

applying the model differ substantially from empirical results.

V.

JA	 ---	
_ L=
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.1 Normal. A pproximation to the Beta Distribution

•

	

	 Pei.zor. and Pratt (1968) show that the tail probabili-

ties for a wide range of distributions can be approximated

using a normal distribution. Much of the article is not

germane to our discussion and will not be discussed. However,

it is informative to trace their procedure for approximating;

the univariate beta distribution.

The density function for the beta distribution is

given by

r (a	 xa -1(1-x)8- l; 0<x<l,a, 8 > 0. (3.1)

To approximate the probability that O<x<x o , i.e.

x
Pr (x<xo ) = 1 ° h(x:a,8)dx

0

calculate the quantities

dl = ( a +8 - 2/3) xo - (a - 1/3)

X
	 1-r_	 x -.^

d2 = d l f- .02 ( s° -	
a 
° •F a + 8 ) I

and

Z t	 dz	 { 12(a +^- [ (B- •5)Log +8s 1] [1—xo] +
I8- •5- (a+8-1)(1-xo)I	 6(a +8-1)-1

1/2

	

(a-.5)Log	 a-.5	
(3. 2)

[a+8-1] X ] }
0

The approximate probability is given by

P	 j z	
1^ 

e-`^'2dy.
a V( 2X
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Of course, should you desire to have a right tail probability.

.	 The approximate value for the right tail probability

is

	

«	 2

	

F = ^z	
1 e-Yy dy.

The error in these approximations is less than .01 if a, 6 > 1

and less than .001 if a, B > 2. It also follows that

Pr {xo < x < x l } can be approximated as

P {x <X !.X } - Ix h(x;a , S )dx	 1 -f xoh(x:a , $ )dx -j 1h(x;a ,a )dx
r o— 

<
— 1	 xo	 o	

xi

or

1 -f zo 1 e- )6y2dy _j « 1 e-34y2dy =1 zl 1 e-34-y2dy.

	

02 —*	 z1 v	 z  a

However, the error is potentially doubled for this case.

The approximation is not valid for a, S < .5 which

implies the data must be highly U-shaped for the approximation

to fail. This could further restrict the applicability to

some locations and for some seasons. However, Falls has shown

that this situation is infrequent.

3.2 The Bivariate Case

Assuming that x and y are beta distributed,

xo 'C x < x l , yo < y < ,yl can be approximated by

zx1 zyl

	

jz	 1	 f(zx,zy)dzxr,y	 (3.3)
xo 	 yo

where f (z x ,z y) is the BVN distribution defined in equation (2.2).
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IV. THE APPROXIMATION PROGRAM

In order to use the BVN approximation, a computer

program was developed to convert raw data and desired beta

intervals into the z-values and correlations (BVN program

inputs). This program takes raw data and calculates means,

variances, correlations and estimated beta parameters for both

raw and categorized data. Then for each inputed beta interval

value (lower and upper values for each variate) it calculates

a corresponding z-value.

Two aspects of the program need explanation. The

formulas in Section 3.1 are not defined for the beta values of

0 or 1. Consequently, the program cannot handle such values.

	

For this reason, 0 or 1 must be inputed as 0 +E or 1	 where E

is some arbitrary real number. Likewise -4 is used for - °° , + Lt

for. + - in the BVN program.

	

Since the approximation fails if a ' s < .')	 the

program resets the parameters to .51 and prints a notice to

the user if the estimated beta parameter value falls below .5.
It is then left to the user to decide whether or not he wants

to use this acknowledged poor approximation.

The beta parameters are estimated using the method of

moments as described by Hahn and Shapiro (1967, pg. 95). The

estimated beta parameters for the original data are

B = ( 2	 7(1-7)-S2 ]

A=3[8

1 -A

,i	 --- --	 -	 m.,.a:.no
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where Y and S2 are the sample mean and variance.

A frequency table for both original and -aterory data

is given in order to compute the empirical probabilities which

are used to check the corresponding Approximate BVN probabilities.

V. DATA

The data used in this study was compiled by ESSA,

National Weather Records Center, Asheville, North C^-olina

and was provided to the authors by Organization ES-42,

Marshall Space Flight Center, Alabama. The sites selected

were Fort Worth and Houston, Texas. Daily records (January

1971 to December 1975) on cloud cover, measured in tenths,

were recorded every third hour.

The data was grouped into the categories shown in

Table 5 (Fall 1973).

Table 5

Cloud Cover Categories

Category Tenths

1 0

2 1,2,3

3 1195

4 6,7,8,9

5 10

Since Falls (1971) demonstrated that the beta distribution

adequately describes variation in categorial data, our primary

investigation was restricted to categorical data. However,

the approximation program is not restricted to categorical

data.
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4	 VI. EXAMPLES

A complete set of probabilities (25 values) have

been calculated for the Fort Worth 9 a.m. and Fort Worth

3 p.m. combination. These values are presented in Figure 1.

Each of the five portions of figure represents a category

level for 9 a.m. and the absei.ssas represent the categories

for 3 p.m. Table 6 presents a portion of the approximation

program and Table 7 gives the corresponding BVN computations.

Figure 1 values were determined based on observed and

expected frequencies for 5 years (155 values). As can be

noted, the agreement is quite satisfactory with a couple of

exceptions. Values for Category 1 for 9 a.m. and Category 2

for 3 p.m. shows a wide divergence. Also the five values

predicted for 3 p.m. and Category 4 for 9 a.m. show substantial

disagreement.

These discrepancies between observed and predicted

values can be explained by analyzing how well the beta model

describes univariate cloud cover in the various data sets.

From Table 6 the category frequencies for Site 1 ( 9 a.m.)

are 46, 29, 20, 39, 21. respectively and the estimated beta

parameters are .862646 and 1.06241. These parameters are for

a very U-shaped density which decreases as x -} 1. Consequently,

the fitted distribution does not reflect the variation in these

rr-
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Standard Oeviatior. .?90846

3p.rn. Cloud Cover Mears = .510323
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Corre;ation= .570933

d 1^
0

Beta Parameters for 9a.m. are .862646	 1.061241
Beta Parameters for 3p.m. are 1685583	 1.617392

FIGURE 1.
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AND FORT WORTH AT 3 P.M. BASED ON JULY DATA FOR 1971-?5.
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data for categories 1 and 4, which is reflected in the approx-

imate probability.

Some additional comments are necessary. First it is

important to note that we have only 155 data points and more

data would, in most such cases, give better fit to the true

distribution hence a better approximation. Secondly, this

problem is not restricted to this one isolated case. Based

upon our analyses, we feel that the substantial disagreement

between observed and predicted probabilities were based upon

the inadequacy of the beta distribution. It does not seem

likely that large errors will occur because of this condition

but if the parameter values are low the approximation error

could contribute substantially to the disagreement between the

values. Thirdly, it must be noted that Figure 1 is based upon

integration limits (determined by the transformation from

categories to the (0,1) interval) that should give the best

results. The category values 1, 2 1 3, 4, 5 are transformed

to .1 9 .3, .5, .7, .9 respectively. The corresponding limits

of integration are found in Table 6.

Table 6

Integration Limit:

Category	 Integration  Limits 	 Midpoint

1	 .01 to .2	 .1

2	 .2 to .4	 .3

3	 .4 to .6	 .5

4	 .6 to .8	 .7

5	 .8 to .99	 .9

^, t
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The values in Table 6 are the usual "continuity" corrections

for approximating probabilities for discrete variables. It

must be noted that the intervals selected will not always

reflect the underlying situation and hence could contribute

to the differences in values. However, if the above limits

are a source of error then its effect will be minor compared

with the other errors and its effect will decrease over wider

intervals.

As noted, we have elected to use categorical data

throughout the analyses. However, one might consider using

the original data in that the beta model might actually fit

whereas the categorical fit was inadequate. Another reason

for using the original data is the greater flexibility in

selecting the integration limits which can be made to closely

agree with the original situation (cloud cover measured in

tenths) .

6.2 Application of the Programs

The approximation programs must be run to obtain the

approximate integration limits used in integrating the BVN

distribution. The input needed for this program consists of

two parts. The first part consists of the raw data (read

pairwise with the first value corresponding to the first site

and the second value corresponding to the second site or the

data can represent one site at two different times). The

second part consists of the inputed boundary numbers for the
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regions to be integrated. Before continuing one should

inspect the outputed beta parameters and corresponding

frequency tables. If the estimated beta parameters are

significantly less than .5, then one must proceed with

caution since the calculated integration limits are probably

unreliable (for reason explained previously).

The outputed correlations and the integration limits

are then used as inputs into the BVN program. Note that

since the approximated integration limits pertain only to

the standard normal distribution, the mean vector will be

(0,0) and the standard deviation will be (1,1). The main

output of the BVN program is the total probability. This

value represents the approximate probability of a specified

category or categories at Site 1 intersected with a specified

category or categories at site 2.

For example, Table 7 lists the output of the approxi-

mation program for the percent of cloud cover over Fort Worth,

Texas, at 9 a.m. and 3 p.m. during the month of July (1971-
1975). Since the beta parameters for the original data is

significantly less than .5, we decided to work with the

category data. The category data z's are the approximate

integration limits corresponding to category 1 at 9 a.m. and
category 1 at 3 p.m. These values were then used as input

for the BVN program along with the correlation of .57. The

output of the BVN program is found in Table 8. The total

probability of having cloud cover in category 1, (i.e.
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essentially no cloud cover) at 9 a.m. and of having cloud
•	 cover in category 1 at 3 p.m. during July at Fort Worth is

shown to be approximately .063. Whereas the empirical value,

found in the category frequency table, is 10 = .0645.
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JULY 71-75 FT.a'IRTN 1 4. 14. AND 3 P,M.

*^^** RESULTS US14G ORIG13AL DATA *****
.

FREQJENCY TABLE; 155 VALUES

10 3 9 11 9 1 0 3
1 0 1 2 4 2 0 2
0 0 0 1 2 2 0 2

0 0
o 11

1
0 1

0 0 0 2 0 1 0 2

10 i 0
0 0 C J J 0 2 1
0 0 0 0 1 3 0 0

MEANS* 0.4151 0.5065
T.	 DEV- 0.374d 0.3162
JRR - 0.6411

ESTIMATE) BETA PA2A4ETERS

SITE	 1 0.2849 01394 8
SITE	 11 0.7o00 0.7406

3	 u	 o
4.1 	 0	 1

u	 i
v	 U	 0

L	
0	

0
t	 0	 4

^	 5	 H

***** RESULTS USIVG CATE3]RI-AL )ATA *****

FREQUEVCY	 TABLE; 155	 VALUES

10 23	 10 3	 0

1 75 4	 13
0 LO	 4	 15	 10
0 0	 4 8

MEANS- 0.4434 0.5103
ST.	 DEV- 0.2.108 0.2410
CORR - 0.5703

SITE	 I 0*8626 1.3612
SITE	 11 1.6655 1.5174

**s ** NOTE	 *** s*

FURUNDEFINE).	 FOUITHEA
SS	 `` II pp	 -VALUE	 1S

I T3 PJTAT I7N HEHP4RAMETFRAISTREStT^TOH.51

FIRST SIT E
JPPEk LOWER

SECOND SITE
UPPER	 LOWER

1NTEGRLI.	 I!1 t Tss 0.90000000 0.20000000 0.80000003	 0.20003003
CATEGORY DAUl Z'S 1.02408124 -0.64939553 1.0843y735	 -1.17765974
ORIGINAL	 DATA	 Z'S 0.59792 524 -0. 69792529 0.71430073	 -0.75874546

TABLE 7
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INPUT PAIAMETERS

MEANS • 	0.)	 0.0
T. 

ED``EV
n 	 .0000	 1.0000

ORR E AT UNu	
709

MAX 0.0030
UPPER 8OJNDS •	1.3241	 1.0845
LOWER 8UJNDS • 	-0.6494	 -1.1777

***** AP O KOX. FOR REGION NJ. e	 1	 *+++•

+♦♦ THE REGULAR PAZT HAS BEEN REM3VED
THE VALUE 1$	 0.13776
ST. EKRJA •	 0100001
CJRR •	 0156849

***** AP*ROX. FOR REGION 40. a	 2	 *****

+++THE K = GU AR PAZT HAS SEEN REM)YED
THE VALUE t	 0.07402

^
T. ERRJ2 0.0006;
URR a 0.556,41

***** AP 2 ROX. FOR REGION 40. =	 3	 +*+*+

rr
+++THE

LL
R =.GUI AR PART HAS 9EcN RF.M]VEU

H. EkRUk ^ S	 0.J03Ob
CORR s	 0.56100

***** APPROX. FUR REGION NO. =	 4	 *+*++

+++ THE R : GULAR PAZT HAS 9EE4 REM]VEO
ss
THE VALUE 1S	 0.13429

OA
K 	0.00000

0.74074

THE TOTAL PROBABILITY IS	 0.47424 WITH A STANDARD ERROR JF 0.00018

TABLE 8
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APPENDICES

Appendix A gives a description of the card inputs

followed by a listing of the BVN program. Appendix B gives

a similar listing for the approximation program. Both programs

are written in Fortran and, the approximation program can

compute 100 individual integration limits in less than a

minute (on IBM 370/155). The BVN program also takes less

than a minute to calculate one total probability.



Card 1

Card 2

Card 3

Card 4

1-14

15-28

1-14
15-28
29-42

1-14
21-25

1-14

15-28

50

APPENDIX A

BVN Program - Card Input

mean of the first variable of the BVN
distribution
mean of the second variable

standard deviation of the first variable
standard deviation of the second variable
correlation between the two variables

maximum standard error allowed
odd, five digit random integer

upper integration limit for the first
variable
lower integration limit for the first
variable

upper integration limit for the second
variable
lower integration limit for the second
variable

Card 5
	

1-14

15-28
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!!!^!*******1^*****************+^**CARD INPUT******1'*****+^************* *s *****s**

CARD COLS, VARIABLE

C	 1	 1-14	 VAN AT FIRST SITLvREAL NJMBER
C	 1	 15-2d AEA4 At SECOND SI TE, RtAL NUMBER
C	 2	 1-14	 STn.JEV. AT FIRST SITE, REAL NUMBER

c	

2	 15-28 STD. OEV. AT SECOND S1 TE, REAL NUMBER
2	 24-42 CIRRELATI04o REAL NUMBER
3	 1-14	 EAROR 80U4U

C	 3	 21-25 14TEGER RANDOM NUMBER
C	 4	 1-14	 UPPER BOU40 AT FIRST SITE
C	 4	 15-28 L WF.R BlUVJ AT FIRST  SITE
C	 5	 1-14	 UPPER ROU40 AT SECOND SITE

C	
5	 15-23 LIWEk LOUVD AT SECOND SITE

IMPLICIT REAL *a(A -N,O-I)
C04434	 3,`11,M2,kO,SIGI,SIG2
REAL *8 C(tit/3*U,/PX(4)PNTpMl*M2pit8p9)PQ(41/4*U,/oLUI(41#UPL(4)P LJ

CZ(4) ,UP214),L1,LL
INTE;;(•Z RAN3

15 REA:)(5,1,E' 1 1-100) M1,M2,SIGI,SIG2,RJPCRR3R,RA^4D,U1,L1,U2,L2
1 FOR4AT(2F14.ti/3F14.?-/F14.8,bX,I512F14.8/ZF14.8)

4RITE(b,?.0))
'CID FU74AT(' INPUT PARAMETERS',//)

,IRITE(b,2) 41,M2,SIGI,SlG2,RJ
2 FORMATI' MEAVS = ',20Kp2FjJ.4v/.* ' ST. JEVm',13Xp2FI0.4,/.v
* ' .JRREL4TIUN=',I4X,FI0.41

WRITE(b#J) ERRCR
3 FDRMAT(' MA4 ERR']R-',16X,F10.4)
WRITE(5.4) 11,U2,Ll,L2

4 FURMAT(' UP P ER 8JJN0S= 4 , 13X, ZF10.4, /,
*	 ' LQWER 97UN0S=',13X,2F10.4,//1
UP1(1)=(L1+J1)/2D0
JP1(2)-U1
JP1(3) = JP). I) 1
JP1(4)-J1
JP2(11=(L?+JZ)/2'L)0
JP2(21auFZ(I
UPZ(31=U2
JP2141=J2
L01111=L 1
LD11?)=(LI+Ji)/2U0
L1( 3)=L I
L0114) = L C1(?)
L2( 1 )-l2
L02(2)=L2
LUZ(3)=(LZ+J21/2DO
LUZ14)-LC2(3)
8(2,1)	 1.030
t3(2.3)--1.U)0
312,21=R0
B(4.!)=3DO
3(4v5)=3D0
8i4 ► 2)a-3UCORO
8(4,41--3D0*RU
8(4#3)=ZDO*RJ**2+LDD
3(6,11--150)
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tt	 :^tt
3tb2^•1500*20
4160 6) s 1 51)0«RO
31 tr. 3 ) a -  31)0- 1200*RU**2
3(o.4 )aaUO*til+b00*RJ**3
31 b. h 1 = - 311C- 1200 *KU**2
81 H.11-1050)
318921-(-105001*R]
3(9.3)=15D0 +9000*R0**2
S1d.4)--45D3*RU-b0D0*RO**3
3(4.5)-720C*RU#*Z+2400*R3**4+9DO
3(3.51=318,4)
9(3.7)=3(6,3)
3( tip J -3(H,?)
3(d.1l=318,11
ii)SQ=1.)DO-2U**2
:ti)=11.000)/(ZDO*3.1415926535900*SIG1*SIG2*RUSJ**(.5)0)1
U9 9 J=1,4
JJ=t*J

d C(JJ)=;,( I)/2JS4**J
SU=)00
SE-))3
JC 15 1=1.4

16 CALL TAYLOR(QI l ),C,JP1 (I I,UP2(I),L01(I ).LO21 1 ), 11
3U 17 1-1#4

14 FORMAT(//j,	 ***** A P PROX. FOR REGIJN %J.	 s14,
2EGP=Q( 1 I
NT=1003
COF;=000
;SUM=O))
FSUIcOD3
FGSJ=OJJ
FSQ=ODO
PROs(UPI(I)-LO1(I))*(UP2(I1-LOZ(1))

5 DO 5 I I= 1, 1,)00
07 7 J=1,2
.ALL RAVUU(RANU.IY,YFL )
RAN)= IY

7 X(J) -YFL
X11)=LOI(I)+X(i)*(Upl(I)-LO1(I))
X(21 = LC)2 (1 1+X(2)*(UP2(I)-LUZ([) )
'AOL=(-1.ODU/(Z00('-ROSQ) )*( (Xl 1)-41)**2/Sl51**2-2DO*RO*(X(1)-.111#

C(X(2)-42)/(3IGI*SIG2)+(X(2)-M2)**2/SIG2*#2)
F=C(1)*DEXP(NOL)
F=F*PRO
FSQ=FS7+- (F**2)
FSUM=FSUM+F
CALL TAYLOR(G,C,X(1),X(2),L01(1),L02(I),2)
G=G*PRO
'JSUN =GS'J M+G
F SQ=FGSQ+((F-G)**Z1
C^FG=CJFG+F*(F-G)

6 CONTINJE
FGSUM=FSUM-)SUM
FG'1=FGSUM/NT
FVAR=(FSQ-(FSUM**2/14T)1/(NT-I.ODO)
VVA2=(FGSQ-FGSUM**Z/NTI/(NT-1.ODO)
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COF=l^^F G^FSuM+FGSU't/NTI/ (NT-1.0001
SF=3SQRTlFV4RINTI
cM=gSUM/NT
ttF (SFG-ERR1R1 q,q,10

10 IFtSF-ERROR) 12,12,13
13 4T=4T+1300

30 T7 5
12 :USTIN'JE

4RITE(b, it4)
114 FrI g 4AT(' +++ THE kFGJLAR PART IS 40T AE 14041:0' )

4R[ El be 14) FM,SF
SE=SE+SF
SU-SU+Fi
CP U TJ 17

9 FG=gGM+RFGP
COF-C0F/US42T(VVAR*FVAR)
SE=SE+SFG
SU=SU+F G
4RITE(S,111)

111 FOA IATt' +++T4f: kEGJLAR P ART HAS BEE + RF40VEJ' 1
4RITE(b, 11) FG,SFGP.'OF

14 FORMAT(' TAE VALJE 1S',F10.5,/,' ST. ERRIR =',F1i.51
11 FORMAT(' THE VALUE 1S',F10.5,/9' ST. ERR]R =',F11.5,/,

*	 ' CuA A 	 = ', 3X,F1L.5, 1)
17 CONTINUE

SE=SE 1430
4RIMbe 19) SUPS[

19 FQR %iAT( ' 0'/",)THE TOTAL PROBABILITY IS',FiC . 5,' WITH A STANUARD ERR
CJR IF' , F12.5)
GO TO 15

100 STOP
END

IMPI^CtTNRE4l # H^A-i O^C1y1
, U2,L1,L2, INC )

COM43N	 A, i1,M2,t0,SIG1„1G2
AEA! *8 C181•LLL1,MIpM2,318,g1
J=C(II
IF (INC.EQ.1) 02Q*(Ul-L1)*(U2-L2)
30 12 K=2, 3,2
.4K=<+1
VAR2^1.JDO
JO 12 J- 1, NK
JJ=J-1
IF (J.LE.2) GO TO 17
J3-J-2
NVAR2=JJ
DO 15 L=1,J3

15 4VAA2 -0 AR2 *( JJ-l)
VAR?=NVAR2

17 IF (J-K) 18, 19, 19
16 NV4R3-(K - JJ)

KH=K-JJ-1
JO 16 L= 1, KA

16 NVAA3=4V AR 3* (K-JJ-L 1
VAR3=NVAR3
30 TO 20

19 VAR3.1.0D0
20 VAR-1.0001(VAR2*VAR31

IF 114".EQ.2I GO TO 14
O.O+(VAR*(C(KI/(SIG1**(K-JJ) *S[.^P2 **JJ11

C*((J2-`12)**J-(L2-M21**J)*l1.OD0/((NK-JJ1*J))*(IUI-Mll**(NK-JJI-

C (O I TJ I 
l2 *(NK-JJ)) *B(K, J) 1

14 OLO+(VAR*(C ( K)/(S1GL**(K-JJ)*SIG2**JJI)
C*((J2-M2)**JJ1*((Ui-Mll**(NK-J11*B(K,J)1

12 CONTINJE
RET'JRN
END
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APPENDIX B

Approximation Program - Card Input

Cols.

