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AN INVESTIGATION OF THE FEASIBILITY OF IMPROVING OCULOMETER DATA

ANALYSIS THROUGH APPLICATION OF ADVANCED STATISTICAL TECHNIQUES

By

•	 Dharam S. Ranal

ABSTRACT

Many experimental studies have been conducted by the scientists working

on the oculometer project at the NASA/Langley Research Center (LaRC). Some

of the studies have generated large volumes of data. The members of the

oculometer project were relying mainly on three current data-reduction

programs to analyze their measurements. The researchers soon realized that

the current programs were not meeting their data analysis requirements, so

it was decided that the data-reduction capabilities of the current programs

should be assessed and a search for a more comprehensive system with higher

data analytic capabilities should be made. Subsequently, the present

investigation was undertaken to address these two issues.

INTRODUCTION

For several years, scientists at NASA/LaRC have been studying various

possibilities of measuring pilot workload by use of an objective measure

based on pilot scanning behavior. Researchers on the oculometer project

have made significant advances in modeling pilot workload by using his/

her scanning patterns.

The scanning behavior of a pilot is recorded by a modern technique

that uses an electro-optical device called an oculometer. The basic

principle of its operation is to illuminate the subject's eye with

infrared radiation which is reflected from the retina of the eye. The

reflected radiation is monitored with an infrared-sensitive television

camera, and an associated minicomputer is used for processing the

signal. The oculometer tracks a subject's lookpoint as a time function

1 Formerly an Assistant Professor, Department of Mathematical Sciences,
Old Dominion University, Norfolk, Virginia, Dr. Rana is now :associate
Professor at Jackson State University, Jackson, Mississippi 39317.
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F	 and measures it in terms of x and y coordinates. These coordinates
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	 are exploited to calculate the values of many variables related to the

pilot's scanning pattern. For a complete description of the oculometer

see reference 1.

The oculometer has been used in simulation studies of instrument

landing system approaches (refs. 2-9) as well as in studies involving

actual test flights of airplanes (ref. 10). Most of the simulation

studies conducted on the visual motion simulator at NASA/LaRC and else-

where have measured a large number of variables: for example, the

investigation reported in reference 1 recorded values of about 150

variables. Thus, oculometer usage has generated large volumes of

data. This raises the question of how to analyze the tremendous amount

of data.

The researchers on the oculometer project it NASA/LaRC realized that

they were not getting enough information from the data they were col-

lecting, and so decided that there was a need to examine their c,:rrent

data-reduction techniques. If the current programs were found inadequate,

a more advanced system of data analysis would be installed at the NASA/

LaRC computer center. The current research effort was undertaken to

address this problem in two phases: (1) examining the current data-

reduction programs and (2) recommending a more comprehensive system of

analyzing data that can be used for improving oculometer data analysis

through application of advanced statistical techniques.

ASSESSMENT OF CURRENT DATA-REDUCTION PROGRAMS

There is one major data-reduction program in the oculometer project.

This program is very well written and is capable of doing several things.

Its main features include the ability to compute (1) instrument-to-

instrument transition probability matrices, (2) location-to-location

transition probability matrices within the flight director (ref. 1),

(3) mean and standard deviations of dwell time on the displa y locations

of interest, (4) tallies on miscellaneous information, such as total

time on instruments, transition rates, etc., (5) a sequential listing of



transitions from one location on the instrument display to the next, and

(b) the total time spent on each location. It can also print histograms

for the distribution of dwell times on various instruments and the

distribution cf dwell times on the different displays within the flight

director. Also available are two additional data-reduction programs.

One of these, called "SUMMARY," summarizes the data from several runs

across the subjects or conditions or segments or any combination of these

as required by the researcher. SUMMARY also computes F-statistics to

test the assumption of equal group variances and t-statistics to compare

group means. The second program prints dwell-time histograms.

These programs were examined for their data-reduction capabilities.

These programs were written to carry out certain amounts of data analysis,

such as calculating means, variances, standard deviations, printing

frequency histograms, testing the assumption of equal variances for the

two populations case and doing one-way analysis of variance or t-test

to compare group means.

The programs were found to be quite efficient in effectively

serving the needs for which they were written. However, some of the

experimental studies of the oculometer project required the use of more

complex statistical techniques not embodied by these programs. The

data-reduction capabilities of these programs could be augmented by

adding a few more subroutines such as two- or three-way analysis of

variance, analysis of covariance, correlation analysis, etc. In spite

of these added features, the programs would still be unable to meet most

of the data analysis needs of the researchers. Besides, addition of

extra subroutines might make the programs unwieldy, less flexible, and

less efficient. So, it was decided to search for a system of analyzing

data that could handle various needs in the broad spectrum of data

analysis.

SELECTION OF A DATA-ANALYZING SYSTEM WITH

HIGHER ANALYTIC CAPABILITIES

There are several systems of analyzing data that are commonly used

for data analysis: for example, BMDP (Biomedical Computer Programs),

'i

i

3



SPSS (Statistical Package for the Social Sciences), SAS, DSIRIS, GENSTAT,

etc. There are other standard systems, such as IMSL (International

Mathematical and Statistical Library), which may not be so popular;

nevertheless, they have analytical capabilities—from elementary to

advanced. In the evaluation of a statistical package, the following

criteria and considerations play a significant role.