Card 1	 1-4
5-80

Card 2+ 1-76

Last
	

1-10
Card
	

11-20
21-30
31-40

number of data pairs
19 pairs of data with each element of
each pair right justified in a two
column space; no decimal points

19 pairs of data with each element of
each pair right justified in a two
column space; no decimal points. That
is the data is read with an 19F2.1
format. There will be as many cards of
this type as necessary to punch all data.

lower integration limit for the first site
upper integration limit for the first site
lower integration limit for the second site
upper integration limit for the second site
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C#«^#4M*i*t*##+M*#M#*«i/^***RM*#Rt«#CARD I^1PUT##«#******#******«**^^s^s*f^r+rrrrrrr

CARD COLS. VARIABLE

C	 1	 1-83	 TITLF
C	 2	 1-4	 NJMBLR OF DATA FROM EACH SITE
C	 2	 5-80	 ALTERNAT 14G DATA: FIRST SITE CLOUD COVER THEN S'7CUND SITE CLJUU
C	 C]VER hITH AN INTEGER BETWEEN i AND 10 IN COV ; FCJTIVE TwU CJLUMN
C	 S*ACES.
C	 3+ 1-7b CONTINUE 04TA INPUT AS ABOVE
C	 4	 1-10	 LIWER INTEGRATION LIMIT FIR SITE ONE

C	

4	 11-23	 U,7 PFR INTEGRATIO4 LIMIT FIR SITE 04E
4	 21-31	 LIWiR 1•'ETEVRATIO4 LIMIT FJR SITE TMid
4	 31-40 U P PER INTEGRATION LIMIT FIR SITE TWU

C	 AL` 3ATA ON CARD 4 MUST BE LESS THAN L S14CE WE ARE DEALING WITH THE BETA
C	 Dt TUSUT lilt( (AND GREATER THAN ZERO)
C

IMPLICIT REAL*8 ( A-HPM,O-Z)
ZEAL*8 K (1551, Y( 1551 PCX( 155),CY( 155),MX, AA( 10)

I
NTE G ER F-(5P5)/25 *O/,FO( LIP LI) /1Z1*J/
EAMP76) (AA( lip I-I, 10)
WRIT E(b,7d) (AA IIIoI=1,10)

7b FOR4AT(1 CA8)
59 ?EAO(5,37,E4D=1001 V.lXttl,Ytllsl = 1. V1
37 FORiAT ( I4. ( 38F2.1) )

30 50 I - I, 5
JO SJ J-105

60 F(I,J)-3
JO 71 I - 1 ► l l
30 71 J = 1, 11

71 FO(I,J1.0
30 72 1-10N
41=X(I)*1003+1.1U0
V2-Y(I)*I0D)+l.lU0

72 FOlV1,V2)=F1(Nl,y2)+1
:ALL CAT (X,CX, `()
:ALL CAT(Y,".Y,N)
JJ 51 1= LPN
11=CXII)
V.	 Y(Il

51 r(V1P1Z)=F(V1,N2)+I)O
WRITE (b.2001

20) FOR4ATt//.' ***** RESULTS USING ORIGINAL DATA	 //)
4 R I T (b+731 3

7S FOA4AT ( '0'. 22X.' FREOUEVCY TABLE;', 15#ZXP' VALUES', // )
)U 73 I=l,ll

73 WAITE(b.52) (FU(I,J),J=1,111
52 FORiAT (10X.11151

)0 55 1.1,N
CX(11-(CX( I1-.5001/5D0

55 CY(t)-(CY(l)-.500)/5DO
CALL STAI(X,,YPMX,,MYPSVXPSVYPROIPN)
CALLSTAT (CX,CY,MCX,MCY,SVCX,SVCY,•202,N)
SIGI=)SQRT(SVX1
SIG?=DSQRT(SVY)
SIG:I.0S0RT(SYCX1
SIGC2=DSURT(SVCY)
WRITE (6,46) MX,MY,SIG1,S1G2,RUL
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48 FORMAIMPI'M1NSF1010X%110.4,/,' ST. DEV•1v8X,2F10.4v 1r

gl•(l lr)O-MX) / SVX1*(4X * tlDO-'iX)-SVX)
AI'(MX*g1) /(l0u-MX)
32 2 ((1u)-r)Y1/ SVY1 *('IY*(la0-MY)- SvY)
A2-(4Y032)/(1D0-MY)
,tKITE( ►„101)

201 F'^RlAT(' ': STIMATEO SETA PARAMETERS',//)
dAITEIo, 961 A1,t31,AZ,82

50 FORMAT(' SITE I'v10X,2F10.4,/,' SITE 1(',9X,2F10.4,//)
dR! Tc t o. 2U?.!

?02 F-114AT(//,' ****# RESULTS JSING CATE.;ORI:AL )ATA *****',//)
54 FJRWAT(' U' oLJX,'FRCJUENCY TABI E:', 15,ZX,'VALJ£S', //)

•r1R1TE(b,54) N
J] 53 1- 1, 5

53 4RITE(b,521 (F(I,J),J=1951
ORITE(o,481 MCx,MCY,SIGCI,SIGC2,RO2
.ABI& ((100-;1.X)/SVCX)*(4CX*1100-MCXI-SVCX)
1A1 n ( 4CK4H61 1 / (1 DJ - %1CX )
rid2-((IOC-M Y)/SVCY)*(MCY*11DC-MCY)-SVCY)
A4Z=(MCY*H321/1 11)0-ICY)
WRITE (69501 HA1,HB1,HA2,HRZ
4k1TE(6,203)

203 r-0A4AT(/ /,' 4**** NJTE *****' )
4R1TE (6,771

75 FOR4ATI' 'P' IF A PARAMETtk JR PARAMET;RS IS LESS THAN (lr2 EJUAL TO
C . 5 , TAE Z - /ALJE IS'/' UNDEFINEU. FJR FURTHER COMPUTAI1Jv TrE PARA
CMETEt IS RESET TU .51 1

59 1EA)(5,56PE40=10J) Y1,Y3,Y2,Y4
55 FO-t44 T ( 8F I ).01

:AL. CAL Z(H31,HA1,Y1,N,ZC11
CALL CAL L( Hi Z,HAZ, YL,N, ZC2)
CALL CAL L(N31,HA1,Y3,N,ZL3)
CALL CAL Z( H3 l,HA2,Y4,NPZL4)
,ALL CAL Z(B1,A1,Y1,4,Z1)
:ALL CALL(B?.oA2,Y2,V,Z21
CALL CAL 	 (3i ► A1,Y3,'J.ZLI
:ALL CAL Z(8?,A2,Y4,V,ZL2)
PiRITE(b,74)

74 FUR4ATI'0 1 ,3IXP'FIRST SITE',20X,'SECO140 SITE'/26X,'UPPE R',IOX,'LU4
CcR',1JX,'UP,ER',IOX,'LOWER')

70 FORMAT( • O',?X,'INTEGRAL LIh'iITS',1X,2(F14.8,1X,F14.8,1X)/IXl'CATEG3
CRY )ATA Z"S',1X,2(F14.8,1X,F14.8,LX)/1X ► 'ORIGINAL DATA Z"S',1X,
C2(F14.3, 1X,= 14.8,1X))

d R I T ' b, 70) Y3,Y1,Y4,Y2,LL3,ZC1,ZL4,LC2,ZL1,Zi,ZL2,Z2
68 50 TO 58
100 ED
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IUPI?FIINI,llAlt1ArH,M,M21SYARX,SVAAY,R0.V)
REAS*8 X(155),Y(1j51
Sx- DO
Y-300
xS-080

SYS-3ju
SXY -0t)a
D7 47 I-1,N
SX-SX +X( 1)
SY-SY+Y( I )
x -SXN +( X(I)1**2
Y -SY^,+( Y(I)) **t

47 SXYSXY +Xt l)*Y(l)
M1-sx/v
M?-SY/4
SVA2X-(SXS-4*M1**2)/lN-1DO)
SVAAY-lSYS-( SY* *2/14111 (4-1D0)
40-1 SXY- N*i4I * M2 1 / (N-1-101
20-RJ/JSJQT(SVARX*SVARYI
W JIN
END

I
U3Qj^TINF. CAL1 ( 41,A1sY,y.Z)
MPL lT R tL*8 IA-H,M,O-Z)
IF (A1.LE.53-1) Al=510-2
IF (BI.LE.5)-1) yl-51J-2
SX1-B1-.5UO
SX2- A1-.5U0
SX12Al+81-00
P- M-Y
)2- (Sx •1+.33333333DO) *Y-( Al-.33333333DO)+2D-2* (Y/B1-P/41 +(Y-. 5()01 /

C(A1+3111
DA-OABS(SX1-SXN*P)
JLS-JLJ; (SXL /(SX`4*P) )
)LT-JLJG (SX?/(3X,,1*Y) )
Z=U?/D4*DS02t(12C0*SXN/(630*SXN+1001*(SXI*DLS+SX2*DLTII
2ETJdN
END

REAR 6 T X (1551.H11551N)

DO 38 I . 1, N
IF (X(I)-LD)) 39,40.40

40 H(1)s5)3
GO TO 343

3? IF (X(11-.6')0)41,42.42
42 H(I)-400

GO TO 39
41 IF (X(I)-.4)0) 43,44,44
44 Ht 1)-300

GO T7 38
43 IF (X(I)-.1)0) 45,46,46
46 H( 11-2)0

GO TJ 38
45 H(I)-lD0
38 ZnNT INUE

RETURN



A PROGRAM TO COMPUTE CONDITIONAL BIVARIATE

NORMAL PARAMETERS

Summary

This report derives the conditional bivariate normal 	 .
parameters from an original quadravariate distribution. The
paper presents the theory and appended is a computor program
developed to give numerical results. An example is presented
in the paper.

I. INTRODUCTION

This report presents a sketch of the theory and a computer

program designed to calculate the bivariate normal conditional

distribution derived from the quadravariate normal distribution.

The required computer inputs are described and an e-..-nhlc is

hresesit eel . 'I'hc computer program is appended.

Theory

The general multivariate normal distribution has the density

f (X I , x 2 ,..., xk) =	 k I	
1/2 exp {-t(x-p)' J -1 (x -p) )	(1)

( 2n ) m

where ul = (il l , u 2 ,..., uk ), the vector of mean values and

°Ik

...o2k

akk

F
°11 °12

"21 °22

akl °k2
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A property of the multivariate normal distribution is that

marginal and conditional distributions are also normally distributed.

The general expression for these distributions are found often in the

literature [see Morrison (1967)] . We shall confine remarks here to

the specific case.

Assume we wish to derive	 f	 (x l ,	 x 2 ,1	 x 3 , x4 ). if we define

11 () 12 "13 "14

t' 1	 1'2
T l 1
	 ; >: 12 21 "22 ;	 `''.i `'u	 --u2

	
---- and	 -	 -^---^ 

E
---- _	

-`l ^l 0 32 ^	 °33
--------

°34
1.1 4 21	 22

"41 a42 °43 044

then letting

xl

x	 X1	 X2	 we have

12	 X3
x4

f 
(XI^X,)	

2nlf,*^^	
eXp r-^ (x l -u)^ ( ?:")-'(rl-u"))	 ( 2 )

Where

^

.	 1

= F11 F 12 F22 E 21	 (3)

and

i ` '12 '22 1 (12 -^̀2 ).	 (4)

Computation of the parameters for this conditional distribution really

reduces to computation of the quantities E and v	 Carefully note

that the value of u* includes values of 12	[x3 , x4 ] , that must be

"
specified before numerical values for u can be calculated.

"
Even for this rather easy case the actual expressions for E

•
and u and therefore for the quadratic form in (2) are very complicated

algebraically. They are, however, very amenable to numerical compu-

tation via computer. The least complicated for the expressions is

that for v and the actual form is given below (letting a 
340 

a 
43 

for

convenience).
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N1. 1(j) 11 94 -
" 14"33 ) (x3-u3)'(°l4 4.i3-°13434 )

 (x4-u4) ) A0 33 
a 
44 `'34`)

u2`(1s 23 °44 °24°33 ) (x3-u3)*(°24 °:S3-°23°34) a 4 u ! )} /(°33°44-°34+)

The matrix triple product 
E 12 E 22 1 E21 makes E

A a complicated

expression and this, of course, causes ( EA ) - I and, therefore, the

quadratic form in (2) to be almost incomprehensible in an expanded form.

Computer Program and Required Inputs

The computer program is written to accept quadravariate data

and retarn the conditional bivariate parameter. The conditional variance-

covariance matrix and the associated standard deviations and correlations

:ire initially calculated and printed. The program is designed to take

:is many pairs of "conditioning values" of x 3 and x4 as desired and print

A

out both the values of x 3 and x4 plus the associated values of u .

Example: The following data was input to the program

u - [21.58, -.04, 43.35, 1.251'

- 11.03, 0 12= .0503, 0 13n .7382, 0 14 - -.0199

- 11.52, P 23- 1614,	 024- .8134

- 15.47, 0 34 - .1524

- 14.59

[x 3 ,x4 1 - [43.35, 01

Attached as Appendix I is the output giving the calculated parameter:,

for the bivariate conditional. Note carefully that the standard

deviations and correlations are printed in matrix form for convenience--
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not to be confused with the variance-covariance matrix printed shove it.

.	 Below the standard deviation and correlation matrix the values condi-

tioned on and the resulting conditional means are printed. The original

inputs and matrices will be printed only once but the values conditioned

on, followed by the conditiona: means calculated using those values,

will be repeated for each set of conditioning values read in.

Input to the program consists of the fellowin , cards:

Card 1	 The 4 means for the quadravariate normal in 41`10.4
Format.

Card 2	 Standard deviation for variable 1 followed by

correlations for variables 162, 143, and 163 in

41`10.4 Format

Card 3	 Standard deviation for variable 2 followed by
correlations for variables 263 and 264 in 3F10.4 .

Format.

Card 4	 Standard deviation for variable 3 followed by
correlation between variables 364 in 21`10.4 Format.

Cara S	 Standard deviation for variable 4 in F10.4 format.

Card 6	 Number of sets of x ; , x4 values to be conditioned

on in 12 Format.

Card 7	 1st set of x 3 , x 4 values to he conditioned on

Card 8	 2nd set of "	 to 	 of 	 of

of	 3rd	 to	 it	 or	 of	 of	 it	 of	 of	 to

to

The source deck listing is given in Appendix II.

References

Morrison, D. F. (1967). WI tivariate Statistical Methods, Wiley,

N. York.
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APPENDIX I

MEANS VECTOR • 21.58no -0.4010	 3.3Snn

VARIAtICE-COVAMANCE 71ATRIX

121.6009 0,.3'.114 125.1f 21 -3.2n2S
&.3914 132.7104 2^.708 130.733.

125.9621 28.7630 2311.3209 34.3070'
-3.2042 5 130.7331, 34.3^78 212..2x,31

0117. VAR. COV.1LITPIX

53.17073 4.P31124
4.C3E23 44.71625

SUC4CORR.:1ATRIX

7.29244 n.n0n2.2
0.099422 C. f 0,7.42

VALUES CO't(IITIn'!Cll nt,, 43.35n0 -0.3070

COiJDITOUAL t11A.'IS 21.7001 4.001^
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APPENDIX Ii

DI'1f.!ISIn ,, s c lr^^n(	 2),;cn( 2), ► ^('),^^^(^),^'^^(?,2),'(?,2),
1 V2(2,2),V3(2,2),V4(2,2),M (2),"!2(2),%' ( 2 ),=14 (1. 2),VVV(2,2),SD(4),
2 PP0(4,4),U(4),S(4,4)
READ(5,1) (U(I),I=1,?,)

1 FGRU-1T(MO.4)
DO ? I=1 ,4
L=1

IF (I.LE.3) L=i+1
2 iLr1U(5,3) ;U(I),(RNO(I,J),J=L,^)
3 FORMAT(M O.4)

DO 4 I=1,4
L=I+1
S(I,I)=SD(I)**2
IF (L.En.r) GO TO 4
DO 4 J=L,4
S(I,J)=RHn(I,J)*cD(I)*^D(I)
^(J,I)=S(I,J)

4 CONTINUE

I!RITE(G,5) (U(I),I=1,4)
5 FOWL T('1'///' 11E/NS VICTOR = ',4(FlO.4,2)X))

IIRITE(^,6)
G FOR'iAT(' VARIANCE - COVAP.IANCE MATRIX-/)
DO 7 I=1,4

7 WRITE(6,8) (S(I,J),J=1,4)
8 FORHAT(5X,4(F10.4,4X))

DO 9 I=1,2
DO 9 J=1,2
V1 I,J)=S(I,J)
V2 I,J =S(I,J+2_)
V3 I,J)=S(I+2,J)

9 V4(I,J)=S(I+2,J+2)
D=V4(1,1)*V4(2,2)-V4(1,2)*V4(2,1)

C44(1,1)
V4(1,2)=-V4(1,2)/D
V4((2,1)=-V4(2,1)/D

V4(1,1)=C/D
DO 10 I=1 2
U1(I)=U(I;

10 U2(I)=U(I)
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APPENDIX II ( CONTI,wn) )

UO 11 I=1,2
UO 11 J = 1 ,2
VV24(I,J)=0
DO 11 K=1,2

11 VV24(I,J)=VV24(I,J)+V2(!,K)*V4f!:,,1)
DO 1"I I=1,2

DO 12 I =1 ,2
VVV(I,J)=O
DO 12 K=1.2

12 VVV(I,J)=VVV(I,J)+VV24(I,K)*V3(t,,J)
DO 13 I=1,2
DO 13 J=1,2

13 SIrtIA(I,,l)=V1(I,J)-VVV(I,J)
COR(1,1)=SORT(SIr'1A(l,l))
COR(2,2)=S0RT(Slrt1A(2,2) )
COR(2,1)=SIC!1A(1.1))/(Crr(1,1)*C^f'(',?))
COP (1,2)=CoR(2,I)

WRITE(0,14) SINIA
URITE(G,15) COP,

14 FOR;iAT('OCO1lD. VAR. CnV.IIPTRIX'//2(^X,rlQ.5)/)
15 FORMAT( 'OSDnCORR.!!P.TRIX'//2(2X,F10.5)/)

READ(5,16) N
16 FOR!1AT(I2)

DO 23 11=1 ,N
t'EAU(5,17) (X(I),I=1,2)

17 FORt1AT(2F10.5)
DO 13 I=1,2

18 XU(I)=X(I)-U?(I)
DO 19 I=1,2
VX(I)=0
UO 19 J=1,2

19 VX(I)=VX(I)+VV24(I,J)*XU(J)
DO 20 I=1,2

20 US(I)=U1(I)+VX(I)

OA, IG+
4
p̂Aq
G CF

IIRITE(G,21) (X(I),I=1,2)
WRITE(G,22) (US(I),I=1,2)

21 FORt1AT('OVALUES CONDITI(N1ED ON',2(5X,r1O.4)//)
22 FORMAT(' CONDITIONAL HEANS	 1,2(SX,F10.4)//)

STOP
END



TRANSFORMATION OF NON-NORMAL MULTIVARIATE DATA

TO NEAR-NORMAL

Summary

A procedure for transforming non-normal multivariate data
to near-normal data is presented. The procedure is based upon a
multivariate generalization of a technique proposed by Box and
Cox (1964). Several examples of the procedure are included along
with a documentation of the computor software.

I. INTRODUCTION

Investigators are often confronted with the problem of

analysing multivariate data. Upon investigating the existing

procedures for analysing this type of data, one soon realizes

that a majority of the existing techniques are restricted to the

normal distribution. However, real data often violates this

normality assumption. Thus the investigator is confronted with

two possible approaches: 1) determine a non-normal multivariate

distribution which provides a satisfacory model, 2) determine a

technique for transforming the non-normal data to near-normal

data. If the investigator is mainly interested in modeling the

multivariate data, then the first approach is probably most ap-

propriate, however, if the main interests are in making statistical

inferences or probabilistic forecasts then the second approach

could prove to be adequate. In this paper, we

65
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have presented a procedure which addresses this second approach. The

procedure is a multivariate generalization of a procedure proposed by Box

and Cox (1964). They proposed the following univariate transformation

Y--=1 for a # 0.
a

y
 
	 =	 (1)

log(y)	 for a # 0.

Andrews et. al. (1971) extended this transformation to the bi vari ate case.

In their paper, they were able to find approximate maximum likelihood

estimates'for a, by examining the contures of the likelihood function. In

this paper, the method of Box and Cox is extended to the multivariate case,

where the maximum likelihood estimate for X is determined using a numerical

analysis approach. The procedure is presented in a multivariate analysis of

variance setting, however, several examples are presented which demonstrate

the versatility of the technique.

II. Procedure

Let Yi 
1

­ 0,	 . Y i	denote a random sample of n i p - dimensional
ni

observations from a population with finite mean Ii i and finite covariance

E i , for i = 1, 2, ..., m. The problem can be stated as; find

X = (Al , A2 , ... , X p ) T such that Y(
ii

is distributed normally with



mean N i , and common covarince E, where

(1)	
(Al)	 (1 p ) T

Yi, . (Yi,^...,yi, )

.	 (1 k)

(1 ) (y 
k )
 - 1)/1 k for 1k # 0

k)
Yid	

log (Yi,k)	 for 1k = 0	 (3)

for i-1,2,...,m, J-1,2,...,ni, and k-1,2, ... ,p. For 	 0, Y (A) can be written asij

Yid ) = D-1 (Y xii  - J)
	

(4)

where

D = diag(a1,A2,...,ap)

J is a pxl vector of 1's

A	 11 
12	 1p T

Yij	
(Yfj1 ,ylj2 ,...^Y

ijp ) 
.

Since Y ( A ) N(ui ,E), its density function can be written as

f(z) = exp(-1/2(z-u)TE 1 (z-u))(2n) -p/2 1EI -1/2	 (5)

where z = Y (A) . From this, one can determine the density function for the
ij

61

(2)
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untransformed data w = Yij as g(w) = Kij f(z) where,

	

p	 2z	 p	 ak-1
K	 = 1T —V= II (yijk)	

(6)1 	 k=1	 k=1

Hence the joint likelihood function becomes

L( A ) _ ( mni Kid )	 (2n)
-np/2 

IEI
-n/2

	11	 TI
i-1 3=1

•	 i	 (A)eXp { -h E	 E	 (Y- u) T E-1 (Y ij 	 u) }	 (7)

	

i=1 J=1 	 i J

M

where n	
1 =

E 
1 n i . The likelihood  :'unction can be written as

L(a) = K(2II) -np/2 
IEI 

-n/2 eXp {-np
/2} 	

(8)

ir	 n 
where K = n	 IT K	 and u and E are replaced by their maxi mien likelihood

i=1 J=1 iJ

estimates

1	 n i	 ( x)
ui	 ni 3E 	 Y	, 	 id

E = 1	

M
E-	 E (Y

n i=1 - 3=1	 ij

-(X)
Y 

..( X )	 M	 ..(a)(9)

Y 	 ) ( Y
ij 

- Y i	)T.



Equation (8) follovs from equation (7) since
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M	 ni

E	 E

i-1 j-1

m

s E

i=1

( Y( ^ ) - u ) T E-1 (Y i i  ' u )ij	 i	 i j 	i

E i (tr E -1(Y(^`) - u) (Y(^)_ u )T
j=1	 ij	 i	 i j 	 i

= tr E-1
	 m	 ni (^)	 (a)	 T
(iE1 jE1(Yij - i) (Yij - u i ) )

= n tr ( E -1 E ) = np.

Equation (8) can be further simplified as

L(a) = C • h(a)	 (10)

where C = (2H) -np12 exp {_np/2}

h(X) 
= IK 

2/n E I-n/2	 (11)

Note that maximizing the likelihood function L(a) is equivalent to

	

minimizing the function	 h(a) -1 • This function can be further simplified by

considering

	

K
2/n 

= ( II	
ni k )2/n

i=1 j=1	 ij

n	 ( n	 ^i (Yi jk)Xk-1) 1/n ) 2

W i-1 j=1

Ak 1 2
11 (Y k)	 )

k=1
(12)

r	 s
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mni	1/n	 th
where 

yk	 1 j( n I, y
ijk )
	 is the geometric mean for the k	 variate,

i==1 

k = 1, 2, ..., p. From equation (4) E can be written as

	E - E E (Yi d) - 7,M )	 ( Yij -

 V(X)
)T

i=1 j=1	 j 

	

= E	 E i D-1 (Y
ij
 - Y	 Ti ) (Yij - Yi )D 1	 (13)

i=1 j=1

Hence IEI, becomes

	IEI =	 ID l I 	 I E	 Ei	 d(Yij - Yi ) (Yij - Yi 	 )i	 ID1I
i=1 j=1

	

=	 ID-2I	 IGI	 (14)

•	 mni	 a	 a	 a	 a T
where G =	 E	 E ( Yij - Y i ) ( Y

ij 
- Y i ).	 Thus the minimization of

i =1 j=1

h(X) -1 is equivalent to minimizing

0(a) =	
G

IK2/N 
D 
2

z	 G
P

(^ akyK^k-1)2.

k=1

Note that equation (15) reduces to

(15)

	n 	 a	 a 2
E (yi - y )

	

i=1	
(16)

X- 1 2
( aY	 )
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which was proposed by Box and Cox (1964) for the univariate case.

The function 90) in equation (15) can now be minimized using a

standard numerical technique. In this paper the Flecher-Powell algorithm

of deflected steepest descent is used (see Appendix A).

III . Application

The first example illustrates a violation of the equality of covariance

matrix assumption in a multivariate analysis of variance problem. The data set

is R.A. Fisher's classical iris data (Fisher, 1936) where the response

measurements are sepal length, width and petal length, width for three iris

species: virginica, versicolor, and setosa. Although this data was originally

presented as an application of linear discriminate analysis, Morrison (1967)

uses this as an example in multivariate analysis of variance, for which he

states, "we shall of course assume... a common covariance matrix". However,

in applying Bartlett's likelihood ratio test for equality of covariance, we

obtain a test statistic of 141 for 20 degrees of freedom. Hence the hypothesis

of equality of covariance can easily be rejected with a high level of

significance. In figure 1, the confidence ellipse for the two untransformed

variables: sepal length and sepal width, clearly illustrate the difference

in covariance matrices. The data is then transformed, and the corresponding

confidence ellipses are presented in figure 2. Although the confidence

ellipses for the transformed data are more nearly identical, Bartlett's test

statistic has been reduced to 63, however, this value is still significant

at the .01 level.

M 1 •^



Fi gure 1.	 Untransformed 95% Confidence Ellipses
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Figure 2.	 Transformed 95% Confidence Ellipses
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In the second example, we are interested in obtaining probabilistic

•	 forecasts. The data was originally preserted in a paper by Haggard et. al.

(1913), in which the author was able to model the maximum rainfall from

tropical cyclone systems across the Appalachians using the Gamma distribution.

Since rma of their primary objectes was to obtain estimates for the

probability of rainfall exceedence in the Appalachian regions, I felt that

comparative results could be obtained by transforming the data then using

the well tabulated normal distribution. The results are given in Table 1.

IV. Conclusions

A method transforming non-normal multivariate data to nearly-normal

data is presented. The method extends the univariate transformation of

Box and Cox (1964.1 to the multivariate case. A numerical method for

approximating the optimal transformation is also included (see Appendix A).

The procedure was then applied in two applications. The first was in the

area of multivariate analysis of variance where the primary objective was to

achieve equality of covariance matrices. It was shown that the transformed

data was less heterogeneous than the untransformed data. However, the

population covariances were still unequal. The second application illustrated

that this type of procedure can be used when the primary objective is the

estimation of tail probabilities. This method allows the use of the normal

distribution on the transformed data, rather than determining the appropriate

non-normal distribution for the untransformed data.
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TABLE i

• Expected Probabilities of Exceeding Arbitrary

Precipitation Amounts Over the Appalachian Region

Precipitation Data Set*
in inches

A B C D
r^

I II I II I II I II

1 .978 .966 .993 .999 .981 .971 .995 .997

2 .913 .903 .959 .999 .932 .924 .971 .976

3 .821 .819 .893 .962 .865 .864 .926 .931

4 .717 .723 .806 .809 .789 .794 .866 .866

5 .613 .624 .706 .625 .710 .719 .794 .788

6 .515 .528 .605 .472 .631 .644 .717 .706

•	 7 .427 .439 .507 .361 .556 .571 .639 .623

8 .349 .359 .418 .283 .486 .500 .562 .544

9 .283 .291 .340 .227 .423 .436 .489 .471

10 .227 .232 .273 .186 .365 .376 .422 .405

15 .070 .066 .079 .090 .165 .166 .182 .174

20 .019 .016 .020 .057 .070 .066 .070 .076

25 .005 .003 .002 .042 .028 .025 .025 .032

30 .001 .001 .001 .033 .011 .009 .008 .023

* A - maximum 24-hour precipitation all storms. B - maximum 24-hour
precipitation from no more than one storm per year. C - maximum
precipitation totals from all storms. D - maximum precipitation totals
from no more then one storm per year

I- gamma parameters from Haggard et-.a l.(1973); i1 transformed
normal probabilities.
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Appendix A

Flecher-Powell method of deflected steepest descent, requires the

gradient vector

90
aal

0(a) =	 ao	 (A.1)
2

DO
aap

where

.

0(a) _	 I GI

( n akYk^k 
)2k=1

(A.2)

a -1 _	
a(n	

^kyk
X
k

-1 ) -2 IGI

a	 a) _ ^' u	 I	 k	 2	 k=1
h	 haa	 aa	 ( knl ^kyk	 )	 +	 aah	 (A.3)

X-1	 -1
-2( 1pi	 akyk k ) -2	 ( Xh + 1 n yh) ^,n

k=1

(A. 4)

	

P	 ^k-1 -2

	

a( n	 a,k Yk 	 )

	

k=1	 --

ax 

P
Since I GI = E	 g i j ai j where

j=1

G = (yid)

aid is the cofactor of gij

(A.5)
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Also, since gij only depends upon a i , aj using the chain rule we have

a G	
=	 E	 E 

a s	 a I

	 (A.6)
ax 	 i=1 j=1 agi j 4ah

where

a G	
aij	 (A.7)

gij

and
0	 if u,v0h

ague 	 b2	 if u or v = h	 (A.8)
aah

b3	 ifu=v=h

and

	

m	 n	 x	 _a	 a	 a
b2 = as 	( E	 Ei( Yi uu	 Yiuu) (Yijh	 Yih) )

h	 i=1 j=1

	

M	 n a	 _a	 a	 a
	= j=,	 Ei(Yiju

	
Yiuu) (Y i ^h ln Yijh- Yih

	 Yijh)

j=

m	
n 
	

).hh 	 xh	 —x 
b3	

_

	

= 2	 E	 E (Yijh	 Yih ) (Yijh ln Yijh- Yihln.Yijh)
i=l j =1

(A.9)

From this, equation (A.3) becomes

a01 a	 =	 2	 p	 a9kh	 dh h 	 aghh

	

L'	 a	 +aah	
( E x ilk - ) 2	 k=l	 kh 

ax 
	 2	 aah

k=l k k
	 kfh

- IGI	 (X-h1 + In Yh)	 (A.10)



I
Test of Fit for the Extreme Value Distribution
Based Upon the Generalized Minimum Chi-Square

Summary

A goodness of fit test for the extreme value distribution is developed.

The procedure is based uoon the generalized minimum chi-square distribution

[Gurland and Dahiya (19 110)j . Application of the test is given for some

extreme value data [Gumbel (1964)].

I. Introduction

There are several difficulties with using the Pearson chi-square test

of fit for continuous distributions [c. f. Dahiya and Gurland (1970 )1.

These difficulties are primarily concerned with the choice of cell width and

the number of cells. However, to the applied statistician or non-statistician

who must use test of fit procedures on a frequent basis, the primary difficulty

of the procedures is in the users set up. That is, the user must have knowl-

edge of the tabular values for the null hypothesis. Dahiya and Gurland

(1970 , 072) presented a goodness of fit test for several continuous dis-

tributions which eliminate most of the user's set up. Their procedure was

based upon the generalized minimum chi-square statistic. In this paper, I have

developed a test of fit for the extreme value distribution based upon this

generalized rlinimum chi-square technique.
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II. Procedure

Suppose that one would like to test the null hypothesis given by

H0 : Xl,X2, .... Xn t FX (x;8)

where X1,X2,... ,Xn denotes a random sample of n observations from a distribution

function FX(x;8). F  is an asymptotic Fisher-Tippett type 1 distribution, that is,

FX (x;8) = exp{-exp(-(x-a)/B))	 (2)

< a < m

s > 0.

Let T denote a transformation from the population raw moments to ^, which

can be written as a linear function of the parameters 8 where

T

(3)

and n^ is the ,j th raw population moment for FX and = W8 , W is a known sx2

matrix, and 8 = (a,6)T . That is,

T: n -► & = WB.	 (4)

'
	 T

Let m = (ml,m2,...,ms) denote the sample raw moments corresponding to n

and let h = (h l,h2,...,hs)T denote the sample values corresponding zo

that is,

T: m' -► h.	 (5)

80
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By the central limit  theorem, we know

'	 n(m' - n') ti n(0, G)	 (6)

where the i 
jth element of the matrix G is

giJ = 
n'	 - n	 n	 (7)
i + j	 i	 3

for is j = 1, 2,..., s. It also follows that

n(h - E) ti n(A E )	 (8)

where F. = TGTT . Now using the distributional properties for the quadratic

forms, we know that

Q* = n(h -^) T E-1 (h -^)
	

(9)

has an asymptotic chi-square distribution with s degrees of freedom where

E is a consistent estimator for E. Since 	 = We, an estimate for a can be

found by minimizing Q*. In which case, the estimate becomes

e = (WT 
E 1W)-1 W

T E`1 h.	 (10)

By letting C = We, Q* becomes

Q = nh TAh	 0 1)

whe re

^ n	 A

A = E1 (I - R)

(12)

R = W(WT
 

11
'_"
- 10_1WE 1.

Again by the distributional properties of the quadratic forms, 0 has a non-

central chi-square distribution with degrees of freedom = tr 	 EA and non

Tcentrality parameter X _AB if and only i r 	 EA is an i dempotent matrix.
^ ^ 2

It is easy to verify teat (EA) = EA, and a = 0, so Q has a chi-squ?re

al
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distribution with s-q degrees of freedom. Using this distribution, one

can reject the null hypothesis (1) with type I error if Q >x2(s-q),where
a

i	
Pr( X > Xa (s-q))	 a.

Dahiya and Gurland (1970) developed the non-null distribution for Q, using this

distribution one can compute the power of the test for a specified non-null

distribution. In order to test (1), the transformation T and the matrix W need to

be specified. Since we know that the populations cumulants for the extreme value

distribution are

K = (-B)')*Q 1)
	

for j =2,3,...	 (14)

where

(1)

d(n) = E i n .	 (15)
i=1

By letting C= (K3K2-1,K4K3-1,.@.gKs+2Ks+ll)T and W = 	 (2)(1)^...,,y(s+1)(s))T,
(1)	 (1)	 (1)	 {1)

and 8 = B it is possible to map n^-► where s = 4 and q = 1. By letting

h = (hl ,h2' h3 ,h4 )T , where h  = k,+2/kj+l, for J=1,2,..,4, and k  is the jth

sample cumulant. We are now able to compute Q, where

E = JGJT 1 S= S	 (16)

ac

J = (3mn ) '	 ^mn	 aK^ 
for m,n=1,2,...,s

n

(13)

and B is the maximum likelihood estimate for B.

.s



The values in equation (15) can be found in Abrahomovich, hence J becomes

83

1	 0	 0

-.885	 .6079	 0
J - 1 /a

0	 -1.131	 .4174

0	 0	 -.5901

From these values, we are able to compute Q

0

0
(17)

0

.154

in (11) for the sample values

X11 X2 , ..., Xn . Hypothesis (1) can be rejected if Q > X 2 (3) since

s = 4, q = 1.

Application

In this section, an extreme value data set given in Gumbel and

Goldstein (1964) is analysed using this test of fit procedure. The data set

consists of the oldest ages at death for men and women in Sweden from the period

1905-1958. The data for male and female are fitted separately. Gurrbei and

Goldstein (1964) estimated the extreme value distribution parameters using

a modified method of moments. Tables 1 & 2 contain a comparison of the two

different procedures in term of estimated parameters and cumulative tail

probabilities. It must be noted, that the null hypothesis of the extreme

value distribution being the null distribution could not be rejected at a

significance level of greater than 70%.

In th, second example, extreme monthly temperatures and winds for

three United States locations were analysed. The data set taken from thi

daily meteorological records, 1970-1971, for New Orleans, LA,, Orlando,

FL., and Daytona Beach, AFL. The results are summarized in Tables 3 and 4.



x

a

102.49

Method of 2
Moments Generalized minimum 	 X

S	 X* FX(x)
A

a	 S	 X* GX(x)

1.39	 100.90 .0433 102.53	 1.25	 100.90 .0251

101.6G .1625 101.66 .1346

102.61 .3994 102.61 .3914

103.24 .5582 103.24 .5674

104.22 .7497 104.22 .7720

105.72 .9067 105.72 .9250

106.50 .9457 106.50 .9591

*	 the values	 X represent the 5, 10, 20, 30, 40, 50, 54th

smallest sample value.	 FX	and
G 
	 are the corresponding c.d.f.
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Table 1: Comparison of Procedures using Swedish Men

Table 2: Comparison of Procedures using Swedish Women

a

103.83

Method of 2
Moments Generalized minimum	 X

B X* FX(x) a	 a	 Xt GX(x)

1.25 102.54 .0604 103.33	 1.57	 102.54 .2118

103.31 .2196 103.31 .3866

103.94 .4002 103.94 .5293

104.52 .5623 104.52 .6442

106.15 .8553 106.15 .8558

106.50 .8889 106.50 .8829

* same as in Table 1
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TABLE 3

Extreme Monthly Temperatures

Site Extreme Value Distribution
A

a a Q*

83.8 .98 .001

84.8 .88 .003

81.7 .67 .002

New Orleans

Orlando

Daytona Beach

* null distribution of extreme valued distribution can not be rejected.

TABLE 4

Extreme Monthly Winds

Site Extreme
A

Value Distribution

a S Q*

New Orleans ir..4 2.9 .9

Orlando 13.6 ?.5 .6

Daytona Beach 13.0 2.2 .,4

* same as in Table 3

.f	 - --	 - - L--Mm



86

IV. Conclusions

•

	

	 A procedure for testing the goodness of fit for the extreme value

distribution, based upon a generalized minimum chi-square is presented. The

procedure is applied to several data sets Where the extreme value distribution

is a potential fit, although it must be mentioned that the meteorological dsta

set was included in a manner which lends itself to program utility rather than

for meteorogical interpretation.

V. References
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Test of Fit for Continuoas Distributions Based Upon

the Generalized Minimum Chi-Square

Summary

A.procedure for test of fit for several continuous probability

distributions based upon the generalized minimum chi-sgare method is

presented. The procedure was first presented in a series of papers by

Dahiya and Gurland ( (1970a),(1970b),(1972) ). Examples of the procedure

are included, along with the corresponding computer listing.