User Interface

If a package is to be useful, it should be well documented. A clear,

concise, and will-organized reference manual with index must document

exactly what i t does. It should not only document language syntax con-

ventions, but also state clearly potential user errors. It should also

define procedures in terms of references in the literature, numerical

techniques employed, and specification of standard options. Another

important consideration is a control statement language. The procedures

and options should be named with suitable terms that reflect their

functions. Descriptive levels are needed for convenience in input, output

statements, and checking control statements. Some other desirable features

may include:

(1) Clear indication of how missing values are treated,

(2) Labels and scaling options on graphs,

(3) A control language vocabulary suitable for the users for

which it is written,

(4) Clear noncluttered output with some option to request or

suppress extra output, and

(5) Some graphical aids sach as residual plots and histograms,

etc.

Implementation

Implementation of a package at a computer facility is greatly facilitated

if the source listing of the program is available. a good package should

be portable from one installation to another and should also allow the

addition of other programs into the system. Among programming languages,

4



FORTRAN is often preferred for scientific purposes. For analyzing

scientific data, a package written in FORTRAN should be preferred.

Statistical Effectiveness

Most data sets require the use of more than one procedure. So, for

effective analysis, a convenient file system is needed so that the output

from one proceudre can be made available as the input for another pro-

cedure: for example, if we want a residual plot, then the residuals from

a regression program should be made available as an input for a plotting

program. It is equally important that the package have neat and correct

formulas. Its algorithms for implementing the formulas must be properly

programmed. It must also contain some measures to check the accuracy of

the data and procedures used: for example, to verify the accuracy of an

inverse of a matrix, it should compute the product of the matrix and its

calculated inverse. These comments are based on the report of the Committee

on Evaluation of Statistical Program Packages presented at the American

Statistical Association annual meeting (ref. 11).

All the characteristic features described above are important, but no

one program is universally good with respect to all of them. In addition,

the programs of a package must be scrutinized in the context of data analysis

needs of the users because a program may be optimal for one problem and

may not be so for another. After consulting with researchers at NASA/LaRC

and taking other facts into consideration, it was decided to install SPSS

(ref. 12) at . the NASA computer facilit y . Several seminars were conducted

to explain the usage of SPSS at the NASA facility.

OCULOMETER DATA ANALYSIS USING SOME STATISTICAL

TECMIQUES OF SPSS

Data analysis means different things to different people depending on

their needs and level of statistical training. Techniques used in data

analysis vary from the simple computation of statistics (e.g. mean, mode,

median, variance, etc.) and display of histograms to advanced methods of

multivariate analysis. In some cases, data analysis involves a set of

5



computations or graphic displays; in other cases, it may involve a sequence

of steps, each of which may lead to further analysis. The data-reduction

capabilities of the SPSS package are tremendous; all of the statistical

techniques available in SPSS are not likely to be used in solving a

particular problem. In the present investigation, some of these analytic

methods are used to analyze the data set that comes from the Daytona study.

The data used in the current investigation was generated by an

experimental study in which one of the objectives was to determine if the

landing and approach displays could be improved by modifying several

aspects of the display. The experiment was conducted uder the terminal

configured vehicle program on a General Eloctric Corporation simulation

facility. An oculometer system was used to record scanning patterns of the

test subjects. For operational detai'.s of the oculometer see reference S.

The landing performance was assessed in +rms of three touchdown parameters,

namely, range from the 1,000-foot (304.8-m) line on the runway, airspeed at

touchdown and vertical speed. Some of the control input variables were

also recorded during the tests. The experimental facilities employed in

the tests had three main components: the aircraft simulator, the

oculometer system, and the computer-driven, picture-generating system.

The main display used by the pilots during the study for making approaches

was an Electronic Altitude Director Indicator (EADI). This display was

presented on the CRT in either the heads-up or heads-down position depending

on a particular test session. Different levels of magnification were

obtained by changing the size of the displayed image on the CRT and/or

changing the position of the pilot's eye. All of the pilot's control:

roll, pitch, rudder pedals (yaw), throttles (engine thrust), drag and lift

and pitch trim were recorded. In addition, 18 aircraft state variables

and 6 oculometer variables were recorded on 2 Fit wide-band tape recorders.

The test design consisted of 18 different conditions (runway patterns).

These conditions were obtained by altering the basic runway that consisted

of 1-m wide stripes outlining the runway with cross stripes every 330 m

and 1-m longitudinal stripes. The 18 runways with their main features are

described below.

(1) 152-m2 checkerboard pattern distributed over the entire

runway,

6



(2) 76-m2 checkerboard pattern distributed over the entire

runway,

(3) 38-m2 checkerboard pattern spread over the entire runway,

(4) 152-m2 checkerboard pattern distributed over the inside half

of the runway width,

(5) 76-m2 checkerboard pattern distributed over the inside half

of the runway width,

(6) 38-m2 checkerboard pattern distributed over the inside half

of the runway width,

(7) 152-m2 checkerboard pattern distributed over the outside half

of the runway width,

(8) 76-m2 checkerboard pattern distributed over the outside half

of the runway width,

(9) 38-m2 checkerboard pattern distributed over the outside half

of the runway width,

(10) 1-m wide lines with raster and an extrrnal checkerboard

pattern,

(11) 152-m2 checkerboard pattern distributed over inside half of

the runway's width,

(12) 76-m2 checkerboard pattern distributed over the inside half

of the runway's width,

(13) 152-m2 checkerboard pattern distributed over the outside half

of the runway's width,

(14) 76-m2 checkerboard pattern distributed over the outside half

of the width of the runway,

(15) 1-m lines with no raster,

(16) 3-m lines with ro raster,

(17) 1-m lines with a raster, and

(18) 3-m lines with a raster.