I Introduction

Dahiya and Gurland (1970a) discuss the difficulties with using the

Pea!-son chi-square test of fit for continuous distributions. These dif-

ficulties are primarily concerned with the choice of cell numbers and widths.

However, to the applied statistician who must use test of fit procedures on

a frequent basis the main disadvantage is in the users setup. That is, the

user must have knowledge of the parameters and the tabular values for the

specified null distribution. These demands severally hamper the investigator

who must determine an appropriate distribution from potentially many distribution

functions. The purpose of this paper is to present a test of fit for continuous

distributions wi.ich minimizes the users interface in the estimation of

parameters for the specified null distribution or in specifying the tabular

values of the null distribution. In fact, several different families of

distributions can be tested for fit using a single

,
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setup. The procedure is based upon the generalize4 minimum chi-square

(GMCS) statistical method. Section 3 contains the GMCS procedure for the

univariate normal and gamma distributions.

Procedure

Suppose that we want to test the null hypothesis

Ho: xl, '2-- 	 FX (x;e) (	 %, x;o)
	

(1)

where x l , x2 ,... xn is a random sample of n-observations from an unknown

distribution function F X (x;e); a is a q x 1 vector of parameters and

}(x;0) is a specified family of distributions with admissable parameters 0.

The (GMCS) procedure can be used for testing any family of dis-

tribution I(x;0), provided there exists a transformation T, where

T: u - C
	

(2)

where u' _ (u'.u',.••u')T, u' is the j th raw population moment
1 2	 s

and	 = (Fl *E2,...&s)T can be expressed as S = We 	 (3)

for a known s x q matrix w and s > q. Let m' _ (m', M I , ... m')T
1	 2	 s

denote a s x 1 vector of raw sample moments and define

h -(h l , h 2 ,...h s ) T 'to be the image of the transformation T, that is

T:	 m' + h. Using the central	 limit	 theorem, we have

n(m' - u')	 n(0. G)	 (4)

	

where G - ( g i3 )t gi3 12 ui +	 - ui u^. i, j - 1, 2, ...,s.
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From this, it can be shown that

n(h - E) -+N(g, E)	 (5)

where E - JGJT , J the Jacobian matrix for the transformation T. Now using

the properties of quadratic forms, we know that

Q - n(h - C)T E -1 (h - 0	 (6)

has a chi-square asymptotic null distribution with s degrees of freedom.

Furthermore, this distribution does not change when we estimate F. in (6)
A

by F.. where E is a consistent estimator for E. Since	 = We, we can
A

estima :e 0, by findir-I A which minimizes Q. This estimate is giver. by

9 = (WT E -1 W) -1 WT E-l
h.	 (7)

By letting	 = We, the minimal Q is

Q - n(h- E)T -1(h -)	 nh TAh	 (8)

where

A = E -l (I - R)	 (9)

R = W(WT E-1 W) -1 WT,

Again, using the properties of the quadratic forms, we know that Q has a
A A

non-central chi-square distribution with degrees of freedom = tr(E A) and

TA	 AA
asymptotic non-centrality parameter a = 	 A&, if and only if EA is idem-

A A

potert. Under the null hypothesis, tr(EA) - s - q and a - 0. Hence the

asymptotic distribution of Q is X2 (s - q). Using this distribution, we
A

can reJect the null hypothesis with a type I error if Q > Xa(s - q).
A

Gurland and Vahiya (1910) developed the non-null distribution for Q.

Using this result, they were able to compute the power of the test for

selective alternative distributions.

4A
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O
In the next section, the general procedure is adapted for two specific' O
distributions, the normal and gamma. 	 ^+

s $^

Normal Distribution

Suppose one would like to test the following hypothesis 	 s•
4 r

-	 e
v

H0 : X1,X2,...,Xn ti FX (x;e) c N(u,o 2 )	 (10)
S

where e = (el-,,e22)T, y and c 2^o 	 are unknown parameters. If we let

C _ Ql=ul,E2=loF'A2,^3=u 3 ,E^=1og (3u^))T 	ws

we have

C = We 0
	

CIO

vh%re

9 e	(el ,e2),	 e2=10re2

1	 0	 s

0 1

W =	 (12)
0 0

0 2

The transforamtion T from y to C can be achieved in two steps; Ti: u - ► u

T2 : y + E. Hence,E in equation (5) becomes

E = J 2J1GJTjT	 (13)

As	 -	
_1L ^^



82 0

0 2

= 0 0

0 4

0	 0

0	 4

6 a32	 0
	

(17)

0	 32/3

91

whe re

J 1 = (Jmn)

J2	(3uv);

By assuming that

au.
m	 m,n=1, 2, ...,s

aun

3= ap_	 u,v=1, 2,...,s.
4v

0 9 J1 and J2 become
1

1	 0	 0	 0

0	 1	 0	 0

Jl 	 -382	 0	 1	 0

0	 0	 0	 1

1	 0	 0

0	 1/62	 0

J2 =
0	 0	 1

0	 0	 0

and equation (14), becomes

(15)

(16)

0

0

0

1

36_
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Since 0  is unknown, let e 2 denote the usual maximum likelihood estimate.

Then E = E	 Now by computing a and Q in equation (7) and (8),

le 2 ` e2.

one can test the hypothesis (10).

Gamma Distribution

Test the hypothesis

Ho: X 1 , X2 ,..., Xn ti FX (x;e) ti r(e l ,g2 )	 (18)

where the density function for the gamma distribution r(e l , e 2 ) is

el-1

fX(x ,elso2)	

-y

r(e )	
; Y = x/e2

02	 1

el se 
2 

> 0.

Since	 _ (j - 1): e l ej , the j th cumulant, we can express	 = We*,

2

where

E _ R1 = K 1 . E2 = K2 K11 ,C3 = K3K21, E4 = K4K31)T
	

(20)

1	 0

0	 1

W0
	

2	
e* _ (0^ = 

e102 ^e2 = e2 )	 (21)

0	 3

The transformation T from n' to C can be obtained in two steps

T l :	 n' -► K
(22)

T2 :	 K	 -1^ E

(19)



where K = (K1 ,K20K 39K4 ) T . In which case E becomes

E _ j20 1 GJI T J2 

1	 0	 0

J12	 1	
0

1	 J13	 j23	 1

J14	 j24	 j34

j12 = -
2 ni

j23 = -3n 2 + 6n 

j24 = -6 Z + 12(ni)2

J13	
-3n

1

j 14 = ..4n3
 + 12n3 ni - 24(nj)3

j 34 = -4ni

r(e + j)	 j
n^ =	 1	

02
	 j = 1, 2, 3, 4, ...

r(81)

0	 0	 0

-1	 -1
. 2K1	 K 1	 0	 0

-1	 -1	 0
-K 3K2	 K2

0
-^	 -1

-K4K3	 K3
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Since el9 e2 are unknown, they can be estimated by 91 02 where

e2 = X/el

el = 
y 1/4 (1 + (1 + 4y/3)h)

y = log ('Y/GM)

n
1	 E X

X - n i=1 i

n	 1 /n-
GM = (H X.)

i=1

By replacing 8 1 92 in E, we can test the hypothesis (18) using Q.

Results

In order to demonstrate the GMCS procedure, the procedure was used

in three different experiments. The first was to simulate data from several

different distributions and determine the test of fit. In the second example

the procedure was analysed using meteorological data consisting of several different

atmospheric variables. The third experiment consisted of analyzing a meteorological

data set from a specified distribution function.

(27)
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Experiment 1

In this experiment, random observations were simulated from many

different distribution functions in order to demonstrate how robust the

procedure is to varyin q sample sizes, shape parameters, etc. This part of

the experiment was not meant to provide conclusive evidence that the

(GMCS) procedure is better or worse than any other procedure, but was

intended to point out any apparent deficiencies. The results have been

summarized in Table 1. In this table, I have only included the results

for fitting the true distribution, however, the procedure may have indi-

cated that another distribution could have provided satisfactory fit.

However, this is explainable since the Gamma and Extreme Value distribution

can resemble many other distributions depending upon their shape parameters.
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TABLE 1

Evaluation GMCS procedures using Simulated Data

True Sample Estimated ^

Distribution Parameters Size Parameters Q

r(y , ^) Y a
A

Y
A

a

3 1 10 1.2 1.06 6.600*
to 1.0 .91 .001
" 50 1.1 .86 1.200
" 100 1.1 .90 4.900*
2 1 10 .97 .98 5.600*
11 85 .88 .88 14.900*
" 50 1.18 .96 12.700
" 100 .83 .72 3.300

.5 1 10 1.99 1.6 .420
11 25 .80 .63 1.000
" 50 1.02 .77 1.200
" 100 1.17 .91 15.100*

2
NN, a) u

2v NOB u
^2
Q

A
Q

10 25 10 12.1 11.8 ..008
25 9.5 31.5 .091
50 8.9 20.0 .041

100 10.2 23.9 .001

Extreme a 8 NOB
/

a
A

0
A

Q
value, a, 6

5. 1. 10 5.01 1.68 .001
25 5.04 1.15 .008
50 5.04 .85 .003

100 4.82 .85 .006
2. 2. 10 2.90 .98 .002

25 2.69 1.50 .004
50 1.74 2.08 .017

100 2.09 1.95 .033

Exponential a NOB X

A

Q

.5 10 .69 9.04 *
25 .56 3.2
50 .53 1.3

100 .42 4.15 *
1.0 10 1.04 .33

25 .83 .75
50 1.28 .29

100 1.1 2.90
2.0 10 2.60 4.9

25 1.89 1.54
50 1.97 1.04

100 1.92 .35

* null hypothesis can be rejected at	 a = 0.5 level



97

Experiment ^2

In this experiment meteorological data sets from three southern

United States locations were analysed. The first set consisted of monthly

percepitation totals and monthly mean temperature for the years 1936-1975

for sites New Orleans, LA, Orlando, FL, and Daytona Beach, FL. The results

for these data sets have been summarized in Tables 2 b 3, where the data

sets are partitioned into five year intervals, each containing 60

observations. The second data set consists of daily (high temperature,

maximum wind speed) for the three U.S. sites. The observations are

partitioned into monthly intervals for the 1970-1971 data. The results

are summarized in Tables 4 h 5. Tables 6 & 7 contain the results for test

of fit for extreme monthly temperature and wind for the three U.S. locations.

It should be mentioned that the above data set was partitioned for the

author's convenience rather than for meteorological interpretation.
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TABLE 2

Monthly Total Precipitation

Site** Year Normal Exp Gamma Extreme

u a2 Q X Q Y Q a B Q

I 1936-40 4.8 24 3.3 .02 7.6* 1.9 .04 .0 12.9 3.0 3.5*
41-45 4.5 12 1.3 8.2* 2.2 .05 8.3 2.4 1.8
46-50 5.4 20 .8 5.3* 1.8 .03 9.4 3.1 3.3*
51-55 4.6 9 1.4 7.8* ---------- ------ 6.7 2.2 1.4
56-60 4.7 8 .3 10.6* 2.7 .06 10 7.3 2.1 1.1
61-65 4.6 7 .0 9.3* 2.3 .05 of 6.3 2.1 1.1
66-70 4.4 8 .3 8.6* 2.3 .05 6.7 2.2 1.2
71-75 5.8 10 .3 13.1* 3.5 .06 8.8 2.4 1.3

II 1936-40 4.2 13 .7 .02 3.7* 1.6 .04 .0 7.5 2.5 2.2
41-45 4.n 14 1.4 3.6* 1.6 .04 8.8 2.4 2.3
46-50 4.5 19 .5 .9 1.1 .02 7.7 3.0 3.9*
51-55 4.4 16 .9 It .9 1.5 .04 8.0 2.7 2.7
56-60 3.4 9 .1 2.0 ---------------- 5.3 2.2 1.9
61-65 4.3 19 1.2 1.4 1.3 .03 9.0 2.9 3.5*
66-70 4.0 9 1.4 4.6* 1.7 .04 6.1 2.2 1.5
71-75 3.9 15 1.2 1.3 1.2 .03 7.8 2.6 2.8

III 1936-40 3.8 7 1.5 .02 6.1* 1.8 .05 .0 5.6 2.0 1.2
41-45 4.5 16 .3 2.0 1.3 .03 of 7.4 2.8 3.0
46-50 4.4 13 .3 If 3.5* 1.5 .03 of 7.1 2.6 2.3
51-55 4.1 20 1.9 2.2 1.3 .03 If 9.3 2.8 3.5*
56-60 3.9 10 .3 3.3* 1.5 .03 it 6.2 2.3 1.9
61-65 3.9 9 .3 If 9.9* 1.7 .04 If 6.1 2.2 1.5
66-70 3.9 14 .8 11 1.3 1.2 .03 to 7.3 2.6 2.7
71-75 3.9 9 .3 of 5.3* 1.7 .05 Is 6.0 2.2 1.5

* null hypothEsis can be rejected at a = .05 level

** I - New Orleans; II - Orlando; III - Daytona Beach
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TABLE 3

Monthly Mean Temperature

Site** Year Normal Exp Gamma Extreme

U a Q x Q Y a Q a B Q

I 1936-40 69.7 116 .0 .O1 24.1* 26 .36 .0 75.2 8 .0
41-45 69.4 120 25 .39 75.1 9 of

46-50 69.4 106 of of 29 .39 74.6 8 is

51-55 69.2 111 it of 25 .42 74.9 to of

56-60 68.5 121 it Is 25 .36 74.2 if

61-65 67.5 121 of 11 It 22 .32 73.0 It

66-70 67.0 130 Is of to 23 .34 72.9 9 01

71-75 68.6 99 of It of .49 11 73.8 8 "

II 193E-40 71.0 69 .0 .O1 24.6* 40 .57 .0 75.2 6 .0
41-45 72.0 80 41 76.7 7 of

46-50 73.4 58 43 11 Is 77.0 6 "
51-55 71.8 72 " 57 .80 76.0 7 of

56-60 71.8 78 34 .48 76.1 7 of

61-65 72.4 73 It 40 .55 76.6 of 81

66-70 71.8 83 to Is to 36 .51 is 76.3 11
"

71-75 73.6 :,o 11 .72 11 77.4 6 It

III 1936-40 69.7 63 .0 .01 24.7* 41 .54 .0 73.7 6 .0
41-45 70.1 86 33 .47 74.8 7 It

46-50 71.5 61 40 .56 11 75.3 6 If

51-55 70.4 75 It 11 55 .78 of 74.9 7 It

56-60 70.0 82 is of 32 .46 Is 74.5 7 to

61-65 69.8 76 It Is 39 .56 of 74.3 7 if

66-70 70.0 89 It of so 34 .49 if 74.7 7 it

71-75 71.3 60 11 so 34 .50 to 75.2 7 it

* null hypothesis can be rejected at a - .05 level

** I - New Orleans; 11 - Orlando; III - Daytona Beach
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TABLE 4

Daily Maximum Temperature

Site** 	 Date*** Normal Exp Gamma Extreme
1
u

^2
a

A
Q

A A
Q

A
Y

A A

Q
A

a
A

0
A

Q

I	 1/70 47.5 141 .0 .02 11.6* 18.9 .39 .0 55.8 9. .0
3/70 60.0 44 of .01 12.8* 49.2 .73 to 63.8 5. .0
6/70 79.7 20 116.0 1.4 to

81.8 3. .0
10/70 69.0 26 99.8 1.4 of 71.7 4. .1
1/71 55.3 112 23.5 .42 it 61.0 8. .0
3/71 59.4 75 23.3 .38

to 64.6 7. .0
6/71 80.2 5 ---------------- 81.9 2. .0
10/71 71.8 23 70.5 .98 of 74.1 4. .0

II	 1/70 55. 94 .0 .01 12.2* 18 .32 .0 60. 7. .0
3/70 76. 22 11 11 1.5 of

78.4 4. of

6/70 83.9 1 of
67.8 8. of

1. is

10/70 63.5 66 " 22.3 .35 it
67.1 6. of

1/71 64.3 87
11 If

22.2 .34 11 7. of

3/71 72.0 53 of " 54.1 .74 of
76.0 6.

6/71 83.4 3 11 of If 45.8 5.5 of
84.3 1. of

10/71 71.6 17
of If 11 61.9 .8 go 3. of

III	 1/70 54.7 94 .l .O1 12.5* 17.4 .3 .0 59.6 7.7 .0
3/70 65.6 53 50.9 .7 70.0 5.6
6/70 80.9 8 of

221. 2.7 82.4 1.3
10/70 82.7 12

of
166. 2.1 78.7 2.7

1/71 58.8 92 to 19. .3 63.4 7.6
3/71 60.1 65 If of of 51. .8 01 65.2 6.2
6/71 71.0 8

If 11
843. 10.6 Is 2.5 "

10/71 76.0 9 if to
1.2 of 2.4 of

*	 null hypothesis can be rejected at a = .05 level

**	 I - New Orleans; II - Orlando; III - Daytona Beach

***	 data set consists of daily observation for a monthly interval, only
these selected months are presented.
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TABLE 5

Daily Maximum Wind

Site Date*** Normal Exp Gamma Extremely
A

U

A

a

A

Q

A

A

A

Q

A A

a
A

Q

A

a
,.

8

A

Q

I 1/70 9.6 7 .0 .10 11.2* 14.8 1.5 .0 11.8 2.1 .0
3/70 9.8 6 ----------- ------ 11.2 2.0
6/70 6.8 6 of .14 9.7* 7.7 1.1 .0 8.7 1.8
10/70 7.6 9 1.3 .13 9.3* 5.6 .7 to 9.6 2.3
1/71 8.4 12 .0 .11 8.7* 4.7 .5 to 10.6 2.7
3/71 9.7 7 .10 11.1* 11.6 1.2 of 11.6 2.1
6/71 5.3 2 '' .18 10.4* 8.6 1.6 of 6.1 1.2
10/71 4.7 5 .3 .20 9.1* 6.5 1.3 of 7.1 1.6

II 1/70 Q.6 10 .0 .10 10.4* 7.8 .8 .0 11.7 2.4 2.4
3/70 10.3 10

of .04 10.6* 8.3 .8 it 12.3 2.4 .0
6/70 8.4 4 if .12 11.1* 14.1 1.5 of 9.8 1.6
10/70 8.8 6 .11 11.1* 10.9 1.2 to

10.5 1.9
1/71 8.R 7 .11 10.7* 8.7 .9 if 10.4 2.0
3/71 10.1 11 .11 10.7* 10.9 1. 41 12.7 2.5

' 6/71 7.4 3 .13 11.3* 15.6 2.
of

8.5 1.3
10/71 6.8 5 .14 11.0* 7.1 1.

to
8.2 1.7

III 1/70 9.2 5 .0 .10 11.3* ------^------- ---- 10.5 1.8 .0
3/70 8.8 6 11.2* 11.8 1.3 .7 10.5 1.9

it

6/70 9.0 7
41

10.9* 15.6 1.7 01 11.1 1.9
10/70 10.3 13 it 10.3* 8.6 .8 12.8 2.7
1/71 9.0 7 8.8 1.1 61 4.4 2.
3/71 9.5 11 is 10.5 1. of

12.0 2.4
6/71 7.3 3 11.5* 21.9 2.9

to
8.5 1.2

10/71 7.5 6 10.7* 9.7 1.2
If

9.3 1.8

*	 null hypothesis can be re3ected at a -.05 level

**	 I - New ()rleans; II - nrlando; III - Daytona Beach

*** data set consists of daily observation for a monthly interval, only
these selected months are presented.



Extreme
A

a
A

B
A

Q

83.3 .98 .00

84.8 .88 .00

81.7 .67 .00

Site Normal Exponential Gamma

A

u
A2

Q
A

Q
A	 A

a	 Q
A

Y
A

^

1 11.1 17 .26 .09	 U. 6* 1.4 .13

II 11.2 11 .0 .08	 14.1* 1.1 .10

III 10.3 9 .0 .09	 14.5* 1.6 .16

E xtrere

A	 A	 A

Q
	

a	 8	 Q

.0 15.4 2.9 .9

.0 13.6 2.5 .6

.0 13.0 2.2 .4

TABLE 6

Extreme Monthly Temperatures

Site Normal Exponential	 Gamma
A

u
A2

o
A

Q

A	 A	 ^	 A

a	 Q	 Y	 Q

I 82.5 1.5 .0 .012	 16.9*	 ---------------

II 82.9 1.3 .0 .012	 16.9*	 ---------------

III 81.1 .A .0 .012	 16.9*	 -----------•---

*	 null hypothesis can be reje ,7ted at a a .05 level

** I - New Orleans; II - Orlando; III - Daytona Beach

TABLE 7

Extreme Monthly Winds

*	 null hypothesis can be rejected at a = .05 level

**	 1 - New Orleans; II - Orlando; III - Daytona Beach



Experiment 3

In this section the procedure was applied to a data set found in

Haggard et. al. (1973). In their paper, they analysed a meteorolooical

data set consisting of maximum rainfall amounts in the AppalacW an region

resulting from tropical disturbances. In their paper they satisfactorly

modeled the data set with a Gamma distribution. In this section, I wanted

to determine if the GMCS procedure w ,)uld indicate that the Gamma

distribution would provide a satisfactory fit. Also, since the original

authors were interested in making probabilistic forecasts, I have included

the similiar forecasts based upon the GMCS fitted distribution. The results

for the test of fit are summar'7ed in Table- 7. Table 8 contains a

comparison of the GMCS fitted Gamma distribution with the results found

in Haggard et. al. (1964).

103
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TABLE 7

GMCS Procedure for Maximum Rainfall within the

Appalachians

Data Haggard et.	 al.
Set** Normal Exp Gamma Extreme Result

..
u

^2
a

..
Q

,.
a	 Q

,.	 ^-1
Y	 S

,.

Q
,.
a

,.
s

,.
Q

,.
Y

^-1
B

A 7.29 .;J.3 1.75 .14	 5.14* 1.9	 3.85 .14 16.3 4.4 .04 2.2 3.33

B 8.08 53.5 1.24 .12	 4.70* 2.2	 3.85 .09 16.6 9.6 .03 2.8 2.88

C 9.37 55.6 .42 .10	 3.40* 1.9	 5.07 .00 15.9 5.2 .05 1.9 4.73

D 10.18 55.3 .32 .09	 3.90* 2.2	 4.56 .00 16.6 5.2 .03 2.6 3.87

A l 7.18 39.7 1.23 .13 5.05* 2.1 3.4 .06

B' 7.94 41.8 .86 .12 4.78* 2.4 3.4 .04

C' 9.2 47.9 .26 .10 3.73* 1.9 4.8 .02

D' 10.0 46.5 .18 .09 4.24* 2.3 4.3 .00

14.2 4.0 .02 2.2 3.1

14.7 4.2 .02 2.9 2.6

14.5 4.9 .04 2.0 4.5

15.2 4.9 .02 2.7 3.6

*	 null hypothesis can be rejected at a = .05 level

** A - maximum 24-hour precipitation all storms. 	 B - maximum 24-hour
precipitation from no more than one storm per year. C - maximum precipitation
totals from all storms. D - maximum precipitation totals from no more than
one storm per year. A' - D' - same as A - D except using 27 inches for
Camille rather than 31 inches.
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TABLE 8

Expected Probabilities of Exceeding Arbitrary

Precipitation Amounts Over the Appalachian Region

Precipitation Data Sets**
in inches

A B C D
I* II I II I II I II

1 .976 .966 .992 .980 .980 .980 .994 .987
2 .909 .890 .954 .926 .926 .930 .968 .950
3 .817 .797 .887 .850 .850 .863 .923 .894
4 .716 .698 .801 .764 .764 .788 .826 .827
5 .615 .602 .705 .674 .674 .705 .792 .754
6 .519 .513 .607 .587 .587 .632 .716 .680
7 .433 .432 .513 .505 .505 .559 .639 .607
8 .357 .362 .427 .431 • .431 .490 .565 .537
9 .292 .301 .351 .364 .364 .427 .494 .471
10 .237 .248 .286 .306 .306 .371 .429 .412
15 .077 .090 .091 .118 .118 .172 .191 .195
20 .023 .030 .024 .042 .042 .075 .077 .085
25 .006 .009 .006 .014 .014 .031 .029 .036
30 .002 .003 .001 .005 .005 .013 .010 .014

A t B' C' D'

I II I II I II I II

1 .978 .972 .993 .985 .981 .977 .995 .980
2 .913 .900 .959 .934 .932 .924 .971 .956
3 .821 .806 .893 .858 .865 .855 .926 .903
4 .717 .704 .806 .768 .789 .779 .866 .838
5 .613 .603 .706 .673 .710 .700 .794 .765
6 .515 .510 .605 .580 .631 .623 .717 .690
7 .427 .425 .507 .492 .556 .500 .639 .615
8 .349 .352 .418 .413 .486 .482 .562 .544
9 .283 .288 .340 .344 .423 .419 .489 .477
10 .227 .235 .273 .284 .365 .364 .422 .416
15 .070 .078 .079 .098 .165 .169 .182 .192
20 .019 .023 .020 .031 .070 .073 .070 .082
25 .005 .006 .002 .004 .028 .031 .025 .033
30 .001 .002 .001 .003 .011 .015 .008 .013

i- Haggard et.al . Gamma distribution; II- GMCS Gamma distribution.

** Same as Table 7
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Conclusions

A goodness of fit procedure based upon the theoretical work of

Dahiya and Gurland [ (1970a), (1970b), (1972)) is presented. The proce-

dure has been documented in the computer software package (Appendix A).

Several examples using meteorological data sets are analysed using this

procedure. The principle advantages of this procedure over existing

goodness-of-fit tests lies in the ability to test for several distri-

butions using a single user setup. This advantage stems from the

freedom of testing a distribution without having to specify all the un-

known parameters of the tabular values of the null distribution.
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Appendix A

User setup for Gurland's (GMCS) procedure

JOB CONTROL PARAMETERS

CARD COL DESCRIPTION

1 1-5 IUNIT INPUT DEVICE for DATA.

6-10 NOB Number of observations to be fitted.

15 ICOR ICOR = 0.

20 IDIST 1 NORMAL distribution fitted.

0 NORMAL distribution not fitted.

25 1	 Exponential	 fitted.

0 Exponential not fitted.

30 1 Gamma distribution fitted.

0 Gamma distribution not fitted.

35 1	 Extreme value distribution fitted.

0 Extreme value distribution not
fitted.

2 1-80 NFORMT Format for input raw data.

3+ Input raw data
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Program Description

MAIN -	 main program; input job parameters

GCALC -	 calculates the coefficients for matrix G.

RHAT1 -	 calculates the matrix R for exponential dist.

RHATZ -	 calculates the matrix R for other dist.

TRIPLE -	 calculates matrix product	 x*y*z.

AHAT
A

-	 calculates matrix A.

QHAT -	 calculates matrix Q.

GREXTR -	 performs goodness of fit for extreme value
distribution.

GRNORM -	 performs goodness of fit for normal dirt.

GREXPO -	 performs goodness of fit for exponential dist.

GRGAMM -	 performs goodness of fit for gamma dist.

DGMPRD -	 IBM matrix multiplication

DMIN -	 IBM matrix inversion
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Subroutines Needed By A Given Routine

MAIN -	 GRNORM, GREXPO, GREXTR, GRGAMM

GCALC -

RHATi -	 DGMPRD

RHAT2 -	 DGMPRD, DMINV

TRIPLE -	 DGMPRD

AHAT -	 DGMPRD

QHAT -	 DGMPRD

GREXTR -	 GCALC, TRIPLE, DMINV, RHAT 1, AHAT, QHAT, DGMPRD

GRNORM -	 GCALC, TRIPLE, DMINV, RHAT 2, AHAT, QHAT, DGMPRD

GREXPO -	 Same as GREXTR

GRGAMM	 - Same as GRNORM



FURTRAV IV G LEVEL 
21_...__ 	

MAIN	 -- OATE = 78192	 14

0001 IMPLICIT	 REAL *8 	 14-H ,	 O-Z) -
OJu2 D1 	 RAW(81,CUMLl8),CENRLI6 ) ► G(4,41,X(10001#1DIST110I,

A	 r4FURMT(20),XJ1(4,4),EXJB(10001
GJ03 DIMiySUN LINLt331
0004 CUMIJN / MOMENT / RAWPCUML , CENRL,„NUS

0005 CJMMJN	 INUMSEK/	 XDIV,XMEAN * XVAR,XGE3M,IJ4IT,ICOR,PI,STO
r OOOb 9030 READ( 5,1,EN)=99991	 IUNIT,NUBPIIDI ST( IItI a lp 51

U)07 1 FJRMAT	 (U5)
- 0008 READ(5p2)	 (4FORMT(Il,l=1,20) 	

_.

0009 2 FORMAT	 (i:OA4 )
0010 IF(IJIST(l)	 .EO.	 51	 GO	 TO	 '9004

0011 READ(IUVIT,VFURMT)	 (X(J1,	 J	 1,NUB)
0012 DO 02	 IalpNOB,12
0013 XMAX	 =	 Xtt1
0014 XMiV	 X111
U015 K =	 I +L
0010 L =	 1+11
0017 JO	 1 51	 J	 =	 K, L
0018 IF	 (XIJI	 .GT.	 XMAX)	 XMAX=X(Jl
0u19 IF	 1X IJ )	 .LT.	 XMIN)	 XMIN=X(J)
0 0 2 0 151 C ON T i N J=	 ----------___— ._—	 ___

0021 152 WRITE(6_,153)	 XMAX,	 XMIN
0022 153 FO-R*ATt	 TZ5.5F5.11

_0023 ICH_ECK	 =	 0

0024
_-.._ 

-- -
_._.	 _ - --

 - 11 -0.... 	
—	 - --	 -- - -	 - - ----	 ---	 -	 --	 ---

J0 " 111	 J	 1. 
00 25 111 IF(	 X( J I	 .LE.	 0.)	 ICHECK	 =	 1
002b WRITE(6,1251
0027 WRITElb.1231	 (X(J),J=1.NOB)_
0028 _ ---------- - _ --	 -- --- - ---	 - - -- --- _._.. _- - _ -	 ---XOtV	 =--UFLJAT(N^B1
0029 XMEAN_	 =	 0.0
0030 XVA2	 =	 0.0
0031 SVAZ	 =	 0.0
0032 SUM = 0.0	 `7R161N 

L0033 XM3 = 0 .0	 PAGEQE^O
0034

_
XM4	 0.0	

QIJALr?Y0035 SM2	 =	 0.0
0036

-----' - ------ ----
0
 -------	 _	 --	 --- -- --	 -- ----- -- __

SM3	 .0
00 3_7 SM4	 0.0
0038 Pi	 =	 3.1415926
0039 SDIV	 =	 XDIV	 -	 i.
0040 DO 9 CO1	 I	 1, NOB
0041 XMEAN =	 XMEAN +	 X(I)	 /	 XDIV-00 4 Z	 --- -- --_—  1-..- .SUM	 =	 S J- 11	 +	 O A B S l X( I
0043 IF	 (SUM	 .LE.	 0.)	 SUM=0.1
0044 SO	 =	 OLUG(SUM)	 /	 XDIV
0045 XGE3M =	 DEXP(SDI
0046

_
9001 CONTINUE

0047 DU 9 CO2	 I	 =	 1, NOB
0048 XVAR =	 XVAR	 +	 (	 X111	 -	 XMEAN	 )**Z	 /	 XUIV
0049 XM3	 =	 XM3	 +	 1	 X(I 1	 - XME AV_ )	 **	 3	 /	 XDI V
0050	 --- - ------ ---XM4 --	 - ^	 XM4 --	 +	 (	 Xl 1 1	 -- XMEAN_. - 1	 ^^ q -.^ _-XDI V-
0051 SM2	 n 	 S42	 +	 X(I)**Z	 /	 XDIV
0052

_.	 _	 _..	 ._..
S43	 =	 S43 + X(I)**3	 /	 XOIV	 -	 ---- --	 --	 -	 -	 --

0053 SM4	 =	 S44	 +	 X(1 t**4	 /	 XDIV
0054 —

_
-	

—
STD	 =	 DSwRT(XVARI

0055 9032 CONTINUE

C



C LOOP	 TILL ALL	 DISTRIBUTION	 REJUESTS HAVE BEEN	 SATISFIED

' C
OJ Sb DO	 9003	 1	 =	 :.4
00	 7 IF	 ( M ISTI II	 .LE.	 01	 .OR.	 (IUIST ( l)	 .GT.	 4))	 GU	 TO	 9033
,j05b IDU4	 =	 I DISTI t 1
0059 GO	 T 	 1	 1 i P 1 ii 13r 141,	 10UM

C_
C 4UKM4L	 IDIST	 1
C

0000 11 CALL	 GR4CRM(XM3)
OObI GU TJ 9303

C
C EXPUVENTIAL	 IDIST	 2

C
OObz 12 CALL	 GRE XPO(SM2sSM3.SM4,X)
OOb3 _	 - GO TJ 9303

C - GA4M4	 IDIST	 3
C___	

------0064 13 IF(	 ICHECK.EO.	 0	 )	 CALL	 GRGA44(XPSM2pSM3rSM4)
0Ob5 4RITE	 t5, 1211	 I_CHECK
OObb - 121 FUK4AT(	 10X,	 25(	 I2,1X11

GOb7 GO TJ 9303
C
C EXTR EME 	 VALUE - 	 IDIST	 4—__ _

OJbB 14 CALL	 GREXTR(X)
6Ob9

_
9033 CONTINUE

007- 0--- -	 -	 -..	 - GO TO 9000

C BIVARIA TE 	 N ORMAL	 IDIST tl )	 _	 5

0071 90 34 READ(	 IIX((J-1)*2+1),	 Xl (J-11*2+21) p _ J=1 .NUB1---
-----^ ----

_iJNIT,VFUkMTI
0072 -^ -^--	 ---- CALL	 81VAR(X,NU8, tUVIT-1
0073 123 FOk4AT(T25•	 ;F 12.5)
0074 125 FOklATI1N1///1H0.T51.'THE	 USSERVATI04S'P//1

C_
0075 9999 WRITE (b. 25 1
0076 25 _ FORMAT(' 1! 1_
0077 REWIND 9

0078 10 RE AU( 9. 15, E4D = 20 )_	 L- iNE- -
0079 15 FOR4ATt33A4)
0080 WRITE(b.15)	 LINE

0081 GU TO	 10
0082 20 STUB-
0083

- -	 —
EN[)



112

FURTRA-4 IV G LEVEL ' 21	 GC . AL C	 70194

SU64JUTIhE SCAMICOR ►
C

L v_j	 —	 —	

_	 I .-

"CA i^ Lif E C.---Fdk ' FIRS T FUUR Di STA I SUTI UNS

0302	 IMPLICIT RE4L*8 (A-H a, O—Z)

0003	 DIMEISIIN R4W(OIPG(4p41 p %". UML(SIPCE .*i RLId1 PA1 10001#8(10001
0004	 COM4JN I MUMENT I RAWPCUML#CtNRL,'JPNUd

0005	 x.-4 	 )FL UAT(.*4UB)

0006	
DO 

13D I • 1,4
0007	 DO 1 C J a lolt
0006	 GlI•JJ • RAW ( I+J)	 RAW ( l)*RAW(J)

0009	 10)	 '%.,UNtINUE

0010	 RETJR-*4

OoLl	 END	 -------

FUikTRA*i IV G LEVEL 2!
	

RHATI
	

DATE • 78192

0001
C
C

C
GJ02
0003
0004
0005
0006 - -- ---

0007
0008
0009
0010

-00111----

SUB4JUTINE RAATllWvSlGlmR)

C %._j L_At_E_VECTdR K HAT -"-FjR EXPU.4ENTIAL DISTRIBUTIONAL"

IMPLICIT RE4L*B (A — H v O-Z)
U14ENSIJN W(4)PSIGI(4,4)PR(4#-4)PUUM14loXt1)#FJUR(4p4I
CALL DG4PRD(mpSlGlp)UMpl#4p4)
CALL..- D-G4-P .kD..(- DU.M #-Wp -Xm--IP4 .p llll.I.--.--..-
X(l) a 100 / X(l)
CALL DG4PRD(XjWvUUMpLvlp4J
CALL DG*4PRD(W.,DUMoFJUitp4jp1m-4)

CALL UG4PR0(FUURpSlGlpRv4.v_4#,4).
RETJR'i
END

FURtRA4 AV _6 LEVEL * 21	 RHATZ­ 	 78192

000 1 	 SUBqJUTINL 1HAT2(WoSiGlo-R)

C . .--.	 -

C i^^_ - -—AL '.^_U L-4 f E R H A T	 14X21	 FUR GAMMA,	 4EG BIN,	 NORMAL

0602 I MPL IC IT 	 RE4L*6

0003 DIMENSIIN	 W ( 4 v 2	 S I G 1	 4 p 4 ) p R ( 4 p 4	 p 4 T	 2	 4 1 P D U M	 2	 4 1	 K	 2	 2

FUUk(4p4)pM(21#L(2)
0004 DO	 4000	 1	 a	 1.#2
0005 DO	 4303	 J	 •	 IP4

. 0006 9000 WT( I PJ )	 W( J,# I-- a

0007 CALL	 0G4PKC(WTpSlGlpDUMv2p4, v 4)

0008 C ALL	 D G4 PR D ( UU M # Wo X, 2, 4, 21
0009 CALL	 DMINV(X,* 2pUkTPLPMI
0010 CALL	 DG4PRD(Xj- WT, DUMp2p2#4)

A,-L*,—L--D G_4_P_R_ 1_ ( W j, D_ UM	 F J U R P 4, 2 . 4 1
0012 CALL	 DGiPkD ( FUUgjSlGlpR p 4p4j,41

00 1 3 RETJRN
0014 END



JRTRAI IV_G LEVEL 21	 AHAT	 DATE

0001 SUBROUTINE	 4HATIS1Gi,R,A1
C

Y C C ALCUETT- FA HAT

0002 IMPLICIT	 RE4L*!1	 (4-H .	 O-1)

0003 DIMENSIIN	 SIGIt4,41rR14r41,A(4r41,RIt4,41

0004 DO	 1	 I	 •	 1, 4
0005 00	 1	 J	 •	 1,4
OJOb^ --- Rl(I,J)	 n 	 -2tI,J)
0007 IF	 (	 I. NE.	 J	 1	 GO	 TO	 1
0008 KI(I,J)	 -	 RIII,JI	 +	 1.0

0009 1 CONTINUE
0710 CALL	 DG4PRD(S1GlPR1 ► A,4,4,4)
OL 11 J N
J012 E

113

= ORTRAV IV G LEVEL	 21	
_.__..	

TRIPLE
	

DATE n 70192

0001	 SUBROUTINE TRIPLE(X,Y,Z)
C	 _
C	 CALCJLAT E X * Y * X TRANSPUSEb - 4v D RETt1RY V4LUE IN Z
C

0002
0003
0004
00 05

0007
0008
0009
0010

: ORTRA4 IV G .LEVEL	
2i.__	

;)HAT

0001 - SUBRJUTINE	 2HAT(XN,H,A,01
C 

- C	 CAL_CJLATE C y l-SQUARE 0 MAT-	 _ ! __
C

3 02 --
	 - ------	 -- - IMPLICIT	 -KE4L*8 -..- -14-N.P.

	 O-Z	 ..-.

0003 D1MENSI3N	 A(4),A(4r4),DUM(4),XX(11
0004	 - -- --_----CALL

_
 DGMPitDtH,A, JUMP 1P -4-P,4)---

000 5 CALL	 D GNPRD( UUM, H, XX, 1,4, 1)
OuUb

_ _
^0 = XX(1) * XN

0007 RETJRN000i,
 ENJ

ORIGINAL 
PAGE IS

IMPLICIT REAL*8	 IA-H , 0-11
UIMENS13N	 X(4,4),Y14,4loZ(4,41.UUM(4,4).XT(4,4)
DU 1 1 = 1,4

DO 1 J = 1.4

CALL DGMPRD(X ► Y,DUM ► 4,4,4)
CALL DG4PRC(DUM,XT,Z,4,4,41
RETJRN
ENU
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GdEXTR
	

DATE • 78192
	

14/471

	

X001
	

SUtiZUUTI NE GKEXTK (x l
C

GURLAVU ROUT 1NE FOR EXTREME VALJc J(STZI BUTIUN
C

	

,602	 IMPLI:IT KE4L *8 (A -4*0 - ZI

	

0303	 OIME4SI3N	 XJlt4 * 4i*RANt81 * CUML ( di*CENRL ( BI•G(4 * 41*N(41*H(41*

6	 )JMt 4*4 ► *SIGI( 4*41 PL( 41*Mt4)*THETA(4)*A(4*41 ► AI4*41*
XI(1C00) ► 8r1 AT( 10G1 ► TDEYUM(100)

%	J04	 CUM404 IMOMENT/ AAW.UML*CENRL*'p*NO3

	

..305	 CUMUN / NUMBER / XDIV*XMEAN * XVAK*XGEO'f * lUN1T*ICOR*P1 ► STU

	-JOb	 XN • OFLOAT('/UB)

	

307	 ZEK1239)

	

.Jo e	 _ _ -	 JN E n 1. J_---
C
CCALCJLATE E(TRtME CJMULA4T ,MOMENTS-C

C	 PUT CUML ( I-1 1 IN PLACE OF CJML( I 1 Il ORDER TO MAKE TIE SAME

C	 SUBSCRIPTS 3F H-VECTOR AS THAT 3F THE JACU81AN MA T RIX
C

^J09 ESUM	 3.0

^J10 SIX•b.
-311 dET4	 •	 )SQRT(SIX)	 *	 STO	 /	 PI.