Seven pilots participated in the experiment, which was carried out in

six test sessions. Before a test, each pilot was given an hour and a half

training period. During the training period, the pilots made practice runs

and familiarized themselves with the simulator and the displays. Befoer

collecting data, the test director made sure that the pilot had learned

the display. The six test sessions were conducted; these can be summarised

as follows:

Session 1: A magnification of 0.8 was used with a heads-down position.

All the pilots except the NASA test pilots flew three replications of each

runway configuration. [due to scheduling constraints, the NASA test pilots

flew an abridged version with less than 18 runways.

Session II: A 0.43 magnification factor in the heads-up configuration

was used. Each pilot flew 3 replications with runways 3, S, 7, 9, 16, and

17.

Session III: All of the pilots made 3 replications with a 0.8 magni-

fication factor in the heads-up position on runways 3, S, 7, 9, 16, and 17.

Session IV: In this session, runways 7, 9, 10, 14, 15, and 17 were

tested. Each pilot flew 3 replications with a 0.32 magnification in heads-

down mode.

Session V: In this session, symbols were not used other than the

perspective runway and the horizon. All of the pilots flew 3 replications

on the selected runways 7, 9, 10, 14, 15, and 17 in the heads-down made.

Session VI: Using a magnification of 0.8, each of the pilots flew

7 replications in the heads-down configuration. Symbols onl y acid no

perspective runways were used.

The preceding details regarding the background of data collection

are based on reference : and a proposed NASA technical paper by Nfar•rin

C. walier, Randall L. Harris, Sr., and Seymour Salmirs. This proposed

techni.:al paper deals with some effects of changing sr-:eras aspects of

an advanced display for instrument approach and landing.



DATA ANALYSIS

'	 Introduction

The first step in the data analysis was to examine the data for errors.

This was done by listing the data values and scrutinizing them for outliers,

blunders, or nonnumeric symbols. In usual circumstances, when observations

are recorded manually by observers, it is rather important to screen and

edit data before any elaborate analyses because errors in data can produce

fascinating results which are sometimes interpretable, sometimes not, but

nevertheless incorrect. To study the distributional characteristics of the

variables, SPSS has two subprogram:: CONDESCRIPTIVE and FREQUENCIES. Both

these subprograms have several options to obtain basic information about

the distribution of the variables. The following symbols are used in this

study:

VSI	 vertical speed
ASER	 airspeed
RANGE	 range from the 304.8-m (1,000-ft) line on the runway
ERLOC	 localizar error
PITCH	 stick position
ROLL	 wheel position
THROTT	 throttle
RUDPOS	 rudder position
PTRIM	 pitch trim

PDFDl to PDFD9 represent the variables related to the scanning behavior of

the pilots in the flight director.

Subprogram CONDESCRIPTIVE

The subprogram CONDESCRIPTIVE is appropriate to obtain descriptive

statistics for any variable(s) which is more or less continuous and

has measurement at inverval scale. So this subprogram was applied to

performance variables: VSI, ASER, P.ANGE and ERLOC. Some of the results

are arranged in tables 1 and 2. The descriptive statistics in these

tables were obtained by considering only segment 3 (the part of the flight

below 21.3 m). The various summary statistics give us a general idea

about the underl ying distributional characteristics of the variables.

The mean measures the central tendency; standard deviation and variance

indicate the amount of variability. Similarly kurtosis and skewness

are useful to stud y the shape of variables' distribution. Kurtosis provides

a measure of relative flatness or peakedness of the distributional curve

9



r of a variable, and its value is zero for a normal distribution. A

negative value of kurtosis implies that the curve of the distribution is

flatter than the normal distribution curve, while a positive value of

kurtosis means that the underlying distribution of the variable is more

peaked than the normal curve. Skewness indicates the departure from

symmetry of a normal curve. The value of skewness for normal distribution

is zero because its curve is perfectly symmetrical. A positive value of

skewness means that the distribution has a long tail to the right, that

is, the cases are clustered more to the left of the mean with most of the

extreme values to the right. A negative skewness means that the distri-

bution of cases tails out on the left. From table 1, it seems that the

distribution shapes of the variables ASER and ERLOC are similar to normal

distribution because their skewness and kurtosis have values close to

zero. The kurtosis for variable RANGE is 8.05 and suggests that the

distribution of the RANGE has a sharp (narrow) peak. Similar observations

can be made regarding distribution of the variables in table ?.

Subprogram FREQUENCIES

Subprogram FREQUENCIES is used to compute frequency distribution

tables of discrete or classificatory variables. An initial examination of

frequency tables will help the user to determine that each variable has

sufficient variability to be used in subsequent relational analysis. In

addition to the frequency distribution tables, FREQUENCIES computes descrip-

tive statistics and also prints frequency histograms. Befoze requesting

a full range of descriptive statistics, the user must consider their

relevance by examining the scale of measurement of the variables. FRE-

QUENCIES operates under two modes: GENERAL and INTFGER. The control

input variables PTRIM, PITCH, ROLL, RUDPOS, and THROTT are analysed b y this

subprogram in GENERAL mode. Some of the results are presented in tables

3, 4, and 5.

The subprogram also produced adjusted frequencies and histograms not

reported in the tables. The observations from tables 3, 4, and 5 reveal

that the underlying distributions of all the control variables are posi-

tively skewed (tailing out on the right). They all have significant

positive values of kurtosis which indicate sharper distribution peaks.

Some interesting observations regarding the number of inputs can be made

10



by simple examination of the relative frequency and cumulative frequency

columns of table 4 and S. All except PITCH have modes equal to zero.