_J12 8 = BETA
_313 DO 1	 I	 = 10408
--J14 1 ESuM	 •	 ESUM	 + DEXPl	 Xt 11/8 I

4LPiA •	 B * OLOG( ESJMI	 -	 8 * DL3G(XDIV 1
_31b E4E4N	 ALP4A - 0.57721b*8
017 EMO ) E	 ALPJA
-J18 EVAR	 of	 **	 2	 * 8	 **	 2	 / b.
-Ji9 CUML(11	 •	 1.b45*8**2.
-340 CUML421	 =	 2.39b*ii**3.
_,► 21 CUML (31	 6.494*B**4.
.J22 CUML(4I	 =	 24.860*B**5.
.J13

_-_
CUML(5)	 •	 122.076*8* *b.

.324 CUML ( b)	 =	 72b.01 *8**7.1GHIFAC-	 -- ..	 -FAJO2S *B**8.CUML(71	 =	 53b0.545 l5)F POORC QUAIIZU
Cl	 •	 CUML (1)

^02T C2	 CUM L(21_•
-,028 C3	 CU4L(3)
D329 C4	 CU4L(4)
JJ30 C5	 R	 CU4L( 51
x031 C6 •	 CUML( b)

^J32 C7	 CJ4L(71
C

^^-..,333
-.___--

RAWtlI	 •	 XMEAN
-J34 RAw(21	 Cl	 XMEAN**2-+
435 RAW(3)	 n 	 C2	 + 3.*C1*XMEA'i + XME44**3—
.j33b RAW( 41	 •	 C3	 +	 4.*C2*XMEAN	 + 3.*CL**2	 +	 b. *C1*XMEAN**2

_337 RAW01	 *	 C4	 + 5.*C3*XMEAN + 10.*C2* 1%'l	 +	 10.*C2*XMEAN**2
E	 + L% *C1**2 *XMEAN +	 1). *C1*XMEAN**3	 + XMEAN**5

C

.338	 RAWt61 • C5 + b.*C4*XMEAN _+ 150*C3*C1 + 150*C3*XMEAN**2 -^
E	 10.*C2**2• 60.*C2*CL*XME44 + Z0. *C2 *XMEA4**3
E	 + 1:.*C1*#_=---* 45.*CL # *2 *XMEA,4002 +^15.*CL*XMEA4** 4 +
E	 XMEAN**b	 _
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,139 RAW(71	 Co	 +	 7.*C5*XMEAN	 + 21.*C4*CL	 +	 21.*C4*XMEAN+lFi:
+	 35.*C3*C2 

. + ..
105.*C3*C: *XME4N 	+	 35.*C3*XMEAN**3

6	 + 70.*Cl**2	 *XMEAN •	 1>;.*C2*Cl**2	 +	 2Lnw.*:2
6	 *CL*XMEAN**2	 + 35.*C2*XMiA0*4	 +	 105,*CL**3	 *XMEAN

' L	 +	 105.*C1**2	 *XMEAN**!	 +	 2A.*C1 *XMEAN **5	 +	 XMLA;4 **7

J040 RAWtd1	 •	 C7	 + d. *Cb*XMEAN	 * 2d.*C y *C1	 +	 td.*C 5*XMEAN**2	 +_
6	 bb. *C4 *C2 	 +	 Lb8.*C4*C1*XMtA4	 f	 5b. *C4*XMEAN **J 	+
L	 35.*C3**2	 +	 280.*C3*C2*XMEAN	 +	 2L0.*C3*CA**2	 +
d	 4209*C3*CL * XMEAN ** 2	 +	 ?O.*C3 * X4EAN **» 	 +	 230.*CZ**2	 *Cl
F.	 2809*C2**2 *XMEAN**2	 +	 d43.*C2*C1**2	 s XMEA4	 +	 ^10 j.*C2*C
6	 *X4EAN ** 3	 + 5b.*C2 * XMEAN * *5	 +	 I05. *Clv*h
t:	 +	 4209*61**3	 *XMEAN* *Z 	 +	 Zi0e 0 :l**2	 *XMEAN***
6	 --	 + Ad.*CI *XMEAN**b	 +	 X4:AN**d	 1

C
.041

--
CALL	 GCALC(ICOR1

C
C 1VITI AL HL	 W
C

Wl 
11 .. a..

;..4 ;b
_143 4(2)	 :.710
_j044 W(.s1	 •	 3.850

J45 W14)	 •4.906
C

_.

C IN1Tl AL IZE	 H

.J4b i(1M	 •	 CUML(2)/CJML(1)
4.47 H(2)	 a	 :UML(3)/CUMLl2)

.jJ48 Ht 3)	 a	 : UML (41 /CUML ( 3)
X049 H(41	 •	 ::'UML(51/CUML14)

C
C IN1tI AL 11E	 J1
C

_J50 DO	 120	 181,4
-05L Utz	 120	 J al,4
.J52 GJ	 TU	 120
.053 XJ1( 10j) -ZLio
.J54 I - D CONIINJE
.055 XJ 1( i , 11	 7,1E
1056 XJl(2•L)	 1./CUML(1f
.057 X11.(2,1)	 _	 -CUML(21/CUMLt1f**2.
105d XJ113 ► 3E	 a	 1./CUML(21
,359 XJ1.14 • ol_ _	 -CUML141/CUML(3)**2.__._.Xj

1i 1,21	 -CUMLt 31 /CUML t 2 f
+s2.V__.____.___._____

.^bl XJ1141,41	 •	 1./CUML(3)

C CALCJLATE CHI-SQUARE TEST AN) EXTREME 	 PARAMETER

J62 CALL_ TRIPLE(XJ1,t;rSIG11
OMI HV ISlGl,4,UET,LpMl	 —

:Jo4 CALL	 kH4TllW,SlGI,RI
.Jbi CALL	 AHAT1SIGl,R,AI
_Jbb CALL	 JHATIXV,HoA,tll
.,Jb7 CALL	 DG9 PRO (RoH,THETA, 4r 4 ► 11

C —

job9 WRITE(b, 1021	 (X(J) ► J - 1 ,NDB1
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J70 MRiFE -1 - ii 1231 	 E ME A N.
X71 ^iRl T. E(. -bt. 124 1--Sm-
372

..	 -
wit I T E I at 1261	 EMUOE

-D73 WRITE(bo, L2?)	 EVAA
374 WRITE(6 - 12 -6 1	 ^XVAK ­'--­'—'----"

WRI TE( b: 12S)	 XMhAN
1-3-0 f -AL -PkA^-

577 WRITE	 ($P!211	 ALPHA: 0804
d 121 FUK4 AT (I I PTZ 5p	 PARAMETERS 	 ALPHAR	 I 

p 

E15.5 p LOX pl 	 iTA • IoE15*5*
I i # T39v	 C141-SQUARE	 VALJE	 I$**	 'OE15651

-apo 123 FORlAT (/1l :T37,olTHE	 MEAN	 OF	 THE	 EXTREME	 VALUES	 ISIPF15,7#/1
-jol 127 F3R4AT(///*T37jo e VARI-ANCE*bF^- THE ' iXTREMt	 VALUES	 ISIPF15.7,,/1
)82 124 FOR4&T(///PT37P*THE	 STANDARD DEVIAT ION 	 IS*v8XPF. 1 .3 ,*?P/l

125
ET41P I GU4LAN3S	 PROCEDURE FOR	 EXTREME	 VALUES',//1

)64 120 ' FORM 0(i ii or3l#- 'THE - MODE ' OF	 THE	 EXTREME	 VALUES	 IS O #Fl ,). 7,41
385 123 FGR1AT(1Jl*T37p*THE	 SAMPLE	 VAR14NCk	 154#11X#FI5*71

C INITIALIZE	 W
.o db i29 FUR4At(ll/pr37plTHE	 SAMPLE	 MEAN	 IS'pi5X * F 1 5.71

133 FOR4AT(l.' *T25**	 EXTREME	 PARAMETERS:;	 ALPHA S	 •p Fb#2o5X#' BETA=	 'o
F6.2#//PT39o l	***(	 Cril-SQUAkE	 VALJE

t	 j RET	 t-4
089
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0001 SHOUT t NE ; RE XPU t Sw2 r SM 3r SM4 .. X 1
C
C

_	 _
;;UkL 440 kOUt INE FUR E?%PO4ENT I AL ^31 S T4 1 GJT ION	 J

C
4002 114PLICIT	 RE4l *b 	IA-H	 r	 O-ZI
J003 JIMENSIJN	 KJ1( 4r41rkAWtdIiCUMLIdIP'.ENRLIOIPG(4r41rWt+Ir

E	 it41r0UMt4r41rSIGIt4r4)sllrlr'114 ► rTNET4141s
6	 21 4r 4:rA14 v41rX(10001

9004 COM'IU4 / NUMJER / XOIYrXMEAN . XVAE:rXGEjM,IUVtTrICOR . PtrSTO
.JOGS CUM'!JN /MUMENT/ RAWrCUML#CENRLr+rNUd
JOOn OWE( o p 100 It UNIT
0007 10 3 0 FUKIATI / 1/0	 EXPONENTIAL	 UISTRI W 134	 WITH DATA FRJM J41T	 ' ►

L	 13.1/1
Jocos XN	 OFL UAT t NG81
X009 ZER]	 a.0
)O10 JNE	 •	 1.0

C
C %ALCJLATE EXPONENTIAL MUMENTS
C

)311 QAW(II	 =	 XMEAN
jJ12 RAW121	 2	 * XMEAN**2
,)313 RAW131	 n 	 6 *	 XMEAN**3

4 RAWI41	 24 * XMEAN**4
)015 RAW151	 •	 120 *	 XMEAV**5
JJIb RAW( b)	 720 * XMEAN**b
X017 RAW( 71	 5C40 *	 XMEAN**7

tl ^RAW1el	 •	 4C320- * XMEAN**8
..J19 CALL GCALC(ICOR)

C
C INI T1 AL IZE	 W
C

j020
.,)21 030

OJ	 9000	 1	 +	 1# 14	 _	 ..	 _. 	 ._ .	 _	 !!'?11VAL

Wi ll • I	 OF 

C rry
C 141TIALIZE	 H
C

^322 Hill	 •	 2AW(i)
X02! H121	 =	 iMZ	 /	 Ra ;;lll
^J24 H131	 •	 SM3	 /	 SM2
0025 H( 41	 •	 SM4	 /	 SM:

C iurIALIZE Jl

0 026 DO 9 001_1 _=	 lr4
J3[7 00 9001	 J	 •	 1#4

0028 IF	 (	 (I	 .Ea.	 J 1	 .OR.	 (t t-11 —  .EO.	 J 1	 1	 C,0	 TO	 9001__.	 -	 --	 -	 _
0329 XJ111rJ)	 ZERO	

_ 	 .	 __..-	 --	 --- --	 -	 -----

J030 90 ) 1 CJNTINJE- 
X,11(1.11	 3NE

_J32 XJ1_t2.21	 1.0	 /	 RAW( -1. 1

X011 3.3') - n 	 1.0 -1	 .t^ 1121
X034 XJl(4r41	 •	 1.0	 /	 RAa(31

.035 XJ1(2r11	 •	 -kAWt21	 /	 RAW111**2

,;36 XJ1t3r21	 a	 -RAW(3)	 /	 RAW121**2
-037 XJ1(4r3)	 •	 -RAW141	 /	 RAW(3)**2

C
C^ CAL-LJLATE CHI-SQUARE TEST AN) EXPONEvIAL PARAMETER
C



118

ORTRAI IV G LEJEL ZI
	

GRGA4M	 DATE a 78142	 14/4

OOOL 	 ' 	 SUdAJUTINE GKGAMM(XvSM2vS43,SM41 _

C GU' R L A'N _U 9-6- U T IN C-F j_v G 4-mN A DISTkIdU TIJN

Ci3002
LMPLiCIT	 REAL 4 0	 (A-H	 3-'11

0003 JIME.*4SIJ N 	 XJI(4p4ltXJ2(4t#4t)PRA4(81&%'.UML(0)PCENRL(ciii,
^J(4#41*W(4p2)PH(41PUJ4(ltp,4)#SLGI(4p4)PL(41#M(41v
TtiETA(41#R(.tt,#,,t)PA(.--4,o-4)i,.X(LO-00-)-P.SCUML(-1001..

4 C-a—M 4 JN	 I M J M E -4 t	 V M L , C E I it L - '%'# , NJ i
3005 CUM40-4	 /NUMBER/	 XDIVPXMEANPXVAitoXGEJMPIU*41TPLCURiPPIPSTO

0006 WRIrE(bPl0C))IUNIT
0007 1030 FJRIAT(f/ljp '	 GAMMA UISTRIBUTIGN	 WITH	 DATA	 FRJM	 UNIT	 '#13p//1
0008 XN	 a	 L)F L LAT ( NUd
0009 ZERJ	 3.0

ONE	 i. C
0011 IF(XIEAI	 AE.	 0.1	 WRITE(b#Zil
0012 2 i FURIAT(f	 ***3tGATIVE	 VALUES	 WiZJ4Li UISTRIBUTIJN***

C
C CALCiLATE	 GAMMA MOMENTS
C

---"-AX a D _A_ 3 _5(X4E _A_ N _)
0014 Y-	 -	 DLJG10(AX	 /	 XGEUM)
Doi5 yyy	 048S (YY)
00ib TI	 a	 1500	 *	 (1.0	 IYYY)	 (1.0	 DS•)RT(I-	 +	 i.333333333300*YYYI4*00i.f_­_­_____

- T2	 -	 AX - 1	 T1
0018 CUM: (1)	 TI	 T2

3040 CUML(3)	 TI	 TZ**3	 2.0
qozi CUML(4)	 TI	 T2**4 ' 41 	 b.0
3022 00	 351	 1	 1#8
00 .23 TLI41T	 a	 Z.	 **(-2511
-3024 XX	 DFLOAT(l)

IF	 ((TI	 GE,	 57,57)	 OR,	 (Tl	 LE.	 TLIMIT))	 GO	 TU	 98
0026 RAW( I1	 DG4MMA(T1	 +	 XXI	 1	 DGAM 14 A(TI)	 T2**XX
0017 GO TJ	 351
0024 98 RAW( I)	 c	 (Tl+XX-io)	 *	 T2	 XX
GJ19 351 CONTINUE

C
C 	- - - ' _471M ^ IE t_UlKU C 414 T t	 FOR_	 A' - C -4 L_ _C ik Al I	 —
C

0030 SCU4L(1)	 RAW(l)

0031 SCU4L(2)	 S.42	 ---R AW ( 1) **2
0032 SCU4L(3)	 SM3	 -	 3o*SM2*RAWill	 +	 2,*RAW(11**3

SCUIL(4)	 a	 SM4 -	 4 * *SM3*RAW(l)	 3.*SM2*42	 +	 12.*SM2*RAW(I)**2
-b,*RAW(11**4

C
0034 CALL	 GLALC(ICORi' --- '

C
C

0035 W(l p l)	 ONE
003b W( 2. 1 1	 ZERO-_
0037 W(3p1)	 ZERO
0038 W(4p1)	 ZERO
0039 W(1#2)	 ZERO
0040 W(2v2)	 ONE
0041 W( 3, 2 1	 n 	 2o0

0042 W14,2)	 3.0 
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C MITI AL HE H

W(iJ	 SCUML (11
4044 4(2)	 =	 SCUML12)	 /	 SCUML(()
0045 H(3)	 •	 SCUML(3)	 /	 SCUML121
004b H141 	 = S CUML (41	 SCUML l 31^_I

C INITIALIZE J 1
C

J047 00	 130	 I	 11,4
JOAO - DJ 133 J	 =	 1,4
J049 IF	 1.	 .GT.	 J)	 GO TO	 100
0050 IF	 ( I	 .EQ.	 J)	 XJ1(I,J)	 =	 ONE
0051 IF	 (I	 .NE.	 J)	 XJ:(I,J)	 =	 ZED 3
10502 103 CUNtINJE
3053 XJ1(zt!I	 =	 -2	 *	 RAW(l)
0354 _-	 - XJ113011 --=	-3*RAW(2)	 +	 6*RAw(1)_.__^.
0055 XJ1(4,i1	 =	 - 4*RAw(3)	 +	 12 *RAW(3) *RAW(()	 24*RAW(11**3
J05b- - -	 -	 --- XJll3r21	 =	 - 3*RAW(1)
0057 XJ1l 4, Z_I	 =	 - b *RAW( 21	 +	 12*RAW (1) **2
0056 XJL(4,3)	 _	 -4* ►tAwl11

C
C TtA► 	 IZ£	 J2
C

0059 - DO	 101	 I	 1, 4
0060 131	 1, 4_00 	_J_

IF	 l	 II	 .EQ.	 J)	 . OR.	 I(I-11	 .EQ. JI	 1	 GO	 TU	 101
Obb2 XJ2t I.JI	 =	 ZERD
0063 131 CONTINUE
OQb4 XJG( 1.1)	 =	 7NE
0365 -	 - XJZ( 2.21	 =	 1.0	 /	 CUML l l l
JO_bb XJ 2 ( 3, 3)	 =	 1.0 	 /	 C UIL ( 2

-- - ^	 __-^--J O b 7 -  _—^	 - X 0 214 , 4 !	 1.0	 % C U M l (3)	 --^-^- --	 -
0068 XJ2(91.,11	 =	 -CUML(2)	 /	 CUML(L)**2
JOo9 XJ2(3,2)	 _	 -CUML(3)	 /	 CUML(2)**2
00 . 7. 0 XJ214,31	 s	 -CUML(4)	 /	 CUML(3)**2

C
C CALCJLATE	 CHI-S_QJARE	 TEST	 A.40_GAMMA -Pik RAMETERS
C

0071 CALL	 TKIPLE(XJ1,G,OJM)
0072 CALL	 TRIPLE(XJ2,3UM ► SIGI!
0073 CALL	 DMINV(SIGI,4,UET, Lip M)
0074 CALL	 kH4T2(W,SI C(,RI
0075 CALL	 AHAT ( SIGIpR,A)

0076 CALL	 0HAT( XV,H, A, J )
0077 CALL	 0G4PR0(R,H,THETA,4,4,1) _.
U07:: XR	 =	 THcTAIII	 /	 THETA(21

0079 XL	 =	 1.0	 /	 THETA(21
OOt30 WRIT E(o, 1231	 XK,XL,Q
4081 WRITE(9, 1241	 XR,XL,U	

-0082 123 FURyATI//,T25,'	 PAR4^METERS	 : s	 ' ► E15.5,LOX, $	LAMDA=4,E1505,
6	 //,T3q,'	 ***(	 CHI-SQUARE VALUE	 )***	 ',E15.51

0083 124 FJR4AT(//,T25,'	 GAMMA	 PARAMETERS: R=	 ',Fb.2,5X,•	 LAMDA-	 ',F6.2,
6	 //,T39,'	 ***l	 CHI-SQUARE VALUE	 10**	 •,F10.3)

-0084 RETJRN
0085 END
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JJO1 SUSAaUT t NE GRNURM	 ( XM3, X )

C GURLANO NORMAL DISTRIBUTION RUUTINE
C

13002 - IMPLICIT	 REAL'*8 -- (A - H	 ,	 0-Z)
0003 DIMENSI3N	 XJll4, 4)•XJ214,41,RAW	 81 ,CUMlt81sCENRL(81

J s 3(4, 4),w1 4,2).H(41,OU444,4)•SlGlt4,4),L( 4),M141,
THETA(4),R14,41,A(4,41,X(l0001

JO13ir- COM40N / NUMBER / XOIV,XMEAN , XVAR . XGEJM , IU41T.ICUR,PI,STD	 -

4005 CUM4aN (MOMENT/ RAW.CUML.CENRL.,,•NUS
0006 --- WRITE(b	 10001lUNIT
0007 13)_0_ FOR4AT(///,•	 NORMAL	 OISTRIBUT104	 WITH DATA	 FROM UNIT	 ',I3,//)