It appears that pilots made a maximum number of inputs for PITCH and a

minimum number of inputs for THROTT.

Summary statistics, frequency tables, and frequency histograms seem to

suggest departure from shape and symmetry, and hence lack of normality exists

in the distributions of the variables. Further assessment of deviation from

normality can be made by looking at normal probability plot, half-normal
probability plot, and detrended normal probability plot. Unfortunately

these plots are not available in the SPSS package, but the subprogram P5D

of the BMDP package has this data analysis capabilit y . Nlost standard tests

of hypotheses about means and variances assume that the variables are

normally distributed. If it is not reasonable to make the assumption

of normality in a particular case, certain transformations can be used to

induce normality. Since the histograms of ROLL, PITCH, and RUDPOS are

highly skewed with a long tail to the right, a logarithmic or square root

transformation might be appropriate. Transformations induce normality

by changing scale. It is rather difficult to determine exact change of

scale, and success in finding a good transformation depends on experience

in a particular field of application. In the present case, however, one can

choose to do further analysis without trying transformations because the

number of cases is large. Since most statistical procedures assume

normality of the populations, it may be useful to make further comments

concerning normality. In actual practice, very few populations satisfy

completely the assumption of normality. It has been observed that

small departures from normality do not seriously affect the precision of

the estimates and the reliability of statistical inferences. It is very

difficult to determine precisely the effects of nonnormality : different

statistical techniques are affected to different extents. Furthermore,

since no single measure of nonnormality is generally accepted, it is not

possible to state general rules that will apply in all cases. At the best,

the selection of an appropriate methoc': when nonnormalit y exists is something

of an art at present. However, there are certain guidelines that one can

use: for example, if we know very little about the distributional aspects

of a population, the nonparametric methods may provide the best solution.

In some cases certain transformations ma y help induce normalit y : for

it



example, the distribution of measurements on plants and animals can be

made approximately normal by using logarithmic transformations.

Comparison of Group Means by t-Test

The planning of test sessions allows the following meaningful comparisons:

(1) Compari son of the effects due to levels of magnification,

e.g. magnification = 0.8 vs. magnification = 0.32 in the

heads-down case with runways 7, 9, 10, 14, 15, and 17, and

magnification = 0.8 vs. magnification = 0.43 in the heads-up

position with runways 3, 5, 7, 9, 16, and 17;

(2) 'Study of the effects of runways and symbols vs. runwa ys only

vs. symbols only using a magnification of 0.8 in heads-down

mode with runways 7, 9, 10, 14, 1S, 17, and 20;

(3) Comparison of the effects of heads up vs. heads down using

runways 3, S, 7, 9, 16, and 17 with a magnification of

0.8.

The above comparison of group means can be studied by applying t-test.

The SPSS package offers two types of t-tests: independent samples t-test

and paired (correlated) samples t-test. In the present case, the independent

samples t-test was used. The analytical capabilities of the subprogram

t-test are divided into two cases described below.

Case I: It compares group means assuming equal group variances

(0 2 = 92 = Q 2 ). If X 1 and 72 represent means of two independent random

samples of sites N 1 and X, with variances S i and SL, selected from

two populations, then the subprogram tests the following type of hypotheses:

Ho : u l = u 2 vs. Ha : u l r u2

The decision rule uses the test statistics computed as

t = ((X i - \2) - 61 - u2))/ SP(ni + nL)
\i/2

where

SP = ((n i - 1) S + (n 2 - 1) S2)/(n, + n 2 - =)

represents a pooled estimate of the common varia:lce 7i . The statistic t

follows t-distribution with (n, + r.- - ) degree of freedom. 	 12



Case II: In this case the two population variances ai and a2 are

not equal. The hypotheses tested are the same as in case I, but the test

statistic is computed as

t - ((,T1 - 92) - (ul - u2 ))/ ((si/nl, * s2/n2)) 1/2

It follows approximately the student's t-distribution with degrees of

freedom (df) given by the formula

2

df	
S1. . S2.	 (S1/nl)

2
 + (SZ /n2)

2

n1	 n2	 nl -1	 n2-1

In addition, the subprogram t-test verifies the assumption of equal

variances by testing the hypotheses

Ho : al = a2 vs. H l : CT # a2

If the null hypothesis Ho : ai = a2 is accepted, results obtained in case

I are used to draw statistical inference, otherwise the results of case II

should be used to make inference.

We applied the t-test to compare three groups: runways ana ,ymbols

(G l ) vs. runways only (G2 ) vs. symbols only (G 3 ). Magnification of 0.8

was used in heads-down mode with runways 7, 9, 10, 14, 15, and 17. Some

of the results for the selected variables are arranged in tables 6

and 7. It is observed from table 6 that the effects of runways and symbols

and runways only differ significantly in terms of the variables ROLL and

VSI at a five percent level of significance. It is noted that the pilots made

fewer inputs when symbols were removed. This may be due to the fact that a

smaller amount of information presented on the display does not encourage

the pilots to make as many control inputs. From table 7, it follows that

the effects of-the groups runways and symbols and symbols only are

significantly different for the control variables PITCH and ROLL at a

five percent level of significance. The differences among the performance

variables (listed in the table) were not found statistically significant.

The level of significance used in all the tables is five percent. Comparison

of symbols only and runways only was also made, but the results are not

included in the tables.