J008 XN • OFLOAT(NUB)
0009 ZER3 _	 3.0
0010 ONE	 i.0

-.—._--------C___.__._
CALCJLATE NORMAL MOME4TS

C
JJ11 - CENZL111	 ZERO
001 2 ( 2) =_XVAR_	 ---1__ --- ----	 _.	 -	 —^_CEN RL
JOi3

_
CE4AL(3)	 ZERO

UOi4 CENRL(4)	 3 *	 XVAR**2 -_
--0015 - -	 --- - RAWt 11	 XMEAN
001 RAW[ 2)	 XVAR	 + XME4Y**2

3	 * XMEAN _ «	 )VAS + XMEAN**3 -

JOiB RAW(4)	 3 *	 XVAR**Z + b * XMEA4**2 * XVAR +	 XMEAN**4

0019 RAW(51	 15 * XVAR**2	 * XMEAN	 +	 10 * XV42	 *	 XMEAN**3	 +	 XMEAN**5

0920 RAW(*)	 15*XVAR**3 +*XVAR*XMEAN* 4 Z	 +	 15*XVAR*XMEAN**4	 +-45
b	 -	 XMEAN**b

OOcI P.AW(71	 =	 105*XMEAN*XVAR**3	 + d4*XVA2**Z*XMEAN**3	 +
L	 21*XVAR*XMtAN**5 + XME44**7

J022 RAW_t81_	 =	 iU5*XVAk**4	 +	 420*XVAR**3*XMEAN**2	 +
6	 21)*XVAR**L*XMEAN* *4 +	 28*XVAR*XMEAN**5	 +	 X4tA4**8

0023 CALL	 GC4LC(ICORI

C INITIAL IZE 	 W

C
0024 W(1, 1)	 n 	 ONE_
0025 Wt 2, 11	 =	 Z E2O
002b Wt 3,1 1	 •	 Z ERO
UO27 Wt 4.1)	 ZEZO

0028 W11,21	 ZERJ
0029 W(2,2)	 ONE
0030 W(3, 2)	 Z EZU
0031 W(4,2)	 n 	 2.3

C
C INITIALIZE	 N

C
0032	 H( 1) = XMEAN
0033	 H(21 = )LUG	 (CENRL(2))

0034	 H(3) = XM3
0035

	

	 H(4) _ )LOG ICENRL(4) / 3.01
C
C	 INITIALIZE J1
C

0036	 00 1 CO I = 1, 4
0037	 UU 100 J n 1,4

0038	 IF (I .;T. J) GO TO 100

M	 1 -[aw
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JJ39 IF	 (I	 EQ. J)	 XJl ( I#J) ONk
( I— .- 'i E. .__J-- I -F )_ X J .1. ( -I p J) _ I EstO..

o0'4 L i 65 t 3wf 
I 
ijE

,Y042 XJLt2pL)	 a -Z	 * RAW(1)
0043 XJI(3,i)	 - -3*RAW(2)	 + 6*RAW(I)*02
0044 - -3	 * RAW(l)
J045 XJL(4 , I)	 - -4*RAW ( 3)	 + 12*RAW12) * RAW(1)	 12*RA W (11*$3
004b XJ1(4o21	 a 5*RAW(I)**2
J047 XJ1(4,, 31	 a -4	 *	 it Aw(l)

C
C IIITI AL HE J2

C
.)048 UO 1 C I x IP4
a, J'4 9 DJ	 J a 1#4

0 3 5 0
1-Cl

IF - ( I	 EQ. J )	 60 10 - 101-
J351 XJ2(IPJ) ZERU
J05Z 101- C'ONT 1 4UE

3053 ---- XJZ(lpl) 34E
J054 I F	 *t x _N i^Q

'*	
—t-:F T O

30 55 7 XJ2(2p2;	 = le/	 (CE4RL(2) 'XN	 (X'4	 1.01
XJ2( 3p 3)	 - INE

0057 XJ2 ( 4 p 4) XJ2( 2v 21	 2 /.3.0
Jo5b GO TU -	 '

C__________
C _CALcJLATE _ CHI_S _Q j ARE TEST AND PAkAMETERS
C

B XN	 -	 X3	 + 1.
"' obo GO TJ 7
Jobi 9 CALL	 TRIpLEoWl_v_6_vDJM)'

-Dooz CALL	 TRIPL_ E(XJ2v0UMvSIGI)
-61	 ____DETD-M I NV IS [61 	 4 o	 p L,

J064 CALL	 RHAT2(OPSIGIPR)
CAL L 	 -A--H4-	 I ip R,* A )

^ot)6 QHAT(X4oHo- ApQ1
Q0b7 _

­ ,_
CALL	 DGlPRD(RvHpTHETAp4m , 4r1)

JObS TVAR	 a	 )EXP(THETA(2))
a069 WRITE(69I13)	 THETA(I),TVARP
00 70 WRITE(9o , 1241	 THETA(I)o,	 TVARP	 Q
0071 123 FO	 44f_(Vi, T 2 5, 0	 PARAMETERS	 :	 MJR l*E15.5p10Xp'	 SIGMAa'oE15o5

E	 //,T39,'	 ***(	 CHI-SQUARE VALUE	 )***	 8PE15.5)
_0611 124 FORMAT(//,T25,'	 NORMAL	 PARAMETERS: 4U =	 'vFb,2o' 5Xv'	 SIGMA=	 ',F6.2

E	 //PT39#1	 CHI-SQUARE VALJE	 'PF10,3)
_0073

_.___--
O73 RETJR4

0074 END
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" = UKTRAi ' IV G U4L	 21	 GREXPO	 DATE	 78192

0038 CALL	 TRIPLEtXJ1,G,SIGI1
_0039 CALL_ DMI_NVISIGI94.DE_T,L,41

OC`40
_

CALL	 AH4T1(4 *SIG I,R)^
0041 CALL_ 4H4T(SIG1,R,A)
0042

_	 ___ ^.._._—iAIL
	 QH4 Tl XV,H, A, Q

0043 CALL	 DG4PRD(R, H,THETA, 4, 4,1 )
0044 - XLA434	 1.	 /	 THETAI11
0045 WRITE(b.123)	 XLAMCA.Q
044b WRITE(9v124)	 XLAMDA,Q
0047 X23	 FURM,TI / /, T2 5,' 	 PARAMETERS	 =	 L AMDA •. Ei5.5	 jp/

6	 / /,T39,'	 ***(	 CHI-SQUAOE	 VALJc )***	 •,E15.51

0048 124	 FUklATtt /, T25, • 	EXP3NENTIAL	 PAKAIET : RS: LAMDA = 	 •, Fb.2 ► /
b	 //,T390	 ***l	 CHI-SWJA4E	 VALJC 1 0 **	 •,F10.31

0049  -RETJRA_
0050

_
J	 END

Q/v'//V.:r 
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Effect of Correlated Observations on Confidence

Sets Based Upon Chi-Square Statistics

Summary

This paper investigates how the presence of correlation in a multivar-

iate sample effects the confidence coefficients of confidence sets based

upon chi-square statistics.

I. Introduction

Basu et. al. (1976) investigated the effect that simple equicorrelation

within a multivariate normal sample has upon confidence sets based upon chi-

square statistics. They suggested that their results could provide a useful

application in the area of pattern recognition using remote] 'v sensed LANDSAT

data. However, several recent investigations have demonstrated that the equi-

correlated correlation structure is not an appropriate model in the Landsat

application. In fact, Tubbs and Coberly (1978) demonstrated that the correl-

ation struction in the LANDSAT data is simi.liar to observations obtained

from a stationary autoregressive process. In this paper, I have investigated

the effect that autocorrelated data have on confidence sets based upon chi-

square statistics.

II. Basic Concepts

Let Xl ,...,Xn denote a sample of n p-dimensional normal observations

•	 with mean p and common positive definite covariance matrix E. Suppose

123
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that X - [X19X2 ...,Xn ]T and that

E[(X - E(X) ) (X - E(X) T ] = r  a E	 (1)

where 
r
  is a positive definite nxn matrix, A 0 B denotes the Kronecker

product of matrices A and B, and E( • ) denotes the expectation operator

Note, if the sample X 1 ... Xn is random then r  = I, where I is an identity

matrix.

Now suppose that the sample X 1••• n is a realization from a discrete

stationary time series {Xt} with continuous density function fX ( • ). If rn

denotes the autocorrelation matrix for n lags.

That is,

n= (P i j ) i >,j = 1,2...,n

(2)

P ij = corr(Xi,Xi).

It is well known (Puller (1972) ] that there exists an orthogonal matrix

U such that

U*r U eAu  2H DX	(3)

where

DX = di ag (dl , d2 , ... , do )

dl = fX(0)

n = fX(n)

d 	 2nk
-2k	 d2k+1 2 fX ( n ) ; k = 1,2



2-h 2A 2-19 .

1 cos(2II/n) cos(2II nn1 )

0 sin(2n/n) sin(211
nnl )

1 cos(-!!---1 2fl /n) 	 .n
n

cos(nl
nnl )

2H

0 sin( -11-n1 211/n)	 .	 .	 . sin(
nnl

211 
nnl	 )

n%2-jfiU* =

125

and

By letting

Z = U*X

it follows that

E( (Z - E(Z) ) ( Z- E(Z) ) T ) = DX 2 E.

Furthermore, it follows that

_n
Z1 =nX; X=^ E X

n 1=1 i

when! Z = [ Z1... n]T. 
Me distribution for Z J is

Zl ti N (nku , dlE )

ZJ ti N(d,dJ E) ; J = 2,3,... ,n

(5)

(6)

(7)

(8)
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where the symbol 'L means "is distributed as". The expectation of Z, a zero

since

n-1
E.(Z ) = E( E (cos( + n 211k/n) X ) )	 (9)

k=0	 n	 k

or

= E(nEl (sin(	 21ik/n) Xk ) )
k--0

n-1^	 n-1
= u( E	 cos(	 211k/n) ) or u( E sin(	 2M/n) )

k=0	 n	 k=0	 n

= 0.

Now let

Q1(11) = n(X - u) T E-1 (X - U)

n
Q2	= E (X - X)T E-1(X^

J=1

If r  = I, it is well known that

Q1 (u) ti X2 (P)

Q2	'L X2(n-1)P
	 (11)

where X2 (v) denotes a chi-square distribution with v degrees of freedom.
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However, if r  is given by ( 1) we have

R1(U)	 n(X-U)T E-1 OF-U)

(n 5 n%)7 E-1 (nr--n'ju)

_ ( Zi E( ?,1 ) ) T E-1 ( zl- E( Zl ) )

= dl (Zi E(Z1 ) ) T (d E)-'(Zl-E(Zl) ). 	 (12)

Hence

Ql(U)/dl ti X2(P)-

n _ -1	 _
Now consider Q,2 = E (x,- 1 E	 0:,-x)

J=1

= tr E-1 [ E1 (x J • -x) (X J -X)T]

= tr E 1 ( E x,x,T - nXX ]
J=1

(13)

(143

However, since U is orthogona:

n
R2 e tr El ( E

^=1

n
= tr E-1[ E

=2

L (14) becomes

za z,T - n3IX

Z,Z,T]

n
= E z' T E-1 z^

J=2

n
_ ,E2 d,W, (iS)
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for W, a ?,T (d,E) -12,. We know that W3 has a chi-square distribution with

p degrees of freedom and that W i , W  are independent for each

i 0 j n 2,3,...,n.

III. Confidence Set for dean

Let Ho denote the null hypothesis that X 1 ...Xn is a random sample from

a p-dimensional normal population with E(X) - u, cc:, (X`, = E. lbe statistic 11,

as given in equation (10) is used to define a confidence set for the unknown

population mean u. That is, let

I 
	 = (u: Ql (u) < XE2 (p))

	
(16)

where X 2 (p) is the 1.00 c percentage point of X 2 (p). Thus since
E

Q1 ti X2 (p) whenever Ho is true, we know that

P(u E 
I 

I Ho true) - c.	 (17)

Let H1 denote the alternative hypothesis that the sample satisfies nnuation

(1). If H 1 is true, then find the value a such the.t

PC 11 E I 	 H1 true 	 = a.	 (18)
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From equation (13), we know that a must satisfy the following relationship

,a (p) n )(C2(p)/d1
	

(19)

IV. Confidence Interval for the Dispersion Scalar

Let Xl ...Xn denote a sample from a normal distribution with mean u

and covariance matrix a2E, where E is a known positive definite matrix. Let

Ho denote the hypothesis that the sample is random and H l denote the

hypothesis that the sample satisfies equation (1). If H o is true, then

Q2/o2 ti X2	 (20)p(n-1)

where Q2 is given by equation (10). Hence the interval

2 
Q	

2
0	 Q	 2 /Xc.p(n-1)	 (21)

is a 100 c confidence interval for v2 . However, to find the confidence

interval for 
a2 

when H1 is true, it is necessary to determine the distri-

bution of Q2 . From equation (ls) we obtain

n
Q?/CT	

JE2 dJ
W,	 (22)

where W,, for j s 2,3,...,n are distributed as independent chi-squares with

p degrees of freedom. The distribution for (22) can be expressed in the

A4	 --
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following series representation (c.f. Kots, Johnson, and Boyd ( 1967)x.

p(Q2/Q2
	

Y)	 kso C  G(v + 2k; Y/ O	 (23)

where G(v+2k ; y/0) denotes the cumulative probability density function for

a central chi-square with degrees of freedom v+2k, and ck, 9 are known functions

of the di 's, for J-2,3,...,n. Hence, whenever H 1 is true, the confidence

interval for a 2 in equation (21) is given by a where a is the value which

satisfied the following relationship

M
a - E	 c  G(r(n-1) + 2k; Yt/ 8).	 (24)

k-0

where

2
YE - Xc.p(n-1).

V. Examples

Suppose that X1 ...Xn are a realization from a stationary auto-

regressive process of order one with parameter ^. Then the spectral density

function is

f (w)	 1	 (25)
X	

2 H ( 1++2-2^ cos w)

Hence

d 2 - (1+^2-2+ cos ( 2kg/n) ) -1 k-l,j,..., n-1/2

(26)

d1 - (1-0-2
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7he ao-mlues which satisfy e;uation (19) are given in Table 1 for

c n .99,95.

TABLE 1

prValues for AR(1) Process

P\^ .0 .1 .2 .3 .4 •5

.9900 .9795 .9606 .9285 .8776 .8021

1
.9500 .9222 .8830 .8298 .7603 .6 72 8

.9900 .9760 .9475 .8953 .8094 .6838
2

.9500 .9116 .8529 .7695 •6598 .5270

.9900 .9681 .9145 .80 71 .6346 .4174
5

.9500 .8896 .2856 .6337 .4485 .2642

.9900 .9570 .8623 .67o4 .4055 .1682
10

.9500 .8614 .6952 .4648 .2363 .0823
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From Table 1, we observe that a 95% confidence elipse is a 65.98%

confidence elipse if the sample X 1 ...Xn is a bivariate sample from an auto-

regressive process of order 1 with parameter 	 .4
P

TABLE 2

m-Values for ARM Process

N	 N	 .0	 .1	 .2	 .3	 .4	 .5	 .8

13 1 .9500 .9326 .8759 .7901 .6913 .5938 .3896
2 .9143* .8817 .7768 .6317 M22 .3539 .1518
5 .9144* .8211 .5822 .3365 .1666 .0754 .0089

25 1 .9143* .8742 .7577 .5996 .4386 .3020 .0902
2 1.0000* .8935 .6452 .3869 .1998 .0927 .0081
5 1.0000* .7547 .3344 .0934 .0178 .0026 .0000

51 1 1.0000* .8859 .6223 .3550 .1702 .0712 .0036
2 1.0000* .7850 .3872 .1260 .0286 .0050 .0000
5 1.0000* .5460 .0933 .0056 .0001 .0000 .0000

101 1 1.0000* .7822 .3811 .1209 .0266 ,0043 .0000
2 1.0000* .6123 .1453 .0146 .0007 .0000 .0000
5 1.0000* .2932 .0080 .0000 .0000 .0000 .0000

* the specified level e = .9500

From Table 2, a 99% confidence interval for a 2 is a 19.98% confidence

based upon a bivariate sample of 25 observations from an AR(1) process with _ . 4.
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VI CONCLUSIONS

It is Well known in applications using atmospheric observations that the

data are non-random and in fact are highly correlated. Very little research

,	 has been done in the area of determining the effect that correlated samples

have upon statistical inference. In this paper, I have investigated the effect

that samples taken from a stationary autoregressive process have upon the

confidence regions for the parameters of a normal distribution. Tables are

included for the effect that sampling from an AR(1) process have upon these

confidence regions.
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GENERATION OF RANDOM VARIATES FROM SPECIFIED

DISTRIBUTIONS

Summary

Due to the complexity of many of the existing statistical problems
associated with atmospheric variables, computer simulations have proved to
be a very informative technique. However, due to the various types of
atmospheric data, thus the different type of statistical distributions one
can no longer perform simulations based solely upon normal data. So in
anticipating this problem, this paper presents the computer software for
generating both random and correlated data for several specified distributions.
A brief explantion of the procedure is given along with the program documen-
tation.

I. INTRODUCTION

In order to obtain insight into some of the statistical problems

with atmospheric data, it is necessary to be able to simulate some of the en-

vironmental situations. However, since most of the data are non-normal it

is necessary to generate data from various specified distributions (e.g. Gamma,

Beta, Negative Binomial, etc.). The purpose of this paper is to document the

procedures used in generating both correlated and uncorrelated observations.

The uncorrelated procedures have been documented in Newmann and Odell (1971).

The correlated procedures have been compiled from numerous sources, however,

Johnson and Kotz (1972) provide the primary reference. In this paper, I have

included only a brief description of the statistical distributions. For a

more detailed discussion see Falls (1971).

134
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II. UNCORREI,ATED VARIATES

All of the procedures listed here are transformations

of independent random variates from a uniform U(0,1) distribu-

tion. The pseudo-random number generator used is a congruential

generator (IBM SSP RANDU) whose choice was based solely upon

convenience. However, some additional testing will be necessary

to determine if the pseudo-random variates procedures are satis-

factory for our purposes.

Continuous Distributions

2_.1 Univariate Normal Distribution N(u,Q2)

The Box-Muller transformation [1) has been used. It

can be summarized in the following result.

Result: 2.1	 If u and v are independently distributed

U(0,1) then,

x = (-2 In u)^6 cos 2 wv

Y = (-2 In v)^6 sin 2 nv	 (1)

are independent random variates with the standardized normal

distribution N(0,1).

Thus if ul ....uN is a sequence of independent U(0,1)

one can generate a sequence x 1 ....XN of independent N(0,1)

using the above procedure. Also if a , a is a fixed known constant

then yi = oxi + u, i=1,2,...,n is a sequence of independent

normal with mean = u, variance = 02.
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2.2 Multivariate Normal N G ,E)

Let xl .... xp be a sequence of p independent normals

with mean 0 and variance 1, then x = (xl,....,xp)T is said

to be multivariate normal with mean 0 and covariance matrix

I 
	 (pxp identity matrix). However, if x ti Np (0 1 Ip ) then

Y = Bx + y has a multivariate normal distribution with mean= u

and covariance matrix E, where E= BB T . From x we can find y

for any specified real positive definite symmetric matrix E.

This follows from the following result.

Result: 2.2	 Let E be a real p.d. symmetric matrix. Then

there exists a lower triangular matrix B with positive ele-

ments on the main diagonal such that E= BBT . This is often

referred to as the Crout factorization of E.

2.3 Gamma Distribution r (A ,k)

Let ul ....uk be a sequence of k independent random

variables each having a U(0,1) distribution. Then

k
x = - 1/A In nu	 (2)

i=1 1
is a gamma with parameters A and k. Note the chi-square

distribution with n degrees of freedom can be obtained by

letting k=n/2 and A=)4.. Alro, if n is odd then y = x+w 2 is

chi-square with d.f.=n if x ti r(k = n-)6, A =)6) with w ti N(091).

The exponential distribution with parameter Acan also be

obtained by letting k=1 in (2).

s	 -



2.4 Beta Distribution B(p , g )

If xl ti r(1, p ) and x2 ti r(1, q ) are independent then

{	 y = X  / (xl+x2 ) has a Beta distribution with parameters

p and q.

Discrete Distributions

If the distribution function F  is known then we can

generate pseudo-random numbers by using the inverse function

FX 1 . However, this procedure can be simplified by letting

x be the random variate from F{ which satisfied the relation

Fx (x-1) < u < Fx(x) where u is a random variate having a

U(0,1) distribution. This procedure could be used to generate

Binomials, since the distribution function for the Binomial

is easily obtained. Included is a discussion of some other

discrete distributions which can be generated without knowledge

of Fx.