13
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Although the complete set of the variables regarding scanning behavior,

control inputs, and landing performance was analyzed, only some selected

variables are reported in the tables. The observations made here apply

strictly to only these variables. One of the objectives of this investigation

was to explore and recommend a general course of data analysis, so an

exhaustive analysis of any particular study was not attempted.

Table 8 shows the comparison of heads up vs. heads down. Nine of the

variables related to a pilot's scanning behavior are listed. These variables

represent the pilot's dwell times on various locations within the flight

director. From table 8, it is observed that the effects of heads up vs.

heads down differ significantly for three variables only: PDFD3, PDFDS,

and PDFD8. On the average, the scanning activity of the pilots in the

heads-up mode is consistently higher in these three locations of the flight

director. Table 9 is a continuation of table 8, and it shows the comparison

of heads-up and heads-down modes for four control inputs and four performance

variables. It is shown in table 9 that the control activity in the heads-

down mode was higher for - the variables RUDPOS, THROTT and PITCH, and it was

found significant at the five percent level. Among the performance variables,

VSI, RANGE, and . ERLOC were found to have significant.differences at the five

percent level. The results in tables 8 and 9 were obtained by using run-

ways 3, 5, 7, 9, 16, and 17.

Three different levels of magnification were studied, and some of the

results are listed in tables 10 and 11. Table 10 compares 0.8 magnification

with 0.32 magnification in the heads-down mode. Differences in PITCH,

ASER, and ERLOC were found statistically significant at the five percent

level. In case of PITCH, there was more control input for 0.8 magnification.

Performance considerations also favored a magnification level of 0.8.

Results in table 11 indicate that the effects of magnification = 0.8 vs.

magnification = 0.43 differed significantly at the 5 percent level for the

variables PITCH, ROLL, and ERLOC. It appears that 0.8 magnification

resulted in higher control activity and smaller localizer error (ERLOC).

In all the tables it should be noted that, when F-value is found signif-

icant, it implies that the assumption of equal group variances is violated;

hence, the appropriate t-test that uses separate variance estimate should

be employed.
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n-Way Analysis of Variance

The present study involves three factors of interest: magnification

at three levels (0.8, 0.43, 0.32), head position at two levels (heads up,

heads down), and displays at three levels (runways and symbols, runways,

only, symbols only). The structure of test sessions clearly reveals

that the study was not planned as a factorial experiment. One traditional

approach was adopted, that is, to hold all other factors constant except

the one whose different levels are to be compared. But this approach does

not permit the study of different n-way interactions among the factors.

The planning of the experiment was not appropriate for the application

of statistical techniques with higher analytical capabilities such as

n-way analysis of variance and convariance.

Factor Analysis

Factor analysis assumes that the observed variables are a linear

combination of some underlying factors which cannot be observed. Some of

these hypothetical factors are unique to each variable and some are

assumed to be common to two or more variables. It is only the common

factors that contribute to the covariation among the observed variables.

The uses of factor analysis are primarily exploratory or confirmatory

depending on the major objectives of the experimenters. In each case,

three basic steps are involved: preparation of covariance matrix,

extraction of initial factors, and rotation to a terminal solution. In

the present investigation, the factor analysis was used for exploratory

purpose only. The subprogram FACTOR was applied to the set of variables

consisting of TN1-IN3, IN7-IN9, IN13-IN15, PDFD1-PDFD9, PITCH, ROLL,

RUDPOS, THROTT, VSI, ASER, RANGE, and ERLOC.

There is a large variety of options in factor analysis, and most of

these options are to a large degree superficial. The subprogram FACTOR

offers five different methods of factoring and four methods of rotating

factors. We used principal factoring without iteration (PA1) and principal

factoring with iteration (PA2) to obtain initial factors. For rotating

factors, all four methods were tried. For the sake of illustration, some

of the results obtained by PA2 with VARIMAX are presented in table 12.

15
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Eigenvalues associated with each factor represent the total variance

accounted for by that factor. The factors extracted are in the order of

their importance.

•	 Factor analysis is a complex, time consuming, but powerful technique.

Unfortunately we did not have the time to pursue the applications of this

technique in detail, and no attempt has been made to draw inference from

the limited results.

CONCLUDING REMARKS

The data-reduction capabilities of the programs currently used by the

researchers on the oculometer project at NASA/LaRC were examined. It was

noted that the major data-reduction program called SUPER and another program

called SUMMARY were well-written programs. These programs were designed

for limited data analysis such as computing mean, variance, standard

errors, comparing group means, verifying assumption of equal population

variances, and printing histograms. Although these are quite efficient

programs for the limited purposes they were designed for, they lack the

flexibility and options to handle missing values, obtain the full range

of summary statistics, and have no analytical capability to verify certain

basic assumptions such as normality and constant error variance. The data

analysis needs of the scientists on the oculometer project were growing

rapidly, and the current programs were found inadequate to meet these

growing needs. Under the current investigation, a search was opened to

find a suitable system of analyzing oculometer data on the :NASA/LaRC

computer facility. Several standard packages including SPSS, BMDP, SAS,

and IMSL were considered. After carefully considering the merits of

the various packages and the data analysis requirements of the researchers

at NASA/LaRC, it was decided to install the SPSS package on the NASA

computer. In addition, two seminars and several meetings with the

oculometer researchers were conducted to discuss and illustrate data-

analyzing capabilities of the subprograms in the SPSS package.

Many studies have been conducted on the oculometer project. Data

analysis needs differ from one study to another and include a wide variety

16
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of statistical procedures—from elementary to advanced, so the research

efforts were directed toward exploring a general system of analyzing

oculometer data rather than focusing on a particular study. There are

certain techniques that are commonly employed by most studies at the

preliminary stages of data analysis, such as data screening and editing

subroutines. The Daytona study provided the data for the present

investigation. The data set was screened to detect recording errors,

blunders, or outliers, but no such errors were found. Two subprograms,

CONDESCRIPTIVE and FREQUENCIES, were applied to obtain summary statistics

and frequency tables and histogr::ms in order to study the distributional

characteristics of the variables. It was noted that some o: the variables

had highly skewed distributions with long tails. The Daytona study was

planned to investigate the effects of three factors: magnification at

three levels (0.8, 0.43, 0.32), head position at 2 levels (head up,

heads down), and displays at 3 levels (runways and symbols, runways only,

symbols only). The various comparisons of interest were made by the

subprogram T-TEST. The planning of the experiment did not allow the use

of more powerful techniques, such as analysis of variance (subprogram

ANOVA) and analysis of covariance. Application of the t-test revealed

significant (at 5% level) differences in the effects due to different

levels of factors. Subprogram FACTOR was applied to explore the data

reduction possibilities. Initial factors were extracted using PA2 and

VARIMAX. Applications of this technique were not followed in detail due

to time constraints.

Certain other programs, such as subprograms PARTIAL CORR and

DISCRIMINANT, would have been useful in the current study but were not

applied due to time limitations. The SPSS package offers several

other advanced techniques, such as subprograms CANCORR and GUTTMAN

SCALE, etc., which were not appropriate for the present study. There

are also available numerous nonparametric methods which would be useful

to the studies measuring data on nominal and ordinal scales.

It should be noted here that the selection of the pilots who parti-

cipated in the experiment was not random. The criterion of availability

,rakes the basic sample somewhat like a convenience sample rather than

a random sample. One needs be very careful in interpreting the inference

drawn from such a sample.

1;

---; .



REFERENCES

1. Waller, Marvin C.: An Investigation of Correlation Between Pilot

`	 Scanning Behavior and Workload Using Stepwise Regression Analysis.

NASA TM-X-3344, 1976.

2. Harris, R.L., Sr; Wallace, M.C.; and Salmirs, S.: Runway Texturing

Requirements for a Head-down Cathode Ray Tube Approach and Landing

Display. Presented at the AIAA Flight Simulation Technologies

Conference in Arlington, Tex., Sept. 1978.

3. Krebs, Marjorie J.; Wingert, James W.; and Cunningham, Thomas:

Exploration of an Oculometer Based Model of Pilot Workload. NASA

CR-145153, 1977.

4. Senders, J.W.; Elkind, J.I., and Girigretti, M.C.: An Investigation

of the Visual Sampling Behavior of Human Observers. Bolt, Beranek

and Newman, Inc., for Langley Research Center, NASA CR-434, 1966.

S. Spady, Amos A.,Jr.: Airline Pilot Scanning Behavior During Ap-

proaches and Landing in a Boeing 737. Paper presented at the AGARD

25th Guidance and Control Panel Meeting, Dayton, Ohio, 1977.

6. Spyker, D.A.; Stackhouse, S.P.; Khallaphala, A.S.; and McLane, R.C.:

Development of Techniques for Measuring Pilot Workload. NASA CR-

1888, 1971.

7. Waller, Marvin C.; and Flowers, Garry S.: Dwell Time Scanning

Characteristics of Pilots During a Simulation Instrument Approach.

Presented at the Eye Movements and Psychological Processes, IT

Symposium, Monterey, Calif., 1977.

8. Waller, Marvin C.: Application of Pilot Scanning Behavior to

Integrated Display Research. Presented at the Society of Flight

Test Engineers, 1977.

9. Weir, D.H.; and Klein, R.H.: Measurement and Analysis of Pilot

Scanning Behavior During Simulated Instrument Approaches. System

Technology, Inc., Hawthorne, Calif., NASA CF.-1535, 1970.

10. Middleton, David B.; Hurt, George J.; Wise, Marion A.; and Holt,

James D.: Description of Flight Tests of an Ocu meter. NASA TN

D-8419, 1977.

18

as



11. Francis, I.; Heiberger, R.; and Velleman, P.: Report and Proposal of

the Committee on Evaluation of Program Packages to the Section on

Statistical Computing. American Statistical Association, Washington,

D.C., 1974.

12. Nil, N.H.; Hull, C.H.; Jenkins, J.G.; Steinbrenner, K.; and Bent,

D.H.: Statistical Package for the Social Sciences (SPSS). 2nd

edition, McGraw Hill Book Co.

19



r i

Table 1.	 Descriptive statistics; magnification 0.8, heads up, syrrl-ols,

`	 r runway.

t

Variables

VSI ASER RANGE ERLOC

f Mean -487.64 -3.51 569.98 -3;.39

Standard Error 20 . 79 0.43 117.84 4.f1

Standard Deviation 260.SS 5.39 1476.56 57.70

Variance 67886.01 29.04 2180217.2 3328.8

Kurtosis 2.8 1 0.52 8.os -0.2s

Skewness -1.25 -0.74 1.92 -1.22

Minimum -1711.48 -19.56 -2628.5 -176.45

Maximum -92.57 8.91 9357.2 31.38

Sum -76559.9 -550.88 89486.2 -SS56.S

No. f.f valid cases . 157

20

--^+ a



-Table 2. Descriptive statistics; magnification a 0.8, heads down, no
symbols, runway.