2_.5 Poisson Distribution P(A)

If xl ....xN is a sequence of N independent exponentials

with parameter a, then a non-negative integer k such that

Sk 
:L and Sk+l> 1 is distributed Poisson with parameter A,

where
k

Sk = E	 xi .
i=1

2.6 Negative Binomial Distribution NB(p,N)

131

The negative binomial distribution can be generated



138

from a mixture of a Poisson and a Gamma distribution. That

is, let X be distributed as a Poisson with parameter e, where

e is a random variable from a Gamma distribution with parameters

a,R. Then $ is distributed as a negative binomial with para-

meters p = a/(1+ X) and N=R.

III. CORRELATED CARIATES

Continuous Distributions

7.1 Correlated Multivariate Normal Distribution CNORM (u,E,A)

Let Zo,zi.,..,ZN be a sequence of N+1 p-dimensional

independent multivariate normals with common null mean vector

0 and pxp covariance matrix E. Then

Xi = ai Zo + (1-a2	 Z i + u for i=1,2,...,N

are correlated multivariate normals with mean vector u and

dispersion matrix A !RE where 0 denotes the Kronecker product

of A and E, that is

a 11	 a12 E .... alnE

A 0 E =	 a 21	 a 22 •••• a2nE

nxn pxp

and E . . . . . . . . annE

(np x np)

and A is an N x N matrix where the i,j th element of A is

ai a j
	

iylj, i j=1,2,....,n

aij =	
1
	

i= j

From the dispersion matrix A 0 E we have that
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COV (xi ,xj ) = ai aj E	 i{j

	

a E	 i =j

Hence the correlation matrix between vector X i ,X
j 

is

CORR(Xi ,X^) = a i a i	 le i

	

I 
	 i=j

where I  is a pxp identity matrix. When p is 1 we have

the univariate case.

3.2 Correlated Univariate Gamma Distributionr(a,R,A)

Let 30,Z1,....Zn denote a sequence of independent

variables having the following Gamma distributions

z  ti r( a,Ro)

Zi ti r(a,Ri-Ro)

Let Xi=Zo+Zi,i=1,2,...,n, then X l ....Xn is a sequence of

correlated Gamma variables where X i v, r(a,Ri ) and the correlation

between Xi and Xi is

CORR (Xi ,X
i
) 
= aij

where 
aid 

is the ijth element of the nxn matrix A and

1	 if i=j

a. -	 R2	 )1
i^	 ( -°- )	 if i^j
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3.3 Correlated Beta Distribution 8(pc .A j

Let ZoZl ....Zn be a sequence of independent chi-

squares with degrees of freedom df=v i (Gamma with a=1,

R i= v i/2) for i=O,1,2...,n. Let

n
Xi ^ z  

/ ( E	 Z^i)	
i=1,2,...,nJ=O

then the Xi 's are correlated Beta with parameter (Pi'gi)
n

where p i = v i /2 and	 q i = p - p i where p = Ep
j ^O j

Then the correlation between X i and X  is given by

CORR (Xi ,Xj ) = aij

and
1	 imj

aij =

(P-pl) .
p-p . ) i^j

J

Discrete Distributions

3.4 Correlated Poisson P a A

Let Zo ,Z19 00.. 9 Zn be a sequence of independent Poisson

with parameters C i ,i=O 9 1 1 2 1 .. 1 n, then

Xi = Z  + Z 

is a sequence of correlated Poissons with X i ti P(A i )

A i = C  + Co,i=1,2,...9n and the correlation between Xi

x  is given by
Corr (XiXj ) = aij

_r
MLi.%W,W
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and	 1	 i=j
i	

^

a ii	 ( C o )^	 i-^i

	

x i a j	 •

IV. CONCLUSIONS

The purpose of this paper is to document the

procedure used in programming uncorrelated or correlated

number generators for various specified distributions.

The results are fairly well known and should prove to be

satisfactory for most simulation needs. As mentioned in

the introduction, the procedures are dependent upon the

choice of the pseudo-random number generator selected, and

hence the objective of the situation to be simulated may

dictate changes in the random number generator. A simple

package is presented which would hopefully satisfy the

needs of those researchers interested in generating numbers

from the statistical distributions given.
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1	 1-5	 NREPS - Number of sets of numbers to be
generated (15)

(215)	 6-10	 IX - Seed for random number Cenerator.
(15) IX=0, then program will initiate
using CPU clock

** Note the following set of cards are repreated NREPS times

2	 1-5	 NOB - Fumber of observations to be
generated (15)

6-10	 ITYPE - Type distribution to be generated (15)

1 - Normal	 4 - Poisson
2 - Gamma	 5 - Negative Binomial
3 - Beta	 6 - Binomial

11	 ICOR - 1	 correlated data	 (II)

	

= 0	 uncorrelated data (I1)

2	 ISTAT- 1	 P, Ott 'Itatistics (I1)

	

= 0	 N . r- , Ant

12-13	 IUNIT= 0	 D	 A output generated data(7,'-")

	

0	 Generated data output on
external device # IUNIT

*** Note the following cards depend upon th, ,^ distribution
selected on Card # 2.

- NORMAL -

3	 1-5	 NV = Number of variates (NV=2=bi.variate
normal (15)

6-10	 KEY= 0	 Standardised normal mean = 0
variance = 1.

KEY =1	 Read Mean, Variance (15)

i
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IF KEY - 1 Read following cards

CARD	 COL	 DESCRIPTION

4	 (16F5.0)	 Y(I), I=19.NV	 Mean vector

5	 (16F5.0)	 S(I),I.1,NV**2 Covariance matrix

** OF ICOR - 1 on card 2 read following for correlated case

6	 Correlation factor (see page ,W

7	 Means (same grouping as correlation
factors) only need when NV=1

- GAMMA -

3	 1-5 R1 Shape parameter (F5.0)

6-10 XLAMDA Scale parameter (F5.0)

** IF ICOR = 1 Read following

4 +	 Correlation factor (page iii.)

- BETA -

3	 1-5	 Rl Beta parameter (F5.0)

	

6-10	 R2 Beta parameter (F5.0)

** Ir ICOR = 1 Read following

4	 1-5	 VND Parameter for Z o (see page 9 )(F5.0)

5 +	 V(I), same format as correlation
factors (page iii)

- POISSON -

3 	 1-5	 XLAMDA	 Poisson Parameter (F5.0)

** IF ICOR = 1 Read following

4 +	Correlation factors (page iii)

ii
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.
- NEGATIVE BINOMIAL -

CARD	 COL

3	 1-5

6-10

DESCRIPTION

P	 parameter	 (F5.0)

N	 parameter	 (15)

**IF ICOR = 1 Read following

4+	Correlation factors	 (page iii)

- BINOMIAL

No additional inputs needed.

*** The following cards are used to define the A-matrix
used in defining correlated observation

example 2

NG- Number of groups	 1 <_ NG < NOB

NOL(I) I-1 NG Length of each group
NOL?1)+ NOL(2)+...+ NOL(NG) = NOB

VALUE (I),I=1,NG,	 A value for each
group

NOB-25	 NG-1	 NOL(1) -25
VALUE(1)=.8
the CORR(Xi ,Xj )=(.8)x(.8) - . 64

CARD

1	 01
2	 }025

3	 .8

NOB-25 	 NG-2	 NOL(1)=10 NOL(2) -15
VALUE W--5	 VALUE (2)=.8
then CORR(Xi ,Xj )t 	 .25	 i,j 110

.40	 i < 10, j > 10

.40	 j < 10, i > 10

CARD	
t.64	 i, j >10

1	 02

2	 M10YO15
3	 lam.5yo-s
(Note:y denote blank column)iii

- CORRELATION FACTORS -

1	 (13)

2	 (1615)

3	 (16'5.0 )

example 1
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PROGRAM DESCRIPTION

MAIN	 - main program to read in job parameters

SUPER	 _ supervisor routine to direct the generation

of data, computation of statistics and printed

output.

BETA	 - generates independent Beta variates.

GAMMA	 - '°
it Gamma variates.

BINOM	 - ft Binomial variates.

NORMAL	 - "	 it variates.

POISSN	 - of variates.

NEGBIN	 - "
ft

Negative Binomial variates.

CBETA	 - ft correlated Beta variates.

CGAMMA	 - It Gamma variates.

CNORML	 - ft	 it Normal variates.

CPOISN	 - it Poisson variates.

GNEGBN	 - itto Binomial variates.

PRINT	 - prints generated values and output on specified

unit.

STATE	 - calculateF statistic for generated values.

RANDU	 - generates random uniform variates.

iv
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SUBROUTINES NEEDED BY A GIVEN ROUTINE

CNORML -	 RANDA
NORMAL

CNEGBN -	 GAMMA
POISSN

CBETA -	 GAMMA

CGA'_'M'IA -	 GAMMA

CPOISN -	 POISSN

NORMAL -	 RANDU

BETA -	 GAMMA

GAMMA -	 RANDU
NORMAL

BINOM -	 RANDU

GMETRC -	 RANDU

POISSN -	 GAMMA

NEGBIN -	 GMETRC

RANDA -	 RANDU

RANDU -

STATS -

PRINT -

MAIN -	 SUPER

SUPER -	 CNORML
CBETA
CGAMMA
CNEGBN
CPOISN
NORMAL
GAMMA
BETA
NEGBIN
BINOM
POISSN
STATS
PRINT

v
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OT M hm c%T(M• , xO n 11).Y(101)) .S(l on) 97(11)n)
cAmmnM/h/ Y. ti. /

+	 comt4nAi /A/ IX*'IV.k1.XLA•Ar)A.q?.P.t'
I X =51	 X4975
RFAO tio l n n) m0FPS
(In yy T T=1 .NUFNS
RFAIo(5.11)0) t11), ITYNF.11IMIT
CALL TY PF (A * NO.ITY P F )
CALL '001PITtYomo.TUNIIT.T TYPE •II

q 4 CnNIT I m, IF:
Inn FOWMAT(I15)

S TOP
E Nn

SIMPOlITIMF pFTA(X.NIn)
1)ItnFN 4;TntI X ( ?r► n).Y( Inn) .S (1 On).7(100)
CO M MO-WA/ Tx. NI V.t21.xLAMnA.1??..P.N
CW4,40111 01 Y.^.Z
XLA40A=1.
CALL (;AMIk*A(XeMO)

N 1= •?
CALL SAMMA(YoNIO)
kl=R
00 1 T =I , h in
XX=X(T) /M1)+Y(T))
X ( T ) = X X

KF_TUR*I
E. ND

SI);4R0I1) ) I' l F f,AMMA ( X.NIn)
n T M tN c;T n ►• I x ( kin) .Y O no )
COM?401 1 / p / Y.l;.l
C OM M(1 KI/ A / T X .n' V. R 1 . X LA Mn A. I?? .N .NI

XL =—I . * ( 1./x LAMDA)
k=K1+.S
k =t) I —K
0 n 99 T T =1 . NO
X X=1.
01 ► 1 T = 1 .K
I ti1=Ix—((X/1n)*1n +1
DO T ,1=)•IM

7 CALL PAr,Inll(1X9Ix.YFL)
1 X X=XX*YFi A n,

	

99 X(II)=X1..	 L r'(xx)
IF(K.LF.n) RFTLIUN
NV=1
CALL WW 14AL (Y omn. N(l.n )
DO 99 T=1 .Nn

on x(I)=X(1) +Y(I)*Y(I)
PFT UPN
END

148

rURIGINAL PAGE i*
OF POOR QUALITY

SIICIR01ITIMF PIt.inM(XoNO)
rl IMFNST0 l,I X (Nn)
CI) M. MU P,I /A/ TxgnIV.R19XLAM(IAgP?9P.N
Llo j I=1 .Nn
IN= X -(Tx II (1 ) "10+1
DO 2 K=1 • IN

? CALL PA"IOU(IX•IX•YFL)
1 X (I )=YFI.

kFTu!ZN
E nil)
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C

5 1 1 14 Pn I IT I P - W ;I(loJ ► eAl (x 0 Non. #, 1V 1).KFY)
i ► ., Frltiin o,, x(tnnl.Y(Ion).y(ino))./(Ino

cot., mn•I/r , Y. . /
C0'4 1` 1 0 1,, 1A / T X s K 'V 9 w I. XL.A I,+ I) A s P?

^► 	 0Pq, I

IkIVV=NV*K'%r
(J ?= ^i. ?^71 ^4^

r,Ft4FQAT ;7 min T^ 1 0FPF"1DF1,r T UNIIFOPM (0•1 )
(in 1 1= 1.NIvn

00 A W = 1 . TO
'i C A LL RAtIl1,1(iX.Ix.YFI.)
P X(I) =YC1
YNA P,1tiF0 1-1 A T1) NIVn NOWMAL ((I .i 1

J="IVU/;).
( rl	 ^,	 j	 1 ..)

X (?*T-1)=a*r,ns(P,>*X (1*?) )
a X (? # I	 (I *;?) )

IF(KFY.F0.0) KFTIIPNI
wWTTF(A."00)

Pnn F O g NI A 1 ( 1 '4F AN AN111 rnvAP 1 A N iCF , • // )
khA 1 ► (5.1 11 0)	 (Y( T) •I=1 .N!V)
w w ITh (F,. ? n 1) 	 (YIT)•1=1•',IV)
I-F'AI1( C,.Inr)) (ti(I).1=1.N!VV)
w 14 ITF.( ,c.•?n1)	 (S(I).T = 1•"IVV)

?nl F04MAT(1nX•10F1n.3)
IF(NV.r:T.I) (;0 To A
0n 5 T=1.1'10

^ X(I) = S(1	 )^XfI) +YfI)
kFTUFtr1

N=MV
DO 11 1=1 .NIV
(IN l T=1 01

i1 Z((J-1)*'!+1) =n.
1l1)=S')PT(S(Il)
(I1)1 ^ I =^.N

1^ L(1)=9tT)/I(1)

00l y T=1 .M
5014=0.
iF(I — .1)1 lie IS•17

001A K=1 -14
1 ^ M =• 1 -1

51) M =511 14+7 ( ( K-1) *NJ+ j )^^?
1 ( (J- 1 ) t. " 1 +T )=SOPT (S ( (J- 11 *N +T)— SIIM)
(;0 T()19

17 P=J-1
001.4 K =1 • "+

1 c4 S(1"4 =St C1+ ( / ( (K-1) *M+ T) *7 (( K— 1 ) # nJ+J) )
(( J- 1)'W +I)=(S((J-1)*:+I)—SUM)/Z((J-1)*N+J)

1 4 CnNi I Nn IF
h n 7 T =1 • NI(1
nO 7 K=1 *NV
S(( I - I *K'V+K)=Y(K)
() 1) 7 .1=1 •K

7 S((I-1)*i 1V+ K)=S((i-1)*NV+K)+7.((J-1)*rJV+K)
*X ("Iv* I — NV — J) )

DO H T =1..'JO
00 N ,)=1 •NIV

ct X((J- 1)a1ltl +j)=C;((I-1I 4rN1V +J)
kF. T (1 ►t ► I

Inn 04HAT
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St It' PniITI f jr 6MFTu C ( X x )
(-OMMON/ A/ I K.^ ► V.P1 • xLAM I` ► A . P?e P.k ►
X x=0.
N=.S
nNI- = 1 .
o =nNF –P
( ► n 1 T=1.kl
CALL O WD11( Ix •I)(o11)

SI ► M=n.
J= ► )
Q'J= N
J =.) +)

1.)(j =,.) n a n
S tIM =s' IM +n0
I F (SI)m- I1) ?. l • l
IF(J.I_T.10) rn Tn -4

1 X X=XX+,)
NFTUNkI
F kill

UI mF MSTO N1 X (NOI
CnMM(VI/A/lX.M %/ * P I .XLAM()A.q ?•p,1,1
^•S1JM=n
k1=1.
SI ► ,1 =U.
J =11

2 CALL. r:41`0.1A(XX.I )
J =J +1SO',A = ,,i1M +X x
IF(SIIM,1_F.1.) Art Tn ?

N^11'1=r1511M+1
IF (N511 " q .l F. VIM I;n Tn
kFT(.IRpt
F w)

5110POUTT11F TYNF(x.rin•1TYP1:')
T)I ► A fM;T npd X (Ni n)
C0 11MON/4/ I X. kIV. P I • Xl_A M n A . R?_•P 1%1
61) TO (I- ?•l•4•`.)o00 •ITYPF

1 PFA() (5.] n0 ) n1V.KF Y
MVV=NV*r,V
NVn= fj%/*rin
CALL 1 11)P H AL (X 9M(i9kIV0.KF.Y)
PFTUk,.1

P k F AO(`i. Jill ) u 1. XLAMnA
CAl l_ r,AMI-+A(X.Kin)
kFTUkl)

1 PFAU (S. I n l) P 1 .P?.
CALL RFTA(xgNO)
N^TM)m

4 F?FA0(5.101 ) XLAMI)A
CALL rni ;5w (x •n)n)
k FTol2n1

c; C A LL "Tr'nM(x.n1n)
PE.T11N ► I

Fi kFAU(ti•l0;,1 ) P•'V
CALL NIF6P IN (X *MO)
NFTUR01

Inn FnWAAT(21L))
1 1)1 FOPMAT( ?vs.n)
1 n^) FIWMAT(F L .0	 L))

F 1.11)

GF^
JAI
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tIit,I•'r)IIT7 H F nif ^;nIN1 (X sklO)
UI k'tN I;T OJ " x("r^))	 ,	 AM ^n.0 ?.N.Olrnmilo q / n / Tx. , IV -P 1•XL
h11 1	 T=1 • ►.ul

C AL L GMF Twr; ( xX )
x(I) =xx
N F T UP Ki
F 1`10

SU L A ;4 )iITIh l F P AN11"lI( IX.IY.YFL)
IY=IX*f, ►;C; Tu
IF( IY)S.r,.^

r• IY=IY#.?1474m30,47+1
A YF'I.=IY

YFL =Y FL a.449ss(,j
PE- T URM
F NI)

SI I P gOIITI I IF PPTNJT	 (X.Nn.11J.IT91I)
U IMFN91 n ► I x (Nt))
rIIM MOM/ ^ / IX.NJV. ► +1 .xLAkifIA*R? .P.NJ
NI Vn = N1 V 0 lk ,ri
(;n TO(1.;^'.'I.4. 90),IT

1 W P I TE:	 1 n1)) I I .KIV
WIW	 TE (^ •? 1)1)) 	 ( X (1 ) • I= l . NVo )

IF(IU. Pn .2) V I P ITFN*300)iX(I),I=1•NVO)
Kt TURm
wPITF	 101) 11%171•XLAMDA
WPTTE	 200)x
IF( 11J.F0.2) WRITE (993n0) x
1, M 17 N
V, WITE ( r,.1 n?)
WRITE(A-P00)X
IF(I0.170.?) WRITE (9.300) X
PFTI)k,l

	

4 W P I TE (0;.1 03	 IT.XLAMnA
V)HI TE (o,. X00 X
1 F (IU. F0. ?) wRITF(9.300) X
PFTWro

9; wwl TE (r~.1 04) I I
VJ111TF.(r,.;^'nn)X
IF( I1).F0.?) 14WITF (9.300) X
PFT(1PN

	

0; wig ITF (F .1 05	 110P.0NI
WuITF(o;.^n0)X
IF( IU.F- 0.?) 14RI TF (9.300) X
kFT1 ► kIli

Inn FONMAT( //•I NIORMAL DATA FnR RF P . =l• Ih•//,	 NO. OF VA N IATFS=	 IF+•

In1 FO I4 MATI//• I (;AMMA nATA FOR REP.=,-P ' 169//-e N=O.F10.39
a	 LAMI)A	 FIn.^^//)

Ins FO	 T(//.l PFTA DATA FnR	 ALPI(A=t.Fl0.2gv BETA=o,
a	 c-10^^.//)

IAl FOP PAT(//.1 F )nIS;N nATA FOP RFN	 I0;•	 LAMf)A=19F10.?.//)
1n4 FORPAT( //., IINIFOPM (691) nATA FOW INTFGnAL T W AN;FOPM PFP=09I69//)
In, FORMAT	 NF.O. FIT Nn M I AL nATA FOR RE P • =1 •169//•

a	 I P=l.FI0.'3. l N1=l•Il0•//)
Pnn F 0 11 MAT( 10 Xs IOF10.')
ln(l Fo QMAT(r 1)Fln.3)

F Nn
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