Mean

Standard Error

Standard Deviation

Variance

Kurtosis

Skewness

Minimum

Maximum

Sum

Variables

VSI ASER RANGE ERLOC

.,678.71 -1.30 256.93 -19.71

28.38 0.59 115.75 4.50

329.69 6.84 1344.91 52.26

108698.2 46.82 1808789.6 2730.68

-1.22 -0.52 11.42 2.76

-0.08 -0.34 2.34 -2.10

-1317.76 -16.94 -3442.4 -187.89

-141.43 12.67 8244.04 26.24

-91626.1 -175.54 34685.8 -2660.35

No. of valid cases - 135
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Table 3. Summary statistics; magnification a 0.8, heads down, symbols,
runway.

Variables

PITCH ROLL THROTT RUDPOS PTRIM

Mean 2.88 1.74 0.6S 0.88 0

Standard Error 0.14 0.12 0.05 0.087 0

Median 2.2S 0.99 0.44 0.32 0

Mode 1.00 0 0 0 0

Standard Deviation 2.41 2.11 0.84 131 0

Variance 5.82 4.4S 0.699 2.28 0

Kurtosis 4.17 0.996 1.997 8.92 0

Skewness 1.72 1.32 1.38 2.53 0

Range IS.00 10.00 4.00 10.00 0

Minimum 0 0 0 0 0

Maximum 15.00 10.00 4.00 10.00

Sum 871.00 526.00 197.00 265.00

No. of valid cases 302



Table 4. Frequency distributions of control variables; magnification =
0.8, heads down, symbols, runway.

ROLL PITCH

Abs. Relative Cumulative Abs. Relative Cumulative

Code Freq. Freq.	 (Pct) Freq.	 (Pct) Code Freq. Freq.	 (Pct) Freq.	 (Pct)

0 22 7.3 7.3 0 115 38.1 38.1

1 78 25.8 33.1 1 73 24.2 62.3

2 68 22.S 55.6 2 35 11.6 73.8

3 43 14.2 69.9 3 17 5.6 79.5

4 30 9.9 79.8 4 20 6.6 86.1

5 26 8.6 88.4 5 19 6.3 92.4

6 13 4.3 92.7 6 11 3.6 96.0

7 6 2.0 94.7 7 7 2.3 98.3

8 6 2.0 96.7 8 4 1.3 99.7

9 4 1.3 98.0 10 1 0.3 100.0

10 1 0.3 98.3

11 1 0.3 98.7

12 1 0.3 99.0

13 2 0.7 99.7

15 1 0.3 100.0
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Table S. Frequency distributiLns of control variables; magnification - 0.8,
heads down, symbols, runway.

RUDPOS THROW

Abs. Relative Cumulative Abs. Relative Cumulative
Code Freq. Freq.	 (Pct) Freq.	 (Pct) Code Freq. Freq.	 (Pct) Freq.	 (Pct)

0 185 61.3 61.3 0 160 53.0 S3.0

1 S2 17.2 78.5 1 100 33.1 86.1

2 25 8.3 86.8 2 32 10.6 96.7

3 19 6.3 93.0 3 7 2.3 99.0

4 10 3.3 96.4 4 3 1.0 100.0

S 8 2.6 99.0

6 1 0.3 99.3

10 2 0.7 100.0
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Table 6. Runways and symbols (G 1 ) vs. runways only (G2).

Pooled	 Separate
Variance Estimate Variance Fctimatp

F 2-Tail T 2-Tail T 2-Tail
Variable Mean Value Prob. Value Prob. Value Prob.

PITCH
G 1 3.13
G2 2.94

1.26 0.23 0.57 0.57 0.57 0.56

ROLL
G 1 1.77
G2 1.0E

2.21 0.000* 2.78 0.006* 2.74 0.007*

VSI
G I -539.02
G2 -713.17 1.87 0.001* 4.53 0.000* 4.58 0.000*

ASER
G 1 -1.736
G2 -0.898

1.71 0.005* -1.02 0.309 -1.03 0.305

RANGE
G 1 51.85
G2 -95.80 1.13 0.523 1.53 0.128 1.53 0.127

ERLOC
G 1 0.164
G2 0.896

1.12 0.548 -0.69 0.491 -0.69 0.492

*Significant at a = 0.05
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1 Table 7. Runways and symbols (G 1 )	 vs. symbols only (G3).

Pooled Separate
Variance Estimate Variance Estimate

F 2 -Tail T 2-Tail T 2 -Tail
Variable Mean Value Prob. Value Prob. Value Prob.

PITCH
G 1 3.128
G 3 2.365 1.81 0.012* 2.26 0.025* 2.44 0.016*

ROLL,
G 1 1.771
G 3 1.91 3.37 0.000* 1.92 0.056* 2.23 0.027*

VSI
G -539.02
G 33 -508.52 1.30 0.262 -0.84 0.401 -0.87 0.384

ASER
G 1 -1.736
G 3 -1.3380 1.17 0.505 -0.44 0.661 -0.45 0.655

RANGE
G 1 51.85
G 3 -67.20

2.56 0.000* 0.86 0.393 0.76 0.449

ERLOC
G1 0.164
G 3 1.179 1.09 0.687 -C.77 0.441 -0.76 0.447

*Significant at a = 0.5
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Table 8.	 Heads up (HU) vs. heads down (HD).

Pooled Separate
Variance Estimate Variance Estimate

F 2-Tail T 2-Tail T 2 -Tail
Variable Mean Value Prob. Value Prob. Value Prob.

PDFD1
HU 1.37 0 1.00 1.07 0.285 1.00 0.320HD 0

PDFD2
HU 90.52

24.49 0.000* -1.66 0.099 -1.77 0.080
- HD 250.03

PDFD3
HU 157.70

2.88 0.000* 2.05 0.041* 1.98 0.049*
HD 79.09

PDFD4
HU 90.73

13.14 0.000* -0.93 0.355 -0.98 0.327
HD 159.12

PDFDS
HU 6459.17 1.19 0.372 -2.11 0.036* -2.10 0.037,

• HD 72.44

PDFD6
HU 421.43

1.09 0.644 0.38 0.707 0.37 0.708
HD 395.92

_ PDFD7
- HU 1.27 281.48 0.000 -0.88 0.380 -0.94 0.348

HD 20.12

PDFD8
HU 2613.84

1.12 0.555 2.24 0.026* 2.24 0.020*
HD 1769.56

PDFD9
HU 1.86 1.54 0.025 0.54 0.592 0.53 0.597
HD 1.25

*Significant at a = 0.05



Table 9.	 Heads up (HU) vs. heads down (HD), magnification 0.8.

Pooled Separate
Variance Estimate Variance Estimate

F 2-Tail T 2-Tail T 2-Tail
Variable Mean Value Prob. Value Prob. Value Prob.

RUDPOS
HU 0.75
HD 1.21

1.35 0.122 -2.47 0.014* -2.49 0.013*

THROTT
HU 0.598
HD 0.821

1.01 0.948 -2.06 0.040* -2.06 0.041*

PITCH
HU 2.77S
HD 3.658

1.17 0.410 -2.83 0.005* -2.85 0.005* 

ROLL
HU 1.578
HD 1.880

1.07 0.735 -1.10 0.274 -1.10 0.273

VSI
HU -596.09

1.08 0.698 -2.95 0.004* -2.94 0.004*
• HD -494.98

ASER
HU -1.90

1.43 0.065 1.28 0.202 1.26 0.208
HD -2.70

RANGE
HU 181.14

1.24 0.275 2.00 0.047* 2.01 0.045*
HD -13.58

ERLOC
HU 0.991

1.30 0.172 3.16 0.002* 3.13 0.002*
HD -2.73

*Significant at a = 0.05
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*Significant at a = 0.05

Table 10. Magnification = 0.8 vs. magnification = 0.32, heads down.

Pooled Separate

Variance Estimate Variance Estimate

F 2-Tail T 2-Tail T 2-Tail

Variable Mean Value Prob. Value Prob. Value Prob.

PITCH
mag 0.8 3.13 2.17 0.000* 2.66 0.008* 2.59 0.010*
mag 0.32 2.44

ROLL
mag 0.8 1.771 2.18 0.000* 1.80 0.074 1.75 0.082
mag 0.32 1.333

VSI
mag 0.8 -539.02 1.10 0.628 1.77 0.078 1.78 0.077
mag 0.32 -595.75

ASER
mag 0.8 -1.74 1.56 0.016* -2.85 0.005* -2.81 0.005*

mag 0.32 0.029

RANGE
mag 0.8 51.85 1.17 0.401 0.45 0.653 0.45 0.651

mag 0.312 8.74

ERLOC
mag 0.8 0.164 1.27 0.200 -3.95 0.000* -3.92 0.000*

mag 0.32 4.149
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Table 11. Magnification = 0.43 vs. magnification = 0.8, heads up.

Pooled Separate
Variance Estimate Variance Estimate

F 2-Tail T 2-Tail T 2-Tail
Variable Mean Value Prob. Value Prob. Value Prob.

PITCH
mag 0.8
mag 0.43

3.658
2.667

2.58 0.000* 3.78 0.000* 3.80 0.000*

ROLL
mag 0.8
mag 0.43

1.88
1.211

2.24 0.000* 2.89 0.004* 2.91 0.004*

VSI
mag 0.8 -494.98
mag 0.43 -517.43 1.08 0.673 0.70 0.485 0.70 0.485

ASER
mag 0.8
mag 0.43

-2.70
-2.03

1.57 0.016* -1.07 0.284 -1.07 0.285

RANGE
mag 0.8
mag 0.43

-13.58
109.95

1.11 0.564 -1.21 0.227 -1.21 0.227

ERLOC
mag 0.8
mag 0.43

-2.732
-0.164

1.22 0.288 -2.27 0.024* -2.27 0.024*

*Significant at a = 0.05
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Table 12.	 Factors obtained with PA2.

W

Pct of Cumulative
Variable Communality Factor Eigenvalue Variance Pct

IN1 0.93970 1 3.79105 24.2 24.2

IN2 0.75108 2 2.80917 18.0 42.2
r

IN3 0.94751 3 2.25288 14.4 56.6

IN7 0.86659 4 1.54189 9.9 66.5

IN8 0.90732 5 1.17486 7.5 74.0

IN9 0.88118 6 1.06442 6.8 80.8

IN13 0.81981 7 0.86647 5.5 86.3

IN14 0.80563 8 0.82340 5.3 91.6

IN15 0.75313 9 0.75262 4.8 96.4

E PDFD1 0.00528 10 0.56421 3.6 100.0

PDFD2 0.57848

PDFD3 0.24121

PDFD4 0.72263

PDFDS 1.00276

PDFD6 0.76271

PDFD7 0.38158

PDFD8 1.00947

PDFD9 0.02292

PITCH 0.52975

ROLL 0.42217

RUDPOS 0.25025

THROTT 0.23549

VSI 0.29899

ASER 0.38563

RANGE 0.60283

E
ERLOC 0.51656
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